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We present a search for the decay of a go or BY meson to a K*°K° or K*°K? final state, using a
sample of approximately 232 million BB events collected with the BABAR detector at the PEP-II
asymmetric energy ete™ collider at SLAC. The measured branching fraction is B(B® — K*°K?°) +

B(B® — K*°K%) = (0.2739 791) x 107%. We obtain the following upper limit for the branching

fraction at 90% confidence level: B(B° — K*°K%) + B(B® — K*°K°) < 1.9 x 107%. We use
our result to constrain the Standard Model prediction for the deviation of the CP asymmetry in

B° — ¢K° from sin28.



PACS numbers: 13.25.Hw, 12.15.Hh, 11.30.Er

I. INTRODUCTION

This paper describes a search for the decay of a B°
or BY meson to a K**K° or K*K° final state. Hence-
forth, we use B® — K*9K?O to refer to both BY and B°
decays and to the K*°K? and K*°K° decay channels.
In the Standard Model (SM), B — K*'K° decays are
described by b — dss diagrams such as those shown in
Fig. 1. Figure 1(a) illustrates b — d “penguin” transi-
tions. A so-called rescattering process, effectively a tree-
level b — duu weak decay followed by the long distance
production of a s§ pair, is shown in Fig. 1(b). Other
rescattering diagrams, e.g., with an intermediate ¢ quark
loop rather than a u quark loop, are also possible. Note
that the rescattering diagrams can be considered to be
the long distance components of the corresponding pen-
guin diagrams, in which the quark in the intermediate
loop approaches its mass shell.

The SM prediction for the branching fraction of B —
K*9K?Y is about 0.5 x 1076 [1]-[3]. Extensions to the SM
can yield significantly larger branching fractions, how-
ever. For example, models incorporating supersymme-
try with R-parity violating interactions predict branching
fractions as large as about 8 x 1075 [3]. The event rates
corresponding to this latter prediction are well within
present experimental sensitivity. Currently, there are no
experimental results for B — K*9K°. Searches for the
related non-resonant decay B® — K7t KO are reported
in Ref. [4].

At present, little experimental information is available
for b — d transitions. Such processes can provide im-
portant tests of the quark-flavor sector of the SM as
discussed, for example, in Ref. [5]. Our study can also
help to clarify issues concerning potential differences be-
tween determinations of sin2( from tree- and penguin-
dominated processes, where 3 is an angle of the Unitarity
Triangle. Such differences can provide a signal for physics
beyond the SM [6]. In particular, our study is relevant
for the interpretation of the time dependent CP asym-
metry obtained from B? — ¢K° decays. (For a review
of the Unitarity Triangle and sin23 measurements based
on BY — ¢K? decays, see Sec. 12 of Ref. [7].) In the SM,
this decay is dominated by the b — s penguin diagrams
shown in Fig. 2(a). In addition, sub-dominant SM pro-
cesses with a different weak phase, such as those shown
in Figs. 2(b) and (c) involving the CKM matrix element
Vup, contribute at a level that is believed to be small [8].
The deviation of the CP asymmetry in B® — ¢K° de-

*Also at Laboratoire de Physique Corpusculaire, Clermont-
Ferrand, France

T Also with Universitd di Perugia, Dipartimento di Fisica, Perugia,
Italy

T Also with Universita della Basilicata, Potenza, Italy
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FIG. 1: Feynman diagrams for B — K*9K°:
diagrams and (b) b — u rescattering diagram.

(a) penguin

cays from sin2( because of these sub-dominant processes
is referred to as ASyxo.

Grossman et al. [9] introduced a method to obtain
a SM bound on ASyko, using SU(3) flavor symme-
try to relate sub-dominant terms such as those shown
in Figs. 2(b) and (c) to the corresponding terms in
strangeness-conserving processes such as those shown in
Fig. 1. To determine this bound, measurements of the
branching fractions of 11 BY decay channels are required
(K*°K° K*°KY9 and hh' with h = ¢, w or p° and b’ = 7,
7" or 7°). Experimental results are currently available for
all these channels except the two in our study: K*9K°
and K*°K°. Our measurements will therefore enable this
bound on ASy,go to be determined for the first time.
Note that there are not statistically significant signals for
any of the nine channels for which results are currently
available.

Our results might also help to constrain predictions
for other charmless, strangeness-conserving decays such
as B® — pm, in which a dd or w7 pair couples to the gluon
in Fig. 1(a) rather than a s3 pair (see, e.g., Table III of
Ref. [2]).

II. THE BABAR DETECTOR AND DATASET

The data used in this analysis were collected with the
BABAR detector at the PEP-II asymmetric eTe™ stor-
age ring. The data sample consists of an integrated lu-
minosity of 210 fb~! recorded at the 7'(4S) resonance
with a center-of-mass (CM) energy of /s = 10.58 GeV,
corresponding to (232 4 2) x 105 BB events. A data
sample of 21.6 fb~! with a CM energy 40 MeV below
the 1°(45) resonance is used to study background con-
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FIG. 2: (a) CKM Dominant and (b,c) CKM suppressed dia-
grams for B® — ¢K°.

tributions from light quark ete™ — g (¢ = u,d, s or ¢)
continuum events.

The BABAR detector is described in detail else-
where [10]. Charged particles are reconstructed using
a five-layer silicon vertex tracker (SVT) and a 40-layer
drift chamber (DCH) immersed in a 1.5 T magnetic
field. Charged pions and kaons are identified (parti-
cle identification) with likelihoods for particle hypothe-
ses constructed from specific energy loss measurements
in the SVT and DCH and from Cherenkov radiation
angles measured in the detector of internally reflected
Cherenkov light. Photons are reconstructed in the elec-
tromagnetic calorimeter. Muon and neutral hadron iden-
tification are performed with the instrumented flux re-
turn.

Monte Carlo (MC) events are used to determine signal
and background characteristics, optimize selection crite-
ria, and evaluate efficiencies. B°B° and BTB~ events,
and continuum events, are simulated with the EvtGen [11]
and Jetset [12] event generators, respectively. The effec-
tive integrated luminosity of the MC samples is at least
four times larger than that of the data for the B°BY and
BB~ samples, and about 1.5 times that of the data for
the continuum samples. In addition, separate samples
of specific B°BY decay channels are studied for the pur-
poses of background evaluation (see, e.g., the channels
mentioned in Sec. IIIB). All MC samples include simu-

lation of the BABAR detector response [13].

III. ANALYSIS METHOD
A. EVENT SELECTION

B — K*9KO event candidates are selected through
identification of K** — K*7~ and K — K% — ntn~
decays. Throughout this paper, the charge conjugate
channels are implied unless otherwise noted. As the first
step in the selection process, we identify events with at
least five charged tracks and less than 20 GeV of total
energy. K9 candidates are formed by combining all op-
positely charged pairs of tracks, by fitting the two tracks
to a common vertex, and by requiring the pair to have a
fitted invariant mass within 0.025 GeV/c? of the nominal
K9 mass assuming the two particles to be pions. The K9
candidate is combined in a vertex fit with two other op-
positely charged tracks, associated with the K*° decay,
to form a BY candidate. These latter two tracks are each
required to have a distance of closest approach to the
ete™ collision point of less than 1.5 cm in the plane per-
pendicular to the beam axis and 10 cm along the beam
axis. Of the two tracks associated with the K*° decay,
one is required to be identified as a kaon and the other
as a pion using the particle identification. Charged kaons
are identified with an efficiency and purity of about 80%
and 90%, respectively, averaged over momentum. The
corresponding values for charged pions are 90% and 80%.

Our study utilizes an extended maximum likelihood
(ML) technique to determine the number of signal and
background events (Sec. III C). The fitted experimental
variables are AE, mgg, and the mass of the K*0 can-
didate My+,-, with AE = E} — E} and mgs =

beam
VE;2,, — Py? [10], where Ej and P, are the CM en-
ergy and momentum of the BY candidate and Efom 18
half the CM energy. Mg+,- is determined by fitting the
tracks from the K*° candidate to a common vertex. We
require events entering the ML fit to satisfy the following
restrictions:

o |[AE| < 0.15GeV,
e 5.2 < mgs < 5.3GeV/c?,
© 0.72 < Mp+,- < 1.20 GeV/c?.

Note that virtually all well reconstructed signal events
satisfy these criteria.

We further impose the following criteria. The selection
values are optimized to minimize the estimated upper
limit on the B® — K*°K° branching fraction by com-
paring the number of expected signal [2] and background
events as the selection values are changed.

e BY criteria: The y? probability of the fitted B
vertex is required to exceed 0.003.



o K*0 criteria: K*0 candidates are required to satisfy
| cos | > 0.50, where 0y is the helicity angle in
the K*V rest frame, defined as the angle between
the direction of the boost from the B rest frame
and the K momentum.

K9 criteria: The x? probability of the fitted K2 ver-
tex is required to exceed 0.06. The fitted KO mass
is required to lie within 10.5 MeV/c? of the peak of
the reconstructed K9 mass distribution. (For pur-
poses of comparison, one standard deviation of the
K9 mass resolution is about 3 MeV/c?.) The K?
decay length significance, defined by the distance
between the K*0 and K? decay vertices divided by
the uncertainty on that quantity, is required to be
larger than 3. The angle between the K9 flight di-
rection and its momentum vector, 6 K95 is required

to satisfy cos HKg > 0.997, where the K9 flight di-

rection is defined by the direction between the K*°
and K9 decay vertices.

Event shape criteria: To separate signal events
from the continuum background, we apply selec-
tion requirements on global momentum proper-
ties. B° mesons in 7(4S) decays are produced
almost at rest. Therefore, the B® decay prod-
ucts are essentially isotropic in the event CM.
In contrast, continuum ete™ — ¢q events at the
Y (4S) energy are characterized by back-to-back
two-jet-like event structures because of the rela-
tively small masses of hadrons containing u, d, s
and ¢ quarks. As a means to separate signal from
continuum background events, we calculate the
Legendre polynomial-like terms Lo and Lo defined
by Lo =3, o piand Ly =Y . B (3cos?6,—1),
where p; is the magnitude of the 3-momentum of a
particle and 6; is its polar angle with respect to the
thrust [14] axis, with the latter determined using
the candidate B° decay products only. These sums
are performed over all particles in the event not
associated with the B° decay (“rest-of-event” or
r.o.e.). Lo and Ly are evaluated in the CM frame.
We require 0.374 Ly — 1.179 Ly > 0.15. The co-
efficients of Ly and Lo are determined with the
Fisher discriminant method [15]. To further re-
duce the continuum background, we also require
| cosft| < 0.55, where 7 is the angle between the
momentum of the BY candidate and the thrust axis,
evaluated in the CM frame, with the thrust axis in
this case determined using all particles in the event
except those associated with the B? candidate.

events.

B. BACKGROUND EVALUATION

To identify residual backgrounds from B decays, we
examine B°B° and BTB~ MC events that satisfy the
selection criteria of Sec. IIT A and that fall within the
expected signal region of the mgg distribution, defined by
5.271 < mgs < 5.286 GeV/c?. The events so-identified
are divided into four categories.

1. Events containing BY decays with the same
Krrrm final state as the signal, such as B® —
D¥K*(D¥ — 7TK?), B — D¥r* (DF¥ —
K*7F7xF), or B® — K*7FTKY. These channels
are expected to peak in the signal regions of mgg
and AFE but not in the signal region of Mg+ ,-.
The largest number of background events in this
category arises from B® — DFTK* (DT — 7FTK9).
To reduce the contributions of this channel, we ap-
ply a veto on the 7T K0 mass MﬂKg based on the

invariant mass of the K and the pion used to re-
construct the K*. A veto with 1.813 < M ko <

1.925 GeV/c? (corresponding to +7 standard devi-
ations of a Gaussian fit to the M, o MC distribu-
tion) removes 64 + 1% of the DT K* background
MC events but only 4.4 + 0.6% of the signal MC
events, where the uncertainties are statistical. Note
that the reconstructed M, KO distribution has non-
Gaussian tails.

2. Events containing B° decays with a kaon misiden-
tified as a pion, such as BY — ¢K% (¢ — KT K™)
or BY — fOK? (f® - KT K~). This category of
background is expected to peak in the mgg signal
region, but not in the Mg+ - signal region, and to
exhibit a peak in AFE that is negatively displaced
with respect to the signal peak centered at zero.
The largest number of events in this category arises
from B® — ¢K? (¢ — K+ K~). We apply a veto on
the KT K~ mass Mg+ - assuming the pion candi-
date used to reconstruct the K*° to be a kaon. The
veto requires 1.0098 < Mg+ - < 1.0280 GeV/c?
(corresponding to £2.5 standard deviations of a
Gaussian fit to the Mg+~ MC distribution). This
selection requirement eliminates 87 = 1% of the
#K? background MC events but only 1.2 +0.3%
of the signal MC events.

3. Events containing B® decays with a pion misidenti-
fied as a kaon, such as B — D*7nF (D* — 7+ K9)

After applying the above criteria, 3.8% of the selected
events are found to contain more than one B® candidate.
For these events, only the candidate with the largest B°
vertex fit probability is retained.

Our selection procedure eliminates 99.78% and 99.97%
of the BB and continuum background MC events, re-
spectively, while retaining 9.8 +0.1% of the signal MC

or B — pPKY (p° — 7FxF). This category of
background peaks in the mgg signal region but not
in the M+, - signal region and exhibits a peak in
AF that is positively displaced from zero.

. All remaining B°B° and B*B~ MC events that

do not fall into the three categories listed above,



such as B — K*9y (K*° — K*n¥F) B —
DK™ (DT — p7,K3), or B — /K (f —
p°7v). These events are characterized both by parti-
cle misidentification and an exchange of tracks be-
tween the B and B decays. This class of events
does not peak in AF.

Based on scaling to the experimental luminosity,
1.0 event (rounded to the nearest integer) is expected
for each of the first three categories, and 54 events for
the fourth category.

We also consider potential background from the fol-
lowing source.

5. Events with the same Kn7w final state as our sig-
nal but with a K*7F S-wave decay amplitude, ei-
ther non-resonant or produced, e.g., through B® —
K;°(1430)K%  (K3°(1430) — K*7T) decays.
These channels are expected to peak in the signal
regions of mgs and AE but not in the signal region
Of MK+71'_ .

There are no experimental results for BY —
K{°(1430)K?. Studies [16] of Bt — KTntr~ found
a substantial BT — K%(1430)7" resonant component,
however. To evaluate this potential source of back-
ground, we generate BY — K30(1430)K? (K;°(1430) —
KTr7) MC events. After applying the criteria de-
scribed in Sec. IIT A, only 1.4 £ 0.1% of these events re-
main. More importantly, the interference between the
K*%(890) and S-wave K amplitudes is expected to can-
cel if the detection efficiency is symmetric in the can-
didate K*0 cosfy distribution. Through MC study, we
verify that our efficiency is symmetric in cos 0y to better
than about 10%. This allows us to treat potential S-wave
K*7F background as an independent component in the
ML fit.

C. FIT PROCEDURE

An unbinned extended maximum likelihood fit is used
to determine the number of signal and background events
in the data. The extended likelihood function £ is defined
by

P <_ §n> 1 [Z nP] G

j=1 Li=1

where N is the number of observed events and n; are
the yields of the seven event categories: signal, contin-
uum background, and the five BB background categories
from Sec. III B. The correlations between the three fitted
observables are found to be small ( 5 10% in both signal
MC and background). Therefore, we define the functions
P; to be products of three independent probability den-
sity functions (PDFs), one for each of AE, mgs, and
My +--. We account for effects related to residual corre-
lations between the variables through the bias correction

and evaluation of systematic uncertainties discussed in
Secs. IV and V.

The signal PDF's are defined by a double Gaussian dis-
tribution for AE, a Crystal Ball function [17] for mgs,
and a Breit-Wigner function for Mg+ ,-. The param-
eters are fixed to values found from fitting signal MC
events. We verify that the signal MC predictions for
the AE and mgg distributions agree with the measured
results from BY — ¢KQ decays [18] to within the ex-
perimental statistical uncertainties. The ¢K? channel is
chosen for this purpose because of its similarity to the
K*9K? channel.

Separate PDFs are determined for the continuum back-
ground and all five categories of BB background item-
ized in Sec. IITB. The background PDFs are defined by
combinations of polynomial, Gaussian, ARGUS [19], and
Breit-Wigner functions fitted to MC events, with the ex-
ception of the PDF's for the S-wave KT component for
which the AE and mgs PDF's are set equal to those of the
signal while the Mg+ ,.- PDF is based on the scalar K
lineshape determined by the LASS Collaboration [20].
All the fits of PDFs to MC distributions yield values of
x? per degree-of-freedom near unity.

The event yields of the continuum and last two cate-
gories of BB background from Sec. III B are allowed to
vary in the fits, while those of the first three categories
of BB background are set equal to the expected num-
bers given in Sec. IIIB. The PDF shape parameters of
the continuum events are allowed to vary in the fit, while
those of the five BB background categories are fixed.

IV. RESULTS

We find 682 data events that satisfy the selection crite-
ria. Application of the ML fit to this sample yields 1.0f§:g
signal events and 660 £ 75 continuum events where the
uncertainties are statistical. These results and those for
the BB background yields are given in Table I. Based on
the SM branching fraction predictions of Ref. [2], 5 sig-
nal events (rounded to the nearest integer) are expected.
The number of expected continuum events is 619. The
statistical uncertainty of the signal yield is defined by the
change in the number of events required to increase the
quantity —2 In £ by one unit from its minimum value, and
similarly for the other yields. The statistical significance
of the result, defined by the square root of the differ-
ence between the value of —2In £ for zero signal events
and at its minimum, expressed in units of the statistical
uncertainty, is 0.28.

Figure 3 shows distributions for each of the fitted vari-
ables. To enhance the visibility of a potential signal,
events in Fig. 3 are required to satisfy £;(5)/[L£:(S) +
L;(B)] > 0.6, where £;(S) is the likelihood function for
signal events excluding the PDF of the plotted variable
i = AFE, mgs or My+,-, and £;(B) is the correspond-
ing term for all background components added together.
The points with uncertainties show the data. The curves



TABLE I: Results from the maximum likelihood fit. BB back-
ground categories 4 and 5 refer to the last two categories of
background itemized in Sec. IIIB. The yields for the first
three BB background categories in Sec. III B are fixed to the
estimated values of 1.0 event each. The uncertainties on the
yields, fit bias, and efficiencies are statistical.
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Parameter Value
Number of events 682
Signal yield 1.0137
Continuum background yield 660 £ 75
BB background category 4 yield 17f;‘f
BB background category 5 yield 1.4fg:§
ML fit bias (signal bias) —-0.2+£0.3
MC signal efficiency 9.8 +0.1%
(including DT and ¢ mass vetos)
Efficiency corrections

K9 tracking 97.8%

K*° tracking 99.0%

Final-state branching fractions 23.0%
Overall detection efficiency 2.2+0.1%

B(BO N [?*OKO)
+B(BO _ K*OI?O)

(02753 *03) x 107°

Significance with systematics (o) 0.26

90% CL upper limit on <1.9x107°

B(BO _ R*OKO) + B(BO _ K*ORO)

show projections of the ML fit with the likelihood ratio
restriction imposed.

We evaluate potential bias in the fitted signal yield by
applying the ML fit to 250 simulated data samples con-
structed as described below. The number of continuum
background events in each sample is derived from a Pois-
son distribution, with a mean set equal to the number
of continuum events found in the data, i.e., 660 events.
We generate AE, mgs, and Mg+~ continuum distribu-
tions for each sample by randomly sampling the contin-
uum PDFs using the appropriate number of events for
each sample. The number of BB background events in
each sample is determined in the analogous manner for
each of the five BB background categories separately.
For the first four categories of BB background (all but
the scalar K7 component), the AE, mgs, and Mg+,
distributions are generated by randomly selecting the ap-
propriate number of events from the corresponding MC
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FIG. 3: Distributions of AE, mgs, and Mg+, . The points
with uncertainties show the data. The curves show projec-
tions of the ML fit. A selection requirement on the likelihood
ratio has been applied as described in the text. The solid
curve shows the sum of all fitted components, including the
signal. The dashed curve shows the sum of all background
components. The dotted curve (barely visible) shows the sig-
nal component.

sample. For the scalar K7 component, the distributions
are generated by sampling the PDFs.

The number of signal events in each simulated sam-
ple is likewise determined from a Poisson distribution,
with a mean IV, 59 initially set equal to the fitted sig-
nal yield Ny = 1.0. The signal AE, mgs, and Mg+,-
distributions are generated by randomly selecting the ap-
propriate number of signal MC events for each sample.
N, 59 is then adjusted until the mean signal yield from
the 250 samples equals Ngg. The ML fit bias is de-
fined by Npias = Neig — Ngg and is determined to be
—0.2£0.3 (stat.) events. Therefore, the corrected signal
yield is Ngig — Npias = 1.2 events.

In our study, we can distinguish K*°K° from K*0K°
events from the sign of the electric charge of the K*.
However, we do not know the flavor of the B meson (B°
or BY) at decay. Therefore, the observed signal yield is
related to the sum of the B — K*°K° and B® — K*0K°



branching fractions through

Nsig - Nbias

B(B" — K*°K°) + B(B° — K*'K°) =
GNBE

)
(2)
where € is the overall detection efficiency, given by the
product of the MC signal efficiency and three efficiency
corrections (Table I). The K2 and K*° tracking correc-
tions account for discrepancies between the data and MC
simulation, while the correction for final-state branching
fractions accounts for the K% — K% K9 — ntn~ and
K*® — KTr~ branching fractions, which are not in-
corporated into the simulated signal event sample. The
overall efficiency is € = 2.2%. The factor Ng5 in Eq. (2)
is the number of BB events in the initial data sample
of 210 fb~!. We assume equal decay rates of the 7(49)
to BB and BB~

We find the sum of the branching fractions to be
B(B° — K*°K°% + B(B® — K*'K%) = (0.27035-3) x
10~%, where the first uncertainty is statistical and the
second is systematic. The systematic uncertainty is dis-
cussed in Sec. V. We determine a Bayesian 90% confi-
dence level (CL) upper limit assuming a uniform prior
probability distribution. First, the likelihood function is
modified to incorporate systematic uncertainties through
convolution with a Gaussian distribution whose standard
deviation is set equal to the total systematic uncertainty.
The 90% CL upper limit is then defined to be the value
of the branching fraction below which lies 90% of the
total of the integral of the modified likelihood function
in the positive branching fraction region. We obtain
B(B° — K*K%) + B(B° — K**K%) < 1.9 x 1076, We
also use the modified likelihood function to determine
the significance of our branching fraction result includ-
ing systematics. This result is listed in Table I.

V. SYSTEMATIC UNCERTAINTIES

To evaluate systematic uncertainties, we consider ef-
fects associated with the ML fit, the BB background
estimates, the efficiency corrections, the total number of
BB events, and the K? — 77~ branching fraction. Ta-
ble II provides a summary.

To estimate the systematic uncertainty related to the
signal PDFs, we independently vary the 11 parameters
used to characterize the signal AF, mgs, and Mg+,-
PDFs. The mean and standard deviation of the cen-
tral AE Gaussian distribution, and the mean of the mgg
Crystal Ball function, are varied by the statistical uncer-
tainties found by fitting the corresponding quantities to
data in a recent study of BY — ¢K° decays [18]. We vary
the standard deviation of the mgg Crystal Ball function
to account for observed variations between different run
periods. The width of the Mg+,- Breit-Wigner function
is varied by +0.01 GeV/c?. The remaining six signal PDF
parameters are varied by one standard deviation of their
statistical uncertainties found in the fits to the MC dis-
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tributions (Sec. III C), taking into account correlations
between parameters. For variations of all 11 parameters,
the percentage change in the signal yield compared to the
standard fit is taken as that parameter’s contribution to
the overall uncertainty. The total systematic uncertainty
associated with the signal PDFs is obtained by adding
these 11 contributions in quadrature. The largest con-
tributions are from the variations of the AF mean and
standard deviation (about 0.3 signal events each).

The systematic uncertainty attributed to the fit bias
is defined by adding two terms in quadrature. The first
term is the statistical uncertainty of this bias (Table I).
The second term is defined by changing the method used
to determine the bias. Specifically, we evaluate this bias
by generating the AE, mgs, and Mg+, distributions
of the fourth BB background category in Sec. IIIB us-
ing the PDFs rather than sampling MC events, for the
250 simulated data samples: the difference between the
results of this method and the standard one allows us
to assess the effect of residual correlations between the
variables. The fourth category of BB background events
is chosen because it dominates the BB background. The
difference between the corrected mean signal yield and
the standard result defines the second term.

To estimate an uncertainty associated with the BB
background, we vary the assumed numbers of events for
the three BB background categories for which these num-
bers are fixed, i.e., the first three background categories
of Sec. III B. Specifically, we independently vary these
numbers by +2 and —1 events from their standard val-
ues of unity, and determine the quadrature sum of the
resulting changes in the signal yield.

A systematic uncertainty associated with the presumed
scalar K7 lineshape is defined by the difference between
the signal yield found using the LASS lineshape and a
uniform (i.e., flat) K7 mass distribution.

Systematic uncertainties for the K¢ reconstruction ef-
ficiency, and for the tracking and particle identifica-
tion efficiencies of the K™ and 7~ used to reconstruct
the K*9, account for known discrepancies between the
data and MC simulation for these quantities. Similarly,
the MC simulation overestimates the number of selected
events compared to data for values of | cosfr| less than
about 0.9. We assign a 5% systematic uncertainty to
account for this effect.

The systematic uncertainty associated with the num-
ber of BB pairs is determined to be 1.1%. The uncer-
tainty in the K — 777~ branching fraction is taken
from Ref. [7].

The total systematic uncertainty is defined by adding
the above-described items in quadrature.

VI. SUMMARY AND DISCUSSION

In this paper, we present the first experimental results
for the decay B°(B?) — K*°K°. From a sample of about
232 million BB events, we observe 1.075¢ B — K*0K?°



TABLE II: Summary of systematic uncertainties.

Systematic effect Uncertainty
ML fit procedure (events)
Signal PDF parameters 0.5
Fit bias 0.5
BB background yields 0.1
Total uncertainty from ML fit (events) 0.7
Scalar K lineshape (events) 0.0
Efficiency corrections (%)
K9 reconstruction 1.4%
K*0 tracking 2.8%
K*° Particle identification efficiency 0.8%
cos O selection requirement 5.0%
Number of BB pairs 1.1%
B(KY — ntn¥) 0.1%
Total uncertainty from corrections 6.1%
. . 6 +0.1
Total systematic uncertainty for B(x10°) 203

event candidates. The corresponding measured sum
of branching fractions is B(B? — K*°K°) + B(B° —
K*K%) = (0.2753 703) x 1076, We obtain a 90% con-
fidence level upper limit of B(B° — K*°K°) + B(B° —
K*9K% < 1.9 x 1076, This result constrains certain
extensions of the SM, such as the R-parity violating su-
persymmetry models described in Ref. [3].

Our result also can be used to determine an upper
bound on ASyko, as mentioned in the introduction. The
amplitude A for B® — ¢K can be expressed as [9]

A=V Vesa® + Vi, Visa®, (3)

with a© = p® — pt and a* = p* — p?, where p’ is the
hadronic amplitude of the penguin diagram with inter-
mediate quark ¢ = wu, ¢ or t [see Figs. 2(a) and (b)].
The CKM factor multiplying a* in Eq. (3) is suppressed
by O()\?) relative to the factor multiplying a®, where
A = 0.224 [7] is the sine of the Cabibbo angle. There-
fore, the diagrams in Fig. 2(a) are expected to dominate
BY — ¢K° decays. As described in Ref. [9], AS,xo is
given by

ASyro =2cos2f siny cosé ‘§¢Ko‘ , (4)
with

wn o)
cbVes @

§¢KO =

12

where ¢ and ~y are the strong and weak phase differences,
respectively, between a* and a®.

Analogous to Eq. (3), the amplitude A’ for B® —
K*YK?Y can be expressed as [9)]

A =V Veab® + V3 Viyab™. (6)

In contrast to Eq. (3), neither term in Eq. (6) is sup-
pressed by CKM factors relative to the other. As an ef-
fective tree-level process, it is therefore possible that the
diagram of Fig. 1(b) dominates B — K*°K* decays.
(This assumption yields the most conservative limit on

The method of Grossman et al. [9] consists of using
SU(3) flavor symmetry to relate b¢ and b* in Eq. (6) to
a® and a¢* in Eq. (3) to obtain a bound on the quantity
£A¢Ko defined by

Epro = v I (7)

_ Vs (chvcd a° + Vi Vaa )
with A given by Eq. (3). The bound on 5¢K0 is de-
rived using the branching fractions of 11 strangeness-
conserving charmless B decays:

VH S
Vud

E K0

. \/2 [B(RK*0K0) + B(K*0KY)]
' B(¢K?)

9 B/
#>af o } , ®)

where the C; are SU(3) coefficients and where the nine
final states f; = hh' are specified in the introduction.
§prco is related to {0 through [9, 21]

S ‘

Vs Ved
VesVua

2 2
+ |£¢K0| + 2cosy Re (—K:“,/i;l £¢K0)

g 2

ol? =
ool 1+‘£¢Ko‘2+2cos'yRe (£¢Ko)

9)

The observed rates of strangeness-conserving processes,
potentially dominated by b — wu rescattering transitions
such as are illustrated in Fig. 1(b), are therefore used
to set limits on the contributions of the SM-suppressed
b — wu terms shown in Figs. 2(b) and (c), i.e., to set
limits on transitions which cause a deviation of the CP
asymmetry in B® — ¢K° decays from sin2.

We evaluate a 90% CL upper limit on |AS, k0| by gen-
erating hypothetical sets of branching fractions for the 11
required SU(3)-related decays: K*°K°, K*°K° and hh'.
Branching fraction values are chosen using bifurcated
Gaussian probability distribution functions with means
and bifurcated widths set equal to the measured branch-
ing fractions and asymmetric uncertainties. For the mea-
surements of the branching fractions of the nine channels
not included in the present study, see Refs. [22, 23]. Neg-
ative generated branching fractions are discarded. For
each set of hypothetical branching fractions, we com-
pute a bound on |AS,ko| using Egs. (4) and (8). For



the unknown phase term cosd in Eq. (4), we sample a
uniform distribution between —1 and 1. Similarly, the
weak phase angle 7y is chosen by selecting values from a
uniform distribution between 38 and 79 degrees, corre-
sponding to the 95% confidence level interval for v given
in Ref. [24]. (A flat distribution is chosen for v because
the likelihood curve in Ref. [24] is non-Gaussian.) For 3,
we use sin23 = 0.687 [23]. For each iteration of variables,
Eq. (9) is solved numerically for [£;xo|.

We find that 90% of the hypothetical [AS,ko| bounds
lie below 0.42. Our study thus allows the SU(3) bound
from Ref. [9], viz., |[AS,ko| < 0.42 at 90% CL, to be
determined for the first time. To assess the contribu-
tion of the K*°KO channel on this result, we repeat the
procedure described in the previous paragraph with the
B? — K*0KO° branching fraction and uncertainties set to
zero: the corresponding result is 0.32. Potential future
measurements of B — K*KO yielding a significantly
smaller UL and uncertainties would therefore have a sig-
nificant impact on the [AS, k0| bound. As a cross check,
we also determine the SU(3) bound assuming the weak
phase angle v to be distributed according to a Gaussian
distribution with a mean of 58.5° and a standard devia-
tion of 5.8° [25]: this yields |[ASyxo| < 0.43 at 90% CL.
Our analysis does not account for SU(3) flavor breaking
effects, generally expected to be on the order of 30%.
However, the method is conservative in that it assumes
all hadronic amplitudes interfere constructively.
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