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Abstract. In this work, we study the rst and generalized second laws of thermodynam-
ics at the apparent horizon of homogeneous and isotropic universe model in the context
of f (G, T ) gravity (G and T represent the Gauss-Bonnet invariant and trace of the energy-
momentum tensor, respectively). We formulate the corresponding eld equations as well
as determine the radius, temperature and entropy to analyze these laws. An extra term
associated with entropy production is appeared in the rst law due to the non-equilibrium
treatment of thermodynamics. It is found that the universal condition is obtained to pre-
serve the generalized second law of thermodynamics.

1 Introduction
Thermodynamics has been a subject of great interest to explore the fascinating characteristics of mat-
ter variables in general relativity (GR) as well as in modied gravitational theories. For isotropic
and homogeneous universe, Einstein eld equations can be expressed in terms of rst law of ther-
modynamics (FLT) [1]. Akbar and Cai [2] found that Friedmann equations evaluated at the apparent
horizon can be rewritten in the form dE = τdS +WdV (E, τ, S , V andW are the energy, temperature,
entropy, volume inside the horizon and work density, respectively) in the background of GR, Gauss-
Bonnet (GB) gravity and the general Lovelock theory. It is found that an auxiliary entropy production
term corresponding to the non-equilibrium treatment of thermodynamics is appeared in Clausius re-
lation in modied theories of gravity while no such additional term is obtained in braneworld, GB
and Lovelock gravitational theories [3]. Wu et al. [4] formulated the universal condition to check the
validity of generalized second law of thermodynamics (GSLT) in the context of modied theories of
gravity. Sadjadi [5] explored the validity of second law and GSLT for power-law solution as well as
de Sitter universe in f (R,G) gravity. Abdolmaleki and Naja [6] investigated GSLT in f (G) gravity
for isotropic and homogeneous universe lled with matter and radiation enclosed by apparent horizon
with Hawking temperature.
In this paper, we explore the rst and GSLT at the apparent horizon in f (G, T ) gravity. This mod-

ied gravitational theory deals with the non-minimal coupling between quadratic curvature invariant
(a linear combination of Ricci scalar (R), Ricci (Rαβ) and Riemann (Rαβξη) tensors) and matter. The
paper has the following format. In the next section, we construct the corresponding eld equations for
isotropic and homogeneous universe with any spatial curvature while section 3 investigates the laws
of thermodynamics at the apparent horizon of universe model. We summarize the results in the last
section.
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2 f (G, T ) Gravity
The action of f (G, T ) gravity is given by [7]

S f (G,T ) =
∫
d4x
√−g

[
1

16πG
(R + f (G, T )) +Lm

]
, (1)

where G = RαβξηRαβξη − 4RαβRαβ + R2, g, Lm and G denote determinant of the metric tensor (gαβ),
Lagrangian density associated with matter conguration and gravitational constant, respectively. The
suitable form of generic function f (G, T ) describing the non-minimal coupling between curvature and
matter is of the form

f (G,T ) = f1(G) + f2(G) f3(T ). (2)
The variation of the action (1) with respect to gαβ for the above model in the presence of pressureless
uid yields the following eld equations

Gαβ = 8πGT (eff)αβ = 8πGTαβ + T
(GT)
αβ , (3)

where

T (GT)αβ =
1
2
gαβ( f1(G) + f2(G) f3(T )) − (2R ξηδα Rβξηδ − 4RαξβηRξη − 4RξαRξβ + 2RRαβ)

× ( f �1(G) + f �2(G) f3(T )) − (4Rαξβη∇ξ∇η − 4gαβRξη∇ξ∇η + 4Rξα∇β∇ξ + 4Rξβ∇α∇ξ
− 4Rαβ∇2 − 2R∇α∇β + 2Rgαβ∇2)( f �1(G) + f �2(G) f3(T )),

G = GB, B = 1 +
f2(G) f �3(T )
8πG

,

∇2 = ∇α∇α (∇α is a covariant derivative) and prime represents derivative with respect to the corre-
sponding variable.
The line element for homogeneous and isotropic universe is

ds2 = dt2 − a2(t)
1 − Kr2 dr

2 − χ2dθ2 − χ2 sin2 θdφ2, (4)

where χ = a(t)r, a(t) andK represent the scale factor and spatial curvature parameter associated with
open, at and closed cosmic geometries for K = −1, 0 and 1, respectively. Using Eqs.(3) and (4), we
obtain

3
(
H2 +

K
a2

)
= 8πGρ(tot) = 8πG(ρ + ρ(hc)), (5)

−2
(
H − K

a2

)
= 8πG(ρ(tot) + p(tot) ) = 8πG(ρ + ρ(hc) + p(hc)), (6)

where ρ(hc) and p(hc) are the higher order curvature terms given by

ρ(hc) =
ρ(GT)

8πG
=

1
8πGB

[
1
2
( f1(G) + f2(G) f3(T )) − 12GΔ + 12H

(
H2 +

K
a2

) (
ΔG G + ΔT T

)]
,

p(hc) =
p(GT)

8πG
=

1
8πGB

[
−1
2
( f1(G) + f2(G) f3(T )) + 12GΔ − 8H(H

2 + H)
(
ΔG G + ΔT T

)

− 4
(
H2 +

K
a2

) (
ΔGG̈ + ΔT T̈ + 2ΔGT G T + ΔGG G2 + ΔTT T 2

)]
,

where Δ = f �1(G) + f �2(G) f3(T ), G = 24(H2 + H)
(
H2 + Ka2

)
and H = a

a is a Hubble parameter.
The subscripts G and T denote derivatives of Δ with respect to G and T , respectively whereas dot
represents time derivative.

3 Laws of Thermodynamics

In this section, we discuss the rst as well as GSLT at the apparent horizon of homogeneous and
isotropic universe in the background of f (G, T ) gravity.

3.1 First Law

Here, we construct the FLT which is based on the concept of energy conservation for model (2). The
relation

hαβ∂αχ∂βχ = 0,

where hαβ = diag(1, −a
2(t)

1−Kr2 ) is a two-dimensional line element, provides the radius of apparent horizon
for the FRW universe model as

χ(ah) =

�
H2 +

K
a2

�− 12
.

To measure the innitesimal change in apparent horizon radius, we take the derivative of the above
equation with respect to time and using Eq.(6), it follows that

dχ(ah) = 4πG
�
ρ(tot) + p(tot)

�
χ3
(ah)
HBdt, (7)

where dt represents the corresponding small time interval. The temperature on the apparent horizon
is given by [1]

τ =
|Ksg|
2π
, (8)

where Ksg = 1
2
√−h∂α

�√−hhαβχ
,β

�
(h is the determinant of hαβ) is the surface gravity. For homoge-

neous and isotropic universe model, we have

Ksg =
1
χ(ah)

�
1 − χ(ah)

2χ(ah)H

�
=
1
2
χ(ah)

�
H2 + H +

K
a2

�
. (9)

Bekenstein-Hawking entropy is measured in units of Newton’s gravitational constant dened as
one fourth of area of apparent horizon (A = 4πχ2

(ah)
) [8]. The entropy of stationary black hole solutions

with bifurcate Killing horizons in the context of modied gravitational theories is a Noether charge
entropy also dubbed as Wald entropy [9]. Brustein et al. [10] presented that this entropy is equal to
quarter of apparent horizon area in units of effective gravitational coupling in these modied theories.
Wald entropy in f (G, T ) gravity is given by

S =
A
4GB

⎛⎜⎜⎜⎜⎝1 − 4Δ
χ2
(ah)

⎞⎟⎟⎟⎟⎠ . (10)

It is worth mentioning here that the entropy in f (G) gravity is obtained for f3(T ) = 0 while this
formula corresponds to GR for Δ = 0 with B = 1 [11]. Using Eqs.(8)-(10), it follows that

τdS = 4πχ3
(ah)

�
ρ(tot) + p(tot)

�
Hdt − 2πχ2

(ah)

�
ρ(tot) + p(tot)

�
dχ(ah) −

4πτ
GB

dΔ

+
πχ2

(ah)
τ

G

⎛⎜⎜⎜⎜⎝1 − 4Δ
χ2
(ah)

⎞⎟⎟⎟⎟⎠ d
�
1
B

�
. (11)
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The total energy inside χ(ah) for homogeneous and isotropic universe model is

E = Vρ(tot) = 4
3
πχ3

(ah)
ρ(tot) =

3V
8πG

�
H2 +

K
a2

�
. (12)

Using Eqs.(11) and (12), we obtain

τdS = −dE +WdV − 4πτ
BG

dΔ +
χ(ah)

2G

⎡⎢⎢⎢⎢⎣1 + 2πχ(ah)τ
⎛⎜⎜⎜⎜⎝1 − 4Δ

χ2
(ah)

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦ d
�
1
B

�
, (13)

where the innitesimal change dE is caused by the small displacement in horizon radius χ(ah) and
W = ρ

(tot)−p(tot)
2 measures the work done by the system. The FLT for model (2) can be expressed as

τ(dS + diS ) = −dE +WdV, (14)

where

diS =
4π
BG

dΔ − χ(ah)
2Gτ

⎡⎢⎢⎢⎢⎣1 + 2πχ(ah)τ
⎛⎜⎜⎜⎜⎝1 − 4Δ

χ2
(ah)

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦ d
�
1
B

�
,

is the entropy production term which demonstrates the non-equilibrium behavior of thermodynamics.
This shows that the eld equations for model (2) do not meet with the universal form of FLT (dE =
τdS +WdV) due to the presence of this auxiliary term.

3.2 Generalized Second Law

The GSLT is associated with the total entropy of the system and is dened as

S + S (tot) + di S ≥ 0, (15)

where di S = ∂t(diS ) and S (tot) is associated with the entropy due to all matter contents present in-
side the horizon. The relationship between total entropy, energy density and pressure in a form of
differential equation (Gibbs equation) is given by [4]

τ(tot)dS (tot) = d(ρ
(tot)V) + p(tot)dV, (16)

where τ(tot) measures the total temperature of all contents within the horizon and is related to the
temperature at the apparent horizon as

τ(tot) = λτ, 0 < λ < 1.

This shows that the apparent horizon temperature is always greater than the total temperature inside
the horizon. Susbtituting Eqs.(14) and (16) in (15), we have

S + S (tot) + di S =
⎛⎜⎜⎜⎜⎜⎝
24 + χ4

(ah)
G

96πλχ(ah)

⎞⎟⎟⎟⎟⎟⎠
��
ρ(tot) + p(tot)

� �
1 − λ

2

�
V + (1 − λ)V ρ(tot)

�
≥ 0, (17)

Using Eqs.(5) and (6), this inequality becomes
⎛⎜⎜⎜⎜⎜⎝
24 + χ4

(ah)
G

192πλBG

⎞⎟⎟⎟⎟⎟⎠Ωχ4(ah) ≥ 0, (18)

where

Ω = (2 − λ)H
�
H − K

a2

�2
+
2H(1 − λ)
χ2
(ah)

�
H − K

a2

�
+
(1 − λ)B
χ4
(ah)

∂t

�
1
B

�
.

The GSLT is protected for G > 0, B > 0 and Ω > 0. For at FRW universe model, the inequalities
G > 0, H > 0, H > 0, B > 0 and ∂t

�
1
B

�
> 0 must be fullled for the validity of GSLT. The

equilibrium description of thermodynamics is evaluated at λ = 1 as

χ4
(ah)
H
�
H − K

a2

�2 ⎛⎜⎜⎜⎜⎜⎝
24 + χ4

(ah)
G

192πλBG

⎞⎟⎟⎟⎟⎟⎠ ≥ 0,

which holds for positive values of G, H and B.

4 Concluding Remarks

In this paper, we have explored the rst and GSLT in the background of f (G, T ) gravity. These laws are
discussed for the non-equilibrium thermodynamical picture at the apparent horizon of isotropic and
homogeneous universe model. It is observed that total entropy is a combination of horizon entropy as
well as an auxiliary entropy production term in FLT. The non-equilibrium thermodynamical behavior
interprets energy exchange between inside and outside the apparent horizon leading to the additional
entropy term. To check the validity of GSLT, we have constructed the general expression for model
(2) in terms of horizon entropy, total entropy due to all matter contents inside the horizon and entropy
production term. It is concluded that viability condition for this law is found to be achieved relative
to universal condition in the context of modied gravitational theories [4].
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The GSLT is protected for G > 0, B > 0 and Ω > 0. For at FRW universe model, the inequalities
G > 0, H > 0, H > 0, B > 0 and ∂t

�
1
B

�
> 0 must be fullled for the validity of GSLT. The

equilibrium description of thermodynamics is evaluated at λ = 1 as

χ4
(ah)
H
�
H − K

a2

�2 ⎛⎜⎜⎜⎜⎜⎝
24 + χ4

(ah)
G

192πλBG

⎞⎟⎟⎟⎟⎟⎠ ≥ 0,

which holds for positive values of G, H and B.

4 Concluding Remarks

In this paper, we have explored the rst and GSLT in the background of f (G, T ) gravity. These laws are
discussed for the non-equilibrium thermodynamical picture at the apparent horizon of isotropic and
homogeneous universe model. It is observed that total entropy is a combination of horizon entropy as
well as an auxiliary entropy production term in FLT. The non-equilibrium thermodynamical behavior
interprets energy exchange between inside and outside the apparent horizon leading to the additional
entropy term. To check the validity of GSLT, we have constructed the general expression for model
(2) in terms of horizon entropy, total entropy due to all matter contents inside the horizon and entropy
production term. It is concluded that viability condition for this law is found to be achieved relative
to universal condition in the context of modied gravitational theories [4].
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