T Available online at www.sciencedirect.com

ScienceDirect N
P

Check for
updates

ELSEVIER Nuclear Physics B 961 (2020) 115234
www.elsevier.com/locate/nuclphysb

N =4 supersymmetric U(2)-spin hyperbolic
Calogero-Sutherland model

Sergey Fedoruk

Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Moscow region,
Russia
Received 5 August 2020; accepted 29 October 2020
Available online 3 November 2020
Editor: Stephan Stieberger

Abstract

The N'=4 supersymmetric U(2)-spin hyperbolic Calogero-Sutherland model with odd matrix fields is
examined. Explicit form of the N'=4 supersymmetry generators is derived. The Lax representation for the
dynamics of the A'=4 hyperbolic U(2)-spin Calogero-Sutherland system is found. The reduction to the
N'=4 supersymmetric spinless hyperbolic Calogero-Sutherland system is established.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

One of the important developments in the study of the famous many-particle Calogero-
Sutherland systems [1,2] (see [3,4] for reviews) is their generalization to supersymmetric cases.
Most of the researches in these directions have been devoted to supersymmetrization of the
rational Calogero systems (see, for example, the papers [5-19] and the review [20]). Supersym-
metric generalizations of the hyperbolic and trigonometric Calogero-Sutherland systems have
been studied in a very limited number of works (see, for example, the papers [17-19,21-27] and
references therein).

In a recent paper [28], N'=2 and N'=4 supersymmetric generalizations of the hyperbolic
Calogero-Sutherland system were proposed using the gauging procedure [11,29] (see also the
matrix description of the Calogero models in [4,30,31]). In the paper [32] the N'=2 hyperbolic
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Calogero-Sutherland model [28] was considered. In this paper, the Hamiltonian analysis of the
N'=4 many-particle system obtained in [28] was studied in detail.

At the component level, the A'=4 matrix model obtained in [28] is described by the posi-
tive definite Hermitian c-number (1 xn)—matrix field X (7) := || X2 (@) ||, (X.2)* = X9, det X #
0, and the Hermitian c-number (nxn)-matrix gauge field A(?) := ||Aab(t)||, (Aab)>'< = Ap?
(a,b=1,...,n). In opposite to the N'=2 case [32], the N'=4 model uses the complex odd
(nxn)—matnx field W () := || W' ") ||, Wi (1) := [ Wi @)]], (W' o")* = W;,“, and the complex
c-number U(n)-spinor field Z¥(z) := ||zk(r)|| Zi(t) := |1 Z¢@)l, Z§ = (ZK)*, which have addi-
tional SU(2)-spinor indices i, k = 1, 2. This N'=4 n-particle system is described by the on-shell

component action Smarix = [ df Lmawix With the Lagrangian (system II in [28])
1 | /- -
Lnavix = 5 Tr(X_1VX X~'vx + 2cA) + ’5 (zkvz" - vzkz") (1.1)
+ % Tr(X—‘\i/kx—lv\yk — X_IV\TIkX_l\I/k>

Tr({X*lxIﬂ', XN (X Tk, X*I\i'k}) :

where the quantity c is a real constant and the covariant derivatives are defined by VX = X+
i[A, X]and VWK =Wk 4 [A, Wk, VZF = Zk +iAZF and c.c.

Despite the external similarity of the Lagrangian (1.1) with the N'=2 supersymmetric La-
grangian [32], the SU(2)-spinor character of the Grassmann matrix quantities ¥/ and semi-
dynamical even variables Z lead to the distinctive properties of the A= 4 system under consider-
ation. First, using the SU(2)-spinors Z' leads to the \'=4 matrix system that is supersymmetric
generalization of the U(2)-spin hyperbolic Calogero-Sutherland system, and not the spinless hy-
perbolic Calogero-Sutherland system as in the N'=2 case [32]. Second, due to the SU(2)-spinor
nature of the Grassmann matrix quantities W', the N'=4 supercharges contain additional terms
in odd variables, that were absent in the N'=2 case [32]. This paper examines the AN'=4 case in
detail in order to identify these and other distinctive properties of this N'=4 system.

The plan of the paper is as follows. In Section 2, the Hamiltonian formulation of the ma-
trix system (1.1) is presented. Partial gauge fixing eliminates purely gauge bosonic off-diagonal
matrix fields and yields a classically-equivalent system, whose bosonic limit is exactly the
multi-particle U(2)-spin hyperbolic Calogero-Sutherland system. Using the Noether procedure
in Section 3 allows one to find the full set of A'=4 supersymmetry generators. The Dirac brack-
ets superalgebra of these generators is closed to first class constraints. Section 4 is devoted to
the construction of the Lax representation for the equation of motion of the N'=4 supersym-
metric U(2)-spin hyperbolic Calogero-Sutherland system. Section 5 presents the reduction of the
considered U(2)-spin system that yields the A'=4 supersymmetric spinless hyperbolic Calogero-
Sutherland system. Section 6 contains summary and outlook.

2. Hamiltonian formulation

Here we present the Hamiltonization of the matrix system (1.1) with the U(n) gauge symmetry
and its partial gauge-fixing.
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2.1. Hamiltonian formulation of the matrix system

The system with the Lagrangian (1.1) is described by pairs of the phase variables (X, P
(Z}, Pf), (z¢, 73,],‘), (Wb T D), (9,0, T ) with the nonvanishing canonical Poisson brack-
ets

(X" Pl =000, AZL. POe =808, {Z{.Pylp =0}, @.1)
(WP M Yp = 808268, . (Wia” T*Y)p = 57808 . (22)
The phase variables are subject to the primary constraints
;;::P,f—%z,?zo, G§:=ﬁ§+%zf;~o, 2.3)
Teo =T’ = 5 X BX D 20, T = - S e o0,
(2.4)

Besides, the matrix momentum of X ab has the form
Pl=x"'vxx 1, (2.5)

and the momenta of the coordinates Aab are zero.
The canonical Hamiltonian of the system has the form

Hmatrix = PbaXab +P/?Z§ +,ﬁ52/? + Hkba\i’kab + 1:[kba\i’kab — Lmawix = H +Tr(AF) >
(2.6)
where the first term has the following form
1 1 -1y yv-1§ “1gk y-13

H = 5Tr<XPXP) — §Tr<{X XN (X ok, x \yk}) 2.7

and the second term Tr(A F ) uses the quantities
S | - 1 -

Fb=ilP, X1,5+ 2k 7} - 5 (XK, x1,l - 5 (WX O x 1,2 —cs,”. (2.8)

Vanishing momenta of A,” indicate that quantities (2.8) are the secondary constraints

F,’~0. (2.9)

The variables A,” in the Hamiltonian (2.6) play the role of the Lagrange multipliers for these
constraints.
The constraints (2.3) and (2.4) possess the following nonzero Poisson brackets:

(G, Ghp=—i808F, (1", Y Ap = —ixJx bk (2.10)
and are the second class constraints. Using the Dirac brackets for the constraints (2.3), (2.4)
{A, Blp={A, Blp + i{A, G{}p{G}, Blp — i{A, G4 }p(GY, Blp 2.11)
—i{A, Tk W X Xa (T BYp — i{A, Y5 Ve X X o (e, Blp

we eliminate the momenta ’Pk“, 735 s Hkab, I:Ikab . The nonvanishing Dirac brackets of residual
phase variables take the form
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(X, P.yp = 8282, 2.12)
(P, P4 = =L [ XWXy + U X 1wk x 1), dx 1
F L XAX T XTI X T X
i b __Sb(sl i b g, d — 3 d bsi 214
{Za’Zk}D— 10,0, (W', Yl =—i X “ X, k 2.14)
{q_,kab’ Pcd}D — %(Sg(x_lqjk)cb'i‘ %(S?(\ka_l)ad,
(Wb, P = 184X~ + 8L (X1

(2.13)

(2.15)

The residual constraints F,” = (F,%)*, defined in (2.9), form the u(n) algebra with respect to
the Dirac brackets (2.11):

(F.b, F Yy =—is, F.P +is.PF,e . (2.16)

So the constraints (2.8), (2.9) are the first class ones and generate local U(n) transformations

5C =Y a"{C. F,"}p (2.17)
a,b

of an arbitrary phase variable C where aab (1) = (ap?(1))* are the local parameters. These trans-
formations of the primary phase variables have the form

8X." = —ila, X1, 8P," =—ila, P1.%, 8ZF=—i(@ZNe, 8Zia=i(Zxa)?,
SWKb = —ifa, UK1,P . 8Wy,P = —ifo, Wil,l .
(2.18)

2.2. Hamiltonian formulation of partial gauge-fixing of the matrix system

The gauges X,”=0 at a#b fix the local transformations (2.18) with the parameters ab(v),
a#b generated by the off-diagonal constraints F,? 20, a #b in the set (2.8), (2.9). This gauge
fixing takes the form [11,28,32]

x2~0 (2.19)
if we apply the expansions
Xab :xa(Sab +xaba Pab =pa6ab +pab7 (2.20)

where x,” and p,” represent the off-diagonal matrix quantities. In addition, using the constraints
F,?~0, a#b, we express the momenta p,” through the remaining phase variables:

b TZEZY i (xa +xp) (DK, D)o’
Pa’ =— + , (2.21)
Xg — Xp 2(xq — Xp)/XaXp

where we use the odd matrix variables ®F, %, &b = ((bk p®)* defined by

wk b ~ Ty,0
ok b= — <4 ;0 = 24 222
a ,—xaxb ka ’—xaxb ( )

Thus, the partial gauge fixing conditions (2.19) and (2.21) remove the variables xz2 and pab.

4
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As a result, after the partial gauge fixing, phase space of the considered system is defined
by 2n even real variables x4, pa, 2n even complex variables Z;, and 2n? odd complex variables
@ ,b. Their nonvanishing Dirac brackets are

{Xa, Po}p = Sab » (2.23)
(ZL, 20, = —i sbsi (2.24)
(@0, DYy = —i 82808} . (2.25)

In contrast to (2.13) and (2.15) the momenta p, commute with each other and with the Grassman-
nian quantities <I>kab . Moreover, due to (2.25), the odd variables @kab and ®;,? form canonical
pairs (compare with (2.14)).

In the Hamiltonian (2.7) the momenta p, are presented in the term ), ()capa)2 /2. Let us
represent this term in standard form for particle kinetic energy. For this we introduce the phase
variables

qa =10gx4, Pa=XaPa, {qa, Pb}f) =8ab - (2.26)

In these variables and (2.22) and after the gauge-fixing (2.19), (2.21), the Hamiltonian (2.7) takes
the form

R, Rb 1 A -
Zpapa T T 1 (CUT L) MR D)
8 «Zp sinh? ( 3 )
where
R := ZE 7 — cosh (g) (DK, &1l (2.28)

The residual first class constraints in the set (2.8), (2.9) are n diagonal constraints
Fui=F,"=R," —c=ZZ¢ — (0, &}," —c~0  (nosummation overa), (2.29)

which form an abelian algebra with respect to the Dirac brackets (2.25)

{Fa, Fp)p=0 (2.30)
and generate the [U(1)]" gauge transformations of Z][f and d>kab with the local parameters y, (¢):
Z’; — elva Z]a( , Z,‘j — e iva ZZ (no sum overa) , (2.31)
ok b — elvagk Lemivn @yl — eVady,Le M (no sums overa, b) . (2.32)

Similarly to (2.20), we can use the expansions of the Grassmannian matrix quantities (2.22)
in the diagonal and off—diagonal parts:

cpkab = (Pa‘sa + ¢ ci>kab = (/_’ka‘sab + qskab , (2.33)

where ¢¥,% = ¢y, = 0 at the fixed index a. The Dirac brackets (2.25) of the diagonal quantities
<p§, ¢¥kq and the off-diagonal ones ¢>kab s ¢kab have the form

(0, Gkply = —i8apdl, (B, Prc?Ypy = —i 828255 . (2.34)

The constraints (2.29) involve only the off-diagonal fermions ¢, &

5
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F, = Z];Zk {¢ ¢k}a —Ccr (no summation over a). (2.35)

In the variables ¢, ¢, ¢, ¢ the Hamiltonian (2.27) takes the form

VAVANAYA
==z Zpapa + - Z

8 iZh sinh? ( 5 qb)

1 Coth( > qh)

1 Y —— 2L L2 - B+ Gra — )8 — 9 B
a#b smh( )
2
1 1 X . - -
D ey e [t AL AT AL Y

8 7 sinh? (‘IT)
+ (Pia — Bib) (Pra — Pep) P "
+ 2(0} = 0)) (Pra — Prp)Pia D" 1"
+{¢, P8, di)”
+ 2(@ia — Gin)d (D", Pi )"
+2(¢} — @) dia" (", d;k}ba]
- é D (o' dita“ 16" dila” - (2.36)

In the bosonic limit the Hamiltonian (2.36) takes the form

S, Sbk
Hpose = PaPa+ 3 o (2.37)
D ey

where the quantities
Sai* =297k (2.38)
at all values a form the u(2) algebras with respect to the Dirac brackets:

{Sai*, Sp"Vp = —i 8an (8’;&,# - 8§Saj") . (2.39)

Thus, the Hamiltonian (2.37) has the form

Hpose = Zpapa + = Z %) (240)
a;éb sinh? <T>

and is same as the Hamiltonian of the U(2)-spin hyperbolic Calogero-Sutherland A, _;-root
system [4,33,34].

Derivation of this many-particle spin system in the A'=4 case is the result of using semi-
dynamical SU(2)-spinor variables, which are the field components of the (4,4,0) multiplets [28].
In contrast to the N'=4 case considered here, the use of semi-dynamical scalar variables in the
N'=2 case produces “a less rich” supersymmetric system, namely the A'=2 spinless hyperbolic
Calogero-Sutherland system [32].
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3. N'=4 supersymmetry generators

As discussed in Sect. 1, the system (1.1) considered here was derived from the N'=4 super-
field model [28]. Therefore, it is invariant under N'=4 supersymmetry transformations of the
matrix component fields:

06X = —é‘i\I—’i +<€‘i\i’i ,

Swi

iéfvx+ékX[X*1w<i,X*1\If’<>],
i i 3.1)
SU; = ig vx+gkx[x—1xy(i,x—1\yk)],

8Zi =0, 8Z; =0, SA =0,

where g, 5 = (g1)* is two complex Grassmannian parameters. These transformations are gen-
erated by the following Noether charges:

i _ il g 1 gk
0" = Tr(PW + S XWX wx o),
: 3.2)
0, = Tr(P\iJi + %X—‘wix—likx—lxbk),

where the matrix momentum Pab is presented in (2.5). The supercharges (3.2) and the Hamilto-
nian H defined in (2.7) form the N'=4 d=1 superalgebra

{0, 0jlp=—2iH¢s;, {0, Hip={0i, Hip=0 (3.3)

with respect to the Dirac brackets (2.12)-(2.15).
Putting the partial gauge fixing conditions (2.19), (2.21) in expressions (3.2) and going to the
variables (2.22), (2.26), we obtain the N'=4 supersymmetry generators

Rl i £ 5 1 b
Zpqu__z + 5 D05 Byl ey
a#b smh( ) a,b
. 34
- - R, b, »Y i - -
Qi =) Pa®ia" — —Z AR DAL AN
a ab smh( 2 ) a,b

for the partial gauge fixing system, which is described by the Hamiltonian (2.27) and the first
class constraints (2.29). Using the Grassmannian variables ¢}, ¢;q, ¢>’ab s qﬁ,-ab , defined in (2.33),
we cast the generators (3.4) in the form

ZkZb ¢i a

Q' =Y pash - EZ— (3.5)

2 a+b sinh (qa 5 qb)

+ % gCOth (qa ; L ) [(@m — o) " + (0 — o) bra” + (6", q;k}“b] o

i _. _.
5[ D0 (@ra+ 05 8 + da R0 G0) + Y b
a#b a#b#c#a

+ Z Soka‘pg;@iz] )
a
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_ _ i ZkZbd_rb“
Q=Y pupa— by LI
a a#b sinh (T)

+ lE ;,:)Coth (g) [(ﬁ% — o) " + (0 — o) bra” + (6", "Sk}“b] P’

(3.6)

i - _ _ - - -
5[ D0 (01" ra + ) +rad b ) £ Y Bl B
a#b a#b#c#a

+ Y Giabhina
a
Taking into account the Dirac brackets (2.25), (2.26) and
(Ra?. RAYS = —i<achb — 8fRa")
_i sinh ("“ ;q”) sinh (qc 2 q‘i)(ag{@k, Bp)cb — 8ok, ik}ad) ,

azb sinh’

3.7
we find that the supercharges Q’, Q; defined in (3.4) form the N'=4 superalgebra
. (i byk) a
i okv.— _L M( _ )
Q.QM=-7_ - (1) Fo—Fy), (3.8)
a#b sinh
2
A cpei L ¢ " Prp”
' H=—2iH§ — - —(F—F), .
Q' Qup=—2H§ -7 > - > (1o b (3.9)
a#b sinh >
BT R4’y F,—F (3.10)
{Q, }D__§ZW< a=— b) .

2

and c.c., where the Hamiltonian H and the constraints F, =~ 0 are given in (2.27) and (2.29).
Thus, the quantities H, Qi s Qi , defined in (2.27), (3.4), form the N'=4 superalgebra with respect
to the Dirac brackets on the shell of the first class constraints (2.29). Moreover, the generators H,
Q', Q; are gauge invariant: they have the vanishing Dirac brackets with the first class constraints
(2.29),

{Q', Fa}p =1{Qi, Fa}p = {H, F,}, =0. (3.11)

The form of the first two terms in expressions (3.4) is similar to the A'=2 supercharges
presented in [32]. But the last terms in the A'=4 supercharges (3.4) were absent in the N'=2
case. Their appearance is the result of the SU(2) spinor nature of Grassmann variables in the
N'=4 case. Moreover, the first and last terms in the supercharges (3.5), (3.6)

; i _; - I
Q=) (pawé, +5 wkawfﬁw;) ED <pa<pm +5 <ﬂm¢§<ﬂm> (3.12)
a a

contain only diagonal fermions ¢!, @;, and possess the following Dirac brackets:
Q. Qulp=-2i5H,  {Q'Hjp={Q:, Hlp=0, (3.13)

8
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where H = % > paz. Although supercharges (3.12) contain terms trilinear in fermions in con-
trast to the A'=2 case [32], these quantities and H generate the A'=4 supersymmetric system
describing n non-interacting free particles. This system is described by the N'=4 superfield La-
grangian £ ~ )" log X, (see [20,35,36]).

It should also be noted that the terms of the supercharges (3.5), (3.6), without the first and
last terms (3.12), describe the interaction of particles and are zero when the off-diagonal matrix
fermions ¢iab, (ﬁiab vanish.

Similarly to the N'=2 case [32], we can make gauge-fixing for the residual n real first class
constraints (2.29) (or (2.35)). However, in the considered N'=4 case, we have 2n complex spinor
variables Z! in opposite to the N'=2 case with n complex spinorial degrees of freedom in the last
case. Thus, in the A'=4 case considered here the N'=4 multiparticle model possesses n complex
semi-dynamical degrees of freedom in phase space and describes the N'=4 supersymmetrization
of the many-particle system which differs from the one in the N'=2 case. In Section 5, we use
the reduction that eliminates these semi-dynamical degrees of freedom in the A'=4 invariant
way.

4. Lax representation

Classical dynamics of the system with partial gauge-fixing considered here is defined by the
total Hamiltonian

Hpr = H + ZAaFa, 4.1)
a

where the Hamiltonian H is defined in (2.27) and X, (¢) are the Lagrange multipliers for the first
class constraints F,, presented in (2.29). A time derivative of an arbitrary phase variable B(¢)
takes the form

B = {B.Hr}}. 4.2)

Let us represent this dynamics in the Lax representation [37].
To do this, we introduce the n xn matrix

b b . b R,
L = pass® — ,(1—aa)—, (4.3)
. 9a — 4b
2 sinh (7)
2

whose evolution

L = (L Hr)p 4.4)
is represented by the matrix commutator

. L.’ (F, — F

Lt = —i[M-{—A,L]ab—i(l—SZ) a” (Fa = Fb) (4.5)

4 sinh? (—qa — qb) 7
2

where the matrices M and A have the following form:

9a — 4b
b 1 k5 a(sb 1 1 8}) COSh( 2 )
! = gt aaaa + g (1-00) | g gl

; R+ (@5, o2 |, 4.6)
inh (
Sin 2




S. Fedoruk Nuclear Physics B 961 (2020) 115234

A" = rg 8t 4.7

and F, are the constraints defined in (2.35). The equations of motion of the fermionic matrix
variables CIDZ” , ®;,7 are also represented as commutators

ot = {dP Hr)y = —i[M+ A, 1,7,
4.8)

i’ = (@b Hr)y = —i[M + A, &;1,°

with the same matrices M and A.

On the shell of the first class constraints (2.35) F, ~ 0, equations (4.5), (4.8) are actually the
Lax equations and yield the conserved charges in a simple way. So due to equations (4.5), (4.8),
the trace

J = Tr(F) 4.9)

of any polynomial function F(L, @, CTD) of the matrix variables Lab s CIJi,b , @ ab is a conserved
quantity on the shell of constraints (2.35):

T =~0. (4.10)
In particular, on the shell of constraints (2.35), the traces
L=Tr(LY,  ZL:=Tr(@'L*"), Iy :=Te(@L*", k=1,...,n (411

are conserved:

i—ikz (L5 (F F)~o Ti=0, T;=0 (4.12)
k_4 ] 2(qtl_qb) a b)~Y, k— VY ki =Y. .
a#b sinh
2
The Hamiltonian (2.27) and the supercharges (3.4) have the form
1 . . . _ - -
H=512+J, Q=5L+J, Q=1+, (4.13)

where
J = —% Tr((0f, B}k, &y)), T = ’5 Tr([0F, Bi1o).
Ji = —éTr(ci),-[CDk, Bil). (4.14)
The equations of motion of the commuting spinning variables Z fl, Zlfl are represented as

Zi = (@0 HYy = —i Y (Adb + Adb) Z,
b

- - A (4.15)
Z9 = (¥, HY =i ; ZP (A" + Ap®),
where the matrix A has the form
R b
Al = (1 —53) T (4.16)
4 sinh? ( a )
Sin 72

and the matrix A is defined in (4.7). Due to (4.15) we obtain (see (2.38))

10
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S =0, where S = ZZZZZ- 4.17)
a

It should be noted that the structure of the conserved charges in the considered supersymmetric
system (4.10) is similar to the form of the charges in the trigonometric (non-matrix) supersym-
metric system studied in [25].

Deriving the Lax pair and finding the set of conserved charges (4.9) paves the way for an-
alyzing the integrability of the N'=4 supersymmetric system considered here. Analysis of the
superalgebra of conserved charges and integrability of the considered many-particle supersym-
metric system will be the subject of the next article.

5. Spinless hyperbolic Calogero-Sutherland system as a result of the reduction procedure

Semi-dynamical variables have the following Dirac brackets with the total Hamiltonian (4.1),
(2.27)

P RS Z] o
(Hr. Zifp =1 Y —— e +idaZ (5.
b(a) sinh? ( 4 )
2

and with the supercharges (3.4)

. 1 itz . 1 "7}
0.zl =-2Y — == (0. Zip=—5 ) — .
2 b(a) sinh (q“ qb) 2 b(a) sinh (q“ %)
2 2
(5.2)
Therefore, the conditions
Z)7 =0,  79,=0, atalla (5.3)

are invariant under the A'=4 supersymmetry transformations and we can use them as reduction
conditions. Similarly to [38], the reduction (5.3) implies the conditions

SE = 5, kot atall a, (5.4)

where the quantities S,k are defined in (2.38), 0F =o' +i02 and 012 are the Pauli matrices.
So the conditions (5.3) lead to zero two generators in all #(2) algebras (2.38), (2.39).

After reduction with the conditions (5.3) the obtained system involves only half of the initial
semi-dynamical variables

=2 =20 (w2 =—ish. (5.5)

Reduction of the Hamiltonian (2.27) takes the form

"= ;Zpapa ey L SRR (5.6)
8 = s1nh2( 5 )

where
T,b := 7,7* — cosh ("“—;qb> (DK, Bp)a” . (5.7)

11
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In this case, the N'=4 supersymmetry generators (3.4) take the form

i a Tq)la i k7 bxi a
Zpacb - —Z + 5 D105 Byl

a#b sinh ( ) a,b
T,b®; 2 i (5-8)
b - -
Ql = Zpa ia® — _Z : - EZ[(Dk’ q:)k]abcbibus
a#b sinh ( > ) a,b
while the first class constraints (2.29) become
Foi=T," —c=2,7" —{®X, ),  —c~0 (no summation over a). 5.9

Similarly to quantities (2.28) with the Dirac brackets (3.7), quantities (5.7) satisfy
(T2, 1Y, = =i (8470 — 82T
—i sinh <6]a ; qb) sinh (61c

90) (53100F, Bp)c? — 82 {0k, b))
(5.10)

As result, the charges (5.8), (5.6) form the same N'=4 superalgebra (3.8)-(3.10), up to the first
class constraints (5.9).

However this reduced system contains n first class constraints (5.9) which, together with the
gauge fixing conditions, can eliminate all n complex semi-dynamical variables z,. So similarly
to the A'=2 case considered in [32], we can make the gauge-fixing

2

=2z, (for all a) (5.11)

for the first class constraints (5.9). Then, the components of the spinor z, become real and are
expressed through the remaining variables by the following expressions:

Za =4/ + {DF, Dy} @ (no summation over a). (5.12)

In this gauge the supercharges (3.5), (3.6) take the form

. i ¢+ {DK, Drla? Jc+{D), D)0 Dt
BRI :
a

Za;éb sinh(qa _qb)
2
i - .
+ Zc th (L) (@8, B 017+ 5 D [0, Bl by (5.13)
a;éb a,b
_ _ i C—i—{CDk,CT)k}aa c+{dJ, ij}bb Ci),'b“
—_— . a__
Q; —Zpacpza 22 ] (Qa _qb)
a a#b sinh { ———
2
i da —49b\, <k = \ bs a L k & 1b&. a
5 D coth (L) (@8, B! iy — 3 Y 10K, Bl By (5.14)
a#b a,b

Moreover, in this gauge and in a pure bosonic limit, the reduced Hamiltonian (5.6) takes the form

Hpose = 5 Zpupa+ Z (5.15)

a;éb Slnh2 (T)
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and is the Hamiltonian of the standard spinless hyperbolic Calogero-Sutherland system. Thus,
the reduction (5.3) of the considered system yields gauge formulation of the A'=4 spinless
hyperbolic Calogero-Sutherland system [1-4].

Due to the presence of the square roots in the second terms in the supercharges (5.13), (5.14)
they contain higher degrees with respect to the Grassmannian variables. To avoid this, new vari-
ables

< , cH{D/, D)0 - - cH (D], ;)b
Ry ik ok ld 1AW S Sl LA ) (5.16)
c+ {(Dk’ q)k}aa c+ {(Dk, q>k}aa

were introduced in [16]. In these quantities the supercharges (3.5), (3.6) take the form

i i a . ¢+ {$k9§ } b Si “
QZZPaEa _%Z( b qak_bq)b ’
a. a#b sin ( 5 ) |
+’5a§coth (L) B ' - 5 8 D6 g (5.17)

P k £1,b\E. a
Q= ZPaEiaa - IEZ G + t ék?q)b&h
a a#b  sinh (T)

i da — qb c bz i - bz
23 coth (I 64 B B+ B Y IR Bl B (5.18)
a#b a,b
where 8 = —1, and coincide exactly with the A'=4 supersymmetry generators presented in [19].!

Point out that in contrast to the properties of the Grassmannian variables (2.22), quantities (5.16)
do not form pairs with respect to complex conjugation, that is some obstacle in quantization of
the system in such representation.

6. Concluding remarks and outlook

In this paper, the Hamiltonian description of the A'=4 supersymmetric multi-particle hyper-
bolic Calogero-Sutherland system is presented, which was obtained from the matrix superfield
model by the gauging procedure [28]. In contrast to the N'=2 case, the A'=4 supersymmetric
generalization of the gauged model has the U(2) spin hyperbolic Calogero-Sutherland system as
a bosonic core.

In the presented paper, there are obtained explicit expressions of the A'=4 supersymmetry
generators for different descriptions of the system under consideration. The supercharges (3.2)
and the Hamiltonian (2.7) of the fully matrix system have a simple form, but this system con-
tains a large number of auxiliary degrees of freedom, which can be eliminated by n? first class
constraints (2.9). After the partial gauge fixing (2.19), eliminating off-diagonal even matrix vari-
ables, we obtain the formulation in which the AN'=4 supersymmetry generators (3.5), (3.6) have
the Calogero-like form and are closed on the Hamiltonian (2.27) (or (2.36)) and n first class
constraints (2.29) generating the residual [U(1)]"” gauge symmetry. Without off-diagonal odd

' The author thanks Sergey Krivonos for the information that the value 8 = —1 is also valid in the hyperbolic case of
the model presented in [19].
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variables in the classical supercharges (3.4) (or (3.5), (3.6)), the nontrivial interaction terms dis-
appear in them.

It is possible to impose the reduction conditions (5.3) that are A'=4 supersymmetry invariant
and eliminate half of the spinning variables. As result, we get the N'=4 supersymmetric system
with n first class constraints (5.9), which allows us gauging of the remaining spinning variables.
Such a reduced system is in fact the N'=4 generalization of the spinless hyperbolic Calogero-
Sutherland system equivalent to the model presented in [19].

In addition, the Lax representation (4.5), (4.8), (4.15) of the equations of motion for the system
under consideration is presented. The set of conserved quantities (4.10), (4.11), (4.17) is found.
Analysis of the classical integrability of the N'=4 system considered here will be the subject of
the next paper.

Moreover, a further research will be devoted to quantum integrability of the supersymmetric
N=2 and N'=4 systems constructed here. Supersymmetry quantum generators are obtained
using the Weyl ordering in quantum analogs of quantities such as the N'=2 supersymmetric case.
However, in contrast to the A'=2 case [32], due to the SU(2)-doublet nature of odd variables in
the A'=4 case, the separation of the invariant sector with only diagonal odd variables does not
work in the A'=4 quantum case.
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