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Abstract

A complete set of master integrals for describing the gluon fusion process gg → h at two-loop
order in the Standard Model, SM, is identified. All master integrals are computed as Laurent
series in the dimensional regularization parameter ε in terms of harmonic polylogarithms. The
gg → h amplitude in the SM is reduced to the master integrals, leading to a closed analytic
formula for the amplitude, which is in agreement with the known result.

The reduction procedure is repeated for the SM-like amplitude, where a heavy scalar
instead of the quark is running in the loops. This yields a new result.

The complete set of master integrals also allows automated computation of gg → h con-
tributions in any extension of the SM, as long as only a single mass parameter occurs in the
loops, as well as other processes with similar kinematics.

Then it is shown how to use the technique of contour deformation for handling thresh-
olds within the framework of sector decomposition. This leads to the first known numerical
method capable of evaluating in principle arbitrary tensor Feynman diagrams with UV, IR
and threshold singularities in arbitrary kinematic regions.

The power of this method is demonstrated by computing the full virtual supersymmetric
QCD amplitude for gg → h,H at two-loop order in the Minimal Supersymmetric Standard
Model, MSSM. This includes two-loop diagrams containing up to five different kinematic
invariants, which are clearly beyond the scope of any known analytic technique. The integra-
tion succeeds even in the numerically challenging case, where the kinematic invariants have
extremely disparate values, reaching ratios of 104.

It is reasonable to assume, that the numerical method presented is capable of evaluating
the two-loop gg → h amplitude in any conceivable extension of the SM. It thus eliminates
the awkward situation, that the important NLO QCD corrections to the basic LHC process
gg → h were not computable in viable extensions of the SM, like the MSSM.

The method is clearly not limited to 2→ 1 kinematics and yields a flexible tool for checking
analytic results as well as for direct numerical computations in perturbative quantum field
theory.
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Zusammenfassung

Es wird ein vollständiger Satz von Masterintegralen für den Gluon-Fusionsprozess gg → h in
der Zweischleifennäherung im Standard Modell, SM, identifiziert. Alle Masterintegrale wer-
den als Laurentreihen im dimensionellen Regularisierungsparameter ε berechnet und durch
harmonische Polylogarithmen ausgedrückt. Die gg → h Amplitude im SM wird auf Mas-
terintegrale reduziert. Auf diese Weise wird ein geschlossener analytischer Ausdruck für die
Amplitude gewonnen, welcher mit dem bekannten Resultat übereinstimmt.

Die Reduktionsprozedur wird wiederholt für den SM-ähnlichen Beitrag, in welchem die
Schleifenkorrektur nicht von einem Quark, sondern von einem schweren Skalarteilchen herrührt.
Dies führt zu einem neuen Resultat.

Der vollständige Satz von Masterintegralen ermöglicht auch die automatisierte Berechnung
von gg → h Beiträgen in beliebigen Erweiterungen des SM, sofern jeweils nur ein einziger
Massenparameter in den Schleifen erscheint. Auch andere Prozesse mit ähnlicher Kinematik
können auf gleiche Weise behandelt werden.

Danach wird eine Möglichkeit aufgezeigt, wie die Technik des deformierten Integrationswegs
zum Behandeln von Thresholds im Rahmen der Sektorzerlegungstechnik verwendet werden
kann. Dies liefert erstmals eine numerische Methode, welche im Prinzip die Integration von
beliebigen Tensor-Feynmandiagrammen mit UV-, IR- und Thresholdsingularitäten in beliebi-
gen kinematischen Gebieten erlaubt.

Das Potential dieser Methode wird durch die Berechnung der vollständigen, virtuellen, su-
persymmetrischen QCD Amplitude für den Prozess gg → h,H in der Zweischleifennäherung
im Minimalen Sypersymmetrischen Standardmodell, MSSM, veranschaulicht. Dies beinhal-
tet die Auswertung von Diagrammen, welche von bis zu fünf verschiedenen kinematischen
Invarianten abhängen. Die Integration gelingt auch im numerisch problematischen Fall, wo
die kinematischen Invarianten extrem unterschiedliche Werte annehmen. Verhältnisse bis zu
104 wurden erfolgreich getestet.

Die beschriebene numerische Methode kann allem Anschein nach dazu benutzt werden,
die Zweischleifenkorrektur zur gg → h Amplitude in jeder denkbaren Erweiterung des SM zu
berechnen. Sie bietet daher einen Ausweg aus der unhaltbaren Situation, dass die wichtige
QCD Korrektur der ersten Ordnung (next-to-leading order) zum fundamentalen LHC Prozess
gg → h nicht in allen realistischen Erweiterungen des SM, etwa dem MSSM, berechenbar war.

Die Anwendbarkeit der beschriebenen Methode beschränkt sich keinesfalls auf 2 → 1
Prozesse. Sie stellt daher ein flexibles Werkzeug dar, das sowohl zur Überprüfung analytischer
Resultate, wie auch für direkte numerische Berechnungen im Rahmen der störungstheoretischen
Quantenfeldtheorie benutzt werden kann.
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Chapter 1

Introduction

Coulomb determined the electric force law measuring the repulsion between two charged balls.
Cavendish measured the gravitational force between two lead weights. In the microscopic
world of elementary particles there is no such direct way of probing interactions. Information
can only be collected from indirect evidence, mainly from scattering experiments. Determin-
ing the interaction laws becomes a much harder task under these circumstances. The classical
scattering experiment is the Rutherford experiment, measuring the deflection of alpha parti-
cles fired at a very thin gold foil. The large deflection angles observed for a small fraction of
particles could not be explained by the “plum pudding model” of the atom, assuming that the
positive charge is smeared out over the whole atom. Rutherford concluded, that the charge
has to be localized in a very small volume.

In the 1920 successful field theoretical descriptions of the known interactions existed.
Maxwell’s theory of electromagnetism and Einstein’s theory of general relativity. When quan-
tum mechanics was born, the question arose, how these theories should be quantized. The
case of gravity is still a puzzle today. But the effort to quantize electromagnetism led to
the development of a relativistic quantum field theory, called quantum electrodynamics or
short QED, describing the interaction of light and matter. Relativistic quantum field theo-
ries turned out to be the framework of choice for describing elementary particle interactions.
Their ability to deal with changing particle numbers is crucial.

A serious difficulty, that plagued quantum field theories was the “divergence problem”.
As a consequence of the continuum description having uncountably many degrees of freedom,
nonsensical infinite results arose for many quantities of interest. This problem was solved
through a procedure called renormalization. It relies on the insight, that the infinities, orig-
inating from phenomena at very high momenta or equivalently very small distances, can in
fact be absorbed into a redefinition of the input parameters of the theory. What is ill-defined
in continuous space-time is the shift between the physical, renormalized masses and couplings
and their unobservable, bare counterparts appearing in the Lagrangian defining the theory.
One can say, that phenomena at shortest distances, where we lack both, a theoretical model
as well as experimental evidence, miraculously affect physics at much lower energies only
through the values of certain parameters. The values of these parameters cannot be com-
puted in the low energy theory, they have to be extracted from experiments. A similar thing
can be observed in hydrodynamics, where physics at the atomic scale only enters through the
value of the viscosity parameter.

QED yielded one of the most precise predictions seen in physics. A key feature of QED
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is its local U(1) symmetry: The global U(1) symmetry of the free matter Lagrangian, i.e.
the fact, that there is always the freedom of choosing a phase when defining a quantum
mechanical state, is promoted to a local symmetry. This means a phase can be chosen inde-
pendently for each space-time point. The kinetic term of the matter Lagrangian, containing
space-time derivatives, can only be made gauge invariant, that is invariant under local phase
transformations, by introducing a new massless vector particle, the gauge boson. The gauge
boson couples to particles carrying the corresponding Noether charge in a way fixed by the
requirements of gauge invariance. In QED the gauge boson is of course the photon and the
U(1) charge is the electric charge.

It was realized by Yang and Mills, that the principle of promoting a global symmetry
to a gauge symmetry, allowing independent action of the symmetry group at every space-
time point could be extended from the U(1) case to more complicated Lie groups. When
non-abelian groups like SU(2) or SU(3) are used, several gauge bosons, associated with the
generators of the group, appear. Unlike in the U(1) case, these non-abelian gauge bosons
themselves carry the more complicated group charges and thus exhibit self-interactions. As
a consequence these theories can have a virtue known as asymptotic freedom; the strong
coupling at low energies becomes weaker at higher energies, contrary to the situation in
QED.

Gauge invariance became the most important guiding principle for constructing theories of
elementary particle interactions. However, something was clearly missing. Gauge invariance
does not allow mass terms for gauge bosons in the Lagrangian. As a consequence, the forces
mediated by gauge bosons are all long range, just as the electromagnetic force in QED.
Therefore gauge theories were unable to model the observed short ranged nature of the weak
and strong forces, calling for massive force carriers.

A solution to this problem is provided by spontaneous symmetry breaking. This term
denotes the situation, that a symmetry present in the Lagrangian is not respected by the
ground state of the theory. Goldstone showed, that whenever a global symmetry is not
respected by the ground state, a massless particle, a goldstone boson, appears for every broken
symmetry generator. The simplest example is an SO(2) multiplet of scalars in a potential
shaped like a “Mexican hat”. The ground state is a constant but nonzero field corresponding
to an arbitrarily chosen point in the trough of the potential. Thus the scalar field acquires
a nonzero vacuum expectation value, VEV. The massless Goldstone boson corresponds to
excitations along the flat trough of the potential. The second degree of freedom is a scalar with
a mass given by the positive curvature in axial direction. Spontaneous symmetry breaking
was thought to be of no use for the construction of realistic models, since there are no massless
Goldstone bosons in nature. This view was proven wrong by a crucial observation by Higgs,
Brout, Englert, Guralnik, Hagen and Kibble. If a gauge symmetry is spontaneously broken,
the gauge bosons can acquire a mass. Moreover the massless Goldstone bosons do not appear
in the spectrum. They are “eaten” by the gauge bosons and supply the third degree of freedom
inherent to a massive vector particle. If the spontaneous symmetry breaking is caused by a
scalar gauge multiplet acquiring a nonzero VEV, the radial excitation in the “Mexican hat”
remains in the spectrum; a massive particle called the Higgs boson.

Glashow, Weinberg and Salam proposed a model for the interactions of elementary parti-
cles based on spontaneously broken gauge invariance. It unifies the weak and electromagnetic
force using SU(2) × U(1) gauge invariance, which is spontaneously broken down to the ob-
served electromagnetic U(1). The strong force is described by an unbroken local SU(3)
“color” symmetry. In this model, called the Standard Model of elementary particles, the
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Higgs mechanism is not only needed to give mass to vector bosons. The chiral nature of
the weak force, acting only on left handed fermions, calls for left and right handed fermions
carrying different SU(2)× U(1) charges. Therefore gauge symmetry does not allow ordinary
Dirac mass terms in the Lagrangian. Fermion mass terms have to be generated by couplings
to the Higgs boson similar like gauge boson masses. So the Higgs boson is in fact responsible
for the masses of all Standard Model particles. The full SU(3)×SU(2)×U(1) theory is more
than the sum of its parts, since a miracle called cancellation of anomalies happens, preventing
the chiral symmetry of the Lagrangian from being spoiled through quantum corrections.

The Standard Model is the description of elementary particle interaction we have been
living with and proud of for the last three decades. Its superb successes were the prediction of
weak neutral currents measured at CERN and SLAC and the prediction of the masses of the
Z and W± bosons mediating the weak force, discovered at CERN in 1983. Thorough tests of
the Standard Model could be performed with electroweak precision data from LEP and until
today, although there is some tension in the data, no measurement is in real disagreement
with the Standard Model. A key point of the Standard Model is the prediction of the Higgs
boson. The Standard Model is sometimes presented as a jigsaw puzzle with the Higgs boson
as the last missing piece.

There are, however, several issues with the Standard Model. First of course the predicted
Higgs boson has not been found so far. Thereby the mass region, where it should be accom-
modated with highest probability according to electroweak precision data, is already excluded
by direct search. This is no support for the Standard Model, but it should not be overstated,
since only the logarithm of the Higgs mass enters these considerations. But concerns arise
from the theoretical side as well. The Standard Model is clearly not complete, since it does
not include gravity. At the same time, the mass of the Higgs boson is not stable against
addition of new sectors. It will naturally assume a value comparable to the highest mass scale
of the theory. This is known as the gauge hierarchy problem. A new sector containing very
heavy particles should therefore be supplemented by a mechanism protecting the Higgs mass
from large corrections.

The Higgs mechanism realized in the Standard Model is just the simplest phenomenolog-
ical model of electroweak symmetry breaking, providing a triplet of Goldstone bosons, that
can be eaten by the W± and the Z boson. Nature might have chosen a more complicated
solution. It is very well possible, that the ongoing LHC experiment will reveal so-called new
physics beyond the Standard Model, forcing us to revise the latter, rather than just find the
elusive Standard Model Higgs boson. However, there is more truth in the Standard Model
Higgs sector, than it might first seem. Theorists have found it is extremely difficult to ex-
tend the Standard Model without getting into conflict with electroweak precision data. The
ρ parameter related to the W± and Z masses plays a key role in this respect. Custodial
symmetry, an accidental global SO(4) symmetry of the Higgs sector fixes ρ = 1. It is broken
only by the large mass differences of the third quark generation. For alternative models it is
virtually impossible to be consistent with data, if they do not respect custodial symmetry.

One very well known extension of the Standard Model is the introduction of supersym-
metry. Supersymmetry is an extension of Lorentz symmetry of space-time, which transforms
bosons into fermions and vice versa. Therefore every particle has a superpartner with opposite
statistics. The Minimal Supersymmetric Standard Model, MSSM, is the simplest possible,
phenomenologically viable supersymmetrization of the Standard Model. It introduces new
particles as superpartners for all known Standard Model particles. Whereas the Standard
Model Higgs sector is made of a single scalar SU(2) doublet, in the MSSM for technical

7



reasons two SU(2) doublets with opposite U(1) hypercharge are required. They both come
with fermionic superpartners. Electroweak symmetry breaking has to produce three Gold-
stone bosons, which are eaten just like in the Standard Model. Therefore five real degrees of
freedom remain in the spectrum: two CP even neutral Higgs bosons called the light and the
heavy Higgs, one CP odd neutral Higgs boson and two charged Higgs bosons. Contrary to
the Standard Model, the MSSM itself, not data, provides an upper bound for the mass of the
light Higgs. At leading order this bound is mh < mZ , so the light Higgs would have to be
in the region searched by LEP, but radiative corrections can weaken it considerably. Note,
that also in the Standard Model a further Higgs doublet can be added. Doing so introduces
many unwanted new parameters, however. It is remarkable, that supersymmetry requires the
introduction of a second doublet, and at the same time allows to do so without proliferation
of parameters.

A main virtue of supersymmetry is the arrangement of a cancellation in the quantum
corrections to the Higgs mass. The bothersome quadratic divergence cancels between con-
tributions from quarks and from their superpartners, the scalar quarks or squarks. This
cancellation is not just a neat coincidence. It happens, because the Higgs can be rotated
into its fermionic superpartner by a symmetry of the theory, and fermions, unlike scalars,
only receive logarithmically divergent quantum corrections to their masses. The idea of su-
persymmetry also gets support for other reasons. The Standard Model gauge group can be
embedded into a larger SU(5) or SO(10). The matter content of the Standard Model neatly
fits into anomaly free representations of these groups. Such a grand unified theory would
explain the fractional charges of quarks. Further it fixes the strength of the three gauge cou-
plings of SU(3)× SU(2)× U(1) in terms of a single unified gauge coupling. When the three
gauge couplings are evolved to very high energies using the renormalization group equation,
their values come close to each other at a certain point. Thereby the normalization of the
U(1) hypercharge given by the embedding is important. If the evolution is done taking into
account the doubled particle spectrum of the MSSM, the three couplings actually meet in a
single point somewhere above 1016 GeV. This fact can be considered a smoking gun hinting
at the existence of supersymmetry. Also its conceptual beauty and its crucial role in string
theories are often put forward in the prospect of supersymmetry.

There is clearly no exact supersymmetry in nature, since particles do not group into
pairs with opposite statistics but otherwise equal quantum numbers and masses. Thus if
supersymmetry indeed exists, it has to be supplemented by a mechanism of so-called soft
SUSY breaking, which disguises supersymmetry at low energy and allows superpartners to
obtain masses around the TeV scale, but without ruining the highly welcome cancellation
occurring in the corrections to the Higgs mass. Various such mechanisms have been proposed.
For us it will be sufficient just to parametrize their possible effects by directly including
effective soft SUSY breaking terms into the Lagrangian. It cannot remain unmentioned here,
that soft SUSY breaking is a delicate issue, which introduces many problems. Some of them
are actually of a similar type like the gauge hierarchy problem, which supersymmetry solves.
Still, among the proposed extensions of the Standard Model, the MSSM is arguably the most
solid and best analyzed one. In any case it is a very predictive model, postulating many new
particles as well as intricately related couplings.

Testing the Higgs sector at colliders is a difficult task. While the Higgs gives rise to
quantum corrections to many measurable quantities, these indirect effects are very small. The
challenge is to produce real Higgs bosons and to detect telltale decay products. Assuming
the existence of a Higgs, the fact, that we have not seen it so far neither at LEP2 nor at the
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Tevatron clearly tells us, that it is difficult to produce. And it is difficult to produce for a
reason. The list of particles we can collide at accelerators is very limited. It is essentially
electrons and protons. Due to asymptotic freedom, colliding protons in fact means colliding
its constituents; gluons, as well as up and down quarks. The problem is, that all these
particles have zero or very small masses. Therefore, their coupling to the Higgs is zero or
very small. The only viable way to produce a Higgs is thus to produce other heavy particles
first, particles to which the Higgs “talks more” than to light quarks or electrons. The only
known particles with strong enough couplings to the Higgs are the top quark and the heavy
vector bosons W± and Z.
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Figure 1.1: Relevant processes for Higgs production at hadron colliders: Gluon fusion, asso-
ciated production, Higgs strahlung and vector boson fusion.

Figure 1.1 shows the relevant Higgs production channels at hadron colliders in terms of
Feynman diagrams, the language of perturbative quantum field theory. In the second diagram,
the vector boson fusion process, a pair of heavy vector bosons, mostly W ± is produced from
energetic quarks and annihilates into a Higgs boson. In the following diagrams a heavy state,
either a vector boson or a top quark pair is produced from energetic quarks and subsequently
radiates off a higgs boson. Diagrams 2-4 are tree diagrams, i.e. classical approximations. Each
of these processes receives quantum corrections from many diagrams containing loops. The
first diagram, the gluon fusion channel, is special. The diagram shown, containing a loop, is
the leading contribution. There is no corresponding tree diagram; the Higgs does not talk
directly to gluons, since they are massless. This is a genuine quantum effect. It is instructive
to view this process in the following way. Rather than actually producing the heavy particles,
which the Higgs talks to, we let the vacuum do this demanding task for us. According to the
energy-time uncertainty ∆E∆t & ~ nature can lend the energy for producing a very heavy
particle. Clearly, this energy will be claimed back after a very short time, so a top-antitop
pair arising this way cannot appear as real particles in a final state. But if we feed in two
gluons for the sake of energy and momentum conservation, the virtual quark can emit a real
Higgs boson, that can appear in the final state. We can read off figure 1.2, that exactly this
process is the most important production channel at hadron colliders. The reason is, that in
this process, the Higgs is alone in the final state. Therefore the available phase space is not
reduced by other heavy particles. At the same time, the loop suppression is moderate, since
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Figure 1.2: Cross sections for various channels of Standard Model Higgs production at the
LHC. Gluon fusion is the dominant channel over the whole mass range.

the coupling of the gluon to the quarks is strong.

An important detail is, that in the limit, where the top quark is made infinitely heavy, the
cross section of the gluon fusion process does not go to zero, it rather approaches a constant.
Actually, provided the Higgs is somewhat lighter than the top quark, this so called heavy top
limit yields a decent approximation of the exact gluon fusion process. Since the Standard
Model is presumabley not the last word in particle physics, this non-decoupling could have an
important impact. It is well possible that additional colored particles exist. Prime examples
could be squarks and gluinos, the superpartners of quarks and gluons. Each such heavy
colored particle would most likely give rise to a contribution to the gluon fusion cross section.
Note, that this is true even if the new particles are so heavy, that they cannot be produced
at the collider. In such a case, processes where the heavy particles also appear in the final
state are of course not possible, but the gluon fusion process just does not care. The collider
only has to supply enough energy to pay for the Higgs, whereas the heavy particle loop is
borrowed from the vacuum for free.

Imagine the LHC finds deviations from the Standard Model. It should have become
clear by now, that the ability to accurately predict the gluon fusion cross section in any
extension of the Standard Model physicists might come up with, becomes very important then.
Unfortunately, this can be a rather difficult task. The production of colored particles from
gluons happens via the strong force or Quantum Chromodynamics, QCD. For electroweak
processes the leading order diagrams usually give a viable approximation and the next order
gives precision results. In QCD the situation is very different. The leading order usually
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contains large scale dependencies and is very unreliable. To get an acceptable approximation,
the next-to-leading order, NLO, is mandatory and for precision, one has to go further in
the perturbative expansion. The gluon fusion process gg → h is no exception here. In the
Standard Model it is known, that NLO corrections increase the leading order cross section by
more than 70% at the LHC [1]. The next-to-next-to-leading order, computed in the heavy
top approximation only, gives another 30% [10]. Since gg → h is a loop induced process, the
mandatory next-to-leading order correction is a two-loop amplitude.

The evaluation of amplitudes or single Feynman diagrams containing loops is a general
unresolved problem of quantum field theory. At one-loop order, the problem was in principle
solved long time ago by the reduction to scalar integrals according to Passarino and Veltman.
However, this representation is not well behaved and not useful in practice, if the process under
consideration has many legs. Only recently improved reduction methods have emerged [72].
At two-loop order nothing comparable exists. Important progress has been achieved over
the last years for certain classes of diagrams. But despite of that, even for a process like
gg → h, having only three legs, one can easily run into diagrams, which are hopeless cases
with today’s analytic technology. Where analytic integration is not feasible, it is natural to
resort to numerical techniques. But until now in many cases not even numerical evaluation of
loop integrals is possible, at least not in the relevant kinematic region. The reasons for this
unpleasant situation are ultraviolet and infrared singularities of Feynman diagrams calling
for regulators, and the appearance of thresholds.

The above statements are reflected in the status of the gg → h computation as follows: In
the Standard Model, the NLO corrections were computed already in 1993 by Spira, Djouadi,
Graudenz and Zerwas [1]. The result was given in a somewhat impractical one-dimensional
integral representation. Recently this result was put into a more useful form by matching a
carefully chosen ansatz to the result of [1]. Analytic calculation techniques developed over the
last years are expected to provide a direct path to a closed analytic solution for the Standard
Model case. Such a computation is of considerable interest, since it also provides the basis for
automated computations of gg → h in arbitrary extensions of the Standard Model, as long as
only a single mass parameter appears in the loops. For more complicated extensions of the
Standard Model, leading to two-loop diagrams with several mass parameters, only effective
field theory solutions could be obtained. These are approximations analogous to the heavy
top limit, where all massive particles appearing in the loops are assumed to be infinitely
heavy. For the MSSM this calculation was accomplished in [25] and very recently repeated
in [26]. However, the very example of the MSSM also shows, that this is not an acceptable
situation for two reasons. First the MSSM also predicts a heavy Higgs boson. Since it is
expected to be heavier than the top quark, the effective theory solution is meaningless for
the heavy Higgs case. Second, due to the more complicated structure of the Higgs sector, for
certain parameter regions, the contribution from bottom quarks can be enhanced so much,
that they are no longer negligible despite their small mass of only 5GeV. Since they spoil
the mass hierarchy, contributions containing bottom quarks are not calculable in an effective
theory approach. The bottom line is clear. In the MSSM and probably also in other viable
extensions of the Standard Model, the mandatory NLO corrections to gg → h,H, the most
important LHC process, require the evaluation of two-loop Feynman diagrams with many
different masses in the loops. The evaluation of these diagrams is not feasible with any
known technique. The presence of several kinematic invariants virtually disqualifies analytic
techniques. Ultraviolet, infrared and threshold singularities in Feynman diagrams impede
numerical integration.
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This thesis remedies this awkward situation. It is organized as follows:
Chapter 2 deals with the analytic computation of gg → h in the Standard Model and

closely related processes. We make use of modern analytic techniques, that allow us to re-
compute the gg → h amplitude in a more general framework. The Laporta algorithm [15]
allows for automated reduction of multi-loop integrals to a small number of master integrals.
The differential equation method [3] yields robust technology for computing master integrals.
Many of the master integrals required for the gg → h process were indeed known in the
literature [18, 19, 20, 21, 22, 23, 24]. We present here for the first time the full set of master
integrals for the gg → h process via a heavy quark at two-loop order. We compute all
master integrals using the method of differential equations. Our expressions are given as an
expansion in the dimensional regularization parameter ε = (4 − d)/2 in terms of harmonic
polylogarithms. HPLs with transcedentalities up to four appear. Our result for the two-loop
gg → h amplitude in terms of master integrals fully agrees with [28]. This presents the first
independent check of [1]. But this is not the main impact of a full set of master integrals. The
more important consequence is, that it allows for automated computation of processes with
similar distributions of masses in the loops. We illustrate this by computing the two-loop
amplitude for gg → h via a heavy scalar particle. The scalar particle can be considered a
scalar quark for instance. So, with adequate couplings, this result is a partial contribution
to the full two-loop SUSY-QCD amplitude for gg → h,H in the MSSM. Our set of master
integrals may prove equally useful for the computation of gg → h in other extensions of the
Standard Model. It is also a subset of the master integrals, that enter the two-loop amplitudes
of more complicated 2→ 2 processes, such as heavy quark production.

In chapter 3 we show a way of using contour deformation [54, 55, 57, 58] for dealing
with thresholds within the framework of sector decomposition [4, 5, 8, 12]. Together with a
simple program for Feynman parametrizing tensor integrals this yields a flexible tool, which
in principle allows numerical evaluation of arbitrary loop integrals in arbitrary kinematic
regions. The method described here has been developed contemporeanously and applied to
five leg processes at one-loop order by Lazopoulos, Melnikov and Petriello [61, 60, 59]. At
the moment of this writing, this is the only viable method for evaluating multi-loop integrals
with several mass parameters in the presence of thresholds.

Finally, in chapter 4 we demonstrate the power of our method by computing the full
SUSY-QCD two-loop amplitude for gg → h,H in the MSSM. This includes the numerically
challenging contribution from diagrams containing bottom (s)quarks and gluinos, and thus
extremely disparate mass parameters.
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Chapter 2

Analytic calculation of the gg → h
Amplitude at O(α2

s) in the Standard

Model

In this chapter we study the virtual contribution to the gg → h amplitude at O(α2
s) in the

Standard Model. As it comes at almost no additional cost, we also consider the case, where the
ggh interaction is mediated via a massive scalar instead of the massive quark. With adequate
couplings both pieces are partial contributions to the full SUSY QCD gg → h,H amplitude
in the Minimal Supersymmetric Standard Model, which will be computed in chapter 4. We
neglect the contributions of the first and the second generation due to the smallness of their
masses. In the Standard Model, also the contribution of the bottom quark is negligible. In
the MSSM this is not true, as the bottom-higgs-coupling is enhanced by tan β.

2.1 Reduction of Amplitudes to Master Integrals

The leading order contribution to gg → h in the Standard Model is given by two triangle
diagrams, where two gluons create a Higgs boson via a top quark loop. One of them is shown
in figure 2.1, labeled 1

2 BORN1. The second diagram is obtained by reverting the direction of
particle flow in the loop. One finds, that the two diagrams lead to the same integrand. This
can be understood as follows. The color factor is simply tr(T aT b) = 1

2δ
ab and thus the same

for both direction of the arrows. The Lorentz parts of the two diagrams differ in the order
of the γ-matrices in the trace. But this order can be reversed using CγµC† = −(γµ)T , where
C is the charge conjugation operator. Alternatively the equality can be explained with bose
symmetry.

The contribution with a scalar running in the loop has three diagrams. Two of them
again differ only by the direction of particle flow in the loop and turn out to be equal. One
representative together with the third diagram is shown in figure 2.1.

The two-loop QCD contribution to gg → h in the Standard Model consists of 21 Feynman
diagrams. The SM-like contribution containing only gluons and a massive scalar particle
counts 56 diagrams, 16 of which vanish. As in the one-loop case we find that diagrams
related by reversion of arrows are equal. It is easy to check, that color factors do not depend
on the arrow direction and the insertion of an internal gluon does not spoil the equality
of the Lorentz parts. Unlike in the leading order case, some diagrams are not symmetric
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1

2
BORN1

1

2
BORN2 BORN3

Figure 2.1: Leading order contribution to gg → h in the Standard Model, as well as the
SM-like contribution, where the gluons couple to the Higgs via a heavy scalar. Both triangle
diagrams appear with reversed arrows of particle flow as well. Reversing the arrows in the
bubble diagram would give a topologically equivalent diagram.

under permutation of the two gluons even if we ignore arrows. Action of bose symmetry,
i.e. swapping p1, µ, a ↔ p2, ν, b is thus not equivalent to reversing the arrows. This means,
that these diagrams actually come in four rather than two variants. In figures 2.2 and 2.3 we
show the nonzero diagrams for the quark and the scalar case, respectively. Where equivalent
diagrams exist, only one representative is shown. The full set of diagrams is given in

1

4
Q1 1

4
Q2 1

2
Q3 1

2
Q4 Q5

1

2
Q6 1

4
Q7 1

2
Q8

Figure 2.2: O(αs
2) contributions to gg → h in the Standard Model. Note that we give a

name to the sum of equivalent diagrams. For instance, Q1 refers to the sum of four equiv-
alent diagrams. Therefore the representative drawn is labled by 1

4 Q1. The whole two-loop
amplitude is given by Q1+Q2+. . .+Q8.

appendix A.
The color structure of the gg → h amplitude is trivial. The only invariant SU(Nc) tensor

that can be constructed from the two external gluons is δab. It is handy to drop the factor
δab at the very beginning. We just have to remember to put back a factor δabδ

ab = N2
c − 1

when computing an |M|2 summed over color.
In the amplitude the polarization vectors of the external gluons are contracted with a

tensor expression
M = εµ1 (p1) ε

ν
2(p2)Mµν . (2.1)

It is convenient to projectMµν onto scalar form factors. The only vectorsMµν can contain are
p1 and p2. Bose symmetry further tells us, thatMµν has to be symmetric under p1, µ↔ p2, ν.
ThereforeMµν can be written as the linear combination

Mµν = a (p1 · p2)g
µν + b pµ

2p
ν
1 + c pµ

1p
ν
2 + d (pµ

1p
ν
1 + pµ

2p
ν
2). (2.2)
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SQ2 1
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SQ5
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SQ8 1
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2
SQ10

SQ11 SQ12
1

2
SQ13 1

4
SQ14 1

2
SQ15

SQ16

Figure 2.3: SM-like contributions to gg → h from scalars at O(αs
2).

Gauge invariance requires p1µMµν = 0. So

0 = p1µMµν = (a+ b)(p1 · p2) p
ν
1 + d(p1 · p2) p

ν
2 , (2.3)

what requires b = −a and d = 0. The condition p2νMµν = 0 does not lead to further
constraints, as we have already used bose symmetry in eq. (2.2). The lesson is, that Mµν is
described by only two scalar form factors

Mµν = [(p1 · p2)g
µν − pµ

2p
ν
1 ] · A+ [pµ

1p
ν
2 ] · B. (2.4)

And even better, as pµ
1p

ν
2 vanishes when contracted with physical polarization vectors, it

suffices to compute A. In order to extract A it is useful to define

P µν = gµν − pµ
2 p

ν
1

(p1 · p2)
(2.5)

P µν
s = gµν − pµ

2 p
ν
1 + pµ

1 p
ν
2

(p1 · p2)
. (2.6)

One easily verifies that P µν′P ν
ν′ = P µν and P µν′

s Ps
ν

ν′ = P µν
s , so P µν and P µν

s are both
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projectors. Further

P µν′
s P ν

ν′ = P µν
s (2.7)

P µν′Ps
ν

ν′ = P µν
s , (2.8)

meaning that P µν
s ⊂ P µν . The projector P µν has to be handled with care, as it is not

symmetric in µν. We have

PµνP
νµ = P µ

µ

PµνP
µν

PsµνP
µν
s = PsµνP

νµ
s = Ps

µ
µ

= d− 1 but

= d− 2 and

= d− 2.

(2.9)

Equipped with this notation we can rewrite eq. (2.4) as

Mµν = (p1 · p2)P
µν A+ (p1 · p2) [P µν − P µν

s ] · B. (2.10)

Clearly, contracting this equation with either P µν or P µν
s projects out A in the same way,

(d− 2)(p1 · p2) A = P µνMµν = P µν
s Mµν . (2.11)

What is the difference between using P µν
s and P µν? Note that our discussion relies on

gauge invariance. If in a single diagram we replace the polarization vectors εµ
1 (p1)ε

ν
2(p2) by a

projector, it makes a difference whether we put P µν
s or P µν . The diagram may for instance

contain a (p1 · p2)g
µν not balanced by a −pµ

2p
ν
1 . So single diagrams contracted with P µν

s or
P µν will differ in general. The difference of course disappears, when summing over a gauge
invariant set of diagrams.

Instead of replacing εµ
1 (p1)ε

ν
2(p2) by a projector P µν

s or P µν in the amplitude or single dia-
grams, one might want to keep the the polarization vectors, multiply by the helicity structure
of M∗, namely (

ε1 · ε2 −
(ε1 · p2)(ε2 · p1)

p1 · p2

)∗
=
(
εµ

′

1 ε
ν′
2

)∗
Pµ′ν′ , (2.12)

and sum over polarizations. Choosing p2 and p1 as reference vectors for ε1(p1) and ε2(p2) we
get

∑

ε1

εµ1ε
∗
1
µ′ = −gµµ′ +

pµ
1p

µ′

2 + pµ
2p

µ′

1

p1 · p2
= −P µµ′

s (2.13)

and dito for ε2. Then

∑

ε1,ε2

(
ε1 · ε2 −

(ε1 · p2)(ε2 · p1)

p1 · p2

)∗
εµ1ε

ν
2Xµν = Pµ′ν′P

µµ′

s P νν′

s Xµν = P µν
s Xµν . (2.14)

So, with the given choice of reference vectors, this procedure is equivalent to replacing the
polarization vectors by P µν

s .

We have generated the amplitudes described by the diagrams in figures 2.2 and 2.3 us-
ing FeynArts and FormCalc [68]. FeynArts contains all necessary Feynman rules and is
able to produce expressions for the amplitudes out of the box. FormCalc tries to process
these expressions further, carrying out color and spinor algebra and reducing integrals into
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Passarino-Veltman functions. Due to the reduction step FormCalc works for one-loop ampli-
tudes only. With some tampering, essentially patching the output from FeynArts to pretend
we are dealing with tree diagrams, FormCalc could be persuaded to carry out numerator
algebra without attempting to reduce loop integrals. The expressions obtained this way
were checked against an independent derivation of the amplitude using QGRAF and private
scripts implementing the Feynman rules and numerator algebra.

The scalar form factors are given by the projected amplitude and thus by projected Feyn-
man diagrams. This means we have to compute loop integrals with scalar products of mo-
menta in the numerator. These integrals can be classified into topologies according to their
propagators. The diagrams in figures 2.2 and 2.3 contain at most six propagators, of which
five can be massive. In the numerators, however, one can find seven independent scalar
products. In each topology, the irreducible scalar product can be dealt with by introducing
an additional propagator, which can be raised to negative powers. This way, all integrals
belong to sub-topologies of the three master topologies shown in figure 2.4. The propagators
appearing in each topology are

TP1 TP2 TP3

D11 = k2 D21 = k2 −m2 D31 = k2 −m2

D12 = (k + p1)
2 D22 = (k + p2)

2 −m2 D32 = (k − l − p1)
2

D13 = (k + p12)
2 D23 = (k + p12)

2 −m2 D33 = (k + p12)
2 −m2

D14 = (l + p12)
2 −m2 D24 = (l + p12)

2 −m2 D34 = (l + p12)
2 −m2

D15 = (l + p1)
2 −m2 D25 = (l + p2)

2 −m2 D35 = (l + p1)
2 −m2

D16 = l2 −m2 D26 = l2 −m2 D36 = (k + p1)
2 −m2

D17 = (k − l)2 −m2 D27 = (k − l)2 D37 = (k − l)2 ,
(2.15)

The reduction to master integrals is done using integration by part identities [13, 14]
combined with the Laporta algorithm [15] in [16, 17]. We found 17 master integrals, which
are shown in Figure 2.5. It is possible to choose a different basis of master integrals; the basis
we choose is particularly convenient for the method of differential equations.

We write the amplitudeM in terms of the form factor A

Mi = [(ε1 · ε2) (p1 · p2)− (p2 · ε1) (p1 · ε2)] Ai i ∈ {f, s} (2.16)

and expand Ai in the bare coupling α0
s,

Ai =

(
α0

sSε

4π

)
C(0)

i +

(
α0

sSε

4π

)2

C(1)
i +O

(
(α0

s)
3
)

i ∈ {f, s}. (2.17)

The subscript i ∈ {f, s} serves to distinguish the cases of a fermion and a scalar running in
the loop, respectively. Renormalization will only be discussed in chapter 4. Still, in order to
simplify the renormalized expressions later, we have extracted a factor

Sε = (4π)ε e−γEε (2.18)

from the expansion coefficients C(0) and C(1) together with every power of α0
s.

The coefficients C(o)
i can now be written in terms of master integrals. It will prove useful
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D23 D24

D25

D26

D27

p2

p1

p2

p1TP1 TP2

D31

D36

D33 D37

D32

D35

D34

p1

p2

p2

p1TP3

Figure 2.4: Master topologies. Wavy lines denote massless particles, both internal and ex-
ternal. Straight lines denote the massive particle running in the loops. The massive external
line belonging to the Higgs boson is not present, as the Higgs vertex has been “opened up”
by the insertion of an auxiliary propagator. Therefore, the momentum of the Higgs, p1 + p2,
flows out split into massless p1 and p2.

not to do so directly, but to write

C(0)
f = Λf

1

m2ε
c
(0)
f C(1)

f = Λf
1

m4ε
c
(1)
f (2.19)

C(0)
s = Λs

1

m2ε
c(0)s C(1)

s = Λs
1

m4ε
c(1)s . (2.20)

Here we have factored out the couplings of the Higgs boson to the fermion and the scalar
particle, given by Lhqq = −mΛf hq̄q and Lhss = −m2 Λs hs

∗s, respectively. In the Standard
Model, only the fermionic contribution exists and we have Λf = 1/v, where v is the vacuum
expectation value of the Higgs boson. We have also pulled out a mass factor in order to

make the coefficients c
(o)
i dimensionless. Therefore they can be written as functions of a

dimensionless variable instead of s and m2. A convenient choice of this dimensionless variable
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Figure 2.5: Set of master integrals for gg → h in the Standard Model. Again, wavy lines
denote massless particles, straight lines the massive loop particle. The double straight line
stands for the external Higgs boson. Each dot on a propagator line denotes an additional
power of the propagator in the denominator. The big dot in the middle of a diagram stands
for a numerator made of scalar products of loop momenta. The precise form of the numerator
is given later, as it depends on the routing.

will be defined in section 2.2.1. For the leading order coefficients we get1

c
(0)
f = m2εeγE ε




−4m2

s

2ε

(1−ε) +
4

(1−ε)

(
1− 4m2

s
− ε
)
m2





(2.21)

1The expression inside the curly bracket corresponds to M̄
(0)
f in [44]. Compared to expression (A.2) in

[44], we have written the coefficient of the triangle diagram in terms of x and m2, rather than x and s, as also
the master integrals are given in these variables. Further, eq. (2.21) is not expanded in ε and thus valid at
all orders. The factors 1 − ε in the denominators have their origin in the projector norm PµνP

µν = d − 2. In
[44], eq. (A.2), this factor was expanded for no good reason and a mistake was introduced by doing so: The
expansion should be (1 + ε+ ε2), not just (1 + ε), as the overall factor ε gets cancelled by the UV-pole of the
massive bubble. Eq. (A.1) in [44] also attempts to make the color factor δab explicit in a slightly unfortunate
way.
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for the case of a fermion running in the loop and

c(0)s = m2εeγE ε





4m2

s

ε

2(1−ε) +
4m2

s

1

(1−ε)m
2





(2.22)

for the case of a scalar particle running in the loop. Note that these expressions are indeed
dimensionless. Factors of m2 not divided by s cancel with the corresponding factors carrying

the dimensions of the master integrals. The NLO expressions c
(1)
f and c

(1)
s are given in

appendix B, as they are rather lengthy.

The leading order contributions c
(0)
f and c

(0)
s are UV and IR finite. In eq. (2.21) and (2.22)

they are expressed in terms of two master integrals, a massive scalar bubble and a massive
scalar triangle. Both masters are IR finite due to the massive propagators. The triangle is
also UV finite, whereas the bubble has a logarithmic UV divergence, leading to a single pole

in ε. In the expressions for c
(0)
f and c

(0)
s this pole is cancelled by the overall ε in the coefficient.

When computing c
(0)
f directly from the Feynman diagram BORN1 in figure 2.1 it is easy to

get confused about the fact, that the fermionic triangle seems to be UV divergent by power
counting. But the dangerous part of the numerator actually comes with a factor ε. In the
scalar triangle BORN2, the vertices also produce two powers of the loop momentum in the
numerator. This diagram really has a UV divergence, which cancels against BORN3.

2.2 Computing the Master Integrals

The 17 master integrals for gg → h are shown in figure 2.5. Those in the first two lines are
products of known one-loop integrals [18, 20]. The integrals in the third, fourth and fifth
line are non-factorizable. Integrals in the third and fourth line were calculated already in
[19]2 and [23, 22, 20]. respectively. The double triangle, last diagram in the third line was
calculated in [23, 24, 22]. Also the six propagator triangle - the third diagram in the last line
- was calculated in [21].

2.2.1 Differential Equations

We computed all master integrals using the differential equation method [3, 33, 34, 35, 36,
37]. Differentiating a master integral with respect to m2, the squared mass of the loop
particle, and interchanging the order of the differential operator and the loop integrations gives
representations of the derivatives in terms of integrals with increased powers of propagators.
These integrals can again be reduced to master integrals. Applying this procedure to the
whole set of masters leads to a closed system of differential equations, describing the master
integrals’s m2 dependence. This indeed fixes the entire dependence on kinematics, as, up to
a dimensional factor, which can be fixed by power counting, the integrals only depend on the
dimensionless ratio m2/s. It is useful to parametrize this ratio as

m2

s
= − x

(1− x)2 , (2.23)

2Our results fully agree with the results quoted in this reference taken from the electronic file in
http://pheno.physik.uni-freiburg.de/bonciani/. The printed version contains several typographical mis-
takes.
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s

=
+
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=
−
∞

1

Euclidean regionabove threshold

Figure 2.6: Values of x in the complex plane depending on s/m2. For unphysical negative
s, x lies iδ above the real axis, reaching x = 1 + iδ for s = 0. For physical s x then travels
along the unit circle through the complex plane, returning to real axis at −1 + iδ when the
threshold value s = 4m2 is reached. For growing s above threshold, x then again moves along
the real axis, approaching 0 + iδ from the left for s→ +∞.

and to eliminate s, using x and m2 as independent variables. For the m2 derivative of master
integrals, the chain rule gives

∂

∂m2
MI(m2, s) =

d

dm2
MI(m2, x(m2, s)) =

∂

∂m2
MI(m2, x) +

(
∂x

∂m2

)
∂

∂x
MI(m2, x). (2.24)

For dimensional reasons

MI(m2, x) = (m2)2nL−nP−nLε mi(x), (2.25)

where nP is the number of propagators and nL the number of loops. So the ∂MI(m2, x)/∂m2

derivative can be carried out and we are left with an ordinary differential equation in x. For
convenience we give

∂x

∂m2
=

x

m2

1− x
1 + x

(2.26)

and solve eq. (2.23) for x

x =

√
1− τ − 1√
1− τ + 1

+ i0 where τ =
4m2

s
. (2.27)

The values of x in the complex plane are sketched in figure 2.6.

The way the differential equations arise suggests they should not form a fully coupled
system, connecting the 17 master integrals in the most general way. The system should
rather be triangular, so that the derivative of a given master ∂mik /∂x is expressed through
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mik and an inhomogeneity, which is a combination of diagrams belonging to sub-topologies
of mik. I.e. assuming suitable ordering of the masters, we should have

∂

∂x
mik(x) = Ak(x) mik(x) +

∑

l<k

Bkl(x)mil(x), (2.28)

allowing us to compute the mik one after the other. This is almost true. However, if a
topology happens to have more than one master integral, their differential equations are
usually coupled. In our case, the first three diagrams in the third line of figure 2.5 give rise
to a triple coupled system. Also the equations for the two sunset diagrams in the fourth
line are coupled. But this is less severe a complication than it might seem. Note that
the mik(x) as well as the coefficients Ak(x) and Bkl(x) actually depend on the dimensional
regularization parameter ε, although we did not write so explicitly. We do not attempt to
solve the differential equations to all orders in ε, but rather series expand them in ε, making
a Laurent series ansatz

mik(x) =

imax∑

i=i0

miik(x)ε
i (2.29)

for the master integrals. We then solve the resulting differential equations for the coefficients
miik(x) up to the required order. For the topologies with more than one master integrals
mentioned above, we chose the basis integrals such, that their Laurent series start at different
orders i0. To be more explicit, the triangle diagram containing a propagator raised to the
third power starts at ε0, whereas the other two have double poles ε−2. The sunset diagram
in which both massive propagators are squared is finite, the other has a single pole ε−1. We
find, that for this choice of basis integrals, the system of equations for the coefficients miik(x)
actually becomes triangular. The only reminder from the coupled system is, that we have to
compute the expansion coefficients of the coupled integrals by turns, rather than computing
all required orders of one integral before proceeding to the next one. The order of the deepest
pole i0 is given by the initial condition: To fix the integration constant in the solution of our
first order differential equation, we need to know the solution for a specific value of x. It is
described below, how to obtain this. Clearly, we can also read off there, at what order the
Laurent series starts.

For every order of every master integral, we have to solve a linear first order differential
equation

f ′(x) = α(x)f(x) + β(x), (2.30)

where f(x) is the miik(x) under consideration and α(x) = A0
k(x) is the order ε0 term arising

in the expansion of Ak(x). The inhomogeneity

β(x) =

[
∑

l<k

Bkl(x)mil(x)

]

order εi

+

∞∑

j=1

Aj
k mii−j

k (x) (2.31)

receives contributions from simpler master integrals as well as from lower ordersof mik(x), both
already computed. Solving the homogeneous equation ω ′(x) = α(x)ω(x) is straightforward in
all cases encountered. The ansatz f(x) = ω(x) g(x), sometimes called variation of constant
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method, then leads to the integral representation

f(x) = ω(x)

∫ x

1
dy

β(y)

ω(y)
+ Cω(x). (2.32)

The lower integration limit 1 can of course by replaced by an arbitrary value, as this cor-
responds to a change of the integration constant C. In practice, however, 1 was a very
convenient choice, usually leading to a vanishing integration constant C = 0. On the other
hand, the obvious choice of setting the integration limit to 0 is impractical, since the integral
will often diverge at 0, requiring the use of a regulator until the divergence is cancelled by a
divergent integration constant C.

The key point is now, that it was always possible to write the integrations occurring
in eq. (2.32) as integrations against a kernel 1/x, 1/(1 − x) or 1/(1 + x). Therefore the
solutions can be written in terms of harmonic polylogarithms. A definition of HPLs is given
in appendix C

Integration could be accomplished as follows. We prepare the integrand in three steps:

1. Get rid of possible products of HPLs in the inhomogeneity β(x). They can be ex-
pressed as sums of HPLs of higher weight using the HPL product algebra eq. (C.10).
The Mathematica package HPL [38] provides the function HPLProductExpand for this
purpose.

2. Use partial fractioning to simplify the rational functions appearing in β(y)/ω(y) and
make a list of all partial fractions.

3. Last, every element of the obtained list, i.e. every partial fraction, possibly accompanied
by a single HPL is wrapped into symbol int[1, x][expr], signaling that it has to be
integrated from 1 to x.

Then we repeatedly apply the following transformation rules

1. In cases where the integrand contains no HPL, we let Mathematica perform the integra-
tion, and wrap the result into a symbol done, signaling, that this part needs no further
treatment i.e.
int[1, x][expr ] :> done[Integrate[expr, {y, 1, x}]]/; FreeQ[expr,HPL[ ]].

2. HPLs over a y2 denominator can be integrated by parts

∫ x

1
dy

HPL(a1,~a; y)

y2
= −HPL(a1,~a;x)

x
+ HPL(a1,~a; 1) +

∫ x

1
dy

HPL′(a1,~a; y)

y
, (2.33)

where we have split the indices into a1 and the remaining indices ~a. The derivative of
the HPL on the right hand side of course produces a HPL of lower weight HPL(~a, y)
times a kernel 1

y , 1
1+y or 1

1−y for a1 = 0, -1 or 1 respectively. So, for a1 = 0, the kernel
1
y combines with the already factor 1

y already present to give 1
y2 again. But since the

weight of the HPL has reduced, we have moved one step forward anyway. For a1 = ±1
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we can use partial fractioning to get linear denominators. So

∫ x

1
dy

HPL′(0,~a; y)

y
=

∫ x

1
dy

HPL(~a; y)

y2
(2.34)

∫ x

1
dy

HPL′(−1,~a; y)

y
=

∫ x

1
dy

HPL(~a; y)

y
+

∫ x

1
dy
−HPL(~a; y)

1 + y
(2.35)

∫ x

1
dy

HPL′(1,~a; y)

y
=

∫ x

1
dy

HPL(~a; y)

y
+

∫ x

1
dy

HPL(~a; y)

1− y (2.36)

The boundary terms are integrated, so we flag them with done[].

3. HPLs with all indices zero do not fit into the general recursive definition scheme, using
integrations from zero

HPL(a1,~a;x) =

∫ x

0
dy ga1(y)HPL(~a; y). (2.37)

Instead
HPL( n0;x) = 1

n! logn x, (2.38)

where n0 denotes a sequence of n zeros, and thus, mind the integration limits,

∫ x

1
dy

HPL( n0; y)

y
= HPL( n+10;x). (2.39)

We should exploit this before moving to integration limit zero in rule 4 in order not to
produce singular objects. Thus3

int[1, x][c .HPL[{w : (0)..}, y]/y] :> done[cHPL[{0, w}, x]]/; FreeQ[c, y]

4. Now we rewrite integrals with lower integration limits 1 as a sum of integrals with lower
integration boundary 0
int[1, x ][f ] :> Sequence[int[0, x][f], int[0, 1][−f]]

5. Pure integrals of HPLs can again be integrated by parts.

∫ x

0
dy HPL(a1,~a; y) = xHPL(a1,~a;x)−

∫ x

0
dy yHPL′(a1,~a; y) (2.40)

The factor y on the right hand side combines with the kernel produced by the derivative
to give

y

y
= 1

y

1 + y
= 1− 1

1 + y
or

y

1− y = −1 +
1

1− y ,

depending on a1. We can catch all three cases with the compact notation

∫ x

0
dy HPL(a1,~a; y) = (x− a1)HPL(a1,~a;x) + sgn(a1 − 1

2)

∫ x

0
dy HPL(~a; y). (2.41)

3The expression w : obj represents the pattern object obj, assigned the name w. The two dots stand for
“repeated”. I.e. the given pattern will match any sequence of zeros and assign it the name w

c . matches an optional factor. The form c : . is equivalent
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6. Finally, we need the very definition of HPLs of higher weights
int[0, x][c .HPL[{w }, y]/(y)] :> done[cHPL[{0, w}, x]]/; FreeQ[c, y]
int[0, x][c .HPL[{w }, y]/(1 + y)] :> done[cHPL[{−1, w}, x]]/; FreeQ[c, y]
int[0, x][c .HPL[{w }, y]/(y− 1)] :> done[c(−1)HPL[{1, w}, x]]/; FreeQ[c, y]

At every step, the above rules are tried in the given order. The first rule, that matches,
gets applied. With this, the step finishes; no further rules are tried. In the next step,
rules are again tried starting from the first one. This way of of applying rules is precisely
what one gets by application of the ReplaceRepeated operator4 //. in Mathematica, i.e.
ListOfExpressions //. ListOfRules

The above rules were almost sufficient to integrate the differential equations for all master
integrals in figure 2.5. A minor complication arising for some integrals is the occurrence
of logarithmic divergences. Such divergences always come in combinations, that eventually
cancel. However, if they are contained in HPLs with different indices, the cancellation is not
necessarily explicit. To fix this we use a regulator instead of a plain 1 as the lower integration
limit in eq. (2.32) and thus in the above integration rules. After integration we extract the
singular behavior of HPLs and collect the singular pieces to make the cancellation explicit.
After that, the regulator can be removed. HPLs whose index vector contains n zeros at the
right end behave like ∼ logn(x). Such with n ones at the left end like ∼ logn(1−x). A factor
log(1 − x), or −HPL(1;x) in terms of HPLs, can be extracted from HPL(1, a1, . . . ak;x) by
using the product relation (C.10)

HPL(1;x)HPL(a1, . . . ak;x) =

HPL(1, a1, . . . ak;x) + HPL(a1, 1, a2, . . . ak;x) + . . .+ HPL(a1, . . . ak, 1;x) (2.42)

and solving for HPL(1, a1, . . . ak;x). Clearly, by recursive application of this procedure, every
HPL can be expressed in terms of explicit HPL(1;x) and HPL(0, x) as well as HPLs without
left ones and right zeros. Such HPLs are regular at 0 and 1. The Mathematica package HPL

provides the function HPLLogExtract precisely for this purpose.
In general the application dictates to what order in ε the master integrals are required.

O(ε0) is not always sufficient. Some limits are already given by the system of differential
equations, in the sense that Bkl(x) in eq. (2.28) can contain negative powers of ε, meaning
that in order to compute a master integral to a given order, knowledge of some of the simpler
ones to higher order may be necessary. We took a pragmatic approach and just computed
all master integrals up to the order, at which HPLs with weight four appeared. For the most
complicated diagrams this was O(ε0).

2.2.2 Boundary Conditions

To fully determine the solution of the differential equations we have to fix the integration
constant C. This requires the value of the master integrals at a certain kinematic point. The
x → 1 limit is especially easy to obtain, as it corresponds to vanishing external momenta or
s → 0. The answer can always be written in terms of Γ functions. Instead of calculating

4The ReplaceRepeated operator //. just applies the ReplaceAll operator /. repeatedly, until a fixed point
is reached. ReplaceAll, when used with a list of rules, i.e. expr /. ListOfRules, it transforms the first part of
expr by applying the first rule, that matches. It then moves on to the next part of expr. Thus a part of expr
gets transformed only once by a single application of /. ListOfRules. In our case, expr is a list and “part” is
equivalent to list entry, as all our rules are formulated to match whole list entries only.
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it for each case separately, one can observe, that for vanishing external momenta all non-
factorizable master integrals MI(NF) collapse to a vacuum sunset diagram with extra powers
of propagators:

lim
x→1

MI(NF) =

ν1

ν2

ν3

. (2.43)

The exponent ν2 corresponds to the number of massless propagators in the integral whereas
ν1 + ν3 is the number of massive propagators. The diagram can be evaluated for arbitrary
powers ν1, ν2, ν3, one finds

ν1

ν2

ν3

= (−1)ν123 m2 (d−ν123) Γ (ν123 − d) Γ
(
ν12 − d

2

)
Γ
(
ν23 − d

2

)
Γ
(

d
2 − ν2

)

Γ(ν1)Γ(ν3)Γ
(

d
2

)
Γ (ν13 + 2 ν2 − d)

. (2.44)

We have observed, that the homogeneous solutions of the differential equations usually
diverge for x → 1. Therefore, the information, taken for instance from (2.44), that the full
solution should be finite, is already sufficient to fix the integration constant. It is then an
additional consistency check, that the actual finite value obtained by fixing the constant this
way is indeed the one required by eq. (2.44).

In one master integral the x→ 1 limit does not commute with the expansion around ε = 0
due to a collinear singularity as s vanishes. For this master integral we have used the massless
limit x→ 0, which is well behaved:

lim
x→0

= , (2.45)

with

= (−s)−1−2 ε

(
Γ(1 + ε)

(1− ε)

)2(
−6 ζ(3)− ε π

4

10
+O

(
ε2
))

(2.46)

2.2.3 Results for Master Integrals

In this section we give results for the most complicated master integrals. Eq. (2.50ff) and
eq. (2.57ff) are new results. Expressions for the rest of the master integrals are given in
appendix D, as they are rather lengthy.

The results are given in terms of HPLs with argument x. Without worrying about analytic
continuation they can therefore be evaluated for x ∈ (0, 1], what corresponds to the Euclidean
region. Analytic continuation to x ∈ [−1, 0), that is to the physical region above threshold,
through the upper half plane is simple. For HPLs, whose rightmost index is nonzero, there is
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no cut and the relation

HPL(~a;−x) = (−1)n1+n−1 HPL(−~a;x) (2.47)

holds5 . Here n1 is the number of 1, and n−1 is the number of −1 in the index vector ~a.
For HPLs with zeros at the right end of the index vector one has to extract all factors of
HPL(0;x) using the product algebra and use the fact, that HPL(0;x) = log x, so

HPL(0,−x + iδ) = HPL(0;x) + iπ. (2.49)

Again, the Mathematica package HPL provides a routine for this:
HPLAnalyticContinuation[expr, AnalyticContinuationRegion−> m1to0,

AnalyticContinuationSign−> 1] . For the Standard Model gg → h amplitude,
assuming a Higgs boson mass smaller than 2mtop, we need the physical region below threshold.
In this region x is a complex phase as shown in figure 2.6. In [44] we gave expressions for all 17

master integrals in this kinematical region in terms of Cl1, Ls
(k)
j , Lsci,j , and LsLscn,i,j functions

[20, 43, 42]. However, this is no longer necessary, as in the meantime implementations of HPLs
for arbitrary complex arguments became available6 for Mathematica in HPL 2.0, see [39], and
C++ within the GiNaC framework [41].

=

∫
ddk

iπd/2

∫
ddl

iπd/2

1

D22D23D24D26D27

=

(
Γ(1 + ε)

1− ε

)2

(m2)−2ε−1F 0
7 (x) +O(ε1) (2.50)

F 0
7 (x) =

1

(1− x)2
{
− 1

6
π2H(0, 0;x)x − 1

3
π2H(1, 0;x)x − π4x

36

− xH(0, 0, 1, 0;x) − 2xH(1, 0, 1, 0;x) − 2xH(0, 1, 0, 0;x) − 3xH(1, 0, 0, 0;x)

− 4xH(1, 1, 0, 0;x)
}

(2.51)

5In the abbreviated “m”-notation, this formula reads

HPL({m1, . . .mk};−x) = (−1)k HPL({−m1, . . . −mk}; x). (2.48)

6The GiNaC implementation [41] appeared already in 2004, however it contained bugs, that were fixed with
the appearance of [39] only.
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=

∫
ddk

iπd/2

∫
ddl

iπd/2

1

D11D13D14D16D17

=

(
Γ(1 + ε)

1− ε

)2

(m2)−2ε−1
1∑

i=0

εiF i
8(x) +O(ε2) (2.52)

F 0
8 (x) =

x

(1− x)2
{
− 2H(0, 0, 1;x) − 2H(0, 1, 0;x) + 4H(1, 0, 0;x) − 6ζ(3)

}
(2.53)

F 1
8 (x) =

x

(1− x)2
{
− 12ζ(3)H(0;x) +

1

3
π2H(0, 1;x) − 24H(1;x)ζ(3) − π4

10

− 8H(0, 0, 0, 1;x) − 10H(0, 0,−1, 0;x) + 4H(0,−1, 0, 1;x) − 2

3
π2H(1, 0;x)

− 4H(1, 0, 0, 1;x) − 4H(0, 1, 0, 1;x) − 4H(0, 0, 1, 0;x) − 4H(0, 0, 1, 1;x) + 4H(0,−1, 0, 0;x)

+ 4H(0,−1, 1, 0;x) − 24H(1, 0,−1, 0;x) + 4H(1, 0, 1, 0;x) + 4H(0, 1,−1, 0;x)

− 6H(0, 1, 0, 0;x) − 4H(0, 1, 1, 0;x) + 12H(1, 0, 0, 0;x)
}

(2.54)

=

∫
ddk

iπd/2

∫
ddl

iπd/2

1

D21D23D24D25D26D27

=

(
Γ(1 + ε)

1− ε

)2

(m2)−2ε−2F 0
9 (x) +O(ε1) (2.55)

F 0
9 (x) =

x2

(1− x)3(x+ 1)

{
8ζ(3)H(0;x) + 16H(0, 0,−1, 0;x) +

π4

10

+
2

3
π2H(0, 0;x) − 4H(0, 0, 1, 0;x) − 8H(0,−1, 0, 0;x) + 14H(0, 1, 0, 0;x)

+H(0, 0, 0, 0;x)
}

(2.56)

=

∫
ddk

iπd/2

∫
ddl

iπd/2

1

D31D32D33D34D35D37

=

(
Γ(1 + ε)

1− ε

)2

(m2)−2ε−2
0∑

i=−1

εiF i
10(x) +O(ε1) (2.57)
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F−1
10 (x) =

x2

(1− x)4
{
− 2

3
π2H(0;x) − 8H(0,−1, 0;x) + 4H(0, 0, 0;x) − 12ζ(3)

}
(2.58)

F 0
10(x) =

x2

(1− x)4
{8

3
π2H(0,−1;x) + 24ζ(3) − 16π4

45

+
4

3

(
π2 − 33ζ(3)

)
H(0;x) − 4

3
π2H(0, 1;x) − 48H(1;x)ζ(3)

− 56H(0, 0,−1, 0;x) + 16H(0,−1, 0;x) − 10

3
π2H(0, 0;x) − 8

3
π2H(1, 0;x)

+ 8H(0, 0, 1, 0;x) + 64H(0,−1,−1, 0;x) − 40H(0,−1, 0, 0;x) − 16H(0,−1, 1, 0;x)

− 8H(0, 0, 0;x) − 32H(1, 0,−1, 0;x) − 16H(0, 1,−1, 0;x) + 8H(0, 1, 0, 0;x)

+ 12H(0, 0, 0, 0;x) + 16H(1, 0, 0, 0;x)
}

(2.59)

2.2.4 Amplitudes in terms of HPLs

The dimensionless functions c(i)(x) are

c
(0)
f (x) =− 2x

(
(x+ 1)2H(0, x)2 − 4(x− 1)2

)

(x− 1)4
+

1

(1− x)4

[
− 2

3
x
(
(x+ 1)2H(0, x)3 + 12xH(0, x)2

− (x+ 1)
(
π2x− 12x+ 12(x+ 1)H(0,−1, x) + π2 + 12

)
H(0, x)

+ 6
(
4(x+ 1)2H(0, 0,−1, x) − 3

(
(2 + ζ(3))x2 + 2(−2 + ζ(3))x+ ζ(3) + 2

)) )
]
ε

+
1

18(1 − x)4

[
x
(
− 3(x+ 1)2H(0, x)4 − 48xH(0, x)3 + 3

(
24H(0,−1, x)(x + 1)2+

π2(x+ 1)2 − 24
(
x2 + 2x− 1

))
H(0, x)2 + 48

(
− 6H(0,−1,−1, x)x2−

3H(0, 0,−1, x)x2 + 3ζ(3)x2 − 9x2 + 12H(0,−1, x)x − 12H(0,−1,−1, x)x−
6H(0, 0,−1, x)x + 6ζ(3)x+ π2x+ 6

(
x2 − 1

)
H(−1, x)− 6H(0,−1,−1, x)−

3H(0, 0,−1, x) + 3ζ(3) + 9
)
H(0, x) + π4x2 + 36π2x2 + 1008x2+

144(x+ 1)2H(0,−1, x)2 + 2π4x− 24π2x− 2016x−
24(x+ 1)

(
12(x− 1) + π2(x+ 1)

)
H(0,−1, x) − 1152xH(0, 0,−1, x) + 864xζ(3)+

π4 − 12π2 + 1008
)]
ε2 +O(ε3)
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c(0)s (x) =−
2x
(
(x− 1)2 − xH(0, x)2

)

(x− 1)4

1

(1− x)4

[
2

3
x
(
xH(0, x)3 + 3xH(0, x)2 −

(
− 3x2 + π2x+ 3

)
H(0, x)

− 3
(
3x2 + 4H(0,−1, 0, x)x + 6ζ(3)x− 6x+ 3

))]
ε

− x

18(1 − x)4

[
− 3xH(0, x)4 − 12xH(0, x)3 + 3

(
− 6x2 +

(
− 12 + π2

)
x

+ 6
)
H(0, x)2 + 12

(
− 9x2 + 12ζ(3)x + π2x+ 6

(
x2 − 1

)
H(−1, x) + 9

)
H(0, x)

+ 9π2x2 + 252x2 + π4x− 6π2x− 504x − 24
(
3x2 + π2x− 3

)
H(0,−1, x)

+ 144xH(0,−1, 0, x) − 288xH(0,−1,−1, 0, x)

+ 144xH(0,−1, 0, 0, x) + 144xH(0, 0,−1, 0, x) + 216xζ(3) − 3π2 + 252

]
ε2 +O(ε3)

c
(1)
f (x) =

24x
(
(x+ 1)2H(0, 0, x) − 2(x− 1)2

)

(x− 1)4
1

ε2

+
1

(1− x)4

[
− 4x

(
− 24H(0, 0,−1, x)(x + 1)2 +H(0, x)

(
12H(0,−1, x)(x + 1)2

+ π2(x+ 1)2 − 8
(
x2 + 3x− 4

))
+ 2
(
− 12H(0, 0, 0, x)x2 + 9ζ(3)x2 + 10x2

− 24H(0, 0, 0, x)x + 18ζ(3)x − 20x+ 4
(
x2 + 3x+ 1

)
H(0, 0, x)

− 6H(1, x)
(
(x+ 1)2H(0, 0, x) − 2(x− 1)2

)
− 12H(0, 0, 0, x) + 9ζ(3) + 10

))]1

ε

+
1

45(x− 1)5

[
x
(
− 8640H(1, 1, x)(x − 1)3 − 7200(x + 1)H(−1, 0, x)(x − 1)2

+ 1080(x + 1)2H(0, 0, x)2(x− 1) + 360(x + 1)2
(
− 6H(0, x)2 − 12H(1, x)H(0, x)

+ π2
)
H(0,−1, x)(x − 1)− 180(x + 1)H(0, x)2

(
− 20(x− 1) + π2(x+ 1)

+ 6(x+ 1)H(0, 0, x)
)
(x− 1) + 720

(
3(x+ 1)2H(0, 0, x) − 2

(
5x2 − 6x+ 1

))

×H(0, 1, x)(x − 1)− 720
(
π2(x+ 1)2 + 2

(
5x2 − 6x+ 1

))
H(1, 0, x)(x − 1)

+ 960
(
7x2 + 17x+ 7

)
H(0,−1, 0, x)(x − 1) + 8640(x + 1)2H(1, x)H(0, 0,−1, x)

× (x− 1) + 2880
(
x2 + 6x+ 1

)
H(0, 0, 1, x)(x − 1) + 1920

(
x2 + 8x+ 1

)
H(0, 1, 0, x)
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× (x− 1) + 240
(
59x2 + 138x + 59

)
H(1, 0, 0, x)(x − 1) + 4320(x + 1)2

×H(0,−1,−1, 0, x)(x − 1) + 8640(x + 1)2H(0,−1, 0, 1, x)(x − 1)

+ 8640(x + 1)2H(0,−1, 1, 0, x)(x − 1) + 8640(x + 1)2H(0, 1,−1, 0, x)(x − 1)

+ 4320(x + 1)2H(1, 0, 0, 0, x)(x − 1)− 720H(1, x)
(
12H(0,−1, 0, x)(x + 1)2

+ 4
(
x2 + 3x+ 1

)
H(0, 0, x) − 3

(
4(x+ 1)2H(0, 0, 0, x) − 3

(
(2 + 3ζ(3))x2

+ (−4 + 6ζ(3))x + 3ζ(3) + 2
)))

(x− 1) + 20H(0, 0, x)
(
− 150x3 − 822x2

+ 750x− π2
(
43x3 + 43x2 − 11x− 11

)
+ 108(x − 1)(x+ 1)2H(1, 0, x)

+ 216(x − 1)(x+ 1)2H(1, 1, x) + 222
)

+ 240
(
45x3 + 136x2 − 19x− 6

)
H(0, 0, 0, x)

+ 240
(
7x3 + 7x2 + 25x+ 25

)
H(0,−1, 0, 0, x) + 480

(
7x3 + 7x2 + 25x+ 25

)

×H(0, 0,−1, 0, x) + 720
(
73x3 + 73x2 + 55x+ 55

)
H(0, 0, 0,−1, x)

− 480
(
x3 + x2 + x+ 1

)
H(0, 0, 0, 0, x) + 1920

(
x3 + x2 + x+ 1

)
H(0, 0, 1, 0, x)

− 6720
(
x3 + x2 + x+ 1

)
H(0, 1, 0, 0, x) − 3

(
200π2(x+ 1)(x− 1)2

+ 80
(
(−36 + 13ζ(3))x2 + (72 − 20ζ(3))x + 13ζ(3) − 36

)
(x− 1) + π4

(
53x3

+ 53x2 − 21x− 21
))

+ 40H(0, x)
(
108(x − 1)H(0, 0, 0, x)(x + 1)2 − 9(x− 1)

×H(1, x)
(
− 20(x− 1) + π2(x+ 1) + 6(x+ 1)H(0, 0, x)

)
(x+ 1) + 2π2

(
5x3

+ 8x2 − 8x− 5
)
− 36(x − 1)

(
x2 + 3x+ 1

)
H(0, 0, x) − 6

(
55x3 + 55x2 + 73x

+ 73
)
H(0, 0,−1, x) + 3

(
− (32 + 131ζ(3))x3 + (140 − 131ζ(3))x2 + (−184

+ 67ζ(3))x + 67ζ(3) + 76
)))]

+O(ε)

c(1)s (x) =
12x

(
(x− 1)2 − 2xH(0, 0, x)

)

(x− 1)4
1

ε2

+
1

(x− 1)4(x+ 1)

[
4x
(
H(0, x)

(
π2x2 − 10x2 − 36(x+ 1)H(0,−1, x)x

+ 24(x+ 1)H(0, 1, x)x + π2x+ 4x+ 6
)

+ 72x(x+ 1)H(0, 0,−1, x) + (x+ 1)

×
(
7x2 + 2H(0, 0, x)x + 48H(0,−1, 0, x)x − 24H(0, 0, 0, x)x − 48H(0, 0, 1, x)x

− 24H(0, 1, 0, x)x + 18ζ(3)x − 14x+ 6H(1, x)
(
(x− 1)2 − 2xH(0, 0, x)

)
+ 7
))]1

ε

+
1

45(x− 1)5

[
x
(
2160H(1, 1, x)(x − 1)3 + 8640xH(0, 1, x)2(x− 1) + 1080
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×
((
− 2 + π2

)
x+ 2

)
H(1, 0, x)(x − 1)− 360xH(0,−1, x)

(
36H(0, 0, x)

+ 36H(0, 1, x) + 36H(1, 0, x) + π2
)
(x− 1) + 360H(0, 1, x)

(
6H(0, 0, x)x

+ 24H(1, 0, x)x + π2x− 6x+ 6
)
(x− 1)− 4560xH(0,−1, 0, x)(x − 1)

− 2160xH(0, 0, 1, x)(x − 1)− 1200xH(0, 1, 0, x)(x − 1)− 11760xH(1, 0, 0, x)(x − 1)

− 4320xH(0,−1,−1, 0, x)(x − 1) + 17280xH(0,−1, 0, 1, x)(x − 1) + 17280x

×H(0,−1, 1, 0, x)(x − 1) + 25920xH(0, 0,−1, 1, x)(x − 1) + 38880x

×H(0, 0, 0,−1, x)(x − 1)− 15120xH(0, 0, 0, 1, x)(x − 1) + 25920xH(0, 0, 1,−1, x)

× (x− 1)− 38880xH(0, 0, 1, 1, x)(x − 1) + 17280xH(0, 1,−1, 0, x)(x − 1) + 25920x

×H(0, 1, 0,−1, x)(x − 1)− 30240xH(0, 1, 0, 1, x)(x − 1)− 21600xH(0, 1, 1, 0, x)

× (x− 1) + 25920xH(1, 0,−1, 0, x)(x − 1) + 25920xH(1, 0, 0,−1, x)(x − 1)

− 19440xH(1, 0, 0, 0, x)(x − 1)− 21600xH(1, 0, 0, 1, x)(x − 1)− 12960x

×H(1, 0, 1, 0, x)(x − 1)− 4320xH(1, 1, 0, 0, x)(x − 1) + 3240H(1, x)
(
x2 + (−2

+ 6ζ(3))x + 1
)
(x− 1)− 120x(65x − 23)H(0, 0, 0, x)

)

+
1

x+ 1

[
x
(
360
(
3x2 + 10x+ 3

)
H(−1, 0, x)(x − 1)2 − 20H(0, 0, x)

(
54x4 −

(
150

+ 61π2
)
x3 − 234x2 − 108

(
x2 − 1

)
H(1, 0, x)x +

(
222 + 29π2

)
x+ 108

)
+ 240x

×
(
65x2 − 97

)
H(0,−1, 0, 0, x) + 240x

(
185x2 − 121

)
H(0, 0,−1, 0, x) − 240x

×
(
43x2 − 47

)
H(0, 0, 0, 0, x) − 240x

(
71x2 − 55

)
H(0, 0, 1, 0, x) − 1680x

(
5x2 − 13

)

×H(0, 1, 0, 0, x) + 20H(0, x)
(
36x4 +

(
− 246− 11π2 + 786ζ(3)

)
x3 + 258x2 +

(
78

+ 11π2 − 402ζ(3)
)
x− 126

)
+ 3
(
10π2

(
3x2 + 10x+ 3

)
(x− 1)2 + π4x

(
53x2 − 21

)

− 40
(
x2 − 1

)(
5x2 − (10 + 39ζ(3))x + 5

)))]]
+O(ε).
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Chapter 3

Numerical Approach

3.1 Overview of the Problem

A main challenge in computing Feynman diagrams is the evaluation of integrals over loop
momenta. For multi-loop diagrams containing several mass scales we cannot realistically
hope for an analytic solution; we are forced to resort to numerical integration.

Two main main issues usually impede straightforward numerical integration:

3.1.1 IR and UV singularities

Feynman diagrams are often plagued by ultraviolet and infrared divergences. The former can
be absorbed into an unobservable shift in the parameters of the theory – a procedure known
as renormalization. The latter cancel against divergences occurring in the integration over
unobserved soft radiation processes, which have to be considered when calculating physical
observables.

In analytical calculations it is common practice to introduce regulators that render inte-
grals finite. After assembling all pieces of a physical quantity the singular dependence on the
regulator cancels out and so the regulator can be dropped.

The above procedure relies on knowing the regulator dependence analytically (to a certain
extent). So it might seem, that it is not applicable in the context of numerical integration.
Numerical approaches use local subtractions in order to render loop diagrams finite.

For IR singularities those subtractions were usually designed such, that summing up all
subtractions applied in the calculation of a whole amplitude resulted in a simple function,
allowing analytic integration.

The UV behavior of one loop diagrams gets captured in Γ functions when the integration
over the loop momentum is carried out in a Feynman parameter representation. Alternatively
subtractions equivalent to counter-terms appearing in the renormalization procedure have
been suggested. For multi loop diagrams, the situation is more complicated, as UV divergences
find their way into Feynman parameter representations.

There exists, however, a far more flexible way of dealing with divergences: The sector
decomposition algorithm [4, 5, 12] discussed below allows to isolate and extract singularities
in Feynman parameter integrals. It is a mathematical tool that works without caring about the
physical origin of divergences. It produces a Laurent series in the dimensional regularization
parameter ε. The coefficients of this expansion are finite integrals. They can be computed up
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to the order required by the problem. As one goes to higher orders in ε, the integrals usually
become more involved1.

3.1.2 Thresholds

For physical values of the kinematical invariants there may be values of four momenta flowing
in the loops, that put virtual particles onto their mass shell. In this case, the “iδ-prescription”
appearing in propagators,

1

p2 −m2 + iδ
,

tells us, how the integration should circumvent the pole. Quantum field theory instructs us
to carry out integrations over loop momenta keeping δ > 0 and to take the limit δ → 0+

afterwards. It is important to note, that unlike in the IR problem, we are not dealing with
a divergence here. While the integral might have a discontinuity in the imaginary part at
δ = 0, the limit δ → 0+ is finite. As an illustration, we can consider the simple example of a
scalar bubble diagram with equal masses and one propagator squared:

lim
δ→0+

∫
d4`

(2π)4
1

[`2 −m2 + iδ]2[(`+ q)2 −m2 + iδ]
.

The integral is free of UV and IR divergences and can therefor be evaluated in four dimensions.
Introducing a Feynman parameter and carrying out the loop momentum leads to (dropping
prefactors)

lim
δ→0+

∫ 1

0
dx

x

x(1− x)q2 −m2 + iδ
. (3.1)

Close to the zeros of the denominator we are roughly dealing with an integration of the form

lim
δ→0+

∫ 1

−1
dx

f(x)

x+ iδ
.

For analytic functions f(x) this is the same as

∫

C(r)
dz
f(z)

z

along the contour C(r) depicted in figure 3.1. By virtue of Cauchy’s theorem the radius r is
arbitrary. In the limit r → 0 the integral over the half circle contributes −iπf(0), whereas
the rest of the contour gives a principle value. With fewer words

1

x+ i0
= PV

1

x
− iπδ(x). (3.2)

In analytic calculations one usually evaluates integrals in parameter regions, where the de-
nominator has a definite sign, e.g. q2 < 0 andm2 > 0 in the above example. After integrations
one can analytically continue the result to physical values of the parameters. In the above

1Note, that also with traditional subtraction methods terms of order εn, n > 0 do not come for free:
While the integrated sum of subtractions is usually known to all orders in ε, in the subtracted integral one has
to set ε = 0 before integration. To compute higher order terms one would have to do a series expansion under
the integral.
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−1 −r r 1

Figure 3.1: Integration contour C(r).

example a discontinuity appears for q2 > 4m2. We can read off the denominator of expres-
sion (3.1), that the pole is circumvented in the correct way, if we integrate along the real axis,
but shift the kinematical invariants q2 → q2 + iδ or m2 → m2 − iδ. This tells us, to which
side of the cut we have to analytically continue our answer.

In a numerical calculation analytic continuation is not possible. Nagy and Soper [57]
suggested to deform the integration contour into the complex domain. This way the pole
can be circumvented at a finite distance and stable numerical integration can be achieved for
physical values of the kinematic parameters.

The details of the deformation will be discussed later. One interesting thing can already
be observed here, however: Let us denote the integrand occurring in expression (3.1) by I.
(Replace +iδ by +i0, a reminder, that the poles should be circumvented via the upper half
plane.) The analyticity properties of I make sure we can deform the integration contour into
the upper half plane in whatever form we wish without changing the value of

∫

C
Idz and thus

∫

C
Re {Idz} and

∫

C
Im {Idz} .

On the other hand, the values of

∫

C
|Re {Idz} | and

∫

C
| Im {Idz} |

do in general depend on the contour, as the modulus is not an analytic function2. The
meaning of this is, that the contour independent value of the integral arises as the difference
between positive and negative contributions, which do depend on the contour. Thus by tuning
the contour we have a handle on the amount of cancellation occurring in the calculation of
the integral. Or stated differently, the integral of the modulus measures the quality of the
deformation. In the limit where the contour approaches the real axis, the integral approaches
the case, where it is only defined as a principle value. Needless to say, that the amount of
cancellation has a huge impact on the stability of numerical integration.

3.2 Feynman Parameters

Raw Feynman diagrams have a difficult singularity structure. It is hard to construct an
integration contour, that correctly treats the intersecting surfaces on which propagators van-

2The weird notation with dz inside Re or Im can of course be avoided by parametrizing the contour over
the real interval [0,1], leading to

Z 1

0

Re



I(z(x))
∂z

∂x

ff

dx.
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ish. Soper managed to compute the e+e− → 3 jets cross section at NLO by combining real
and virtual contributions at the integrand level and performing direct numerical integration
[54, 55]. But in general it seems that Feynman parameters do a good job casting the singu-
larity structure into a form that eases its treatment. They proved useful even in case without
the intention of integrating out the loop momentum analytically [58].

The method described here heavily depends on Feynman parametrization. We give some
details here as, at least for the multi loop case, there are several viable ways of parametrizing
a diagram.

3.2.1 Standard Parametrization at one-loop

Feynman parametrization relies on the well known formula

1

dν1
1 d

ν2
2 · · · dνn

n
= B({νi})

∫ 1

0
d~x δ (1−∑xi)

∏
xνi−1

i

[
∑
xidi]

ν1+···+νn
, (3.3)

with

B({νi}) =
Γ(ν1 + · · ·+ νn)

Γ(ν1) · · ·Γ(νn)

which is valid also for non-integer νi.

For a one-loop diagram

I1-loop =

∫
ddk

(2π)d

N (k)

[(k + q1)2 −m2
1 + i0]ν1 · · · [(k + qn)2 −m2

n + i0]νn
, (3.4)

there is not much to discuss. As every denominator Di contains the one and only loop
momentum k with coefficient one and

∑
xi = 1, the combined denominator has the form

k2 +2k ·P − Λ̃. By completing the square and then introducing a shifted integration variable
K = k + P , one arrives at

I1-loop = B({νi})
∫ 1

0
d~x δ (1−∑xi)

∏
xνi−1

i

∫
ddK

(2π)d

N (k = K − P )

[K2 − Λ(~x) + i0]σ
, (3.5)

with
P =

∑

i

xiqi

and
σ =

∑

i

νi.

The form of Λ(~x) is not unique. The constraint
∑
xi = 1 allows us write it as a homogeneous

polynomial of second order in x. A convenient representation is

Λ(~x) = −1

2

∑

i,j

xixjSij (3.6)

with
Sij = (qi − qj)2 −m2

i −m2
j . (3.7)

The denominator in eq. (3.5) depends on K only through K 2. For symmetry reasons, the
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numerator N (K−P ) can be replaced by an equivalent one, that only dependsK 2 rather than
K. The details of this replacement are discussed in section 3.2.3. After this simplification the
K integrand can be evaluated using the well known formula from dimensional regularization:

∫
ddK

iπd/2

(K)m

[K2 −M2 + iδ]σ
=

Γ(d
2 + m

2 )

Γ(d
2 )

· Γ(σ − m
2 − d

2 )

Γ(σ)
· (−1 + iδ)−

d
2

[−M2 + i0]σ−m/2−d/2
(3.8)

=
Γ(d

2 + m
2 )

Γ(d
2 )

· Γ(σ − m
2 − d

2 )

Γ(σ)
· (−1)m/2(−1 + iδ)−σ

[M2 − i0]σ−m/2−d/2
,

valid for even m. It is derived by performing a Wick rotation and, introducing spherical
coordinates and performing the substitution K 2 = −M2/(1 − t). The right hand side is
analytic in d. It develops poles at integer values of d/2 where the integral diverges, but is
meaningful for non-integer dimension like d = 4− 2ε. In the last expression, a minus sign has
been factored out of the denominator. This trades the (−1+ iδ)−d/2 for a (−1+ iδ)−σ , which
is convenient, as σ is usually integer and thus one does not have to care about the iδ there.

3.2.2 Parametrizations at two-loops

A two-loop integral has to form

I2-loop =

∫
ddk

(2π)d

dd`

(2π)d

N (k, `)

dν1
1 d

ν2
2 · · · dνn

n
(3.9)

with propagators of the form

di = (χk
i k + χ`

i`+ qi)
2 −m2

i χk
i , χ

`
i ∈ {0, 1}, (3.10)

or more explicitly (we will use both notations below)

I2-loop =

∫
ddk

(2π)d

dd`

(2π)d
N (k, `)

∏

ai

1

[(k + qai
)2 −m2

ai
]νai
×

∏

bi

1

[(`+ qbi
)2 −m2

bi
]νbi

∏

ci

1

[(k + `+ qci
)2 −m2

ci
]νci

. (3.11)

There is more than one valid strategy for combining all propagators. We spell out two
possibilities here. In any case one eventually has to face the complication, that in the combined
denominator, squares of loop-momenta no longer appear with coefficient one. Instead, their
coefficient is a combination of Feynman parameters. People often just pull the bothersome
factor in front k2 out of the denominator, integrate out k and then proceed the same way with
the second loop momentum `. Here we avoid integrating out loop momenta at intermediate
steps and rather rescale them. This way the integral is cast into a standard form and the
three steps

1. Feynman parametrizing

2. ReplacingKµ1 · · ·Kµ2k tensors byK2k times a combination of metric tensors (see section
3.2.3)
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3. Integrating out the loop momenta

are disentangled.

Strategy “at once”

Here we combine all propagators using a single set of Feynman parameters. Then we shift and
rescale the loop momenta to reach the standard form of the denominator. The parametrization
of eq. (3.9) is then

I2-loop=B({νi})
∫ 1

0
d~x δ (1−∑xi)

∏
xνi−1

i βσ−3d/2

∫
ddK

(2π)d

ddL

(2π)d

N (k, l)

[K2 + L2 − Λ(~x)]σ
, (3.12)

with

β = ab− c2

Λ(~x) = ae2 − 2c d · e− βf + bd2

k = a−1/2β−1/2K − a−1Pk

` = β−1(a1/2L− P`)

Pk = d+ c`

P` = ae− cd,

where the a, b, c, d, e, f are coefficients of various terms in the combined denominator:

∑

i

xidi = ak2 + b`2 + 2c k · `+ 2d · k + 2e · `+ f. (3.13)

The parametrization eq. (3.12) remains valid even if we allow for coefficients

χk
i , χ

`
i ∈ {−1, 0, 1}

in eq. (3.10). That means we allow propagators like

di = (k − `+ qi)
2 −m2

i instead of (k + `+ qi)
2 −m2

i .

Note that β is a second order polynomial in the Feynman parameters, which does not depend
on kinematics. The βσ−3d/2 term can contain UV divergences. The negative powers, that arise
when the original loop momenta k and ` are expressed throughK and L can also contribute to
UV divergences. Later we will apply sector decomposition to Feynman parametrized integrals.
It will be convenient to divide an integral into a “scalar” part containing all divergences and
a regular numerator function, which we call tensor. The tensor is what remains from N (k, `),
when k and ` are expressed through K and L and the mentioned negative powers are included
into the “scalar” part. So keep in mind, that scalar part here does not exactly denote the
integral with N set to one.

Strategy “sunset”

Alternatively we use three independent sets of Feynman parameters to combine propagators
containing the same combination of loop momenta. Thus we use xai

to combine all propaga-
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tors containing only k, xbi
to combine those containing only ` and finally xci

for those that
contain k + `. This gives an effective sunset diagram with propagators

1

[(k + qA)2 −Q2
A]σA

1

[(`+ qB)2 −Q2
B ]σB

1

[(k + `+ qC)2 −Q2
C ]σC

, (3.14)

with

qA =
∑

ai

xai
qai
, qB =

∑

bi

xbi
qbi
, qC =

∑

ci

xci
qci
,

Q2
A =

∑

ai

xai
m2

ai
−
∑

ai

∑

aj<ai

xai
xaj

(qai
− qaj

)2,

Q2
B =

∑

bi

xbi
m2

bi
−
∑

bi

∑

bj<bi

xbi
xbj

(qbi
− qbj

)2,

Q2
C =

∑

ci

xci
m2

ci
−
∑

ci

∑

cj<ci

xci
xcj

(qci
− qcj

)2,

σA =
∑

ai

νai
, σB =

∑

bi

νbi
, σC =

∑

ci

νci
.

After shifting away qA and qB, we combine the two effective propagators depending on ` using
the Feynman parameters yB + yC = 1. Finally, after a further shift in `, we combine the two
effective propagators using Feynman parameters zA + zF = 1. Putting everything together,
some of the Γ functions arising in the various steps cancel and we are only left with the
combination, that appeared also in the “at once” strategy, namely B({νi}) = B({νai

, νbi
νci
}).

The net result is

I2-loop = B({νai
, νbi

νci
})
∫

ddK

(2π)d

ddL

(2π)d
(3.15)

∫ 1

0
d{xai

, νai
}
∫ 1

0
d{xbi

, νbi
}
∫ 1

0
d{xci

, νci
}

∫ 1

0
dyBdyC y

σA+σB−d/2−1
B y

σA+σC−d/2−1
C δ(1 − yA − yC)

∫ 1

0
dzAdzF zσA−1

A z
σB+σC−d/2−1
F δ(1 − zA − zF )

N (k, `)

[K2 + L2 + zAzF yByCP 2 − zF yBQ
2
B − zF yCQ

2
C − zAyByCQ

2
A]σA+σB+σC

,

where we have introduced the shorthand

d{xi, νi} = d~xi δ(1 −
∑

i xi)
∏

i

xνi−1
i , (3.16)

and
P = qC − qA − qC . (3.17)
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The original loop-momenta are given by

k = Ky
−1/2
B y

−1/2
C − zFP − qA (3.18)

` = Lz
−1/2
F −Ky−1/2

B y
1/2
C − yCzAP − qB .

3.2.3 Tensor Integrals

We return to the postponed question of nontrivial numerators. The simplest example is the
following: ∫

ddK
Kµ1Kµ2

[K2 − Λ]σ
=
gµ1µ2

c(2)

∫
ddK

K2

[K2 − Λ]σ
. (3.19)

As the denominator does not depend on the direction of Kµ, the integral must be proportional
to the metric tensor gµ1µ2 . Contracting both sides of the above equation with gµ1µ2 is a cheap
way to fix the constant c(2) = d.

An integral with numerator Kµ1 . . . Kµ2k will be proportional to the totally symmetric
combination of metric tensors gµiµj . We define

Gµ1µ2 = gµ1µ2 (3.20)

Gµ1µ2µ3µ4 = gµ1µ2gµ3µ4 + gµ1µ3gµ2µ4 + gµ1µ4gµ2µ3 (3.21)

Gµ1 ...µ2k =
1

k! 2k

∑

σ∈S2k

gµσ(1)µσ(2) . . . gµσ(2k−1)µσ(2k) . (3.22)

The normalization factor in the last line takes care of the fact, that the sum always produces
k! 2k equivalent terms.

A handy recursive characterization is

Gµ1...µ2k =
∑

i=2...2k

gµ1µiG 6µ1µ2...6µi...µ2k , (3.23)

where on the right hand side, the crossed out indices µ1 and µi are absent. This reproduces
the expression. This is equivalent to eq. (3.22) because

1. There are no equivalent summands: gµ1µi does not appear in any of the G 6µ1µ2...6µj ...µ2k ,
j = 2 . . . 2k as these do not contain µ1

2. Sorting all products appearing eq. (3.22) such, that the metric containing the index µ1

always comes first, it becomes clear, that we have written down all the terms.

With the symbol Gµ1...µ2k at hand, we can now express the rank 2k tensor integral:

∫
ddK

Kµ1 . . . Kµ2k

[K2 − Λ]σ
=
Gµ1 ...µ2k

c(2k)

∫
ddK

K2k

[K2 − Λ]σ
. (3.24)

To compute the constant c(2k) we contract both sides of this equation with

gµ1µ2 gµ3µ4 . . . gµ2k−1µ2k
. (3.25)

The representation in eq. (3.23) makes it easy to see, what happens if we contract Gµ1...µ2k

with a single metric tensor gµ1µ2 : In the summand i = 2, gµ1µ2 is contracted with gµ1µ2 ,
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giving d times a G tensor of the remaining indices. In all other summands, the contraction
just replaces the index µ2 by µi and thus leaves us with a G tensor of (a permutation of) the
remaining indices. Thus

gµ1µ2G
µ1µ2......µ2k = gµ1µ2

∑

i=2...2k

gµ1µiG 6µ1µ2...6µi...µ2k = (d+ 2k − 2)Gµ3µ4......µ2k . (3.26)

Iterating this procedure gives allows us to fix the constant c(2k)

c(2k + 2) = (d+ 2k)c(2k). (3.27)

Integrals with an odd power of K in the numerator are of course zero.

We can make another observation, that will come in handy for implementation in a com-
puter algebra system: As we might want to work with dot products rather than with open
indices, we might encounter numerators containing dot products of the K with constant
vectors as well as (K,K), for instance

(K,K)5 (K, p1)(K, p2)(K, p3)(K, p4). (3.28)

It is now easy to see, that in this situation just replacing the last four dot products by
(K,K)2 G(p1, p2, p3, p4)/c(4) is equivalent to replacing Kµ1 . . . Kµ14 by Gµ1...µ14(K,K)7/c(14)
and then contracting with 5 metric tensors originating from (K,K)5. It is understood, that
G(p1, p2, p3, p4) denotes the contraction Gµ1µ2µ3µ4 p

µ1
1 pµ2

2 pµ3
3 pµ4

4 .

Note, that in principle eq. (3.24) is nothing but the heart of the well known Davydychev
formula. The difference is, that we only give an expression for an integral with a tensor written
in terms of the shifted loop momentum Kµ, what is simple. The Davydychev formula [48]
on the other hand gives an explicit expression for an integral with a tensor written in terms
of the original, unshifted loop momentum kµ. When kµ is expressed in terms of the shifted
momentum, kµ = Kµ + P µ, a tensor kµ1 . . . kµn decomposes into 2n terms, as every index µi

can be carried either by a K or by a P . This leads to a daunting formula containing tensors
made of different numbers of metric tensors g and external momenta. Clearly, if we treat a
tensor integral by introducing Feynman parameters, shifting the loop momentum, expanding
the tensor and applying eq. (3.24) to every piece, all these terms will be produced as well.
But this is work for the computer algebra system only. It is not necessary to program the
complicated formula, which does everything in one step.

Recall, that we have brought our two-loop integrals into a standard form with denominator
[K2 + L2 − Λ(~x)]σ. Since the presence of L2 does not interfere with anything said in this
section, our treatment of tensors trivially extends to the two-loop case. Explicitly we can
write

∫
ddKddL

Kµ1 . . . Kµ2k Lν1 . . . Lν2l

[K2 + L2 − Λ]σ
=
Gµ1...µ2kGν1...ν2l

c(2k)c(2l)

∫
ddKddL

K2kL2l

[K2 + L2 − Λ]σ
, (3.29)

but that is not even necessary, in an implementation we can just call the routine, that does
the replacement eq. (3.24), once for every loop momentum.
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3.2.4 Mapping Feynman Parameters to the Hypercube

Feynman parameters sum up to one, as can be seen from the δ-functions appearing in the
above formulae. Thus they lie on a n-dimensional standard simplex Sn. The sector decompo-
sition method discussed in the next in section 3.3 deals with functions defined on a hypercube.
Also contour deformation is far less cumbersome if done on a hypercube, rather than on a
simplex.

Thus we have to parametrize Sn over [0, 1]n−1. A straightforward way to do so is to just
eliminate one variable

xn = 1− x1 − x2 − . . .− xn−1 (3.30)

and to rescale the remaining ones as follows

xn−1 = (1− x1 − x2 − . . .− xn−2) rn−1 (3.31)

xn−2 = (1− x1 − x2 − . . .− xn−3) rn−2 (3.32)

... (3.33)

x2 = (1− x1) r2 (3.34)

x1 = r1 (3.35)

The jacobian of this transformation is

∣∣∣∣
∂xk

∂rl

∣∣∣∣ =

n−1∏

j=2

(
1−

j−1∑

i=1

xi

)
(3.36)

The disadvantage of this transformation is, that the xi become polynomials of order up to n−1
in the rj and that the simplex is parametrized in a very non-uniform way. In the gg → h
computation at two-loop discussed in chapter 4 this did not really hurt, as the diagrams
parametrized with the “sunset” strategy had always two simplices of modest dimensionality
(plus two trivial S2) instead of a single high dimensional one. However, for two-loop diagrams
parametrized according to the “at once” strategy, as well as for one-loop diagrams with many
legs, is is most probably better to use the so called primary sector decomposition. This means,
that the simplex Sn – very much like the hypercube in the next section – is split into n regions
Ri, each one characterized by one variable being larger than all the others. These regions can
then be parametrized like

Ri = {(r1, . . . , ri−1, 1, ri+1, . . . , rn−1)
T /(1 + r1 + r2 + . . .+ rn−1) | ri ∈ [0, 1]}. (3.37)

The fact, that β and Λ are homogeneous polynomials can be used to get rid of the normal-
ization factors.
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3.3 Sector Decomposition

3.3.1 Basic idea

IR and partially also UV divergences appear as endpoint singularities in Feynman parameter
integrals. In the context of dimensional regularization such a singularity might look like

∫ 1

0
dx x−1+sεf(x), (3.38)

where f(x) does not vanish on [0, 1]. Obviously, switching off the regulator ε → 0 leaves us
with a logarithmically divergent integral. Usually one tries to obtain a series expansion in ε.
Expanding the integrand in a Taylor series in ε is clearly not helpful. Such a series would
start at O(ε0) and its coefficient would be x−1f(x), the divergent integrand with the regulator
switched off. Fortunately the divergence can easily be subtracted:

∫ 1

0
dx x−1+sεf(x) =

∫ 1

0
dx x−1+sε[f(x)− f(0)] + f(0)

∫ 1

0
dx x−1+sε. (3.39)

The first integral is free of divergences, as f(x) − f(0) behaves like x f ′(0) for x → 0. We
can safely Taylor expand the subtracted integrand in ε. The second integral now contains the
singularity. But since it contains only the singularity, analytic integration is trivial, yielding
1
sεf(0). Stronger singularities can be handled as well. We just have to write a subtraction
term, that approximates f(x) to a higher degree:

∫ 1

0
dx x−n+sεf(x) =

∫ 1

0
dx xsε f(x)−∑n−1

k=0 x
k f(k)(0)

k!

xn
+

n−1∑

k=0

f (k)(0)

k!(k + 1− n+ sε)
. (3.40)

Isolated singularities occurring in more than one variable, e.g.

∫ 1

0
d~x x−1+s1ε

1 x−1+s2ε
2 f(x1, x2), (3.41)

can be treated by iterated application of eq. (3.40). A common complication is, that overlap-
ping singularities occur. We talk about an overlapping singularity, if our integrand becomes
infinite due to simultaneous vanishing of more than one variable. In the following simple
example, this happens at x = y = 0:

∫ 1

0
dx

∫ 1

0
dy

1

x+ y
. (3.42)

Sector decomposition is a simple, yet powerful method to isolate overlapping singularities.
As shown in fig. 3.3.1, we can split the integration region into two triangular sectors given by
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Figure 3.2: The basic step of sector decomposition.

x > y and y > x. Then we rescale the dominated variable by the dominating one.

∫ 1

0
dx

∫ 1

0
dy

1

x+ y
=

∫ 1

0
dx

∫ x

0
dy

1

x+ y
+

∫ 1

0
dy

∫ y

0
dx

1

x+ y
(3.43)

↓ y = xỹ ↓ x = yx̃ (3.44)

=

∫ 1

0
dx

∫ 1

0
dỹ

x

x+ xỹ
+

∫ 1

0
dy

∫ 1

0
dx̃

y

yx̃+ y
(3.45)

This not only brings us back to a quadratic integration domain, but it mainly produces a
common factor of x or y in the denominator. This is a bit like introducing polar coordinates,
the rescaling factor playing the role of the radius. Here the singularity is then actually
cancelled by the jacobian, as it was an integrable one. In general it will just stay in the
“radius” variable. The case of a non integrable singularity in the context of dimensional
regularization might look as follows:

∫ 1

0
dx

∫ 1

0
dy

1

[x+ y]2−ε
=

∫ 1

0
dx

∫ 1

0
dỹ

x−1+ε

[1 + ỹ]2−ε
+

∫ 1

0
dy

∫ 1

0
dx̃

y−1+ε

[x̃+ 1]2−ε
. (3.46)

The procedure also works for overlapping singularities of more than 2 variables. For instance
the overlapping singularity in 1

x+y+z can be decomposed by cutting the integration region into
3 sectors, each characterized by one variable being the largest one and rescaling the others
back to [0, 1], i.e. y = xỹ, z = xz̃ etc.

∫ 1

0
dxdydz

1

x+ y + z
=

∫ 1

0
dx

∫ 1

0
dy

∫ 1

0
dz

1

x+ y + z
[θ(x > y, z) + θ(y > x, z) + θ(z > x, y)]

=

∫ 1

0
dx

∫ 1

0
dỹ

∫ 1

0
dz̃

x

1 + ỹ + z̃
+ (x↔ y) + (x↔ z).

More generally we have to consider integrals of the form

∫ 1

0
d~x [p1(~x)]r1+s1ε · · · [pk(~x)]

rk+skε, (3.47)

where pi(~x) are polynomials in the Feynman parameters. In practice the exponents ri and
si are integers with arbitrary signs. Let us agree on the name “denominators” for the set of
those pi(~x), that come with ri < 0.

denoms(~x) := {pi(~x)|i with ri < 0} (3.48)
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Our integral has a singularity (more precisely an endpoint singularity) in the Feynman pa-
rameters S = {xs1 , . . . , xsn} at {σs1 , . . . , σsn} ∈ {0, 1}n if there is a vanishing denominator
for

{xs1 , . . . , xsn} = {σs1 , . . . , σsn} (3.49)

and S is minimal in the sense, that fixing only a proper subset of S to the given values is not
sufficient to cause the vanishing. If we have an overlapping singularity at the origin, i.e. the
vanishing happens if all involved variables are set to 0 rather than a collection of 0 and 1, we
can again decompose it by cutting the the domain of S, the hypercube [0, 1]n into n sectors,
each with one variable dominating all the others in S and rescaling everything back to [0, 1].
This results in making n copies of the original integral, one for each xi ∈ S, and replacing

d~x→ d~x xn−1
i (3.50)

xj → xixj ∀xj ∈ S \ {xi}. (3.51)

After decomposing an overlapping singularity as just described, the resulting n integrals may
still contain further singularities. Thus the decomposition step has to be applied recursively
until all overlapping singularities are decomposed. However, attention has to be paid to the
issues discussed in the next two sections.

3.3.2 Singularities at x = 1 and Splitting of Variables

First we have to consider singularities, that involve some variable, say x, set to 1 rather than
0. We can try to flip these variables, x→ 1−x, in order to move the singularity to the origin,
and then decompose it. Clearly, flipping a variable x is not a good idea, if there is already
an isolated singularity at x = 0, as the latter would be converted into an isolated singularity
at x = 1, and so we would not move towards our goal of having only isolated singularities at
0. In this case, we are forced to split the integration domain [0, 1] into [0, 1

2 ] and [12 , 1] and
rescale each of them back to [0, 1]. That amounts to making two copies of the integral and
replacing

xi → 1
2xi (3.52)

d~x→ 1
2d~x (3.53)

and

xi → 1
2 (xi + 1) (3.54)

d~x→ 1
2d~x (3.55)

respectively. With no isolated singularity in the way, flipping variables is indeed sufficient, as
we will see below.

3.3.3 Ordering Singularities or Avoiding Infinite Loops

If an integral contains more than one overlapping singularity, it makes a difference, which one
is decomposed first. This can be seen from the simple example

∫ 1

0
dxdydz

1

x2 + y2z
. (3.56)

45



Obviously there is a singularity, when x and y simultaneously approach zero, but also if x
and z do so. Decomposing (x, y) does a good job. Suppressing the integral we get

1

x2 + y2z

(x,y)−→ 1

x(1 + y2z)
+

1

y(x2 + z)
. (3.57)

The first term is already decomposed completely, the singularity is caught at x → 0. The
second one has an isolated singularity at y → 0 but also an overlapping one at (x, z)→ (0, 0).
The latter will need two more (x, z) decomposition steps. This way the original decomposes
into four sectors each one having an isolated singularity in either x or y. On the other hand,
decomposing the (x, z) singularity in the first place does not help at all:

1

x2 + y2z

(x,z)−→ 1

x+ y2z
+

1

x2z + y2
. (3.58)

The second term is exactly the same as the original one, except for x ↔ y. So the problem
has not simplified and if our program then decided to decompose (y, z) in the second term, it
would even reproduce the original expression verbatim and thus contain an infinite loop. One
might wonder, how it is possible that the decomposition reproduces the original expression
plus additional pieces, which are all positive. But this is just an artefact of dealing with
divergent integrals. In presence of a regulator, say if the denominator is raised to the power
1+ε, we do not reproduce the original expression verbatim, but the mechanics of denominators
and thus the infinite loop remain unchanged. Note, that also decomposing the non minimal
set of variables (x, y, z) is not helpful here, as the rescaling (x, y) → (zx, zy) immeaditely
reproduces the original expression.

So what is the right strategy for choosing which singularity to decompose? This is a
difficult question. We implemented a strategy, that avoids the above problem. This strategy
has worked, i.e. the decomposition terminated, in all examples considered so far. However,
we lack prove, that it always will.

1. First we order singularities according to the number of variables involved. That is first
come isolated singularities, then overlapping singularities involving two variables etc.
(Isolated singularities do not require decomposition, of course, but it will be convenient
to have an ordered list of singularities also including the isolated ones.)

2. The singularities involving the minimum number of variables are further ordered ac-
cording to their degree. Let

{xs1 , . . . , xsn} = {σs1 , . . . , σsn} (3.59)

be such a singularity, i.e. a denominator pk(~x) vanishes at these values and fixing only
a subset of the variables does not cause any denominator to vanish. We define the
singularity’s degree as the power, with which the pk(~x) vanishes, when the Feynman
parameters approach the singular values. Thus if the substituted denominator

pk(~x)

∣∣∣∣∣xsi
→ λxsi

for σsi
= 0

xsi
→ 1− λxsi

for σsi
= 1

(3.60)

behaves like ∼ λm for λ → 0, the degree of the singularity is m. The degree of a
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singularity counts, how many powers of Feynman parameters can be factored out from
pk(~x) after decomposing the singularity. It is understood, that for singularities involving
σsi

= 1, xsi
are flipped first. Substituting xsi

→ λxsi
and xsi

→ 1− λxsi
, respectively,

rather than just xsi
→ λ and xsi

→ 1 − λ, respectively prevents failure on indefinite
expressions3 like x1 − x2. If there is more than one vanishing denominator pk(~x), we
pick the one, that gives the maximum degree. Note that our definition of the degree is
blind to the powers ri in eq. (3.47). So in

1

[x+ y] [x+ z]2
, (3.61)

(x, z) and (x, y) both have degree 1 and there is no preference, whereas in

1

[x2 + y2z]
, (3.62)

(x, y) has degree 2 and will thus be favored over (x, z) having degree 1.

3. Last, singularities of equal degree are put in ascending order with respect to the signa-
ture {σs1 , . . . , σsn} understood as a binary number. Note that a position in the signature
can correspond to different variables for different singularities.

We mention that the problem of choosing the right singularity for decomposition was analyzed
in [64]. The authors could map the problem to a known problem in algebraic geometry and
thus come up with three strategies, for which the algorithm is guaranteed to terminate.
However, they also in noticed, that a forth strategy, for which they could not prove the
algorithm always terminates, performs much better than the first three in the sense, that it
produced a much lower amount of sectors for practical problems considered. This strategy is
very similar to ours. They just compute the degree based on the whole denominator

∏

i

pi(~x)
ri , (3.63)

rather than for individual factors pi(~x). For two-loop integral parametrized according to the
“sunset” strategy, we can see from the representation eq. (3.15) that apart from the common
denominator containing the kinematics, the there are only trivial denominators of the form
xr and, after integrating out the delta functions, (1− x)r. In this case, the two strategies are
equivalent.

Another comment is on order here: It is often said, that a serious problem of sector
decomposition is the proliferation of terms. The problem seems to be more pronounced, if
many massless propagators are present. When discussing this question, one should note,
however, that the occurrence of many sectors is not a problem a priori. To be more precise,
the fact that an integrand gets decomposed into two integrands does not necessarily mean,
that integration is twice as much work. One can even imagine to shrink the two resulting
integration domains to half their volume and glue them together to form a single hypercube
again. Numerical integration means sampling all important features of the integrand and
sector decomposition is just a change of variables, that rescales and tends to smooth out
these features. In the end, due to the rescalings, the algebraic complexity of the integrand

3In Feynman parametrized loop integrals, factors free of kinematic invariants always have a definite sign.
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does actually grow with sector decomposition. But the growth is not as bad as file sizes
suggest, as this is also due the fact, that we ended up with a piecewisely defined integrand. In
extreme cases memory can become a problem. However, explicit calculations of cross-sections
through next-to-next-to-leading order have shown, that realistic problems are manageable [6,
7, 8, 9, 10, 11].

3.3.4 Some Implementation Details

First, a Feynman diagram has to be brought into a form suitable for sector decomposition.
For a two-loop diagram this might look as follows:

1. We introduce Feynman parameters as shown in eq. (3.15). Feynman parameters living
on simplices are mapped to the hypercube. In the numerator function N (k, `), k and `
are expressed in terms of the new integration momenta K and L according to eq. (3.18).

2. Products appearing in the numerator functionN are multiplied out. Then, dot products
linear in K are eliminated according to eq. (3.24). This step is repeated for the second
loop momentum L.

3. In the numerator function, terms with the same powers of loop momenta (K,K)m/2(L,L)n/2

are collected and the momentum integrals are carried out by using eq. (3.8) twice.

4. Every Feynman parameter integral obtained this way is split into a tensor part origi-
nating from terms in N and a scalar part. Note that for tensor parts originating from
terms proportional to KmLn, the scalar part corresponds to the Feynman diagram with
N set to 1, but evaluated in d+m+ n instead of d dimensions.

5. Finally, if polynomials in Feynman parameters raised to negative powers appear in the
tensor parts, these are factored out and moved to the scalar part. Such negative powers
occur, when expressing k and ` through K and L, as can be seen from eq. (3.18).

After these steps, our Feynman diagram is written as a sum of integrals of the form

C(ε)

∫ 1

0
d~x tensor(~x, ε) [p1(~x)− i0]r1+s1ε[p2(~x)]r2+s2ε . . . [pn(~x)]rn+snε. (3.64)

Out of the polynomials pi only p1 depends on kinematical invariants4. It stems of course from
the combined denominator produced by Feynman parametrization. For physical values of the
kinematical invariants, this polynomial can change sign inside the integration region. At
such points, the i0 then tells the integration contour how to dodge via the complex domain.
All other pi(~x) are pure combinations of Feynman parameters, that is, the polynomial’s
coefficients are just numbers. Actually these polynomials are positive semidefinite. They can
vanish only at the border of the integration domain. If their vanishing leads to a singularity,
this is related to the UV or IR behavior of the diagram. C(ε) is a prefactor, usually containing
Γ functions, that can be singular for ε → 0. On the other hand, tensor(~x, ε) is finite for
ε → 0. It can be expanded in a Taylor series in ε. As expressions raised to negative powers
have been moved to the scalar part, the coefficients of this expansion are polynomials in the

4If we treat a factorizable diagram as a whole, a product [p1(~x) − i0]r1+s1ε[p2(~x) − i0]r2+s2ε of terms de-
pending on kinematics arises. But in this case p1(~x) and p2(~x) depend on disjunct sets of Feynman parameters.
This will be important for finding an integration contour.
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Feynman parameters. Thus tensor(~x, ε) does not give raise to singularities5 and it is therefore
sufficient, apply sector decomposition to the scalar part only. Of course we have to keep
track of all transformations of variables, so we can evaluate tensor(~x, ε) in the correct region
afterwards. For instance, if an overlapping singularity in (x1, x2) gets decomposed in the scalar
part, the two sectors in the end get combined with tensor(x1, x1x2, ε) and tensor(x2x1, x2, ε),
respectively. But as tensor(~x, ε) can be a pretty large expressions, it is good, that the sector
decomposition algorithm does not search them for nonexistent singularities in every step.
And even more important, aiming for fast numerical evaluation, we do not want to make
the tensor expressions even more complicated by algebraically substituting in all rescalings.
It is better to compute the values of the original variables, (xorig

1 , xorig
2 ) = (x1, x1x2) and

(xorig
1 , xorig

2 ) = (x2x1, x2) respectively, in the above example, numerically and to substitute
these values into tensor(·, ε). Integrals of the form eq. (3.64) can be submitted to the sector
decomposition algorithm, which will perform the following preparation steps:

• The expression tensor(~x, ε) is replaced by a dummy function jet[x1, . . . , xn, ε]. The latter
is just a bookkeeping device, that will keep track of all changes of variables.

• Powers [pi(~x)]
ri+siε are rewritten using a private symbol

fac[pi[x1, . . . , xn], ri + siε].

This prevents uncontrolled application of built in rules by Mathematica. We only equip
the symbol fac with the following simple rules for dealing with trivial arguments and
combining powers of the same expression

fac[x , 0] := 1

fac[a , b ] := ab/; NumericQ[a]

Times[fac[a , e ], fac[a , f ]]̂ := fac[a, e+ f]

Additionally, a factorization routine can be applied to an expression containing fac sym-
bols. This routine tries to factorize expressions, that are free of kinematical invariants
out of fac. For instance

fac[−x(1− x)s + (1− x)m2, e]→ fac[(1− x), e]fac[−xs+ m2, e]. (3.65)

The routine assumes, these factors cannot change sign and, under this assumption, pulls
them out with positive sign. I.e. in the above example, 1− x is pulled out rather than
x − 1. The sign is tested by substituting random values for the Feynman parameters.
This factorization routine is applied at the beginning and and after every decomposition
step.

After this preparation, the actual decomposition algorithm is invoked. Work is done mainly
by the follwong functions:

findFirstSing[expr ] finds the first singularity according to the ordering discussed in section
3.3.3. It returns an object of the form

SingDescr[vars, signature, degree].

5On the other hand, tensor(~x, ε) could sometimes cancel singularities. For instance, if the scalar part
contains a factor x−1+ε

1 while an overall x1 could be factored out of tensor(~x, ε), doing so we could avoid the
generation of an unnecessary subtraction. We did not implement this, however.
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For instance
SingDescr[{x1, x5}, {1, 0}, 2]

means, that the singularity to be composed lies at x1 → 1 ∧ x5 → 0 and has degree 2.

decompose[expr , vars List] performs one sector decomposition step on expr, decomposing
an overlapping singularity at the origin in the variables vars. It uses the factorization
routine mentioned above to pull generated common factors out of fac symbols. A list
of Length[var] sectors is returned.

splitVar[expr , var ] splits the integration along var into two ranges [0, 1
2 ] and [12 , 1], rescales

them back to [0, 1] and returns the two sectors.

The integrand expression is put into a todo queue and the algorithm works according to the
flowchart depicted in figure 3.3. Some explanations are on order:

• The main working step takes an expression out of the todo queue, finds the first singu-
larity to be decomposed, and goes, answering always no, straight down to the decompo-
sition step. Thus the singularity is decomposed and the resulting sectors are put back
into the queue.

• Alternatively the algorithm may find, that the discovered singularity is an isolated one
at zero. That means, the expression under consideration contains a factor x−m+nε

i with
m > 0. In this case, the algorithm just tags this singularity by replacing

fac[xi,−m + nε]→ ISfac[xi,−m + nε]

and puts it back to the queue. The findFirstSing function is blind to the special
symbol ISfac and thus won’t ask to deal with this singularity any more.

• Another possibility is, that the signature of the singularity under consideration contains
ones, i.e. the singularity involves variables fixed to 1. Then the algorithm takes the
first variable, that is fixed to 1 and checks, whether the expression already contains an
ISfac in this very variable.

– If this is the case, the ISfac is released, splitVar is called and the resulting sectors
go back to the queue. Releasing the ISfac means replacing it by an ordinary fac.
This prevents us from ending up with a spurious, nonsingular ISfac in [ 1

2 , 1] part.
Note, that the ISfac in [0, 1

2 ] part is not restored. The sector simply goes back to
the queue and the isolated singularity will again be detected in the next step.

– If there is no ISfac in the way, the variable under consideration is simply flipped,
and the sector goes back to the queue. Note, that due to the third criterion of
ordering singularities, the fact, that we are dealing with a singularity, that involves
ones means, that the sector has no singularities (of equal number of variables and
degree) involving only zeros. Flipping turns the first 1 in the signature into a
0 and thus moves the singularity forward by at least one bin in the ordering.
Other singularities can move backwards or forward, even more than the one under
consideration. In any case at least one singularity is moved forward by at least one
bin. Therefore, after a finite number of steps, some singularity arrives at bin zero
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and gets decomposed. An infinite loop flipping variables back and forward cannot
occur6.

• Eventually, all singularities will be decomposed into isolated singularities and we are
almost finished. There is only one left complication. While we have decomposed singu-
larities like (x1 +x2)

−1−ε even though they are integrable, terms like (x1 + x2)
−ε might

have survived. When expanding in ε, these give rise to logarithms. While log(x) has
only an integrable singularity at 0, we run into trouble with expressions like

x−1−ε
1 x−1−ε

2 (x1 + x2)
−ε, (3.66)

as they eventually lead to a singular double subtraction term

x−1−ε
1 x−1−ε

2 (0 + 0)−ε. (3.67)

As long as there is only one isolated singularity, this problem cannot occur, as x−1−ε
1 x−ε

1

is simply x−1−2ε
1 . But if there is a product of isolated singularities

ISfac[xs1 , es1 ] . . . ISfac[xsk , esk ] (3.68)

together with a factor
fac[p[x1, . . . , xn], r + sε] (3.69)

with s 6= 0 and p[x1, . . . , xn] vanishes, if a subset of the variables

{xs1 , . . . , xsk
}

is set to zero, then this subset needs to be decomposed, even for positive7 r.

The outcome of the algorithm is a bunch of integrals of the form

C(ε)

∫ 1

0
d~x

[
∏

i

x−αi+βiε
i

]
∏

j

[Pj(~x)]
ηj+ξjε


 jet(~xorig(~x), ε)

[Λ(~x)− i0]α+nLε
. (3.70)

Pi(~x) are polynomials in the Feynman parameters, which do not lead to singularities8. Λ(~x) is
the polynomial containing the kinematics. We have given it a special name just to ease further
discussion. Just as the Pi(~x), it is decomposed such, that it does not give rise to endpoint
singularities. But in contrast to the Pi(~x), the kinematic polynomial Λ(~x), stemming from
p1(~x) in eq. (3.64), can change sign inside the integration domain. Therefore the integral would
not be well defined, if the −i0 prescription was omitted. Note, that the evolution from p1(~x)

6In [8] a simpler and less entangled solution is proposed. The idea is to detect at the very beginning, which
variables are involved in singularities with both, their 0 and 1 limits. Such variables are split immediately.
Then variables which show singularities at 1 are flipped. This way, sector decomposition is invoked only after
all singularities have been moved to the origin.

7In the case r = 0, decomposition is clearly unavoidable. For positive r it can sometimes be avoided.
However, care has to be taken, as, depending on the exponents esi

, subtractions will involve derivatives. Also,
special treatment of x log x like expressions is necessary.

8In principle, one could apply sector decomposition until all polynomials are of the form 1 + p(~x) with
p(~x) = 0. However, as we have tried to avoid unnecessary decomposition of unproblematic factors, we make a
weaker statement here.
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Figure 3.3: sector decomposition
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to Λ(~x) includes not just changes of variables. In addition, we might have pulled out common
positive semidefinite factors. Pulling out factors with positive sign only makes sure, that
the −i0 prescription in eq. (3.64) actually stays −i0 throughout the decomposition process.
Negative exponents αi lead to endpoint singularities and thus ε poles. They can be extracted
by application of eq. (3.40). However, as it will become clear in the next section, it is important
to postpone this step until we have put the −i0 prescription into a form that is operative in
numerical integration. Note that the exponent nL corresponds to the number of loops. It
is clear, that eventually, we will have to reinstall the proper numerator function tensor(·, ε).
But we also postpone this step and go one with the bookkeeping device jet(~xorig(~x), ε), which
remembers which bit of the original hypercube integration domain corresponds to a given
value of the rescaled variables ~x.

3.4 Contour Deformation

3.4.1 General Idea

We now address the problem of implementing the −i0 prescription in a way that holds for
numerical integration. Nagy and Soper found a simple but very effective way of doing so. It
works as follows. Consider a Feynman parameter integral

∫ 1

0
d~x

F(~x)

[Λ(~x)− i0]σ (3.71)

with kinematical invariants chosen such that Λ(~x) vanishes somewhere inside the integration
region. Away from singularities, the integrand is a holomorphic function. The integration
over each Feynman parameter can be deformed away from the the real line segment [0, 1] into
the complex domain. By Cauchy’s theorem, this does not change the value of the integral, as
long as we keep the end points fixed at 0 and 1, respectively, and no singularities are crossed
in going from [0, 1] to the complex contour.

∫ 1

0
d~x

F(~x)

[Λ(~x)− i0]σ =

∫

C
d~z
F(~z)

[Λ(~z)]σ
(3.72)

Obviously, the poles of the integrand are the zeros of Λ(~z). For non-integer σ, as they arise in
dimensional regularization, we have to make sure Λ(~z) does not cross the cut of the logarithm
extending over the whole negative real axis. But that is just what the −i0 prescription
means: Choose an integration contour, such that Λ(~z) always has a negative imaginary part.
Remarkably, that is easy to achieve. Let ~z = ~x+ i~y and Taylor expand Λ(~z) around ~x,

Λ(~x+ i~y) = Λ(~x) + i
∑

j

yj
∂Λ(~x)

∂xj
+O(y2). (3.73)

Therefore, choosing the imaginary parts of Feynman parameters as9

yj = −iλxj(1− xj)
∂Λ(~x)

∂xj
(3.74)

9In [57, 58] Nagy and Soper give a slightly different formula, as they use Feynman parameters on the
simplex.
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gives

Λ(~z) = Λ(~x)− iλ
∑

j

xj(1− xj)

(
∂Λ(~x)

∂xj

)2

+O(λ2). (3.75)

The positive parameter λ controls the size of the deformation. Clearly, for λ small enough
so that higher orders do not spoil the picture, Λ(~z) acquires a negative imaginary part. The
factors xj(1 − xj) enforce the vanishing of the deformation at the endpoints of integration.
Varying λ continuously deforms the integration contour from the original [0, 1]n = C(0) into
a C(λ) that usually provides a negative imaginary part of Λ(~z) large enough to allow stable
numerical integration. A few things should be noted here.

1. For λ small enough we have ImΛ(~z) ≤ 0, so the cut of the logarithm along the negative
real axis is never crossed. Inside the integration region, the equality ImΛ(~z) = 0 occurs
only if all first derivatives of Λ(~x) vanish simultaneously. Such vanishing does no harm,
unless it coincides with the vanishing of Λ(~x) itself. This happens only for special values
of the kinematical invariants, generally corresponding to thresholds. At such points, the
deformation actually has to fail and allow for divergences.

2. The λ2 term neglected in eq. (3.75) cannot spoil the sign of the imaginary part, as it
is purely real. So it is only the O(λ3) terms we have to worry about. It is possible to
modify the deformation eq. (3.74) in order to control higher order terms. However, this
leads to huge expressions and in practice just keeping λ small enough seems to be the
better solution.

3. Directly computing the maximal value for λ is not feasible. However, during the actual
integration, it is trivial to detect, whether we have chosen λ to large. We just have to
check if ImΛ(~z) ≤ 0 in every evaluation of the integrand. In practice, the criterion for
failure should be ImΛ(~z) > ε using an ε = 10−10 or so, to avoid false alarms due to
rounding errors.

It is instructive to work out the deformation for the simple case of a equal mass scalar
bubble.

= Γ(ε)

∫ 1

0
dx

1

[−x(1− x)s+m2 − i0]ε (3.76)

Strictly speaking, in this example, deformation is not really necessary. As the denominator is
raised to the power ε only, expanding in ε only gives logarithms of the denominator. There-
fore, the vanishing of the denominator leads to a integrable singularity only. It would be
sufficient to integrate without deformation and use a logarithm function that treats negative
real arguments as if they came with −i0, i.e. opposite to the usual convention. But this should
not prevent us from discussing the deformation, which would become necessary, if one of the
propagators was squared, for instance. For simplicity, lets set m2 = 1. The denominator
polynomial is then

Λ(x)− i0 = −x(1− x)s+ 1− iδ. (3.77)

The poles are located at
x = 1

2(1±
√

1− 4/s). (3.78)

The location of the poles in x for a few special values of s is shown in fig. 3.4. For the
unphysical negative values of s the poles lie on the real axis, but outside the interval [0, 1].
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When s becomes positive, they jump to 0.5 ± i∞. With s approaching the threshold value
s = 4 from below, the poles move towards 0.5 from the top and the bottom, pinching the the
integration contour at 0.5 for s = 4. Above threshold, the poles spread out just above the
real interval, allowing for a deformation to the lower half plane. From

Λ′(x) = −s(1− 2x) (3.79)

we get the deformation
y(x) = λx(1− x)s(1− 2x). (3.80)

Figure 3.5 shows the undeformed Λ(x) together with y(x), as well as real and imaginary part
of Λ(x + iy) for s = 5, that is above threshold. The top left panel shows the parabola Λ(x)
with its two zeros, which lead to poles the deformation has to avoid. For s below threshold,
the parabola would lie above the x-axis, for s = 4 it would just touch it. The bottom left
panel is the deformation of the Feynman parameter, y(x). It changes sign where Λ ′(x) does
to give a definite sign to the linear term in the Taylor expansion eq. (3.73). The right panel
shows real and imaginary part of the deformed Λ(x+ iy). The deformation does a good job:
The imaginary part jumps in where the real part vanishes. Note that the zeros of the real part
are shifted compared to the undeformed case. This is due to the real O(λ2) contribution. At
x = 0.5 we have ImΛ(z) = 0 and ReΛ(z) equals Λ(x) as the deformation vanishes there. This
is harmless, as Λ(x) is is nonzero there. However, if we go to the threshold s = 4, the minimum
of the parabola Λ(x) hits the x-axis, causing vanishing exactly where the deformation cannot
help. For increased denominator powers, this would lead to a singular integral. Three more
things should be noted

1. Looking only at the s = 4− ε case in fig. 3.4 one could get the wrong impression, that
λ has to be kept very small in order not to hit the pole sitting very close to the real
axes. But the deformation is exactly zero at x = 0.5 due to the vanishing of Λ′(0.5), so
the pole cannot be hit by making the deformation large. However, passing the poles at
short distance still gives a peaked integrand.

2. Also from the fact, that Λ(x) is only quadratic in this example it follows, that Λ(z) has
no O(λ3) that could spoil the sign of the imaginary part. Thus λ can be made arbitrarily
large. Feynman parametrizing one-loop integral usually leads to this situation. However
the rescalings occurring during sector decomposition can lead to higher powers.

3. Figure 3.4 shows, that for large s, the poles approach the endpoints of the integration
domain. This is unpleasant. The deformation will be small at the location of the poles,
as it has to vanish at the endpoints. This problem generally occurs for very disparate
values of the kinematic invariants and we shall address it later.

3.4.2 Integrals with x−α+βε Singularities

In the last section, did not specify the numerator function F(~x). Now it is time to have

a special look at integrands, that contain singularities like x−αi+βiε
i . In presence of such

singularities we could first extract the ε-poles by application of the subtraction formula (3.40)
and expand in ε and then deform the individual pieces according to their denominator. For
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Figure 3.5: Some details of contour deformation for the scalar equal mass bubble. We have
set m2 = 1, s = 5 and λ = 1. The top left panel shows the undeformed denominator function
Λ(x). Below, the deformation of the Feynman parameter y(x) is given. The right hand side
shows real and imaginary part of the deformed denominator function Λ(z).

instance in a simple one-dimensional case we would write

∫ 1

0
dx

x−1+ε

[Λ(x)− i0]σ =

∫ 1

0
dx

{
x−1

[Λ(x) − i0]σ −
x−1

[Λ(0)− i0]σ
}

+
1

ε

1

[Λ(0)]σ
+O(ε), (3.81)

and then introduce deformations generated by Λ(x) and Λ(0). Of course, there is nothing to
deform in Λ(0), but in a more complicated case with two variables, we would have Λ(x1, x2)
and Λ(0, x2) and the second term would still require deformation of x2. However, this is
not a good idea. The problem is the unequal manipulation of the two individually divergent
pieces of the integral. As we will see below, this manipulation is okay only if the deformation
vanishes faster than linear as x→ 0. Thus we would have to change our deformation to

yj = −iλxη
j (1− xj)

∂Λ(~x)

∂xj
(3.82)

with η > 1, what is again bad for numerical stability. A better solution is to perform the
subtraction and expansion only after deforming the integral. Actually, this is also easier to
implement, as one does not have to deal with different deformations. We deform the integral

I =

∫ 1

0
d~x


∏

j

x
−αj+βjε
j


 F(~x, ε)

[Λ(~x)− i0]σ =

∫ 1

0
d~x


∏

j

z
−αj+βjε
j


J(~x)

F(~z(~x), ε)

[Λ(~z(~x))]σ
, (3.83)
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where F(~x, ε) is a regular numerator function and

J(~x) = det

[
∂zk
∂xl

]
(3.84)

is the jacobian that arises when parametrizing the complex contour with the original Feynman
parameters, ~z = ~z(~x). Now we exploit the fact, that yj contains one power of xj . We write
zj = xj(1 + ρj), where

ρj(~x) = −iλ(1− xj)
∂Λ(~x)

∂xk
(3.85)

is polynomial. Rewriting

[zj(~x)]
−αj+βjε = x

−αj+βjε
j [1 + ρj(~x)]

−αj+βjε (3.86)

makes explicit, that the singularities are located in the real Feynman parameters only. The
[1 + ρj]

−αj+βjε pieces are nonsingular contributions which we can put together with the
nonsingular F(~z(~x), ε). Actually, we can just collect everything but the singularities in a big
regular function

freg(~x, ε) =


∏

j

[1 + ρj(~x)]
−αj+βjε


 J(~x)

F(~z(~x), ε)

[Λ(~z(~x))]σ
. (3.87)

Our integral then reads

I =

∫ 1

0
d~x


∏

j

x
−αj+βjε
j


 freg(~x, ε). (3.88)

At this point we can use the subtraction formula (3.40) and expand in ε.
Just for illustration, we spell out, what happens inside freg in a simple two-dimensional

example. Consider the integral and its deformation

∫ 1

0
dx1dx2 x

−1+ε
1

1

[Λ(~x)− i0]σ =

∫ 1

0
dx1dx2 J(~x) x−1+ε

1 [1 + ρ1(~x)]−1+ε 1

[Λ(~z(~x))]σ
. (3.89)

The subtraction formula then leads to

∫ 1

0
dx1dx2 x

−1+ε
1

{
J(x1, x2)[1 + ρ1(x1, x2)]

−1+ε

[Λ(z1(x1, x2), z2(x1, x2))]σ
− J(0, x2)[1 + ρ1(0, x2)]

−1+ε

[Λ(z1(0, x2), z2(0, x2))]σ

}

+
1

ε

∫ 1

0
dx2

J(0, x2)[1 + ρ1(0, x2)]
−1+ε

[Λ(z1(0, x2), z2(0, x2))]σ
. (3.90)

We should note a few things

• The deformation guarantees that ImΛ(~z(~x)) ≤ 0 ∀~x. This includes the case, that some
of the xj are set to zero. Therefore, the deformation produces an imaginary part with
the correct sign also for the subtraction terms. One may ask, if the deformation can
possibly give a vanishing imaginary part for a subtraction in a case, where subtracting
first and deforming the subtraction individually, as we intended at the beginning, would
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give a nonzero deformation. The answer is no. The two contours are actually identical,
as (

∂

∂x2
Λ(x1, x2)

) ∣∣∣
x1=0

=
∂

∂x2
Λ(0, x2). (3.91)

• If stronger singularities x
−αk+βjε
j with αj > 1 are present, the subtraction formula

produces xj-derivatives of freg up to order αj − 1. Therefore, derivatives of Λ, F and
the jacobian J appear. The deformation still does its job in this case. A derivative ∂xj

acting on
1

[Λ(~z(~x))]σ
(3.92)

just reproduces this term with an increased power σ+1 together with an inner derivative
∂xj

Λ(~z(~x)). The latter just stays in the numerator. It never goes into denominators or
logarithms, so we don’t need to worry about the sign of its imaginary part. Symbolically,
the derivative eliminates the constant −i0 term.

To conclude this section, we illustrate the claim made at the beginning. Subtracting and
expanding first and then deforming the emerging terms individually leads to wrong results
unless the deformation yj vanishes faster than linear when xj → 0. Simply deforming each of
the individually divergent terms according to its denominator in the right hand side of (3.81)
gives

Iwrong =
1

ε

1

[Λ(0)]σ
+

∫ 1

0
dxx−1

{
J(x)[1 + ρ(x)]−1

[Λ(z(x))]σ
− 1

[Λ(0)]σ

}
+O(ε). (3.93)

Here actually only the first term inside the brace got deformed, as the denominator of the
subtraction is constant. We have rewritten z as x[1+ρ(x)] and factored the common x−1 out
of the brace. On the other hand, we can take the safe route of deforming first and expanding
afterwards, avoiding the manipulation of divergent integrals.

I =

∫ 1

0
dx

x−1+ε

[Λ(x)− i0]σ =

∫ 1

0
dx
J(x)z(x)−1+ε

[Λ(z(x))]σ
=

1

ε

J(0)[1 + ρ(0)]−1+ε

[Λ(z(0))]σ
+

∫ 1

0
dxx−1

{
J(x)[1+ρ(x)]−1

[Λ(z(x))]σ
− J(0)[1+ρ(0)]−1

[Λ(z(0))]σ

}
+O(ε). (3.94)

From the definition of the deformation it follows. that 1 + ρ(x) = z/x and J(x) = ∂z/∂x are
equal at x = 0. Together with z(0) = 0 this means, that the terms inside the brace are equal
to the corresponding terms in the expression for Iwrong. However, in the pole term, we have

1

ε

J(0)[1 + ρ(0)]−1+ε

[Λ(z(0))]σ
=

1

ε

[1 + ρ(0)]ε

[Λ(0)]σ
=

1

ε

1

[Λ(0)]σ
+

log(1 + ρ(0))

[Λ(0)]σ
+O(ε). (3.95)

In Iwrong we obviously missed the log(1 + ρ(0)) term, which vanishes only if y(x) vanishes
faster than linear. Clearly, for higher order terms in ε, a similar discrepancy occurs also in
the subtracted integral.

We could of course subtract the integral, but postpone the ε-expansion. This way, the in-
tegral remains regulated and so the deformation step does not manipulate divergent integrals.
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Deforming each term according to their denominator then produces

I =

∫ 1

0
dx

x−1+ε

[Λ(x)− i0]σ =
1

ε

1

[Λ(0)]σ
+

∫ 1

0
dx

{
J(x)z(x)−1+ε

[Λ(x)]σ
− x−1+ε

[Λ(0)]σ

}
. (3.96)

The problem appears when we try to ε-expand the subtracted integral on the right hand
side. The ε → 0 limit is not interchangeable with the integration, unless the imaginary
part y(x) vanishes faster than linear as x → 0. Computing the limit using a subtraction
means deforming first and subtracting afterwards. Blindly interchanging limit and integration
directly gives the expression Iwrong. This picture generalises to the multidimensional case,
where subtractions generally have nontrivial residual deformations, just the jacobians become
more involved. We are not going to spell this out. There is no good reason for deforming
subtractions separately and using fastly vanishing deformations.

3.4.3 Tuning the Deformation

Using the deformation discussed so far, we were able to evaluate numerically many Feynman
diagrams from practical calculations in the physical region. We usually chose to factor out
one kinematical invariant from the polynomial Λ(~x). This renders Λ(~x) dimensionless and for
kinematical invariants of comparable size, the coefficients of the polynomial become of order
one.

The parameter λ, which controls the size of the deformation an important role. Clearly,
too small values of λ do not distance the contour well enough from the poles on the real
axis. But due to the uncontrolled O(λ3) terms, too large values of λ again degrade the
quality of the deformation, even to the extent, that ImΛ changes sign, i.e. singularities
are crossed. Actually, even in the absence of O(λ3) terms, exaggerated values for λ usually
degrade convergence. In most cases, we found that there is a good range of the parameter λ,
that gives good convergence. As a rule of thumb λ = 0.1 is good starting point.

However, very disparate values for the kinematical invariants sometimes lead to deforma-
tion yi of disparate sizes for different Feynman parameter. It happens, that some yi should
be scaled up in order to circumvent a singularity at a sizeable distance, but cranking up λ
would lead to an invalid contour, as some other Feynman parameters are already strongly
deformed. That is easy to fix. Nothing prevents us from choosing a separate λi for every
Feynman parameter xi. With many parameters λi, we need a way of finding good values for
them. A simple way of choosing λi proved very useful: We perform a small sample integration
run using a small10 common value for all directions, λi = λtest . While discarding result of
this integration, for each Feynman parameter xi we record the maximal |yi| sample occurring

10Our program aborts if an a wrong sign of ImΛ(~z) is detected. Thus λtest has to be chosen small enough
to give a valid contour. Unfortunately, our program cannot automatically reduce a λ chosen to large. As
we use a third party integration package, the check of ImΛ(~z) < 0 has to be performed by the integrand
itself. If the integrand, called by the integration package, detects an invalid deformation, it would have to pass
control back to the code that invoked the integration package. An elegant way of doing so would be via the
exception handling capability of C++. But as our integration package was compiled using a C rather than a
C++ compiler, its stack is not prepared for exception handling. Thus exceptions cannot be thrown through
the integration routine.
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during integration11 . Then we simply set

λi = λ · λtest

maxsamples |yi|
. (3.97)

For the MSSM calculation described in chapter 4, we evaluated Feynman integrals containing
particles with masses as disparate as m2

1/m
2
2 = 104. Without the above trick, some of these

integrals did not converge at all. Also for less problematic diagrams we observed a significant
speedup.

At this point, we should recall a comment made at the very beginning of this chapter.
While our integrals ∫ 1

0
d~x J(~x) I(~z(~x)) (3.98)

do not depend on the contour and thus on the parameters λi, the same is not true for the
integrals of the modulus of the integrand

∫ 1

0
d~x |Re J(~x) I(~z(~x))| and

∫ 1

0
d~x | Im J(~x) I(~z(~x))|, (3.99)

as the modulus is not an analytic function. Above threshold, the value of a Feynman integral
arises as the difference between positive and negative contributions. The fact, that the integral
of the modulus depends on the contour, tells us, that by tuning the contour, we have a handle
on the amount of cancellation occurring in the calculation of the integral. In the limit, where
the deformation is switched off, the cancellation becomes infinitely large and the integral is
defined as a kind of principle value only. But also trading an adequate common value for
λ for good values of λi can sometimes reduce the amount of cancellation by a factor of ten.
This of course leads to a huge speedup, especially when using stochastic integration, where
the number of evaluations scales badly with the relative precision required. We have not
implemented an automatic optimization for finding values λi that minimize cancellations.
We just have a switch for inserting a modulus around the integrand and the possibility to
hand-tune the λi given by eq. (3.97) if everything else fails.

Discussing the deformation for the equal mass bubble we already noticed, that disparate
values for kinematical invariants can squeeze the zeros of Λ(x) to the boarder of the integration
region. In figure 3.4 we can see, that for s → ∞, the zeros are located at 1

s and 1 − 1
s . The

deformation is weak at these points. We should set λ ∼ 1/s in order to get a deformation of
size y ∼ 1. But due to the factor x(1−x) enforcing the required vanishing of the deformation
at the endpoints, at the zero of Λ(x), x0 ∼ 1/s where the deformation is really needed, it
gets degraded to y(x0) ∼ 1/s. Choosing setting λ ∼ 1, so y ∼ s and y(1/s) ∼ 1 is not an
option, since it makes Λ(x+ iy) grow faster. An interesting detail is, that the growing y does
not even bring us as far away from the pole as it seems at first sight. The deformation also
modifies the real part of Λ

Re Λ(x+ iy) = Λ(x)− y2Λ′′(x)
x→0−→ 1− xs− x2λ2s3. (3.100)

The last term becomes sizeable for x ∼ 1/(λs
3
2 ). So depending on the scaling of λ it can grow

11We actually took the maximum over all sectors originating from a given diagram.
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faster than xs. If we set λ = 1/sα the zero of ReΛ(z(x)) will lie roughly at

x0 ∼
{

s−1 for α ≥ 1
2

sα−3/2 for α < 1
2

. (3.101)

Obviously, blowing up the deformation such that y(1/s) ∼ 1 has the side effect of squeezing
the zero of Re Λ(z(x)) from s−1 to s−3/2.

The situation can be improved by a change of variables, that stretches the region close to
the border. An function that does the job is

x(t) =

{
2n−1 tn for t ≤ 2

1− 2n−1 (1− t)n for t > 2
(3.102)

with the jacobian

∂x

∂t
=

{
2n−1n tn−1 for t ≤ 2

2n−1n (1− t)n−1 for t > 2
. (3.103)

It is crucial to apply this transformation to the deformed integrand, rather than deforming
the transformed integrand. For small x, the deformed integrand is roughly

1

[Λ(x)− ixµ]σ
, (3.104)

where µ = λ[Λ′(0)]2 is the slope of the deformation close 0. At the zero Λ(x), we have
a deformation of the size x0µ or tn0µ in the new variable. At this point, the jacobian ntn−1

0

tames the size of the integrand. Absorbing the jacobian into the denominator and reexpressing
everything in terms of x shows us, what we have gained at x0. The imaginary part preventing
the denominator from vanishing at x0 has changed

−ix0µ −→ −in−σ x
1−

1
σ (1−

1
n )

0 µ. (3.105)

So choosing a mild n = 2, for σ = 1, the small factor x0 is replaced by
√
x0. For larger powers

σ, the transformation is less effective.

Applying the transformation (3.103) prior to deforming of course gives the same jacobian.
But also the deformation gets degraded to

−iλt(1− t)
(
∂Λ

∂x

)2(∂x
∂t

)2

. (3.106)

Expressing t0 in terms of x0 roughly kills one power of (∂x/∂t), as x ∼ (∂x/∂t)t. But a factor
n(∂x/∂t) = n2tn−1 remains and decreases the deformation at x0. For σ = 1 the jacobian
cancels this factor up one n. So the scaling of the imaginary part for x0 → 0 is not improved.
For larger σ it is even degraded.

Finally we should mention a weak point of our method, which we have not addressed.
Numerical integration gets more difficult, as the denominator power σ increases. For scalar
integrals σ = Npropagators − 2Nloops. Loop momenta in the numerator produce terms with
lower σ, but tensors generally contain a part consisting of external momenta only. Singular-
ities x−α+βε with α > 1 lead to subtractions containing derivatives ∂x. This way values of
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σ higher than suggested by power counting can appear. It is not clear, whether some clever
transformation or a representation of integrals different from ordinary Feynman parametriza-
tion can eliminate the problem of large exponents σ.

3.4.4 Comments on Implementation

We mention some issues related to practical implementation of our method.

1. To eliminate prohibitive growth of expressions, it is important not to substitute alge-
braic expressions into each other wherever this can be avoided. Thus we introduce a
symbol polyi[x1, . . . , xn] for each polynomial pi occurring in a factor fac[pi, ei]. The
deformation step then only replaces every Feynman parameter xi occurring as an argu-
ment of such a polynomial or in the argument expressions of the bookkeeping function
jet[·, . . . , ·, ε] by a new symbol zi[x1, . . . , xn]. Recall, that the slots of jet represented
by dots contain polynomials in Feynman parameters remembering the rescalings occur-
ring during sector decomposition. Note that It further inserts a symbol for the jacobian
jac[x1, . . . , xn]. Next, subtraction and ε-expansion takes place. This introduces several
new objects

(a) Deformed Feynman parameters and jacobians with some Feynman parameters set
to zero e.g. z1[x1, 0] and jac[x1, 0].

(b) With singularities x−αi+βiε
i with αi > 1, the ∂xi derivative occurring in subtrac-

tions leads to derivatives of deformed Feynman parameters, jacobians, polynomials
and the bookkeeping function jet, e.g.

Derivative[0, 1][z1][x1, 0]

Derivative[0, 1][jac][x1, 0]

Derivative[0, 1][polyi][z1[x1, 0], z2[x1, 0]]

Derivative[0, 1, 0][jet][·, . . . , ·, ε = 0]

Note, that Derivative stands for derivatives with respect to slots of the function
under consideration. In the last two examples, the slots contain more complicated
expressions than just undeformed Feynman parameters xi, so these expressions are
always accompanied by the corresponding inner derivatives.

(c) Derivatives of the bookkeeping function jet with respect to ε, e.g.
Derivative[0, . . . , 0, 2][jet][·, . . . , ·, ε = 0]. As these arise from expanding around
ε = 0, they are always evaluated at ε = 0.

After introducing all these symbols, it is useful to clean up the our expression by elimi-
nating symbols that vanish identically. For this, we have to dig out all polynomials polyi
and the original tensor we masked by jet, compute the necessary derivatives and insert
all arguments occurring in our expression, taking into account that xi = 0⇒ zi = 0.

2. After deforming and ε-expanding taking care of the issues mentioned above, our Math-
ematica code produces C++ codes of all the deformed integrands. A separate source
file is produced for every sector. Further a file containing all required derivatives of the
tensor function is produced.

The integrands step by step evaluate all symbols numerically. I.e. first all deformed
Feynman parameters and their derivatives are computed, then these numbers are sub-
stituted into polynomials and tensor functions. Thereby each sector integrand calls the

63



tensor functions with the proper arguments as remembered by the bookkeeping func-
tions jet. To simplify the code generation, we use a single large array to store all
symbols. We put

z[1] = z1[x1, . . . xn]

...

z[n] = zn[x1, . . . xn].

At higher indices n + 1 etc. we store objects like

z2[0, x2, . . . xn],

Derivative[1, 0, . . . , 0][z2][0, x2, . . . xn]

if they occur and finally all instances of polynomials and jacobians.

The actual C++ files are written using the the Splice process of Mathematica. Thereby,
Mathematica expressions are converted to C syntax using the CAssign function pro-
vided by Mark Sofroniou’s package Format.m [65]. CAssign can optimize expressions by
introducing a hierarchy of intermediate variables for subexpressions occurring repeat-
edly. While we have tried to do this by hand at the level of deforming and expanding,
the automatic optimization is still very important for the tensor functions and for the
complicated sector decomposed polynomials Λ(~x). Optimization not only reduces com-
plexity in terms of numbers of operations. It also reduces the size of the code and thus
may make it small enough for caching.

3. In the above illustration we have suppressed the treatment of the jacobians, that arise,
when the complex contour is parametrized in terms of the real Feynman parameters.
We have just represented them as a symbol jac[x1, . . . xn], and, as mentioned above,
subtraction and ε-expansion may have produced derivatives of this symbol, as well as
set some of their arguments to zero. For our numerical code, we have to implement the
expressions hiding behind all these symbols. So let us spell out a simple example, to
see, what they actually mean:

jac[0, x2] = det

[
Derivative[1, 0][z1][0, x2] Derivative[1, 0][z2][0, x2]
Derivative[0, 1][z1][0, x2] Derivative[0, 1][z2][0, x2]

]
. (3.107)

In reality we will have more than two Feynman parameters and so the determinant
should be computed numerically. For this our Mathematica code will output something
like

detfun[z[47], z[48], z[63], z[64]], (3.108)

collecting the array elements that will store the numerical values of the derivatives oc-
curring in the jacobian matrix. The C function detfun will compute the determinant
using the LU factorization algorithm provided by the GSL library [66]. Note that jaco-
bians generally contain derivatives of deformed Feynman parameters, that do not occur
in the rest of the integrand. Thus these are not explicit, when jacobians represented as
symbols only.
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Derivatives of determinants can be rewritten using the formula

∂

∂xi
det[~v1, . . . ~vn] =

n∑

j=1

det[~v1, . . . ,
∂~vj

∂xi
, . . . , ~vn], (3.109)

that follows from the multi-linearity of the determinant. The ~vj are column vectors of
the matrix under consideration.

4. We mention, that subtractions may lack deformation due to Feynman parameters fixed
at 0. The simplest example is a bubble diagram with one massive and one massless
particle in the loop. After factoring out a common x, which leads to an IR singularity,
the combined denominator is

Λ(x) = −(1− x)s+m2. (3.110)

Clearly, in the subtraction we ge Λ(0) = −s + m2, lacking deformation, as there is
no Feynman parameter left. For the 1/Λ(0) term, this is no problem, but we have to
make sure we get the correct imaginary part in log(Λ(0)). With our choice of signs Λ
always comes with a −i0. Therefore it is sufficient to use a logarithm function, that
treats negative real arguments as if they came with a −i0, i.e. opposite to the usual
convention. As easy the fix, as nasty is the bug if one is not aware of the problem.

5. For the actual integration our program invokes the VEGAS, DIVONNE or CUHRE
algorithm from the CUBA library by Thomas Hahn [67]. DIVONNE, a Monte Carlo
algorithm using advanced methods for variance reduction usually gives the best results.
We found, that it tends to underestimate the integration error in difficult situations,
though. VEGAS is the classical adaptive Monte Carlo algorithm. While very robust,
it is often significantly slower than DIVONNE. Moreover, we found that the implemen-
tation in CUBA 1.4. is buggy. In difficult situations it suddenly left the hypercube
[0, 1]n and started to sample the integrand at negative values of the integration vari-
ables. Values were such, that they did not occur due to rounding errors for sure. We
suspect some overflow in the subdivision code. CUHRE is a deterministic algorithm.
In situations with 5 or 6 Feynman parameters, one would expect it could still beat
Monte Carlo methods. We found, that in many situations, it performed much better
than DIVONNE. Unfortunately for some integrals it failed, giving NaN as a result. For
others, it gave excellent values, but overestimated the integration error by a two orders
of magnitude. The reasons for those issues have not become clear.

3.4.5 Examples

As an illustration, we present result for the two master integrals shown in figure 3.6. It is
understood, that here we are dealing with the scalar parts only, i.e. the diagrams stand for
their propagators only. Diagrams with a nontrivial tensor structure will show up in chapter 4.
Diagram 3.6a is the last master integral contributing to gg → h, computed analytically in
chapter 2. In figure 3.7 we compare our numerical result to the analytic expression. On the left
panel, we plot the real part of the order ε0 piece of the diagram as a function of τ = s/(4m2),
normalized to m2 = 1. The inset plot gives a more detailed view of the threshold region,
where the numerical integration is most difficult, superimposed with the analytic result. The
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q̃

g̃

q

(a) (b)

Figure 3.6: (a) Master integral contributing to gg → h with a heavy quark loop. (b) Master
integral arising in the calculation of gg → h in the MSSM.

plot on the right panel shows the difference between the numerical and analytical results,
normalized to the analytic value. The gray band shows the integration error, obtained by
adding in quadrature the errors quoted by the integration routine for each sector. We obtain
similar results for the imaginary part of the order ε0 piece and also for real and imaginary
part of the single pole coefficient.
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Figure 3.7: Results for the real part of the finite piece (Re(c0)) of the Feynman diagram in
Fig. 3.6a. The left panel shows the results of the numerical integration as black dots with
error bars. The inset plot zooms in on the threshold region, the red line corresponds to the
evaluation of the analytic result of chapter 2. The right panel shows the difference in percent
of the numerical evaluation and the analytic one, normalized to the latter. The gray bands
correspond to the integration error. At threshold this error is 3%.

Diagram 3.6b is a master integral arising in the calculation of gg → h in the MSSM. It
involves a massive quark, a massive scalar quark and a massive gluino. Due to the presence
of three different masses, it cannot be computed using the analytical method described in
chapter 2 and no analytic result is known. For the numerical method, the masses do not
pose a problem. On the contrary, due to the absence of massless propagators, the numerical
evaluation turns out to be substantially faster than for diagram Diagram 3.6a. Our results
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are displayed in figure 3.8 as a function of τ = s/(4m2
q) for fixed values of m2

g̃ = 400/175m2
q

and m2
q̃ = 600/175m2

q with mq = 1.
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Figure 3.8: Results for the scalar integral corresponding to the Feynman diagram in figure 3.6b
as a function of τ = s/(4m2

q) for fixed values of m2
g̃ = 400/175m2

q and m2
q̃ = 600/175m2

q .
The inset plots zoom in the threshold region. The estimated relative accuracy of the points
is better that 1 per mille.
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Chapter 4

Application to gg → h,H in the

MSSM

In this chapter we compute the virtual supersymmetric QCD contributions to gg → h,H up
to two-loop order.

4.1 Overview of the MSSM

4.1.1 Particle Content and Interactions

The matter content of the MSSM is summarized in table 4.1. It essentially arises by taking
all Standard Model particles and including a superpartner with opposite statistics for each of
them. However, unlike in Standard Model, where masses for both up- and down-type quarks
can be generated using a single Higgs doublet, in a supersymmetric model two doublets Hu

andHd are required for this. Two doublets with opposite hypercharge also make sure, that the
higgsinos do not spoil the gauge anomaly cancellation. The necessary gauge supermultiplets
are listed in table 4.2.

Names spin 0 spin 1/2 SU(3)C , SU(2)L, U(1)Y

squarks, quarks Q (ũL d̃L) (uL dL) ( 3, 2 , 1
6)

(×3 families) u ũ∗R u†R ( 3, 1, − 2
3)

d d̃∗R d†R ( 3, 1, 1
3)

sleptons, leptons L (ν̃ ẽL) (ν eL) ( 1, 2 , − 1
2)

(×3 families) e ẽ∗R e†R ( 1, 1, 1)

Higgs, higgsinos Hu (H+
u H0

u) (H̃+
u H̃0

u) ( 1, 2 , + 1
2)

Hd (H0
d H−

d ) (H̃0
d H̃−

d ) ( 1, 2 , − 1
2)

Table 4.1: Chiral supermultiplets in the Minimal Supersymmetric Standard Model. The
spin-0 fields are complex scalars, and the spin-1/2 fields are left-handed two-component Weyl
fermions.
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Names spin 1/2 spin 1 SU(3)C , SU(2)L, U(1)Y

gluino, gluon g̃ g ( 8, 1 , 0)

winos, W bosons W̃± W̃ 0 W± W 0 ( 1, 3 , 0)

bino, B boson B̃0 B0 ( 1, 1 , 0)

Table 4.2: Gauge supermultiplets in the Minimal Supersymmetric Standard Model.

In a renormalizable supersymmetric field theory, masses and interactions of all particles
are either fixed by the gauge structure or by the interactions of chiral multiplets

Lint = −1

2

δ2W

δφiδφj
ψiψj +

δW

δφi
Fi + c.c. , (4.1)

parametrized by the superpotential

W = Liφi +
1

2
M ijφiφj +

1

6
yijkφiφjφk. (4.2)

Here M ij give rise to masses for fermions, whereas yijk is a Yukawa coupling1 of a scalar
φk and two fermions ψiψj. The superpotential W is an analytic function of the complex
scalar fields φi; it does not depend on the complex conjugates φ∗i . Note, that not all terms in
eq. (4.2) are necessarily allowed by gauge invariance.

In the superfield formulation, W is a function of superfields Φi, rather than the scalars
φi. Even though we avoid superfields here, we shall use this notation in eq. (4.6), as it is
standard and saves some tildes. In any case, the superpotential is just an efficient way of
encoding terms of the Lagrangian.

As gauge fields are parts of gauge supermultiplets, coupling them to matter also introduces
couplings of gauginos λa and the auxiliary fields Da to matter through the vertices

g (φ∗T aψ)λa, g λ†a(ψ†T aφ) and g (φ∗T aφ)Da. (4.3)

The last term combines with the DaDa/2 term in the free gauge Lagrangian to give the
equation of motion Da = −g(φ∗T aφ). Substituting this back into the Lagrangian then leads
to −1

2D
aDa, which is a quartic potential for the scalar fields. Another contribution to this

potential arises from Lint: The last term of eq. (4.1), its complex conjugate and the FiF
∗i

term from the Lagrangian of the free chiral multiplets sum up to FiF
∗i + W iFi + W ∗

i F
∗i,

where we have introduced the shorthand W i = δW/δφi. Using the trivial equations of motion
Fi = −W ∗

i and F ∗i = −W i, we arrive at a total −W iW ∗
i or −F ∗iFi term in the Lagrangian.

1The origin of this notation 1
6
yijkφiφjφk is is the following: Requiring, that Lint = − 1

2
W ijψiψj +W i+c.c is

invariant under SUSY, one gets the condition, that δW ij

δφ∗
k

vanishes ∀i, j, k and δW ij

δφk
has to by totally symmetric

in ijk. Keeping only renormalisable interactions, W ij can only be a polynomial of degree 1 in the scalar fields

φi, so W ij = M ij + yijkφk with yijk totally symmetric. Therefore it is convenient to write W ij = δ2W
δφiδφk

with

W = Liφi + 1
2
M ijφiφj + 1

6
yijkφiφjφk . Here it is of course pointless to talk about symmetry of yijk. We have

just a Yukawa for every triple of fields, as in eq. (4.6).
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Therefore, the full scalar potential is

V (φ, φ∗) = F ∗iFi +
1

2
DaDa = W ∗

i W
i +

1

2
g2
a(φ

∗T aφ)2. (4.4)

V is nonnegative, as it is a sum of squares. Interestingly, it is completely determined by the
other interactions of the theory; the D-terms by the gauge interactions and the F -terms by
fermion mass terms and Yukawa couplings specified by the superpotential W .

In a realistic phenomenological Model, supersymmetry has to be spontaneously broken.
I.e. supersymmetry should only be broken by a non supersymmetric vacuum state, rather
than in the Lagrangian. This way, supersymmetry can be hidden at low energies very much
like the electroweak symmetry in the Standard Model.

We do not discuss possible mechanisms of supersymmetry breaking here, but just parametrize
their low energy effects by including an effective Lagrangian, which explicitly breaks super-
symmetry. The breaking terms have to be soft, i.e. they should have positive mass dimensions,
in order not to introduce quadratically divergent radiative corrections to scalar masses. The
possible terms are in general

Lsoft = −
(

1

2
Maλ

aλa +
1

6
aijkφiφjφk +

1

2
bijφiφj + tiφi

)
+ c.c. − (m2)ijφ

j∗φi. (4.5)

These are

• Gaugino masses Ma for each gauge group. Unlike gauge boson masses, these terms are
not forbidden by gauge symmetry.

• Scalar masses (m2)ij . These are allowed, if φi and φj∗ transform in complex conjugate
representations of each other. As this is always the case for i = j, every scalar can
acquire a mass this way.

• Trilinear, bilinear and tadpole scalar couplings. These terms have the same form as
the terms of the superpotential. They are allowed by gauge invariance if and only if a
corresponding term in the superpotential is allowed.

The superpotential in the MSSM is

WMSSM = uyuQHu − dydQHd − eyeLHd + µHuHd , (4.6)

where Hu, Hd, Q, L, u, d and e can be seen either as chiral superfields or just as the scalar
field from the corresponding chiral multiplet, on which we have suppressed the tildes. It is
understood, that the SU(3) color and SU(2)L indices are implicit here. The Yukawa couplings
yu, yd and ye are 3× 3 matrices in family space. The superpotential (4.6) does not contain
all terms allowed by the SU(3) × SU(2) × U(1)Y gauge structure and the matter content
from table 4.1. It is rather the minimum necessary to build a sensible model. The same
superpotential is obtained by writing the most general superpotential, that does not lead
to violation of baryon and lepton number conservation. Also, the interactions generated by
this superpotential, just as the gauge interactions, conserve R–parity, under which the SM
particles are even, while their superpartners are odd. Within the MSSM field content, but
not in general supersymmetric theories, it is also true, that R–parity conservation implies
baryon and lepton number conservation.
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The Yukawa couplings yu, yd, ye determine masses and CKM matrices of the SM quarks
and leptons after the neutral components of Hu and Hd get VEVs. It is often useful to make
the approximation, that only the (3, 3) family components are really important,

yu ≈




0 0 0

0 0 0

0 0 yt


 , yd ≈




0 0 0

0 0 0

0 0 yb


 , ye ≈




0 0 0

0 0 0

0 0 yτ


 . (4.7)

In this approximation, and spelling out the weak isospin doublets Q3 = (t b), L3 = (ντ τ),
Hu = (H+

u H0
u), Hd = (H0

d H
−
d ), u3 = t, d3 = b, e3 = τ , the superpotential reads

WMSSM ≈ yt(ttH
0
u − tbH+

u )− yb(btH
−
d − bbH0

d )− yτ (τντH
−
d − ττH0

d)

+ µ(H+
u H

−
d −H0

uH
0
d) (4.8)

The signs in (4.6) are chosen such, that the terms yffH 0, that become fermion masses, when
the Higgs bosons acquire VEVs, appear with positive signs. Recall, that a superpotential
term yΦiΦjΦk involving three chiral multiplets gives rise to interactions

−1
2yφiψjψk + all permutations of ijk, (4.9)

so the quark-quark-higgs coupling, for which the superpotential notation is suggestive, as the
supermultiplets are carry the name of their SM component, arises together with a higgsino-
squark-quark coupling and so on. As we have already seen in eq. (4.4), the superpotential
also produces various scalar quartic interactions, which are proportional to y2. However, the
dimensionless interactions given by the superpotential are usually not the most important
ones for phenomenology. Production and decay processes of superpartners in the MSSM are
usually dominated by gauge interactions. In this work, the only relevant interactions arising
through the dimensionless Yukawa couplings in the superpotential are the higgs-quark-quark
and the higgs-squark-squark couplings. All other vertices appearing are strong interactions
proportional to gs or g2

s . This includes the g2
s quartic squark coupling, coming from the

D-term in eq. (4.4).

The most general soft breaking terms respecting R-parity in the MSSM are

LMSSM
soft = −1

2

(
M3g̃g̃ +M2W̃W̃ +M1B̃B̃ + c.c.

)

−
(
ũau Q̃Hu − d̃ad Q̃Hd − ẽae L̃Hd + c.c.

)

− Q̃† m2
Q Q̃− L̃† m2

L L̃− ũm2
u ũ

† − d̃m2

d
d̃
†
− ẽm2

e ẽ
†

− m2
Hu
H∗

uHu −m2
Hd
H∗

dHd − (bHuHd + c.c.) (4.10)

The first line consist of gaugino masses for the superpartners of all SM gauge bosons. The
second line and the −bHuHd term are trilinear and bilinear scalar couplings which have the
same form like the yu, yd, ye and µ terms in the superpotential eq. (4.6). All remaining
terms are scalar masses of the (m2)ji type. All bold quantities are of course 3 × 3 matrices
in family space. Note, that while there are two matrices m2

u and m
d
2 for the right handed

squarks, SU(2)L symmetry only allows a single m2
Q left-handed squarks.

72



Contrary to the sypersymmetric part of the Lagrangian, which parametrizes a large num-
ber of interactions in terms of very few parameters , the soft breaking terms introduce a huge
number of parameters not present in the Standard Model. It is known, that there are actually
105 parameters, that cannot be rotated away and have no counterpart in the Standard Model.

However, the majority of these parameters leads to flavor-changing or CP-violating effects,
which are highly restricted by experiment. In phenomenological studies it is often assumed,
that the squark and slepton mass matrices are proportional to the identity matrix, e.g. m2

Q =

m2
Q1, the trilinear terms are proportional to the corresponding Yukawa coupling,

au = Auyu, ad = Adyd, ae = Aeye, (4.11)

and thus small for the first two generations, and finally that M1, M2, M3, Au, Ad and Ae are
real. For our purpose, it is further safe to make the approximation eq. (4.8).

4.1.2 Squark Masses and Mixing

The mass matrix for stops and sbottoms is

Mq̃ =


 m2

q̃L
xq mq

xq mq m2
q̃R


 = Rq†


 m2

q̃1
0

0 m2
q̃2


 Rq (4.12)

with

m2
q̃L

= M2
Q̃

+m2
q +m2

Z cos 2β
(
Iq
3L −Qq sin2 θW

)
, (4.13)

m2
q̃R

= M2
{Ũ ,D̃}

+m2
q +Qq m

2
Z cos 2β sin2 θW , (4.14)

xq = Aq − µ {cot β, tan β} , q = {t, b} (4.15)

and the mixing matrix

Rq =


 cos θq̃ sin θq̃

− sin θq̃ cos θq̃


 , (4.16)

which rotates the from the gauge basis q̃L, q̃R to the mass eigenstates q̃1, q̃2. The diagonal
elements mq̃L

and mq̃R
contain the squark masses M 2

Q̃
and M2

{Ũ ,D̃}
from the soft breaking

terms, m2
q arising from the F -terms of the scalar potential, when the Higgs fields acquire

VEVs [mt = ytv sinβ,md = ybv cos β], and finally contributions from the SU(2)L and U(1)Y

terms in the scalar potential2. The off diagonal entries mqxq receive contributions from soft
breaking and from F -terms. We treat the mixing angle θq̃ rather than the soft breaking
parameter Aq as an independent parameter. The relation is

Aq = −
∆m2

q̃

2mq
sin 2θq̃ + µ{cot β, tan β}, q = {t, b}, (4.17)

where ∆m2
q̃ = m2

q̃2
−m2

q̃1
.

2This part is often denoted ∆φ = (Iφ
3Lg

2 − Y φg′2)(v2
d − v

2
u) = (Iφ

3L −Q
φ sin2 θW )m2

Z cos 2β. To understand
the sign in eq. (4.14), note that we deal with left and right-handed quarks and their superpartners by giving
names to the left-handed and the conjugate of the right-handed particles.
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If we consider a complete SU(2)L multiplet, i.e. (s)tops and (s)bottoms, we have to pay
attention to the fact, that left-handed stops and sbottoms share a common soft-breaking
parameter M 2

Q̃
. This is easy to forget once one has moved to the mass eigenstates. Equating

M2
Q̃

expressed in terms of (s)top and (s)bottom parameters gives the relation

cos2 θb̃m
2
b̃1

+ sin2 θb̃m
2
b̃2

= cos2 θt̃m
2
t̃1

+ sin2 θt̃m
2
t̃2

+m2
b −m2

t −M2
W cos(2β). (4.18)

In the following, we take m2
b̃1

as the dependent quantity.

4.1.3 Higgs Couplings

The tree level, the the Yukawa couplings between the Higgs bosons and quarks are simply
related to quark masses. The couplings to the squarks are a bit more involved, similar to
the situation of squark masses. We are only interested in the couplings of top and bottom
quarks and their scalar partners to the two CP even neutral Higgs bosons. The corresponding
vertices are

LHhtb = −
∑

q=t,b

{mq

v
hf(q)h

0 q̄ q +
mq

v
Hf(q)H

0 q̄ q
}

−
∑

q=t,b

∑

i,j=1,2

{
m2

q

v
hs(q, i, j)h

0 q̃∗i q̃j +
m2

q

v
Hs(q, i, j)H

0 q̃∗i q̃j

}
, (4.19)

with the dimensionless couplings

hf(b) = − sinα

cos β
, hf(t) =

cosα

sinβ
, (4.20)

where α is the mixing angle in the CP even neutral Higgs sector and β controls the ratio of
the VEVs for H0

u and H0
d , tanβ = vu/vd. The corresponding couplings to the heavy Higgs,

H0, can be obtained from the ones above by the replacement α→ α− π/2.

For the squark couplings we have

m2
q hs(q, i, j) =


Rq


 hq

LL hq
LR

hq
RL hq

RR


Rq†




ij

. (4.21)

74



where hq
ij for q = t, b are given by

ht
LL = 2

cosα

sinβ
m2

t +m2
Z

4 s2W − 3

3
sin(α+ β) (4.22)

ht
LR = ht

RL = mt
At cosα+ µ sinα

sinβ
(4.23)

ht
RR = 2

cosα

sinβ
m2

t −m2
Z

4 s2W
3

sin(α+ β) (4.24)

hb
LL = −2

sinα

cos β
m2

b +m2
Z

3− 2 s2W
3

sin(α+ β) (4.25)

hb
LR = hb

RL = −mb
Ab sinα+ µ cosα

cosβ
(4.26)

hb
RR = −2

sinα

cos β
m2

b +m2
Z

2 s2W
3

sin(α+ β) . (4.27)

Again the corresponding couplings to H0 are obtained by replacing α → α − π/2 above. A
more detailed discussion of the MSSM targeted towards phenomenology can be found in [71].

4.2 Feynman Diagrams

We generate all Feynman diagrams using FeynArts, which has the full MSSM Feynman rules
built in. We extract the unintegrated amplitude and project out the form factor A exactly as
in the case of the Standard Model contribution in chapter 2. Also, the integrands were again
checked against those obtained using QGRAF and private implementations of the Feynman
rules. We continue to use conventional dimensional regularization (DREG) even though
this regulator breaks supersymmetry. The necessary supersymmetry restoring counterterm is
discussed in the section on renormalization.

The Born level amplitude consists of five one-loop diagrams. The two-loop corrections
count 135 diagrams. We count “generic” diagrams only. “Generic” means we use squarks
with variable sfermion indices, which can take two values, rather than drawing separate
diagrams for all possible values of the sfermion indices. Also quarks can be tops or bottoms
in each diagram3. No flavor mixing occurs, so we just have to do the same calculation twice,
once for the top and once for the bottom sector4. We neglect the contributions of the first
two generations due to the smallness of their masses.

4.2.1 One-Loop Diagrams

The Born amplitude we have already computed. The five Feynman diagrams are solely those
from chapter 2, the three independent ones are shown in figure 2.1. In the scalar contribution,

3In FeynArts terminology, our diagrams are essentially class diagrams. The only difference is, that at class
level, FeynArts distinguishes up-type and down-type quarks. We do not have to make this distinction, as tops
and bottoms do not mix in our problem. We can just work with generic quarks and insert the right masses
and couplings for each flavor. Note that in FeynArts, generic diagrams means that fields are only classified as
scalars, fermions, vector bosons or ghosts.

4Note however, that the masses of the two stops and the two sbottoms are parametrized by only three in-
dependent parameters in the Lagrangian. This also dictates a relation among the corresponding counterterms,
when it comes to renormalization.
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the particle running in the loop can be either a q̃1 or a q̃2, but since the gluon-squark vertex
does not mix the two squarks, each diagram can contain only one squark type. Thus each
Born level diagram contains only a single type of massive particles and we can just recycle

the results from chapter 2. We define new versions C (0)
q and C(0)

q̃i
of the expansion coefficients

C(0)
f and C(0)

s using the MSSM couplings,

C(0)
q =

hf(q)

v

1

m2ε
q

c
(0)
f (xq) (4.28)

C(0)
q̃i

=
hs(q, i, i)

v

[
mq

mq̃i

]2 1

m2ε
q̃i

c(0)s (xq̃i
). (4.29)

Here v denotes the VEV of the Higgs boson and hf(q) and hs(q, i, i) are the dimensionless
couplings given in eq. (4.20) and eq. (4.21). We have put subscripts q and q̃i on the dimension-
less variables x as a reminder, that they are based on different masses. The factor (mq/mq̃i

)2

appears, because the higgs-squark coupling L ⊃ −m2
q

v hs(q, i, j)hq̃
∗
i q̃j is proportional to m2

q

rather than to the squared squark mass, whereas c
(0)
s (xq̃i

) has built in a factor m2
q̃i

, suitable

in the case of a general scalar particle and mandatory as we want c
(0)
s to depend on x only.

4.2.2 Two-Loop Diagrams

In the two-loop contribution it is useful to distinguish the following groups of diagrams:

1. SM and SM-like diagrams. These are the 21 + 56 diagrams shown in in appendix A.2.1
and A.2.2. The diagrams have only gluons and either quarks or squarks (without q̃q̃q̃q̃-
interaction) running in the loops. Again all squarks are of the same type, as they all
line up to form a single closed squark loop radiating only gluons and one single Higgs
boson. Thus we can again reuse the analytic results from chapter 2 just as for the Born
level,

C(1)
q =

hf(q)

v

1

m4ε
q

c
(1)
f (xq) (4.30)

C(1)
q̃i

=
hs(q, i, i)

v

[
mq

mq̃i

]2 1

m4ε
q̃i

c(1)s (xq̃i
). (4.31)

These relations differ from the born case only by the exponents 4ε instead of 2ε.

2. SUSY-QCD diagrams containing gluinos. These are the most complicated diagrams
and their evaluation is the main task of this computation. We distinguish the 21 GQ
diagrams shown in appendix A.2.3 in which the Higgs couples to a quark line and the
22 GSQ diagrams in appendix A.2.4, where the Higgs couples to squark line. Also in
presence of the quark-squark-gluino-vertex with its γ5 it remains true, that diagrams
related by reversion of arrows on (s)quark lines are equal. This reduces the number of
independent diagrams to eight for GQ as well as for GSQ. These are shown in figure 4.1
and 4.2, respectively.

The GQ diagrams contain only a single squark type, as they contain either a single
squark or two squarks meeting at at gq̃q̃ or ggq̃q̃-vertex. Therefore they have three
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different mass parameters in the loops, mg̃,mq and mq̃i
, and we have to evaluate them

for the q̃1 and the q̃2 case.

The GSQ diagrams contain 2, 3 or 4 squarks, but there are always exactly two inde-
pendent sfermion indices s1 and s2, one for the lines before and one for the lines after
the Higgs vertex. So there are three or four different mass parameters in the loops and
we have to evaluate each diagram for four different choices of s1, s2.

Clearly, the presence of up to five kinematical invariants in two-loop diagrams makes
their analytic integration a Herculean task. For mortals the numerical approach from
chapter 3 is more promising.

3. SUSY-QCD diagrams containing the q̃q̃q̃q̃-vertex. The 15 diagrams of this type are
shown in appendix A.2.5. After dropping four vanishing diagrams and merging equiva-
lent ones we are left with the five diagrams shown in figure 4.3. The diagrams factorize
into two simple one-loop diagrams, that should be treatable analytically. Here we
just evaluate them numerically for convenience. Note, that due to the presence of the
q̃q̃q̃q̃- and the q̃q̃h-vertex, these diagrams come with three independent sfermion indices
s1, s2, s3 and thus eight different combinations of squark masses are possible.

The q̃q̃q̃q̃-vertex contains family mixing terms. However, in the nonzero diagrams, the
four squark lines of the vertex are connected such, that no color flows from one loop to
the other through the q̃q̃q̃q̃-vertex. In this configuration, the contribution of the family
mixing terms is zero.

1

4
GQ1 1

4
GQ2 1

2
GQ3 1

2
GQ4 GQ5

1

2
GQ6 1

4
GQ7 1

2
GQ8

Figure 4.1: SUSY-QCD contributions to gg → h,H containing gluinos and the quark-quark-
higgs coupling.

4.3 Renormalization

4.3.1 Regularization Scheme

As already mentioned, we perform the calculation DREG [49] with modified minimal subtrac-
tion for the strong coupling constant, conventionally abbreviated MS. This is the standard
regularization scheme for QCD calculations, since it preserves gauge symmetry and is tech-
nically easy to use. Quark and squark masses, as well as the mixing angle θ q̃ , we renormalize
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1

4
GSQ1 1

4
GSQ2 1

2
GSQ3 1

2
GSQ4 1

2
GSQ5

1

2
GSQ6 1

4
GSQ7 1

2
GSQ8

Figure 4.2: SUSY-QCD contributions to gg → h,H containing gluinos and the squark-squark-
higgs coupling.

1

2
QUARTICS1 1

4
QUARTICS2 1

2
QUARTICS3 1

2
QUARTICS4 QUARTICS5

Figure 4.3: SUSY-QCD contributions to gg → h,H containing a quartic squark interaction.

on-shell. In DREG momenta and also polarizations are continued to d = 4 − 2ε dimensions.
UV and IR divergences show up as poles for integer values of d. The Dirac matrices are a set
of d matrices satisfying

{γµ, γν} = 2gµν1, tr[1] = 4. (4.32)

The problem with DREG is, that it breaks supersymmetry. The reason for this is the mis-
match between bosonic and fermionic degrees of freedom. The d dimensional gauge bosons
have d − 2 physical degrees of freedom, while a Majorana spinor has two on-shell degrees of
freedom.

Supersymmetry requires relations among various pieces of the Lagrangian. Many interac-
tions are controlled by a few parameters only. Apart from the couplings to the Higgs bosons,
all vertices entering our calculation are of strength gs or g2

s , for instance. For the first six ver-
tices in appendix E, coupling one or two gluons to a particle pair, the equality is also required
by just by gauge invariance: Once we introduce a gluon and couple it to a colored quark, also
the gluon self-interactions are fixed. To write a kinetic term for the next colored particle, we
are then forced to use the same coupling constant. However, the gluino-squark-quark vertices,
which are supersymmetrizations of thegluon-quark-quark vertex, and the four squark vertex,
which is a D-term, are of strength gs by virtue of supersymmetry. If supersymmetry is broken
by the regulator, in loop corrections these vertices can “get their own life” and renormalize in-
dividually. Unrelated parameters of the Lagrangian renormalize differently, even if we assign
them equal values at some point. In general one has to include counterterms, that correct for
wrong running caused by the regulator. Luckily, in our calculation the gluino as well as the
four squark vertex only enter at two-loop level. The corrections to them therefore become
important at three loops only.
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There are two more vertices to worry about. The higgs-quark coupling is related to the
quark mass and this relation is preserved by DREG to all orders. But for the higgs-squark
vertex, we have to face the fact, that its one-loop correction is not just that obtained by
substituting δmq, δmq̃i

and δθq̃ into the tree-level expression for m2
qhs(q, i, j). There is an

additional shift due to the SUSY breaking caused by DREG. We will compute this shift in
section sec:sqsqhrenorm.

Alternatively it is possible to perform the calculation using dimensional reduction, DRED [50,
51], as a regulator. In this scheme, the transition from 4 to d = 4− 2ε with d < 4 dimensions
is made by a compactification or reduction. Thus space-time is taken to by d dimensional, but
the number of field components remains unchanged. Therefore, unlike in DREG, the anticom-
mutator of Dirac matrices, {γµ, γν} = 2gµν1, produces a four dimensional5 gµν . Also gauge
bosons have four components and thus two physical degrees of freedom, avoiding the mismatch
with fermions occurring in DREG. In practice one splits the four dimensional gµν and also
gauge bosons Aa

µ and their polarization vectors into a d-dimensional and a 2ε-dimensional
part. The d-dimensional part of Aa

µ then behaves just as in DREG. However, there is an
additional piece Aa

2ε. Whereas gauge bosons transform under gauge transformations like

Aa
µ → Aa

µ +
1

g
∂µα

a + fabcAb
µα

c, (4.34)

there is no ∂2ε term in the transformation law of Aa
2ε, since fields depend on d-dimensional

momenta only. Therefore the Aa
2ε transform just like scalars in the adjoint representation.

A similar thing happens when extra-dimensional theories are compactified.The Aa
2ε are often

called ε-scalars.
It was shown in [52], that DRED can be formulated in a mathematically consistent way.

The question, to what extent it really preserves supersymmetry is not answered completely,
but for our calculation it should be safe. However, while at first sight DRED might look like
the ideal scheme for our purpose, its use is indeed highly non-trivial.Care has to be taken
about the mass term for the ε-scalars. Further, if either (softly broken) supersymmetry or
SU(2)L are absent a direct coupling between two ε-scalars and the Higgs boson,

Lhε =
Λε

v
hAa

2εA
a
2ε (4.35)

emerges radiatively and should therefore be included in the Lagrangian from the very begin-
ning. The DRED calculation was accomplished in parallel with this thesis and fully agrees
with the DREG result [53]

4.3.2 Coupling Constant Renormalization

In SUSY-QCD, the renormalization of αs involves not only QCD particles, but also the heavy
squarks and gluinos. These heavy particles, as well as the top quark, can be decoupled, so
that they do not contribute to the running of αs. The corresponding large logarithms are
explicitly left in the amplitudes, rather than being resummed into the running of the coupling
constant. This is achieved by introducing a bare coupling in both, the full theory and the

5Note, that the relation

6p 6p =
1

2
pµpν{γ

µ, γν} = pµpνg
µν = p2 (4.33)

holds for d dimensional momenta, since d < 4.
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theory without the heavy particles, related by [25]

α0
s = (ζg)

2 α̃0
s. (4.36)

Here α0
s is the coupling without the heavy particles, i.e. in five-flavor QCD and α̃0

s is the
coupling in the full theory. The decoupling constant is the inverse of contributions from the
heavy particles to the gluon self energy correction at zero momentum. In expressions for
amplitudes, diagrams with self energy corrections from heavy particles on external gluons
will exactly cancel the contribution of the decoupling constant. In other words, if we do not
include self energy corrections to external gluons, we can forget the decoupling constant and
just keep in mind, the running of αs is given solely by the contributions of light particles to
the β function. Therefore we have

Sε α
0
s = αMS

s (µ)µ2ε

[
1− αMS

s (µ)
β0

4πε

]
, (4.37)

Sε α
0
s = αMS

s (µ)µ2ε + δαMS
s with δαMS

s = −
[
αMS

s (µ)
]2
µ2ε β0

4πε
(4.38)

with

β0 = 11− 2

3
nlight, (4.39)

where nlight = 5.

The one-loop running of αs is obtained by differentiating eq. (4.37) with respect to µ,
solving for µ ∂

∂µαs, expanding to order O(α2
s) and sending ε→ 0. The result is

µ
∂

∂µ
αs(µ) = −α2

s(µ)
β0

2π
, (4.40)

where the right hand side is the well known one-loop QCD β-function.

4.3.3 Renormalization of Masses and Mixing Angles

We use the pole mass scheme to renormalize both the quark and squark masses. Denoting
the one-particle irreducible two-point function by iΣ we can write

δm2
q̃i

= (m0
q̃i

)2 −m2
q̃i

= Re
(
Σq̃iq̃i

(m2
q̃i

)
)
, (4.41)

where mq̃i
are the pole masses of the squarks. For the quark case

δmq =
1

2
Remq

[
ΣqL

(m2
q) + ΣqR

(m2
q) + 2ΣqS

(m2
q)
]
, (4.42)

using the Lorentz decomposition6

Σq(p) =6pω−ΣqL
(p2)+ 6pω+ΣqR

(p2) +mqΣqS
(p2). (4.43)

6Often the sloppy notation Σ(mq) is used. This can be confusing in cases, where γ5 appears in Σ, as it is
the case here due to the quark-squak-gluino vertex. Setting 6 p = m removes a γ matrix and it then makes a
difference, whether the Dirac algebra is performed before or after setting 6 p = m. It is thus safer to view m2

q

as the value of p2, at which the inverse propagator applied to a spinor u(p) vanishes.
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Figure 4.4: SUSY contributions to the squark self-energy. Both diagrams mix the two sfermion
types. The flavor mixing parts of the q̃q̃q̃q̃-vertex does not contribute due to the color struc-
ture.

Apart from the QCD contribution corresponding to emission and reabsorbtion of a gluon,
the squark self energy gets contributions form the diagrams For the quark, the only SUSY
contribution comes from a diagram like the second one in figure 4.4, but with quarks and
squarks interchanged. We find

δmq = − α
0
s

4π
CF Re

{
2mq

(
B0(m

2
q , 0,m

2
q)−B1(m

2
q , 0,m

2
q)
(
1− ε δmSD

q

))

+mq

(
B1(m

2
q ,m

2
g̃,m

2
q̃1

) +B1(m
2
q ,m

2
g̃,m

2
q̃2

)
)

+mg̃ sin 2θq̃

(
B0(m

2
q ,m

2
g̃,m

2
q̃1

)−B0(m
2
q ,m

2
g̃,m

2
q̃2

))
)}

, (4.44)

δm2
q̃1

= − α
0
s

4π
CF Re

{
2A0(m

2
g̃) + 2A0(m

2
q)−A0(m

2
q̃1

) (1 + cos2 2θq̃)−A0(m
2
q̃2

) sin2 2θq̃

+2 (m2
g̃ +m2

q −m2
q̃1
− 2mg̃ mq sin 2θq̃)B0(m

2
q̃1
,m2

g̃,m
2
q)

+4m2
q̃1
B0(m

2
q̃1
, 0,m2

q̃1
)
}
, (4.45)

δm2
q̃2

= − α
0
s

4π
CF Re

{
2A0(m

2
g̃) + 2A0(m

2
q)−A0(m

2
q̃2

) (1 + cos2 2θq̃)−A0(m
2
q̃1

) sin2 2θq̃

+2 (m2
g̃ +m2

q −m2
q̃2

+ 2mg̃ mq sin 2θq̃)B0(m
2
q̃2
,m2

g̃,m
2
q)

+4m2
q̃2
B0(m

2
q̃2
, 0,m2

q̃2
)
}
. (4.46)

Since we are computing in bare perturbation theory, we have explicitly put the bare coupling
constant α0

s. No factor of µ2ε appears.

The quark pole mass dependence on the bare mass is scheme dependent, the constant
δmSD

q is given by δmSD
q = 1 for DREG and δmSD

q = 0 for DRED. The difference comes from
the contribution of the gluon loop only. We have

δmDREG
q − δmDRED

q =
α0

s

4π
CF mq +O(ε) (4.47)

The scalar integrals A0 and B0 are defined as

A0(m
2) =

∫
ddk

iπd/2

1

[k2 −m2]
(4.48)

81



B0(p
2,m2

1,m
2
2) =

∫
ddk

iπd/2

1

[k2 −m2
1][(k + p)2 −m2

2]
(4.49)

and B1 is defined such, that

pµB1(p
2,m2

1,m
2
2) =

∫
ddk

iπd/2

qµ

[k2 −m2
1][(k + p)2 −m2

2]
. (4.50)

The normalization is the same as the one used in LoopTools up to the fact, that we do not
include the factor µ2ε, since we are working in bare perturbation theory.

The function B1 is reducible,

B1(p
2,m2

1,m
2
2) =

1

2p2

[
A0(m

2
1)−A0(m

2
2) + (m2

2 −m2
1 − p2)B0(p

2,m2
1,m

2
2)
]
. (4.51)

Note, that B0 is symmetric under exchange of m2
1 and m2

2, but B1 is not.

It is useful to split the mass shifts into two pieces, corresponding to the pure QCD and
SUSY corrections respectively,

δmQCD
q = − α

0
s

4π
CF 2mq Re

{
B0(m

2
q , 0,m

2
q)−B1(m

2
q , 0,m

2
q)
(
1− ε δmSD

q

)}
, (4.52)

δmSUSY
q = − α

0
s

4π
CF Re

{
mq

(
B1(m

2
q ,m

2
q̃1
,m2

g̃) +B1(m
2
q ,m

2
q̃2
,m2

g̃)
)

+mg̃ sin 2θq̃

(
B0(m

2
q,m

2
q̃1
,m2

g̃)−B0(m
2
q ,m

2
q̃2
,m2

g̃))
) }

, (4.53)

(δm2
q̃1

)QCD = − α
0
s

4π
CF Re

{
4m2

q̃1
B0(m

2
q̃1
, 0,m2

q̃1
)−A0(m

2
q̃1

)
}
, (4.54)

(δm2
q̃1

)SUSY = − α
0
s

4π
CF Re

{
2A0(m

2
g̃) + 2A0(m

2
q)−A0(m

2
q̃1

) cos2 2θq̃ −A0(m
2
q̃2

) sin2 2θq̃

+2 (m2
g̃ +m2

q −m2
q̃1
− 2mg̃ mq sin 2θq̃)B0(m

2
q̃1
,m2

g̃,m
2
q)
}
, (4.55)

(δm2
q̃2

)QCD = − α
0
s

4π
CF Re

{
4m2

q̃2
B0(m

2
q̃2
, 0,m2

q̃2
)−A0(m

2
q̃2

)
}
. (4.56)

(δm2
q̃2

)SUSY = − α
0
s

4π
CF Re

{
2A0(m

2
g̃) + 2A0(m

2
q)−A0(m

2
q̃2

) cos2 2θq̃ −A0(m
2
q̃1

) sin2 2θq̃

+2 (m2
g̃ +m2

q −m2
q̃2

+ 2mg̃ mq sin 2θq̃)B0(m
2
q̃2
,m2

g̃,m
2
q)
}
. (4.57)

The shift in the squark mixing angle, δθq̃ arises from the off diagonal pieces of the squark
self energy. We use the scheme proposed in [69], used also in [25], where the whole off-diagonal
wave function correction is canceled at a given scale by renormalization of the mixing angle.
Explicitly,

δθq̃ = −ReΣq̃1q̃2(Q
2)

m2
q̃2
−m2

q̃1

, (4.58)

with

Σq̃1q̃2(p
2) = Σq̃2q̃1(p

2) =
α0

s

4π
CF

1

2

{
sin 4θq̃

(
A0(m

2
q̃2

)−A0(m
2
q̃1

)
)

+8mg̃ mq cos 2θq̃ B0(p
2,m2

q ,m
2
g̃)
}
. (4.59)
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4.3.4 Renormalization of the q̃q̃h-Vertex

As discussed in section 4.3.1, the use of the supersymmetry breaking DREG regulator leads
to an unwanted shift in the squark-squark-higgs vertex, which we have to correct for. Instead
of inspecting the Ward identities, we can compute this shift from comparing the one-loop
corrections to Higgs decay into two squarks in both, DREG and DRED, which does not
break supersymmetry. The relevant one-loop diagrams are shown in figure 4.5. Differences

Figure 4.5: One loop corrections to the h→ q̃q̃∗ decay

between the two schemes can only arise from diagrams containing gluons, which have the
additional ε-scalar component in DRED. Note that the schemes in principal also differ by the
fact, that the indices of gamma matrices either run from 1 to d or from 1 to 4. However, in
the absence of gluons the only gamma matrices are those occurring in fermion propagators.
As these are always contracted with a d < 4 dimensional momentum, there is nobody to see
the additional components in DRED. In figure 4.5 there are two diagrams containing a gluon.
But in both cases, the gluon couples to a squark line, and thus contracts with a momentum
rather than a gamma matrix. Since momenta are d dimensional also in DRED, the diagram,
where the gluon is an ε-scalar does not contribute. Thus – before renormalization – the
contribution is equal in DREG and DRED. The picture changes with renormalization, since
there are diagrams containing quarks and, as we saw in the last section, δmDREG

q and δmDRED
q

differ by a finite amount. Let us write the O(αs) matrix element as

M(α0
s ,m

0) = C0(m
0) + α0

sC1(m
0), (4.60)

where m0 collectively stands for all masses involved. The statement made above now means,
that and C1 has the same functional form in DREG and DRED. The same is of course trivially

true for C0. Renormalization just means writing the bare quantities as α0
s = αMS,DR

s +δαMS,DR
s

and m0 = m + δmDREG,DRED, where m is the pole mass and thus the same with both
regulators. So the renormalized amplitude is

MDREG,DRED = C0(m) + αMS,DR
s C1(m) +

∂C0(m)

∂m
δmDREG,DRED. (4.61)

The shifts δmDREG and δmDRED contain αMS
s and αDR

s , respectively. Obviously no renormal-
ization of the coupling constant happens at this order. The coupling constants are related
by

αMS
s (µ) = αDR

s (µ)

(
1− αDR

s (µ)

π

CA

12

)
, (4.62)
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there is no difference at order O(αs). The two amplitudes thus differ only in in the mass
counterterms. Since the Higgs decay width into squarks is a physical quantity, the shift in
m2

qhs(q, s1, s2) has to remedy the difference and we get

δ(m2
qhs(q, s1, s2))

FIX = −
∂m2

qhs(q, s1, s2))

∂mq
(δmDREG

q − δmDRED
q ). (4.63)

If we were using a regulator, which does not break supersymmetry, m2
qhs(q, s1, s2) would

not renormalize independently, but just the way induced by the parameters it depends on.
These the masses mq, m

2
q̃i

and the mixing angle θq̃ , which entered in trade for the soft
breaking parameter Aq. The supersymmetric Higgs mass parameter µ also enters hs, but
since it does not renormalize, we do not have to consider it here. Therefore we could compute
δ(m2

qhs(q, s1, s2)) just by Taylor expanding m2
qhs(q, s1, s2) given in eq. (4.21) up to the first

order in these parameters. After some algebra this leads to

δ(m2
q hs(q, 1, 1)) =

hf (q)

4

{
[
16m2

q + ∆m2
q̃ (1− cos 4θq̃)

] δmq

mq
− 2 sin2 2θq̃ ∆δm2

q̃

−2∆m2
q̃ sin 4θq̃ δθq̃

}
+
m2

q

2
(hs(q, 1, 1) − hs(q, 2, 2)) sin2 2θq̃

δmq

mq

+
m2

q

2
hs(q, 1, 2) sin 4θq̃

δmq

mq
+ 2m2

q hs(q, 1, 2) δθq̃ , (4.64)

δ(m2
q hs(q, 2, 2)) = −δ(m2

q hs(q, 1, 1)) + 8hf (q)mq δmq .

The off-diagonal terms we do not need, since in our amplitude m2
qhs(q, 1, 2) only appears

in two-loop diagrams. Taking δmq, δm
2
q̃i

and δθq̃ to be the corresponding DRED expres-

sions, this formula tells us how m2
qhs(q, s1, s1) renormalizes in the presence of soft-breaking

terms in DRED. However, taking δmq, δm
2
q̃i

and δθq̃ to be in DREG does not tell us, how

m2
qhs(q, s1, s1) renormalizes in DREG. The supersymmetry breaking of DREG causes, that

in DREG, δ(m2
qhs(q, s1, s2)) gets an additional contribution, namely δ(m2

qhs(q, s1, s2))
FIX.

Clearly, including δ(m2
qhs(q, s1, s2))

FIX has the same effect as replacing δmDREG
q by δmDRED

q .
As the DREG expressions for δm2

q̃i
and δθq̃ are equal to those in DRED, we can say, that the

renormalization of δ(m2
qhs(q, s1, s2)) in DREG is given by eq. (4.64) with all counterterms set

to their DRED values.

The expressions for the heavy Higgs are obtained by replacing hf,s by Hf,s everywhere.

4.3.5 Renormalization of the Amplitude

Having computed all necessary counterterms, we are now ready to renormalize the amplitude,
or equivalently the formfactor A. For the moment we suppress subscripts q, and q̃i identifying
the various contributions. Recall, that we have computed A in bare perturbation theory

A(α0
sSε,M

0) =

(
α0

sSε

4π

)
C(0)(M0) +

(
α0

sSε

4π

)2

C(1)(M0) +O
(
(α0

s)
3
)
, (4.65)
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To keep the notation simple, we we only write a collective symbol M , standing for mq, m
2
q̃1

,

m2
q̃2

and also the mixing angle θq̃ . Of course A also depends on the Higgs mass s = m2
h and

on the gluino mass mg̃, but this is of no concern here; mh does not renormalize, since we do
not compute electroweak corrections and mg̃ only enters C(1) but not C(0).

We renormalize A by expressing all bare quantities in terms of renormalized quantities
plus counterterms, so Sεα

0
s = αs + δαs and M0 = M + δM ,

A(αs + δαs,M + δM) = A(αs,M) +
∂A
∂αs

(αs,M) δαs +
∂A
∂M

(αs,M) δM +O
(
α3

s

)
(4.66)

or in terms of the loop expansion coefficients C i,

A = A(Sεα
0
s,M

0) = A(αs + δαs,M + δM)

=
(αs

4π

)
µ2ε C(0) +

(αs

4π

)2
[
µ4ε C(1) − µ2ε β0

ε
C(0)

]
+
(αs

4π

)
µ2ε
(∂C(0)

∂M

)
s
δM +O

(
α3

s

)
.

(4.67)

We have to remember, that A and thus C(0) are functions of M and, even though not explicitly
written, s = m2

h. As our analytic expressions for C(0) are written in terms of M 2 and x, we
use a notation borrowed from thermodynamics for the partial derivative. The necessary mass
counterterms δM we computed in section 4.3.3. However, we have to pay attention to the
fact, that our expressions for δmq, δm

2
q̃i

and δθq̃ were computed in bare perturbation theory

and contain the bare coupling α0
s, which we have to express in terms of the renormalized

coupling αs. This is relevant, because already at leading order we have α0
s = S−1

ε µ2εαs. To
make the bookkeeping safer, we write factor

[
4π
α0

]
wherever a mass counterterm appears in

expressions for renormalized amplitudes. This factor cancels the
[

α0

4π

]
in the definitions of

the various δM and all powers of αs, Sε and µε are exposed explicitly, rather than being
partially hidden inside the counterterms. Note, that the factor S−1

ε multiplying the mass

renormalization appears, because we factored out powers of Sεα0
s

4π from C(0) and C(1) but
sticked to the standard definitions for the mass shifts δM .

A =
(αs

4π

)
µ2ε C(0) +

(αs

4π

)2
µ4ε

[
C(1) − µ−2ε β0

ε
C(0) +

(∂C(0)

∂M

)
s
S−1

ε

[
4π
α0

]
δM

]
+O

(
α3

s

)
.

(4.68)

Now we could essentially put this formula into use by just duplicating it for the various
contributions, was it not that supersymmetry had still prepared some gymnastics for us. For
the fermionic case, there are no complications. Our generic M stands for mq only, since that

is the only mass C(0)
q depends on. We can put the derivative into a more explicit form

(∂C(0)
q

∂M

)
s
=

d

dM

[
hf(q)

v
M−2εc

(0)
f (x(M, s))

]
=
hf(q)

v

1

M1+2ε

[
−2εc

(0)
f (x) +M

∂x

∂M

∂c
(0)
f (x)

∂x

]
,

(4.69)

M
∂x

∂M
= 2x

1− x
1 + x

, (4.70)
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and combine it with the δmq to a δC(0)
q

(
δC(0)

q

)QCD,SUSY
=
hf(q)

v

1

m1+2ε
q

[
−2ε c

(0)
f (x) + 2x

1− x
1 + x

c
(0)
f

′
(x)

]

x=xq

δmQCD,SUSY
q . (4.71)

The prime on the second c
(0)
f of course denotes a derivative. Note, that we have defined

two parts here,
(
δC(0)

q

)QCD
and

(
δC(0)

q

)SUSY
, depending on which which contribution to the

mass counterterm δmq, they contain. The reason is, that we want to renormalize the Standard
Model contribution Aq containining only quarks and gluons, the SM-like contribution A q̃, and
the genuine supersymmetric part ASUSY separately. The mass renormalization for Aq clearly

includes only that part of δC(0)
q , that is proportional to δmQCD

q , the contribution from radiating
and reabsorbing a gluon. In the full SUSY amplitude there is an additional term, where the

derivative of the SM contribution C(0)
q multiplies the remaining piece of δmq, namely δmSUSY

q ,
arising from a squark-gluino loop. This term provides mass renormalization for the genuine
supersymmetric contribution ASUSY, consisting of all diagrams containing gluinos or the four-
squark vertex. Note that only two-loop diagrams contribute to the bare ASUSY, there is no

such object as C(0)
SUSY. Therefore ASUSY does not receive coupling constant renormalization

and only mass renormalization “left over” from C (0)
q and C(0)

q̃ . With this, we have discussed
in detail all terms entering the the renormalized Standard Model contribution

Aq =
(αs

4π

)
µ2ε C(0)

q +
(αs

4π

)2
µ4ε

[
C(1)

q − µ−2ε β0

ε
C(0)

q + S−1
ε

[
4π
α0

] (
δC(0)

q

)QCD
]

+O
(
α3

s

)
.

(4.72)

The squark contribution is a bit more involved due to the peculiarity of the coupling. For
the mass renormalization we copy the one-loop contribution from eq. (4.29) and regroup the
factors to

C(0)
q̃i

=
1

v
(m2

qhs(q, i, i))
[
(m2

q̃i
)−1−ε c(0)s (xq̃i

)
]
. (4.73)

Now it is easy to compute the mass renormalization. We can use the product rule to compute

δC(0)
q̃i

. The bracket only gets a variation from δm2
q̃i

and δ(m2
qhs(q, i, i)) we have already

computed. However, in this representation it is hard to tell, what part of the expression
provides counterterms for Aq̃i

and what part belongs to ASUSY. Since we aim to separate the
various pieces, some more work is needed.

For a general scalar with mass m, coupling to the Higgs with strength 1
vm

2h, the one-loop
amplitude is

C(0)
s =

1

v
h
[
m−2ε c(0)s (x)

]
. (4.74)

Notice, that the factor m2 from the coupling has been absorbed into the bracket here. The
mass renormalization is simply

δC(0)
s =

1

v
h

d

dm2
[m−2εcs(x)] δm

2. (4.75)

To renormalize the squark part of our amplitude, we need precisely this expression with the
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coupling constant

h = hs(q, i, i)
m2

q

m2
q̃i

, (4.76)

m = mq̃i
and δm2 taken to be the QCD part of the mass shift, (δm2

q̃i
)QCD. The dimensionless

coupling constant is a complicated function of mq, mq̃i
and θq̃ and its variation produces

additional contributions to δC(0)
q̃i

, but these are counterterms for ASUSY. Using the product
rule,

1

m2

d

dm2

[
(m2)−εc(0)s (x)

]
=

d

dm2

[
(m2)−1−εc(0)s (x)

]
+

1

m2

[
(m2)−1−εc(0)s (x)

]
, (4.77)

we can therefore write

(δC(0)
q̃i

)QCD =
1

v
m2

qhs(q, i, i)

[
d

dm2
q̃i

[
(m2

q̃i
)−1−εc(0)s (xq̃i

)
]

+
1

m2
q̃i

[
(m2

q̃i
)−1−εc(0)s (xq̃i

)
]]

(δm2
q̃i

)QCD.

(4.78)

Comparing this to the full δC(0)
q̃i

, i.e. the variation of eq. (4.73), we can see, that it makes
sense to define

δ(m2
qhs(q, i, i))

QCD := m2
qhs(q, i, i)

(δm2
q̃i

)QCD

m2
q̃i

(4.79)

and
δ(m2

qhs(q, i, i))
SUSY := δ(m2

qhs(q, i, i)) − δ(m2
qhs(q, i, i))

QCD. (4.80)

With this notation we can write

(δC(0)
q̃i

)QCD =
1

v
m2

qhs(q, i, i)
1

(m2
q̃i

)2+ε

[
(−1− ε)c(0)s (x) + x

1− x
1 + x

c(0)s
′
(x)

]

x=xq̃i

(δm2
q̃i

)QCD+

1

v
δ(m2

qhs(q, i, i))
QCD

[
(m2

q̃i
)−1−εc(0)s (xq̃i

)
]
, (4.81)

(δC(0)
q̃i

)SUSY =
1

v
m2

qhs(q, i, i)
1

(m2
q̃i

)2+ε

[
(−1− ε)c(0)s (x) + x

1− x
1 + x

c(0)s

′
(x)

]

x=xq̃i

(δm2
q̃i

)SUSY+

1

v
δ(m2

qhs(q, i, i))
SUSY

[
(m2

q̃i
)−1−εc(0)s (xq̃i

)
]
, (4.82)

where we have also spelled out the mass derivative. The two formulae are identical up to the
QCD and SUSY superscripts.

Finally we can write down the renormalized expressions for the remaining two contribu-
tions

Aq̃i
=
(αs

4π

)
µ2ε C(0)

q +
(αs

4π

)2
µ4ε

[
C(1)

q − µ−2ε β0

ε
C(0)

q + S−1
ε

[
4π
α0

]
(δC(0)

q̃i
)QCD

]
+ O

(
α3

s

)
,

(4.83)
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ASUSY =
(αs

4π

)2
µ4ε

[
C(1)

SUSY + S−1
ε

[
4π
α0

] [
(δC(0)

q )SUSY + (δC(0)
q̃1

)SUSY + (δC(0)
q̃2

)SUSY
]]

+O
(
α3

s

)
.

(4.84)

Note, that no field-strength renormalization takes place. Self-energy corrections on the Higgs
line are absent, since we do not include electroweak corrections. Self-energy corrections on
the external gluon lines from top quarks and SUSY particles must not be included, since
we have decoupled these heavy particles. In principle, self-energy corrections from bottom
quarks should be included, but this contribution is negligible due to the smallness of mb.

4.3.6 Renormalization of the Redundant Parameter mb̃1

Recall, that our masses are not independent. The bare parameters are related by eq. (4.18).
So far, we have completely ignored this fact and our amplitude depends on the full, dependent
set of mass parameters.

Solving eq. (4.18) for the m2
b̃1

, which we take as the dependent quantity gives

m2
b̃1

=
1

cos2 θb̃

(
− sin2 θb̃m

2
b̃2

+ cos2 θt̃m
2
t̃1

+ sin2 θt̃m
2
t̃2

+m2
b −m2

t −M2
W cos(2β)

) ∣∣∣∣∣
bare

.

(4.85)

Let us for a moment abbreviate this relation as

m0 = B(M0), (4.86)

where m0 stands for the bare m2
b̃1

and M0 collectively denotes all independent bare quantities

on the right hand side of eq. (4.85).

We can mimic the situation, where the dependent m0 has been eliminated at the very
beginning, say in the Lagrangian, writing B(M 0) instead of m0 in unrenormalized quantities
like eq. (4.65). We then renormalize by writing M 0 = M + δM , and thus implicitly

m0 = B(M0) = B(M + δM) = B(M) + δB (4.87)

instead of m0 = m+δm, wherem is the pole mass and δm the counterterm in the pole scheme.
Series expansion in the coupling then also leads to expansion of the coefficient functions C (0)

and C(1) around B(M) rather than m. Consequently the correct renormalized expression can
be obtained from our renormalized expression where we have treated all masses as if they
were independentjust by replacing

m→ B(M) (4.88)

δm→ δB. (4.89)

While this mimics exactly what would happen, if m0 was eliminated from the beginning,
arguably it is not a very natural thing to do. Since m0 has not been eliminated from the
Lagrangian, our results depend on the parameterm just as they depend on all other massesM .
There is nothing special about m. But the above mimicking procedure obviously corresponds
to renormalizing m using a weird scheme m0 = B(M) + δB for the dependent sbottom mass,
while we have renormalized all other masses on shell. We can fix this by expressing the input
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parameter B(M) in terms of the pole mass m,

B(M) = m+ δm− δB. (4.90)

Substituting this into our expression is easy. In all O(α2
s) terms, the O(αs) shift δm− δB is

irrelevant, so B(M) simply gets replaced by m. In the Born contribution the shift matters
and its net effect is simply, that in the mass renormalization δB gets replaced by δm again.
So we are back home again, all masses are renormalized on-shell and our final result does not
need any modification. We just have to compute the dependent mass in the pole scheme,

m = B(M) + δB − δm (4.91)

or spelled out

m2
b̃1

=
1

cos2 θb̃

(
− sin2 θb̃m

2
b̃2

+ cos2 θt̃m
2
t̃1

+ sin2 θt̃m
2
t̃2

+m2
b −m2

t −M2
W cos(2β)

)
+

1

cos2 θb̃

(
cos2 θt̃ δm

2
t̃1

+ sin2 θt̃ δm
2
t̃2
− sin2 θb̃ δm

2
b̃2
− sin 2θt̃(m

2
t̃1
−m2

t̃2
)δθt̃

+sin 2θb̃(m
2
b̃1
−m2

b̃2
)δθb̃ − 2mtδmt + 2mbδmb

)
− δm2

b̃1
. (4.92)

Clearly what has happened here is, that we have just computed the O(αs) correction to the
tree-level relation eq. (4.85). The last two lines are the correction δB− δm. As it stands, this
expression is not explicit, as m2

b̃1
also appears on the right hand side through various shifts

and end even explicitly. But as usual it is sufficient to insert the leading order value given by
the first line only.

A careful discussion of the impact of various renormalization schemes can be found in [70].

4.3.7 Infrared Counterterms

Since we do not consider real radiation processes here, we subtract the infrared counterterm
of [62]. This amounts to adding the following expressions to the two-loop contributions C (1)

CIR
q =

(
1

−s

)ε eεγE

Γ(1− ε)

(
6

ε2
+
β0

ε

)
C(0)

q , (4.93)

CIR
q̃i

=

(
1

−s

)ε eεγE

Γ(1− ε)

(
6

ε2
+
β0

ε

)
C(0)

q̃i
. (4.94)

The SUSY contribution C(1)
SUSY is infrared finite.

4.4 Numerical Evaluation of the SUSY Diagrams

To finalize our amplitude, we still have to compute the missing piece C (1)
SUSY, consisting of the

factorizable diagrams QUARTICS and mainly the challenging diagrams containing gluions,
GQ and GSQ, which contain up to five of the invariants s = m2

h, mq, mq̃1 , mq̃2 and mg̃.
We accomplish this using the numerical method described in chapter 3. We briefly recall the
main steps here.
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1. The integrand of each diagram is projected onto the form factor A. Therefore, all
numerators are written entirely in term of dot products.

2. Feynman parameters are introduced. We parametrize the non-factorizable two-loop
diagrams GQ and GSQ according to the strategy “sunset” described in section 3.2.2.
Feynman parameters on simplices are mapped to the hypercube using the simple rescal-
ing given in section 3.2.4. This is sufficient, as only low-dimensional simplices appear
by virtue of the “sunset” parametrization. Dot products in numerators are treated as
described in section 3.2.3. The now trivial integrations over loop momenta are carried
out by applying eq. (3.8) twice.

3. Sector decomposition, contour deformation and ε-expansion up to O(ε0) are performed
and C++ programs, that evaluate the individual diagrams are generated. Very few
sectors per diagram emerge, as all diagrams are IR finite and UV singularities are
already factorized in the “sunset” parametrization.

To compute C(1)
SUSY we have to evaluate each diagram for to (s)top and the (s)bottom case and

in each case for all possible combinations of sfermion indices si. We perform the numerical
evaluation for integrands with couplings and mixing matrices stripped off and “dress” the
results afterwards with these quantities. This has the advantage, that only masses enter
the numerical code. We gain the flexibility to change couplings and mixing angles without
rerunning. Stripping off the higgs-quark and higgs-squark couplings hf(q) and hs(q, s1, s2) is
straightforward. Also the mixing matrices

Sq =


 cos 2θq̃ − sin 2θq̃

− sin 2θq̃ − cos 2θq̃


 . (4.95)

appearing in the QUARTICS factor out trivially. The dependence of the GQ and GSQ
diagrams on the mixing angle is more involved, here we have to compute the coefficients of
the two mixing matrices (see appendix E)

Rq
+ = 2


 1 0

0 1


 , Rq

− = 2


 sin 2θq̃ cos 2θq̃

cos 2θq̃ − sin 2θq̃


 (4.96)

for each diagram. We do not actually generate two different codes for the two coefficients, but
rather keep input parameters RRplus and RRminus, which we set to 1 or 0 in order to select
the desired part. Due to the different tensor structures of the Rq

+ and Rq
− coefficients, this

does not produce optimal code; there are usually some sectors7, which only contribute to one
of the coefficients and thus always evaluate to zero, when we compute the other coefficient.
While this may look peculiar it does no real harm.

In the individual groups of diagrams, sfermion indices, mixing matrices and couplings
appear as follows.

7We use the term “sector” as a synonym for “individual integral contributing to a diagram” here. The
splitting of diagrams into sectors does not come from sector decomposition only, but also from the treatment
of numerators, which have to be split into pieces according to how many powers of the loop momenta they
contain.
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GQ The Higgs couples to a quark line, squark propagators are separated only by gluon
vertices. So there is a single sfermion index s1 and so there are two versions of these
diagrams. The coupling is hf(q, s1, s1), the mixing matrices (Rq

+)s1,s1 and (Rq
−)s1,s1

appear.

GSQ The Higgs couples to a squark line. Two sfermion indices s1 and s2 appear, belonging
to squark propagators before and after the Higgs vertex. Four versions of each diagram
have to by computed. Note that the diagrams are not necessarily symmetric under
s1 ↔ s2. The coupling is hs(q, s1, s2), the mixing matrices (Rq

+)s1,s2 and (Rq
−)s1,s2

appear.

QUARTICS The Higgs again couples to a squark line and there is an additional squark line
“on the other side of the q̃q̃q̃q̃-vertex”. Thus there are three sfermion indices s1, s2, s3
and we choose them such, that s3 always belongs to the squark line, which does not
interact with the Higgs. Then the coupling is always hs(q, s1, s2) and the mixing matrices
are (Sq)s1,s3(Sq)s2,s3 . Clearly, eight versions of each diagram have to be computed.

Note, that similar to the treatment of (Rq
+) and (Rq

−), we actually do not really factor out
the mixing matrices Sq and the couplings, we just set the corresponding input parameters
to 1. It is also possible to perform the sum over sfermion indices before code generation.
This means, that a separate code is generated for each combination of sfermion indices. This
way only the masses m sq1 and m sq2 remain as input parameters, rather than m sq Sfe1,
m sq Sfe2, m sq Sfe3, and also the entries of the mixing matrices can be substituted in
immediately, leaving only cos2theta and sin2theta as input parameters. While not overly
elegant, this is very useful for testing purposes, as it leaves less room for mistakes. For the
production run we proceed as described above, performing sums over sfermion indices by
running the same code several times for all combinations of masses and dressing the results
with couplings and mixing matrices afterwards. We perform all runs for the (s)top and
(s)bottom case for both, the light and the heavy Higgs boson. The four cases differ only in
the input values for masses, mixing angles and couplings.

4.5 Results

In this section we present numerical results for the MSSM two-loop amplitudes gg → h,H.
We neglect here the Higgs couplings to quarks and squarks other than the ones in the third
generation. The two-loop amplitudes are infrared divergent with poles up to second order
in the regularisation parameter ε. The singular part is universal and cancels against other
universal contributions at the same order in αs from real radiation processes. We present
here the finite part after UV renormalization in the MS scheme and subtracting the infrared
counter-term of Ref. [62], displayed in eq. (4.93) and (4.94). A complete phenomenological
analysis would require the inclusion of the non-singular parts from real radiation. Therefore
the results displayed here are not physical. They should be seen primarily as a demonstration,
that our method is capable of handling the most difficult diagrams one can expect in NLO
gg → h calculations beyond the Standard Model. Nevertheless some useful conclusions may
also be inferred from solely the two-loop amplitudes, which include all diagrams with more
than one massive internal particle. These are the diagrams which had not been computed
earlier in the literature [44, 45, 46, 47]. They form a subset which is infrared finite.
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In Figure 4.6 we present our results for the production of a light Higgs in gluon fusion
in the MSSM. The MSSM parameters have been chosen to represent a section through the
golden region of the MSSM, discussed in [74]. The first stop has a relatively small mass of
mt̃1

= 150GeV, while mt̃2
is varied from 400− 580GeV. Note, that due to the constraint eq.

(4.92) it is not possible to keep fixed all of mb̃1
,mb̃2

, θt̃ and θb̃ while varying mt̃2
. The values

of all fixed parameters are listed in tab. 4.3, those varied in the m t̃2
scan are shown in tab.

4.4. The renormalization scale was set to µ = mh.

αMS
s (mZ) 0.1176
mt 172.5GeV
mb 5GeV
mZ 91.187GeV
sin2 θ 0.223
mh 115GeV
α 0.0524
tan β 20
µSUSY 300GeV
mg̃ 500GeV
mt̃1

150GeV

θt̃ π/4
µθ 200GeV

Table 4.3: Input parameters not varied throughout the mass scan.

The displayed quantity is the K-factor, i.e. the ratio of the squared amplitude through
O(α3

s) divided by the O(α2
s) result,

K =

(
αNLO

s

4π

)2
µ4ε C(0)∗C(0) +

(
αNLO

s

4π

)3
µ6ε 2Re C(0)∗

[
C(1) + C(UV) + C(IR)

]

(
αLO

s

4π

)2
µ4ε C(0)∗C(0)

. (4.97)

Here all C(i) of course denote the sums over quark, squark and SUSY contributions from the
bottom as well as from the top sector. C(UV) includes mass and coupling constant renormal-
ization. Note that the coupling constant in the numerator, αNLO

s , runs with the two-loop
β-function, whereas the denominator is the leading order result and thus contains αLO

s , run-
ning with the one-loop β-function only. In addition to the MSSM result we include K-factors
obtained in various approximations of the full result: The curve labeled “No SUSY vertices”
discards diagrams containing gluinos or quartic squark couplings and thus consists of SM
and SM-like contributions only, which are computable analytically. This is obviously a poor
approximation of the full result, demonstrating the importance of the true SUSY diagrams.
Their contribution to the squared amplitude is negative and grows in absolute value with
growing mt̃2

. Also the contributions from the bottom sector can be sizeable, as can be read
off the corresponding curve. The result neglecting the bottom sector can be approximated
using the the effective theory calculation of Ref. [25]. The corresponding curve was computed
using the published program evalcsusy. With the mass splitting growing, the effective field
theory deviates more and more from the result neglecting the bottom sector but accounting
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mt̃2
mb̃1

mb̃2
θb̃

400.000 265.457 504.092 0.138
410.000 273.032 504.172 0.141
420.000 280.572 504.257 0.144
430.000 288.077 504.349 0.148
440.000 295.551 504.448 0.152
450.000 302.993 504.554 0.156
460.000 310.406 504.669 0.161
470.000 317.790 504.793 0.166
480.000 325.145 504.928 0.171
490.000 332.472 505.075 0.177
500.000 339.769 505.235 0.183
510.000 347.038 505.411 0.190
520.000 354.276 505.603 0.197
530.000 361.483 505.816 0.205
540.000 368.656 506.051 0.215
550.000 375.793 506.312 0.225
560.000 382.891 506.604 0.236
570.000 389.944 506.932 0.248
580.000 396.948 507.302 0.262

Table 4.4: Mass scan through the golden region of the MSSM.

for the full mass dependence in the top sector. Ironically, for large m t̃2
, this deviation brings

the effective field theory result closer to the full MSSM result. This is purely accidental,
however.

In Figure 4.7 we show the corresponding results for the production of a heavy Higgs. Here
the mass of the heavy Higgs boson mH is varied from 280− 455GeV and the renormalization
scale is set to µ = mH . All other parameters are chosen like in the first point of the light Higgs
calculation, i.e. mt̃1

= 150GeV, mt̃2
= 400GeV, mb̃1

= 265.457GeV, mb̃2
= 504.092GeV,

θb̃ = 0.138 and the values given in tab. 4.3. A threshold occurs at mH = 2mt̃1
= 300GeV,

where an on-shell stop1 pair can be produced. As the perturbative calculation diverges at
the threshold, we have whitewashed a window of 5GeV around the threshold. The numerical
method has no problems approximating the threshold from below, whereas approximating it
from above leads to increasing errors due to large cancellations. As in the light Higgs case
contributions from diagrams with gluinos and quartic squark couplings are substantial in the
top as well as in the bottom sector. Due to the missing mass hierarchy an effective field
theory calculation is meaningless in the case of a heavy Higgs boson.

4.6 Numerical Stability

In the (s)top contribution to the light Higgs case, the heavy particles cannot go on-shell.
Accordingly numerical integration is extremely fast. All other contributions are more de-
manding. The most difficult cases are the diagrams GQ7 and GQ8 in the bottom case. Power
counting shows, that the combined denominator is raised to the second power here and set-

93



 [GeV]stop2m
400 420 440 460 480 500 520 540 560 580

K

0.6

0.7

0.8

0.9

1

1.1

1.2

MSSM
No bottom contributions
No SUSY vertices
Evalcsusy
SM

Figure 4.6: NLO K-factor for the production of a light Higgs boson.
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Figure 4.7: NLO K-factor for the production of a heavy neutral Higgs boson.
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ting mb = 5GeV and mg̃ = 500GeV means having ratios of squared masses of the order 104.
To evaluate these integrands it was necessary to adjust the deformation of each Feynman
parameter individually by using separate λi as described in section 3.4.3. Alternatively these
diagrams could be evaluated using a Feynman parametrization similar to [8]. This parameter-
ization casts diagrams with bubble subgraphs as a sum of two terms. One of them corresponds
to a one-loop integral and matches the counter-term for mass renormalization. The second
term corresponds to a two-loop integral which can be evaluated without a specially tuned
contour deformation. Here we do not discuss this option further.

The numerical behavior of the Rq
+-coefficient of diagram GQ8 in the bottom case for the

heavy Higgs is illustrated in figure 4.8. Runs using the Divonne and the Cuhre integrator from
the Cuba library are shown. Here the code chose the parameter values for the parameters
λi controlling the size of the deformation as described in section 3.4.3. For some runs, the
λi chosen this way were corrected by hand, in order to obtain smaller cancellations between
positive and negative contributions, and thus a better deformation. Unfortunately, this is not
visible in the figure. All λi were then multiplied by an overall scaling factor laR. The idea
is to vary the overall size of the deformation to check stability, after a suitable direction and
order of magnitude of ~λ have been found. Also the rescaling power from eq. (3.102), called
here r, was set to 1 and 2. No clear preference is visible here, but the possibility to change
an additional parameter is still useful in cases like this, where the range of possible values for
laR is obviously pretty limited.

Clearly integration is a delicate issue in this extreme case. While reasonably small errors
can be a achieved by tuning the parameters (run 21 shows relative errors of 1.4 and 4.4
per mill with only 3.4 million evaluations), without tuning, results can be much worse. It
is unsatisfactory, that none of the integrators really performs well here. Cuhre seems to
give very precise results here even with relatively few integrand evaluations, but constantly
overestimates errors by more than an order of magnitude. This often causes, that Cuhre
only stops, when it reaches the specified maximal number of evaluations. We have no clue,
what causes this behavior. Also in some cases Cuhre fails completely, returning NaN. On the
other hand Divonne often stops after a low number of evaluations, but underestimates the
integration error by a factor of 2 or 3, sometimes even by more than an order of magnitude.
An inconvenient feature of Divonne is also, that it is necessary to specify a εborder in order
to prevent it from sampling on the border of the integration domain, where the integrand
is often not well defined. With extremely disparate kinematic invariants it is necessary to
watch this parameter, as features of the integrand can be squeezed to the border. Here we
set8 εborder = 10−9.

8Our code automatically rescales the εborder specified in the parameter file, such that the same region of
the original integrand is sampled for different values of the rescaling exponent r.
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Figure 4.8: Comparison of different integration runs for the Rq
+-coefficient of diagram GQ8

in the bottom case for the heavy Higgs. The lower and upper panel correspond to real and
imaginary parts. The central values show the deviation of each run from the weighted average
of all runs normalized to the weighted average. The lengths of the error-bars show the error
quoted by the integrator. Outliers are given in words only to prevent blow up the scale of
the plot. The labels show again the relative errors quoted by the integrator, the cumulative
number of evaluations for all sectors N, and the name of the input parameter file, revealing
the integrator [i.3 = Divonne, i.4 = Cuhre], the overall rescaling of λi, laR, as well as the
exponent r for rescaling Feynman parameters close to 0 and 1.
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Chapter 5

Conclusions

The production of a Higgs boson via gluon fusion, gg → h, is a fundamental LHC process. It is
the most important production channel for the yet undiscovered Higgs boson, the last missing
particle predicted by the extremely successful Standard Model of strong and electroweak
interactions. In scenarios, where a Higgs boson exists, but the Standard Model is incomplete,
the gg → h process is very sensitive to so-called physics beyond the Standard Model. Via
quantum effects unknown new particles will generally give rise to sizeable contributions, even if
they should be to heavy to be produced in a collider experiment. Since the gluon fusion process
cannot occur directly through tree-level interactions, the next-to-leading order corrections,
indispensable in QCD, already contain two loops.

In this thesis, we have computed the full two-loop SUSY QCD amplitude for the gg → h,H
process in the Minimal Supersymmetric Standard Model, a complicated extension of the
Standard Model. This is the first complete result for a two-loop three-point Green’s function
in the MSSM. We achieve this using two complementary approaches.

Modern analytic computation technology for multi-loop processes is well suited for those
partial contributions with simple mass patterns. We identify a complete set of 17 two-loop
master integrals for the gg → h process in the Standard Model. We write these master inte-
grals as Laurent series in ε and compute their coefficients in terms of harmonic polylogarithms.
Contributions to gg → h in arbitrary models can be reduced to these master integrals in an
automated manner, as long as only a single mass parameter appears in the loops. We give
the result for the Standard Model case, as well as for the SM-like case, where a heavy scalar
instead of a fermion is running in the loops. The former represents the first independent
check of the calculation by Spira, Djouadi, Graudenz and Zerwas from 1993. The latter is a
new result. With adequate couplings, they both form partial contributions to gg → h,H in
the MSSM.

The two-loop contributions to gg → h,H containing gluinos contain up to five kinematic
invariants, clearly hinting towards numerical integration. We show how to use contour defor-
mation for treating thresholds in the context of sector decomposition. This yields a method,
allowing for the first time direct numerical evaluation of multi-loop Feynman diagrams con-
taining UV, IR and threshold singularities. For one-loop multi-leg amplitudes, this might
not be the method of choice. Approaches based on reduction present strong competition,
especially if they manage to avoid Feynman diagrams at the loop level [72, 73]. However, at
the time of this writing, our method is the only viable way of evaluating two-loop diagrams
containing several mass parameters in the physical region. In our calculation we encounter
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the numerically challenging case of diagrams, that simultaneously contain bottom quarks and
heavy SUSY particles. Ratios of squared masses of the order of 104 present a real stress test
for the numerical method.

While we do not expect to find the MSSM at LHC, we see it as an archetype model
exposing the computational difficulties one might encounter in computing the gg → h ampli-
tude in beyond the Standard Model scenarios: Multi-loop diagrams containing many masses
conspiring with a mass spectrum, that does not allow the application of effective theories.

Our calculation demonstrates, that our numerical method is not just a handy device for
checking analytic calculations. It can be used as a computation method for important pro-
cesses, that were not tractable before. Many applications are conceivable and the limitations
of our method have not yet been explored thoroughly. For the gg → h process it is certainly
realistic to hope, that our method will allow the evaluation of the two-loop contributions in
any model physicists might propose, if LHC will force us to revise the Standard Model.
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Appendix A

SUSY-QCD Diagrams for gg → h,H
in the MSSM

Here we give the complete set of (generic) Feynman diagrams contributing to gg → h,H in
the MSSM up to the two-loop level. Diagrams, that evaluate to zero for various reasons are
not suppressed and also all diagrams related by Bose symmetry and/or reversion of arrows
are spelled out. All diagram names include an “o” for “original” in order to distinguish them
from the “collective” diagrams used in the main part, e.g. 1

2BORN1 = BORNo1 = BORNo2.
In each diagram, the (s)quarks can be (s)tops or (s)bottoms. Further squarks can be squark1
or squark2. The GQ diagrams always have one, the GSQ diagrams two and the QUARTICS
three independent squark indices. All further diagrams with squarks have one independent
squark index.

A.1 Born Level Diagrams

BORNo1 BORNo2 BORNo3 BORNo4 BORNo5
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A.2 NLO Diagrams

A.2.1 SM Diagrams

Qo1 Qo2 Qo3 Qo4 Qo5

Qo6 Qo7 Qo8 Qo9 Qo10

Qo11 Qo12 Qo13 Qo14 Qo15

Qo16 Qo17 Qo18 Qo19 Qo20

Qo21

A.2.2 SM-like Diagrams Containing Scalars

There are 56 two-loop contributions to the ggh-interaction mediated by a single massive
scalar. In the MSSM context, the scalar is a scalar quark, coming with a sfermion index
i ∈ 1, 2. While the interaction with the Higgs mixes the two sfermion types, the q̃q̃g-vertex
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is diagonal. For this reason, all sfermions occurring in a diagram of this class are of the same
type. So only a single mass parameter is present.

SQo1 SQo2 SQo3 SQo4 SQo5

SQo6 SQo7 SQo8 SQo9 SQo10

SQo11 SQo12 SQo13 SQo14 SQo15

SQo16 SQo17 SQo18 SQo19 SQo20

SQo21 SQo22 SQo23 SQo24 SQo25

SQo26 SQo27 SQo28 SQo29 SQo30
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SQo31 SQo32 SQo33 SQo34 SQo35

SQo36 SQo37 SQo38 SQo39 SQo40

SQo41 SQo42 SQo43 SQo44 SQo45

SQo46 SQo47 SQo48 SQo49 SQo50

SQo51 SQo52 SQo53 SQo54 SQo55

SQo56
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A.2.3 Diagrams Containing Gluinos and the qqh-Vertex

GQo1 GQo2 GQo3 GQo4 GQo5

GQo6 GQo7 GQo8 GQo9 GQo10

GQo11 GQo12 GQo13 GQo14 GQo15

GQo16 GQo17 GQo18 GQo19 GQo20

GQo21
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A.2.4 Diagrams Containing Gluinos and the q̃q̃h-Vertex

GSQo1 GSQo2 GSQo3 GSQo4 GSQo5

GSQo6 GSQo7 GSQo8 GSQo9 GSQo10

GSQo11 GSQo12 GSQo13 GSQo14 GSQo15

GSQo16 GSQo17 GSQo18 GSQo19 GSQo20

GSQo21 GSQo22

A.2.5 Factorizable Diagrams Containing a q̃q̃q̃q̃-Vertex

The diagrams 11–14 vanish: Due to the Lorentz-structure of the gq̃q̃-vertex, their bubble part
is proportional to the external momentum flowing in and thus vanishes when contracted with
the polarization vector or the projector P µν

s . In all other diagrams, the legs of the q̃q̃q̃q̃-vertex
are connected such, that no color is flowing from one loop to the other through this vertex.
In this configuration, the color factors of the family mixing terms evaluate to zero.

104



QUARTICSo1 QUARTICSo2 QUARTICSo3 QUARTICSo4 QUARTICSo5

QUARTICSo6 QUARTICSo7 QUARTICSo8 QUARTICSo9 QUARTICSo10

QUARTICSo11 QUARTICSo12 QUARTICSo13 QUARTICSo14 QUARTICSo15
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Appendix B

NLO Amplitudes in terms of

Master Integrals

The expansion coefficients c
(1)
f and c

(1)
s , i.e. the NLO versions of eq. (2.21) and (2.22) are

given by

c
(1)
f (x) = e2γEεm4ε

{{
N

ε s2 x2

[
− 24x (1 + x)2 − ε (1 + 56x+ 238x2 + 56x3 + x4)

+ ε2 (9− 360x− 994x2 − 360x3 + 9x4) + 2 ε3 (19− 900x − 2014x2 − 900x3 + 19x4)

]

+
CF

s2 x2 (1 + x)2

[
4 (1− 12x− 25x2 + 8x3 − 25x4 − 12x5 + x6)

− 8 ε (1 + 10x+ 51x2 + 36x3 + 51x4 + 10x5 + x6)

− 8 ε2 (5 + 37x+ 203x2 + 214x3 + 203x4 + 37x5 + 5x6)

]}

+

{
N

s (1− x)2
[
24 (1 + x)2 + 20 ε2 (17 + 46x+ 17x2) + 4 ε (23 + 42x+ 23x2)

]

+
CF

s (1− x)2 (1 + x)2

[
8 (1− x)2 (1− 6x+ x2) + 8 ε (9 − 8x+ 30x2 − 8x3 + 9x4)

+ 8 ε2 (21 + 8x+ 102x2 + 8x3 + 21x4)

]}

+
N

(1− x)2
[
16x− 16 ε x− 16 ε2 x

]
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+

{
N

ε2 (1− x)4
[
4 s x (1 + x)2 + 2 ε s x (3 + x) (1 + 3x) + ε2 s (1 + 2x+ 122x2 + 2x3 + x4)

]

+
CF

ε (1− x)4
[
8 s x (1 + x)2 − 4 ε s (1 − 8x− 10x2 − 8x3 + x4)

]}

+

{
N

(1− x)4
[
4 ε s (1 + x)2 (1− 26x + x2)

]
+

CF

(1− x)2
[
− 16 ε s (1 + x)2

]}

+

{
N

ε (1− x)4
[
− 24 (1 + x)2 (1− 4x+ x2)− 4 ε (1− 4x+ x2) (7 + 26x+ 7x2)

− 4 ε2 (43 − 46x− 442x2 − 46x3 + 43x4)− 4 ε3 (1− 4x+ x2) (201 + 550x+ 201x2)

]

+
CF

(1− x)4
[
− 16 (1 + x)2 (1− 4x+ x2)− 8 ε (7 − 16x− 30x2 − 16x3 + 7x4)

− 16 ε2 (10− 19x− 70x2 − 19x3 + 10x4)

]}

+

{
N

ε2 (1− x)6
[
− 32 s2 x2 (1 + x)2 − 16 ε s2 x2 (5 + 14x+ 5x2)− 8 ε2 s2 x2 (41 + 118x + 41x2)

]

+
CF

ε (1− x)6
[
− 16 s2 x2 (1 + x)2 − 32 ε s2 x2 (3 + 4x+ 3x2)

]}

+

{
N

ε (1− x)4
[
− 8 s x (1 + x)2 + 16 ε s x (1 + x2)

]}

+

{
N

(1− x)2
[
32 ε (1 + x)2 + 4 (1 + 6x+ x2)

]

− CF

(1− x)2
[
8 (1 + 14x + x2) + 96 ε x

]}

+

{
N

(1− x)2
[
− 80 ε2 (1 + x)2 + 2 (1− 18x+ x2)− 16 ε (1 + 4x+ x2)

]
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+
CF

(1− x)2
[
− 8 (1 − 6x+ x2) + 8 ε (1 + 6x+ x2) + 8 ε2 (5 + 6x+ 5x2)

]}

+
CF

(1− x)2 (1 + x)2

[
− 32 ε2 x2 + 16x (1 + x2)− 16 ε x (1 + 4x+ x2)

]

+

{
N

(1− x)4
[
8 s x (1 + x)2 + 24 ε s x (1 + x)2

]

+
CF

(1− x)4
[
− 16 ε s (1 − x)2 x+ 8 s x (1 + x)2

]}

+
CF

(1− x)6
[
− 8 s2 x (1 + x)2 (1 + x2)

]

+

{
N

(1− x)4
[
− 4 s2 x (1 + x)2 − 2 ε s2 x (3 + x) (1 + 3x)

]}

+

{
N

ε s (1− x)2
[
− 96 (1 + x)2 − 32 ε (5 + 16x+ 5x2)

− 8 ε2 (105 + 326x + 105x2)− 24 ε3 (161 + 446x+ 161x2)

]

− 16CF

s (1− x)2
[
4 (1 + x)2 + 8 ε (2 + 3x+ 2x2)

+ 3 ε2 (17 + 38x+ 17x2)

]}
+O(ε)

}
. (B.1)

c(1)s (x) = m4εe2γEε

{{
N

ε s2 x

[
24x− 4 ε2 (1− 108x + x2)− 4 ε (1− 24x + x2) + 4 ε3 (5 + 462x + 5x2)

]

+
CF

s2 x (1 + x)2

[
4x (9 − 2x+ 9x2) + 4 ε (1 + 23x+ 32x2 + 23x3 + x4)
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+ 8 ε2 (1 + 48x+ 78x2 + 48x3 + x4)

]}

+

{
N

s (1− x)2
[
− 24x− 88 ε x − 400 ε2 x

]

+
CF

s (1− x)2 (1 + x)2

[
− 4 (1− x)2 (2− 3x+ 2x2)− 8 ε (1 + 3x+ 3x3 + x4)

− 16 ε2 (1 + x)2 (1 + 3x+ x2)

]}

+
N

(1− x)2
[
− 4x+ 4 ε x+ 4 ε2 x

]

+

{
N

ε2 (1− x)4
[
− 4 s x2 − 8 ε s x2 + 4 ε2 s x (1− 10x+ x2)

]

+
CF

ε (1− x)4
[
− 8 s x2 − 24 ε s x2

]}

+
N

(1− x)4
[
24 ε s x (1 + x)2

]

+

{
N

ε (1− x)4
[
24x (1 − 4x+ x2) + 40 ε x (1 − 4x+ x2) + 8 ε2 x (27− 110x + 27x2)

+ 952 ε3 x (1− 4x+ x2)

]

+
CF

(1− x)4
[
16x (1 − 4x+ x2) + 8 ε x (5− 22x+ 5x2)

+ 8 ε2 x (21 − 86x+ 21x2)

]}

+

{
N

ε2 (1− x)6
[
32 s2 x3 + 96 ε s2 x3 + 400 ε2 s2 x3

]
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+
CF

ε (1− x)6
[
16 s2 x3 + 80 ε s2 x3

]}

+
N

ε (1− x)4
[
8 s x2 − 8 ε s x2

]

+

{
N

(1− x)2
[
− 8x− 32 ε x

]
+

CF

(1− x)2
[
20x+ 32 ε x

]}

+

{
N

(1− x)2
[
8x+ 24 ε x+ 80 ε2 x

]
+

CF

(1− x)2
[
− 8x− 16 ε x− 32 ε2 x

]}

+
CF

(1− x)2 (1 + x)2

[
2 ε (1− x)2 x+ 2 ε2 (1− x)2 x− 4x (1 + x2)

]

+

{
N

(1− x)4
[
− 8 s x2 − 24 ε s x2

]

+
CF

(1− x)4
[
4 s x2 + 4 ε s x2

]}

+
CF

(1− x)6
[
8 s2 x2 (1 + x2)

]

+

{
N

(1− x)4
[
s x2

]
+

CF

(1− x)4
[
− 4 s x2

]}

+
N

(1− x)4
[
4 s2 x2 + 8 ε s2 x2

]
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+

{
N

ε s (1− x)2
[
96x+ 208 ε x + 1072 ε2 x+ 4608 ε3 x

]

+
CF

s (1− x)2
[
64x+ 224 ε x + 864 ε2 x

]}
+O(ε)

}
, (B.2)

Some benchmark points for checks are

below threshold: m = 1, s = 0.5, x = 0.75 + 0.661438I

C(0)
f = Λf [−1.37435 − 0.0421235ε − 1.13149ε2 +O(ε3)]

C(0)
s = Λs[−0.178758 − 0.0126135ε − 0.147561ε2 +O(ε3)]

C(1)
f = Λf [8.24607ε

−2 + (6.31478 + 25.9058I)ε−1 + (−42.1955 + 18.7505I) +O(ε)]

C(1)
s = Λs[1.07255ε

−2 + (0.871793 + 3.36952I)ε−1 + (−7.42416 + 2.57333I) +O(ε)] ,
where one can already see, that the results approach the “heavy top limit”,

and above threshold: m = 2.1, s = 28.1, x = −0.242146

C(0)
f = Λf [(−2.17367− 1.04114I) + (2.91528− 0.402908I)ε− (2.56232− 0.147077I)ε2 +O(ε3)]

C(0)
s = Λs[(−0.0732197 − 0.438951I) + (0.737994 + 0.267139I)ε − (0.520376 − 0.217928I)ε2 +
O(ε3)]

C(1)
f = Λf [(13.042 + 6.24684I)ε−2 − (89.9695 − 37.8954I)ε−1 + (109.005 − 241.958I) +O(ε)]

C(1)
s = Λs[(0.439318 + 2.63371I)ε−2 − (16.9248 + 10.4905I)ε−1 + (57.7865− 26.6481I) +O(ε)]
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Appendix C

Harmonic Polylogarithms

Harmonic polylogarithms (HPLs) [29] are a generalization of the usual polylogarithms and
the Nielsen polylogarithms. HPLs have been implemented for the algebraic manipulation
system FORM [30, 31, 32] and in the C++ framework GiNaC [40, 41]. A FORTRAN code
for numerical evaluation is also available [27]. An implementation of the algebraic analytic
properties of HPLs for Mathematica is provided by the package HPL, [39]. This package can
also perform numerical evaluation of HPLs for arbitrary complex arguments, although not
competitive in terms of speed. Here we only list the definition and some basic properties.

HPLs are functions of a single variable, labeled by a vector of indices, HPL(a1, . . . , ak;x).
They are defined through recursive integration against kernels ga(x). The number of indices
k is called the weight of the HPL. The kernels are defined as

g0(x) =
1

x
(C.1)

g−1(x) =
1

1 + x
(C.2)

g1(x) =
1

1− x . (C.3)

The definition then reads

HPL(0;x) = log(x) (C.4)

HPL(−1;x) =

∫ x

0
g−1(t)dt =

∫ x

0

1

1 + t
(t) = log(1 + x) (C.5)

HPL(1;x) =

∫ x

0
g1(t)dt =

∫ x

0

1

1− t(t) = − log(1− x), (C.6)

and for higher weights

HPL(n0;x) =
1

n!
logn(x) (C.7)

HPL(a, a1, . . . , ak;x) =

∫ x

0
ga(t)HPL(a1, . . . , ak; t)dt, (C.8)

where n0 denotes a series of n zeros. For derivatives of HPL, the above definition immediately

113



gives
d

dx
HPL(a, a1, . . . , ak;x) = ga(x)HPL(a1, . . . , ak;x). (C.9)

Products of HPLs of weight w1 and w2 can be written as a linear combination of HPLs
of weight w = w1 + w2 according to

HPL(~p;x) HPL(~q;x) =
∑

~r∈~p]~q

HPL(~r;x) (C.10)

where ~p ] ~q is the set of all arrangements of the elements of ~p and ~q such that the internal
order of the elements of ~p and ~q is kept. For instance for ~p = (a, b) and ~q = (x, y) this means

HPL(a, b;x)HPL(y, z;x) = HPL(a, b, y, z;x) + HPL(a, y, b, z;x)

+HPL(a, y, z, b;x) + HPL(y, a, b, z;x)

+HPL(y, a, z, b;x) + HPL(y, z, a, b;x). (C.11)

This relation can be used to extract the logarithmic singularities from HPLs of higher weight
as shown in eq. (2.42).
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Appendix D

Master Integrals for gg → h in the

Standard Model

Here we give solutions for those master integrals not displayed in section 2.2.3. Unfortunately,
the expressions are rather lengthy. All solutions are written as

(m2)2nL−nP−nLε mi(x), (D.1)

where nP is the number of propagators and nL the number of loops. The variable x is defined
as

x =

√
1− τ − 1√
1− τ + 1

+ i0 where τ =
4m2

s
(D.2)

and mi(x) is given in terms of HPLs with argument x. Therefore without worrying about
analytic continuation, they can be evaluated for x ∈ [0, 1], what corresponds to the Euclidean
region.

Note, that the form (D.1), while suitable for the method of differential equations, is not
adequate for representing the massless bubble. The latter is essentially (−s)−ε and s gets
expressed in terms of x and the mass m2, which is absent in the massless bubble. But using
s instead of m2 as the dimensionful variable is no better, it just moves the awkwardness from
the massless bubble to the massive tadpole diagram.

One loop integrals

=

∫
ddk

iπd/2

1

k2 −m2 + iε
=

Γ(1 + ε)

1− ε (m2)−ε+1 · 1
ε

(D.3)

=

∫
ddk

iπd/2

1

D11D13
=

Γ(1 + ε)

1− ε (m2)−ε · 1
ε

Γ(2− ε)Γ(1− ε)
Γ(2− 2ε)

(
(1− x)2

x
− iε

)−ε

(D.4)
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=

∫
ddk

iπd/2

1

D21D23
=

Γ(1 + ε)

1− ε (m2)−ε
3∑

i=−1

εiF i
mbub(x) +O(ε4) (D.5)

F−1
mbub(x) = 1 (D.6)

F 0
mbub(x) =

1

1− x
{
− x+ (x+ 1)H(0;x) + 1

}
(D.7)

F 1
mbub(x) =

1

1− x
{1

6

(
−π2x− 12x− π2 + 12

)
+ (x+ 1)H(0;x) − 2(x+ 1)H(−1, 0;x)

+ (x+ 1)H(0, 0;x)
}

(D.8)

F 2
mbub(x) =

1

1− x
{
− 1

6
π2(x+ 1)− 2((2 + ζ(3))x+ ζ(3)− 2)

+
1

3
π2(x+ 1)H(−1;x) − 1

6

(
−12 + π2

)
(x+ 1)H(0;x)

− 2(x+ 1)H(0,−1, 0;x) − 2(x+ 1)H(−1, 0;x) + (x+ 1)H(0, 0;x)

+ 4(x+ 1)H(−1,−1, 0;x) − 2(x+ 1)H(−1, 0, 0;x) + (x+ 1)H(0, 0, 0;x)
}

(D.9)

F 3
mbub(x) =

1

1− x
{
− 1

40
π4(x+ 1)− 1

3
π2(x+ 1)− 2((4 + ζ(3))x+ ζ(3)− 4)

+
1

3
π2(x+ 1)H(0,−1;x) +

1

3
(x+ 1)H(−1;x)

(
π2 + 12ζ(3)

)

− 1

6
(x+ 1)

(
π2 + 12(−2 + ζ(3))

)
H(0;x) − 2(x+ 1)H(0, 0,−1, 0;x)

− 2(x+ 1)H(0,−1, 0;x) − 2

3
π2(x+ 1)H(−1,−1;x)

+
1

3

(
−12 + π2

)
(x+ 1)H(−1, 0;x) − 1

6

(
−12 + π2

)
(x+ 1)H(0, 0;x)

+ 4(x+ 1)H(0,−1,−1, 0;x) − 2(x+ 1)H(0,−1, 0, 0;x) + 4(x+ 1)H(−1, 0,−1, 0;x)

+ 4(x+ 1)H(−1,−1, 0;x) − 2(x+ 1)H(−1, 0, 0;x) + (x+ 1)H(0, 0, 0;x)

+ 4(x+ 1)H(−1,−1, 0, 0;x) − 8(x+ 1)H(−1,−1,−1, 0;x)

+ (x+ 1)H(0, 0, 0, 0;x) − 2(x+ 1)H(−1, 0, 0, 0;x)
}

(D.10)

=

∫
ddk

iπd/2

1

D21D22D23
=

Γ(1 + ε)

1− ε (m2)−ε−1
2∑

i=0

εiF i
mtri(x) +O(ε3) (D.11)

F 0
mtri(x) = − xH(0, 0;x)

(x− 1)2
(D.12)

F 1
mtri(x) =

x

(1− x)2
{1

6
π2H(0;x) + 2H(0,−1, 0;x) +H(0, 0;x) + 3ζ(3)
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−H(0, 0, 0;x)
}

(D.13)

F 2
mtri(x) =

x

(1− x)2
{
− 1

3
π2H(0,−1;x) +H(0;x)

(
−π

2

6
+ 2ζ(3)

)
− 3ζ(3) +

π4

72

+ 2H(0, 0,−1, 0;x) − 2H(0,−1, 0;x) +
1

6
π2H(0, 0;x) − 4H(0,−1,−1, 0;x)

+ 2H(0,−1, 0, 0;x) +H(0, 0, 0;x) −H(0, 0, 0, 0;x)
}

(D.14)

Factorizable integrals

=

∫
ddk

iπd/2

∫
ddl

iπd/2

1

D15D17
= × (D.15)

=

∫
ddk

iπd/2

∫
ddl

iπd/2

1

D11D13D14D16
= ×

(D.16)

=

∫
ddk

iπd/2

∫
ddl

iπd/2

1

D11D13D16
= × (D.17)

=

∫
ddk

iπd/2

∫
ddl

iπd/2

1

D14D16D17
= × (D.18)

=

∫
ddk

iπd/2

∫
ddl

iπd/2

1

D14D15D16D17
= × (D.19)

=

∫
ddk

iπd/2

∫
ddl

iπd/2

1

D21D23D24D26
= ×

(D.20)
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=

∫
ddk

iπd/2

∫
ddl

iπd/2

1

D21D23D24D25D26
= ×

(D.21)

Three propagator integrals

=

∫
ddk

iπd/2

∫
ddl

iπd/2

1

D11D2
14D

2
17

=

(
Γ(1 + ε)

1− ε

)2

(m2)−2ε−1
2∑

i=0

εiF i
1(x) +O(ε3) (D.22)

F 0
1 (x) = − 2xH(0, 0;x)

(x− 1)2
(D.23)

F 1
1 (x) =

x

(1− x)2
{1

3
π2H(0;x) + 12H(0,−1, 0;x) + 4H(0, 0;x) + 6ζ(3)

− 4H(0, 1, 0;x) − 6H(0, 0, 0;x) + 4H(1, 0, 0;x)
}

(D.24)

F 2
1 (x) =

x

(1− x)2
{
− 2π2H(0,−1;x) − 12ζ(3) +

13π4

180

+

(
−2π2

3
+ 16ζ(3)

)
H(0;x) +

2

3
π2H(0, 1;x) − 12H(1;x)ζ(3)

+ 36H(0, 0,−1, 0;x) − 24H(0,−1, 0;x) +
(
−2 + π2

)
H(0, 0;x) − 2

3
π2H(1, 0;x)

+ 8H(0, 1, 0;x) − 12H(0, 0, 1, 0;x) − 72H(0,−1,−1, 0;x) + 48H(0,−1, 0, 0;x)

+ 24H(0,−1, 1, 0;x) + 12H(0, 0, 0;x) − 24H(1, 0,−1, 0;x) − 8H(1, 0, 0;x)

+ 8H(1, 0, 1, 0;x) + 24H(0, 1,−1, 0;x) − 20H(0, 1, 0, 0;x) − 8H(0, 1, 1, 0;x)

− 14H(0, 0, 0, 0;x) + 12H(1, 0, 0, 0;x) − 8H(1, 1, 0, 0;x)
}

(D.25)

=

∫
ddk

iπd/2

∫
ddl

iπd/2

1

D2
11D

2
14D17

=

(
Γ(1 + ε)

1− ε

)2

(m2)−2ε−1
2∑

i=−1

εiF i
2(x) +O(ε3) (D.26)

118



F−1
2 (x) =

xH(0;x)

x2 − 1
(D.27)

F 0
2 (x) =

x

(x− 1)3(x+ 1)

{
− 2H(0;x)(x − 1)2 − 1

6
π2(x− 1)2

+ (x− 1)(5x − 3)H(0, 0;x) − 6(x− 1)2H(−1, 0;x)

+ 2(x− 1)2H(1, 0;x)
}

(D.28)

F 1
2 (x) =

x

(x− 1)3(x+ 1)

{1

3
(x− 1)

(
6ζ(3)(4 − 7x) + π2(x− 1)

)

+ π2(x− 1)2H(−1;x) − 1

6
(x− 1)

(
−6x+ π2(5x− 3) + 6

)
H(0;x)

− 1

3
π2H(1;x)(x − 1)2 − 6(5x − 3)H(0,−1, 0;x)(x − 1)

+ 12(x− 1)2H(−1, 0;x) − 2(x− 1)(5x− 3)H(0, 0;x)

+ 2(x− 1)(5x − 3)H(0, 1, 0;x) − 4(x− 1)2H(1, 0;x)

+ 36(x− 1)2H(−1,−1, 0;x) − 24(x − 1)2H(−1, 0, 0;x)

+ (x− 1)(13x − 7)H(0, 0, 0;x) − 12(x− 1)2H(−1, 1, 0;x)

+ 2(x− 1)(3x − 5)H(1, 0, 0;x) − 12(x− 1)2H(1,−1, 0;x)

+ 4(x− 1)2H(1, 1, 0;x)
}

(D.29)

F 2
2 (x) =

x

(x− 1)3(x+ 1)

{
− 1

360
(x− 1)

(
60π2(x− 1) + π4(61x− 35) − 1440(7x − 4)ζ(3)

)

+ π2(x− 1)(5x − 3)H(0,−1;x) − 2(x− 1)2H(−1;x)
(
π2 − 33ζ(3)

)

+
1

3
(x− 1)H(0;x)

(
6ζ(3)(9 − 17x) + π2(5x− 3)

)

+
2

3
(x− 1)H(1;x)

(
6ζ(3)(7 − 4x) + π2(x− 1)

)

− 1

3
π2(x− 1)(5x − 3)H(0, 1;x) − 6(x− 1)(13x − 7)H(0, 0,−1, 0;x)

+ 12(x− 1)(5x − 3)H(0,−1, 0;x) − 6π2(x− 1)2H(−1,−1;x)

+ 2
(
−3 + 2π2

)
H(−1, 0;x)(x − 1)2 + 2π2H(−1, 1;x)(x − 1)2

− 1

6
(x− 1)

(
−30x+ π2(13x− 7) + 18

)
H(0, 0;x)

+ 2π2(x− 1)2H(1,−1;x) − 1

3
(x− 1)

(
−6x+ π2(3x− 5) + 6

)
H(1, 0;x)

− 2

3
π2H(1, 1;x)(x − 1)2 − 4(5x− 3)H(0, 1, 0;x)(x − 1)

+ 2(x− 1)(13x − 7)H(0, 0, 1, 0;x) + 36(x− 1)(5x − 3)H(0,−1,−1, 0;x)

− 24(x− 1)(5x − 3)H(0,−1, 0, 0;x) − 12(x− 1)(5x − 3)H(0,−1, 1, 0;x)

+ 144(x − 1)2H(−1, 0,−1, 0;x) − 72(x− 1)2H(−1,−1, 0;x)

+ 48H(−1, 0, 0;x)(x − 1)2 + 24H(−1, 1, 0;x)(x − 1)2

− 48H(−1, 0, 1, 0;x)(x − 1)2 − 2(13x − 7)H(0, 0, 0;x)(x − 1)

+ 24(x− 1)2H(1,−1, 0;x) − 12(x− 1)(3x − 5)H(1, 0,−1, 0;x)
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− 8H(1, 1, 0;x)(x − 1)2 − 4(3x − 5)H(1, 0, 0;x)(x − 1)

+ 4(x− 1)(3x − 5)H(1, 0, 1, 0;x) − 12(x − 1)(5x − 3)H(0, 1,−1, 0;x)

+ 2(x− 1)(27x − 17)H(0, 1, 0, 0;x) + 4(x− 1)(5x − 3)H(0, 1, 1, 0;x)

+ 144(x − 1)2H(−1,−1, 0, 0;x) − 216(x− 1)2H(−1,−1,−1, 0;x)

+ 72(x− 1)2H(−1,−1, 1, 0;x) − 60(x − 1)2H(−1, 0, 0, 0;x)

+ 72(x− 1)2H(−1, 1,−1, 0;x) − 48(x − 1)2H(−1, 1, 0, 0;x)

+ (x− 1)(29x − 15)H(0, 0, 0, 0;x) − 24(x− 1)2H(−1, 1, 1, 0;x)

+ 72(x− 1)2H(1,−1,−1, 0;x) − 48(x − 1)2H(1,−1, 0, 0;x)

+ 2(x− 1)(7x − 13)H(1, 0, 0, 0;x) − 24(x− 1)2H(1,−1, 1, 0;x)

+ 4(x− 1)(5x − 3)H(1, 1, 0, 0;x) − 24(x − 1)2H(1, 1,−1, 0;x)

+ 8(x− 1)2H(1, 1, 1, 0;x)
}

(D.30)

Four propagator integrals

=

∫
ddk

iπd/2

∫
ddl

iπd/2

1

D11D14D15D17

=

(
Γ(1 + ε)

1− ε

)2

(m2)−2ε
1∑

i=−2

εiF i
3(x) +O(ε2) (D.31)

F−2
3 (x) =

1

2
(D.32)

F−1
3 (x) = − 1

2
(D.33)

F 0
3 (x) =

1

(1− x)2
{
− 3x2 + (6− 4ζ(3))x + 2

(
x2 − 1

)
H(0;x)− 3

−H(0, 0;x)(x − 1)2 + 2xH(0, 0, 0;x) + 4xH(1, 0, 0;x)
}

(D.34)

F 1
3 (x) =

1

(1− x)2
{

3(−4 + ζ(3))x2 − 2(−12 + ζ(3))x+
2π4x

45
− 1

3
π2
(
x2 − 1

)
+ 3(−4 + ζ(3))

+
1

6
H(0;x)

(
π2(x− 1)2 + 12

(
4x2 − 3ζ(3)x− 4

))
− 12xH(1;x)ζ(3)

+ 6H(0,−1, 0;x)(x − 1)2 − 12xH(0, 0,−1, 0;x) − 12
(
x2 − 1

)
H(−1, 0;x)

+

(
11x2 − 1

3

(
6 + π2

)
x− 5

)
H(0, 0;x) +

(
4x2 − 2π2x

3
− 4

)
H(1, 0;x)

− 2H(0, 1, 0;x)(x − 1)2 + 4xH(0, 0, 1, 0;x) +
(
−3x2 + 4x− 3

)
H(0, 0, 0;x)

− 24xH(1, 0,−1, 0;x) + 2
(
x2 − 4x+ 1

)
H(1, 0, 0;x) + 8xH(1, 0, 1, 0;x)

− 4xH(0, 1, 0, 0;x) + 6xH(0, 0, 0, 0;x) + 12xH(1, 0, 0, 0;x)

− 8xH(1, 1, 0, 0;x)
}

(D.35)
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=

∫
ddk

iπd/2

∫
ddl

iπd/2

1

D12D14D16D17

=

(
Γ(1 + ε)

1− ε

)2

(m2)−2ε
1∑

i=−2

εiF i
4(x) +O(ε2) (D.36)

F−2
4 (x) =

1

2
(D.37)

F−1
4 (x) =

1

(1− x)2
{3

2
(x− 1)2 +

(
1− x2

)
H(0;x)

}
(D.38)

F 0
4 (x) =

1

(1− x)2
{

5x2 + 2(−5 + 2ζ(3))x +

(
−3x2 +

π2x

3
+ 3

)
H(0;x) + 5

+ 2
(
x2 − 1

)
H(−1, 0;x) − (x− 1)(x + 2)H(0, 0;x) +

(
1− x2

)
H(1, 0;x)

+ 2xH(0, 1, 0;x) + xH(0, 0, 0;x)
}

(D.39)

F 1
4 (x) =

1

(1− x)2
{
− (−16 + ζ(3))x2 +

(
−32− 11π4

90
+ ζ(3)

)
x− 4(−4 + ζ(3))

+H(0;x)

(
−10x2 − 1

6
π2(x+ 1)x− 3ζ(3)x+ 10

)
− 2

3
π2xH(0,−1;x)

+
1

3
π2xH(0, 1;x) +

1

6
H(1;x)

(
−48ζ(3)x− π2

(
x2 − 1

))

− 2xH(0, 0,−1, 0;x) + 2(x− 1)(x+ 2)H(0,−1, 0;x) + 6
(
x2 − 1

)
H(−1, 0;x)

+

(
−3x2 +

1

6

(
−18 + π2

)
x+ 6

)
H(0, 0;x) +

(
−3x2 − 2π2x

3
+ 3

)
H(1, 0;x)

− 2
(
x2 + x− 1

)
H(0, 1, 0;x) + 2xH(0, 0, 1, 0;x) − 2xH(0,−1, 0, 0;x)

− 4xH(0,−1, 1, 0;x) +
(
4− 4x2

)
H(−1,−1, 0;x) + 3

(
x2 − 1

)
H(−1, 0, 0;x)

+ 2
(
x2 − 1

)
H(−1, 1, 0;x) +

(
−2x2 − 3x+ 4

)
H(0, 0, 0;x)

+ 2
(
x2 − 1

)
H(1,−1, 0;x) +

(
−x2 − 2x+ 3

)
H(1, 0, 0;x)

+
(
2− 2x2

)
H(1, 1, 0;x) − 4xH(1, 0, 1, 0;x) − 4xH(0, 1,−1, 0;x)

+ 4xH(0, 1, 0, 0;x) + 4xH(0, 1, 1, 0;x) + 3xH(0, 0, 0, 0;x)

− 2xH(1, 0, 0, 0;x)
}

(D.40)

=

∫
ddk

iπd/2

∫
ddl

iπd/2

(k + p1) · (l − k)
D12D14D16D17
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=

(
Γ(1 + ε)

1− ε

)2

(m2)1−2ε
1∑

i=−2

εiF i
5(x) +O(ε2) (D.41)

F−2
5 (x) =

(x− 1)2

8x
(D.42)

F−1
5 (x) =

1

(1− x)2x
{ 5

16
(x− 1)4 +

(
−x

4

4
+ x3 − x+

1

4

)
H(0;x)

}
(D.43)

F 0
5 (x) =

1

(1− x)2x
{ 1

32

(
31x4 − 140x3 + (218 − 64ζ(3))x2 − 140x + 31

)

+
1

24

(
−15x4 + 54x3 − 4π2x2 − 54x+ 15

)
H(0;x)

+
1

2

(
x4 − 4x3 + 4x− 1

)
H(−1, 0;x)

+
1

4

(
−x4 + 4x3 + 3x2 − 8x+ 2

)
H(0, 0;x) +

(
−x

4

4
+ x3 − x+

1

4

)
H(1, 0;x)

−H(0, 1, 0;x)x2 − 1

2
H(0, 0, 0;x)x2

}
(D.44)

F 1
5 (x) =

1

(1− x)2x
{(189

64
− ζ(3)

4

)
x4 +

(
−233

16
+
π2

24
+ ζ(3)

)
x3 +

(
743

32
+

11π4

180
− 3ζ(3)

4

)
x2

− 1

48

(
699 + 2π2 − 192ζ(3)

)
x− ζ(3) +

189

64
+

1

3
π2x2H(0,−1;x)

+
1

48
H(0;x)

(
−
(
93 + 2π2

)
x4 +

(
342 + 8π2

)
x3 + 6

(
π2 + 12ζ(3)

)
x2 − 342x + 93

)

+
1

24
H(1;x)

(
96x2ζ(3)− π2

(
x4 − 4x3 + 4x− 1

))

+ x2H(0, 0,−1, 0;x) − 1

6
π2x2H(0, 1;x)

+
1

2

(
x4 − 4x3 − 3x2 + 8x− 2

)
H(0,−1, 0;x)

+
1

4

(
5x4 − 18x3 + 18x− 5

)
H(−1, 0;x)

+

(
−5x4

8
+ 2x3 − 1

24

(
−57 + 2π2

)
x2 − 5x+

5

4

)
H(0, 0;x)

+
1

24

(
−15x4 + 60x3 + 8π2x2 − 60x+ 15

)
H(1, 0;x)

+
1

2

(
−x4 + 4x3 + 3x2 − 4x+ 1

)
H(0, 1, 0;x) − x2H(0, 0, 1, 0;x)

+H(0,−1, 0, 0;x)x2 + 2H(0,−1, 1, 0;x)x2 +
(
−x4 + 4x3 − 4x+ 1

)
H(−1,−1, 0;x)

+
3

4

(
x4 − 4x3 + 4x− 1

)
H(−1, 0, 0;x)

+
1

2

(
x4 − 4x3 + 4x− 1

)
H(−1, 1, 0;x)

+

(
−x

4

2
+ 2x3 +

9x2

4
− 4x+ 1

)
H(0, 0, 0;x)
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+
1

2

(
x4 − 4x3 + 4x− 1

)
H(1,−1, 0;x)

+

(
−x

4

4
+ x3 +

3x2

2
− 3x+

3

4

)
H(1, 0, 0;x)

+ 2H(1, 0, 1, 0;x)x2 +
1

2

(
−x4 + 4x3 − 4x+ 1

)
H(1, 1, 0;x)

+ 2H(0, 1,−1, 0;x)x2 − 2H(0, 1, 0, 0;x)x2 − 2H(0, 1, 1, 0;x)x2

+ x2H(1, 0, 0, 0;x) − 3

2
x2H(0, 0, 0, 0;x)

}
(D.45)

=

∫
ddk

iπd/2

∫
ddl

iπd/2

1

D12D14D16D3
17

=

(
Γ(1 + ε)

1− ε

)2

(m2)−2ε−2
2∑

i=0

εiF i
6(x) +O(ε3) (D.46)

F 0
6 (x) =

xH(0, 0;x)

2(x− 1)2
(D.47)

F 1
6 (x) =

x

(1− x)2
{
− 1

4
π2H(0;x) −H(0,−1, 0;x) −H(0, 0;x) − 9ζ(3)

2

−H(0, 1, 0;x) +
1

2
H(0, 0, 0;x) +H(1, 0, 0;x)

}
(D.48)

F 2
6 (x) =

x

(1− x)2
{1

2
π2H(0,−1;x) +

1

2
π2H(0;x) + 9ζ(3) +

11π4

144

+ 3ζ(3)H(1;x) − 1

6
π2H(0, 1;x) −H(0, 0,−1, 0;x) + 2H(0,−1, 0;x)

+
1

12

(
6− π2

)
H(0, 0;x) +

1

2
π2H(1, 0;x) + 2H(0, 1, 0;x)

+ 2H(0,−1,−1, 0;x) + 2H(0,−1, 1, 0;x) −H(0, 0, 0;x) − 2H(1, 0,−1, 0;x)

− 2H(1, 0, 0;x) + 4H(1, 0, 1, 0;x) + 2H(0, 1,−1, 0;x) −H(0, 1, 0, 0;x)

− 2H(0, 1, 1, 0;x) +
1

2
H(0, 0, 0, 0;x) + 4H(1, 0, 0, 0;x) + 2H(1, 1, 0, 0;x)

}

(D.49)

Five propagator integrals

=

∫
ddk

iπd/2

∫
ddl

iπd/2

1

D22D23D24D26D27

=

(
Γ(1 + ε)

1− ε

)2

(m2)−2ε−1F 0
7 (x) +O(ε1) (D.50)
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F 0
7 (x) =

1

(1− x)2
{
− 1

6
π2H(0, 0;x)x − 1

3
π2H(1, 0;x)x − π4x

36

− xH(0, 0, 1, 0;x) − 2xH(1, 0, 1, 0;x) − 2xH(0, 1, 0, 0;x) − 3xH(1, 0, 0, 0;x)

− 4xH(1, 1, 0, 0;x)
}

(D.51)

=

∫
ddk

iπd/2

∫
ddl

iπd/2

1

D11D13D14D16D17

=

(
Γ(1 + ε)

1− ε

)2

(m2)−2ε−1
1∑

i=0

εiF i
8(x) +O(ε2) (D.52)

F 0
8 (x) =

x

(1− x)2
{
− 2H(0, 0, 1;x) − 2H(0, 1, 0;x) + 4H(1, 0, 0;x) − 6ζ(3)

}
(D.53)

F 1
8 (x) =

x

(1− x)2
{
− 12ζ(3)H(0;x) +

1

3
π2H(0, 1;x) − 24H(1;x)ζ(3) − π4

10

− 8H(0, 0, 0, 1;x) − 10H(0, 0,−1, 0;x) + 4H(0,−1, 0, 1;x) − 2

3
π2H(1, 0;x)

− 4H(1, 0, 0, 1;x) − 4H(0, 1, 0, 1;x) − 4H(0, 0, 1, 0;x) − 4H(0, 0, 1, 1;x) + 4H(0,−1, 0, 0;x)

+ 4H(0,−1, 1, 0;x) − 24H(1, 0,−1, 0;x) + 4H(1, 0, 1, 0;x) + 4H(0, 1,−1, 0;x)

− 6H(0, 1, 0, 0;x) − 4H(0, 1, 1, 0;x) + 12H(1, 0, 0, 0;x)
}

(D.54)

Six propagator integrals

=

∫
ddk

iπd/2

∫
ddl

iπd/2

1

D21D23D24D25D26D27

=

(
Γ(1 + ε)

1− ε

)2

(m2)−2ε−2F 0
9 (x) +O(ε1) (D.55)

F 0
9 (x) =

x2

(1− x)3(x+ 1)

{
8ζ(3)H(0;x) + 16H(0, 0,−1, 0;x) +

π4

10

+
2

3
π2H(0, 0;x) − 4H(0, 0, 1, 0;x) − 8H(0,−1, 0, 0;x) + 14H(0, 1, 0, 0;x)

+H(0, 0, 0, 0;x)
}

(D.56)
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=

∫
ddk

iπd/2

∫
ddl

iπd/2

1

D31D32D33D34D35D37

=

(
Γ(1 + ε)

1− ε

)2

(m2)−2ε−2
0∑

i=−1

εiF i
10(x) +O(ε1) (D.57)

F−1
10 (x) =

x2

(1− x)4
{
− 2

3
π2H(0;x) − 8H(0,−1, 0;x) + 4H(0, 0, 0;x) − 12ζ(3)

}
(D.58)

F 0
10(x) =

x2

(1− x)4
{8

3
π2H(0,−1;x) + 24ζ(3) − 16π4

45

+
4

3

(
π2 − 33ζ(3)

)
H(0;x) − 4

3
π2H(0, 1;x) − 48H(1;x)ζ(3)

− 56H(0, 0,−1, 0;x) + 16H(0,−1, 0;x) − 10

3
π2H(0, 0;x) − 8

3
π2H(1, 0;x)

+ 8H(0, 0, 1, 0;x) + 64H(0,−1,−1, 0;x) − 40H(0,−1, 0, 0;x) − 16H(0,−1, 1, 0;x)

− 8H(0, 0, 0;x) − 32H(1, 0,−1, 0;x) − 16H(0, 1,−1, 0;x) + 8H(0, 1, 0, 0;x)

+ 12H(0, 0, 0, 0;x) + 16H(1, 0, 0, 0;x)
}

(D.59)

125



126



Appendix E

Feynman Rules for SUSY QCD

All momenta are incoming.

a, µ

i

j

−i g T a
ijγ

µ

p1, a, µ

p2, b, ν

p3, c, ρ

−g fabc [(p1 − p2)
ρ gµν + (p2 − p3)

µ gνρ + (p3 − p1)
ν gρµ]

a, µ

b

c

−g fabc γ
µ

a, µ

p, r, i

k, s, j

−i g δrs T
a
ij (p− k)µ
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b, ν

a, µ

c, ρ

d, σ −i g2
[

f eacf ebd (gµνgρσ − gµσgνρ)

+f eadf ebc (gµνgρσ − gµρgνσ)

+f eabf ecd (gµρgνσ − gµσgνρ)
]

b, ν

a, µ

q1, r, i

q2, s, j

i g2 δq1q2 δrs

(
T a

ik T
b
kj + T b

ik T
a
kj

)
gµν

a

q2, j

q1, s1, i

i
g√
2
δq1q2 T

a
ij (A(q1, s1)−B(q1, s1) γ5)

a

q2, j

q1, s, i

i
g√
2
δq1q2 T

a
ij (A(q1, s1) +B(q1, s1) γ5)

q1, r, i

q2, s, j q3, t, k

q4, u, l

−i g2
{

δq1q2δq3q4

[
T a

ijT
a
kl Sq1

rsSq3
tu + δq1q3 T

a
ilT

a
kj Sq1

ruSq3
ts

]

+δq1q4δq2q3 (1− δq1q2)
[
T a

ilT
a
kj Sq1

ruSq3
ts + δq1q3 T

a
ijT

a
kl Sq1

rsSq3
tu

] }

q1

q2

−i mq

v
δq1q2 hf (q1)

128



q1, s1

q2, s2

−i
m2

q

v
δq1q2 hs(q1, s1, s2)

In the vertices involving a gluino, a quark and a squark, we have introduced:

A(q, s) = Rq
s,2 −R

q
s,1 , (E.1)

B(q, s) = −Rq
s,2 −Rq

s,1 . (E.2)

The matrices Rq and Sq are the mixing matrices

Rq =


 cos θq̃ sin θq̃

− sin θq̃ cos θq̃


 , (E.3)

and
Sq

ij = Rq
i1R

q
j1 −R

q
i2R

q
j2 , (E.4)

Sq =


 cos 2θq̃ − sin 2θq̃

− sin 2θq̃ − cos 2θq̃


 . (E.5)

In the diagrams containing a gluino, the combinations A(q, s1)A(q, s2) and B(q, s1)B(q, s2)
appear. It is convenient to express them in terms of

(
Rq
±

)
ij

= B(q, i)B(q, j) ±A(q, i)A(q, j) , (E.6)

which have the form

Rq
+ = 2


 1 0

0 1


 , Rq

− = 2


 sin 2θq̃ cos 2θq̃

cos 2θq̃ − sin 2θq̃


 . (E.7)

The vacuum expectation value of the higgs boson, which appears in the higgs-matter
couplings is

1

v
=

1√
v2
u + v2

d

=
e

2 sin θW MW
. (E.8)
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