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I. A Survey of Ideas for Radio Frequency Acceleration 

A Fixed Field Accelerator can accommodate at one time particles cir-

culating at all energies between the injector and output energies. There thus 

becomes available a whole new class of accelerating mechanisms which appear 

to promise high intensity beams. Such high intensity, besides being of interest 

in a single accelerator, is of course essential for the operation of a double 

accelerator with interacting beams. These accelerating mechanisms are now 

being studied by analytic means as well as by the digital computer. In general, 

one is concerned with the energy gain of particles whose frequencies are a 

function of energy, as these particles are subject to various radio frequency 

accelerating gaps, whose voltages and frequencies may be secularly changed. 

Of the many possible arrangements, not all of which have been studied, the 

following seem to have particular promise. More calculations will have to be 

done before one can choose which of the following mechanisms or what combina-

tion of them is most efficient. 

a. Conventional synchrotron acceleration at high repetition rate. 

The most straightforward accelerating system is one which uses one or 

*Assisted by the National Science Foundation and the Office of Naval Research. 
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several synchronized accelerating gaps supplying a radio frequency voltage 

whose frequency is modulated as in conventional synchrotrons so as to accelerate 

a pulse of particles from the injection to the output energy. The only advan- 

tage of an FFAG magnet in this case is that the pulse repetition rate is now 

limited only by the r. f. system, and may, with reasonable requirements on the 

r. f. system be increased to perhaps several pulses per second, as compared with 

one pulse every few seconds with pulsed magnetic field accelerators. 

A typical graph of frequency of revolution versus energy in an FFAG 

synchrotron is shown in Figure 1. The graph is drawn for a mean field index 

k = 82. 5. The energy scale is in rest masses, and the frequency scale is in units 

of the frequency at transition where the frequency reaches its maximum value. 

The problem of accelerating through the transition energy will be discussed later. 

In general it appears that this problem is less difficult in an FFAG synchrotron 

than in a pulsed field alternating gradient accelerator. For reasons that we shall 

indicate, conventional synchrotron acceleration is far less efficient in terms of 

beam current that can be accelerated than is theoretically possible with other 

schemes. 

b. Bucket Lift. 

If a radio frequency voltage is applied to an accelerating gap, 

then in the neighborhood of each energy for which the frequency of revolution of 

the particles is equal to the radio frequency or to any of its subharmonics, there 

is a region of particle energies and phases (a bucket) within which particles execute 

stable phase oscillations around the synchronous energies. If the radio frequency 

is modulated, buckets move up or down the energy scale. Under suitable conditions 
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particles in any of the buckets can be accelerated by this sytem. Thus it is 

possible to accelerate a number of buckets of particles at a number of different 

energies simultaneously, with a single radio frequency accelerating voltage. As 

the frequency is modulated, each bucket can be filled by the injector when the 

energy corresponding to that bucket coincides with the injector energy. 

c. Phase displacement mechanisms. 

These are based on the observation that particles are accelerated 

if subject to a radio frequency gap which is initially at a frequency corresponding 

to an energy higher than that of the particles, and then the oscillator frequency is 

modulated to a frequency corresponding to an energy lower than that of the 

particles. Note that in this scheme the frequency is modulated in just the reverse 

direction from that used in conventional synchrotron acceleration, or in the 

bucket lift. The mechanism may be readily understood, for the oscillator 

carries virtual particles down in energy, and thus by Liouvillets Theorem real 

particles occupying phase space at a lower energy must be forced upward in energy. 

In general, since the current accelerated by phase displacement 

equals the virtual current which could be carried down by the oscillator, phase 

displacement and bucket lifts are about equally efficient. The methods vary in the 

length of time necessary for transit of a given energy interval by any single 

particle, and as such each method has distinct advantages or disadvantages. It 

should be clear that the carrying of particles in buckets, and the phase displacement 

of particles not in buckets are complementary. For any proposed acceleration 

system involving buckets, one can envision a complementary system involving 

phase displacement, which is equally efficient if loss of particles to the walls, 
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injector, and gas scattering are neglected. In general, it appears that when 

particle loss is included, phase displacement acceleration is inferior to accel-

eration of particles in buckets. There are, however, certain situations in which 

phase displacement seems to have some advantages. In particular, if one is 

accelerating particles up to the transition energy with buckets, then there are 

empty buckets which simultaneously move down from high energy to the transi-

tion energy. These empty buckets may be employed to phase displace particles 

from the transition energy to the output energy of the accelerator, thus increasing 

particle acceleration efficiency. 

It is in any case important to understand the phase displacement process, 

since it always operates on particles outside of buckets whether one makes use 

of it or not. 

d. Beam stacking. 

Particles may be accelerated by a radio frequency cycle as 

described above, until they reach an energy E2. On successive cycles buckets 

full of particles are deposited at the energy E2. The particles already there are 

displaced by successive buckets, on the average downward in energy, to make room 

in phase space for the newly arriving particles according to Liouville's theorem. 

When a suitable number of buckets of particles has been stacked near the energy 

E2, a second radio frequency accelerator may accelerate the particles on to a new 

energy E3. If the bucket size for the second cycle is n times the bucket size for 

the first cycle, then n buckets can be stacked at E during the first cycle. These 

can then be picked up in a final bucket and carried to E in a single cycle of the 

second type. The advantage of this system is that the radio frequency schedule can 
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be chosen in the most efficient way to capitalize on the bucket size versus energy 

relation, which in turn depends upon the frequency of revolution versus energy 

curve. Thus usually d_cL. 	where -.CL  is the frequency of revolution, 
dE 

decreases with energy. (See Figure 1. ) This has three consequences: 

1. For a given radio frequency voltage, the bucket size increases with 

energy and hence in the usual acceleration method the buckets are nearly empty 

when they arrive at the transition energy. By stacking at intermediate energies 

this can be corrected. 

2. For a given radio frequency voltage, the allowable rate of frequency 

modulation noticeably decreases with increasing energy, and hence the repetition 

rate is limited. By stacking one can use a higher repetition rate with small 

buckets at lower energies, and a smaller repetition rate at higher energies, but 

with larger buckets, so that the output current corresponds to the total injected 

current at the higher repetition rate. 

3. When stacking particles, the particles already at an energy E2  are 

displaced in energy by a succeeding bucket by an amount proportional to the 

phase area occupied by the bucket. Digital computer studies have indicated that 

the particles are not spread in energy by large amounts, but are kept fairly tightly 

bunched in energy, with a mean displacement depending only on the total area of 

the succeeding buckets. Thus if the bucket size is increasing with energy, the 

energy displacement of particles when one attempts to stack will be very large. 

Consequently one wants to stack particles using buckets which are full of particles. 

This can be accomplished by decreasing the cavity voltage or increasing the 

frequency modulation rate. 
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e. Multiple oscillators 

Schemes have been proposed which involve several independent 

radio frequency accelerating voltages which act simultaneously on the particles 

being accelerated. The simplest such scheme, proposed by Darragh Nagle, 

utilizes a number N of identical oscillators operating simultaneously over the 

same frequency interval. Each oscillator follows a frequency modulation cycle 

as in conventional synchrotron acceleration. The N frequency modulation cycles 

of the different oscillator are staggered so that each oscillator accelerates a 

pulse of particles, the N pulses following are another in energy from the injection 

to the output energy. The scheme depends upon the fact that particles are 

relatively unaffected by radio frequency voltages with which they are not in 

synchronism. More complicated schemes can be envisioned in which a given 

particle is accelerated by more than one oscillating voltage, perhaps simultane-

ously. One may for example use interlaced bucket lift schemes in which several 

oscillator frequencies are chosen so that their sübharmonics are interlaced. 

It seems likely that very efficient accelerating schemes using multiple 

oscillators may be possible. However, too little is known theoretically about 

the behavior of particles under the action of multiple oscillators to be able to 

evaluate such schemes at present. 

f. Scheduled and stochastic schemes. 

Acceleration schemes may be classified as scheduled or stochastic. 

Scheduled schemes are those in which the radio frequency voltages are programmed 

in such a way that a particle is accelerated according to a planned schedule. Thus, 

for example, it is possible to choose the initial and final radio frequencies f1  and f2  
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in a bucket lift so that particles are passed from one bucket to another as they 

are accelerated. If, for example, for two integers h1, h2, we have f2 /h1  = f1/h2, 

then during one frequency modulation cycle, a particle riding in a bucket at 

harmonic number h1  is accelerated from an energy corresponding to a frequency 

of revolution f1/h1  to that corresponding to f2 /h1. On the next FM cycle, the 

particle rides in a bucket of harmonic number h2  from the frequency of revo-

lution 1 1/h2  = f2 /h1  to the frequency f/h2. The total energy gain of the particle 

42 
corresponds to a frequency ratio( 2 ' whereas the oscillator is modulated only 

over the range f2 /f1. It is not difficult to find matching systems of harmonic 

numbers such that particles can be carried in a scheduled way over frequency 

ranges of many octaves with oscillators modulated over a frequency ratio of a 

fraction of an octave. Such schemes not only reduce the demands on the rf cir-

cuitry with respect to frequency modulation, but they increase the efficiency of 

the rf system by allowing one rf voltage to accelerate many pulses of particles 

simultaneously. 

In stochastic, or unscheduled schemes, no attempt is made to program the 

radio frequencies precisely, and the energy of an individual particle varies in an 

unpredictable or random way. Thus in an unscheduled bucket lift scheme, the 

initial and final frequencies f1  and f2  may bear no particular relationship to 

each other and may even vary in a random way from cycle to cycle. A particle 

at the beginning of an FM cycle may or may not find itself in a bucket depending 

upon whether its frequency of revolution is sufficiently close to I 1/h for some h. 

If it is in a bucket, it is carried up in energy to a new energy corresponding to 

f2 /h. If it is not, it will be phase displaced downward in energy by the buckets 
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which pass it during the FM cycle, and it may at the beginning of the next cycle 

be caught in a bucket. It is convenient to define a mean free path as the average 

energy increment received by a particle, once caught, before it again has a 

chance of losing energy. A particle starting at the injection energy has a 

certain probability of reaching the output energy before being lost. Under certain 

circumstances, stochastic acceleration schemes yield output currents comparable 

to those of scheduled schemes, but at the expense of a greater duty factor for 

the injector. In general, the greater the mean free path in a stochastic scheme, 

the more efficient is the scheme from the point of view of injector duty factor, 

and the more rapidly is any given particle carried from the injection to the output 

energy. If there are no loss mechanisms (orbit instability, gas scattering, etc.) 

between injector and output, then the time of transit does not affect the theoretical 

output current; if there are such loss mechanisms, then for long transit times, 

(short mean free paths) the output current is reduced. Though less efficient in 

some ways, they have the advantage of simplified rf circuitry. Various partially 

scheduled schemes are possible in which a particle once caught, may be carried 

in several successive buckets before being subject again to a chance of being 

caught or left behind. Recently, E. L. Burshtein, V. I. Veksler, and A. A. 

Kolomenskii'  have proposed a stochastic accelerator in which the accelerating 

voltage is essentially a random noise. Here, of course, the mean free path is 

simply the mean voltage across the accelerating gap. 

g. Intersecting beam experiments. 

The proposal to achieve very high energy collisions by directing 

1. E. L. Burshtein, V. I. Veksler, A. A. Kolomenskii: U. S. S. R. Academy of 
Sciences, Moscow, 1955, p. 3-6. 
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opposing accelerated beams against one another rests on the possibility of 

stacking successive pulses of particles in FFAG accelerators. Thus, if a 

circulating beam of particles has a sufficiently long lifetime against orbit 

instabilities, gas scattering, etc., then very high circulating currents of high 

energy particles can be built up in this way. Successive pulses of particles may 

be stacked at the output energy, to build up an intense beam, or they may be 

stacked at an intermediate energy, and then carried up to the output energy 

simultaneously in one large bucket. The considerations involved have been dis-

cussed under (d) above. The detailed theory will be worked out later. 

- II. Theory of Radio Frequency Acceleration in Fixed Field Accelerators 

a. Frequency versus energy relationship 

It is convenient to characterize an equilibrium orbit in a fixed 

field accelerator by its equivalent radius R defined by 

L=27tR, 	 (1) 

where L is the length of the orbit. Each orbit R is traversed by particles of 

energy E (R). We define the momentum compaction parameter or mean field 

index k by either of the equivalent forms 

k 
Rdp 

 1 
 R dli 

pdR (2) 

where p is the momentum, and H is the average magnetic field averaged along 

the orbit R. If k is constant, we have 

(R) k+ 1 

p1 R1  

H 

iç (Ri) 
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The frequency of revolution of a particle in an orbit H, is 

2 
PC (5)  

2'RE 

where E is the total energy, including the rest energy E = mc2. By squaring 

Equation (5) differentiating, and rearranging, we obtain a formula for 

2 
E 	df - (k+l)E0E 2 

1 dE 	(k+l)(E2 E) 
(6)  

The transition energy is given by 

Et= Vk+l) E 	 (7) 

In a cyclotron K = 0 and Equation (6) then defines k as a function of E. In a 

synchrotron, k is often constant, and we may then integrate Equation (6) to obtain 

	 - 	-+l !2] 
k E 

/E2  - E 	(k+ 1) 	 (8) 
ft 	 E t 	/ 

where f1  is the frequency of revolution at the transition energy. The quantities 

K and f/f1  are plotted in Figure 1 for a typical case (k = 82. 5). 

b. Canonical form for the acceleration equations. 

We neglect coupling between betatron and synchrotron oscillations, 

and assume that a particle is always on an equilibrium orbit. A particle with 

energy E travels along an orbit of length 2wR(E); we will call R(E) the equivalent 

radius. We define an equivalent angular variable 0 along the orbit by 

d @ = ds/R 	 (9) 

where ds is the element of are length. Then if '( 	, R, t) is the electric field 

component along the orbit, we have 
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dE  -- eR 
dt 

= 2?! f Re 	 (10) 

La  
dt 211f 

where f (E) is the frequency of revolution for a particle of energy E. If the 

orbit is not circular, a small oscillatory term in 	must be added to the 

right number of Equation (11), but if the origin of Q9 is properly chosen, this 

term has zero mean around the circumference, and we are here ignoring it. 

We consider the case when 9  has the form 

1 
= -4- F(, t), 	 (12) 

that is, we assume that the accelerating gaps are radial and have a voltage 

independent of radius. The case when the voltage varies with radius according 

to a factor 1,(R) can easily be treated by a slight modification of the method. We 

define a new energy variable W(E) as follows: 

dE 
W= 	

f( E) 	 (13) 

0 

where E is arbitrary and may conveniently b e taken as the rest energy if 
0 

f(E) is extrapolated to that point. We can now rewrite Equations (10) and (11) in 

the form 

dt = 2'F( 	, t) 
	

(14) 

dJ  = 277'f(W)
dt 
	 (15) 

which are derivable from the Hamiltonian function 

H = _21rJ'F (@. t) d 0 + 2?!E(W). 	 (16) 
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The variable W, (19 are therefore canonical. It is convenient to think of W, 

as coordinates in a cylindrical phase space. 

The advantage in writing the equations in canonical form is that we can 

apply certain useful general theorems. We have Liouvifle s theorem that a 

closed curve in the W, % plane transforms under Equations (14), (15) in such 

a way that the enclosed area remains constant. If the Hamiltonian function 

varies sufficiently slowly in time, we may apply the adiabatic theorem which is 

stated conveniently for our purpose in the form: A set of points which at time t 1 

lie along a curve 11(t1) = constant in the W1, 	-space, will at a later time t2  

be found to lie along a curve H(t2) = constant. In order to apply the theorem, it 

is necessary that 11(t) does not change appreciably during the time required for 

a particle to traverse a typical sample of the curve 11(t) = constant. 

c. Application to beam stacking. 

This result can be applied immediately to the problem of calculating 

the number of pulses of particles that can be stacked in any given region. Assume 

that we inject at an energy E1  where the frequency of revolution is f1 J.  and that 

the energy spread from the injection is 4E1. A pulse of injected particles, 

injected for one or more full turns will then occupy an area 

A1  = 22YW1  = 22YE1  
(17) 

  

in the W, 	space. If we wish to stack n pulses at an energy E, then these 

pulses will occupy an area at least equal to 

= 	

 

2 77,6 E2  

f2  
A2  = nA1  (18) 
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so that 

f 
= n_. 	 (19) 

If we employ the mean field index defined in Equation (2), then 

1 EE  
R 	(k + 1) (E2 - E) 	

(20) 

0 

Thus the minimum radial spread of the stacked beam is 

	

AR -(f2) (E1) 	(El  E2)R2  
2 	 2 

	20  
(21) 

	

(f1) ( E1  ) 	(E2 - E0 )(k+1) 

where E is the rest energy, and E2  includes the rest energy. 

d. Stationary buckets. 

We now assume that we have several oscillators supplying radio 

frequency voltages at various accelerating gaps, so that 

F( @ 

	

, t) = .Z F. ( 	, t) cos (2 VY5L.dt). 	 (22) 

where F. , )) are slowly varying functions of t. We expand F. in a Fourier 
:1 	 J 

series: 

F. 	t) = 	A (t) sin (L-/), 	 (23) 
LjL 	 JL 

so that 

H = 2E(W) 	AiL 	 -
jL 

2 IYJV dt)] + cos (L 
j,L 	L fcos FL  

-B + 279 (24) 
'jL 

Let us suppose that f = )i.Ih for some ) and some harmonic number h. 

	

J 	 :1 
Then we introduce a rotating coordinate system on the W, 	- cylinders: 
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h 
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4L 
L 
h tjh 
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*® _4 	

dt  Ah 	 (25) 

For this purpose, we introduce the generating function 

S = (w) ( 
27/  

h f )).dt- ,h (26) 

which defines the canonical transformation W, 	- W, 	through the 

equations 

'vW' 

W ___ 

The Hamiltonian becomes 

   

* 
H 	=H+ 'Vs- = 2E (W) - W + 	cos h 

h 

   

A3L
os 

jV,L 	L  [L* - /'L + h/6 h 2  

(27) 

where the prime in the summation means that the first term in curly brackets is 

to be omitted in case j' = j. L = h. The terms in the summation are rapidly 

oscillating and may in many cases be neglected. We then have 

11* = 2"E(W) - 
2.L)  w + 	cos h 0 	, 	 (29) 

where we have omitted the subscript j, have absorbed the small term ,8 in 

and have set 

V = 	A.h=SF 
	, t) sin h 	

' jh )d 
	 (30) 
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The maximum energy gain per turn is V. as we see from Equations (30), (22) 

and (12), or from the equations 

dW 	 
= V sin h (31) 

   

 

(32) 
dt 

In the case of a single short accelerating gap at 	
= 	

, we have 

	

Jh 
= 	1Y1  , 	 (33) 

F.( 	, t) = v6 	- 	, 	 (34) 

V 

=19 max Rd 
Q 	 (35) 

in this case is the angular position relative to a particle which is synchronous 

with the oscillation and arrives at the accelerating gap at a moment when the 

voltage is zero and decreasing. 

If )) and V are constant, then H*  is a constant of the motion. We 

define the synchronous value W by 

f (W) = 	 (36) 

and expand 

E=E +f W' + 1 fl W 2  + 	 

	

s 	s 	2s 
	 (37) 

where the prime denotes a derivative with respect to W, and 

(38) 

If we neglect terms of order W, we have 

*2 
H*=Tyf, w + V cosh (39) 
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(The term (2hE5  2 Yri)W5)  has been omitted, since it does not contain W nor 

* and has no influence on the resulting canonical equations.) 

A plot of the curves 11* = constant is given 

h 	9, 

7fh 

in Fig. 2 for the case h = 3. 	If we set 

(40)  

(41)  

hH* 
(42)  C 

V 

then Euation (39) takes on the dimensionless form 

12 
±Y 	+ Cos 	=C (43)  

where the positive sign applies if f 	' 0 	and the negative sign if f <0. 

We can write 

2 
- df 	= 	= M

df (44)  
dW 	dE 	E 

where 9 is given by Equation (6). Curves of constant C according to Equation 

(43) are plotted in Fig. 3. 

We see in Fig. 3 the region of stability or "bucket" within which particles 

execute stable phase oscillations about the stable phase 	= 	(,4)0) or 

= 0 (A'< 0). There are h such buckets around the W ® cylinder at each 

F value for which f = )1/h for some h, and the buckets revolve with fre-

quency f. Outside the buckets, the particles move around the cylinder out of 

synchronism with the buckets. The bucket boundary, or separatrix is given by 

Equation (43) with C = + 1 

sin 	#i 
y = 2Cos ( 	) (45)  

The half-height of the bucket is given by y = 2, and the maximum energy 
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deviation is 

r 	11/2 
E 	E = f W = I [ ZV Es 	

(46) In S 	m 	h/// J 
The area of the buckets, in W , (jj space, counting all h buckets at a given 

harmonic is, (the area of a bucket-shaped figure of half-dimensions a, b is 	ab) 

(47) 

Near the stable point 0 = 0 or ir, the curves C = constant are ellipses and the 

frequency of the phase oscillations around these ellipses is 

j) 	
1271EJ

l 1/2 	
(48) 

The above formulas apply only when the contribution from all terms in 

the summation in Equation (28) may be neglected. In particular, those formulas 

fail for energies midway between two harmonics, and they certainly fail when 

the bucket dimensions calculated from Equation (46) are so large that the buckets 

for adjacent harmonics would overlap. If only one term from the summation is 

important, say the term j!, L, it may be added to the approximate Hamiltonian 

(29), which now becomes periodic in the time with frequencies - 	) and 
J 	h  

+ 	If only one oscillator is present (ji = j), then all terms in the 

summation are periodic with frequency )/h. In such cases, the analytic tech-

niques developed for studying motion under a periodic Hamiltonian are applicable. 

We find, indeed, that accurate numerical solution of the acceleration equations 

leads to agreement with these ideas. In particular, when high voltages are used, 

the buckets no longer agree exactly with the above equations, and we find at the 

bucket boundaries typical cases of scattering of phase points, appearance of strings 

of pearls, etc., which arise in studying the non-linear equations for alternating 

8 F  ZVE   1 1/ 

A- ?L'hKj 
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gradient orbits. An example is plotted in Fig. 4a where we show results for a 

single accelerating gap at a very high voltage, (V = 10 Mev, Estable = 50 Mev, 

k = 99, h = 2). The phase and energy are plotted at each revolution. For certain 

starting values, the points lie on invariant curves as drawn. In other cases the 

points scatter, and a typical set of such points starting from a single central 

point is shown. Fig. 4b shows a phase plot for a particle subject to two 

oscillators. (V1  = V2  = 100 key, h1  = h2  = 1, k = 99, oscillators on opposite sides 

of the accelerator.) The oscillators have frequencies which would lead to the 

buckets shown, if a particle were subject to each oscillator alone. In Fig. 4c is 

shown a phase plot in the neighborhood of the 9 and 10 subharmonics of a single 

oscillator. One notices the various other stable regions occuring between these 

harmonics. In this case (V1  = V2  = 20 Mev, k = 99, Estable = 500 Mev, (h = 10), 

E =8l4 Mev (h=9).) 
S 

e. Adiabatic motion of buckets. 

If now the parameters ),), V are varied slowly, we may apply the 

adiabatic theorem to determine the behavior of the particles. A group of 

particles which at time t1  lie on a closed curve H*  (t) = constant, of area A1  

inside the bucket, will at time t2  after adiabatic variation of )), V lie on a closed 

curve H*(t2) = constant, with area A2; and now by Liouvill&s theorem A1  = A2. 

Thus the adiabatic theorem, together with Liouvill& s theorem enable us to 

concludethat a particle inside the bucket remains on a curve 11* = constant, of 

constant area as the bucket shape or position changes adiabatically. 

If the variation of parameters is not adiabatic, Liouvill&s theorem 

still applies, so that a group of particles, initially on a closed curve H*(t1) = 

18 
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constant, will remain on a closed curve of constant area, but the curve at a later 

time t will not be of the type H*(t2) = constant. Since particles near the 

separatrix which bounds the bucket move around a curve with a frequency which 

approaches zero as the curve approaches the separatrix, the adiabatic theorem 

cannot be applied to such particles unless the rate of variation of parameters 

approaches zero. Hence the separatrix does not correctly represent the boundary 

of the bucket except when the parameters are constant. We will return to this 

point later. 

A particle outside the bucket, but far enough from all other harmonics so 

that neglect of the summation in Equation (28) is justified, will in the same way 

remain on a curve H* = constant, having a constant area beneath it on the W, 

cylinder. That is, the phase average 

1 	I 

W2 if 
 = 	

/ W  (49) 

remains constant for a particle outside the bucket under adiabatic variation of 

parameters. Assume now that the frequency is varied so that the bucket approaches 

the particle from below. The particle then moves along curves which lie closer 

and closer to the separatrix. The frequency of revolution of the particle relative 

to the bucket approaches zero and the particle spends most of its time near the 

unstable fixed point. The rate of frequency modulation must approach zero as the 

particle approaches the separatrix in order for the adiabatic condition to be 

satisfied, and the bucket can never pass the particle adiabatically. However, if 

when the particle is nearly on the upper separatrix, and consequently spends nearly 

all of its time just above the unstable fixed point, we suddenly change the frequency 

so as to move the bucket up slightly, the particle will almost certainly find itself 
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just below the fixed point. It now moves just under the lower separatrix. The 

phase area beneath this curve differs from that beneath the original curve on 

which the particles lay by the area of the buckets. If we now move the buckets 

away adiabatically W as defined by (49) will remain constant at a value below 

the initial value by an amount 

2 Z 
	I 
	 (50) 

where A is the area of the buckets. This is the process of phase displacement. 

In a similar fashion, we can discuss the adiabatic capture and loss of 

particles near the synchronous energy as the voltage V is increased or reduced. 

We can show that a group of particles lying in a band of width A W around the 

phase cylinder and centered on the synchronous value W, will, if the voltage V 

is increased adiabatically from zero, be captured into the buckets so that they lie 

within a closed curve H* = constant, of area 27Y21W. The converse process occurs 

when the voltage V is turned off adiabatically. 

f. 	Transition energy. 

At the transition energy 	= 0, and we must keep terms up to 

w 3  in Equation (37). 	By differentiating formula (6), we find at the transition 

energy 

E2 (d2f = 2 
(51)  F 

Hence, if we set 

* 	 * 
E =EEt, 	W =W - W, (52)  

we have, near the transition energy, 
*2 

) (53)  
t 

* E* 	1 E*Z 
W (54)  (l+ - - 	

E 
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E* = f 

3 *3 
1 fw 

(55) k EZ  

We introduce the dimensionless variables 

(4)!) 1/3 (hEt \ 
1/3ftw* 

E 

h * 

and the parameters 

= (22f2k) 1/3 hEt 	) 
2/3 (1 

V 	 hf 
* 

hH 

t 
(56)  

(57)  

(58)  

(59)  

We may then write the Hamiltonian (29) in the form 

y3  + ? y + cos,2= C, 	 (60) 

where we have again omitted terms independent of 99 2  Y. 

Graphs of Equation (60) for several values of C are shown in Figs. 5, 6, 

7, 8, and 9. We are particularly interested in the separatrices which bound the 

buckets. The unstable fixed points above and below the transition energy are 

given respectively by 

y = 	, 	50 = 	, above and 

y = ff 	, 	= 0, below. 	 (61) 

Hence the values of C on the separatrice s are 

C = ± 	(21) 3/2 - 
	

(62) 

For large values of 7 we have separate buckets above and below the transition 

energy as shown in Fig. 5. At the critical value 

IC = . (3)3 = 1.040 	 (63) 
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the two values of C become equal, and we have the case shown in Fig. 6 where 

the buckets just touch. For 0 ( '2  4 1. 040, the phase plot is as shown in Fig. 7. 

For ) 0, when )) = hft , the phase plot is as shown in Fig. 8. For 	0, 

there are no separatrices, as shown in Fig. 9. The values y1,  y2,  y3,  y and 

9' 1 indicated on the figures are plotted in Fig. 10. 

The bucket areas, that is, the areas around the stable fixed points and 

inside the separatrices can be calculated from the formula (W - 	units) 

A - 4/12 11r?-, 
	

( kV \Et 	 64 1 	2 4 	

1/3 

2YhEtI 	f  

where the function o4 '? is plotted in Fig. 11. Formula (64) gives the area of 

the h buckets on one side of the transition energy. The area of the region between 

the outer separatrix on either side and the transition energy is given by 
2 	 1/3 

A- 	(kV ' 	oc(1). 	 (65) 
2 	2 	47YhEtJ 	

2 

The function 
o4  

(?) is also plotted in Fig. 10. 

By studying the Fig. 5 - 11, we can predict the behavior of the phase 

points as the frequency is increased adiabatically through the transition frequency. 

(By adiabatic we mean here that i) is small enough that the adiabatic theorem can 

be applied except in the immediate neighborhood of the separatrix.) As 	increases 

17 decreases. As 	v2C, it can be seen from Figs. 5 and 11 that about half 

of the phase area between the buckets and the transition energy is phase displaced 

past the buckets and about half is absorbed into the outer region of the growing 

bucket. Between = 2. 1 and 
=

)ZC  , the bucket area increases about 30%,  so 

that at = 
	

the outer 3010  of the bucket is populated with phase points which 

were originally between W = Wt and W = W. ± 
A2 - AI  where A, and A are 

21)' 	 2 
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evaluated at = 2.1. Beyond 7= VI CP both A2  and A1  decrease, so that 

when 	
=t 

= 0, the outer 3016 of the bucket area at fl = 	has been 

deposited outside the final separatrix on the same side from which the bucket 

came. Thus phase points initially between the buckets and the transition 

energy at = 2. 1 are left in the same region (though not necessarily at the 

same W) when = 0. Phase points which were in the bucket below the transition 

energy at !l = 2. 1 are at ? = 0 in the upper half of the region between the two 

separatrices (above the dashed curve in Fig. 8), and in such a way that points 

originally nearer the center of the bucket are left nearer the upper separatrix. 

If the frequency .i) is now modulated beyond j.J, the curves alongwhich the phase 

points move straighten out, so that points in the lower bucket at 91 = 2. 1 are 

finally deposited in a band above the transition energy extending from W = W to 

W=Wdwhere 

	

W -- Azt 	-ir,- 	kV 	
1/3 

d 	- 277 	4 	f 42YhE1  / 
(66) 

Furthermore, points originally near the center of tI bucket are deposited near 

WdI so that if at a point 	> 2. 1, the area of the bucket below the transition 

energy was Al.  particles in the bucket at this time are left finally in a band 

Wd> .W>  Wd - (A1/ 2 7fl. If the frequency were modulated adiabatically down- 

ward from above 	the above process would take place in reverse. In order 

to accelerate the particles in the band W 	W 	W  - A1/2?t higher in energy, 

one may turn off the oscillator voltage, bring the frequency to a point synchronous 

with particles in this band, increase the voltage adiabatically to capture the band 

into a bucket in the usual way, and modulate the frequency downward to carry them 

higher in energy. It is also possible to cross the transition in a non-adiabatic way 

23 
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by modulating the frequency more rapidly up to a value slightly greater than 

and then downward again. If the frequency overshoot is properly adjusted 

relative to the rate of frequency modulation, one can see from the figures that a 

fraction of the particles can be transferred from the lower to the higher energy 

buckets. 

It is of interest to calculate the frequency at the points W and Wd.  At 

= 	
c' according to Equation (53) and Fig. 10 the frequency of revolution is 

2.08( 	V 	)2/3 
k- 

 1/3 	
1 	 (67) 

41Y hEt 

and at W  it is d 

	-3.23 (  4hEt )2/3 k1/3] 	. 	 (68) 

It should be emphasized that the formulas in this section are correct only 

hen higher order terms in E* /Et are neglected. The ratio of the next (cubic) to 

the quadratic term in formula (53) is 	 q 

E:3 
'4L-3 * 

	  - - 	3k 	 E 
*2 2 	 5k+4 

E 	df 

2 dE2 	
3 

g. Synchronous coordinate system. 

When the oscillator frequency changes rapidly, the adiabatic theorem 

as applied in the preceding section breaks down, particularly near the separatrices. 

Let us make a canonical transformation W, () __•• W, 	* via the generating 

function 

S= _*(w_w5) I 	 (70) 

where W(t) is defined by Equation (36) when the oscillation frequency is a specified 

= ft 
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function (t). The new canonical momentum 

w=ww  (t) 
	

(71) 
S 

is then measured with respect to the value W for a synchronous particle. The 

Hamiltonian (29) becomes under the transformation (70), 

= H2 ?,(E (W*) - 22)  [w 
 

Oe 	* + w 5(t)] + V cos h 	+ W H* 
S 

where, by Equation (36), 

I - 

hf' 
S 	 sS 

If we expand E(W*)  as in E4uation (37), and omit terms independent of 

we obtain 

** 
H 	= W® + 	cos h 

 UY + f w2 + 	
fH 	

+ • . 	 (74) 

The quantities f, f, - - - will be slowly varying, and if W and V are constant, 

or slowly varying, we can apply the adiabatic theorem to Equation (74), even when 

is large. 

Let us neglect terms of order W and make the substitutions (40), (41), 

(42), so that Equation (74) takes on the dimensionless form 

1/2y2 + Cos 	+ r 99 - C, 	 (75) 

with 

S 	 • 

W - 	 E5  
I 	v 	h) 12 V . 	 (76) 

The sign of y2  in Equation (75) is the same as the sign of K . Curves of constant 

C are plotted in Fig. 12, for K> 0, j = .5. Particles within the closed separatrix 

execute phase oscillations in a clockwise sense about the synchronous point w 5, 0 so 

(72)  

(73)  
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as functions of j. 

A= I (80) 
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where 

Sfl;JT1  

at a small amplitude frequency 

=. [ 	IVr7f5  
L7 rJ 

Particles outside the separatrix move along curves which circle downward around 

the y, 0 cylinder, reversing direction of circling as they pass the bucket. 

The separatrix in Fig. 12 is given by (for 	0) 

y2  = 4 sin - 	- 2 	-fr 	fj..rz +iOr—'s) —13 
	

(79) 

The values of y1, )P, R i p 97 as indicated in Fig. 12 are plotted in Fig. 13 

11 

(77)  

(78)  

where the factor o< 	is plotted in Fig. 14. In analyzing bucket lift schemes, 

it is useful to see how A varies with energy for a given oscillation voltage and rate 

of frequency modulation. It is then convenient to rewrite Equation (80) in the form 

• -1/2 	. 1/2 
A = 81/f  VA) 	0< 	 . 	 (81) 

1/ 2  
The area A for a given oscillator varies as a 3 (iill 

j 	as the parameters E , 
s 

1/ 2  

	

h change with energy. The quantity 0< Ii 	is also plotted in Fig. 14. sp (1 

It will be noted that the bucket area changes relatively little over a fairly wide range 

of P 
It is of interest to calculate the energy change suffered by a particle outside 

of a moving bucket as the bucket goes by. We know the average change in W must 
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I 
f 	E 	J 	y (83)

47 	 Ce 

to obtain I-'  using 5!2 = h 
* 

W I  
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agree with that calculated on the basis of Liouvilles theorem in Section He. How-

ever it is clear from Fig. 12 that a particle outside the bucket and near the 

separatrix will spend a long time in the neighborhood of the unstable fixed point, 

and hence will be carried along for a considerable distance by the bucket. There 

will therefore by fluctuations in the energy change about the average value. 

By equation (31), we have for the 9hange in W 

Vsin LQ  

We expand the right member of Equation (32), keeping only first order terms in 

4w= (82) 

If we take 	to be the phase at which the curve (75) passes the bucket (y = 0), 

rEv1(e  d(e  

Li 

The total change in W is twice the limiting value for 

YIU 

	

	 (e 
(E 

1t4/Lç v1f d4 

fLr( J+P (Ieb - (e)3 (85) 

This integral must be evalutated numerically. 

h. Phase Flux. 

A useful concept in the analysis of accelerating systems is the 

phase flux .j (W) defined as the phase area per unit time which is accelerated 

past a given value of W. By Liouville's theorem, if there is some value of W at 

IT, 

0 = 

27 
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which the phase flux is zero, then the flux of area decelerated per unit time 

past any value of W must also be equal to J (W), that is, the net phase flux 

past any value of W is zero. 

If the phase area being accelerated is filled with an average density, J 

(particles per unit area), then the current of particles per unit time accelerated 

past the point W is 

1(W) = J f (W) . 	 (86) 

Since J can never exceed its value at injection (Equation (17) ) , the maximum 

output current which can be delivered by an accelerating scheme is J f mm, 

where 	min is the minimum phase flux between injection and output. Since any 

non-adiabatic mishandling of the particles, e. g. jitter in the frequency modulation 

or in the accelerating voltage V, will reduce the phase density J, in a well designed 

accelerating system, 	shou 1 d increase with W in proportion tot he decrease 

in J. In FFAG synchrotrons, for a given maximum voltage V1 	can be made 

much larger at high energies than at low energies because of the decrease in 	at 

higher energies. The theoretical output currents from high energy FFAG 

synchrotrons calculated according to these principles are very large -- comparable 

with synchro -cyclotron currents. 

If '-4 buckets per unit time of area A pass a given point per second, the 

phase flux is 

(87) 

If, for example, an accelerating scheme, utilizing a single harmonic number h, 

accelerates particles from energy E to E at constant 
—.1 

the repetition rate is 
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(88) 

where f is a suitable average value. The phase flux is then, by formulas 

(80), (87), and (88) V A E 2  
Yr 

Fz I 	'ML  — ) 
 I Kr E 

The quantity (3ris  plotted in Fig. 14. For a given V, the maximum phase flux 

at any given W is achieved by choosing ) so that V, = 0.4. The minimum phase 

flux then occurs where If2  K /E I is a maximum. This quantity is plated 

in Fig. 1 for k = 82. 5. The repetition rate, and hence the phase flux can be 

increased somewhat by choosing (t) so that the bucket area A remains constant 

during the acceleration. The maximum phase flux is then more difficult to calculate, 

but is usually not different in order of magnitude. If instead of J , ) is held 

constant, the phase flux is 

q?=4 F 

As a second example, in a bucket lift scheme which uses all harmonics, the number 

of harmonics per unit time which pass a given frequency f is, if h is large, 

(89)  

V 
(90)  

v3 '2  

dh _h&I 
(91)  

(92)  

dt 

(h 
1/2 

K) 
E"2  

and the phase flux is 

84 
Again the maximum phase flux at any value of W is achieved by choosing )) so 
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that 	0.4. We may also write Equation (92) in the form 

oe3  i r vvl- 	 (93) 

which shows that for a given oscillator, 	is proportional to o( JPI 
1 / 2 	

at 

different energies. 

As an illustration of the concept of phase flux, we consider the following 

case. An accelerating system brings a phase flux 	filled with particles at a 

mean density J1  past a point W1  beyond which the particles are spilled out in any 

manner. A second accelerating system carries a phase flux1
.  

 out of the region 

just beyond W1. If 1, = 	,, then it is in principle possible to synchronize the 

two systems in such a way that all of the current accelerated by the first system 

is picked up by the second. Suppose, however, that the systems are not 

synchronized, and that an equilibrium exists in which the region just beyond w1, 

including the region from which the second system buckets draw their area, is 

filled with uniform density J2. Then since the first system decelerates an equal 

phase flux, we have, by balancing currents, 

Jl • l  = zl  +J2 . 2 . 	 (94) 

The phase density in the second bucket is therefore 

11  
2 	 1 

	 (95) 

and the current accelerated by the second system is 

43i 	
1l• 
	 (96) 

Such a random transfer of particles between systems can therefore be effected 

j22  
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with an efficiency of about 1/ 2  if the phase fluxes are equal. Either the current 

efficiency or the phase density efficiency (but not both) can be made to approach 

unity by making the ratio I / I sufficiently large or sufficiently small. 
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BUCKET AREA PARAMETERS 

1/2 
dA = dWd J , A = • VE 

__ [4h7X/ 

E = particle energy, f frequency of revolution (cycles per second) 

ds = element of arc length along orbit, 2 1R = length of orbit 

A= total area of buckets at harmonic number h, V = oscillator voltage 

2 	2 
= 	(k+1)E0 -E 

(k + 1)(E2- E ) 

= sin LE  
V - Off  

stable phase angle, )) = oscillation frequency. 
S 

dW = dE/f, d 0 =ds/R 
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