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By employing the 1/N expansion, we compute the vacuum energy E (§¢) of the two-dimensional
supersymmetric (SUSY) CPY~! model on R x S! with Zy twisted boundary conditions to the
second order in a SUSY-breaking parameter d¢. This quantity was vigorously studied recently by
Fujimori et al. using a semi-classical approximation based on the bion, motivated by a possible
semi-classical picture on the infrared renormalon. In our calculation, we find that the parameter
de receives renormalization and, after this renormalization, the vacuum energy becomes ultra-
violet finite. To the next-to-leading order of the 1/N expansion, we find that the vacuum energy
normalized by the radius of the S, R, RE(8¢) behaves as inverse powers of AR for AR small,
where A is the dynamical scale. Since A is related to the renormalized ’t Hooft coupling A as
A ~ e ?"/*% to the order of the 1/N expansion we work out, the vacuum energy is a purely
non-perturbative quantity and has no well-defined weak coupling expansion in .

Subject Index B06, B16, B32, B34, B35

1. Introduction

In this paper, by employing the 1/N expansion (for a classical exposition, see Ref. [1]), we compute
the vacuum energy E (8¢) of the two-dimensional (2D) supersymmetric (SUSY) CPY ~! model [2-4]
on R x S! with Zy twisted boundary conditions to the second order in a SUSY-breaking parameter
de. This quantity was vigorously studied recently by Fujimori et al. [5] (see also Refs. [6—8]) using
a semi-classical approximation based on the bion [9—14]. One of the motivations for their study was
a possible semi-classical picture on the infrared (IR) renormalon [15,16] advocated in Refs. [17—
20]. In these works, in the context of the resurgence program (for a review, see Ref. [21] and the
references cited therein), it is proposed that the ambiguity caused by the IR renormalon through
the Borel resummation (for a review, see Ref. [22]) be cancelled by the ambiguity associated with
the integration of quasi-collective coordinates of the bion; this scenario is quite analogous to the
Bogomolny—Zinn-Justin mechanism for the instanton—anti-instanton pair [23,24].

In Ref. [5], by using the Lefschetz thimble method [25-27], the integration over quasi-collective
coordinates of the bion is explicitly carried out and it was found that the vacuum energy E(S¢)
possesses the imaginary ambiguity which is of the same order as that caused by the so-called u = 1
IR renormalon. On the other hand, for the four-dimensional SU (V) gauge theory with the adjoint
fermion (4D QCD(adj.)), for N = 2 and 3, it has been found [28] that when the spacetime is
compactified as R? x S!, the logarithmic behavior of the vacuum polarization of the gauge boson
associated with the Cartan subalgebra (“photon”) disappears. Since the IR renormalon is attributed
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to such a logarithmic behavior, in Ref. [28] it is concluded that the circle compactification generally
eliminates the IR renormalon. This appears inconsistent with the renormalon interpretation of the
result in Ref. [5].

The original motivation in a series of works [29-31] by a group including the present authors was
to investigate the fate of the IR renormalon under the circle compactification to understand the above
inconsistency.! For this, we employed the 1/N expansion (i.e. the large-N limit), in which

AR = const. as N — 00, (1.1)

where A is a dynamical scale and R is the S radius. We expected that in this way the IR renormalon
and the bion can be highlighted, because the beta function of the ’t Hooft coupling and the bion action
remain non-trivial in the large-N limit, Eq. (1.1), whereas other sources to the Borel singularity such
as the instanton—anti-instanton pair are suppressed. This intention was not so successful, because
the calculations in Refs. [29-31] show that the behavior of the IR renormalon rather depends on
the system; in the 2D SUSY CPN~! model, the compactification from RZ to R x S! shifts the
location of the Borel singularity associated with the IR renormalon [29,31]. In the 4D QCD(ad;.),
because of the twisted momentum of the gauge boson associated with the root vectors (“W boson”),
R3 x S! is effectively decompactified in the large-N limit [35-37] and the IR renormalon gives rise
to the same Borel singularity as the uncompactified R* [30].% It appears that a unified picture on the
semi-classical understanding of the IR renormalon is still missing.

In the present paper, as announced in Ref. [29], in the 1/N expansion with Eq. (1.1), we compute
the vacuum energy E(8E) of the 2D SUSY CPY~! model on R x S' with Zy twisted boundary
conditions to the second order in a SUSY-breaking parameter d¢; this is the quantity computed in
Ref. [5] by the bion calculus. First, we find that the parameter §e receives renormalization and, after
this renormalization, the vacuum energy becomes ultraviolet (UV) finite. To the next-to-leading order
of'the 1/N expansion, we find that the vacuum energy is IR finite, as should be the case for a physical
quantity. Finally, we find that the vacuum energy normalized by the radius of the S', RE (8¢) behaves
as inverse powers of AR for AR small, as shown in Egs. (3.51)—(3.56) and Figs. 2 and 3. Since A is
related to the renormalized ’t Hooft coupling Az as A ~ e~>"/*% to the order of the 1/N expansion
we work out, the vacuum energy is a purely non-perturbative quantity and has no well-defined weak
coupling expansion in Ag. This implies that one cannot even define the perturbative expansion for
this quantity computed in the 1/N expansion and cannot even discuss the renormalon problem.’
Therefore, although our 1/N calculation is robust, it does not give any clue to the issue. We do not
yet fully understand why the semi-classical calculation on the basis of the bion cannot be observed
in the 1/N expansion. Nevertheless, we believe that it is worthwhile to report our 1/N calculation
for future consideration because our calculation itself is rather non-trivial.

2. Two-dimensional SUSY CP"~' model
2.1. Action and boundary conditions

Our spacetime is R x I and —0o < x < oo denotes the coordinate of R and 0 < y < 27R the
coordinate of S'. The Euclidean action of the 2D SUSY CPY~! model in terms of the homogeneous

! Recent related works are Refs. [32-34].

2 In this analysis, we relied on the so-called large- 8, approximation [38—40].

3 In Appendix A, by taking a particular limit R — oo, we illustrate that the perturbative part of the vacuum
energy contains IR divergences, although when including the non-perturbative part it becomes IR finite.
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coordinate variables [2—4] is, in the notation of Eq. (2.24) of Ref. [29],
N
S = /dzx 7[—f +60 +24(=DyDy +£)z*

+ 34D + 5Py + o Pyt + 252 + 20z ]
i0
- / d*x o€y, 2.1)

Here, and in what follows, it is understood that repeated indices are summed over; the lower Greek
indices, u, v, ..., take the value x or y and the uppercase Roman indices, 4, B, ..., run from 1 to N.
A is the bare ’t Hooft coupling and 6 is the theta parameter.* Also,

Dyt = B +id)zt, Dy =y, +id)x",

1+£ys . 0 1 0 —i
Py = 5 Ys = —iVaVys Yx = (1 O) , Y = (l. 0 ) , (2.2)

and €y, = —€), = +1.
For the fields with index A4 (we call them N-fields), we impose the Zy twisted boundary conditions
along S':

A0,y +27R) = MR A(x ),
A,y +27R) = 2Ry A ), Ay +27R) = e MR FAG ), (2.3)

where the twist angle m4 in these expressions depends on the index 4 as
_A ford =1 N —1 =0 (2.4)
mA_NR orda=1, ..., . my = V. .

These twisted boundary conditions allow the fractional instanton/anti-instanton, the constituent of
the bion.

For the auxiliary fields, f', o, 0, 4, n, and 7, on the other hand, we assume periodic boundary
conditions along S'.

For the calculation below, however, it turns out that an alternative form of the action, obtained by

f—f+60 (2.5)
from Eq. (2.1), that is,
2 N = -
S=|d xx[—f+zA(—D,LDM +f +50)"
+ XD + 5Py + oP)xt 4+ 252 + 27z 1]
i0
—~ / d*x 5 €O, (2.6)

is more convenient. This is because renormalization with the action in Eq. (2.1) requires an infinite
shift of the field / in addition to the multiplicative renormalization of the ’t Hooft coupling (Eq. (2.10)

“ The theta parameter & may be eliminated by the anomalous chiral rotation x4 — €75 x4, x4 — x4e™7s,
n— ey, i — ne s, and 0 — €¥%0.
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below), whereas the action in Eq. (2.6) does not require such a shift. This difference comes from the
fact that 6o in Eq. (2.5) is a composite operator and UV divergent. In fact, the action in Eq. (2.6) can
be obtained by the dimensional reduction of a manifestly SUSY-invariant non-linear sigma model
in four dimensions [41]; we thus expect a simpler UV-divergent structure. For this reason, we adopt
the action in Eq. (2.6) in the present paper.

2.2.  Saddle point and propagators in the leading order of the 1/N expansion

Now, since the action of Eq. (2.1) (i.e. Eq. (2.24) of Ref. [29]) and the action of Eq. (2.6) are simply

related by the change of variable in Eq. (2.5), we can borrow the results in Ref. [29] in the leading

order of the 1/N expansion.’

First, setting

Ay = Ay + 84y, f=f+d, o = o9+ d0, (2.7)

where the subscript 0 indicates the value at the saddle point in the 1/N expansion and § denotes the
fluctuation, in the leading order of the 1/N expansion in Eq. (1.1) we have

A[LO = AyOSpLya Jo=0, 0000 = AZ’ (2.8)

where A is the dynamical scale
A = pe 2T/*r (2.9)
defined from the renormalized ’t Hooft coupling A in the “MS scheme,”

VE ;2\ ¢ ap 1
P TR N P 0 B (2.10)
4 4 ¢

Here, we have used dimensional regularization with the complex dimension D = 2 — 2¢; u is the
renormalization scale. In Eq. (2.8), the constant 4, is not determined from the saddle point condition
in the present supersymmetric theory and, for Zy-invariant quantities such as the partition function

and the vacuum energy considered below, it should be integrated over with the measure [29]

1
/ d(4,0RN). (2.11)
0

Next, we need the propagators among fluctuations of the auxiliary fields. To obtain these, we add
the gauge-fixing term

Sef = d’x d? /—a 184, (%) 3,84, (x) / —"P(x—x/M(p) (2.12)

477; 2w 27TR

and a local counter term

Slocal = % / d*x (—%) [0 (x) — 86 (x)]? (2.13)

5 With the twisted boundary conditions of Eq. (2.3), as we will note in Sect. 3.1, the effective action arising
from the Gaussian integration over N-fields is not simply proportional to N but depends nontrivially on N.
Such a non-trivial dependence on N in the Gaussian determinant is, however, exponentially suppressed in the
large-N limit of Eq. (1.1) [29] and can be neglected in calculations in the 1/N expansion.
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to the action in Eq. (2.6) [29]. Then, in the leading order of the 1/N expansion, we have

(64,.(x)84, ("))
— 4_7.[ @ L lp(x x') ,C(p) 2 ﬁK(p)Z PubPv
B 2 271R D(p) dpv + 41 A P2 Lp)? | (p?)?

(84, (0)8R(")) = (8R(x)6AM(x/)) =

2_
(84,0081 () = — (51 ()84, () = Ao 15 ey L) 20 Py

27 27R 4 Do) 2
(64, ()81 () = (8 ()84, () = ‘éf; MLR pZei"("‘x” g_g % ,
(BR()SR()) = ‘;17’: 27+R %:eip(x—x/) 24;_((12 AZ
(SR()SI()) = — (S1(x)SRK)) = OZ: ﬁ Zeipoc—x/) 7’2_((1[3 —2;\2%
(BR()Sf () = (8f (1)SR()) = ”211: MLR Z ipr—') gg oA,
(81(x)81()) = ‘;1:: 27+R %:ez'p(x—x/) 15)_((1; A
(81()8f () = — <5f(x)8[(x’)> =
(87 (0)8f (x)) = ‘;17’: MLRZ ip(r—) g((i))( A,

(nnE"))

. - R — 2
@ 1 Zelp(x_x/) (ip + 200P+ + 200P-)L(p) + 2ippy /p“K(p) _l (2.14)
2m 2R > D(p) 2

Y
where the Kaluza—Klein (KK) momentum along S', Dy, takes discrete values p, = n/R withn € Z.
We have also introduced the notations

Du = €vubv (2.15)
and
1 _ _ I __ _
SR(x) = 3 [opd0 (x) + opdo (x)], 8l (x) = % [opd0 (x) — opda (x)]. (2.16)
i
From the above results, we also have
(80 ()85 (")) = dpx 1 Ze’ﬁ(x—x/) ! 2L(p) + 41 = K@) |- (2.17)
27 2R E D(p)
Y
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Various functions used in the above expressions are defined by
Lp) = L) + L),
2 (VPR AA N
n 2
VPP +4AY)  \VpP+4A2 - /p?

1
£(p) E/ dx Z e—lAyOZHRNmetxpyZnRNm
0 w0

Loo(p) =

27w RN |m|
X
VA2 +x(1 —x)p

; K (\/A2 +x(1 —x)p227 RN |m|),

1
Kp) =i / dx Y e—’sz”RN’"e’XPﬂ”RN’"anNmKO(\/ A2 4+ x(1 — x)p?27RN|m|),
0
m#Q

=2
D) = B +4AD L) + 4;%16@)2, 2.18)

where K, (z) denotes the modified Bessel function of the second kind. For later calculations, it is
important to note the properties

L(p) = L(—p), Kp) = K(-p). (2.19)

These can be shown by the change of the Feynman parameter, x — 1 — x, noting that p,, € Z/R.
Going back to the action S in Eq. (2.6), with the saddle point values in Eq. (2.8), the propagators
of the N-fields in the leading order of the 1 /N expansion are given by

A [dpe 1 . N ,
(AP =682 | 25— Z P =x)) i (py+ma) (=)
N 2w 27 R o

—1
x [p2 + (py + Ayo + ma)* + A*]
A [dpy 1 ; N /
A; N=B;. N\ _ <AB x ipx (x—x") Li(py+ma)(y—y")
=546 e - P y
X 0x"a)) NJ 27 2R ;e ¢
. . - -1
x [ivapx + ivy Py + Ayo + my) + GoPy + ooP—] . (2.20)

To obtain these, we noted the twisted boundary conditions of Eq. (2.3).

3. Computation of the vacuum energy
3.1. General strategy

Our objective in this paper is to compute the vacuum energy of the present system as a power series
of the coefficient §¢ of a SUSY-breaking term—the quantity computed in Ref. [5]:

E@e)=EY + EM§e + EPse? 4 ... . (3.1)

Here, the supersymmetry-breaking term introduced in Ref. [5] is

N
d€ 1
— 2 =4 _A
8S_/dan E mA(zz —N>. (3.2)



PTEP 2020, 063B02 K. Ishikawa et al.

Note that this depends on the twist angles in Eq. (2.4). A quick way to incorporate the effect of
Eq. (3.2) is to regard 8S as a mass term of the z-field, as

N
S+5S=fdzxsz(—a,LaM+A2+5A)zA+---, 3.3)
where
. (3.4)
4= ZRNT '

With this modification, the vacuum energy is given by

1
— / dx E(8€) = /cﬂx - %}sA — ;lnDet(—aﬂau + A%+ 8y)

+ (connected vacuum bubble diagrams). 3.5)

Here, the vacuum bubble diagrams, which start from two-loop order, are computed by using the
modified z4-propagator

(12 ()
AB A dpx 1 ipx (x—x") Li(py+m)y—y) [,,2 2 2 -1
=85 | on T T [P+ by + Ay + ma)* + A% + 8]
Py

(3.6)

instead of the one in Eq. (2.20). Then, by expanding Eq. (3.5) with respect to §4, we have the series
expansion in Eq. (3.1). In the following calculations, we set E(¥) = 0 assuming that the bare vacuum
energy at ¢ = 0 is chosen so that the system is supersymmetric for ¢ = 0. This amounts to
computing the difference E(5¢) — E(6e = 0).

If all the N-fields obey the same boundary conditions along S!, all zZ (or x“ and j4) contribute
equally and the order of the loop expansion with the use of the auxiliary fields and the order of the
1/N expansion would coincide [1]. With the twisted boundary conditions in Eq. (2.3), however, not
all N-fields contribute equally. The SUSY-breaking term in Eq. (3.2) also treats each of N-fields
differently. For these reasons, in the present system the order of the loop expansion and that of the
1/N expansion do not necessarily coincide; we have to distinguish both expansions. For instance,
although the one-loop Gaussian determinant in Eq. (3.5) gives rise to the contribution of O(1/N), it
also contains terms of subleading orders, O(1/N?) and O(1/N?) (see Eq. (3.48), for instance).

3.2.  One-loop Gaussian determinant

Let us start with the one-loop Gaussian determinant in Eq. (3.5). We first note that

— Y " InDet(—d,,8, + A% + 84)

A
=_Z/‘d2xfdplLZhl[p2+(p +mg + Ayo)? + A2+ 84]
~ 27r271Rp o Y Y

o 2

d .

= _/dzx § § : (an;z el(py—mA—Ayo)ZﬂRn 1n(p2+A2+8A), (37)
A n=—o0
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where we have used the identity

F(n/R) = Z / PR (py) (3.8)

n=—0o0

27 R o

Hence, subtracting the logarithm of the Gaussian determinant at 5¢ = 0, we have
—3,8, + A2+
—E lnDet( O+ —ZA)
—0,0, + A

2 2
2 [ (py—m g —Ay0)2m R P+ A 46y
/d Z Z /(2,,)2 o Iy (—pzMz - (3.9)

In this expression, since the n # 0 terms are Fourier transforms, only the n = 0 term is UV divergent.
Under the dimensional regularization with D = 2 — 2¢, the momentum integration yields

—3,0, + A*+ 8
—ZlnDet( O+ tA)
—3,0, + A
11 eVE A2
2
[l )]DA

/ [SA—(AZHA)ln (H%)]
/

A
Z —i(mg+Ay0)27 Rn
A

1
MRW[¢Nuwﬂqw%2+&bmmn—AKmmmmmﬂ. (3.10)

Since Egs. (2.9) and (2.10) imply that

1 [1 eVE A2 1
——m =, (3.11)
471 4 A

we see that the first term on the right-hand side of Eq. (3.10) is precisely canceled by the first term
on the right-hand side of Eq. (3.5).
In this way, from Eq. (3.5) we have

E(sé)ll-loop

—mm}jl-a-—m2+ann1+§i

B — 4m A A A2
+ 27 R Z Z e—i(m,4+Ay())2ﬂRn

A n#0

|
R“”[JA2+SAKN¢A2+wM2nRMD——AKKA2nRMD} (3.12)
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(a) E (b) I (c) Z (d) I (e) I (f)
(9) (h)
Q’ — \\
-~_ / ( iE :
Fig. 1. Two-loop vacuum bubble diagrams that contribute to £(5€)|.100p in Eq. (3.13). The solid line denotes

the z-propagator of Eq. (3.6). The wavy line denotes the §4,,-propagator, the dotted line the §f-propagator,
the broken line the §o -propagator, and the arrowed solid line the n-propagator in Eqs. (2.17) and (2.14).

3.3.  Two-loop vacuum bubble diagrams

Next, we work out the vacuum bubble diagrams in the two-loop level; they are depicted in Fig. 1. By
using the propagators in Egs. (2.14), (2.17), (2.20), and (3.6), and interaction vertices in Eq. (2.6),
from Eq. (3.5) we have

E(€) |2-loop
1

— —ZJTR— i(py—Ayo—my)2m Rn
ZA:HZ /(271)2 PP+ A2+ 8y

de, 1 Z 1
X [E—
27 2R 4 P —0>+ A+ 684
Y

2
x (%qu —£,)(2py — ev)@ {5,w +4 |:A + _le(Z) } by } (Fig. 1a)

D) L2 | (022
1 L) 2 )
) D(E) (Fig. 1b)
Ke) £,8, '
— Pu DEK; 72 (Fig. 1¢)
/J(ﬂ) :
L&) .
— 4mA ) (Fig. le)
de, 1
+/ 27w 2nR .
L & K©)? _
(-5 ;[ Zw—zﬁﬁz;} } (Fig. 1)
L) :
— 2% (Fig. 1g)
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| ) )
t o prr At |0 2 I D(@})]
(Fig. 1h)
— (terms with §e = 0), (3.13)

where the contributions of each diagram in Fig. 1 are separately indicated by the equation numbers.
The total sum is

E(d¢) |2-100p

. 1
—] R i(py—Ayo—m4)27 Rn
L5 DD Z /(2n>2 P2+ A2+ 5,

A n=—00

de, 1 Z 1
X [
27 27R & P —0%+ A+ 684
)

L0 gy st s ]
X{D(ﬁ) |:2p 2p - € —8A o + 8A @)

K(e)? (p-@z] L ko© p-l

02
D _ . y
DOLWD € 2[ 2 T e | ToeTY e }
1

de, 1 Z
27 27R 4 (p— 02>+ A2

{,C(E)
% § =7

¢ 1
ap ap e 48Pt _anr? el
D(@[ prrp e

2 2 2

K(e)? ﬁﬁ p-l p? , 17 K@) p M

02 ZZ 02
— (term with de = 0). (3.14)

To examine the renormalizability of this expression, we first note that this can be written as

E(€) |2-loop

:—ZnR%Z{(e‘sAa’?e‘SAaﬂ—l)l(f,ﬁ)+<e‘3A85— 1) (27, 0>+J(s)]}\ , (3.15)

Y £=n=0
where

0
| 1 1
I l(py—Ay()—mA)27TRn
€m = /2 2R;Z/(2n)2 PAHAFEQP—0O2+A2+q
Y

LOT, -t (- 0)?
{W) [2” T Lo BAT A BA (@2)2]

K> B A 316

. v
D(@caz)ﬁ[ e e | ToetV e }
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and
; 1 1
J i(py—Ayo—my)27w Rn
©= fz 2 RZ Z /(2n)2 Y PrATEQp-0r+ A2

LO o K@ G| p-t o ol 0
X|:D(£)A T DOLE [—8 — 42 —4A + 16— ]

02 {2 {2 (52)2 (3'17)

From Eq. (2.18), we see that, for |£| — oo, ﬁ(p) and XC(p) are exponentially small because of the
Bessel functions, and thus

|Z\—>oo 2

40 —In(¢*/A%, D)

|€|—>oo

L)% (3.18)

From these, we see that, in / (£, ) of Eq. (3.16), the integration over ¢ as well as the integration over p
are logarithmically UV divergent. In J (§) of Eq. (3.17), the integration over p is logarithmically UV
divergent but the integration over £ is UV convergent. Assuming (say) the dimensional regularization,
the change of integration variables (p, ) — (p — £, —¢) in I (£, n), Eq. (3.16), shows that

I¢&,n) =11,8). (3.19)
Now, in Eq. (3.15), using the identity
MMt — 1 = (M1 — 1) (M — 1) 4 M 4 M 2 (3.20)
and noting the property in Eq. (3.19), we have the following very convenient representation:
E(3€)|2-100p

= —ZnR% %: [(e‘SAaé _ 1) (e‘mn _ 1)1(5,77) + (e‘SAas - 1)‘](5)”52,7:0' (3.21)

This shows that E£(8€)|2.100p is UV finite provided that the parameter 8, is UV finite. That is, the
operator %% — 1 acting on J(£) increases the power of p? + A? in the denominator in Eq. (3.17)
and makes the p integration UV finite. Similarly, the operator (e®% — 1)(e®% — 1) acting on I (£, 1))
increases the power of (p> + A%)[(p — £)*> + A?] in the denominator of Eq. (3.16) and makes the
integrations over p and £ UV convergent.

3.4. Renormalizability to the two-loop order
So far, we have observed that, from Eq. (3.12),

E(8€)|1-100p
—2711?2:L S4— (A2 +68,)1n 1+5—A
= e 4 A A A2
+27R Z Z e—i(mA-f—Ay())Z]TRn

A n#0
1
e [\/A2 ¥ 04K (VA2 + 8,27R|n]) — AK, (A2nR|n|)], (3.22)

11/25



PTEP 2020, 063B02 K. Ishikawa et al.

and, from Eq. (3.21),

E(8€)|2-100p = —271R4Wn Z [(esAas — 1) (eaAa,, — 1) I1¢,n) + (eaAag — 1)J($)] ‘s=n:o'

A
(3.23)

These representations show that the vacuum energy to the two-loop order is UV finite, if the parameter
84 defined in Eq. (3.4) is UV finite. This implies that the parameter §¢ must receive a non-trivial
renormalization, as

18 vEp2\ * Ar 1
R;va is UV finite = 8¢ = (64: ) (1 + ﬁg) Sex, (3.24)

84 =
T

so that Ade = Ardeg is UV finite; here we have used Eq. (2.10).
In terms of the renormalized parameters, the expansion of Eq. (3.22) with respect to e yields

E(])(SE) — NA—— 1 )\.R(SERB mAZe_i(mA+Ay0)2anKO(27TAR|n|),
1-loop AR N N
n#0
2 p2

E<2)362) _yp_ L (PrOer R_Zmz 1

1-loop (AR \ nN ) N & A

x 1+Ze_i<”’A+Ay0)2”R”2nAR|n|K1 Q2w AR|n|) |. (3.25)
n#0

For Eq. (3.23), we need to carry out momentum integrations in Egs. (3.16) and (3.17). This is the
subject of the next subsection.

3.5.  p-integration in EV8€|; 10,y and E®8€ |5 10

Let us next consider £ (1)86|2_100p, which is given by the O(34) term of Eq. (3.23). By using the
formulas in Appendix B, p-integration in Eq. (3.17) yields

1 L(0) KKe)? €2
(@) _ 2 s
E 36‘2-10010 2R Z(SA 271 27R Z [D(@)A NEIGYI0) 52}

/ dx — Ze i(myg+Ay0)2m Rn thy27ar
n;éO

2
X {(27‘[Rn)2 [Ko(z) — KZ(Z)] + (ZnR”) Ko(2)(=8) (62)})2
27 R|n|

Vx(l —x)02 + A2

(z)[ +12an—( 4)(1—2x)]}, (3.26)

where

z=+x(1 —x)€2 + A227R|n]. (3.27)

Actually, the form of the integrand in the above expression depends on the choice of the Feynman
parameter x. It can be changed by the change of variables x — 1 — x and ¢, — —¢,,, which keeps

12/25
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ixty 27 Rn

the integration region and the factor e intact.® It is convenient to fix the form of the integrand

Z(x,¢y) by
/ dx Zz(x 4) — / dx Y I(x 6) +Z(1 —x, 6], (3.28)
0

so that the form of the integrand is invariant under the above change of variables. The particular
expression in Eq. (3.26) has been obtained in this way.
Next, in Eq. (3.26) we use the identity

2
Koo1(2) — Kop1(2) = —7"1@ @) (3.29)

with v = 1. Then, by further using

Ky(z) = —Ki(2) (3.30)
and
9z 27 R|n| 0?
e (1—2x)—, (3.31)
0x  \/x(1 —x)€2 + A2 2

which follows from Eq. (3.27), we have

1 L(0) KKe)? €
(€)) _ 2 J
E 86‘2-10010 2R Z(SA/ 27 27R Z |:D(£)A MEIGYI0) 52}

/ dx — Z e*l(mA+Ay0)2an ixty2m Rn

n;éO
2w Rnt,Ko(2) 8K()2R(8) (3.32)
7Rn z) —i—Ko(z) | 2nRn .
0 a0 @7
Finally, integration by parts with respect to x yields
E(l)ae‘ —0. (3.33)

2-loop

Next, let us consider E (2)562|2_100p, which is given by the 0(831) terms in Eq. (3.23). First, the
p-integration in the function J in Eq. (3.17) gives

E@5é
2-loop
B 1 L) K@©? &
= 2Ry XA: / 27 2R Z/ |:D(£) t DOLO 2
x( ! [—x(l —x)(3 — 10x + 10x%) — (1 —2x—|—2x2)A—2i|
[x(1 —x)€2 + A2 2

6 Recall that ¢, € Z/R.
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+ l Z e—i(mA+Ayo)2ﬂRneiny2an

n#0

y { 27 R|n| 3K @
Vx(l = x)02 + A2 ’

A2
x |:—2x(1 —x)(1 =3x+3x%) — (1 —2x + 2x2)£—2i|

(27 Rn)?

1 —0@ 1 a2k

x [2(1 —2x —|—2x2) 7 + z27ar—( 2)(1 — 2x)(1 — 3x + 3x )]

(2 R|n|)? Ki(2)
Vax(l —x)e2 + A2 :
ZZ
|:(1 — 2x 4 2x% )——4(1 —2x 4+ 2x )(62)2:|}) (3.34)

On the other hand, from the function / in Eq. (3.16),

55
2-loop
_ ol N2
- 271RN§:5A = 2nRZ/ dx
X [ﬁ(g) ZZ( (=2)x(1 —x) [x(l —x) — (1 —6x+ 6)62)A—2 — 2A—4]
D) [x(l — )02+ A2]3 22 (£2)2

+ l Z e—i(mA—l—Ayo)Zaneixlerar

n#0
3
5 { 27 R|n| K@) (—222(1 — x)? (1 +4_2>
Vr(l=x)e2 + A2 Iz
(27 Rn)?
(1 —x)e2 + A2 K@
1 2 . Ey A2
X 2x(1 —x) { + 4(£2)2 zZanZ—Z(l — 2x) <1 + 4@—2)}
(27 R|n])> | , & })
K 2)x(1 — 4A
V(1 —x)€% + A2 @ =0 [ ey
K(€)? ﬁ( 1 4x(l—x)< e +A_2>
DOLO)  \[x(1 - x)2 + A2] 72

+ l Z e*i(mA+Ayo)2rareiny2an

n#0
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3
2w R|n| 2
K3(z2)2x(1 —x)(1 —2
X {(\/x(l 0 AZ) 3(2)2x(1 — x)( Xx)

(27 Rn)?

x(1—x)02 + A2K2(2)8x(1 —X) [K — 27 Rn 2(1 — 2 )]
Q2nRn|)3 55

V(1 —x)e2 + A2 K1) (=8)x(1 =x) (02)2 })

72
K@ 61 Ze—i(mA+Ayo)2ﬂRn 2R

2
D) £~ 4 nZ0

(27 Rn)?
X
x(1 —x)€2 + A2

K> (2)i2n Rn(—4)x(1 —x):|. (3.35)

To obtain the expressions in Egs. (3.34) and (3.35), we applied the procedure in Eq. (3.28).
To further simplify the above expressions, we first note that all the terms linear in £, are proportional
to 1 — 2x, and thus to dz/dx as in Eq. (3.31). Using this fact and the identity

Ky(z) = —z EKl (Z)} ; (3.36)

we can carry out the integration by parts with respect to x in those terms linear in £,. We then use
the identity in Eq. (3.29) with v = 2 to express K3(z) in terms of K (z) and K»>(z). The resulting
expression contains the term K (z)x(1 — x)(1 — 2x)2, for which we use Eq. (3.31). We repeat the
integration by parts as long as the factor 1 — 2x remains. In an intermediate step, we use

1
Ko@) = = [Ki @] (3.37)

Finally, we can carry out the x-integration in terms that do not contain the Bessel function.” In this
way, we have the following rather simple expression:

E@5é
2-loop

= 2Ry Z‘SA/ 27 27R

[ﬁ(e) 4—2(02% + 2A2)£oo(£)
X
D) 02(02 +4A2)

1
+/ dx Zeii(mA+Ay0)27TRneixEy27ar
0 n#0
» (ﬁ(ﬁ) { Q27 R|n)?
DO a1 —x)Z+ A2

Ki(z)x(1 —x)

7 'We note that

tanh ™! ( L) = %\/ﬁz(ﬁz +4A2) L (D).

0 4 4A2
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(27 Rn)?
T —n g arke@xd =x)
e [ QnRIn))?

L /x1 =02+ A2

K1 (2)x(1 — x)

2 2
+ (27 Rn) Ko(z)£—2:| }

K € (27Rn)?
T D) 62 x(1 —x)€2 + A2

K> (2)i2m Rnx(1 — x))i|. (3.38)

This completes the p-integration in £® §e?| 2-loop-
Let us examine whether the expression in Eq. (3.38) is IR finite or not. From the expressions in
Eq. (2.18) and

1 1 ¢2

Lo =715 "5n2

+ 0((£%?), (3.39)

we see that the above £,-integral for £® §¢? |2-100p 18 IR finite, as should be the case for any physical
quantity.

In what follows, we carry out the summation over the index A4 in Egs. (3.25) and (3.38), and
integrate the resulting expressions over the “vacuum moduli” 4, as in Eq. (2.11). Then, we organize
them according to the powers of 1/N. Before doing these, however, it is helpful to further simplify
Eq. (3.38) by noting that ﬁ(p) and K(p) in Egs. (2.18) are exponentially suppressed for N — o0
as < e MR because of the asymptotic behavior of the Bessel function, K, (z) \/We z,
Therefore, these functions can be neglected in the power series expansion in 1/N and we can set
L) = Loo(£), K(¢) = 0,and D(£) — (p* + 4A?)Loo(£)? in Eq. (3.38) to yield

55
2-100p

=Ry Z /27‘[ 2JTR

4 —2(02 +2AH) Loo()
2(02 + 4A2)2 L0 (£)

1
. . 1
d —i(mg+Ay0)27 Rn ,ixt,2m Rn
v ,;e @ AL
(27 R|n|)? (27 Rn)?
X {— Ki(2)x(1 —x)— 3 2Kz(z)x(l —X)
Vx(1 —x)02 + A2 x(1=x)€% + A

G [ Q7 RInl)?

_ 2 2
2| hd-vet A2K1 (@)x(1 —x) + (27 Rn) Ko(z)£2:| ”, (3.40)

up to exponentially small terms.
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3.6. Summation over A and integration over Ay

We thus consider the sum over the index 4 and the integration over the vacuum moduli 4,0 in

Eq. (2.11). The summation over 4 can be carried out as

N-1
Ze—imA27ar — Z (e—2nni/N)j - N 1, forn =0 modN,
A j=0 0, form #0 mod N,

. N 1_]7’ forn =0 mod N,
—IM4LTT KN
2mae M =2 N
7 N o2 1’ forn # 0 mod N,
and
o3 for n = 0 mod N
o orn = 0mod N,
S —img2nkn _ N 2N | 2N2
mye T 3R2 3 1 2 1 f
y N oz 1 \! T N T gz )» forn#FOmod N

On the other hand, the integration over 4, with the measure in Eq. (2.11) results in

I, forn =0,
1
/ d(Ay0RN) e~ 02mRn — 10, forn #0,n=0mod N,
0

N .
el (6*2”’”/]\/ — 1), for n # 0 mod N.
2nn

The combination of the above two operations therefore yields

1
| 1— ¥ forn =0,
‘ N
/ d(4,0RN) > " my e A0 — — L forn # 0,n = 0 mod N,
o :

A 2R 1
—_, forn # 0 mod N,

n
and
1
/ d(Ay()RN) Zmi e*i(mAJrAyo)erRn
0 4
3 1
- =+ ==, forn =0,
N 2N 2N
=—10, forn #0,n =0 mod N,
3R2

3 1 31 1
= l—-—)+—————, forn#0modN.
2mn N 2N mntan(wn/N)

Using Egs. (3.45) and (3.46) for Eq. (3.25), under the integration over 4y,

1 agden 1
E(”(Se( — NA—_LRORZ

i
— —KoQQw AR|n|) = 0,
1-loop AR nN 2 Z n 0( T |n|)

n#0 mod N
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and

E@5é
1-loop

_wal ArSer\2 [ 1 L 3+ 1 +6 3 ARK (27 ARn)
U (ARZ \ N 12 2N  2N?2 N tan(wn/N)
n>0,n#0 mod N
(3.48)

For the two-loop corrections, from Eq. (3.33),

E(I)SE‘ —0, (3.49)
2-loop

and for Eq. (3.39) we have

E@se? ‘
2-loop

. AROER /
N 7RN 27 271R

<1 ( 3 1 )4—2(ﬁ2+2A2)L’00(€)
X 1

R\ "ov TN ) @ antiLL )

+f01dx >

n>0,n7#0 mod N

6 cos(xt,2m Rn) o1 l el R 1

[N tan(zn/N) ( _N)Sm(x yer ")} (2 + 472 Log(0)
TR g —m - — 2R ki -
T Ty A TR T Cah

5% |: (27 Rn)?

2
72 T Ki(z)x(1 —x) + 27TRnKo(z)£—2j| }), (3.50)

up to exponentially small terms.

3.7.  Final results
Finally, we arrange the above results in powers of 1/N. From Egs. (3.47) and (3.49), we have

EWse =0-N°+0-N"1+0oW2). (3.51)

Thus, £V §e vanishes to the order we worked out.
For E®§¢€2, setting

E@5e? = E(2)862’0( + E@5e2 + O, (3.52)

N-1) O(N—2)

from Eq. (3.48),

RE<2>562‘ — N~ (hrder)>(AR)“2F(AR), (3.53)

OWN-1
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where
.6 §K1(2mén)
F@)=- 1 = lim — — 54
O =-—pZal+te®l @ =lim 5 > SrEE (3:54)
n>0,n7#0 mod N
From Egs. (3.48) and (3.50), on the other hand,
25,2 _ a2 2 -3
RE 8¢ ‘O(N*Z) = N"“(Agrder)“(AR)°G(AR), (3.55)
where
1 3 . £2K1(2mEn)
G =——=1—= 1 6 - —N
&) 1272 25 + N1—r>noo Z tan(wn/N) sc&)
n>0,n#0 mod N
1 © 4 —2(0% + 28 Lo (L, 8)
__3§3/ dzxZ(H £)Loo (L.
67" Jooo T\ P@ 4482 Loo(l8)
w ¥
+ lim dx
N=e0 Jo n>0,n70 mod N
6 COS(XEyZJT}’Z) - 1
——————— — 6sin(x{,27n) | — —
N tan(n/N) (2 + 461 Lo (L, )
) 2
x {— (@mn) K1 (2)x(1 — x)
\/x(l —x)02 + g2
TN Kl -
—_— Z)X — X
x(1 —x)2 + &2 ?
e (27n)> 2
+= = Ki@)x(1—x)+ 27mKo(z)~—2 . (3.56)
E -0 482 ¢
In this expression, we have defined
. 2 JP 424V
Loo(t,§) = In (3.57)

Je@ vy \Jerag2 Ve

and

z=+/x(1 = x)02 4+ £22x|n|. (3.58)

We plot the function F (AR) in Eq. (3.53) in Fig. 2 and the function G(AR) in Eq. (3.55) in Fig. 3.
These plots clearly show that, to the order of the 1/N expansion we worked out, the vacuum energy
is a well-defined finite quantity under the parameter renormalization in Egs. (2.10) and (3.24).
Equations (3.51)—(3.56) and Figs. 2 and 3 are the main results of this paper. Since Figs. 2 and 3
show that the functions F'(AR) and G(AR) remain finite as AR — 0, Egs. (3.53) and (3.55) [and
Eq. (3.51)] show that the vacuum energy normalized by the radius of the S!, RE(8¢), behaves as
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Fig. 2. The function F(AR) from Eq. (3.53).
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AR

Fig.3. The function G(AR) from Eq. (3.55).

inverse powers of AR for AR small, the O(N~!) term behaves as (AR) 2, and the O(N 2) term
behaves as (AR) 3. Since A is given by Eq. (2.9), this result implies that to the order of the 1/N
expansion we worked out, the vacuum energy is a purely non-perturbative quantity and it has no
well-defined weak coupling expansion in Ag.

4. Conclusion and discussion

By employing the 1/N expansion, we have computed the vacuum energy E(5¢) of the 2D SUSY
CPV~1 model on R x S! with Zy twisted boundary conditions to the second order in the SUSY-
breaking parameter de in Eq. (3.2). We found that the vacuum energy is purely non-perturbative
and, although it is a perfectly well-defined physical quantity in the 1//N expansion, it has no sensible
weak coupling expansion in Ag.

Our original intention was to compare our result in the 1 /N expansion with the result by the bion
calculus in Ref. [5], because it appears that the calculation in Ref. [5] holds even under the limit in

Eq. (1.1).
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According to Ref. [5], the contribution of a single bion to the vacuum energy in Eq. (3.1) is given
by (E© is set to be zero)

N—-1
REWse = —R Y " 2mp Ap(AR)* "N se (4.1)
b=1
and
s 47 RmyN
RE®se* = =R > 2mpAp(AR)*F™N [—2yE —2In (Tf’> == m'] s€2, (4.2
b=1

where the last Fri term is the imaginary ambiguity caused by the integration over quasi-collective
coordinates of the bion. In these expressions, the index b corresponds to the “species” of the bion
and the coefficient .4, is given by using the twist angle m,4 in Eq. (2.4) as

A [r(1—mbR)]2 N, T+ (my — my)R) T'(1 — myR)
b:

T +mB) | 4 ma—my I'(1=(mg —mp)R) I'(1+maR)
2b
_ (_1>b+1(%. (43)
Using this, the coefficient of the imaginary ambiguity in Eq. (4.2) is given by
= 2RmyN 2 ' & » b 2b
—R b; 2mpAp(AR) = ;(—1) @ ARN)?. (4.4)

When N is fixed, in the weak coupling limit AR < 1 for which the semi-classical approximation
should be valid, the b = 1 term —2A%R*N dominates the sum in Eq. (4.4). A> = u2e™*7/*% is the
exponential of the action of the constituent of the minimum bion (the minimal fractional instanton—
anti-instanton pair) and, at the same time, is consistent with the order of the # = 1 IR renormalon
ambiguity. On the other hand, in the large-N limit in Eq. (1.1), whether Eq. (4.4) possesses a sensible
1/N expansion or not is not clear, because each term behaves as O(N), O(N 3), O(N?), ...; we could
not estimate the sum as a whole in the large-N limit.

Thus, we cannot compare our result in the 1/N expansion with the result in Ref. [5] by the bion
calculus. We have no clear idea yet why this comparison is impossible. One phenomenological
observation from Eq. (4.4) is that it is a series in the combination ARN and thus the result in
Ref. [5] seems meaningful for ARN < 1 instead of our large-N limit in Eq. (1.1), with which
ARN > 1.3 More thought seems to be necessary to clearly understand the relation between bions,
the IR renormalon, and the 1/N expansion.
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Note added

In this paper we considered the large-N limit specified by Eq. (1.1), with which NAR — oo. On
the other hand, Ref. [42] discussed that the semi-classical picture such as that in Refs. [17-20] holds
only for NAR « 1. This is natural because the characteristic mass scale with the twisted boundary
condition can be N AR instead of AR, and in the weak coupling limit A — 0. In this paper, we
also observed that the perturbative analyses cannot be available reasonably for NAR > 1; our
approximation is basically the expansion in 1/(N AR) and it is impossible to read how the vacuum
energy behaves as NAR — 0 from our large-N result. In a recent paper [43], perturbation theory
with the twisted boundary condition is carefully studied for NAR — 0 and a picture consistent with
the bion calculus has been obtained.
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Appendix A. The perturbative part of the vacuum energy contains IR divergences
In the limit R — oo, the expression of the vacuum energy is considerably simplified because n # 0

terms in Egs. (3.54) and (3.56) are exponentially suppressed in this limit. We have

2 R*)OO

RE® e %(/\Raemz {N—I(AR)—2 + N2 [—;(AR)_Z + Goo} + O(N_3)} , (ALD)

where

T / de, 1 Z 42002 +2A%) Lo (0) A2)

8
Gy = — | = .
7 R2 | 27 2nR . (02 + 4A2)2 L0 (0)
Y

Equation (A.1) is a non-perturbative expression obtained to the next-to-leading order of the 1/N
expansion. From Eq. (3.39), we see that the £-integration in G, is IR convergent.

To extract the perturbative part from Eq. (A.1), we expand G, with respect to A and neglect all
terms with positive powers of A = e 2"/*®_ Noting the behavior Lo ~ (2/£2) In(¢?/A?) from
Eq. (2.18), we obtain the perturbative part as

8 dé, 1 2 1
Goo ~ — | — —1]. A3
> R? / 27 2R ; (£2)2 [1n(e2/A2) ] A.3)
The perturbative expansion with respect to Ag(w) is then given by
87 [ de, 1 5 o (AR
G~ —= | ——— 1 In(¢~/ — s A4
"R | 2 27113Z (62)2|: +Z[ n(e/u)] (471) “d
where we have used
2/A2) 2 4
In(¢?/A%) = In(£?/u?) + A—() (A.5)

Equations (A.3) and (A.4) show that the perturbative part of G suffers from IR divergences in the
£-integration, although the full G itselfis IR finite.
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Appendix B. Integration formulas

In Sect. 3.5 we have used the following integration formulas (in practice, we are interested in the

cases («, 8) = (1,2), (1,3), and (2, 2)):

) 1
d-p olPy2Rn 1 1 »
(27)> [0 — 0%+ A2]" @ + AP |7
PubPv
_ 1 1
=0 —/ dxx®71(1 — x)P~!
r'(@)I'(B) Jo

Fla+pg—1)[x(1—xe2+a2]7,
1 | r@+g-1[x(d—0e+a2"" " x,,
dr | r@+p— 1) -0+ 2] e,
FAr@+ -2 [x(1 =02 + A2 s,

1 1
”éo—/ dxx® V(1 — x)f!
0

() I (B)
2 Rl a+p-1
(m) Katp1®),

a+p—1
2t R|n|
(W) Koy+p—1(2)x,

at+p—2
+(%) Kasp2(2)i2 RS,

x(1=x)24+A2

1 a+pB—1
% —_p2—a—p ,ixt,2mRn (ﬂ) Kot p—1(@)x20,,L,

A7 N x(1=x)024+A2
2mRIn| a+p—-2
TN
—_— Kyip_
+< ,—x(l—x)ﬁz-i—AZ) o+ Z(Z)
X 8y + ix€, 2 Rnd,yy, + 27w Rndyxl,)
2R a+p-3
TR\
— | Kyip_
< /—x(l—x)éz—i-Az) at+p-3(2)

X (27 R1)?8,1y 80y,

where

z=+x(1 —x)€2 + A227R|n].
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