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Abstract

The N=4 supersymmetric U(2)-spin hyperbolic Calogero-Sutherland model with odd matrix fields is 
examined. Explicit form of the N=4 supersymmetry generators is derived. The Lax representation for the 
dynamics of the N=4 hyperbolic U(2)-spin Calogero-Sutherland system is found. The reduction to the 
N=4 supersymmetric spinless hyperbolic Calogero-Sutherland system is established.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

One of the important developments in the study of the famous many-particle Calogero-
Sutherland systems [1,2] (see [3,4] for reviews) is their generalization to supersymmetric cases. 
Most of the researches in these directions have been devoted to supersymmetrization of the 
rational Calogero systems (see, for example, the papers [5–19] and the review [20]). Supersym-
metric generalizations of the hyperbolic and trigonometric Calogero-Sutherland systems have 
been studied in a very limited number of works (see, for example, the papers [17–19,21–27] and 
references therein).

In a recent paper [28], N=2 and N=4 supersymmetric generalizations of the hyperbolic 
Calogero-Sutherland system were proposed using the gauging procedure [11,29] (see also the 
matrix description of the Calogero models in [4,30,31]). In the paper [32] the N=2 hyperbolic 
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Calogero-Sutherland model [28] was considered. In this paper, the Hamiltonian analysis of the 
N=4 many-particle system obtained in [28] was studied in detail.

At the component level, the N=4 matrix model obtained in [28] is described by the posi-
tive definite Hermitian c-number (n×n)–matrix field X(t) := ‖Xa

b(t)‖, (Xa
b)∗ = Xb

a , detX �=
0, and the Hermitian c-number (n×n)–matrix gauge field A(t) := ‖Aa

b(t)‖, (Aa
b)∗ = Ab

a

(a, b = 1, . . . , n). In opposite to the N=2 case [32], the N=4 model uses the complex odd 
(n×n)–matrix field �i(t) := ‖�i

a
b(t)‖, �̄i(t) := ‖�̄ia

b(t)‖, (�i
a
b)∗ = �̄ib

a , and the complex 
c-number U(n)-spinor field Zk(t) := ‖Zk

a(t)‖, Z̄k(t) := ‖Z̄a
k (t)‖, Z̄a

k = (Zk
a)

∗, which have addi-
tional SU(2)-spinor indices i, k = 1, 2. This N=4 n-particle system is described by the on-shell 

component action Smatrix =
∫

dt Lmatrix with the Lagrangian (system II in [28])

Lmatrix = 1

2
Tr

(
X−1∇X X−1∇X + 2cA

)
+ i

2

(
Z̄k∇Zk − ∇Z̄kZ

k
)

(1.1)

+ i

2
Tr

(
X−1�̄kX

−1∇�k − X−1∇�̄kX
−1�k

)

+ 1

8
Tr

(
{X−1�i,X−1�̄i} {X−1�k,X−1�̄k}

)
,

where the quantity c is a real constant and the covariant derivatives are defined by ∇X = Ẋ +
i [A, X] and ∇�k = �̇k + i [A, �k], ∇Zk = Żk + iAZk and c.c.

Despite the external similarity of the Lagrangian (1.1) with the N=2 supersymmetric La-
grangian [32], the SU(2)-spinor character of the Grassmann matrix quantities �i and semi-
dynamical even variables Zi lead to the distinctive properties of the N=4 system under consider-
ation. First, using the SU(2)-spinors Zi leads to the N=4 matrix system that is supersymmetric 
generalization of the U(2)-spin hyperbolic Calogero-Sutherland system, and not the spinless hy-
perbolic Calogero-Sutherland system as in the N=2 case [32]. Second, due to the SU(2)-spinor 
nature of the Grassmann matrix quantities �i , the N=4 supercharges contain additional terms 
in odd variables, that were absent in the N=2 case [32]. This paper examines the N=4 case in 
detail in order to identify these and other distinctive properties of this N=4 system.

The plan of the paper is as follows. In Section 2, the Hamiltonian formulation of the ma-
trix system (1.1) is presented. Partial gauge fixing eliminates purely gauge bosonic off-diagonal 
matrix fields and yields a classically-equivalent system, whose bosonic limit is exactly the 
multi-particle U(2)-spin hyperbolic Calogero-Sutherland system. Using the Noether procedure 
in Section 3 allows one to find the full set of N=4 supersymmetry generators. The Dirac brack-
ets superalgebra of these generators is closed to first class constraints. Section 4 is devoted to 
the construction of the Lax representation for the equation of motion of the N=4 supersym-
metric U(2)-spin hyperbolic Calogero-Sutherland system. Section 5 presents the reduction of the 
considered U(2)-spin system that yields the N=4 supersymmetric spinless hyperbolic Calogero-
Sutherland system. Section 6 contains summary and outlook.

2. Hamiltonian formulation

Here we present the Hamiltonization of the matrix system (1.1) with the U(n) gauge symmetry 
and its partial gauge-fixing.
2
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2.1. Hamiltonian formulation of the matrix system

The system with the Lagrangian (1.1) is described by pairs of the phase variables (Xa
b, Pc

d), 
(Zi

a, Pb
k ), (Z̄a

i , P̄k
b ), (�i

a
b, �kc

d), (�̄ia
b, �̄k

c
d) with the nonvanishing canonical Poisson brack-

ets

{Xa
b,Pc

d}P = δd
a δb

c , {Zi
a,Pb

k }P = δb
aδi

k , {Z̄a
i , P̄k

b }P = δa
b δk

i , (2.1)

{�i
a
b,�kc

d}P = δd
a δb

c δi
k , {�̄ia

b, �̄k
c
d}P = δd

a δb
c δk

i . (2.2)

The phase variables are subject to the primary constraints

Ga
k := Pa

k − i

2
Z̄a

k ≈ 0 , Ḡk
a := P̄k

a + i

2
Zk

a ≈ 0 , (2.3)

ϒka
b := �ka

b − i

2
(X−1�̄kX

−1)a
b ≈ 0 , ϒ̄k

a
b := �̄k

a
b − i

2
(X−1�kX−1)a

b ≈ 0 .

(2.4)

Besides, the matrix momentum of Xa
b has the form

Pa
b = (X−1∇XX−1)a

b (2.5)

and the momenta of the coordinates Aa
b are zero.

The canonical Hamiltonian of the system has the form

Hmatrix = Pb
aẊa

b +Pa
k Żk

a + P̄k
a

˙̄Za
k +�kb

a�̇k
a
b + �̄k

b
a ˙̄�ka

b −Lmatrix = H +Tr
(
AF

)
,

(2.6)

where the first term has the following form

H = 1

2
Tr

(
XPXP

)
− 1

8
Tr

(
{X−1�i,X−1�̄i} {X−1�k,X−1�̄k}

)
(2.7)

and the second term Tr
(
AF

)
uses the quantities

Fa
b := i[P,X]ab +Zk

aZ̄
b
k − 1

2
{X−1�k,X−1�̄k}ab − 1

2
{�kX−1, �̄kX

−1}ab −c δa
b . (2.8)

Vanishing momenta of Aa
b indicate that quantities (2.8) are the secondary constraints

Fa
b ≈ 0 . (2.9)

The variables Aa
b in the Hamiltonian (2.6) play the role of the Lagrange multipliers for these 

constraints.
The constraints (2.3) and (2.4) possess the following nonzero Poisson brackets:

{Ga
i , Ḡ

k
b}P = −iδa

b δk
i , {ϒia

b, ϒ̄k
c
d}P = −iX−1

a
dX−1

c
bδk

i (2.10)

and are the second class constraints. Using the Dirac brackets for the constraints (2.3), (2.4)

{A,B}D = {A,B}P + i{A,Ga
k }P{Ḡk

a,B}P − i{A,Ḡk
a}P{Ga

k,B}P (2.11)

−i{A,ϒka
b}PXb

cXd
a{ϒ̄k

c
d ,B}P − i{A, ϒ̄k

a
b}PXb

cXd
a{ϒkc

d,B}P ,

we eliminate the momenta Pa
k , P̄k

a , �ka
b , �̄k

a
b . The nonvanishing Dirac brackets of residual 

phase variables take the form
3
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{Xa
b,Pc

d}D = δd
a δb

c , (2.12)

{Pa
b,Pc

d}D = − i
4 [X−1(�kX−1�̄k + �̄kX

−1�k)X−1]adX−1
c

b

+ i
4 X−1

a
d [X−1(�kX−1�̄k + �̄kX

−1�k)X−1]cb ,
(2.13)

{Zi
a, Z̄

b
k }D = −iδb

aδi
k , {�i

a
b, �̄kc

d}D = −iXa
dXc

bδi
k , (2.14)

{�k
a
b,Pc

d}D = 1
2 δd

a (X−1�k)c
b + 1

2 δb
c (�kX−1)a

d ,

{�̄ka
b,Pc

d}D = 1
2 δd

a (X−1�̄k)c
b + 1

2 δb
c (�̄kX

−1)a
d .

(2.15)

The residual constraints Fa
b = (Fb

a)∗, defined in (2.9), form the u(n) algebra with respect to 
the Dirac brackets (2.11):

{Fa
b,Fc

d}D = −iδa
dFc

b + iδc
bFa

d . (2.16)

So the constraints (2.8), (2.9) are the first class ones and generate local U(n) transformations

δC =
∑
a,b

αb
a{C,Fa

b}D (2.17)

of an arbitrary phase variable C where αa
b(τ ) = (αb

a(τ ))∗ are the local parameters. These trans-
formations of the primary phase variables have the form

δXa
b = −i[α,X]ab , δPa

b = −i[α,P ]ab , δZk
a = −i(αZk)a , δZ̄ka = i(Z̄kα)a ,

δ�k
a
b = −i[α,�k]ab , δ�̄ka

b = −i[α, �̄k]ab .

(2.18)

2.2. Hamiltonian formulation of partial gauge-fixing of the matrix system

The gauges Xa
b =0 at a �=b fix the local transformations (2.18) with the parameters αa

b(τ ), 
a �=b generated by the off-diagonal constraints Fa

b ≈0, a �=b in the set (2.8), (2.9). This gauge 
fixing takes the form [11,28,32]

xa
b ≈ 0 (2.19)

if we apply the expansions

Xa
b = xaδa

b + xa
b , Pa

b = paδa
b + pa

b , (2.20)

where xa
b and pa

b represent the off-diagonal matrix quantities. In addition, using the constraints 
Fa

b ≈0, a �=b, we express the momenta pa
b through the remaining phase variables:

pa
b = − i Zk

aZ̄
b
k

xa − xb

+ i (xa + xb) {�k, �̄k}ab

2(xa − xb)
√

xaxb

, (2.21)

where we use the odd matrix variables �k
a
b , �̄ka

b = (�k
b
a)∗ defined by

�k
a
b := �k

a
b

√
xaxb

, �̄ka
b := �̄ka

b

√
xaxb

. (2.22)

Thus, the partial gauge fixing conditions (2.19) and (2.21) remove the variables xa
b and pa

b .
4
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As a result, after the partial gauge fixing, phase space of the considered system is defined 
by 2n even real variables xa , pa , 2n even complex variables Zi

a and 2n2 odd complex variables 
�i

a
b . Their nonvanishing Dirac brackets are

{xa,pb}′D = δab , (2.23)

{Zi
a, Z̄

b
k }′D = −i δb

aδi
k , (2.24)

{�i
a
b, �̄kc

d}′D = −i δd
a δb

c δi
k . (2.25)

In contrast to (2.13) and (2.15) the momenta pa commute with each other and with the Grassman-
nian quantities �k

a
b . Moreover, due to (2.25), the odd variables �k

a
b and �̄ib

a form canonical 
pairs (compare with (2.14)).

In the Hamiltonian (2.7) the momenta pa are presented in the term 
∑

a(xapa)
2/2. Let us 

represent this term in standard form for particle kinetic energy. For this we introduce the phase 
variables

qa = logxa , pa = xapa , {qa,pb}′D = δab . (2.26)

In these variables and (2.22) and after the gauge-fixing (2.19), (2.21), the Hamiltonian (2.7) takes 
the form

H = 1

2

∑
a

papa + 1

8

∑
a �=b

Ra
bRb

a

sinh2
(qa − qb

2

) − 1

8
Tr

(
{�i, �̄i}{�k, �̄k}

)
, (2.27)

where

Ra
b := Zk

aZ̄
b
k − cosh

(
qa − qb

2

)
{�k, �̄k}ab . (2.28)

The residual first class constraints in the set (2.8), (2.9) are n diagonal constraints

Fa := Fa
a = Ra

a − c = Zk
aZ̄

a
k − {�k, �̄k}aa − c ≈ 0 (no summation over a) , (2.29)

which form an abelian algebra with respect to the Dirac brackets (2.25)

{Fa,Fb}′D = 0 (2.30)

and generate the [U(1)]n gauge transformations of Zk
a and �k

a
b with the local parameters γa(t):

Zk
a → eiγaZk

a , Z̄a
k → e−iγa Z̄a

k (no sum over a) , (2.31)

�k
a
b → eiγa�k

a
be−iγb , �̄ka

b → eiγa �̄ka
be−iγb (no sums over a, b) . (2.32)

Similarly to (2.20), we can use the expansions of the Grassmannian matrix quantities (2.22)
in the diagonal and off-diagonal parts:

�k
a
b = ϕk

aδa
b + φk

a
b , �̄ka

b = ϕ̄kaδa
b + φ̄ka

b , (2.33)

where φk
a
a = φ̄ka

a = 0 at the fixed index a. The Dirac brackets (2.25) of the diagonal quantities 
ϕk

a , ϕ̄ka and the off-diagonal ones φk
a
b , φ̄ka

b have the form

{ϕi
a, ϕ̄kb}′D = −i δabδ

i
k , {φi

a
b, φ̄kc

d}′D = −i δd
a δb

c δi
k . (2.34)

The constraints (2.29) involve only the off-diagonal fermions φ, φ̄:
5
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Fa = Zk
aZ̄

a
k − {φk, φ̄k}aa − c ≈ 0 (no summation over a) . (2.35)

In the variables ϕ, ϕ̄, φ, φ̄ the Hamiltonian (2.27) takes the form

H = 1

2

∑
a

papa + 1

8

∑
a �=b

Z̄a
i Zk

a Z̄b
kZi

b

sinh2
(qa − qb

2

)

+ 1

4

∑
a �=b

coth
(qa − qb

2

)
sinh

(qa − qb

2

) Zi
aZ̄

b
i

[
(ϕk

a − ϕk
b)φ̄kb

a + (ϕ̄ka − ϕ̄kb)φ
k
b
a − {φk, φ̄k}ba

]

+ 1

8

∑
a �=b

1

sinh2
(qa − qb

2

) [
(ϕi

a − ϕi
b)(ϕ

k
a − ϕk

b)φ̄ia
bφ̄kb

a

+ (ϕ̄ia − ϕ̄i b)(ϕ̄ka − ϕ̄kb)φ
i
a
bφk

b
a

+ 2(ϕi
a − ϕi

b)(ϕ̄ka − ϕ̄kb)φ̄ia
bφk

b
a

+ {φi, φ̄i}ab{φk, φ̄k}ba

+ 2(ϕ̄ia − ϕ̄i b)φ
i
a
b{φk, φ̄k}ba

+ 2(ϕi
a − ϕi

b)φ̄ia
b{φk, φ̄k}ba

]
− 1

8

∑
a

{φi, φ̄i}aa{φk, φ̄k}aa . (2.36)

In the bosonic limit the Hamiltonian (2.36) takes the form

Hbose = 1

2

∑
a

papa + 1

8

∑
a �=b

Sai
kSbk

i

sinh2
(qa − qb

2

) , (2.37)

where the quantities

Sai
k := Z̄a

i Z
k
a (2.38)

at all values a form the u(2) algebras with respect to the Dirac brackets:

{Sai
k, Sbj

l}′D = −i δab

(
δk
j Sai

l − δl
iSaj

k
)

. (2.39)

Thus, the Hamiltonian (2.37) has the form

Hbose = 1

2

∑
a

papa + 1

8

∑
a �=b

Tr(SaSb)

sinh2
(qa − qb

2

) (2.40)

and is same as the Hamiltonian of the U(2)-spin hyperbolic Calogero-Sutherland An−1-root 
system [4,33,34].

Derivation of this many-particle spin system in the N=4 case is the result of using semi-
dynamical SU(2)-spinor variables, which are the field components of the (4,4,0) multiplets [28]. 
In contrast to the N=4 case considered here, the use of semi-dynamical scalar variables in the 
N=2 case produces “a less rich” supersymmetric system, namely the N=2 spinless hyperbolic 
Calogero-Sutherland system [32].
6
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3. N=4 supersymmetry generators

As discussed in Sect. 1, the system (1.1) considered here was derived from the N=4 super-
field model [28]. Therefore, it is invariant under N=4 supersymmetry transformations of the 
matrix component fields:

δX = −εi�
i + ε̄ i �̄i ,

δ�i = i ε̄ i ∇X + ε̄kX
[
X−1�(i,X−1�̄k)

]
,

δ�̄i = i εi ∇X + ε kX
[
X−1�(i,X

−1�̄k)

]
,

δZi = 0 , δZ̄i = 0 , δA = 0 ,

(3.1)

where εk , ε̄k = (εk)
∗ is two complex Grassmannian parameters. These transformations are gen-

erated by the following Noether charges:

Qi = Tr
(
P�i + i

2
X−1�̄iX−1�kX

−1�k
)
,

Q̄i = Tr
(
P�̄i + i

2
X−1�iX

−1�̄kX−1�̄k

)
,

(3.2)

where the matrix momentum Pa
b is presented in (2.5). The supercharges (3.2) and the Hamilto-

nian H defined in (2.7) form the N=4 d=1 superalgebra

{Qi, Q̄j }D = −2i H δi
j , {Qi,H }D = {Q̄i,H }D = 0 (3.3)

with respect to the Dirac brackets (2.12)-(2.15).
Putting the partial gauge fixing conditions (2.19), (2.21) in expressions (3.2) and going to the 

variables (2.22), (2.26), we obtain the N=4 supersymmetry generators

Q i =
∑
a

pa�
i
a
a − i

2

∑
a �=b

Ra
b�i

b
a

sinh
(qa − qb

2

) + i

2

∑
a,b

[�k, �̄k]ab�i
b
a ,

Q̄ i =
∑
a

pa�̄ia
a − i

2

∑
a �=b

Ra
b�̄ib

a

sinh
(qa − qb

2

) − i

2

∑
a,b

[�k, �̄k]ab�̄ib
a

(3.4)

for the partial gauge fixing system, which is described by the Hamiltonian (2.27) and the first 
class constraints (2.29). Using the Grassmannian variables ϕi

a , ϕ̄i a , φi
a
b , φ̄ia

b , defined in (2.33), 
we cast the generators (3.4) in the form

Q i =
∑
a

paϕ
i
a − i

2

∑
a �=b

Zk
aZ̄

b
k φi

b
a

sinh
(qa − qb

2

) (3.5)

+ i

2

∑
a �=b

coth
(qa − qb

2

)[
(ϕ̄ka − ϕ̄kb)φ

k
a
b + (ϕk

a − ϕk
b)φ̄ka

b + {φk, φ̄k}ab
]
φi

b
a

+ i

2

[∑
a �=b

(
(ϕka + ϕkb)φ

k
b
aφ̄i

a
b + φka

bφk
b
aϕ̄i

a

)
+

∑
a �=b �=c �=a

φka
bφk

b
cφ̄i

c
a

+
∑

ϕkaϕ
k
a ϕ̄i

a

]
,

a

7
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Q̄ i =
∑
a

paϕ̄ia − i

2

∑
a �=b

Zk
aZ̄

b
k φ̄ib

a

sinh
(qa − qb

2

) (3.6)

+ i

2

∑
a �=b

coth
(qa − qb

2

)[
(ϕ̄ka − ϕ̄kb)φ

k
a
b + (ϕk

a − ϕk
b)φ̄ka

b + {φk, φ̄k}ab
]
φ̄i b

a

+ i

2

[∑
a �=b

(
φia

bφ̄k
b
a(ϕ̄ka + ϕ̄kb) + ϕiaφ̄

k
a
bφ̄kb

a
)

+
∑

a �=b �=c �=a

φia
bφ̄k

b
cφ̄kc

a

+
∑
a

ϕiaϕ̄
k
a ϕ̄ka

]
.

Taking into account the Dirac brackets (2.25), (2.26) and

{Ra
b,Rc

d}′D = −i
(
δd
a Rc

b − δb
c Ra

d
)

−i sinh
(qa − qb

2

)
sinh

(qc − qd

2

)(
δd
a {�k, �̄k}cb − δb

c {�k, �̄k}ad
)

,

(3.7)

we find that the supercharges Qi , Q̄i defined in (3.4) form the N=4 superalgebra

{Qi ,Qk}′D = − i

4

∑
a �=b

φ(i
a
bφk)

b
a

sinh2
(qa − qb

2

) (
Fa − Fb

)
, (3.8)

{Qi , Q̄k}′D = −2i H δi
k − i

4

∑
a �=b

φi
a
bφ̄kb

a

sinh2
(qa − qb

2

) (
Fa − Fb

)
, (3.9)

{Qi ,H}′D = −1

8

∑
a �=b

Ra
bφi

b
a

sinh3
(qa − qb

2

) (
Fa − Fb

)
(3.10)

and c.c., where the Hamiltonian H and the constraints Fa ≈ 0 are given in (2.27) and (2.29). 
Thus, the quantities H, Qi , Q̄i , defined in (2.27), (3.4), form the N=4 superalgebra with respect 
to the Dirac brackets on the shell of the first class constraints (2.29). Moreover, the generators H, 
Qi , Q̄i are gauge invariant: they have the vanishing Dirac brackets with the first class constraints 
(2.29),

{Qi , Fa}′D = {Q̄i , Fa}′D = {H,Fa}′D = 0 . (3.11)

The form of the first two terms in expressions (3.4) is similar to the N=2 supercharges 
presented in [32]. But the last terms in the N=4 supercharges (3.4) were absent in the N=2
case. Their appearance is the result of the SU(2) spinor nature of Grassmann variables in the 
N=4 case. Moreover, the first and last terms in the supercharges (3.5), (3.6)

Qi =
∑
a

(
paϕ

i
a + i

2
ϕkaϕ

k
a ϕ̄i

a

)
, Q̄i =

∑
a

(
paϕ̄ia + i

2
ϕiaϕ̄

k
a ϕ̄ka

)
(3.12)

contain only diagonal fermions ϕi
a , ϕ̄ia and possess the following Dirac brackets:

{Qi , Q̄k}D = −2iδiH , {Qi ,H}D = {Q̄i ,H}D = 0 , (3.13)
k

8
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where H = 1
2

∑
a p 2

a . Although supercharges (3.12) contain terms trilinear in fermions in con-
trast to the N=2 case [32], these quantities and H generate the N=4 supersymmetric system 
describing n non-interacting free particles. This system is described by the N=4 superfield La-
grangian L ∼ ∑

a logXa (see [20,35,36]).
It should also be noted that the terms of the supercharges (3.5), (3.6), without the first and 

last terms (3.12), describe the interaction of particles and are zero when the off-diagonal matrix 
fermions φi

a
b , φ̄i a

b vanish.
Similarly to the N=2 case [32], we can make gauge-fixing for the residual n real first class 

constraints (2.29) (or (2.35)). However, in the considered N=4 case, we have 2n complex spinor 
variables Zi

a in opposite to the N=2 case with n complex spinorial degrees of freedom in the last 
case. Thus, in the N=4 case considered here the N=4 multiparticle model possesses n complex 
semi-dynamical degrees of freedom in phase space and describes the N=4 supersymmetrization 
of the many-particle system which differs from the one in the N=2 case. In Section 5, we use 
the reduction that eliminates these semi-dynamical degrees of freedom in the N=4 invariant 
way.

4. Lax representation

Classical dynamics of the system with partial gauge-fixing considered here is defined by the 
total Hamiltonian

HT = H +
∑
a

λaFa , (4.1)

where the Hamiltonian H is defined in (2.27) and λa(t) are the Lagrange multipliers for the first 
class constraints Fa , presented in (2.29). A time derivative of an arbitrary phase variable B(t)

takes the form

Ḃ = {B,HT}′D . (4.2)

Let us represent this dynamics in the Lax representation [37].
To do this, we introduce the n×n matrix

La
b = pa δa

b − i
(

1 − δb
a

) Ra
b

2 sinh
(qa − qb

2

) , (4.3)

whose evolution

L̇a
b = {La

b,HT}′D (4.4)

is represented by the matrix commutator

L̇a
b = −i[M + �,L]ab − i

(
1 − δb

a

) La
b (Fa − Fb)

4 sinh2
(qa − qb

2

) , (4.5)

where the matrices M and � have the following form:

Ma
b = 1

4
{�k, �̄k}aaδa

b + 1

4

(
1 − δb

a

)⎛
⎜⎝ cosh

(qa − qb

2

)
sinh2

(qa − qb
) Ra

b + {�k, �̄k}ab

⎞
⎟⎠ , (4.6)
2

9
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�a
b = λa δa

b (4.7)

and Fa are the constraints defined in (2.35). The equations of motion of the fermionic matrix 
variables �i

a
b , �̄ia

b are also represented as commutators

�̇i
a
b = {�i

a
b,HT}′D = −i[M + �,�i]ab ,

˙̄�ia
b = {�̄ia

b,HT}′D = −i[M + �,�̄i]ab
(4.8)

with the same matrices M and �.
On the shell of the first class constraints (2.35) Fa ≈ 0, equations (4.5), (4.8) are actually the 

Lax equations and yield the conserved charges in a simple way. So due to equations (4.5), (4.8), 
the trace

J := Tr(F) (4.9)

of any polynomial function F(L, �, �̄) of the matrix variables La
b , �i

a
b , �̄ia

b is a conserved 
quantity on the shell of constraints (2.35):

J̇ ≈ 0 . (4.10)

In particular, on the shell of constraints (2.35), the traces

Ik := Tr(Lk) , I i
k := Tr(�iLk−1) , Īki := Tr(�̄Lk−1) , k = 1, . . . , n (4.11)

are conserved:

İk = ik

4

∑
a �=b

(Lk)a
b

sinh2
(qa − qb

2

) (
Fa − Fb

)
≈ 0 , İ i

k = 0 , ˙̄Iki = 0 . (4.12)

The Hamiltonian (2.27) and the supercharges (3.4) have the form

H = 1

2
I2 + J , Qi = I i

2 +J i , Q̄i = Ī2i + J̄i , (4.13)

where

J := −1

8
Tr

(
{�i, �̄i}{�k, �̄k}

)
, J i := i

2
Tr

(
[�k, �̄k]�i

)
,

J̄i := − i

2
Tr

(
�̄i[�k, �̄k]

)
. (4.14)

The equations of motion of the commuting spinning variables Zi
a, Z̄a

i are represented as

Żi
a = {�i

a
b,H}′D = −i

∑
b

(
Aa

b + �a
b
)
Zi

b ,

˙̄Za
i = {�̄ia

b,H}′D = i
∑
b

Z̄b
i (Ab

a + �b
a) ,

(4.15)

where the matrix A has the form

Aa
b =

(
1 − δb

a

) Ra
b

4 sinh2
(qa − qb

2

) (4.16)

and the matrix � is defined in (4.7). Due to (4.15) we obtain (see (2.38))
10
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Ṡk
i = 0 , where Sk

i :=
∑
a

Z̄a
kZ

i
a . (4.17)

It should be noted that the structure of the conserved charges in the considered supersymmetric 
system (4.10) is similar to the form of the charges in the trigonometric (non-matrix) supersym-
metric system studied in [25].

Deriving the Lax pair and finding the set of conserved charges (4.9) paves the way for an-
alyzing the integrability of the N=4 supersymmetric system considered here. Analysis of the 
superalgebra of conserved charges and integrability of the considered many-particle supersym-
metric system will be the subject of the next article.

5. Spinless hyperbolic Calogero-Sutherland system as a result of the reduction procedure

Semi-dynamical variables have the following Dirac brackets with the total Hamiltonian (4.1), 
(2.27)

{HT ,Z
j
a }′D = i

4

∑
b(�=a)

Ra
bZ

j
b

sinh2
(qa − qb

2

) + iλaZ
j
a (5.1)

and with the supercharges (3.4)

{Qi,Z
j
a }′D = −1

2

∑
b(�=a)

�i
a
bZ

j
b

sinh
(qa − qb

2

) , {Q̄i,Z
j
a }′D = −1

2

∑
b(�=a)

�̄ia
bZ

j
b

sinh
(qa − qb

2

) .

(5.2)

Therefore, the conditions

Z
j=2
a = 0 , Z̄a

j=2 = 0 , at all a (5.3)

are invariant under the N=4 supersymmetry transformations and we can use them as reduction 
conditions. Similarly to [38], the reduction (5.3) implies the conditions

S(±)
a := Sai

kσ±
k
i at all a, (5.4)

where the quantities Sai
k are defined in (2.38), σ± = σ 1 ± iσ 2 and σ 1,2 are the Pauli matrices. 

So the conditions (5.3) lead to zero two generators in all u(2) algebras (2.38), (2.39).
After reduction with the conditions (5.3) the obtained system involves only half of the initial 

semi-dynamical variables

za := Z
j=1
a , z̄a := Z̄a

j=1 , {za, z̄
b}′D = −iδb

a . (5.5)

Reduction of the Hamiltonian (2.27) takes the form

H = 1

2

∑
a

papa + 1

8

∑
a �=b

Ta
bTb

a

sinh2
(qa − qb

2

) − 1

8
Tr

(
{�i, �̄i}{�k, �̄k}

)
, (5.6)

where

Ta
b := zaz̄

b − cosh

(
qa − qb

)
{�k, �̄k}ab . (5.7)
2
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In this case, the N=4 supersymmetry generators (3.4) take the form

Q i =
∑
a

pa�
i
a
a − i

2

∑
a �=b

Ta
b�i

b
a

sinh
(qa − qb

2

) + i

2

∑
a,b

[�k, �̄k]ab�i
b
a ,

Q̄ i =
∑
a

pa�̄ia
a − i

2

∑
a �=b

Ta
b�̄ib

a

sinh
(qa − qb

2

) − i

2

∑
a,b

[�k, �̄k]ab�̄ib
a ,

(5.8)

while the first class constraints (2.29) become

Fa := Ta
a − c = zaz̄

a − {�k, �̄k}aa − c ≈ 0 (no summation over a) . (5.9)

Similarly to quantities (2.28) with the Dirac brackets (3.7), quantities (5.7) satisfy

{Ta
b, Tc

d}′D = −i
(
δd
a Tc

b − δb
c Ta

d
)

−i sinh
(qa − qb

2

)
sinh

(qc − qd

2

)(
δd
a {�k, �̄k}cb − δb

c {�k, �̄k}ad
)

.

(5.10)

As result, the charges (5.8), (5.6) form the same N=4 superalgebra (3.8)-(3.10), up to the first 
class constraints (5.9).

However this reduced system contains n first class constraints (5.9) which, together with the 
gauge fixing conditions, can eliminate all n complex semi-dynamical variables za . So similarly
to the N=2 case considered in [32], we can make the gauge-fixing

z̄a = za (for all a) (5.11)

for the first class constraints (5.9). Then, the components of the spinor za become real and are 
expressed through the remaining variables by the following expressions:

za =
√

c + {�k, �̄k}aa (no summation over a) . (5.12)

In this gauge the supercharges (3.5), (3.6) take the form

Q i =
∑
a

pa�
i
a
a − i

2

∑
a �=b

√
c + {�k, �̄k}aa

√
c + {�j , �̄j }bb �i

b
a

sinh
(qa − qb

2

)
+ i

2

∑
a �=b

coth
(qa − qb

2

)
{�k, �̄k}ab �i

b
a + i

2

∑
a,b

[�k, �̄k]ab�i
b
a , (5.13)

Q̄ i =
∑
a

pa�̄ia
a − i

2

∑
a �=b

√
c + {�k, �̄k}aa

√
c + {�j , �̄j }bb �̄ib

a

sinh
(qa − qb

2

)
+ i

2

∑
a �=b

coth
(qa − qb

2

)
{�k, �̄k}ab �̄ib

a − i

2

∑
a,b

[�k, �̄k]ab�̄ib
a . (5.14)

Moreover, in this gauge and in a pure bosonic limit, the reduced Hamiltonian (5.6) takes the form

Hbose = 1

2

∑
a

papa + 1

8

∑
a �=b

c2

sinh2
(qa − qb

) (5.15)
2
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and is the Hamiltonian of the standard spinless hyperbolic Calogero-Sutherland system. Thus, 
the reduction (5.3) of the considered system yields gauge formulation of the N=4 spinless 
hyperbolic Calogero-Sutherland system [1–4].

Due to the presence of the square roots in the second terms in the supercharges (5.13), (5.14)
they contain higher degrees with respect to the Grassmannian variables. To avoid this, new vari-
ables

ξ i
a
b = �i

a
b

√
c + {�j , �̄j }bb

c + {�k, �̄k}aa
, ξ̄ia

b = �̄ia
b

√
c + {�j , �̄j }bb

c + {�k, �̄k}aa
(5.16)

were introduced in [16]. In these quantities the supercharges (3.5), (3.6) take the form

Q i =
∑
a

paξ
i
a
a − i

2

∑
a �=b

(
c + {ξk, ξ̄k}bb

)
ξ i

b
a

sinh
(qa − qb

2

)
+ i

2

∑
a �=b

coth
(qa − qb

2

)
{ξk, ξ̄k}ab ξ i

b
a − i

2
β

∑
a,b

[ξk, ξ̄k]ab ξ i
b
a , (5.17)

Q̄ i =
∑
a

paξ̄ia
a − i

2

∑
a �=b

(
c + {ξk, ξ̄k}bb

)
ξ̄i b

a

sinh
(qa − qb

2

)
+ i

2

∑
a �=b

coth
(qa − qb

2

)
{ξk, ξ̄k}ab ξ̄ib

a + i

2
β

∑
a,b

[ξk, ξ̄k]ab ξ̄ib
a , (5.18)

where β =−1, and coincide exactly with the N=4 supersymmetry generators presented in [19].1

Point out that in contrast to the properties of the Grassmannian variables (2.22), quantities (5.16)
do not form pairs with respect to complex conjugation, that is some obstacle in quantization of 
the system in such representation.

6. Concluding remarks and outlook

In this paper, the Hamiltonian description of the N=4 supersymmetric multi-particle hyper-
bolic Calogero-Sutherland system is presented, which was obtained from the matrix superfield 
model by the gauging procedure [28]. In contrast to the N=2 case, the N=4 supersymmetric 
generalization of the gauged model has the U(2) spin hyperbolic Calogero-Sutherland system as 
a bosonic core.

In the presented paper, there are obtained explicit expressions of the N=4 supersymmetry 
generators for different descriptions of the system under consideration. The supercharges (3.2)
and the Hamiltonian (2.7) of the fully matrix system have a simple form, but this system con-
tains a large number of auxiliary degrees of freedom, which can be eliminated by n2 first class 
constraints (2.9). After the partial gauge fixing (2.19), eliminating off-diagonal even matrix vari-
ables, we obtain the formulation in which the N=4 supersymmetry generators (3.5), (3.6) have 
the Calogero-like form and are closed on the Hamiltonian (2.27) (or (2.36)) and n first class 
constraints (2.29) generating the residual [U(1)]n gauge symmetry. Without off-diagonal odd 

1 The author thanks Sergey Krivonos for the information that the value β =−1 is also valid in the hyperbolic case of 
the model presented in [19].
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variables in the classical supercharges (3.4) (or (3.5), (3.6)), the nontrivial interaction terms dis-
appear in them.

It is possible to impose the reduction conditions (5.3) that are N=4 supersymmetry invariant 
and eliminate half of the spinning variables. As result, we get the N=4 supersymmetric system 
with n first class constraints (5.9), which allows us gauging of the remaining spinning variables. 
Such a reduced system is in fact the N=4 generalization of the spinless hyperbolic Calogero-
Sutherland system equivalent to the model presented in [19].

In addition, the Lax representation (4.5), (4.8), (4.15) of the equations of motion for the system 
under consideration is presented. The set of conserved quantities (4.10), (4.11), (4.17) is found. 
Analysis of the classical integrability of the N=4 system considered here will be the subject of 
the next paper.

Moreover, a further research will be devoted to quantum integrability of the supersymmetric 
N=2 and N=4 systems constructed here. Supersymmetry quantum generators are obtained 
using the Weyl ordering in quantum analogs of quantities such as the N=2 supersymmetric case. 
However, in contrast to the N=2 case [32], due to the SU(2)-doublet nature of odd variables in 
the N=4 case, the separation of the invariant sector with only diagonal odd variables does not 
work in the N=4 quantum case.
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