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Abstract

We carefully study how the fermion-fermion interactions affect the low-energy states of a two-
dimensional spin-1/2 fermionic system on the kagomé lattice with a quadratic band crossing point. With 
the help of the renormalization group approach, we can treat all kinds of fermionic interactions on the
same footing and then establish the coupled energy-dependent flows of fermionic interaction parameters 
via collecting one-loop corrections, from which a number of interesting results are extracted in the low-
energy regime. At first, various sorts of fermion-fermion interactions furiously compete with each other 
and are inevitably attracted by certain fixed point in the parameter space, which clusters into three qualita-
tively distinct regions relying heavily upon the structure parameters of materials. In addition, we notice that 
an instability accompanied by some symmetry breaking is triggered around different sorts of fixed points. 
Computing and comparing susceptibilities of twelve potential candidates indicates that charge density wave 
always dominates over all other instabilities. Incidently, there exist several subleading ones including the 
x-current, bond density, and chiral plus s-wave superconductors. Finally, we realize that strong fluctuations 
nearby the leading instability prefer to suppress density of states and specific heat as well compressibility 
of quasiparticles in the lowest-energy limit.
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1. Introduction

Past two decades have witnessed a phenomenally rapid development of semimetal materi-
als [1–12] that feature well-known discrete Dirac points accompanied by gapless quasi-particle 
excitations and linear energy dispersions along two or three directions [1–9,12–21]. The list con-
sists of Dirac semimetals [22–27] and Weyl semimetals [2,28–35] as well as their semi-Dirac 
cousins [36–41]. In recent years, interest has gradually shifted from linear-dispersion toward 
quadratic-dispersion fermi materials with up and down bands parabolically touching at certain 
quadratic band crossing point (QBCP) for both two [42–56] and three dimensions [18,57–72]. 
Compared to their Dirac/Weyl counterparts with the vanishment of density of state (DOS) at 
Dirac points, two-dimensional (2D) QBCP materials attract more attention and become one of 
the most active subjects [42–44,47–49,54,55]. The main reasons are ascribed to the finite density 
of states at the Fermi surface together with its unique gapless quasiparticles (QPs) from discrete 
QBCPs developed by the crossings of up and down parabolical bands, leading to the possibil-
ity of weak coupling interaction-driven instability [44,48,51,52]. These 2D QBCP materials are 
suggested to be realized on some collinear spin density wave state [73], Lieb lattice [74], checker-
board [43,48] and kagomé lattices [44,55,75] with distinct kinds of symmetries under point group 
consideration [44,47,48].

What is more, 2D QBCP systems are allowed to either host the time-reversal symmetry (TRS) 
or present the TRS breaking depending upon concrete lattices. On one side, the free Hamiltonian 
of 2D QBCP semimetals rooted in the checkerboard lattice is protected by TRS [44,47,48]. With 
respect to these materials, unconventional band structures and gapless QPs in tandem with weak 
couplings yield to many interesting behaviors in the low-energy regime [44–46,48,50,51,76,77]. 
In particular, quantum anomalous Hall (QAH) and quantum spin Hall (QSH) can be generated 
by fermion-fermion repulsive interactions on the checkerboard lattice [44,48] or two-valley bi-
layer graphene with QBCPs [45,46], as well as their low-energy stabilities under the impacts of 
impurity scatterings are also examined [51,52]. On the other side, the 2D noninteracting QBCP 
model that originates from the kagomé lattice might be TRS breaking [75]. Although this case 
is equipped with the similar QBCP and quadratic dispersion, its low-energy physics has hitherto 
been insufficiently explored. Given the basic structure of free Hamiltonian is quite far away from 
its checkerboard counterpart, a number of tempting questions concerning the kagomé-lattice 
version naturally arise: whether and how the low-energy physical properties are influenced by 
fermion-fermion interaction? Whether they can activate the instabilities? Which states are the 
suitable candidates and what are the critical behaviors in the vicinity of potential instabilities? It 
would be instructive to deepen our understanding of the 2D QBCP materials once these inquiries 
are properly answered.

Inspired by these, we within this work put our focus on a 2D QBCP spin-1/2 fermionic 
system on the kagomé lattice and investigate its low-energy fate in the presence of 16 types of 
marginal fermion-fermion interactions. In order to treat all these physical ingredients on an equal 
footing, we employ the momentum-shell renormalization-group (RG) approach [78–80], which 
is a powerful tool to refine and characterize the hierarchical physics in the simultaneous presence 
of various types of interactions. Practicing the standard procedures of RG framework gives rise 
to the one-loop energy-dependent evolutions of all fermion-fermion interaction parameters. With 
the help of these RG flows that encode the energy-dependent physics, several intriguing critical 
behaviors are extracted in the low-energy regime.

At first, we, with the help of the numerical analysis of RG equations, are aware that the 
fermion-fermion interactions are of close relevance to each other and evolve towards strong 
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couplings due to their intimate interplay at certain energy scale. Considering the degenerate 
trajectories of several kinds of interactions, we only need to put our focus on six nontrivial 
fermionic couplings that flow independently. To overcome the strong couplings and make our 
study perturbative, we follow the strategy put forward in Refs. [45,48] and then rescale these six 
nontrivial parameters by a non-sign changed coupling to obtain their relative evolutions together 
with relatively fixed points which are conventionally in charge of low-energy properties.

Next, we figure out that the concrete values of relatively fixed points are insusceptible to 
initial conditions of fermion-fermion interactions but instead primarily determined by two struc-
ture parameters d1 and d3 in the Hamiltonian. Adjusting the ratio between these two quantities 
yields to three qualitative different regions at which the relatively fixed points exhibit diverse 
traits. Since the relatively fixed point is related to some instability that is always accompanied 
by certain symmetry breaking and thus some phase transition [47,48,51,81–88], it is therefore of 
intense interest to identify which is the leading instability for the relatively fixed point residing 
in different regions. To this end, we introduce the source terms of twelve kinds of potential can-
didates and evaluate their related susceptibilities approaching a relatively fixed point [47,48,51]. 
Carrying out both the theoretical and numerical analysis indicates that the charge density wave 
always takes a leading role in the whole region. In addition, four subleading ones involving the 
x-current, bond density, and chiral or s-wave superconductors largely hinge upon the relatively 
fixed points.

Moreover, the critical properties of physical implications are briefly studied around the leading 
instability. It is worth pointing out that these quantities are sensitive to the fluctuation of order 
parameter triggered by the dominant instability. We notice that ferocious fluctuations induced 
by the development of charge density wave are generally detrimental to the density of states 
and specific heat as well compressibility of quasiparticles. Especially, they are all substantially 
reduced and even drive to zero as the leading instability is accessed [82,89–94].

The rest of paper is organized as follows. In Sec 2.1, we present the microscopic model for 
a 2D QBCP spin-1/2 electronic system on the kagomé lattice and construct our effective action 
consisting of both free terms and all marginal fermion-fermion interactions. Starting from this 
effective theory, we within Sec. 2.2 carry out one-loop momentum-shell RG analysis and derive 
the coupled RG equations of all fermionic interaction parameters. By virtue of numerical anal-
ysis of RG evolutions, Sec. 3 is followed to seek and classify the underlying fixed points in the 
low-energy regime. In addition, we bring out the source terms in Sec. 4 and pinpoint the dom-
inant and subleading instabilities nearby distinct types of relatively fixed points. Furthermore, 
several critical behaviors of physical quantities activated by ferocious fluctuations are concisely 
investigated in Sec. 5. Finally, Sec. 6 briefly summarizes our central points.

2. Effective theory and RG analysis

At the outset, we are going to present the microscopic model and build the effective theory in 
the low-energy regime as well as establish the coupled energy-dependent flow equations of all 
marginal fermion-fermion couplings by carrying out the standard momentum-shell RG frame-
work [78–80].

2.1. Effective theory

We hereafter concentrate on the 2D spin-1/2 electronic system stemming from the kagomé 
lattice that is characterized by a QBCP at which up and down energy bands paraboli-
3
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Fig. 1. (Color online.) Schematic illustration of the 2D QBCP band structure with a quadratic band crossing point parabol-
ically touched by the up and down energy bands.

cally meet [44,75]. Accordingly, its non-interacting Hamiltonian that captures the low-energy 
fermionic excitations nearby the QBCP can be written as [44,75],

H0 =
∑

|k|<�

�
†
kH0(k)�k, (1)

where � serves as the momentum cutoff and the Hamiltonian density is cast as [75]

H0(k) = d3k2�03 + d1(k
2
x − k2

y)�01 + d2kxky�02, (2)

with d1, d2, and d3 being microscopic structure parameters of continuum Hamiltonian. Hereby, 
�

†
k = (c

†
1↑, c†

1↓, c†
2↑, c†

2↓) is designated as a four-component spinor to specify the low-energy 
quasiparticles coming from two energy bands and unequal spins [44,75]. In addition, the 4 × 4
matrix �μν ≡ τμ ⊗ σν , where τμ and σν with μ, ν = 0, 1, 2, 3 represent Pauli matrices τ1,2,3, 
σ1,2,3 and identity matrix τ0, σ0, is employed to act on both the spin space and lattice space. 
Diagonalizing the free Hamiltonian (2) straightforwardly gives rise to the parabolical energy 
eigenvalues,

E=
{

±d3k2,±k2

√
d2

3 + d2
1 cos2 2θk + 1

4
d2

2 sin2 2θk

}
, (3)

where ± specify the upward and downward energy bands that quadratically touch at k = 0 as 
schematically shown in Fig. 1 and θk ≡ arctan(ky/kx) measures the direction of momentum k. 
It is of particular interest to point out that the presence of θk points to rotational asymmetry of 
the QBCP system, and its counteraction with the restriction of d2 = 2d1 signals an indication of 
rotational invariance. Within this work, we put our focus on the 2D QBCP semimetal owning the 
rotational symmetry. To this end, taking d2 = 2d1 yields the reduced energy eigenvalues as

E±(k) = ±k2
√

d2
1 + d2

3 . (4)

As aforementioned, it has attracted much interest to investigate the impacts of fermion-
fermion interactions on the low-energy fates of 2D QBCP systems locating at checkerboard 
lattices [44,45,48,51,52,95,96]. However, compared to its checkerboard counterpart [43,48], we 
need to bear in mind that the 2D QBCP model (2) with the TRS breaking is still inadequately 
explored despite of holding the particle-hole symmetry and sixfold rotational symmetry [44,75]. 
Due to the qualitative difference of microscopic structures between kagomé and checkerboard 
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lattices, we therefore within this work endeavor to verify how the fermion-fermion interactions 
impact the low-energy properties of 2D kagomé-version QBCP systems.

To be concrete, we herein take into account all potential marginal short-range four-fermion 
interactions on an equal footing [44,48,51,75]

Sint=
3∑

μ,ν=0

λμν

3∏
i=1

∫
dωid

2ki

(2π)3 �†(ω1,k1)�μν�(ω2,k2)

×�†(ω3,k3)�μν�(ω1 + ω2 − ω3,k1 + k2 − k3), (5)

where λμν with μ, ν = 0, 1, 2, 3 are utilized to measure the coupling strengths of different types 
of fermion-fermion interactions that are distinguished by vertex matrixes �μν acting on both 
lattice and spin spaces.

Consequently, we are left with the effective action in the momentum space after combining 
the free Hamiltonian (1) and fermion-fermion interactions (5) as follows [44,48,51]

Seff=
∞∫

−∞

dω

2π

�∫
d2k

(2π)2 �†(ω,k)
[
−iω�00 + d3k2�03 + d1(k

2
x − k2

y)�01

+ d2kxky�02

]
�(ω,k) +

3∑
μ,ν=0

λμν

∞∫
−∞

dω1dω2dω3

(2π)3

×
�∫
d2k1d

2k2d
2k3

(2π)6
�†(ω1,k1)�μν�(ω2,k2)�

†(ω3,k3)�μν�(ω1 + ω2 − ω3,k1

+k2 − k3). (6)

On the basis of quantum field theory, its noninteracting part directly gives rise to the free 
fermionic propagator [78]

G0(iω,k)= 1

−iω+d3k2�03+d1(k2
x −k2

y)�01+d2kxky�02
, (7)

which plays a crucial role in constructing the RG equations.
We hereafter adopt the Seff as our starting point and utilize the RG approach to inspect the 

low-energy behaviors of 2D spin-1/2 QBCP electric systems sitting on the kagomé lattice in the 
presence of these marginal fermion-fermion interactions.

2.2. RG analysis

We within this subsection implement the one-loop momentum-shell RG analysis [78–80] to 
construct the entangled energy-dependent evolutions of all interaction parameters appearing in 
Eq. (6) that are of close relevance to the low-energy properties.

Prior to deriving the one-loop RG equations, we are forced to determine the rescaling trans-
formations of momentum, energy, and fields [78]. To this end, we can select the non-interacting 
parts of effective action (6) as an original fixed point at which they are invariant during RG 
processes. As a result, we obtain the following RG rescaling transformations [48,95,97,98]
5
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kx −→ k′
xe

−l , (8)

ky −→ k′
ye

−l , (9)

ω −→ ω′e−2l , (10)

�(iω,k) −→ �′(iω′,k′)e3l . (11)

In order to grasp the contributions from fermion-fermion interactions, we have to go be-
yond this original fixed point and take into account all one-loop corrections. In the spirit of 
momentum-shell RG theory [78], the “fast modes” of fermionic fields within the momentum 
shell b� < k < � are integrated out at first, where � characterizes the energy scale and vari-
able b is designated as b = e−l < 1. It is worth highlighting that l serves as a running length 
scale and thus its increase is equivalent to the decrease of energy scale. Next, we insert the cor-
rections within the momentum shell into the “slow modes” to yield the new “slow modes” and 
then rescale these “slow modes” to new “fast modes” [47,48,51,81,95,97–103]. In principle, it 
is convenient to measure the momenta and energy with cutoff �0 which is related to the lattice 
constant (i.e., k → k/�0 and ω → ω/�0) to simply our calculations and write the results more 
compactly [48,95,97,98,100,104]. To be specific, we unbiasedly take into account all one-loop 
Feynman diagrams depicted in Fig. 12 to capture the one-loop information of “fast modes”. 
After paralleling the well-trodden procedures and performing long but straightforward alge-
bra [48,51,95,96], all one-loop corrections are obtained and presented detailedly in Appendix A.

Combining RG rescalings (8)-(11) and one-loop corrections (A.1)-(A.16), we are capable of 
deriving the coupled energy-dependent RG flows of interaction parameters by carrying out the 
standard RG analysis [48,95,97,98] and are left with a set of sixteen coupled evolutions, namely

dλμν

dl
= Fμν(λμν, d1, d3), (12)

with μ, ν = 0, 1, 2, 3 denoting all sixteen types of fermion-fermion couplings. The detailed RG 
equations with their related coefficients Fμν(λμν, d1, d3) are manifestly provided in Appendix B. 
In the spirit of RG framework, these coupled RG equations encoding the intimate interplay of 
all types of fermionic interactions are of particular significance to govern the low-energy fates of 
2D QBCP electronic systems. These will be attentively studied in the looming sections.

3. Relative fixed points

With the coupled RG flow equations in hand, we are able to seek the underlying fixed points 
with lowering the energy scales, which are always assumed to dictate the critical behaviors.

3.1. Evolutions of interaction parameters

We start out by investigating the energy-dependent flows of four-fermion couplings, which 
are determined by RG equations and assumed to overarch the low-energy properties [47,48,
51,81,95,97–103]. Before proceeding, it is necessary to present several comments on the initial 
condition. On one hand, we, without loss of generality, treat all sixteen types of marginal fermion-
fermion interactions unbiasedly and assign them an equal beginning value. On the other hand, 
the RG coupled equations also rely upon two structural parameters d1 and d3. It is of particular 
importance to highlight that the flows of interaction parameters are insensitive to their concrete 
values but instead the ratio between d1 and d3. To facilitate our analysis, we hereafter designate 
η ≡ d3/d1 to capture the basic influence of these two parameters.
6
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Fig. 2. (Color online.) Evolutions of fermion-fermion couplings λμν at the ratio of structure parameters η = 3.0 (the 
basic results are insusceptible to concrete value of η). Insets: (a) the flows of λμν in the whole energy region, and (b) the 
flow of λ30 without sign change under the influence of fermion-fermion interactions.

To proceed, taking a concrete value η = 3.0 plus a representative starting value for λμν and 
performing numerical analysis of Eq. (12), we are left with the results shown in Fig. 2. Read-
ing off this figure, we notice that fermion-fermion interactions are strongly energy-dependent and 
driven to be divergent at some critical energy scale denoted by lc in the low-energy regime, which 
always is an unambiguous signature for the emergence of phase transitions [47,48,51,81–88]. In 
addition, after completing numerical calculations of coupled RG evolutions of interactions pa-
rameters (B.1)-(B.16), we figure out that six groups of interaction parameters are not coincident 
and their trajectories do not overlap with decreasing the energy scale as depicted in Fig. 2. To be 
concrete, λ01 is degenerate with λ02 and λ13 is coincident to λ23 plus λ33, respectively. In par-
ticular, the tendencies of parameters λ10, λ20, and λ30 are exactly overlapped. Analogously, λ11, 
λ21, λ31, λ12, λ22, and λ32 share the same evolution. These imply that some of these parameters 
may be not independent. As a result, all of these 16 kinds of interaction parameters can be clus-
tered into six groups. In order to compactly exhibit the flow trajectories of interaction parameters 
and simplify our discussions, we therefore from now on choose four representative parameters 
λ01, λ20, λ21, and λ13 to denote their degenerate counterparts. In other words, there only exist 
six independent flows λ00, λ20, λ01, λ21, λ03, and λ13 that are employed to characterize all types 
of fermion-fermion interactions.

3.2. Three η-dependent distinct regions

In light of the divergence of fermion-fermion couplings in the low-energy regime, we are 
conventionally suggested to rescale all parameters with a non-sign changed parameter [45,48,
51]. Based on the relative interaction parameters, one henceforth can safely work within the 
perturbative RG framework before the divergence [45,48,51,81–88].

As explicitly illustrated by Fig. 2(a), the parameter λ30 flows monotonously and thus does 
not change sign during the entire RG flow. It is therefore convenient to measure all interaction 
parameters with λ30. Accordingly, we from now on shift our attention to the low-energy behav-
7
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Fig. 3. (Color online.) Evolutions for six representative sorts of fermion-fermion interaction parameters λμν/λ30 with 
approaching: (a) Type-I-RFP at η = 10−5; (b) Type-III-RFP at η = 105; and (c)-(e) Type-II-RFP at η = 0.4, η = 0.8, and 
η = 3.5, respectively.

iors of these relative parameters, i.e., λ00/λ30, λ20/λ30, λ01/λ30, λ21/λ30, λ03/λ30, and λ13/λ30. 
Besides their energy-dependent trajectories, we are of particular interest to determine the final 
fates of these parameters at the low-energy limit, namely, the potential fixed point (FP) which is 
expected to govern the physical properties and accompanied by critical behaviors. Given these 
parameters are rescaled by λ30, we hereafter dub them relatively fixed points (RFPs) [45,48,51].

Although the basic results are hardly susceptible to starting values of fermion-fermion 
strengths, the flows of interaction parameters and corresponding RFPs are heavily η-dependent. 
Fig. 3 manifestly shows the evolving tendencies of fermion-fermion interaction parameters 
strongly hinge upon the specific values of η. What is more, we learning from Fig. 4 notice that 
concrete values of RFPs are closely sensitive to η as well. On one side, as long as η is either tuned 
less than certain small value nominated as C1 or adjusted to exceed some critical value denoted 
as C2, the final values of parameters λμν/λ30 (i.e., RFPs) arrive at some constants and then are 
considerably robust with lowering or increasing value of η. On the other side, the concrete values 
of RFPs spanning from C1 to C2 are no longer invariant but instead fairly rely upon η. For phys-
ical consideration, we infer that d1 is dominant over d3 at η < C1 and thus the contribution from 
d3 is negligible resulting in the stable values of RFPs and vice versa for η > C2. On the contrary, 
neither d1 nor d3 can completely win its opponent within C1 < η < C2. It is thus the intimate 
competition between d1 and d3 that plays a pivotal role in pinning down RFPs as unambiguously 
characterized in Fig. 4.

To be specific, we directly notice that the absolute values of negative-divergent parameters 
λ01/λ30 and λ03/λ30 as well as the positive-divergent parameter λ21/λ30 present a clear down-
ward trend with increasing the values of η. Conversely, the increase of η is favorable to raise the 
8
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Fig. 4. (Color online.) The η-dependent evolutions of fermion-fermion interaction parameters λμν/λ30 (i.e., the concrete 
values of RFPs). Three distinct regions are separated by η = C1 ≈ 10−2 and η = C2 ≈ 102, which are denominated as 
Type-I-Region, Type-II-Region, Type-III-Region (namely, I, II, and III), respectively.

Fig. 5. (Color online.) Schematic illustration of three different η-tuned regions shown in Fig. 4 with C1 ≈ 10−2 and 
C2 ≈ 102. Several representative values of RFPs are presented in Table I for Type-I-Region, Type-II-Region, and Type-
III-Region, respectively.

absolute value of negative-divergent parameter λ00/λ30 together with positive-divergent param-
eters λ13/λ30. In comparison, one can readily figure out λ20/λ30 = 1 is hardly susceptible to the 
modulation of η. In order to facilitate our studies under such circumstances, it is profitable to 
divide η ∈ (0, ∞) into three distinct regions owing to the robustness of RFPs against the change 
of η. As manifestly designated in Fig. 4 and schematically illustrated in Fig. 5, they correspond 
to Type-I-Region (η < C1), Type-II-Region (C1 < η < C2), and Type-III-Region (η > C2), re-
spectively.

3.3. Three types of relatively fixed points

Concerning the discrepancies of RFPs in these three regions, we from now on nominate the 
RFPs locating at Type-I-Region, Type-II-Region, and Type-III-Region as Type-I-RFP, Type-II-
RFP, Type-III-RFP, respectively. In order to remedy the insufficiency of qualitative illustrations 
in Fig. 5, we hereby select some representative values of η with three different types of RFPs 
and present the specific values of the interaction parameters as collected in Table I apparently 
indicating their individual features. As aforementioned, the final values of interaction parameters 
manifested in Fig. 4 are stable in Type-I-Region and Type-III-Region under the variation of η. 
9
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Table I
Specific values of fermion-fermion interactions with several representative ratios of structure parameters in the vicinity 
of three different RFPs. The corresponding energy-dependent evolutions of these couplings are manifestly displayed in 
Fig. 3.

RFPs λ00/λ30 λ20/λ30 λ01/λ30 λ21/λ30 λ03/λ30 λ13/λ30 η

Type-I-RFP -0.7 1 -20.3 0.7 -242.8 0.1 10−5

Type-II-RFP -0.7 1 -28.4 0.7 -318.1 0.1 0.4
-0.7 1 -114.5 0.5 -81 0.5 0.8
-1 1 -0.1 0.04 -1.2 0.9 3.5

Type-III-RFP -1 1 0 0 -1 1 105

On the contrary, they are rather sensitive to η in the Type-II-Region. Under these respects, Table I
consists of only one point for both Type-I-RFP and Type-III-RFP as well as three typical points 
for Type-II-RFP with considering the tendency of Type-II-Region in Fig. 4.

To be concrete, Fig. 3(a) indicates that, at Type-I-RFP, the parameters λ00/λ30, λ01/λ30, and 
λ03/λ30 flow divergently along the negative direction. In particular, the absolute strengths of 
λ03/λ30 and λ00/λ30 are the strongest and weakest. However, λ13/λ30, λ20/λ30, and λ21/λ30 are 
sign-unchanged during the whole RG process. Compared to Type-I-RFP, λ01/λ30 and λ21/λ30

at Type-III-RFP evolve towards zero. Additionally, Fig. 3(b) shows that λ00/λ30 and λ03/λ30 are 
driven to be equal but opposite to λ20/λ30 and λ13/λ30 in the lowest-energy limit. As for Type-
II-RFP, interaction parameters delineated in Fig. 3(c)-(e) share the same sign-change (unchange) 
information with Type-I-RFP. In a sharp contrast to the other two types, it is of remarkable im-
portance to emphasize that interaction parameters in the Type-II-Region approximately increase 
or decrease monotonically with the increase of η except some critical point. In addition to the 
difference of their concrete values, it is worth pointing out that the critical energy scales, at which 
RFPs are accessed, are nearly constants in Type-I-Region but instead proportional to η in both 
Type-II-Region and Type-III-Region.

Before closing this section, it is necessary to present several comments on the flow tendencies 
of Fig. 2 and Fig. 3. Roughly speaking, there are two facets responsible for this issue. On one 
hand, the correlations among different sorts of fermionic interactions are less important and even 
negligible once the system is far enough away from the instability point. In comparison, both in-
teractions and fluctuations play more important roles with accessing the instability point, yielding 
sensitive changes of interaction parameters. This indicates that the competition among all these 
distinct types of fermion-fermion interactions becomes stronger and stronger as the instability is 
approached, but instead weaker and weaker with deviating from that point. As a consequence, 
the RFP with strong couplings is a significant impetus to trigger a multitude of unusual phenom-
ena including instabilities and critical physical behaviors [45,48,51,81–88]. Stimulated by these, 
we are going to investigate the potential instabilities around three distinct types of RFPs in the 
upcoming section and defer the underlying critical physical behaviors to Sec. 5.

4. Instabilities induced by fermion-fermion interactions

With the variation of structural coefficient η, we have confirmed in previous section there ex-
ist three distinct types (regions) of RFPs attesting to the subtle fermion-fermion interactions. As 
mentioned previously, instabilities are tightly linked to these RFPs, which are well-known signa-
10
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Table II
Twelve different kinds of potential phases triggered by fermion-
fermion interactions, which are associated with source-term bilinears 
appearing in Eq. (13) [11]. Hereby, SC and AFM denote supercon-
ductivity and antiferromagnetism, respectively. In addition, chiral 
SC1 and chiral SC2 are adopted to characterize two distinct sorts of 
chiral superconducting states.

Order 
parameters

Vertex matrixes of 
fermionic bilinears

Potential phases


c
1 Mc

1 = τ0 ⊗ σ0 charge instability


c
2 Mc

2 = τ0 ⊗ σ1 x-current


c
3 Mc

3 = τ0 ⊗ σ2 bond density


c
4 Mc

4 = τ0 ⊗ σ3 charge density wave
�
s

1
�Ms

1 = �τ ⊗ σ0 Ferromagnet
�
s

2
�Ms

2 = �τ ⊗ σ1 x-spin-current
�
s

3
�Ms

3 = �τ ⊗ σ2 spin bond density
�
s

4
�Ms

4 = �τ ⊗ σ3 AFM


PP
1 MPP

1 = τ2 ⊗ σ3 s-wave SC


PP
2 MPP

2 = τ2 ⊗ σ1 chiral SC1


PP
3 MPP

3 = τ2 ⊗ σ0 chiral SC2


PP
4 MPP

4 = τ0,1,3 ⊗ σ2 triplet SC

tures of symmetry breaking [11,47,48,51,81–88,105]. In this respect, it is of enormous interest 
to seek and identify the leading instability and its related phase transition.

In order to justify potential types of symmetry breaking, we are suggested to bring out the 
following source terms that collect both the charge and spin channels [11,45,48,106]

Ssou=
∫

dτ

∫
d2x

4∑
i=1

(
c
i �

†Mc
i � + �
s

i · �† �Ms
i �)

+
∫

dτ

∫
d2x

4∑
i=1

(
PP
i �†MPP

i �∗ + H.c). (13)

Hereby, the vertex matrixes Mc/s
i with i = 1, 2, 3, 4 denote various sorts of fermionic bilinears 

in the particle-hole part consisting of both charge and spin channels. In comparison, MPP
i cor-

respond to possible fermionic bilinears in the particle-particle situation [45,48]. In addition, the 
couplings 
c/s

i and 
PP
i serve as the strengths of associated fermion-source terms, which can 

be regarded as order parameters accompanied by corresponding symmetry breakings. In princi-
ple, the onset of fermionic bilinear is a manifest signal for certain instability and hence implies 
a phase transition tied to some symmetry breaking [47,81,84,85,105,107]. Table II catalog the 
primary candidates of fermion bilinears and related phase transitions for our system.

A question is then naturally raised, which instability is the dominant one around three dif-
ferent types of RFPs. To elucidate this, we need to add the source terms (13) into our effective 
model. In this sense, the parameters 
i are entangled with the fermion-fermion interactions af-
ter taking into account one-loop fermion-fermion corrections as diagrammatically illustrated in 
Fig. 6. After carrying out analogous procedures in Sec. 2.2 [45,48], we notice that the strength of 
11



Y.-H. Zhai and J. Wang Nuclear Physics B 966 (2021) 115371
Fig. 6. One-loop corrections to the bilinear fermion-source terms [48,51]: (a) and (b) represent the particle-hole channel 
and (c) specifies particle-particle channel. The solid, dash, and wave lines correspond to the fermion, fermion-fermion 
interaction and source term fields, respectively.

source term would be sensitive to energy scales and subject to the following set of RG evolutions

d

c/s,PP
i

dl
= Gc/s,PP

i 

c/s,PP
i , (14)

where the index i runs from 1 to 4 and the coefficients Gc/s,PP
i are closely dependent upon the 

fermion-fermion interactions plus structural parameters d1 and d3. The details for the flows of 
source terms and coefficients Gc/s,PP

i are stored in Appendix C.
To proceed, we are capable of capturing the corresponding susceptibilities around the RFPs 

by adopting the relationship [45,48]

δχ = − ∂2δf

∂
(0)∂
∗(0)
, (15)

with f being the free energy density. Concerning the ground state can be characterized by the 
susceptibility with the strongest divergence [11,47,48,51,81–88,105,108], we are now in a suit-
able position to identify the very dominant instability and the associated phase transition nearby 
the corresponding RFP by computing and comparing the susceptibilities of all underlying insta-
bilities listed in Table II.

To this end, we are forced to combine the RG evolutions of fermion-fermion interactions (12)
and energy-dependent strengths of source terms (14) in conjunction with the connections be-
tween susceptibilities and source-term couplings (15). After implementing long but straightfor-
ward numerical analysis, we are eventually left with the energy-dependent susceptibilities of all 
potential instabilities, which carry the low-energy physical information and determine the fates of 
all sorts of possible instabilities nearby distinct types of RFPs as apparently displayed in Fig. 7.

Subsequently, we deliver the primary results covered in Fig. 7. At the first sight, we figure 
out that all kinds of susceptibilities are fairly susceptible to energy scales and climb up quickly 
with accessing any sorts of the potential RFPs. Especially, it is of peculiar interest to address that 
fermion-fermion interactions are rather in favor of charge density wave (CDW). On one hand, the 
CDW susceptibility manifestly dominates over all other types once the system is tuned towards 
the expected RFP. On the other, this result is qualitatively insensitive to η. In other words, this 
kind of susceptibility is inevitable to be the strongest one no matter which type (region) of RFP 
is approached. Consequently, we come to a conclusion schematically illustrated in Fig. 8 that the 
leading instability is directly associated with a phase transition from QBCP semimetal to CDW 
12
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Fig. 7. (Color online.) Flows of all particle-hole and particle-particle susceptibilities cataloged in Table II as functions 
of the RG evolution parameter l by approaching distinct types of RFPs classified and illustrated in Fig. 4 and Fig. 5. 
The x-spin-current-i and spin bond density-i with i = 1, 2, 3 as well as triplet SC-j with j = 0, 1, 3 and AFM-ζ with 
ζ = x, y, z are employed to specify distinct components of corresponding states as detailedly shown in Table II.

state under the influence of fermion-fermion couplings in the 2D QBCP materials sited on the 
kagomé lattice without time-reversal symmetry. Compared to the traditional Peierls instability 
activated by the spontaneous symmetry breaking of ground state [109], this CDW instability es-
sentially originates from the dynamical spontaneous symmetry breaking which is generated by 
the particle-hole condensations owing to marginally relevant fermion-fermion interactions in the 
low-energy regime. It is worth pointing out that this result is basically in agreement with recent 
works on analogous compounds [110–113]. This suggests that the CDW state is another winner 
driven by fermion-fermion interactions in the 2D QBCP materials besides quantum anomalous 
Hall and quantum spin Hall sates in its checkerboard-lattice counterpart with time-reversal sym-
metry [48,51].

Next, we move to consider the subleading instabilities. Unlike the leading instability, we 
learning from Fig. 7 find that the subleading instabilities are of close relevance to the struc-
tural coefficient η and exhibit diverse fates in the vicinity of three different types of RFPs. To be 
concrete, as depicted in Fig. 7(a), susceptibilities of x-current, bond density, and chiral SC-2 are 
increased and become subdominant nearby Type-I-RFP. With respect to Type-II-RFP, the tenden-
13
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Fig. 8. (Color online.) Schematic diagram for temperature-tuned phase transition from a 2D QBCP semimetal to a CDW 
state. The Tc and “TP” designate the critical temperature and the transition point (or critical point) associated with the 
CDW instability, respectively. Route A and Route B exhibit two distinct paths to access the critical point (despite Tc

(Tc � 0) is very small as lc is a relatively bigger value as shown in Fig. 2, it hereby is enlarged to make a sharp contrast).

cies of all instabilities share the basic fates with Type-I-RFP once η is small. However, while η is 
increased to 1.8, the susceptibility of s-wave SC illustrated in Fig. 7(c) becomes comparable with 
that of x-current, bond density, and chiral SC-2 and thus can be regarded as another subleading 
instability. Further, s-wave SC and chiral SC-2 are gradually enhanced with the continue increase 
of η as delineated in Fig. 7(d) and become only two subdominant ones via eliminating x-current 
and bond density at η = 3.5. As for Type-III-RFP, Fig. 7(b) indicates that the qualitative results 
are analogous to Type-II-RFP’s at η = 3.5, namely s-wave SC and chiral SC-2 are subleading 
phases. At last, it is notable to highlight that the critical energy scale (Ec) is rapidly decreased 
(i.e. lc is rapidly increased) with tuning up the value of η. This means that an enhancement of η
is harmful to the emergence of instability.

To be brief, the dominant instability driven by fermion-fermion interactions is always tied to 
the CDW state irrespective of the value of η. In contrast, there exist four η-dependent candidates 
including the x-current and bond density as well as chiral SC-2 plus s-wave SC that are subor-
dinate to the CDW state. Especially, we realize that the chiral SC-2 state is always subleading 
irrespective of concrete value of η. Rather, both the x-current and bond density can only play a 
subdominant role at a weak η. As the η is progressively increased, they share the positions with 
and eventually are replaced by the s-wave SC. Albeit the dominant instability generally takes a 
major responsibility for the low-energy physics, these subdominant ones might be in charge of 
related phenomena while the system is impacted by unexpected facets. For the sake of complete-
ness, we are about to investigate how the behaviors of physical quantities are affected by the 
leading instability in the forthcoming section.

5. Critical physical implications

On the basis of intimate fermion-fermion interactions in the low-energy sector, we have pre-
sented potential instabilities induced by fermionic interactions and corroborated in Sec. 4 a direct 
connection between the overarching instability and CDW phase transition at certain RFP. At this 
stage, the RFP is tantamount to a phase transition point, at which the fluctuations are always so 
ferocious that usually render a plenty of singular critical behaviors [90,114–119]. Accordingly, 
it is interesting to investigate possible physical implications triggered by the onset of CDW state.

For this purpose, it is necessary to clarify the overall scenario of our basic results sketched 
in Fig. 8. It consists of two subspaces separated by the critical point with l = lc (T = Tc) cor-
responding to a disordered QBCP semimetal state located at the region (Tc, T0] and an ordered 
CDW state at T < Tc , respectively. Obviously, there exist two routes that are Route A starting 
from the disordered phase (QBCP) and Route B from the ordered phase (CDW) to access the 
phase transition point (TP). In principle, one can either go along Route A or Route B to track the 
effects of phase transition on the physical observables. However, it is insensible to probe into the 
14
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physical behaviors as it approaches the critical point through Route B since the RG approach is 
strictly based upon the perturbative theory. In this respect, we within this section go along with 
Route A to tentatively investigate the physical observables on the right side of critical point with 
T > Tc . Given that the band structure and dispersion of the QBCP system are stable in region 
T > Tc, but destroyed at T < Tc, this strategy at least can provide a preliminary understanding 
of criticality nearby CDW instability.

Technically, it seems inappropriate to capture the effects of CDW instability for the region 
T > Tc since the average value of order parameter 
 vanishes at T > Tc as illustrated in 
Fig. 8. However, it is worth pointing out the fluctuation of order parameter is nonzero albeit 
〈
〉 = 0, and becomes stronger and stronger as the critical point is approached along with 
Route A, eventually diverges at the critical point. In this sense, we are suggested to regard 

 as a fluctuation of CDW order parameter, which is generated by the fermion-fermion in-
teractions, to collect the influences of CDW instability, and then examine how the physical 
quantities vary by adjusting the value of 
 (it is equivalent to approaching the TP along with 
Route A). To this end, we introduce a constant 
 to represent the fluctuation associated with 
the leading stability and add it by hand into the fermionic free propagator of the 2D QBCP sys-
tem [72]. Then the free fermionic propagator (7) dressed by one-loop corrections is thus recast 
as

G0(iωn,k) =
(
−iωn + (d3k2 + 
)�03 + d1�01(k

2
x − k2

y) + d2�02kxky

)−1
, (16)

where ωn = (2n +1)πT with n being an integer stands for the Matsubara frequency. To proceed, 
performing analytical continuation iωn → ωn + iδ, we are subsequently left with the retarded 
fermion propagator as follows [119],

Gret
0 (ωn,k) = (ωn + iδ) + (d3k

2 + 
)�03 + d1k
2(cos 2θ�01 + sin 2θ�02)

(−ω2
n − 2iωnδ + d2

3k4 + 2d3k2
 + 
2+d2
1k4)

. (17)

It is now in a suitable position to extract the qualitative effects sparked by the formation of 
order parameter on the physical quantities. Without loss of generality, we within this section 
put our focus on the density of states (DOS) as well as specific heat and compressibility of 
quasiparticles.

5.1. DOS

At first, let us concentrate on the DOS under the influence of CDW fluctuation with approach-
ing the critical point through Route A. To achieve this goal, one necessitates the corresponding 
spectral function, which is directly connected to the retarded fermion propagator (17) [89,119]
and of the following form

A(ωn,k)

=− 1

π
Tr

(
ImGret

0 (ωn,k)
)

=4N |ωn|δ(d2
3k4+2d3k

2
+
2+d2
1k4−ω2

n), (18)

where the number N characterizes the fermion flavor. With this respect, the DOS of quasiparticles 
consequently can be cast as
15



Y.-H. Zhai and J. Wang Nuclear Physics B 966 (2021) 115371
ρ(ωn) = N

�0∫
0

2π∫
0

kdkdθ

(2π)2 A(ωn,k). (19)

Prior to inspecting the impact of order parameter, it is necessary to briefly discuss the circum-
stance in the absence of instability. Removing the fluctuation via taking 
 → 0 limit in Eq. (19)
directly gives rise to

ρ(ωn) = N

2π

√
d2

3 + d2
1

. (20)

This is in reminiscence of the fact that the DOS of 2D QBCP system is a finite constant at the 
Fermi surface [44,48].

Subsequently, we go to examine the very influence of CDW fluctuation. Based upon the gen-
eral result (19) in tandem with the essential properties of δ function, we notice that the DOS 
would be broken down into two distinct situations depending upon 
’s magnitude. On one hand, 
one can find the ωn or temperature (T ) dependence of DOS at |
| < T is rewritten as follows

ρ(ωn) = N

2π
√

d2
3 + d2

1 (1 − 
2

ω2
n
)
. (21)

On the other hand, a large order parameter with |
| > T is of particular detriment to DOS which 
disappears exactly at the instability, namely

ρ(ωn) = 0. (22)

These manifestly shed light on the important role of CDW fluctuation in the proximity of 
instability. Compared to a finite DOS for 2D QBCP materials with 
 = 0, we figure out that 
it nearby Fermi surface (QBCP) is slightly enhanced while the system is a little far away from 
instability with |
| < T . In addition, its concrete values as clearly designated in Eqs. (20)-(21)
are heavily dependent upon two microscopic parameters d3 and d1, which are closely associated 
with different types of RFPs. However, once the RFP is sufficiently approached with |
| > T , 
the onset of large order parameter substantially suppresses the DOS due to ferocious fluctuations. 
In other words, the band structure of 2D QBCP systems would be completely sabotaged [52,82]. 
It is worth emphasizing that we have checked all sorts of RFPs share the analogous qualitative 
results.

5.2. Specific heat

Next, we are going to shift our target to the specific heat of quasiparticles. For the sake 
of completeness, we hereby bring out an infinitesimal chemical potential μ into our effective 
theory [89,120]. As a result, the corresponding free fermionic propagator in the Matsubara for-
malism is reformulated as

G0(iωn,k) = 1

iωn + μ −H0(k) − 
�03

= − iωn + μ + (d3k
2 + 
)�03 + d1�01k

2 cos 2θ + d1�02k
2 sin 2θ

(ωn − iμ)2 + (d3k2 + 
)2 + d2
1k4

. (23)

Following the tactic in Ref. [89], we integrate over all frequencies and then write the free 
energy of the fermions as
16
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f (T ,μ)=−2N
∑
α±1

∫
d2k

(2π)2

[
ε(k)+T ln

(
1+e− ε(k)+αμ

T

)]
, (24)

where the energy is designated as

ε(k) ≡
√

(d3k2 + 
)2 + d2
1 k4. (25)

To simplify our study, we take advantage of transformation f (T ) − f (0) → f (T ) to eliminate 
the zero-point energy and obtain a compact free energy as follows

f (T ,μ)=−2NT
∑
α±1

�0∫
0

2π∫
0

kdkdθ

(2π)2 ln
(

1+e− ε(k)+αμ
T

)
. (26)

In this sense, we hereafter only pour our attention into μ = 0 situation for specific heat, which 
is based upon two points. On one side, the starting point (6) is restricted to zero chemical potential 
at the QBCP. On the other side, this work only concerns qualitative phenomena of physical 
implications triggered by an instability irrespective of the value of μ. To proceed, supposing 
μ = 0 in Eq. (26) gives rise to

f (T )=−4NT

�0∫
0

2π∫
0

kdkdθ

(2π)2 ln
(

1 + e− ε(k)
T

)
. (27)

Taking the derivatives of free energy with respect to temperature forthrightly yields to the specific 
heat (CV ) [89,120]

CV (T ) = −T
∂2f (T )

∂T 2 = 2N

πT 2

�0∫
0

kdkε2(k)e
ε(k)
T(

e
ε(k)
T + 1

)2 . (28)

In order to facilitate our calculations, it is convenient to rescale the momentum and order 
parameter with the cutoff temperature T0 that is related to the cutoff �0 by T0 ≡ �2

0, namely 
k′ ≡ k/

√
T0 and 
′ ≡ 
/T0 [89]. As a corollary, we can convert the CV (T ) into the following 

form

CV (T ) = 2NT 3
0

πT 2

1∫
0

k′dk′ε′2(k′,
′)e
ε′(k′,
′)

T /T0(
e

ε′(k′,
′)
T /T0 + 1

)2 , (29)

where the ε′ is designated as

ε′(k′,
′) ≡
√

(d3k′2 + 
′)2 + d2
1k′4. (30)

On the basis of the general expression for CV (T ) (29), a few comments on the specific heat 
are addressed under the fluctuation of an order parameter kindled by the CDW instability. We 
at first tackle the limit case with 
′ = 0 (i.e., the 2D QBCP state). In this circumstance, it is 
fortunate that the analytical result (29) can be obtained by integrating out the momenta
17
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Fig. 9. (Color online.) Temperature dependence of the specific heat CV accessing the Type-II-RFP under the CDW 
fluctuation. The black, red, green, and blue lines correspond to 
′ = 0, 
′ = 0.1, 
′ = 0.5, and 
′ = 1, respectively (the 
qualitative results for Type-I-RFP are analogous and hence not shown here).

Fig. 10. (Color online.) Temperature dependence of the specific heat CV approaching the Type-III-RFP under the CDW 
fluctuation. The black, red, green, and blue lines correspond to 
′ = 0, 
′ = 0.1, 
′ = 0.5, and 
′ = 1, respectively.

CV (T ) =
2NT

3
2

0

π
√

T

⎡
⎢⎣6

(d2
3 +d2

1 )

(T /T0)2
e

√
d2

3 +d2
1

T/T0

1+e

√
d2

3 +d2
1

T/T0

− 12

√
d2

3 +d2
1

T/T0
log

⎛
⎝1 + e

√
d2

3 +d2
1

T/T0

⎞
⎠ − 12Li2

⎛
⎝−e

√
d2

3 +d2
1

T/T0

⎞
⎠ − π2

⎤
⎥⎦

12(d2
3 + d2

1 )
1
2

,

(31)

with Li2(z) corresponding to a polylogarithmic function [121]. This will be utilized to compare 
with its 
′ �= 0 counterparts.

Subsequently, we endeavor to investigate the nontrivial situation with a moderate order pa-
rameter once the system is adjacent to RFP (not exactly accessed). Carrying out the numerical 
analysis of Eqs. (29) and (31) yields several interesting features shown in Fig. 9 and Fig. 10. 
Studying from Fig. 9, one broadly realizes that the fates of CV (T ) around Type-II-RFP are fairly 
dependent upon 
′ (the qualitative result for Type-I-RFP is analogous and thus not shown here). 
In the low-temperature region, the order parameter apparently hampers the specific heat. On the 
contrary, CV gains a slight lift in the high-temperature region. In comparison, Fig. 10 displays 
that 
′ always brings some detriments to CV as the system is close to the Type-III-RFP. In partic-
ular, CDW instability drives the specific heat CV (T ) → 0 as T → Tc, which is a finite constant 
in the absence of fluctuation. Eventually, we examine the limit 
′ � 1 (namely 
 � T0), which 
would be ignited once the RFP is approached. In this respect, combining Eq. (29) with this limit 
is expected to grasp the central point of specific heat
18
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CV (T ) ≈ NT 3
0 
′2

πT 2e

′

T/T0

, (32)

which signals lim
′→∞ CV (T ) → 0. It manifestly indicates that CV is profoundly reduced by 
the strong fluctuation of order parameter at the CDW instability.

5.3. Compressibility

At last, with the help of temperature- and μ-dependent free energy derived in Eq. (26), we are 
allowed to verify how the compressibility of quasiparticles labeled by κ behaves in the proximity 
of the leading instability. Concretely, the temperature dependence of κ reads [89,122–124]

κ(T ) =− ∂2f (T ,μ)

∂μ2

∣∣∣∣
μ=0

= 2N

πT

�0∫
0

kdk
e

ε(k)
T(

e
ε(k)
T + 1

)2 , (33)

with ε(k) being denominated in Eq. (25) for the absence of chemical potential. We then adopt 
the same rescalings employed in Sec. 5.2 and are left with

κ(T )= 2N

π(T/T0)

1∫
0

k′dk′ e
ε′(k′,
′)

T /T0(
e

ε′(k′,
′)
T /T0 + 1

)2 , (34)

where ε′(k′, 
′) is designated in Eq. (30).
Accordingly, the analytical expressions for 
′ = 0 and 
′ � 1 can also be easily obtained,

κ(T ,
′ = 0) =
N tanh

(√
d2

3 +d2
1

2(T /T0)

)

2π

√
d2

3 + d2
1

, (35)

κ(T ,
′ � 1) ≈ N

π(T/T0)
e
− 
′

T/T0 . (36)

Numerically implementing Eq. (34) leads to Fig. 11, which implies that the compressibility is 
severely suppressed by a finite order parameter. Additionally, Eq. (36) proposes that the com-
pressibility goes toward vanishment because of the divergent fluctuation of order parameter 
exactly at the RFP. It is worth emphasizing that all these basic conclusions are insensitive to 
concrete values of RFP. In such circumstance, this phenomenon can be regarded as the third 
critical behavior driven by fermion-fermion interactions [82,89].

To recapitulate, the primary task of this work is to judge whether and which kind of phase 
transition can be induced by the fermion-fermion interactions, which, to a large extent, is ba-
sically finished in Sec. 3 and Sec. 4. In comparison, the physical behaviors around the critical 
point are only our secondary concerns. Although the strategy employed in this section may be 
not the best one, we are able to qualitatively capture the behaviors of these physical quantities via 
regarding the parameter 
 as a fluctuation and tuning the variation of 
 to simulate the access 
of critical point along with Route A illustrated in Fig. 8.
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Fig. 11. (Color online.) Temperature dependence of the compressibility κ approaching the Type-II-RFP under the CDW 
fluctuation. The black, red, green, and blue lines correspond to 
′ = 0, 
′ = 0.1, 
′ = 0.5, and 
′ = 1, respectively (the 
basic conclusions for both Type-I-RFP and Type-III-RFP are similar and hence not shown here).

6. Summary

In summary, we attentively verify how the low-energy properties of 2D spin-1/2 QBCP 
fermionic systems on the kagomé lattice are impacted by all sixteen sorts of marginal fermion-
fermion interactions. For the purpose of treating these degrees of freedom on the same footing, 
we resort to the momentum-shell RG method [78–80], which is a well-trodden strategy for the 
description of hierarchical physics under the coexistence of multiple sorts of interactions. In the 
spirit of standard RG analysis, a set of coupled flow equations of all interaction strengths are 
derived by taking into account one-loop corrections of the correlated Feynman diagrams. Af-
ter vigilantly analyzing these RG evolutions, several physical properties ignited by marginally 
relevant fermion-fermion interactions are addressed in the low-energy sector.

At first, we notice that some sorts of fermion-fermion couplings coalesce with the decrease 
of energy scale due to their intimate correlations. This tenders just six of them can flow inde-
pendently and evolve divergently with lowering energy scales. In this respect, we only need to 
contemplate the energy-dependent trajectories of six nontrivial fermionic couplings. In order to 
work in the perturbative theory, it is convenient to rescale these strong-coupling interactions with 
a non-sign changed parameters (such as λ30) and obtain the relative flows of interaction pa-
rameters as well as their RFPs that directly govern the critical physics [45,48,51]. In particular, 
these RFPs are of close association with the coefficient composed by two structure parameters 
(i.e., η ≡ d3/d1). To be concrete, Fig. 4 and Fig. 5 unambiguously manifest three qualitatively 
distinct η-dependent regions, which are named as Type-I-Region, Type-II-Region, and Type-III-
Region residing in η < C1, C1 < η < C2, and η > C2, respectively. Focusing on the vicinity 
of RFPs in these three different regions, we then carefully investigate the underlying instabil-
ities, which are accompanied by corresponding symmetry breakings and tied to related phase 
transitions [47,48,51,81–88]. On the basis of numerical RG studies together with comparisons 
of susceptibilities, we, reading off Fig. 7, draw a conclusion that the CDW instability is always 
dominant over all other candidates irrespective of the specific value of η. In contrast, four sub-
leading ones are also manifestly proposed, which include x-current, bond density, chiral SC-2, 
and s-wave SC depending upon the variation of η. Furthermore, as the leading instability is ac-
cessed along with Route A shown in Fig. 8, we tentatively examine the effects of fluctuation 
induced by the phase transition from a QBCP semimetal to CDW state on physical implications 
consisting of DOS and specific heat as well as compressibility. To be specific, the development 
of CDW state is very harmful to these three kinds of physical observables. Especially, they are all 
20
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Fig. 12. One-loop corrections to (a)-(b): the fermion propagator and (c)-(g): the fermion-fermion interactions. The solid 
and dashed lines characterize the fermion propagator and four-fermion interactions, respectively [48,51].

considerably suppressed and even vanish once the fluctuation of order parameter is strong enough 
in the vicinity of CDW instability. These results are reminiscent of quantum critical behaviors in 
the low-energy regime [90,114–119].

We wish these studies would supplement current understandings of 2D QBCP semimetals and 
open helpful routes to promote further research of 2D QBCP materials as well as explore their 
cousin materials in the future.
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Appendix A. One-loop corrections

The one-loop corrections to self-energy and fermion-fermion interactions are depicted in 
Fig. 12. After long but straightforward calculations, we obtain [48,51]
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Appendix B. RG flow equations of all interaction parameters

Combining our effective action (6) and the RG rescalings (8)-(11) as well as all the one-
loop corrections presented in Appendix A, we consequently are left with the following coupled 
RG evolutions of fermion-fermion interactions after carrying out the standard procedures of RG 
analysis [48,95,97,98]
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2

{2d2
3 [λ12λ03 + λ13λ02 + λ31λ20 + λ30λ21 + λ11λ00 + λ11λ01

+λ11λ10 + λ11λ22 + λ11λ23 + λ11λ32 + λ11λ33 − (λ12λ00 + λ10λ02 + λ33λ21

+λ31λ23 + λ11λ02 + λ11λ03 + λ11λ12 + λ11λ13 + λ11λ20 + λ11λ21 + λ11λ30

+λ11λ31 + 3λ11λ11)] + d2
1 [λ11λ00 + λ11λ01 + λ11λ10 + λ11λ22 + λ11λ23

+λ11λ32 + λ11λ33 + 2(λ12λ03 + λ13λ02 + λ31λ20 + λ30λ21) − (λ10λ00 + λ11λ01

+λ12λ02 + λ13λ03 + λ13λ00 + λ10λ03 + λ31λ22 + λ32λ21 + λ11λ02 + λ11λ03

+λ11λ12 + λ11λ13 + λ11λ20 + λ11λ21 + λ11λ30 + λ11λ31 + 3λ11λ11)]}, (B.6)
dλ21

dl
= 1

4π(d2
3 + d2

1 )
3
2

{2d2
3 [λ22λ03 + λ23λ02 + λ11λ30 + λ10λ31 + λ21λ00 + λ21λ01

+λ21λ12 + λ21λ13 + λ21λ20 + λ21λ32 + λ21λ33 − (λ22λ00 + λ20λ02 + λ13λ31

+λ11λ33 + λ21λ02 + λ21λ03 + λ21λ10 + λ21λ11 + λ21λ22 + λ21λ23 + λ21λ30

+λ21λ31 + 3λ21λ21)] + d2
1 [2(λ22λ03 + λ23λ02 + λ11λ30 + λ10λ31) + λ21λ00

+λ21λ01 + λ21λ12 + λ21λ13 + λ21λ20 + λ21λ32 + λ21λ33 − (λ20λ00 + λ21λ01

+λ22λ02 + λ23λ03 + λ23λ00 + λ20λ03 + λ11λ32 + λ12λ31 + λ21λ02 + λ21λ03

+λ21λ10 + λ21λ11 + λ21λ22 + λ21λ23 + λ21λ30 + λ21λ31 + 3λ21λ21)]}, (B.7)
dλ31

dl
= 1

4π(d2
3 + d2

1 )
3
2

{2d2
3 [λ32λ03 + λ33λ02 + λ21λ10 + λ20λ11 + λ31λ00

+λ31λ01 + λ31λ12 + λ31λ13 + λ31λ22 + λ31λ23 + λ31λ30 − (λ32λ00 + λ30λ02

+λ23λ11 + λ21λ13 + λ31λ02 + λ31λ03 + λ31λ10 + λ31λ11 + λ31λ20 + λ31λ21

+λ31λ32 + λ31λ33 + 3λ31λ31)] + d2
1 [2(λ32λ03 + λ33λ02 + λ21λ10 + λ20λ11)

+λ31λ00 + λ31λ01 + λ31λ12 + λ31λ13 + λ31λ22 + λ31λ23 + λ31λ30 − (λ30λ00

+λ31λ01 + λ32λ02 + λ33λ03 + λ33λ00 + λ30λ03 + λ21λ12 + λ22λ11 + λ31λ02

+λ31λ03 + λ31λ10 + λ31λ11 + λ31λ20 + λ31λ21 + λ31λ32 + λ31λ33 + 3λ31λ31)]},
(B.8)
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λ02

dl
= l

8π(d2
3 + d2

1 )
3
2

{4d2
3 [λ01λ03 + λ11λ13 + λ21λ23 + λ31λ33 + λ02λ00 + λ02λ10

+λ02λ12 + λ02λ20 + λ02λ22 + λ02λ30 + λ02λ32 − (λ01λ00 + λ11λ10 + λ21λ20

+λ31λ30 + λ02λ01 + λ02λ03 + λ02λ11 + λ02λ13 + λ02λ21 + λ02λ23 + λ02λ31

+λ02λ33 + 3λ02λ02)] + d2
1 [4(λ01λ03 + λ11λ13 + λ21λ23 + λ31λ33) + λ02λ00

+λ02λ10 + λ02λ12 + λ02λ20 + λ02λ22 + λ02λ30 + λ02λ32 − (λ00λ00 + λ10λ10

+λ20λ20 + λ30λ30 + λ01λ01 + λ11λ11 + λ21λ21 + λ31λ31 + λ02λ02 + λ12λ12

+λ22λ22 + λ32λ32 + λ03λ03 + λ13λ13 + λ23λ23 + λ33λ33) − 2(λ03λ00 + λ13λ10

+λ23λ20 + λ33λ30 + λ02λ01 + λ02λ03 + λ02λ11 + λ02λ13 + λ02λ21 + λ02λ23

+λ02λ31 + λ02λ33 + 3λ02λ02)]}, (B.9)
dλ12

dl
= 1

4π(d2
3 + d2

1 )
3
2

{2d2
3 [λ13λ01 + λ11λ03 + λ32λ20 + λ30λ22 + λ12λ00 + λ12λ02

+λ12λ10 + λ12λ21 + λ12λ23 + λ12λ31 + λ12λ33 − (λ11λ00 + λ10λ01 + λ32λ23

+λ33λ22 + λ12λ01 + λ12λ03 + λ12λ11 + λ12λ13 + λ12λ20 + λ12λ22 + λ12λ30

+λ12λ32 + 3λ12λ12)] + d2
1 [2(λ13λ01 + λ11λ03 + λ32λ20 + λ30λ22) + λ12λ00

+λ12λ02 + λ12λ10 + λ12λ21 + λ12λ23 + λ12λ31 + λ12λ33 − (λ13λ00 + λ10λ03

+λ31λ22 + λ32λ21 + λ10λ00 + λ11λ01 + λ12λ02 + λ13λ03 + λ12λ01 + λ12λ03

+λ12λ11 + λ12λ13 + λ12λ20 + λ12λ22 + λ12λ30 + λ12λ32 + 3λ12λ12)]}, (B.10)
dλ22

dl
= 1

4π(d2
3 + d2

1 )
3
2

{2d2
3 [λ23λ01 + λ21λ03 + λ12λ30 + λ10λ32 + λ22λ00 + λ22λ02

+λ22λ11 + λ22λ13 + λ22λ20 + λ22λ31 + λ22λ33 − (λ21λ00 + λ20λ01

+λ12λ33 + λ13λ32 + λ22λ01 + λ22λ03 + λ22λ10 + λ22λ12 + λ22λ21 + λ22λ23

+λ22λ30 + λ22λ32 + 3λ22λ22)] + d2
1 [2(λ23λ01 + λ21λ03 + λ12λ30 + λ10λ32)

+λ22λ00 + λ22λ02 + λ22λ11 + λ22λ13 + λ22λ20 + λ22λ31 + λ22λ33 − (λ23λ00

+λ20λ03 + λ11λ32 + λ12λ31 + λ20λ00 + λ21λ01 + λ22λ02 + λ23λ03 + λ22λ01

+λ22λ03 + λ22λ10 + λ22λ12 + λ22λ21 + λ22λ23 + λ22λ30 + λ22λ32 + 3λ22λ22)]},
(B.11)

dλ32

dl
= 1

4π(d2
3 + d2

1 )
3
2

{2d2
3 [λ33λ01 + λ31λ03 + λ22λ10 + λ20λ12 + λ32λ00 + λ32λ02

+λ32λ11 + λ32λ13 + λ32λ21 + λ32λ23 + λ32λ30 − (λ31λ00 + λ30λ01 + λ22λ13

+λ23λ12 + λ32λ01 + λ32λ03 + λ32λ10 + λ32λ12 + λ32λ20 + λ32λ22 + λ32λ31

+λ32λ33 + 3λ32λ32)] + d2
1 [2(λ33λ01 + λ31λ03 + λ22λ10 + λ20λ12) + λ32λ00

+λ32λ02 + λ32λ11 + λ32λ13 + λ32λ21 + λ32λ23 + λ32λ30 − (λ33λ00 + λ30λ03

+λ21λ12 + λ22λ11 + λ30λ00 + λ31λ01 + λ32λ02 + λ33λ03 + λ32λ01 + λ32λ03

+λ32λ10 + λ32λ12 + λ32λ20 + λ32λ22 + λ32λ31 + λ32λ33 + 3λ32λ32)]}, (B.12)
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dλ03

dl
= 1

4π(d2
3 + d2

1 )
3
2

{d2
3 [2(λ02λ01 + λ12λ11 + λ22λ21 + λ32λ31) − (λ00λ00 + λ10λ10

+λ20λ20 + λ30λ30 + λ01λ01 + λ11λ11 + λ21λ21 + λ31λ31 + λ02λ02 + λ12λ12

+λ22λ22 + λ32λ32 + λ03λ03 + λ13λ13 + λ23λ23 + λ33λ33)] + d2
1 [2(λ02λ01

+λ12λ11 + λ22λ21 + λ32λ31 + λ03λ00 + λ03λ10 + λ03λ13 + λ03λ20 + λ03λ23

+λ03λ30 + λ03λ33) − (λ01λ00 + λ11λ10 + λ21λ20 + λ31λ30 + λ02λ00 + λ12λ10

+λ22λ20 + λ32λ30) − 2(λ03λ01 + λ03λ02 + λ03λ11 + λ03λ12 + λ03λ21 + λ03λ22

+λ03λ31 + λ03λ32 + 3λ03λ03)]}, (B.13)
dλ13

dl
= 1

4π(d2
3 + d2

1 )
3
2

{2d2
3 [λ11λ02 + λ12λ01 + λ33λ20 + λ30λ23 − (λ10λ00 + λ11λ01

+λ12λ02 + λ13λ03)] + d2
1 [2(λ11λ02 + λ12λ01 + λ33λ20 + λ30λ23 + λ13λ00

+λ13λ03 + λ13λ10 + λ13λ21 + λ13λ22 + λ13λ31 + λ13λ32) − (λ12λ00 + λ10λ02

+λ33λ21 + λ31λ23 + λ11λ00 + λ10λ01 + λ32λ23 + λ33λ22) − 2(λ13λ01 + λ13λ02

+λ13λ11 + λ13λ12 + λ13λ20 + λ13λ23 + λ13λ30 + λ13λ33 + 3λ13λ13)]}, (B.14)
dλ23

dl
= 1

4π(d2
3 + d2

1 )
3
2

{2d2
3 [λ21λ02 + λ22λ01 + λ13λ30 + λ10λ33 − (λ20λ00 + λ21λ01

+λ22λ02 + λ23λ03)] + d2
1 [2(λ21λ02 + λ22λ01 + λ13λ30 + λ10λ33 + λ23λ00

+λ23λ03 + λ23λ11 + λ23λ12 + λ23λ20 + λ23λ31 + λ23λ32) − (λ22λ00 + λ20λ02

+λ13λ31 + λ11λ33 + λ21λ00 + λ20λ01 + λ12λ33 + λ13λ32) − 2(λ23λ01 + λ23λ02

+λ23λ10 + λ23λ13 + λ23λ21 + λ23λ22 + λ23λ30 + λ23λ33 + 3λ23λ23)]}, (B.15)
dλ33

dl
= 1

4π(d2
3 + d2

1 )
3
2

{2d2
3 [λ31λ02 + λ32λ01 + λ23λ10 + λ20λ13 − (λ30λ00 + λ31λ01

+λ32λ02 + λ33λ03)] + d2
1 [2(λ31λ02 + λ32λ01 + λ23λ10 + λ20λ13 + λ33λ00

+λ33λ03 + λ33λ11 + λ33λ12 + λ33λ21 + λ33λ22 + λ33λ30) − (λ32λ00 + λ30λ02

+λ23λ11 + λ21λ13 + λ31λ00 + λ30λ01 + λ22λ13 + λ23λ12) − 2(λ33λ01 + λ33λ02

+λ33λ10 + λ33λ13 + λ33λ20 + λ33λ23 + λ33λ31 + λ33λ32 + 3λ33λ33)]}. (B.16)

Appendix C. RG equations of source terms

After collecting all the one-loop corrections to source terms and performing RG analy-
sis [48,51,53], we can obtain RG flow equations of the strengths 
c/s

i and 
PP
i corresponding to 

fermion-source terms in particle-hole and particle-particle situations,

d
c
1

dl
= 2
c

1, (C.1)

d
c
2

dl
=

[
2 + (λ00 − 7λ01 − λ02 − λ03 + λ10 + λ11 − λ12 − λ13 + λ20 + λ21 − λ22

−λ23 + λ30 + λ31 − λ32 − λ33)
(2d2

3 + d2
1 )

16π(d2 + d2)
3
2

]

c

2, (C.2)

3 1

29
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d
c
3

dl
=

[
2 + (λ00 − λ01 − 7λ02 − λ03 + λ10 − λ11 + λ12 − λ13 + λ20 − λ21 + λ22

−λ23 + λ30 − λ31 + λ32 − λ33)
(2d2

3 + d2
1 )

16π(d2
3 + d2

1 )
3
2

]

c

3, (C.3)

d
c
4

dl
=

[
2 + (λ00 − λ01 − λ02 − 7λ03 + λ10 − λ11 − λ12 + λ13 + λ20 − λ21 − λ22

+λ23 + λ30 − λ31 − λ32 + λ33)
d2

1

8π(d2
3 + d2

1 )
3
2

]

c

4, (C.4)

d
s
1

dl
= 2
s

1, (C.5)

d
s
2−x

dl
=

[
2 + (λ00 + λ01 − λ02 − λ03 + λ10 − 7λ11 − λ12 − λ13 − λ20 − λ21 + λ22

+λ23 − λ30 − λ31 + λ32 + λ33)
(2d2

3 + d2
1 )

16π(d2
3 + d2

1 )
3
2

]

s

2−x, (C.6)

d
s
2−y

dl
=

[
2 + (λ00 + λ01 − λ02 − λ03 − λ10 − λ11 + λ12 + λ13 + λ20 − 7λ21 − λ22

−λ23 − λ30 − λ31 + λ32 + λ33)
(2d2

3 + d2
1 )

16π(d2
3 + d2

1 )
3
2

]

s

2−y, (C.7)

d
s
2−z

dl
=

[
2 + (λ00 + λ01 − λ02 − λ03 − λ10 − λ11 + λ12 + λ13 − λ20 − λ21 + λ22

+λ23 + λ30 − 7λ31 − λ32 − λ33)
(2d2

3 + d2
1 )

16π(d2
3 + d2

1 )
3
2

]

s

2−z, (C.8)

d
s
3−x

dl
=

[
2 + (λ00 − λ01 + λ02 − λ03 + λ10 − λ11 − 7λ12 − λ13 − λ20 + λ21 − λ22

+λ23 − λ30 + λ31 − λ32 + λ33)
(2d2

3 + d2
1 )

16π(d2
3 + d2

1 )
3
2

]

s

3−x, (C.9)

d
s
3−y

dl
=

[
2 + (λ00 − λ01 + λ02 − λ03 − λ10 + λ11 − λ12 + λ13 + λ20 − λ21 − 7λ22

−λ23 − λ30 + λ31 − λ32 + λ33)
(2d2

3 + d2
1 )

16π(d2
3 + d2

1 )
3
2

]

s

3−y, (C.10)

d
s
3−z

dl
=

[
2 + (λ00 − λ01 + λ02 − λ03 − λ10 + λ11 − λ12 + λ13 − λ20 + λ21 − λ22

+λ23 + λ30 − λ31 − 7λ32 − λ33)
(2d2

3 + d2
1 )

16π(d2
3 + d2

1 )
3
2

]

s

3−z, (C.11)

d
s
4−x

dl
=

[
2 + (λ00 − λ01 − λ02 + λ03 + λ10 − λ11 − λ12 − 7λ13 − λ20 + λ21 + λ22

−λ23 − λ30 + λ31 + λ32 − λ33)
d2

1

8π(d2 + d2)
3
2

]

s

4−x, (C.12)

3 1
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d
s
4−y

dl
=

[
2 + (λ00 − λ01 − λ02 + λ03 − λ10 + λ11 + λ12 − λ13 + λ20 − λ21 − λ22

−7λ23 − λ30 + λ31 + λ32 − λ33)
d2

1

8π(d2
3 + d2

1 )
3
2

]

s

4−y, (C.13)

d
s
4−z

dl
=

[
2 + (λ00 − λ01 − λ02 + λ03 − λ10 + λ11 + λ12 − λ13 − λ20 + λ21 + λ22

−λ23 + λ30 − λ31 − λ32 − 7λ33)
d2

1

8π(d2
3 + d2

1 )
3
2

]

s

4−z, (C.14)

and

d
PP
1

dl
=

{
2 +

[
λ01 + λ10 + λ12 + λ13 + λ20 + λ22 + λ23 + λ30 + λ32 + λ33 − (λ00

+λ02 + λ03 + λ11 + λ21 + λ31)
] d2

3

8π(d2
3 + d2

1 )
3
2

}

PP

1 , (C.15)

d
PP
2

dl
=

{
2 +

[
λ03 + λ10 + λ11 + λ12 + λ20 + λ21 + λ22 + λ30 + λ31 + λ32 − (λ00

+λ01 + λ02 + λ13 + λ23 + λ33)
] d2

1

16π(d2
3 + d2

1 )
3
2

}

PP

2 , (C.16)

d
PP
3

dl
=

{
2 +

[
λ02 + λ10 + λ11 + λ13 + λ20 + λ21 + λ23 + λ30 + λ31 + λ33 − (λ00

+λ01 + λ03 + λ12 + λ22 + λ32)
] 1

8π(d2
3 + d2

1 )
1
2

}

PP

3 , (C.17)

d
PP
4−x

dl
=

{
2 +

[
λ01 + λ02 + λ03 + λ11 + λ12 + λ13 + λ20 + λ31 + λ32 + λ33 − (λ00

+λ10 + λ21 + λ22 + λ23 + λ30)
] d2

1

16π(d2
3 + d2

1 )
3
2

}

PP

4−x, (C.18)

d
PP
4−y

dl
=

{
2 +

[
λ01 + λ02 + λ03 + λ11 + λ12 + λ13 + λ21 + λ22 + λ23 + λ30 − (λ00

+λ10 + λ20 + λ31 + λ32 + λ33)
] d2

1

16π(d2
3 + d2

1 )
3
2

}

PP

4−y, (C.19)

d
PP
4−z

dl
=

{
2 +

[
λ01 + λ02 + λ03 + λ10 + λ21 + λ22 + λ23 + λ31 + λ32 + λ33 − (λ00

+λ11 + λ12 + λ13 + λ20 + λ30)
] d2

1

16π(d2
3 + d2

1 )
3
2

}

PP

4−z, (C.20)

where the right hand sides of these equations are designated as Gc/s,PP



c/s,PP in Eq. (14).
i i
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