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Abstract

The structure of 25Na is studied using the (d, p) transfer reaction using the ISAC-II

accelerator at TRIUMF, Canada. An 8 MeV per nucleon beam of 24Na, incident onto

a 1.0 mg CD2 target was used to populate excited states in 25Na. The target was sur-

rounded by the SHARC and TIGRESS arrays, which were used to detect the ejected

protons, and coincident γ-rays emitted from the excited 25Na nuclei respectively. The

angular distribution of the protons has been analysed for each state observed and com-

pared to the theoretical distributions generated using TWOFNR to get a value of the

spectroscopic factors. Data were compared to WBC shell-model calculations in order to

assign spin and parities to each observed state. States at 2.788 MeV and 3.455 MeV are

strongly populated and show a strong s-wave contribution to the wave functions.

In addition, the structure of the astrophysically relevant mirror nucleus 25Si is com-

mented on. The reaction 24Al(p, γ)25Si reaction is thought to occur in hot stellar envi-

ronments, but little to no experimental data exist that confirm reaction rates calculated

for this reaction. The spectroscopic factors found in this work for 25Na are used as a

point of comparison and used to determine the validity of theoretical reaction rate cal-

culations used for the astrophysical reaction. The relevant energy region in the reaction

24Al(p, γ)25Si is between the proton separation energy of 3.414 and 4 MeV. Two states

are observed in this energy range in 25Na at 3.455 and 3.995 MeV, though the 3.455

MeV state is expected to be Thomas-Ehrman shifted below the 3.414 MeV threshold in

the mirror 25Si. The state at 3.995 MeV was found to have an s-wave component that

matched the predicted value from literature. No other states were observed within the

relevant energy region in 25Na.
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Chapter 1

Introduction

1.1 Motivation

The use of a particle detector and a γ-ray detector in conjunction with each other when

studying a (d, p) transfer reaction was first used to investigate the disappearance of

the magic number at N = 20 in neutron rich isotopes in favour of a magic number at

N = 16 [1] [2]. These experiments have demonstrated how successful this experimental

set up is for studying the structure of a nucleus. References [1], [2] andv[3] are two of

a series of three experiments performed at TRIUMF designed to study the evolution of

shell structure of sodium as it becomes increasingly neutron rich. The third experiment

of this set is described in this work, and looks at the shell structure of 25Na via the

d(24Na, p)25Na transfer reaction.

In addition to gaining an insight to the structure of 25Na, the (d, p) transfer reaction

can also provide an indirect measurement of the astrophysical reaction 24Al(p, γ)25Si. It

has been shown [4] that the astrophysical spectroscopic factor of a proton capture on a

nucleus of proton number, Z, and neutron number, N, can be related to the spectroscopic

factor of its mirror nucleus (proton number, N, and neutron number, Z) for a neutron

capture. This means that by measuring the spectroscopic factors for different states

in 25Na, which has eleven protons and fourteen neutrons, it is possible to evaluate the

spectroscopic factors of 25Si, which has fourteen protons and eleven neutrons.

The 24Al(p, γ)25Si reaction is thought to be part of the rp-process that takes place in

novae [5] and has a small affects on the nucleosynthesis of 28Si, 29Si, 30Si, 33S, 34S and

36Ar [6]. The rp-process is modelled using vairous parameters that are not currently

experimentally confirmed causing variations in theory that attempts to model it. At-

tempts to quantify the the variations in different models have been conducted [6], but

are only capable of revealing the uncertainties of modern theory.

1
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1.2 Current Knowledge of 25Na

The low lying states of 25Na have been determined experimentally through various meth-

ods prior to this experiment. A paper published in 1956 studied the structure of low

lying states in 25Mg using β− decay from 25Na. The experiment was able to determine

that the ground-state of 25Na was most likely to have a spin/parity of 3/2+ or 5/2+

[7]. Later, in 1962, Hinds et al. examined some excited energy levels of 25Na using

the 23Na(t, p)25Na and the 25Mg(t, α)25Na reactions [8]. Twenty nine excited energies

where identified between 0.09 and 5.749 MeV using each reaction. Each reaction yielded

results that varied from each other by a few keV. No information was available regarding

the spin and parity of the states, though Hinds et al. speculated that the ground and

first excited state of 25Na is a 90 keV doublet due to the similarities between 25Na and

19O, which both have three effective particles in the 0d5/2 shell. Oxygen-19 has a 5/2+

ground-state with a 3/2+ excited state at 0.096 MeV [9]. This doublet structure is well

known to be caused by the coupling of the three particles in the 0d5/2 shell [10].

In 1969 the spin assignments of some of the low lying states were established by examin-

ing the yield of γ-rays detected at different angles during a 26Mg(t, α)25Na reaction [11].

Spin assignments have been built up by examining the angular distributions measured

using reactions such as 26Mg(d, t)25Na, and 23Na(t, p)25Na [12] [13] [14]. The current

knowledge of the states of 25Na that also have associated γ-rays or information regarding

the spin of the state is shown in Table 1.1.

Sodium-24 consists of 11 protons and 13 neutrons which completely fill up the nuclear

shells according to the Pauli exclusion principle to produce a core of 16O. The remaining

three protons and five neutrons occupy the first three and five spaces in the 0d5/2 shell

respectively. The occupancy of the 0d5/2 shell is (2 × l) + 1 = 6 and so there would

be three holes in the proton shell and a single hole left in the neutron shell as shown

schematically in Figure 1.1. During a (d, p) reaction, a single neutron is deposited into

the neutron shell structure and, due to the direct nature of the reaction, leaves the

structure of the protons unchanged. The way that these three protons’ spins couple

together in 23Na and 24Na can therefore provide initial estimates of how they will couple

in 25Na.

Three protons in the 0d5/2 shell can couple together to form a total spin of 9/2+, 5/2+

and 3/2+. In the ground-state of 23Na, the even number of neutron holes couple together

to 0, only leaving the three proton configurations listed as possible ground-state spins.

It turns out that for 23Na, the ground-state has a 3/2+ spin with the 5/2+ appearing

as the first excited state at 440 keV. The first 9/2+ state does not appear until 2.703

MeV. The ground-state of 24Na is 4+ which can be made by coupling the odd neutron in
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Energy (MeV) Spin/Parity Eγ (MeV) Final Level (MeV)

0 5/2+

0.08953 (10) 3/2+ 0.08953 0

1.06932 (19) 1/2+
0.97977 0.08953
1.06930 0

2.202 (1) 3/2+
1.1328 (10) 1.06932
2.1125 (10) 0.08953
2.2020 (10) 0

2.416 (3) 2.416 (3) 0

2.788 (3) (1/2+,3/2,5/2−) 2.788 (2) 0

2.914 (4) 5/2+ 2.825 (3) 0.08953

3.353 (3)
3.263 (3) 0.08953
3.353 (3) 0

3.455 (4) 1.043 (2) 2.416

3.687 (2) (3/2)+
3.599 (3) 0.08953
3.688 (3) 0

3.928 (7) (1/2+) 3.928 (7) 0

3.950 (5) (1/2+,3/2,5/2+)
2.887 (3) 1.06932
3.861 (5) 0.08953
3.950 (5) 0

3.995 (5) 1/2− 1.207 (3) 2.788

4.132 (5) 4.132 (5)

4.289 (3) 1/2+ 3.220 (3) 1.06932

5.190 (9) 3/2−
5.690 (12) 3/2−
6.005 (22) (1/2,3/2)−
6.549 (19) 3/2−
7.603 (17) 3/2−

8.052 (1/2,3/2)−

Table 1.1: Current known energy states for 25Na which have had measured spins or
γ-rays associated with them.

the 0d5/2 shell to any of these proton orientations, though because there is such a large

energy difference between the 9/2 spin state and the 5/2 and 3/2 spin states in 23Na, it

can be expected that the 9/2 component is small in the ground-state wave function.

As with 23Na, 25Na has an even number of neutrons and three proton holes. For this

reason, the ground-state is expected to have a spin of either 9/2+, 5/2+ or 3/2+. The

ground-state and first excited state are already known to be 5/2+ and 3/2+ respectively,

but the first 9/2+ state has not yet been found. As stated above for 24Na, the 9/2+

state is expected to have a small contribution to the wave function to the ground-state.

Making the assumption that this remains true for 25Na means, and that the core of the

nucleus is undisturbed by the transfer reaction, it is assumed that this first 9/2+ state

will be weakly populated during the (d, p) reaction described in this text.
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1s1/2

1p3/2

1p1/2

1d5/2

2s1/2

1d3/2

Vacant

Occupied

π ν

10Na14
24

Figure 1.1: Schematic of the shell structure of 24Na. After the (d,p) reaction, a
neutron is transferred to one of the vacant orbitals.

In addition to a neutron being added into the 1d5/2 shell and completing that orbital,

which will result in the excited states caused by the coupling of the protons as described

above, a neutron may be deposited into the 2s1/2 state. Since the ground-state spin of

24Na is 4+, and acting under the assumption that the the transfer into this state does

not interfere with this ground-state, we can see that the spin of unpaired 2s1/2 neutron

couples to the ground-state and produces either a 7/2+ or a 9/2+ state. The 2s1/2 level

is also completely unoccupied prior to the reaction, as opposed to the 1d5/2 level, which

only has one available occupancy. As a result, the excited 7/2+ and 9/2+ states are

expected to be strongly populated by the (d,p) reaction.



Chapter 2

Theory

2.1 The Shell Model

In analogy to the structure of the atom, the atomic nucleus can be described using the

idea of orbitals and energy levels. A nuclear energy level can be filled according to

the Pauli exclusion principle to obtain a core of largely inert filled energy states and

some valence nucleons. Each energy level has an associated integer value of angular

momentum which is given by the quantum number, l. The term “shell” is given to a

state of a particular l. Each shell has a potential occupancy, which is the number of

nucleons that can be found at a particular l which is given by 2l + 1. Filling a shell

with 2l+ 1 nucleons leads to the idea of shell closures; a point at which there is no more

room available for occupation by a nucleon, and it must instead occupy a higher shell.

The case in which there is a particularly large gap between a filled energy level and the

next vacant one indicates the closure of a major shell. The number of nucleons at which

all shells below this large gap are fully coupled is referred to as a “magic number” and

occurs at 2, 8, 20, 28, 50, 82 and 126.

The shell-model deals with the filling of these various shells as the nucleon number, A, is

increased as well as the energies of each of these states. To a simple approximation, the

quantised energy levels of a nucleon in this shell structure can be calculated by solving

the Schrödinger equation for a particle represented by the wave function, Ψ(r),

HΨ(r)i = εiΨ(r)i, (2.1)

where εi is the ith energy eigenvalue corresponding to the ith state represented by the

wave function Ψ(r)i and H is an operator known as the Hamiltonian and is given by

5



Chapter 2. Theory 6

H =

[
−~2

2m
∇2 + V (r)

]
, (2.2)

in which m is the mass of the nucleon and V (r) is the potential of the system as a

function of the distance, r, from the centre of the potential. The potential chosen in this

model has an affect on the energies predicted. The following subsections describe the

evolution of the shell-model potential that correctly recreates the shell structure seen by

experiment.

2.1.1 Wood-Saxon Potential

The shell-model, and in particular, the splitting of the energy levels is strongly dependent

on the potential well used to define the nucleus. A three-dimensional infinite potential

well and a simple harmonic oscillator potential both do an adequate job in describing

the energies of the first states in a nucleus and also does admirably in predicting the

first few magic numbers as seen for experimental variables, but fails to explain these

values at higher energies. Part of the solution to these short comings is to try and pick

a potential that is physically realistic.

The infinite potential well fails for a number of reasons: an infinite amount of energy

is required in order to separate a proton or neutron from the nucleus, implying that

nucleons are forever trapped in this potential, and therefore not allowing processes such

as fission or alpha decay to occur. In addition, the edges of the potential are extremely

sharp, whereas it would be expected that the nuclear forces contributing to the potential

will decrease smoothly as the distance from the nucleus becomes greater than the average

radius. The harmonic oscillator reduces these problems, but still inaccurately represents

the asymptotic behaviour as the potential increases with radius. It would be expected

that the potential would closely approximate the charge and matter distribution of the

nucleus, since the potential is created through interactions between nucleons, and would

decrease as the surface of the nucleus is approached.

The potential that is chosen to approximate these parameters is known as the Woods-

Saxon potential, which is of the form [15]

V (r) =
−V0

1 + exp[(r −R)/a]
, (2.3)

were V0 is the depth of the potential, R is the mean nuclear radius, and a is a measure

of diffuseness of the nuclear surface [16].
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As can be seen in Figure 2.1, the potential described by Equation 2.3 is an improvement

over the simple harmonic oscillator, but is still not adequate at creating the magic

numbers found through experiment.

Figure 2.1: The evolution of the shell-model as the potential used in the Schrödinger
equation becomes more complex.

2.1.2 Spin-Orbit Interaction

In 1949, MG Mayer [17] showed that the correct magic numbers could be obtained by

considering a spin-orbit interaction between nucleons. The spin-orbit force only exists

when the spin of the two interacting nucleons are parallel (S = 1), and is attractive when

the spin of a particle is parallel to the relative angular momentum of the interacting

particles, and repulsive when they are anti-parallel [16]. The effect that the spin orbit

interaction has on the potential of the nucleus is shown in Figure 2.2.
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Figure 2.2: The effect of the spin-orbit interaction on the Woods-Saxon potential
[18].

This interaction has the form −VSO(r)l ·s where l and s are the angular momentum and

the spin of the nucleons respectively. The value of the −VSO(r) form is not important

in the re-ordering of the shell structure, it is the l · s term that causes this shift. The

quantum number j is used to describe the total angular momentum of a particle: j =

l + s. Since s = ±1/2, j = l ± 1/2 (unless l = 0 in which case only j = 1/2 is allowed),

meaning that a particle is in a different state depending on whether its spin is parallel

or anti parallel with its angular momentum.

The amount which this coupling effects the splitting of the energy levels is simple since

j2 = (l + s)2 = l2 + s2 + 2l · s, (2.4)

l · s =
1

2

(
j2 − l2 − s2

)
. (2.5)

Using the expectation values of j, l and s, which are ~2j (j + 1), ~2l (l + 1) and ~2s (s+ 1)

respectively, it is seen that

〈l · s〉 =
1

2
[j (j + 1)− l (l + 1)− s (s+ 1)] ~2, (2.6)

and, hence, that 〈l · s〉 = 1
2 l~

2 for j = l+ s and 〈l · s〉 = −1
2 (l + 1) ~2 for j = l− s. This

gives the final result that each energy state is split by an amount proportional to 2l+ 1

[19].
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𝒙 a

b

Figure 2.3: Semi-classical explanation of how the spin-orbit interaction works.

The spin-orbit interaction can be explained with a semi-classical picture of a nucleon

orbiting inside a nucleus, as shown in Figure 2.3 There is only an interaction when the

spins of each particle are aligned. In this example, lets assume that the particles each

have a spin that is pointing out of the page. As nucleon x orbits the nucleus, it interacts

with the nucleons a and b. The relative angular momentum between x and a is out of

the page, and therefore x and a experience an attractive force. Conversely, the relative

momentum between x and b is into the page and is therefore repulsive since it is anti-

parallel with the spin of the nucleon. In the interior of the nucleus, this effect is small

since nucleon x passes an approximately equal number of nucleons with the parallel and

anti-parallel relative spins and the forces cancel out. Close to the surface, however, there

are many more nucleons like a (i.e. with a smaller radius) than there are like b, and

so the spin-orbit force with be attractive at the surface of the nucleus. If x reverses its

direction, then the force will be repulsive at the surface [16] [18].

The addition of the attractive or repulsive spin-orbit interaction splits the energy levels

of shell-model, as shown in Figure 2.1, with the states with j = l + s being decreased

in energy and j = l − s increasing in energy. Tweaking the spin orbit potential, VSO(r)

can then reproduce the desired values of the magic numbers, as required.

2.1.3 Perturbations and Diagonalising Matrices

The value of Ψ given in Equation 2.1 can be giving by a super position of the wave

functions of different states, and so can be expressed as

Ψ =
∑
i

ciφi (2.7)
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where φi is the wave function describing the state at a particular angular momentum, l,

and c2
i is the probability of being observed in that state. The implication of this is that

the wave function Ψ is actually made up of a mixing of particles in different states with

different probabilities, the amplitude of which depends on the energy contained within

the system. Consider the nucleus 18O as an example; assuming that the nucleus has been

filled according to the Pauli exclusion principle, this nucleus will contain two neutrons in

the sd-shell depicted in the far right of Figure 2.1. For the purpose of simplicity, let us

assume that these two neutrons’ spins are always coupled to a 0+ state. In the sd-shell,

there are three possible ways for two particles to couple to a 0+; two neutrons found in

the d5/2 shell, two neutrons found in the s1/2 shell, and two neutrons found in the d3/2

shell. This means that Equation 2.7 can be written as

Ψ
(
0+
)

= c1φ1 + c2φ2 + c3φ3, (2.8)

where φ1, φ2, and φ3 refer to the wave functions of the states at d5/2, s1/2, and d3/2

respectively. If there are no residual interactions between the neutrons (there is no way

for scattering nucleons to cause a transition from, say, (d5/2) to (s1/2)) then these states

are the eigenstates of the Hamiltonian, and so H in Equation 2.1 can be expressed as

the matrix:

H =


ε1 0 0

0 ε2 0

0 0 ε3

 , (2.9)

the basis of which is comprised by the wave functions Ψ1, Ψ2, and Ψ3. For Equation 2.1

to be true given 2.9, it is clear that

Ψ1 =


1

0

0

 , Ψ2 =


0

1

0

 and Ψ3 =


0

0

1

 . (2.10)

The values in the column matrices in 2.10 correspond to the values of ci in Equation 2.8

and so it is obvious that a particle has a 100% chance of being observed in state φi and

having an energy εi. Now consider a system in which residual interactions are allowed

and it is possible for the two neutrons to collide and cause a transition between one

state and another. Allowing this type of interaction in the model requires a perturbation

potential, V ′ to be included in Equation 2.1 so that it now becomes,
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(
H + V ′

)
Ψi = EΨi, (2.11)

where V ′ can be given by

V ′ =


v11 v12 v13

v21 v22 v23

v31 v32 v33

 , (2.12)

and vij =
∫
φ∗jV

′φidr gives the likelihood of the transition from state φi to φj occurring

when being operated on by V ′. In 2.9 only elements in which i = j have non-zero

values due to the assumption that particles do not feel a residual interaction with each

other. However, the matrix element vij in 2.12 can be a non-zero term meaning that

the eigenvalue of Equation 2.11 is not simply the diagonal matrix element of the matrix

H + V ′, as it was for H. The addition of the perturbing potential also causes the

eigenfunctions of H, Ψi given in 2.10, not to be eigenfunctions of the new H ′ = H + V ′

matrix.

It is possible to diagonalise H ′ by performing a similarity transformation in which the

basis state of the matrix is given in terms of its eigenfunctions [20]. This diagonal matrix,

D, is obtained by multiplying H ′ by some matrix, X such that

D = X−1H ′X (2.13)

where X has the form

X =
[
|Ψ′1〉 |Ψ′2〉 |Ψ′3〉

]
(2.14)

and |Ψ′i〉 are the column vectors corresponding to the eigenvectors of H ′ in the original

basis. The values contained within |Ψ′i〉 provide the new coefficients, ci, given in Equation

2.8. The values of the diagonal elements of D are the eigenvalues of the perturbed H ′

matrix.

The description above detailing the digonalisation of the H ′ matrix gives a simplified

example of how to find the energy eigenvalues and eigenfunctions of the three 0+ states

in 18O. The calculation becomes more complicated when trying to calculate the energies

for all spin states within the sd-shell. The ‘universal’ sd (USD) Hamiltonian is often

used to find the energies of states in the sd-shell. The USD value for vij was found by

comparing the energy calculations from initial wave functions using an appropriate N-N
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interaction, and performing a least-squares fit to the experimental energies of 447 excited

states in the sd-shell. This produces an effective residual interaction between nucleons

in that shell [21] [22]. The USD is valid for nuclei in the range A = 21 − 35. Outside

of this range, sd excited states become fewer in number, and intruder states from other

shells become more important. However, the USD Hamiltonian was proposed in the

1980 when computing power was more limited, and so an improved USD-A Hamiltonian

was proposed in 2006 which used a fit to 77 nuclei to find the effective interaction to a

complete set of 608 states within the sd-shell [23].

Both the USD and USD-A shell-model calculations are truncated so that they only allow

for excitations in the sd-shell and so only positive parity states are calculated. Negative

parity states are much harder to calculate because particles can be excited into the pf-

shell. Let us use the example of 18O described above and allow the two neutrons outside

of the closed shells to be excited into the f7/2 state in the pf-shell (this state is the

lowest in energy in the pf-shell, as shown in Figure 2.1). Including this extra state in

the calculation means that instead of diagonalising a 3× 3 matrix, as was shown above,

we are now diagonalising a 4× 4 matrix (since the state 4−, for instance, can be made

by placing one of the two neutrons in either the d5/2, s1/2, d3/2 or the f7/2 state, and

putting the second neutron into the f7/2 state), which requires more computing power to

solve. The WBP and WBC Hamiltonians [24][25] calculate the energy eigenvalues and

eigenfunctions using USD and USD-A Hamiltonians respectively as a starting point.

2.2 Reaction Mechanisms

There are two main nuclear reaction types that occur at low energies; compound reac-

tions and direct reactions. The reaction of interest in this work is the (d, p) transfer

reaction, which is a type of direct reaction and is the reaction type that allows the

probing of nuclear energy states. However, the experiment performed here is not able to

select which reaction takes place; there is no guarantee that the (d, p) reaction will occur

over a compound reaction in which the deuteron is fully absorbed, and then evaporates

a proton. It is therefore important to be able to understand each of the reaction types

in order to properly analyse the results.

2.2.1 Compound Reactions

A reaction may occur in which the target nucleus and the projectile combine to form a

nucleus made up of the constituents of the two original nuclei. The simplest case would

be where a single proton (or neutron), is incident onto a larger nucleus made up of several
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nucleons. The incident proton can interact with a single nucleon through scattering, for

example, and impart some of its energy. The struck nucleon and the incident particle

can then each go on onto make successive collisions with other nucleons and therefore

share the energy of the original incident particle amongst multiple other nucleons. On

average, the energy imparted to each nucleon in this process is not enough to allow it

to break free of the nuclear potential, however, a small number of particles do receive

enough energy and are able to escape and “evaporate” from the nucleus.

Such reactions have an intermediate state after the absorption of the nucleus, but before

the emission of any particles. This intermediate form is called a compound nucleus. A

general reaction of this type can be written as

a+X → C∗ → Y + b, (2.15)

were C∗ indicates the compound nucleus [19]. The process that forms the intermediate

C∗ nucleus interrupts the internal structure of the target nucleus and so C∗ is left in a

highly excited state made up of several nucleons occupying excited states.

Due to this intermediate stage, the nucleus is said to have lost its memory of the incident

a+X channel from which it was formed and that the probability of creating Y +b will be

independent of the incident reaction channel. The cross section of a particular reaction

will be the product of the cross section of a + X to create C at a particular energy,

σCa+X(E) and a relative probability for C∗ to decay into Y + b, PCY+b(E):

σ = σCa+X(E)PCY+b(E). (2.16)

The significance of this is that if another process produces C∗ at the same energy, E, it

will have the same probability of producing Y + b [26]. As a result, it is not possible to

infer much about the structure of a nucleus that was created in this type of reaction.

2.2.2 Direct Reactions

The term “direct reactions”, so called because they do not form a compound nucleus,

is a very broad term referring to several different types of reaction, the three described

here are the ones relevant to this work.

Elastic scattering is the simplest reaction, in which the structure of the target and

incident particle remain unchanged after the collision. Inelastic scattering is more im-

portant since the nucleus of one or both the incident and target nucleus emerge in an
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excited state whilst retaining the same type and number of nucleons in each. Stripping

and pick-up reactions (collectively called transfer reactions) exchange nucleons between

the incident and target nuclei, potentially leaving one of the participating nuclei in an

excited state.

Whereas compound reactions are generally head-on collisions between nuclei, direct

reactions tend to be glancing blows that only make contact for a short time. The time

scale for a reaction to occur turns out to be an important point that plays a large role

defining which category it falls into. Direct reactions happen in a time less than (or

approximately equal to) the time it takes for a nucleon to orbit the nucleus, which is

typically around 2R/vp [27]. This short interaction time means that there is not enough

time for energy to be shared between nucleons and form a compound nucleus, and a

nucleus will, in the case of inelastic or transfer reactions, be left in a low lying excited

state composed of an inert core plus one excited nucleon.

2.2.3 Transfer Reactions

The peripheral nature of direct reactions make them useful in studying the low-lying

states in a nucleus because only a small number of nucleons are affected by the reaction.

In the instance where the recoil nucleon is left in an excited state, it can be considered

to be made up of an inert core of a particular spin and parity plus one excited nucleon.

The general form of transfer reactions can be shown symbolically as

a+XA → YA+i + b, (2.17)

where nucleus X consists of A nucleons and nucleus Y consists of a core made of the same

A nucleons plus i transferred nucleons. An example of this would be in the (d, p) transfer

reaction where nucleus ‘a’ is a deuteron, nucleus ‘b’ is a proton and i = 1 (referring to

one neutron being transferred).

The energy, spin and parity of the final nucleus is determined by which state the trans-

ferred nucleon is occupying after the reaction. For example, if nucleus X in Equation

2.17 has a ground-state of 0+, nucleus Y might have a spin and parity of 3/2+ if a nucleon

is placed into the first d3/2 state (since the spin of a nucleus can be j1 + j2 → |j1 − j2|
which can couple to be 3/2).

The cross section of this reaction can be calculated theoretically by considering the

overlap between the ingoing channel of the nucleus of nucleon number A, and outgoing

channels of A+ i
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TA+i,A(r) = 〈ΨA+i|a†|ΨA〉, (2.18)

where a† is the creation operator creating a particle at position r and TA+i,A is the

transition matrix (or T -matrix) element between the initial and final states. This

overlap function, referred to as the spectroscopic amplitude, will give the probability

distribution as a function of r that the A+ i nucleus will be formed. The normalisation

of Equation 2.18 gives the probability of the particle being created at a given r,

σ ≡
∫
|T (r)|2d3r, (2.19)

where σ is the total cross section of the reaction. Equation 2.19, however, is only correct

if ΨA and ΨA+i in Equation 2.18 are exact eigenstates of a Hamiltonian that describe

the system completely. In a single particle model, ΨA
SPM and ΨA+i

SPM describe a state in

which a nucleon is considered to be independent of the core of the nucleus; as is the case

for transfer reactions. This model neglects to take the internal structure of the nucleus’

core into account which results in σ < σSPM [28, 29]. The total cross section of the

reaction is then

σ = C2SσSPM , (2.20)

where C2S is the spectroscopic factor and is a measure of how much the wave function

of a pure single particle state overlaps with that of a given state.

2.3 Theoretical Analysis of Transfer Reactions

The description of transfer reactions given in the previous section gives an overview of

the process, but does not take into account that transfer reactions are complex many-

body problems that require many approximations to solve. The assumption that during

a transfer reaction, the outgoing reaction channel can be described as an inert core plus

a transferred nucleon has already been noted in section 2.2.3, and will be built upon in

order to reduce the many-body problem into a simpler three-body problem as shown in

Figure 2.4, which shows a nucleus, X which is made up of a core, labelled “b” and one

valence neutron, ν, which is separated from b by a distance, r, and X is a distance, R,

away from nucleus a. During the reaction, ν is transferred from X to a to form Y . This

is the same as the reaction shown in Equation 2.17.
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Figure 2.4: Schematic of a transfer reaction in a three-body problem where one
neutron is transferred from nucleus X to nucleus Y (Adapted from reference [30]).

Equation 2.18 can then be re-written using the notation that for a reaction a(X,Y )b,

the initial partition a+X is denoted by α, and the outgoing partition b+ Y by β

Tβα = 〈χ(−)
Y b (R′)ψbv(r

′)|Vβ|Ψ(+)(R, r)〉, (2.21)

where the superscripts + and − refer to the incoming and outgoing channels respectively,

χY b(R
′) describes the relative motion between Y and b, and ψbv(r

′) is the internal wave

function of Y, and the potential of the system post reaction is Vβ. Here Ψ(+)(R, r) is

the exact solution of a many body problem for all open incoming channels available in

the reaction. This value is an unknown since it is too complicated to calculate. It can.

however, be reduced in complexity by using assumptions that will be described below.

The potential used is dependent on the model describing the interaction.

2.3.1 The Plane Wave Born Approximation

A simple approximation of a transfer reaction is known as the Plane Wave Born Ap-

proximation (PWBA), which makes the assumption that the exact wave function, Ψ(+),

given in Equation 2.21 for the incoming beam particle has the form

Ψ(+)(R) ' AeiKR, (2.22)

where Ψ is propagating in the positive R-direction, A is a constant, and K in the wave

number. Post reaction, the scattered wave is in the form of a spherical plane wave

propagating away from the scattering potential, V (R). Note that using this simplest

approximation, Ψ(+) is only a function of R, unlike in Equation 2.21, where it was a

function of both R and r. This is because historically, the PWBA was proposed as a



Chapter 2. Theory 17

model to explain elastic scattering and so the the wave function describing the internal

structure of particle X, ψ(r) is not required in the model. The fact that the PWBA was

intended to describe elastic scattering is also the reason for the choice of the potential,

V (R). The Woods-Saxon potential, given in Equation 2.3, is used since it describes the

interaction experienced between a nucleus and a projectile target [27].

The probability of an incident particle being scattered by V (R) is dependent on the

strength of the potential. In the case that V (R) is not too strong, it can be considered

as a perturbation problem; the potential may perturb an incoming beam particle of

an associated eigenstate such that the outgoing eigenstate is associated with a particle

travelling in a different direction. The rate at which the potential induces a change from

the incoming to out going eigenstate can be converted to a differential scattering cross

section, dσ/dΩ, which, when integrated over the area surrounding the initial potential

is the Born approximation for the cross section, σ.

The use of a plane wave to describe the incoming and outgoing particles has an effect on

the profile of the cross section at different angles. Particles being scattered at different

sides of the same scattering potential produce an interference pattern, creating minima

and maxima at certain angles. PWBA can reproduce some basic features of transfer

reactions such as these minima and maxima, but the model only describes the scattering

of incident particles by a nucleus.

2.3.2 The Distorted Wave Born Approximation

The PWBA provides the first step in understanding direct reactions by using the Woods-

Saxon potential as a scattering potential. The Woods-Saxon potential describes elastic

scattering very well, but does not describe a situation in which scattered particles lose

some of their energy, nor does it describe transfer. Using an optical potential, rather than

a scattering potential can describe the reaction much more fully. The optical potential is

sometimes referred to as the “cloudy crystal ball” [31], so called because the calculations

describing it are very similar to those describing light incident on a semi-opaque glass

sphere. This model represents scattering by considering a medium in which the wave

function of the incident particle can be attenuated as well as scattered. In this model,

the scattering is represented in terms of a complex potential, U(R),

U(R) = V (R) + iW (R), (2.23)

where V (R) is the Woods-Saxon potential as seen in Equation 2.3 and describes the

elastic scattering of the nucleus, and W (R) describes the absorption in the medium. This
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distortion of the outgoing wave provides an improvement over the PWBA and is referred

to as the Distorted Wave Born Approximation (DWBA). The following discussion of the

distorted wave approximation is largely adapted from the review from reference [32].

The form of W (R) is often chosen as being proportional to dV (R)/dr since this has a

form that is only large at the surface of the sphere; at low energies only the valence

nucleons can absorb incident particles, nucleons in the inert core of the nucleus do not

participate in the absorption due to the Pauli exclusion principle. At high energies,

W (R) may be chosen to more closely resemble V (R). In addition to these two terms, a

spin-orbit term is also introduced (which also peaks near the surface of the nucleus due

to the mean-field effect in which the spin density is cancelled out by the inert nuclear

core), and a Coulomb term if the incident particle is charged.

The addition of this optical potential distorts the outgoing (Ψ(−)) waves in Equation

2.21. The incoming wave, Ψ(+), can be approximated by

Ψ(+)(R, r) ' χ(+)
Xa (R)ψbν(r), (2.24)

where χ
(+)
Xa (R) is the wave function describing the relative motion between X, a and

ψbν(r) is the bound wave function between b and ν.

Substituting this into Equation 2.21 yields:

Tβα ' 〈χ
(−)
Y b (R′)ψaν(r′)|Vβ|χ

(+)
Xa (R)ψbν(r)〉, (2.25)

which is a far simpler equation than considering the wave function for the many-body

bound state that would be needed to fully describe the interaction shown in Figure 2.4.

2.3.3 The Adiabatic Distorted Wave Approximation

The incoming wave, Ψ(+), is made up of all possible incoming channels. However,

Equation 2.24 makes the approximation that only the elastic channel is open in the

reaction. Using the DWBA therefore results in the assumption that the elastic channel

is the dominant channel in the reaction. The DWBA, then, approximates the reaction

as a two-body problem in which the scattered probability of a particle is reduced by an

absorbing potential.

Since the DWBA is a two-body approximation, it fails to take into account the relative

motion between b and ν prior to the reaction. This is an important consideration to make
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when examining a reaction such as (d, p) because the relatively low binding energy of a

deuteron (2.22 MeV [33]) means that it is liable to break apart. A new approximation

is therefore made that describes the incoming wave function as a three-body problem:

Ψ(+)(R, r) ' χ(+)
Xa (R, r)ψbν(r). (2.26)

This value of χ
(+)
Xa differs from that of Equation 2.24 because χ

(+)
Xa is dependent on both

R and r and so is the solution to a two-body scattering problem.

The Adiabatic Distorted Wave Approximation (ADWA) is an approximation developed

by Johnson and Soper [34] that simplifies this three-body problem for cases where colli-

sion energies are comparatively high in comparison to the binding energy of the colliding

particle (as is the case for a deuteron). The assumption here is that the internal motion

of a deuteron is much slower than that of the motion of a deuteron as a whole. The po-

sitions of the neutron and proton can therefore be considered to be ‘frozen’ with respect

to each other. This allows the interaction potential between the proton, p, neutron, n,

and target particle, T , to be treated separately:

UdT = UpT + UnT , (2.27)

where UdT is the total optical potential experienced between the target and the deuteron

as a whole.

2.4 Nuclear Astrophysics

As described in Chapter 1, the experiment described in the current work has some

astrophysical motivations. Even though the actual astrophysical process is not being

directly addressed in this work, a brief theoretical description of the relevant physics

will be given.

2.4.1 The rp-process and the reaction 24Al(p, γ)25Si

The rp−process (‘rapid proton’ capture process) is an astrophysical process used to

describe the nucleosynthesis of elements via proton capture. It occurs in hot stellar

environments in which a lot of hydrogen is available to undergo fusion. Unlike the

analogous r-process, which describes rapid neutron capture, the reaction pathway un-

dertaken by the rp-process is determined by the size of the Coulomb barrier of the
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nucleus in the reaction, which increases as more protons are added. When the Coulomb

barrier is sufficiently high, β+-decay competes favourably with proton capture, which

reduces the barrier and potentially allows proton capture to occur once again. This

β+-decay helps close a loop and create a reaction cycle such as the CNO or hot-CNO

cycles which produce energy in stars depending on the temperature. If the temperature

is sufficiently high, and the density of hydrogen is sufficient, then the Coulomb barrier

is easily overcome and the β+-decay that closes the loop is no longer competitive. This

opens up the pathway to successive proton captures via the rp-process.

The reaction rate of a resonant reaction, 〈σν〉r, depends upon the resonance energy, ER,

of the resonant state [35]:

〈σν〉r ∝ exp

(
−11.605ER

T9

)
, (2.28)

where T9 is the temperature on the system expressed in 109K. The relationship between

〈σν〉r and ER given in Equation 2.28 requires that the value of ER must be known very

precisely because a small error of a few keV can greatly alter the reaction rate [35].

There are very few experimental results for proton capture rates in reactions of astro-

physical significance [35]. This is because of the effect of the Coulomb barrier, which

reduces the yield of reactions as energy decreases, thus making it difficult to study reac-

tions at astrophysical energies [35]. Low yields inevitably result in low statistics which

means a higher uncertainty in results. Equation 2.28 also suggests that the higher ER,

the lower the reaction rate is.

The reaction rates for the 24Al(p, γ)25Si reaction have been calculated by Herndl et al.

[5] in relation to its potential importance in various astrophysical environments. This

was part of a wide ranging study of many reactions in the early stages of the rp-process

pathways. Herndl et al used large-basis shell-model calculations in order to provide

information about the internal structure of the largely unknown 25Si nucleus [5]. These

calculations were benchmarked against calculations for the much better studied 25Na

nucleus, and the formalism of Ormand and Brown [36] was used to account for the

different Coulomb effects in 25Si. The 25Si results where then used to find a theoretical

value of the resonance strengths, ωγ, of the states close to the Coulomb barrier

ωγ =
2J + 1

2 (2JT + 1)

Γ(+)Γ(−)

Γ(+) + Γ(−)
(2.29)

where JT = 4 is the spin of the ground-state of 24Al, J is the spin of the excited state

in 25Si and Γ(+) and Γ(−) are the partial widths of the incoming and outgoing reaction
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Jπ Exexp (25Na) (MeV) Exexp (25Si) (MeV) δE (MeV) ER

5/2+
3 3.69 3.60 -0.09 0.19

5/2+
3 3.95 3.82 -0.16 0.41

5/2+
3 3.93 3.91 -0.04 0.50

5/2+
3 4.14 3.92 -0.22 0.51

5/2+
3 4.34 4.14 -0.20 0.73

Table 2.1: Comparison of excited states in 25Na and calculated excited states in 25Si.
The resonance energy of the proton, ER for each state is also shown. These data were

taken from reference [5].

ER (MeV) Γp (eV) Γγ (eV) ωγ (eV) C2S5/2 C2S1/2 C2S3/2

0.19 3.99× 10−2 5.66× 10−7 1.89× 10−7 0.02 0.01
0.41 1.31× 10−2 7.47× 10−1 7.2× 10−3 0.03 0.02 0.14
0.50 1.51× 10−2 2.38 6.7× 10−3 0.04 0.01 0.16
0.51 7.27× 10−2 0.1 1.4× 10−2 0.04 0.00
0.73 1.22× 10−1 5.3× 10−2 1.23× 10−2 0.001 0.00

Table 2.2: Reaction strength for different excited states in 25Si. The calculated
spectroscopic factors for the d5/2, s1/2 and d3/2 states. These data were taken from

reference [5].

channels respectively. In the case of a (p, γ) reaction, the widths are Γ(+) = Γp and

Γ(−) = Γγ . The reaction rate is proportional to this reaction strength, therefore states

with a large ωγ will be the most important when estimating a reaction rate. The relevant

states calculated in reference [5] are given in Table 2.1 and are compared to the known

states in 25Na. Table 2.2 shows the reaction strengths and the spectroscopic factors for

these states. Shown in both of these tables are the resonance energies of the proton, ER,

for these states.

Using the reaction rates obtained for these states, and performing the same analysis on

other reactions in the the mass range A = 23 − 43, a reaction path for the rp-process

was established for different temperatures. The reaction rate varies with temperature

and depends on the state populated. This variation is shown in Figure 2.5.

2.4.2 Novae and X-ray Bursters

Consider a close binary star system that consists of a main sequence star, and a much

denser white dwarf star. There is a point, referred to as the inner Lagrangian point,

between the two stars at which the gravitational potential is equal. If the main sequence

star is close enough to the white dwarf, or the main sequence star enters its red giant

stage of stellar evolution, its outer radius may surpass the Lagrangian point, that is

some of its mass is affected more by the white dwarf than the host star.
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Figure 2.5: Variation of reaction rates with temperature [5].

This results in matter being transferred from the main sequence star to the white dwarf,

forming an accretion disk around it as the matter accelerates towards the surface of the

star. The stolen mass is drawn from the surface of the main sequence star, meaning that

it contains high levels of hydrogen. As this hydrogen is pulled in by the high gravitational

force created by the white dwarf, it is heated and compressed. At some point as it falls,

the matter becomes electron degenerate, and so it cannot cool via expansion, and a

temperature of ∼ 20× 106 K is reached that allows fusion to begin on the surface of the

white dwarf [35].

The hydrogen-rich matter transferred from the main sequence star is mixed with mate-

rial, made up from heavier elements, from the top layer of the white dwarf. Due to the

degeneracy of the transferred material, expansion cannot occur to control the energy

being released from the hydrogen burning that is taking place. As a result, temperature

increases, causing more thermonuclear reactions to occur at a higher rate in a process

referred to as themornuclear runaway, which results in an eruption of material into the

interstellar medium [6].

Reaction rates in novae are very sensitive to temperature and so the abundance of

different elements seen from novae events can be used to determine the peak temperature

reached during the event. Of course, the accuracy of this deduction depends on how

well the reactions involved in the process are understood experimentally. The range of

temperature predicted by different models is Tpeak = 0.145 − 0.418 GK [6], which is in

the temperature range required for the CNO cycle to begin.
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X-ray bursts are caused by similar circumstances as novae, though are created in much

more extreme environments. Both occur in binary star systems containing a main se-

quence star. The difference is in the second star involved; whereas an accretion disk is

formed around a white dwarf star in novae, it is instead formed around a neutron star

(or possibly a black hole) for X-ray bursts. The increased density of the neutron star

creates a much stronger gravitational field, which allows for higher temperatures to be

reached before the degeneracy is lifted within the accretion disk material, resulting in a

mass ejection explosion that is characterised by its X-ray activity.

2.5 Inverse Kinematics

The kinematics of an experiment can greatly affect the set-up of the apparatus used.

In a classic experiment, measuring the elastic scattering of a reaction, and where a

light projectile nucleus is incident on a heavy target nucleus, one might expect both the

ejected and the recoil particles to be detected at angles forward of the target, whereas

in a reaction with a positive Q-value, some particles would be expected to be found at

backward angles. The reasons for this will be discussed in this section.

Due to the half-life of 24Na being so short (approx. 15 hours [37]), it is infeasible to

create a target to be used for the duration of the experiment. Because of this factor, the

work described here was performed in inverse kinematics, where the heavy, radioactive

24Na nuclei were created via the ISOL technique (described further in section 3.2) in a

cyclotron and accelerated to the experimental hall to collide with the deuteron atoms in

the target. The derivation of the kinematics seen in the experiment is purely classical,

but serves well in explaining the expected kinematics of the experiment.

Consider a reaction m1(m2,m3)m4 in which a light particle is incident on a heavy target

as shown in Figures 2.6 and 2.7 for the lab frame and centre-of-mass frame respectively.

In the lab frame, m2 is stationary, and hence T2 = −→p2 = 0, therefore, −→p1 = −→p3 +
−→
p4. In

the centre of mass frame,
−→
p′1 +

−→
p′2 =

−→
p′3 +

−→
p′4 = 0, where primed quantities represent the

values in the centre-of-mass frame. A tilde in an equation represents a quantity after a

reaction has occurred.
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Figure 2.6: The trajectories of two particles before(top) and after (bottom) a reaction
in the laboratory frame.

m2m1

m4

m3

v1'

v3'

v4'

θ'

v2'

Figure 2.7: The trajectories of two particles before(top) and after (bottom) a reaction
in the centre-of-mass frame.
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Due to conservation of momentum:

v′2 =
m1

m2
v′1 (2.30)

v′4 =
m3

m4
v′3. (2.31)

From Figure 2.6, it can be shown that the velocity vectors of the particles can be given

as:

−→v1
′ = −→v 1 −−→v cm (2.32)

and
−→v cm =

m1
−→v 1

m1 +m2
. (2.33)

Implying

−→v1
′ = −→v 1 −

m1
−→v 1

m1 +m2

= −→v 1

(
1− m1

m1 +m2

)
= −→v 1

(
m2

m1 +m2

)
. (2.34)

Therefore, substituting Equation 2.30 into equation Equation 2.34 gives:

−→v cm = −
−→
v′ 2. (2.35)

Rearranging Equation 2.33 to make v1 the subject and substituting into 2.32 provides

an expression for v′1 in terms of m1, m2 and vcm:

−→
v′1 =

(
m1 +m2

m1

)
−→v cm −−→v cm

= −→v cm
(
m1 +m2

m1
− 1

)
= −→v cm

(
m2

m1

)
(2.36)
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The energy of the centre-of-mass frame before the reaction is equal to the sum of the

kinetic energy of the beam m1 plus the kinetic energy of the target m2. Similarly, the

energy of the centre-of-mass frame after the reaction is equal to the kinetic energy of the

products m3 and m4. Using this information and using Equations 2.30 and 2.31 gives:

Ecm =
1

2
m1v

′2
1

(
m1 +m2

m2

)
(2.37)

and

Ẽcm =
1

2
m3v

′2
3

(
m3 +m4

m4

)
. (2.38)

Substituting Equation 2.36 into 2.37,

Ecm =
1

2
m1

(
m2

m1

)2
−→v 2
cm

(
m1 +m2

m2

)
=

1

2

m2
2

m1

−→v 2
cm

(
m1 +m2

m2

)
=

1

2

m2

m1
(m1 +m2)−→v 2

cm, (2.39)

since −→v cm is related to
−→̃
v cm via,

(m1 +m2)−→v cm = (m3 +m4)
−→̃
v cm

−→v cm =
m3 +m4

m1 +m2

−→̃
v cm

⇒ Ecm =
1

2

m2

m1

(m3 +m4)2

m1 +m2

−→̃
v 2
cm (2.40)

The center-of-mass energy post reaction, Ẽcm is equal to the center-of-mass energy prior

to the reaction plus the Q-value of the excited state, Ex, of the recoil particle, Q∗:

Ẽcm = Ecm +Q∗, (2.41)

where Q∗ equals the ground-state Q-value minus the excitation energy, Ex. Let us define

a quantity, q, that describes the ratio between Ẽcm and Ecm:
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Ẽcm
Ecm

= 1 +
Q∗

Ecm
≡ q (2.42)

Using Equation 2.42 and substituting values for Ẽcm and Ecm from Equations 2.38 and

2.40 respectively, it is possible to get a value for v′3/ṽcm:

q =

1
2m3v

′2
3

(
m3+m4
m4

)
1
2
m2
m1

(m3+m4)2

m1+m2
ṽ2
cm

=
m3

m2

m1

m4

(m1 +m2)

(m3 +m4)

(
v′3
ṽcm

)2

⇒ v′3
ṽcm

=

√
q
m2

m3

m4

m1

(m3 +m4)

(m1 +m2)
(2.43)

This value is important when describing the vector diagram of the reaction. Consider

the scenario shown in Figure 2.7. In the lab frame, the centre-of-mass frame is travelling

along at a velocity ṽcm in the direction of the beam, as shown in Figure 2.6. Figure

2.8 shows how the trajectories seen in the lab relate to those seen in the centre-of-mass

frame. The possible orientations of v′3 and v′4 trace out a circle around the centre-of-

mass. It can be seen that θ reaches a maximum when v3 and v′3 are perpendicular to

each other. Hence the maximum angle, θmax, at which particle 3 can be detected is:

θmax = arcsin

(
v′3
ṽcm

)
= arcsin

√
q
m2

m3

m4

m1

(m3 +m4)

(m1 +m2)
(2.44)

Now consider the reaction studies in this work; the d(24Na, p)25Na reaction is performed

in inverse kinematics and so m1, m2, m3 and m4 refers to 24Na, d, p and 25Na respec-

tively. Since m1 and m4 have comparable masses in this reaction, and the quantity q

deviates from 1 by a factor of less than 10% [38], Equation 2.44 reduces to:

θmax ≈ arcsin

√
m2

m3
(2.45)

For a (d, p) reaction, m2/m3 = 2 and so θmax is undefined meaning that the light proton

ejectile has no maximum angle. In other words, v′3 > ṽcm in Figure 2.8. In this scenario,



Chapter 2. Theory 28

vcm~

v'3

v'4
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θ

Figure 2.8: Velocity diagram for a m1(m2,m3)m4 reaction. The transformation
between the lab frame and the centre-of-mass frame.

the value of the heavy recoil nucleus’ velocity, v′4 is small, and so the 24Na nucleus is

focused into a cone in the direction of ṽcm.

2.6 Energy Loss in Matter

2.6.1 Charged Particle Energy Loss in Matter

A charged particle, as it passes through a medium, will interact with the Coulomb field

created by the atoms in that medium. This force is felt simultaneously by many electrons

as the charged particle passes by. In most cases, nearly all of the energy of the charged

particle is lost to electrons as opposed to the nucleus of atoms in the absorbing medium.

The impulse given to the electron transfers momentum and so the lighter mass of an

electron means that it will carry away more energy than the nucleus. Nuclear interactions

are also rare unless the interacting charged particle has a high energy. Because of these

facts, a particle is not affected much by the nucleus of the absorbing material [16]. The

attractive forces felt by an individual electron as the charged particle passes by might

excite it into a higher energy state, or separate it from its atom depending on its distance

from the charged particle. It is this ionisation process that creates the charge that is

used to detect the charged particle as it passes through a detector [39].
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These interactions gradually slow down the particle as it passes through a material until

it is completely stopped. The rate of energy loss per unit of distance travelled in a

material is referred to as the stopping power of that material [39],

S = −dE

dx
, (2.46)

where dE/dx is negative because energy is being lost as a particle passes through a

material. The formula used to predict the stopping power of a particular material was

derived in 1930 and is known as the Bethe-Bloch formula:

− dE

dx
=

(
ze2

4πε0

)2
4πZρNA

Amv2

[
ln

(
2mv2

I

)
− ln

(
1− β2

)
− β2

]
, (2.47)

where Z, A and ρ are the atomic number, atomic mass and density of the absorbing

material respectively, m is the mass of an electron, ze is the charge of the ion, and v

is its velocity. The mean energy required to ionize an atom in the stopping material is

given by I, and is generally considered to be equal to 11Z eV. Equation 2.47 reveals

several things about the stopping power of a material: it is directly proportional to the

density of electrons in the stopping material (ZρNA/A), and it is dependent on 1/v2

(and therefore m/E) of the charged particle [16].

As the ion travels through the absorber material and loses energy, it spends more time

interacting with surrounding electrons. As a result, its rate of loss of energy reaches a

maximum at low energies. The Bethe-Bloche formula is not valid at very low energies

since the possibility of electron capture in the ion increases and so it can no longer

be assumed that the z of the particle is the same as it was when it first entered the

absorbing material.

2.6.2 Gamma-ray Interactions in Matter

There are three main contributing effects to the absorption of a photon in matter: the

photoelectric effect, Compton scattering, and pair production. The frequency of photon

interactions of a particular type is dependent on the energy of the photon and the Z

of the absorbing medium. Figure 2.9 shows the relative importance of each interaction

method as Z of the absorbing material, and energy of the photon changes.

The first way in which photons are absorbed by a material is the photoelectric effect,

which dominates when the photon has an energy of a few hundred keV. The photon

is completely absorbed by the bound electron in the absorbing material and excites it
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enough to escape the atom with the energy of the absorbed photon minus the binding

energy of the electron. This interaction only occurs between an atom and a photon,

and so will create an ionised atom with and electron vacancy in one of its shells. This

hole is quickly filled by the re-arrangement of electrons in higher shells de-exciting and

emitting a characteristic X-ray in the process, or through the capture of a free electron.

The characteristic X-ray emitted could then also be absorbed by its surroundings via

the same process. Auger electrons may be emitted instead of a characteristic X-ray [39].

Figure 2.9: Relative importance between the three main methods of photon absorp-
tion at different energies and different atomic masses [39].

The second interaction method is Compton scattering, which is typically the most rel-

evant interaction for photons of a few MeV. During the scattering process, the γ-ray

imparts a fraction of its energy to the recoil electron that is proportional to its scatter-

ing angle, θ relative to its original direction. The expression relating the final energy of

the γ-ray post scattering event, hν ′, to the scattering angle is

hν ′ =
hν

1 + hν
m0c2

(1− cos θ)
, (2.48)

where hν is the energy of the γ-ray before scattering, and m0c
2 is the rest-mass energy

of the electron (511 keV).

A scattering angle of 180◦ equates to the maximum energy given to the recoil electron.

A γ-ray can not lose all of its energy via Compton scatter since the only solution for

hν ′ = 0 in Equation 2.48 is for hν to also equal 0. This means that the only way to

detect the full energy of a γ-ray is for it to first scatter and lose enough energy to then

be absorbed via the photoelectric effect. Photons that scatter inside a detector, but
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are not fully absorbed, will contribute to the Compton continuum in the final energy

spectra.

The final mechanism that describes how photons interact with matter is pair production.

This can start to occur when the energy of a photon is greater than the rest-mass energy

of two electrons. Practically, however, the processes only becomes relevant at energies

of several MeV. The interaction takes place in the Coulomb field of a nucleus where the

γ-ray photon disappears and is replaced by an electron-positron pair. Any extra energy

the γ-ray had is carried away by the pair in the form of kinetic energy. The positron

then loses energy and comes to rest, and is annihilated, producing two secondary γ-rays

at 0.511 MeV each [39].

These mechanisms for photon interaction with matter all depend on the absorber atomic

mass, Z and energy of the γ-ray, Eγ . The probability of an interaction occurring per

nucleus for photoelectric absorption, τ , is approximately

τ ∼= constant× Zn

E3.5
γ

(2.49)

were n varies between 4 and 5 depending on what Eγ range is being examined. Compton

scattering is more likely to occur if there are more electrons to scatter off, the probability

of the γ-ray being absorbed via this method per atom is therefore linearly dependent on

Z. There is no simple relationship between the probability of pair production and the

atomic mass of the absorber, but an approximation is that it varies as a function of Z2

[39].
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Experimental Details

3.1 Experimental Overview

The experiment described in this work looks to populate excited states in 25Na via a

(d, p) reaction using a beam provided by the ISAC-II facility. The beam used consisted

of the radioactive element 24Na and had an energy of 8 MeV per nucleon which was

incident on a target made of deuterated carbon (CD2). The intensity of the beam was

initially expected to be 106 pps, but was reduced to 104 pps early in the experiment.

As a result of this, the decision was made to increase the the target thickness from 0.5

mg/cm2 to 1.0 mg/cm2 to ensure that good statistics were still gathered.

The experiment was performed in inverse kinematics meaning that the beam particle

is heavier than the target particle, unlike the traditional experimental procedure where

the target contains the heavy particle. After collision, the produced 25Na particles’

trajectories remain reasonably unaltered due to the fact that they contain most of the

mass of the system. There was no zero detector available during the experiment that

was able to determine the energy of the reacted 25Na particles. Instead, the light ejected

proton was detected since they were emitted at all angles around the target (as described

in section 2.5).

The protons were detected by the SHARC (Silicon Highly-segmented Array for Reactions

and Coulex) detector array. This was made up of a total of twelve double-sided silicon

strip detectors (DSSSDs) which cover an angular range between 35◦ and 172◦. Elastically

scattered protons and deuterons were detected at angles less than 90◦ which are used

in the normalisation of the cross section. Protons detected from the (d, p) reaction can

be emitted at all angles, but were only expected to be seen above 90◦. The angle of

detection and energy of the protons are required to establish the energy of the populated

32



Chapter 3. Experimental Details 33

Target
SHARC Array
Vacuum Chamber
HPGe detector

BGO detector
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Aluminium foil

z
24Na beam at 8 MeV/A

Figure 3.1: Schematic of the experimental set-up.

state in 25Na. As a result, SHARC is designed to have a very high angular resolution

(section 4.2.3). The whole detector is housed within a vacuum chamber in order to

prevent emitted protons form imparting some of their energy to air molecules.

Post reaction, if a neutron has been placed in a bound excited state of 25Na then it will

de-excite via γ-ray emission. These γ-rays are detected by the TIGRESS (TRIUMF-

ISAC Gamma Ray Escape Suppressed Spectrometer) array, which surrounds the vacuum

chamber housing SHARC. It is made up of up to sixteen high purity germanium detectors

(HPGe) that are placed in rings of θ = 45◦, 90◦ and 135◦ around SHARC, though only

twelve were used in this experiment at θ ≥ 90◦ in order to make room for the SHARC

electronics to be mounted. TIGRESS also has the option of utilising bismuth-gemanate

(BGO) and thallium-drifted caesium iodide (CsI(Tl)) scintillator detectors in order to

decrease the signal-to-noise ratio of the γ-ray data.

Due to the target used in the experiment containing carbon as well as deuterium, it is

possible for a compound reaction to occur in which 12C fuses with the beam particles.

These particles are discriminated against using the Trifoil; a scintillator detector placed

in the beam line. The Trifoil has an aluminium foil placed in front of it which prohibits

the transmission of fusion evaporation products while simultaneously allowing the trans-

mission of beam-like particles, thus giving a way to determine when protons from the

(d, p) reaction have been detected.
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The Data Acquisition (DAQ) is triggered when a particle is detected in SHARC at

which point data from every other electrical channel is read out and recorded. The

thresholds in the DSSSD detectors are set at 2 MeV (with the exception of one which

has a threshold of 1.5 MeV). The overall set-up of the experiment is shown schematically

in Figure 3.1, which shows the main attributes of the detector array.

3.2 The TRIUMF Facility

Traditionally the heavier of the two particles involved in a reaction is located in the

target of the experiment, which is bombarded by a beam made up of the lighter parti-

cles. This becomes impractical when studying unstable nuclei because the particle being

examined will decay away during the manufacture and transportation of the target to

the experimental hall and during the experiment itself. The use of a radioactive beam

is therefore utilised so that the unstable particle of interest can be created on site and

transported directly to the experimental hall.

Radioactive beams can be produced using two methods: in-flight fragmentation and

Isotope Separation On-Line (ISOL). In-flight fragmentation is performed by accelerating

heavy ions into a thin target material, causing fragmentation. This produces a secondary

beam made up of various different types of particle that are separated out before being

transported to the experiment [40]. This technique is advantageous when a high energy

secondary beam is required because the secondary beam carries a lot of the forward

momentum of the primary beam after its collision with the target, thus eliminating the

need to re-accelerate the beam. However, at relatively low energies, secondary beam is

scattered much more by the target, resulting in a less focused beam spot.

In comparison to this, the ISOL technique uses a light particle primary beam on a heavy

production target. This creates the particles that will be used in the secondary beam

through spallation, fragmentation, fission and various other reaction channels [41]. The

produced particles are completely stopped in the thick target, unlike in-flight separation,

preventing them from being taken directly to the experimental hall to be used within

the experiment. The production target is heated to assist the diffusion of the stopped

radioactive particles to its surface where they are ionised, electromagnetically separated

from other products produced in the target, and re-accelerated to the experimental hall.

The advantage of this technique is that it allows for a relatively low energy beam due

to the fact that the beam particles were completely stopped in the production target,

then re-accelerated. This allows for experiments to be performed at energies just above

the Coulomb barrier.
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The TRIUMF (Tri-University Meson Facility) cyclotron in Vancouver, Canada, utilises

the ISOL technique to create the radioactive beam. The primary beam of protons

with an energy and intensity of up to 500 MeV and 100µA are produced by accelerating

negatively charged hydrogen atoms through the six-sector magnetic field of the cyclotron.

The magnetic field bends the H− ions, causing them to follow a spiral trajectory as they

are accelerated. When the hydrogen atoms have been accelerated to the desired speed,

they pass through a graphite stripping foil which removes the electrons in the atom

(and therefore creating positively charged ions). This change in charge causes the ions

to change direction and are steered out of the cyclotron and into the beam line and

taken to the rest of the Isotope Separator and Accelerator (ISAC) experimental hall.

Figure 3.2: Schematic of the beamline in the ISAC facility [42].

There are two ISAC halls within TRIUMF. ISAC-I is is used for experiments where the

required beam energies range between 0.153 and 1.53 MeV/u [43]. The beam is bunched

within the Low Energy beam transport (LEBT) using an 11.8 MHz multi-harmonic pre-

buncher, which increases the beam quality. The initial acceleration is created by a

Radio Frequency Quadrupole (RFQ), operating at 35.36 MHz, which accelerates the

beams with a mass to charge ratio of A/q ≤ 30 from 2 keV/u to 153 keV/u. The use of

a the 35.36 MHz RFQ after the 11.8 MHz pre-buncher creates small satellite bunches

around the primary bunches of the beam. A chopper is used to clean up these small

satellites so that only the primary bunch is passed into the Interdigital H-mode Drift

Tube Linac (IH-DTL) to be accelerated further [43][44]. At this stage, the beam is either

directed to be used within the ISAC-I (labelled as HEBT1-Exp in Figure 3.2) hall, or is

transferred to the ISAC-II hall.
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ISAC-II is an extension of ISAC-I in which the beam is deflected north using an S-bend

transfer line as depicted in Figure 3.2. This bend allows further separation of particles

with a different mass-to-charge ratio, (A/q), compared to the desired beam particle. The

beam was accelerated further to between 5 to 11 MeV [45] towards the experimental

hall (labelled as HEBT2-Exp) using the ISAC-II linear accelerator.

TIGRESS is situated at the end of the HEBT2-Exp beam line. A stable beam of 24Mg

was used for beam tuning. A 2 mm aperture transmitted 86% of the stable beam.

The radioactive 24Na beam was re-tuned using a 3 mm aperture at the target position

to ensure that it was correctly focused and centred for the experiment. The tuning

managed to achieve a transmission of 100% in this case.

3.3 SHARC

Figure 3.3: Schematic of the full SHARC array[46].

SHARC (Silicon Highly-segmented Array for Reactions and Coulex) is a highly advanced

array consisting of up to sixteen DSSSD detectors. Its purpose is to be used for detecting

particles from transfer reactions in inverse kinematics. It has been designed so that its

components can be removed and re-arranged depending on the detection requirements

and the kinematics expected for the experiment being undertaken. Figure 3.3 shows the

frame of the array and that the array consists of two box detectors, one downstream of

the target, and one upstream (labelled b and d respectively), and two CD detectors, so

called because of the physical resemblance to a compact disk (labelled a and e, where
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e is actually positioned behind the box detector). Each DSSSD described here, with

the exception of the PAD detectors found in the downstream box, are segmented into

pixels. The nature of this segmentation will be described in more detail in the following

subsections, however, it is noted here due to it being a common feature for all DSSSD

detectors that there is an aluminium strip running along the front and back face of the

detectors. This strip is used to collect and carry away the electronic signal from the

detector.

The inclusion of two box detectors, rather than one larger detector that covers a greater

angular range allows for the insertion of the target through the gap between the detec-

tors. The target holder consists of a rotating fan that rotates through the beam path.

The fan has space for four targets to be placed on it at any one time, which allows the

experimenters to quickly switch between targets as required quickly and without having

to vent the chamber housing the array. The hinge for this fan is labelled “c” in Figure

3.3.

The cuboid shape of the SHARC array makes it convenient to define a co-ordinate

system that uses Cartesian co-ordinates where z is in the direction of the beam, and y

points in the direction of the ceiling.

𝒛

𝒚

𝒙

Figure 3.4: Drawing of the downstream box of SHARC including the ∆E−E detector.
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3.3.1 Box Detectors

Each box detector is made up of four DSSSD detectors. These detectors are arranged in

a windmill orientation where the edge of one detector slots into a groove in the edge of

the adjacent detector. This construction allows for the detectors to only be supported

by the frame at one point each, whist still being stable, and allows for the active area of

each PCB to cover as much of the solid angle as possible because the detector is able to

extend right up to the edge of the next detector. This windmill configuration is shown

in Figure 3.4 for the upstream box detector.

This windmill set-up also allows for some flexibility in the angular coverage of the box

detectors as it is possible to invert the PCBs so that the active area of the detector covers

angles closer to 90◦. The decision to do this or not is dependent on what is expected

to be seen in the experiment at hand and which angles are predicted to be important.

For this work, the downstream box is inverted relative to the upstream box so that both

boxes have the best angular coverage close to 90◦.

There is a slight difference in size between the upstream and downstream box: the

exposed area of each PCB in the downstream box is 80.0 × 61.1 mm2 compared to

83.4× 61.1 mm2 per PCB in the upstream box. The difference in size is caused by the

use of a E −∆E telescope in the downstream detector. This consists of a thin 140 µm

thick ∆E DSSSD, which was segmented into pixels in the same way as the downstream

box, followed by a much thicker 1500 µm PAD detector placed behind, which had no

segmentation, but was used to stop particles that punched through the ∆E detector.

The upstream box detector consists of four highly segmented DSSSDs of a thickness of

1000 µm. The dimensions of the active area are 72 × 48 mm2. The detector is divided

into pixels using conductive strips along the front and back of the detector which are

used to determine the position of the interaction point within the detector. The front

strips have a pitch width of 3 mm, and run parallel along the z-axis of the array, whereas

the back strips have a pitch width of 1 mm, and run perpendicular to the z-axis. The

gap between each strip is 0.1 mm for both front and back strips as shown in Figure 3.5.

The electronics channels coming from each PCB are numbered so that the position of

each detection can be documented. Front strips are numbered from 1 to 24 and back

strips are numbered 1 to 48. This numbering system can be used to work out the

position along the active area corresponding to the centre of each front strip. This

position, defined as l, is given by

l =
P

2
+ (n− 1)P, (3.1)
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Figure 3.5: Schematic of a PCB in one of the SHARC box detectors. The shaded
area represents the active area. The difference between the centre of the active length,

LA, and the exposed length LE is given by dx.

where P = 3 is the pitch of the front strip and n is the strip number.

Due to the inversion of the box detectors relative to each other as described above, the

numbering system of the back strips are reversed for each detector in the downstream

box relative to the upstream box. The asymmetry of the PCB’s design means that the

centre of the length of the active area, LA, of the detector is not simultaneously the

centre of the length of the PCB that is exposed to the protons that are detected in the

experiment, LE , as shown in Figure 3.5. The centre of the exposed length is relevant

because it matches a co-ordinate (the x or y co-ordinate depending on which side of the

box detector the PCB is placed on) with the target position. The position of each strip

relative to the target should therefore be known in order to work out the angle it covers

relative to the target. The difference between the centre of the active length is given by

half the difference between the two lengths, dx = (LE−LA)/2. The translation between

the position along the active area given by Equation 3.1 and the position relative to the

target, LR, can therefore be given by

LR = ±
(
l − LA

2
+ dx

)
. (3.2)

Here, the ± occurs due to the fact that the PCB is rotated by 90 degrees for each side

of the box and so the geometry of the strips is flipped along the imaginary line showing

the centre of the exposed length. The value of dx is different between the upstream and

downstream box due to their difference in size:
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dx =

4.0mm for downstream DSSSDs

5.7mm for upstream DSSSDs.
(3.3)

3.3.2 CD Detectors

The CD detectors, so called because they form a disk that resembles a Compact Disk,

each consist of four QQQ detectors of a thickness of 400 µm which are mounted together

on one frame. A 9 mm hole at the centre of the detector allows the beam through to

the target. An aluminium shield is mounted behind the DSSSDs in the direction of

the beam in order to protect the detector from being hit by the beam directly if the

beam were to be incorrectly focused onto the target. SHARC is designed to use two CD

detectors in total, one upstream of the target, and one downstream. However, due to

being limited in the number of electronics channels available for the experiment, only

the upstream CD detector was used to collect these results.

Radial Strips

Annular Strips

Figure 3.6: A fully assembled CD detector displaying the front and back segmentation
[47].

Each quadrant of the CD detector is segmented into twenty-four radial and sixteen

annular sections as depicted in Figure 3.6. Each radial strip covers an angle in φ of 3.4◦

each, with each quadrant covering 81.6◦ in φ. The width of each annular strip is 2 mm.

The entire upstream CD detector covers a range of θ = 148.0◦ to 171.7◦.
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3.4 TIGRESS

The TIGRESS array is a Hyper Pure Germanium (HPGe) detector array situated at

the end of the beam line in the ISAC II facility at TRIUMF. It consists of up to sixteen

clover detectors placed around a target in three separate rings at θ = 45◦, 90◦ and 135◦,

which can hold four, eight and four clover detectors respectively. When fully assembled,

the faces of the detector fit together to form a rhombicuboctahedron [48], as shown in

Figure 3.7. The distance of each face of the detectors from the target can be adjusted

between 11.0 cm “high efficiency” configuration, and 14.5 cm “suppressed” depending on

the purpose of the experiment [49]. When in its suppressed configuration, the detectors

are drawn back far enough to allow compton suppression shields to be placed around

them, as will be discussed later in the chapter.

Figure 3.7: Three-dimensional model of a TIGRESS clover [50]. The labeling system
described in text.

Each clover contains four closed-ended, coaxial HPGe crystals, initially 60 mm in diam-

eter and 90 mm in length, which are cut to have four flat lengths along their sides to

allow for efficient packing into a square. The front 30 mm of each crystal is tapered at

22.5◦ in order to allow for close packing with neighbouring clovers. These measurements

are shown in Figure 3.10.

TIGRESS uses a Cartesian co-ordinate system to describe the internal position of each

component making up the detector (see section 3.4.1), but uses a polar co-ordinates

(r, θ, φ) to describe the position of each clover relative to the target. Theta, θ = 0,

corresponds to a positive z direction using SHARCs co-ordinate system. The co-ordinate

φ points due north and increases anti-clockwise around the z-axis as shown in Figure

3.8.



Chapter 3. Experimental Details 42

During this work, the clovers at 45◦ were removed in order to make room for the SHARC

electronics, meaning that only twelve clover detectors were used in this experiment.

𝒛 𝒙𝒙

𝒚

𝒚

θ

Beam

Beam

Ceiling

N

φ

𝒙

𝒚

𝒙

𝒚

Figure 3.8: Schematic of the TIGRESS co-ordinate system.

3.4.1 Clover Geometry

Each clover in TIGRESS is made up of four co-axial crystals of high purity germanium.

Germanium is used as a solid-state semi-conductor detector, the physics of which is

described in detail in reference [39]. Briefly, an incident γ-ray on a semi-conductor de-

tector can excite an electron into the conduction band of the detector material, creating

an electron-hole pair. The reverse bias voltage across the detector sweeps the excited

electron away towards the positively charged n+ contact and the ‘positively’ charged

hole towards the negatively charged p+ contact, thus creating two signals from the same

event: a current from both the conducting electron, and the valence hole. The crystals

within TIGRESS are n-type semi-conductors, as shown in Figure 3.9, and are originally

cylindrical before being cut to fit next to three other crystals within one cryostat. The

central point of this cylinder contains the n+ contact, which is hereafter referred to as

the “core” of the crystal. The outer contacts of the crystal collect the charge of the

holes.

The outer contact for each crystal in TIGRESS is actually divided into eight different

contacts, the geometry of which is described later in this section. This separation gives

a TIGRESS crystal a greater angular resolution since a hole produced by an interacting

γ photon will be attracted to the closest contact, thus providing information about the

position in the crystal at which a γ-ray was detected. The precision of the localisation of
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Figure 3.9: An n-type coaxial germanium detector [39].

the γ-ray interactions can be further improved by analysing the waveform of the collected

charge at the outer contact [51], however, this level of precision was not required during

this experiment. The segmentation also helps to reduce Doppler broadening, described

in section 4.1.6.

The crystals are colour coded with blue, green, red and white for ease of cabling and

for use as a co-ordinate system. The face of each clover represents a value of z = 0

with z increasing further into the detector. The centre of the clover corresponds to the

origin of the x−y plane as shown in Figure 3.11. The crystal labelled “blue” is the only

crystal found in the positive x and y direction, the other crystals progress in alphabetical

order (blue, followed by green, followed by red, followed by white) in an anti-clockwise

direction.

The position of the clovers with respect to the target are described using polar co-

ordinates r, θ and φ where the target is positioned at (0, 0, 0). TIGRESS was used in

its “suppressed” mode during this experiment so the value of r, relating to the centre

of the face of the target, is set to 14.5 mm for every clover. The value of θ is either 90◦

or 135◦ depending on which detector ring the clover is housed in. As is shown in Figure

3.8, the red and white crystals have a lower φ value relative to the centre of the clover,
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Figure 3.10: Schematic of the side of a clover within TIGRESS. Displayed are the
physical dimensions of the detector as well as the numbering system of each segment.
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Figure 3.11: Schematic of the front of a clover within TIGRESS. Displayed is the
numbering system of each segment as well as the colour coding of each crystal.

and so clovers in opposite hemispheres are rotated 180◦ relative to each other. It is also

the case that the blue and white crystals are found at lower values of θ.

Each crystal is further divided in to eight segments as shown in Figures 3.10 and 3.11.

These segments of the crystal are labelled 1 to 8, and are positioned to follow an internal

pattern common to all crystals in the array. Segments 1−4 is always located on the face

of the detector and extends 31 mm into the clover. The widths of these segments of these

segments increases from 21mm to 27 mm as z increases. Segments 5− 8 begin at z = 31

mm and extend to the back of the crystal (z = 90 mm see Figure 3.10). The position of
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segment 1 is always located at the outer most corner of a clover for each crystal. The

numbering of each segment the progresses in ascending order anti-clockwise such that

segment 3 is always the segment that is closest to the centre of the clover. This pattern

is the same for segments 5 − 8, with 5 being located at the outer most corner of the

detector, and 7 being closest to the centre. This therefore means that the co-ordinates of

each segment for each crystal is a rotation of the previous crystal rotated by 90◦ about

the centre of the clover.

3.4.2 Compton Suppression

TIGRESS has the capability of working in two modes: high efficiency mode, where the

clovers are packed close together and close to the target chamber in order to increase

the solid angle covered by each clover, and Compton suppression mode. In this latter

mode, each clover in TIGRESS is surrounded by scintillation detectors used to tag γ-

rays that are Compton scattered out of the clover. Titanium collimators are positioned

at the front of the clover to ensure that direct hits to the front BGOs do not occur. Two

types of scintillator are used: Bi4Ge3O12 or BGOs, and thallium-drifted caesium iodide

(CsI(Tl)). This is shown in Figure 3.12.

Figure 3.12: Cross section of a clover in Compton suppression mode [52].
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As discussed in section 2.6.2, the probability of a γ-ray interacting with matter is propor-

tional to the Z of the absorbing material. Bismuth has a much higher Z in comparison to

germanium (83 for bismuth compared to 32 for germanium) making the BGOs effective

at detecting escaping photons that do not interact with the matter in the clover detec-

tor. The energy resolution of the BGOs is not as good as that for germanium, meaning

that they are not useful in helping to determine the energy of the γ-ray detected. This,

however, is not the purpose of the BGO shields. Their purpose is to tag photons escap-

ing from the germaniums and eliminate events arriving in coincidence from the analysis.

The cheaper CsI(Tl) scintillator is used at the back of the detector due to the small

chance of a γ-ray proceeding through the thick clover without being absorbed.

Like the HPGe clovers, the scintillator suppression shields are segmented in order to

track the position around the clovers at which a γ-ray escapes. This segmentation is

shown schematically in Figure 3.13. Each crystal has four BGO detectors adjacent to

it: two at the front of the clover, one on each side, and two along the side of the clover

(Figure 3.12). The back CsI(Tl) scintillator detector is also separated into quarters; one

for each crystal. Each clover is therefore surrounded by a total of twenty scintillator

detectors.

Figure 3.13: A schematic of the scintillator detectors and their positions in compari-
son to the different crystals. Viewed from the back of the detector [52].
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3.5 The Trifoil

Due to the need to use inverse kinematics in this experiment, the reacted 25Na particles

emerge from the target travelling in a small cone of trajectories around the beam axis.

A zero-degree detector would therefore be ideal for this form of experiment. Ideally,

a detector of this type would be required to be able to identify the particles it has

detected so that a distinction between un-reacted particles, reacted particles, and fusion-

evaporation products can be made. This is advantageous as it allows for a closer look at

events that may otherwise be lost in noise by discriminating between useful and un-useful

events. Being able to detect with high precision, the energy and angle at which these

reacted particles emerge at would be ideal since it would allow the excitation energies of

the particles of interest to be calculated directly; however, this perhaps is too much to

ask in an experiment performed in inverse kinematics since the detected particle will be

the heavier of the two reaction products and will therefore be diverged from the beam

axis by a very small degree.

A sophisticated zero-degree detector such as a mass spectrometer, which incorporates

the use of magnetic and electrostatic separation in order to effectively achieve the sep-

aration of masses of particles is currently being constructed in the form of EMMA

(ElectroMagnetic Mass Analyzer)[53] at TRIUMF, but was unavailable at the time of

this experiment. Instead, the Trifoil detector, a small scintillator detector was positioned

behind the SHARC array in the beam line.

The Trifoil (Figure 3.14), so named because it uses three photomultiplier tubes on one

side of the scintillator plastic in order to create a signal to be analysed, was originally

developed at LPC Caen for the use of providing a time signal for experiments involving

secondary beams produced by projectile fragmentation [54]. It was re-purposed for

this experiment to tag the recoil particles, which consisted mostly of fusion evaporation

products produced by the compound reaction between 24Na in the beam and 12C in

the target, and 25Na nuclei from (d, p) transfer. A 50 µm aluminium foil is placed

before the scintillator foil that acts as a stopper to the slower moving, higher Z particles

produced as a result of fusion-evaporation. This thickness was chosen so as to still

allow particles of A ≈ 25 to pass through, thus allowing the recoils to be tagged and

gated on, while stopping the compound nuclei which contained no information relevant

to this experiment. This will be explained further in Chapter 4. The stopper foil also

allows non-reacted beam particles to pass through, which can cause problems since the

scintillator’s performance can degrade if exposed to a high flux of radiation. When

exposed to a beam produced by projectile fragmentation, as was the trifoil’s original

purpose, this is not a problem since the beam spot is less focused. However, the ISAC-II
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facility beam is produced via the ISOL method and has a beam spot of order 1.5 mm

[3] in diameter which can lead to a dead spot in the detector.

This dead spot is not a problem in and of itself as it will be localised to the diameter of

the beam and will contain mostly non-reacted beam particles which are of no interest

to this experiment. However, the dead spot is opaque to light and so can effect the

detector efficiency since the PMTs are only located on one side. The particles that are

of interest are the recoil nuclei after the (d, p) reaction, which emerge from the target in

a narrow cone around the beam axis.

The waveform of the signal picked up by the PMTs are passed through a Constant

Fraction Discriminator (CFD) in order to acquire timing information about the pulse.

A CFD interprets the amplitude of the pulse and calculates a threshold at which the

pulse raises above a constant predetermined fraction of the pulses amplitude. The pulse

is then delayed by a time greater than the original rise time, and the signal is compared

to the calculated threshold and a linear extrapolation of the points just above and below

the lines is performed in order to gain a higher precision of the time that this threshold

is crossed. This technique gives a value of time that is independent of the amplitude

of the peak [39]. The time passed to the DAQ is in units of 1/16th of the Front End

Field-Programmable Gate Array (FE FPGA) clock cycle in the Tig-10 front-end cards

where one cycle equals 10 ns [55].

A signal from the Trifoil is only recorded and analysed if two PMTs signals are in

coincidence with each other. This was determined with a NIM coincidence module with

a resolving time of 6.5 ns [56]. The signal is then sent to the DAQ to be recorded.

Figure 3.14: The Trifoil detector with the scintilator foil and photomultiplier tubes
labelled [57].
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Analysis

4.1 Calibrations

4.1.1 Alpha Calibrations

A triple α source consisting of 239Pu, 241Am and 244Cm was used to calibrate the SHARC

array. The calibrated spectrum obtained from these sources for all pixels is shown in

Figure 4.1. The main contributors to the spectrum, including the intensities of each

energy, are given in Table 4.1. Three peaks are observable in this plot, whereas there

are eight listed in Table 4.1. This is due to the energy resolution of SHARC being too

poor to be able to distinguish some of the energy peaks in the source; SHARC has a 250-

300 keV FWHM energy resolution [46], compared to the peaks in the spectrum which

are never more than 50 keV apart. Due to this observation, each peak has a distribution

that is not entirely Gaussian, but is actually slightly skewed. This affects the calibration

because the fit that is required must also account for these smaller peaks.

The calibration of the silicon detectors is not a simple matter of finding the difference

between the detected value for energy and comparing this to the known energies from

the α source to find a scaling factor, as is the case for the germanium detectors described

below. This is because of the dead-layer associated with each strip which could result

in a systematic error in the results if not taken into account.

As described in Chapter 3, each DSSSD has an aluminium strip running across the

length of the detector. The function of these strips is to carry away the collected charge

that produces the signal for the DAQ to process, however, their position on the face of

the detector results in the active area being shielded, and thus any energy detected in

the DSSSDs will be an energy that is reduced due to the energy loss in the aluminium

strips.

49
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Figure 4.1: The triple-α calibration spectrum obtained over the entire SHARC array.

This effect is reduced for the box detectors because the average thickness of the alu-

minium strips are reduced to maximise the detector efficiency at low energies. The

strips on the CD detector, however, have a much greater thickness, and so the energy

loss can have a much greater impact on the energy. The detected energy of the particles

in the CD detector will be lower than particles of the same energy detected in the Box

detectors due to the greater amount of aluminium covering the strips.

In addition to the aluminium dead-layer, there is also a layer of inert silicon. The loss

of energy in both the aluminium and silicon dead-layers must be corrected in order for

the true energy of the detected particle to be recorded. The thickness of the aluminium

and silicon did not need to be calculated separately in order to find the total energy lost

in the dead-layers. Energy loss was calculated using a function in the software NPTool

[58], which in turn used a table generated by SRIM. NPTool assumes the dead-layer to

be given in aluminium, and so an effective thickness for a dead-layer of pure aluminium
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Source Energy (MeV) Relative Intensity (%) T1/2 (years)

239Pu
5.15659(14) 70.77(14)

2.144 ×1045.11443(8) 17.11(14)
5.1055(8) 11.94(7)

241Am
5.48556(12) 84.8(5)

432.65.44280(13) 13.1(3)
5.388 1.660(20)

244Cm
5.80477(5) 76.90(10)

18.11
5.76264(3) 23.10(10)

Table 4.1: Main contributing energies see from the triple α source [33].

was found using this software. SRIM is a collection of software packages which can be

used to calculate the range of particles in a material using a combination of experimental

data and various models [59] [60].

The actual thickness of the dead-layer that must be accommodated was computed sepa-

rately for each pixel, since the thickness of the dead-layer is dependent on the the angle

at which the particle enters the detector. It is not, therefore, a simple case of assuming

that each pixel has the same dead-layer thickness.

Plotting a graph of known energy peaks (Table 4.1) against peak channel from the

data files and extrapolating the linear line of best fit to find the intercept of the x-axis

demonstrates the possible error associated with ignoring the dead-layer thickness; in a

linear detector, the extrapolated line should intersect the origin since an energy of zero

should result in getting a zero signal. If this is not the case, then the implication is

that the energy that is detected is not actually the energy displayed in Table 4.1, but an

energy that has been reduced by the dead-layer. The dead-layer can then be determined

using the following iterative process:

1. An initial value of 0 for the dead-layer thickness was assumed. Using the NPTool

function to determine energy loss for this thickness, the energy loss of the α particle

was found, and the energy of a particle after the dead-layer was calculated.

2. A graph of the calibrated energy post dead-layer correction was plotted against

channel energy, and a linear fit ECalibrated = c+mEchannel was plotted.

3. The Zero point energy EChannel = (ECalibrated − c) /m was calculated for ECalibrated =

0, i.e. EChannel = −c/m, for each pixel, and the difference between E0 and 0, δ0

was evaluated.

4. If δ0 was within 0.1 keV of the origin, then the dead-layer thickness was recorded

for the pixel. Otherwise, the dead-layer thickness was modified and the process

was repeated.
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Figure 4.2: Illustration of how the dead-layer can affect the energy of the α calibra-
tions. Before dead-layer corrections, ECalibrated equal the points for the three largest
peaks listed in Table 4.1 (red line). After dead-layer corrections, ECalibrated is less and
creates a line that passes through the origin (blue line). This figure is exaggerated in

order to make this effect clear.

This process is illustrated in Figure 4.2.

The thickness found for each pixel was plotted in order to clearly see if there were

any pixels that where giving a false reading. These plots are shown in Figure 4.3 and

reveal that some pixels close to 90◦ are calculated to have an extremely high dead-

layer thickness. This is likely due to the source frame or parts of the SHARC frame

hindering the α particle’s journey to the detector. Strips displaying this high large

thickness characteristic were removed from further analysis. The average thickness over

all the box detectors after the exclusion of the anomalous strips is 0.5× 10−3 mm with

a standard deviation of 0.2× 10−3 mm.

4.1.2 PAD Calibrations

Due to the DSSSDs of the downstream box being very thin, it is possible that the protons

and deuterons can punch through and only deposit a fraction of their original energy.

As described in Chapter 3, thicker PAD detectors were placed behind the ∆E telescopes

so as to be able find the total energies of the particles.

The PAD detectors are shielded from the source by the ∆E DSSSDs detectors , making

them impossible to calibrate using an α emitter as described above. The α particles
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Figure 4.3: Dead-layer thickness of each pixel for the Upstream Box detectors.

from the triple α source are completely absorbed by the silicon in the ∆E strip detec-

tors housed in front, meaning that any events that are detected will be as a result of

background noise. A different technique must therefore be deployed in order to calibrate

these detectors. The adopted method used the data from the experiment and calibrated

values from the DSSSD punch-through events as explained below.

PAD calibrations in principle can be performed using one of two methods. The first

possibility would be to take the angle at which the event was detected, and work out the

energy that should be detected in the PAD detector after the energy loss in the ∆E−E
telescope. The other method is to take the energy detected in the ∆E − E detector

and deduce the energy that is required to be found in the PAD in order to match the

predicted energy of the kinematic line. The former method assumes the detected angle to

be accurate, whereas the latter requires the measured energy to be correctly calibrated.

This work uses the latter method due to initial problems in aligning the detectors, as

described in section 4.2.3.
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The first step in this process is to distinguish between the punch-through protons and

deuterons. Each of these types of particles can be used to calibrate the detector, however,

they lose energy at a different rate when travelling through a medium and this difference

will affect the calculation of the expected energy in the PADs given the energy deposited

in the DSSSDs. As such, each event must first be identified as either a proton or

a deuteron. Once this is complete, the calibration can be found with either type of

particle.

Particle identification is done by examining the energy lost in the ∆E telescopes com-

pared to the (un-calibrated) energy in the PADs, as shown in Figure 4.4. It does not

matter that the PADs are not calibrated in this stage, since the goal is simply to distin-

guish particle types.

Figure 4.4: Particle identification of protons (lower band) and deuterons (upper band)
for the downstream box.

The separation of the different particles is important not only because of the difference

in the rate at which particles lose energy when travelling through a medium, but also

because of the difference in the kinematics of each particle. An elastically scattered

deuteron emerges from the target at a different angle than an elastically scattered proton

of the same energy. Therefore a proton and a deuteron of the same energy will lose

different amounts of energy travelling through the ∆E detector because they have to

travel through a different thickness of material. A cut was created around the deuteron

band in Figure 4.4. The calibration of the PAD detectors was performed by comparing

the events within this cut and the deuteron elastic kinematic line. Using a 2D graph of

predicted PAD energy (i.e. the kinematic energy minus the threshold energy of the pad
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detector) against the un-calibrated energy in the PAD detector, and drawing a line of

best fit, the calibrated energy could be found.

In order to check how successful the calibrations were, a new plot showing ∆E against

the calibrated E was created where the values of ∆E were normalised to the nominal

thickness of the ∆E telescope (140 µm), i.e. the energy lost in the ∆E telescope if each

particle passes through 140 µm of silicon vs total detected energy, was created.

For this process, the values of energy after being normalised will be marked with a prime

symbol, for example, in E′PAD represents the energy of a particle detected in the PAD

detector after it has passed through 140 µm of silicon. The total energy detected, ETotal

is equal to the total energy after the value for ∆E has been normalised, hence:

ETotal = ∆E + EPAD = ∆E′ + E′PAD, (4.1)

∆E′ = ∆E cos θD (4.2)

and

E′PAD =
(
∆E −∆E′

)
+ EPAD (4.3)

where θD is the detector angle which is the angle at which the particle passes through

the detector with respect to the normal of the detector. This angle is defined by the dot

product of the vector path taken by the particle to the detector face, r̂, and the unit

vector of the face of the detector, â:

cos θD =
r̂ · â
|r̂||â|

. (4.4)

Equation 4.3 originates from the condition shown in Equation 4.1; because ∆E′ is ∆E

reduced by a factor of cos θD, E′PAD must equal EPAD plus the difference between ∆E

and ∆E′.

Figure 4.5 shows the particle identification after calibrations and the normalisation de-

scribed above have been performed. It can be seen here that the proton and deuteron

lines are more pronounced than in Figure 4.4. This figure also reveals a clear band of

3H that was detected in the experiment.

4.1.3 Solid Angle

The solid angle of the SHARC array is required in order to get the differential cross

sections of the reaction. The solid angle in the centre-of-mass frame, ΩCM , was used in
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Figure 4.5: Particle identification of protons and deuterons for the downstream box
after calibrations and normalisation to passing through 140 µm.

order to normalise the elastic scatter in the downstream box detector in order to find

the beam current and the number of target nuclei, and the solid angle in the lab frame,

ΩLab, was used to find the angular distribution of protons.

For a detector array that is cylindrically symmetric around φ, the solid angle can be

found by

dΩ =

∫ θmax

θmin

∫
φ

sin θdθdφ = 2π

∫ θmax

θmin

sin θdθ. (4.5)

Equation 4.5 gives the case in which the coverage in φ is total and that there are no

gaps in the detector. It therefore gives the maximum solid angle coverage possible by

a detector array. Any θ-independent gaps in a cylindrical detector results in reducing

the dΩ by a scaling factor between 0 and 1. The rectangular cuboid shape of SHARC

means that each detector is constant in one of the x, y, or z co-ordinates, and so the φ

coverage in each angle bin in the SHARC array is not constant since each corner of a

single pixel corresponds to a different value of θ and φ.

The solid angle covered by each pixel can be calculated using

dΩ =
d
−→
A · r̂
r2

=
d
−→
A · −→r
r3

(4.6)
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and

d
−→
A =

(dx)(dz)n̂ if y is constant

(dy)(dz)n̂ if x is constant.
(4.7)

Here d
−→
A is the area of an individual pixel and n̂ is a vector normal to the plane of the

pixel.

Figure 4.6 includes a sinusoidal curve that depicts the solid angle of a detector with a

100% efficiency as given in Equation 4.5. The actual solid angle of SHARC follows this

line, but has a reduced height due to the geometry of the detector. As described in

section 3.3.1, the active area of each DSSSD does not extend all the way to the corner

of the box. This reduces the efficiency of the detector for each value of θ. This inherent

loss is exacerbated if the detector has a dead front strip (running parallel with the beam

axis), which causes the profile of the solid angle for SHARC to become jagged.

A sharp decrease in solid angle is seen on the occasion that there is a gap in the active

area of a detector that runs perpendicular to the z-axis, for instance, when there is a

dead strip on the back side of the DSSSD, or due to the edges of the detector being

reached. An example of this can be seen in Figure 4.6 around 140◦, which is caused by

a gap between the upstream box and the CD detector.

Figure 4.6: Solid angle for the upstream detectors for the 3.455 MeV excited state in
25Na.
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The solid angle in the upstream box was calculated using NPTool [58] which used a

Monte-Carlo simulation with a flat cross section to simulate the number of detected

events found at each value of θ and φ, namely Ndetected(dΩCM , C), where C refers to the

input conditions i.e. cuts, threshold values, dead detector strips etc. The value of the

centre-of-mass solid angle, dΩCM , was then calculated using Equation 4.8 by comparing

Ndetected(dΩCM , C) and the number of particles emitted, Nemitted [61],

dΩCM =
Ndetected(dΩCM , C)

Nemitted
4π. (4.8)

Subsequently, dΩCM can be converted into dΩLab using the method described in section

4.2.5.

Using a flat cross section Monte-Carlo simulation is advantageous because it allows the

input of other factors which might have an effect on the solid angle. The threshold

of the detectors, for example, causes a drop off in solid angle at higher energy levels;

energy levels populated in the (d, p) reaction are associated with lower energy protons.

This became a major factor in the analysis of the experiment as it affects the angular

distributions found for each excited energy state (see section 4.4). The way that the

solid angle drops off as excitation energy increases is shown in Figure 4.7.

Figure 4.7: Solid angle drop-off as energy increases as a result of the energy threshold
in the detectors.
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4.1.4 Germanium Calibrations

The well known γ-ray energy transitions from 152Eu, 133Ba and 56Co sources were used

to calibrate the germanium detectors in TIGRESS. The energies in Table 4.2 gives the

γ-ray energies of the radioactive sources used in the calibration. Using Root, a histogram

of the energy spectrum for each source was produced and the peak for each energy listed

was found. The values of the uncalibrated peaks where then plotted against the energy

values obtained from the literature. A linear line of best fit was plotted and the gradient

and intercept along the y-axis of this line was found and used to calibrate the spectra.

The peaks that were used in the calibration have been marked with an arrow in Fig-

ures 4.8 and 4.9. Also observable in Figure 4.8 is a γ-ray at 511 keV. This peak is

produced when 56Co β+ decays and the produced positron annihilates with an electron.

Europium-152 decays primarily through electron capture, and so no 511 keV peak is

seen in Figure 4.9, though a characteristic X-ray is observed at < 100 keV. The peaks

used in the calibration were chosen due to how uniformly they were spread throughout

their spectrum. This was done so that the line of best fit was not weighted around one

spot and thus able to alter the values of the gradient and intercept.

Figures 4.8 and 4.9 show the calibrated spectra for each of the calibration sources.

To obtain these histograms, the add-back over one detector was calculated using the

methods described in Section 4.1.5.

4.1.5 Add-back

The majority of γ-rays detected during this experiment fall within the range of 0.1 MeV

to 5.0 MeV. Figure 2.9 shows that the most likely interaction process for γ-rays at this

energy (at Z = 32, which is the atomic number of the germanium detector) is Compton

scattering. This means that it is likely that a γ-ray detected in TIGRESS will deposit a

fraction of its energy in one segment before being scattered to another interaction point,

which may be in another segment. A schematic of three possible γ-ray paths is shown

in Figure 4.10 where the asterisk represents a point at which energy is deposited in the

detector.

BGO shields are used to detect when a γ-ray exits a clover without depositing all of

its energy, as described in Chapter 3. If this occurs, the γ-ray is rejected and not

used in further analysis. The γ-rays that remain within the detector, but are Compton

scattered between crystals do not contribute to the Full Energy Peak (FEP) in the

final spectrum for an individual crystal, but instead contribute 2 or more counts to the
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Source Energy (keV) Relative Intensity (%)

56Co

846.770 99.94
1037.843 14.05
1238.288 66.46
1771.357 15.41
2034.791 7.77
2598.500 16.97
3253.503 7.92

133Ba

80.9979 32.9
276.3989 7.16
302.8508 18.34
356.0129 62.05
383.8485 8.94

152Eu

121.78 28.67
244.70 7.61
344.28 26.6
778.90 12.93
964.079 14.65
1112.069 13.69
1408.006 21.07

Table 4.2: Energies of the peaks used to calibrate the TIGRESS array and their
relative intensities.

Compton continuum at lower energies, effectively increasing the background of other

peaks. The event can be recovered using an add-back procedure described below.

Each crystal in a clover has a central core readout of energy for each event. This means

that if a γ-ray is scattered, but is later absorbed in an adjacent segment in the same

crystal, the total energy of that clover can be read out without the need for any further

analysis, however, no such system can be used for inter-crystal scattering events. In this

case, Compton scattering is reduced by implementing add-back between γ-rays detected

in different crystals in the same clover. If two photons are detected simultaneously in the

same clover (and nothing is detected in the BGO adjacent to any of these events) then

the two energies are added back together to get the full energy of the γ-ray. Only those

photons that are detected in adjacent crystals are added together. This is because of the

geometry of the HPGe detectors; for a γ-ray to have been detected travelling diagonally

across a detector, it must have first travelled through at least one other segment without

being detected. It is considered that two γ-rays originate from different sources if they

are detected diagonally across from each other. Of course, this allows for the situation

in which two unrelated γ-rays are added together. This situation is rare because events

with a multiplicity greater than two only happen 4.2% of the time.

The angle of emission is taken to be that of the γ-ray interaction which deposits the

highest energy [62] because particles that deposit large energies correspond to γ-rays
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Figure 4.8: Calibrated γ source data for cobalt-56 below 1500 keV (top) and above
1500 keV (bottom). The energies of the peaks shown in Table 4.2 are marked with an

arrow.

that are scattered at high angles (Equation 2.48) and are therefore more likely to enter

a different segment or clover in the detector.

4.1.6 Doppler Corrections

Post reaction, a 25Na nucleus in an excited state will be travelling at modestly relativistic

speeds of order 0.1c. The γ-ray emitted as the nucleus de-excites will be subjected to a

Doppler shift,

E0 = γEγ (1− β cos θ) , (4.9)
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Figure 4.9: Calibrated γ source data for barium-133 (top) and europium-152 (bot-
tom). The energies of the peaks shown in Table 4.2 are marked with an arrow.

Figure 4.10: Possible paths taken by a γ-ray through a detector. A γ-ray enters the
detector and is absorbed via the photoelectric effect (left). A γ-ray is Compton scattered
in one segment of a detector before being completely absorbed in the adjacent segment
(middle). A γ-ray is Compton scattered twice before managing to escape the detector

completely (right) [57].
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where E0 is the energy of the detected γ-ray if it were emitted from the nucleus at rest,

Eγ is the energy detected in the lab, β is the ratio between the velocity of the emitting

source and the speed of light, v/c, and

γ =
1√

1− β2
, (4.10)

is the relativistic γ factor and equals 1.00856 here. The dependence E0 has on angle

means that if the particle is travelling towards the detector, E0 will be shifted to a higher

energy than that at which it was emitted; if the particle is travelling away, the γ-ray

will be detected at a lower energy. The segmentation of TIGRESS becomes useful here,

as it allows for a more accurate measurement to be made of the the γ-ray by being able

to identify its angle to within 9◦, which is the angle covered by one segment.

The segmentation of TIGRESS also helps to reduce the effect known as Doppler broad-

ening. A γ source could emit a photon in any direction as it passes the detector. If

a photon is emitted at a forward angle relative to its direction of travel, then it will

be detected with an energy shifted by an amount determined by Equation 4.9. If the

photon is emitted at backwards angles, then the γ-ray will be detected at an energy

lower than its true value. Therefore, it is possible for one photon of a single energy to

be detected as a continuum of energies. This effect is reduced if the angular acceptance

of the detector is reduced, which is achieved in segmented detector arrays.

Figure 4.11: Full energy peak at 1.043 MeV as seen for both the 90◦ detector ring
(red) and the 135◦ detector ring

.

The value of β used in Equations 4.9 and 4.10 were obtained by comparing the difference

between the centroid position of a γ peak detected in the 90◦ and 135◦ detector rings.
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The β value for the beam was β = 0.13 according to kinematic calculations, so this

was used as an initial estimate of the β value for the reacted 25Na nuclei, however, this

resulted in a discrepancy between the two detector rings. In order to refine the effective

value of β, the centroid for the γ peaks were fitted for each detector ring to gain the

centroid positions, which were then averaged. Equation 4.9 was then equated to this

averaged peak at different angles to find β = 0.127. The agreement between peaks at

different values of θ can be seen in Figure 4.11.

4.1.7 Relative Efficiency Calibrations

The ways in which γ-rays interact with matter are different to those of charged particles.

Charged particles are deflected by the change in electromagnetic potential created by

atoms in the stopping material which causes them to slow down as they pass through.

A γ-ray, however, has a chance of passing through the active area of a detector without

losing any energy. This means that γ-ray detectors may not detect some γ-rays at all,

even when they cover the full solid angle. The absolute efficiency, εabs, of a detector is

defined as the ratio between the number of detected events in the detector, N(Eγ) and

the number of γ-rays emitted, which is the product of the intensity of the decay, I(Eγ),

the activity of the source, A, and the time over which the calibration was run, t,

εabs =
N (Eγ)

I (Eγ)At
. (4.11)

The value for N(Eγ) in Equation 4.11 is expressed as a function of energy since it is

more likely for a high energy γ-ray to pass through the detector undetected. This then

means that the absolute efficiency is dependent on energy and as such it is necessary

to use the radioactive sources listed in Table 4.2 to measure the efficiency over a range

comparable to the expected range of γ energies found in the experiment. These sources

were supplied with a value for activity measured on the date of their creation. Using this

value of activity would allow for the calculation of the sources’ current activity which

would then allow for the absolute efficiency to be calculated.

This standard method for measuring the efficiency is impossible to achieve with the

TIGRESS array due to difficulty in measuring the dead time of the Data AcQuisition

system (DAQ). When a γ-ray is detected in a clover, it will be rendered dead, but the

remaining clovers remain live and capable of detecting a photon. This has the effect of

making the array more efficient, but means that there is no direct measurement of dead

time to be made in the DAQ. If the activity of a source is small then the effect of dead

time is also small because the detectors have time to become live again before another
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γ-ray enters the clover. Previous experiments performed with the same set-up as this

experiment have quoted that using Equation 4.11 to find the efficiency of TIGRESS

is inconsistent, likely because of this issue with the dead time [57] [63]. As a result

Equation 4.11 could not be used.

Instead, the counts under the Full Energy Peak of each energy in the spectra of 56Co,

133Ba and 152Eu where measured using a Gaussian plus a second order polynomial

in RadWare [64]. RadWare then fitted the measured counts at each energy for each

spectrum to Equation 4.12, where values A, B, C, D, E, F and G are constants found

by the software.

εr = exp
{(
A+Bx+ Cx2

)−G
+
(
D + Ey + Fy2

)−G}−1/G
, (4.12)

where

x = ln

(
Eγ

100keV

)
and y = ln

(
Eγ

1MeV

)
. (4.13)

Here εr is the relative efficiency. The relative efficiency curve for 133Ba was produced

first. Each other efficiency curve was then scaled to fit. This was done separately for

both the 90◦ and the 135◦ clovers. This produced the shape of the efficiency curve as

shown in Figure 4.12 but does not yield the absolute efficiency.

4.1.8 Absolute Efficiency Calibrations

A technique that is not dependent on the dead time of a system is required to find

the efficiency. A new approach was developed in previous experiments [57] that uses γ

cascades seen in the decay of 56Co to determine the efficiency of the detectors.

In a γ cascade, there will be a certain probability that a γ-ray, γ2, will be emitted after

another γ-ray, γ1. The probability of this occurring is equal to the branching ratio (BR)

of that decay. It follows, then, that the efficiency of the detector at the energy of γ2,

namely the efficiency ε2, will be equal to the ratio of detected γ2-rays (given that γ1 is

also detected), to the number of γ1-rays detected multiplied by the branching ratio,

ε2 =
N (γ2|γ1)

N (γ1)×BR
. (4.14)

The level scheme for 56Co (Figure 4.13) is appropriate in order to utilise Equation 4.14

because it has two γ decays that have a branching ratio of 100% (BR = 1): 1238 keV
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and 847 keV. The energy states that produce these γ-rays also have several states feeding

into them. This latter characteristic means that several measurements for efficiency can

be performed by gating on each of the energies that are feeding either the 2085 keV or

847 keV energy states. For instance, N(γ1238|γi) can be found by gating on γi = 2035

keV, 1771 keV or 1038 keV γ-rays.

This measurement does not take into account any random coincidences that may occur.

There is a small chance that a γ-ray associated with a cascade is detected in coincidence,

but was not actually emitted as part of the same cascade. The chance of this occurring

was investigated by finding N(γ2|γ1) in the case that γ1 = γ2. The probability of a

random coincidence, p(r) is therefore

p(r) =
N(γ1|γ1)

N(γ1)
(4.15)

The counts found that are random coincidences must be removed in order to find the

correct efficiency, hence,

ε2 =
N (γ2|γ1)−N (γ2|γ1) p(r)

N (γ1)×BR
. (4.16)

Figure 4.12: The efficiencies of the 90◦ and 135◦ γ-ray detector rings. The calibration
points are the γ energies that were used to determine εabs (described in text) and
provided the factor to which all other points were scaled. The values of the absolute

efficiency calibration data are listed in Table 4.4.

The clover that detects γ1 will be will be dead to any other γ-ray that may be emitted

in its direction. This will again result in dead time affecting the efficiency calculations of
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Figure 4.13: The level scheme for 56Co. Gamma-decay cascades are shown for each
of the states [63] [33].

γ2 (keV) Gated Energies, γ1 (keV)
ε2

90◦ 135◦

847

1038 0.0199 (6) 0.0108 (3)
1238 0.0195 (3) 0.0100 (1)
1771 0.0197 (7) 0.0116 (4)
2035 0.0187 (9) 0.0110 (5)
2599 0.0211 (7) 0.0010 (4)

1238
1038 0.0148 (5) 0.0078 (3)
1771 0.0163 (6) 0.0082 (3)
2035 0.0146 (8) 0.0074 (4)

Table 4.3: Absolute efficiencies of TIGRESS at 847 keV and 1238 keV when gated
on γ-rays that are seen in the same γ cascade for the 90◦ and 135◦ detector rings.

the array. This problem is avoided by partitioning the TIGRESS array into individual

rings of detectors. By doing this, it is possible to find the efficiency of the 90◦ detector

ring by gating on γ1 in the 135◦ detector ring and measuring the number of γ2 detected

in the 90◦ ring. The efficiencies found using each γ-ray in the cascade using each detector

ring is listed in Table 4.3

Using different values for γ1 to perform the efficiency measurement gives different values

for efficiency with varying precision. The results from each measurement where combined

using a weighted average given in Equation 4.17,
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γ2 (keV)
ε2

90◦ 135◦

847 0.0197 (2) 0.0103 (1)
1238 0.0153 (4) 0.0079 (2)

Table 4.4: Absolute efficiencies of TIGRESS at 847 keV and 1238 keV for the 90◦

and 135◦ detector rings.

ε̄weigted =

∑
γ

εγ/σ
2
γ∑

γ

1/σ2
γ

, (4.17)

with an error of

σε̄ =

√√√√√ 1∑
γ

1/σ2
γ

(4.18)

were εγ is the efficiency calculated for a particular γ-ray energy and σγ is the error in

that efficiency. Equation 4.17 gives a single averaged value for efficiency for the energy

of γ2 used. These values are shown in Table 4.4 and are the final results used to scale

the relative efficiency curves found in section 4.1.7. The absolute efficiency curves are

displayed in Figure 4.12. It can be seen here that the 135◦ detectors are approximately

50% less efficient than the detectors at 90◦.

During the experiment, the particles that emit the detected γ-rays are moving at 0.127c,

and so any γ-rays that are detected will have to be Doppler corrected in order to establish

their true energies. The efficiency curves of the 135◦ detector ring must therefore be

Doppler shifted using the process described in Section 4.1.6 in order to show the detector

efficiency at the emitted γ-ray energy, and not the detected energy. The effect this shift

has on the efficiency curve at 135◦ is shown in Figure 4.14. These curves are used by

reading off the efficiency at the Doppler corrected energy.

4.2 Position of the SHARC Array

4.2.1 Aligning the z axis

All the data recorded for this experiment relies upon knowing the angle at which the

particle is detected. It is therefore very important to make sure that the SHARC array

is aligned correctly with the target position and that the particle position is known.
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Figure 4.14: Efficiency curves before and after Doppler corrections for the TIGRESS
detectors at 135◦. The corrected curve is used by looking up the efficiency at the

Doppler corrected energy.

Due to the design of SHARC, it is possible for each box detector and each CD detector

to move independently of each other during the construction of the array. It is, however,

unlikely for each DSSSD to shift relative to the others in the detector that are holding

it in position. Therefore, the alignment of the array was treated by looking at the

three separate sections of the array: upstream and downstream box detectors, and the

upstream CD detector.

The z-alignment is the most critical as it is this co-ordinate that has the greatest effect

on the θ of the detected particle, which in turn has an effect on the calculated excited

state of the final nucleus. The z-alignment was checked by comparing the kinematic

lines seen in the plotted data against the calculated kinematics. Due to the well defined

lines seen for (d, d) elastic reactions, it is very easy to see if the data stray from the

known values.

To estimate the shift required to ensure that the data fit with the calculated kinematic

lines, θ was plotted with a gate on a narrow band of energy. The energy band chosen for

the gate was arbitrary as long as it was within the energy range of the detected particle

of interest. The peak that was seen using this gate occurred at a θ that was different

from the angle predicted by the kinematic line.

A shift in θ is related to a shift in the z-position of the box as shown in Figure 4.15.

Since ∆z = z2 − z1, then clearly
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Figure 4.15: Depiction of the z-shift required to correct θ.

∆z = z2 −
x1

tan(θ + ∆θ)
(4.19)

for the downstream box detector and

∆z = z2 −
x1

tan(π − θ −∆θ)
(4.20)

for the upstream box detector.

Equations 4.19 and 4.20 are both dependent upon the x (or y) coordinate of the DSSSD,

which themselves may not be at their nominal values. Hence this method only provides

an estimate for ∆z. Under the assumption that the detector array is centred in the x−y
plane, where x = ±40.8 for the downstream detectors and ±41.4 mm for the upstream

detectors, it was found that each box detector was required to be sifted about 2 mm

towards the target position.

4.2.2 Aligning the x− y plane

The interaction point of the beam in the target is what is considered to be the target

position during the analysis. This means that although checks where carried out during

the set-up of the experiment that the target holder was correctly positioned at the centre,
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there may still be an error in the alignment. These errors will occur if the beam spot is

not centred at the centre of the target.

In an ideal scenario, each DSSSD should be positioned such that the target is equidistant

from them in the x − y plane. To find out whether this is the case, a plot showing the

reaction data for each detector was plotted individually and overlayed on top of each

other. This is shown for detectors ten and twelve in Figure 4.16, where it can be seen

that there is still some discrepancy between detectors. The red band is clearly shown

not to completely overlap that of the black band, even after a z-alignment correction

has been applied.
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Figure 4.16: Kinematic lines plotted for detector 10 (black) and detector 12 (red).

The discrepancy between the detectors can be explained using Figure 4.17. If the target

is not centred (case shown in red), then a particle that leaves the target at an angle θ1

will be detected at a position z1 in the detector. Likewise, a particle that emerges from

the target at an angle of θ2 will be detected at a position z2. If these two particles are

detected with the same energy, then θ1 should equal θ2. Since the target position was



Chapter 4. Analysis 72

initially assumed to be centred in the x− y plane (case shown in black), the angles for

particles detected with a certain energy have their value of θ evaluated incorrectly. A

shift, ∆x is required in order to meet the condition that θ1 = θ2. The magnitude of ∆x

is found by realising that tan θ1 = tan θ2 and therefore,

∆x =
(z1 − z2)x

z2 + z1
. (4.21)

Both the alignment in the z-direction and in the x− y plane can be performed to a first

approximation in the ways described above, but it becomes near impossible to find the

exact alignment by hand using these methods due to the dependency x, y and z have on

each other. In order to find the best fit value to use for the position of the box relative

to the target, a minimiser was coded and used to fit to the kinematic lines.

θ1 θ
2

𝒙

Δ𝒙

𝒛1

𝒛2

𝒙

𝒛

Figure 4.17: The x or y-shift required to correct θ.

4.2.3 Fitting to Kinematic Lines

The kinematics of the experiment are dependent on the reaction channel. The range of

angles at which each type of reaction is seen is explained in Section 2.5.

For clarity, it should be noted that the 25Na particles do not deviate greatly from the

beam axis post reaction and so are not detected by SHARC. The kinematic lines shown
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Figure 4.18: Kinematic lines over the whole range of the SHARC array are shown
overlaid on top of the data. The calculated lines corresponding to the (p, p) and (d, d)
elastic scattering data, and the protons from (d, p) leading to the ground-state of 25Na

are included.

in Figure 4.18 are therefore the kinematics of the protons produced in the reaction.

Given that the energy and momentum the beam is known to be 8 MeV/A, and knowing

that energy is conserved, the excitation energy of the 25Na nuclei can be calculated using

relativistic four vectors;

s1 + s2 = s3 + s4, (4.22)

where sn is the magnitude of the four vector containing the energy and momentum of

the nth particle, Pn:

Pn =


En/c

ipx,n

ipy,n

ipz,n

 (4.23)
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Figure 4.19: Excitation energy as calculated from (d, p) kinematics, shown as a func-
tion of angle for the upstream box and CD detectors. The horizontal bands represent

energy levels populated in the experiment.

Figure 4.19 shows the result of this calculation for the upstream box. Figure 4.20

gives the projection of excited energy over this angular range and includes the markings

showing the preliminary locations of the peaks that correspond to the states seen to be

populated.

A large part of the analysis process is to find the position of the SHARC array so that

the kinematic lines shown in the data match the theoretical kinematic lines. This is

done by first estimating the x, y and z coordinates for the upstream and downstream

boxes using the processes described in Sections 4.2.1 and 4.2.2. The procedure used

to find an accurate position of the upstream box and CD detectors is described below.

The procedure used to find an accurate position of the downstream box is described in

Section 4.2.4.

Particles emerging from the target lose energy dependent on the thickness of the material

it passed through. This means that a particle that is detected close to 90◦ will pass

through more matter than a particle that is detected close to 0◦ or 180◦. The effect this

has on the kinematic lines is to reduce the energy of particles detected close to 90◦. This
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energy loss has to be corrected for in order to obtain good agreement with calculation,

but this correction is not trivial since it is tied to the angle of the detected particle,

which is dependent on the position of SHARC.

Figure 4.20: Excitation energy spectrum for 25Na calculated using (d, p) kinematics
for particles detected between 90◦ and 180◦. The dotted lines show the initial estimated

positions of excitation peaks.

The excitation energy spectrum (Figure 4.20) was needed in order to fit the kinematic

lines more accurately than using the techniques described in Sections 4.2.2 and 4.2.1. A

code was written to minimise the difference between the data and known excited states

that were expected to be seen. An initial estimate for x, y, and z was provided for the

target position using Equations 4.21 and 4.19. The estimate for the target thickness of

1 mg/cm2, which was the manufacturers specification of the target, was also given and

used to calculate the difference between the data and these known values. These values

were then changed and the difference between theory and experimental data was again

checked. This was repeated until a minimum was reached.

This procedure was performed with the ground-state data due to the simplicity of com-

paring the data to zero. However, the ground-state line is very faint – especially in the
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CD detector (see figure 4.18), and so there were very few counts to base the alignment

of the detector on. Repeating the process with a more visible state allowed for a more

accurate measurement, but produces the problem of being able to identify the same

state in the CD and the upstream box detector. This problem was solved using the

γ-ray data and gating on a γ-ray that is associated with a known energy level.

Chapter 5 will describe in detail the clear evidence for the population of a state at 3.455

MeV in 25Na. Gating on the γ-ray peaks associated with the decay of this state allows

the protons detected at this energy to be identified in both the CD and box detectors.

This means that the minimisation procedure can be applied to this state for both parts

of the detector.

4.2.4 Aligning the Downstream Box Detectors

Figure 4.21: The kinematic lines for the downstream box detectors with the calculated
kinematic lines for (d, d) and (p, p) elastic scatter.

Minimising the values for x, y, and z was much more problematic for the downstream

box detector. Figure 4.21 shows the kinematic lines for the (p, p) and (d, d) elastic

scatter data compared to the calculated kinematic lines. The calculated (d,d) kinematic

line does not appear to follow the data perfectly, deviating slightly from the theory line

close to the threshold and close to the punch through energy (≈ 6 MeV). This deviation

causes the data to appear slightly flatter than the theoretical kinematic line, which in

turn causes the minimisation algorithm to fail. Omitting this energy region from the

minimisation procedure left a very small selection of data that could be used to find the
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detector positions. The solution was to analyse the counts detected by each pixel for the

downstream box that covered the angles that were not affected by the high threshold or

punch through.

Figure 4.21 shows also a kinematic line for a (d, d′) inelastic scatter reaction (shown in

red) where a 24Na beam particle is left excited after a collision with a deuteron in the

target. This line represents the 1.512 MeV excited states found in 24Na and is depicted

here because γ-rays depopulating this energy state were observed in the experiment.

The energies populated in 24Na are discussed in more detail in Section 4.4.1. It is clear

that the inelastic data are well separated from the elastically scattered deuterons.

The elastically scattered deuterons are only detected over a small range of back strips

in each DSSSD detector. Examining the energy of each back strip in this range against

the front strip number gives the histogram shown in Figure 4.22. Taking the projection

of each front strip value provides the energy spectrum seen for each pixel. A Gaussian

fit was performed to find the centroid position in the (d, d) elastic peak. The number

of counts minus background counts in the energy peak was also found at this stage, but

were not utilised until the normalisation of the elastics in Section 4.2.5. The centroid

energy for each pixel was then plotted against the position of the pixel for each back

strip. The resultant graph (Figure 4.23) looks very similar to the histogram shown in

Figure 4.22 except that the x-axis is given in millimetres from the target instead of strip

number. Plotting the data in this fashion allowed for a direct comparison between the

same back strip (same z) on detectors opposite one another in the detector array.

Figure 4.22: The energy of the elastic scattered particles at a constant z position.
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(a)

(b)

Figure 4.23: Energy plotted against the position of the 45th back strip for (A) detector
10 (B) detector 12.

For reasons described in Section 4.2.2 and shown in Figure 4.17, the maximum energy

found for each back strip will vary, as the target position is changed. Moving the target

position as shown in Figure 4.17 will result in the energy in one strip in one detector

being different to its counterpart in the same strip in a different detector. This explains

the small difference in the energies plotted in Figures 4.23a and 4.23b. A target shift

in the y − direction will result in the peaks’ maximum energy plotted in Figure 4.23

occurring at a non-zero y position. The difference between 0 and the position at which

the maximum energy is found gives the y-offset of the target. The x-shift and y-shift

found with this method were −0.85 mm and 2.0 mm respectively, which are consistent
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with the shifts found for the upstream box in Section 4.2.2. This y-shift has been applied

in Figure 4.23 resulting in the peak occurring at y = 0.

The fit to the data points represents the theoretical values for the energy and is de-

pendent on the centre-of-mass angle, θcm. The comparison between this theoretical line

and the data points demonstrates the issue of trying to minimise the difference between

theoretical kinematic lines and the elastic scatter data points as was done for the up-

stream box detectors described in section 4.2.3. Figure 4.24 shows two situations in

which points deviate from the theoretical line in different ways. The angle compared

to the z-axis, θLab, varies slightly between the edge of a back strip and its centre. This

means that the points with a more extreme x position in Figures 4.23 and 4.24 have a

greater value for θLab than at x = 0 mm. Therefore, some strips will be able to measure

the full energy peak at the centre of the strip, but will have some – or all – of the peak

cut off at the edges, resulting in a falsely high energy measurement. This can be seen

at x > 20 mm in 4.24a which shows the 44th back strip in detector 10.

Figure 4.24b shows a deviation from the theory that is caused by the elastically scattered

particle punching through the DSSSD detector. A combination of these two effects

caused the (d, d) line shown in Figure 4.21 to be flatter than the theoretical kinematic

line.

4.2.5 Normalising the Elastic Scatter

Normalising the data to the elastically scattered particles is crucial to obtaining the

spectroscopic factors of the transfer reaction. The counts in the elastic energy peak

were found per pixel in Section 4.2.4. The technique used was to calculate the counts

per unit solid angle of the detector and compare it to the form of the theoretical dσ/dΩ

for elastic scatter.

Theoretical calculations using the optical model were performed using the program

DWUCK4 (Distorted Wave University Colorado Kunz), which calculates the the scatter-

ing for binary nuclear reactions using the Distorted Wave Born Approximation described

in Section 2.3.2 [65]. Daehnick et al. [66] developed a potential which has a Woods-

Saxon form and includes a Coulomb and a spin-orbit term. This potential was fitted to

4000 data points from experiments examining the elastic scatter of various stable and

nearly stable nuclei at different energies [66]. The fits to these data points were used to

determine the parameters required to reproduce the scattering potential for any target

nucleus. This Daehnick potential was the input potential used in the DWUCK4 program

to compute the elastic scattering theory predictions.
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(a)

(b)

Figure 4.24: Threshold and punch through effects on elastic scatter seen in (A)
detector 10 back strip 44, (B) detector 12 back strip 43.

The differential cross section of a beam consisting of a number of particles, I, onto a

target comprised of t particles per cm2 is defined by

dσ

dΩ
=

N

εdΩIt
, (4.24)

were N is the yield in the solid angle range, dΩ, and ε is the detector efficiency. The

thickness of the target was quoted as 1.0 mg/cm2 by the manufacturer, however, the

exact thickness is unknown as well as the ratio of protons to deuterons in the target.
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Beam current measurements could not be taken due to the inclusion of the aluminium

sheet in the Trifoil which stopped some particles reaching a Faraday Cup located in the

beam dump. As a result, it was not possible to measure the cross sections of a reaction

directly.

It is not actually necessary to know I, t and ε individually to calculate the differential

cross section. Comparing the theoretical cross section of deuteron elastic scattering to

the measured yield per pixel over the solid angle per pixel (N/dΩ) allows a scaling

factor equal to ε · It to be found. This scaling factor cannot be used to scale the proton

angular distributions for the downstream box detector since t does not remain the same

for deuterons and protons.

For the SHARC array, the solid angle of one pixel is dependent on its position since the

plane of the surface of each pixel is not perpendicular to the direction of travel of the

detected particle. The solid angle for a specific pixel is given by Equation 4.6. Each

value of N/dΩ can now be calculated, plotted and scaled in order to get dσ/dΩ, however,

this is the differential cross section in the laboratory reference frame. The theoretical

elastic cross section given by DWUCK4 outputs a differential cross section in the centre-

of-mass frame and so a conversion from the lab reference frame to the centre-of-mass

reference frame is needed. The Jacobian, dΩ/dΩ′ was used to convert the cross section

of the data in the lab frame into the cross section of the centre-of-mass frame;

dσ

dΩ′
=

dσ

dΩ
· dΩ

dΩ′
, (4.25)

where the Jacobian is given by

dΩ

dΩ′
=
γp′ (p− βE cos θ)

p2
, (4.26)

where primed quantities are the centre-of-mass variants and p is the momentum of the

detected particle.

The data plotted for the elastic differential cross section reveal that the downstream box

is sensitive to an area at which there is a minimum in the cross section. This minimum

can clearly be seen in Figure 4.25. The minimum of the theoretical elastic scattering

was shown to occur at a very specific angle in the centre-of-mass frame. Since the solid

angle of the detector is dependent on the position of the detector relative to the target

position, it was possible to establish the position of the downstream box detector by

comparing the profile of the theoretical elastic scattering calculations to data.
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Figure 4.25: Elastic scattering cross section obtained by measuring the number of
counts in the elastic scattering peak for each pixel. The data are scaled to fit theoretical

values for the cross section and compared to the profile of this line.

4.3 Trifoil

The Trifoil is a simple detector primarily used to clean up the spectrum obtained from

SHARC. It does not have the ability to distinguish the 25Na particles after a reaction has

taken place from the un-reacted 24Na beam particles. The limited light collection from

the trifoil means that it is not suited to energy measurements (and in any case it would

only be a measure of dE/dx which would not distinguish 25Na and 24Na). These factors,

coupled with the fact that it is not position sensitive means that it is not suitable to be

used as a primary detector for this experiment. Its use comes from the implementation

of the aluminium foil placed in front of the detector and its ability to produce a logic

signal that indicates when the foil has been penetrated.

The dimensions of the Trifoil are given in Section 3.5. Due to the distance the Trifoil

is from the target, it is only sensitive to particles that are emitted at a maximum of

2.8◦ to the beam axis. This is not an issue with the set-up used in this experiment,

since the Trifoil only needs to be sensitive to 25Na particles that are associated with

protons detected in SHARC. The NPTool software package was again useful here, as it

allowed the angle calculation of the proton and 25Na after the reaction using Lorentz

transformations described in Section 4.2.3. Figure 4.26 shows the angle at which the

ejected proton emerges versus the angle of the 25Na nucleus in its ground-state. The
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angles covered by the SHARC array are shown by the dashed lines travelling parallel to

the y-axis and the angles covered by the Trifoil are shown by the dashed lines travelling

parallel to the x-axis. The shaded regions represent the angles at which the experiment

is sensitive to the (d,p) protons and the 25Na nuclei.

Figure 4.26: Angle of reacted 25Na nuclei against the angle of the detected proton
post reaction. The greyed regions show the anglular range at which the protons and

the 25Na nuclei are detected by both Sharc and the Trifoil respectively.

The foil placed in front of the scintillator is of a sufficient thickness as to stop higher

Z particles created through fusion evaporation, but allows beam-like particles to pass

through and be detected in the scintillator. This then gives a measurement that can

be used to discriminate between good events detected in SHARC after a proton from

a (d, p) reaction and events resulting from a fusion evaporation or other background

process.

The compound nucleus that would be created in this experiment would be chlorine-36.

Table 4.5 shows the fusion evaporation products created and the quantities in which

they are produced, as calculated by the computer program PACE4 [67]. The energies

of the evaporating nuclei have a statistical distribution and the energy quoted in Table

4.5 is the centroid of that distribution over all angles.

The thickness of aluminium needed to shield the Trifoil was calculated for these nuclei

and displayed in Table 4.5. The kinematic lines for 25Na in the ground-state and in

an excited state of 10 MeV are shown in Figure 4.27. This shows the range of energies
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Nucleus % Cross Section (mb) Energy (MeV) Stopping thickness (µm)
32P 2.94 28 119 34.11
31P 12.9 123 119 34.28
29Si 23.8 227 119 38.56
29Al 3.19 30.4 126 45.78
28Si 13.2 126 105 33.51
28Al 5.49 52.3 112 40.01
27Al 4.44 42.2 105 37.31
26Al 3.77 35.9 98 34.63
26Mg 3.0 28.6 105 42.18
25Mg 10.1 96.6 98 39.12
23Na 3.19 30.3 91 41.12

Table 4.5: Highest yield fusion evaporation products, their energies and the thickness
of aluminium required to stop them

Figure 4.27: Kinematic plots the 25Na at different energies. The figure is iintended
to show how the kinetic energy of 25Na changes as its kinetic energy increases.

at which the sodium nuclei are likely to be detected during the experiment (excited

states above 8 MeV are not seen due to high energy thresholds). A ground-state nu-

cleus emitted at zero degrees will have the lowest detected energy at 146.9 MeV, which

relates to an aluminium stopping thickness of 74.66 µm. Many of the fusion evapora-

tion products have very similar values of charge to that of 25Na. This means that it is

difficult to halt the fusion evaporation products whist still transmitting 25Na through

the foil. Aluminium-29 requires the most aluminium foil to stop at 45.78 µm and so a

50 µm (13.51 mg/cm2) sheet of aluminium foil was used in front of the Trifoil during

the experiment.

The waveform of the pulse detected by the Trifoil is digitised to find the time of the



Chapter 4. Analysis 85

pulse. This time is measured from a triggering event in SHARC and is measured in

units of 1/16 (0.625 ns) of a clock cycle in the Tig-10 front end cards [55]. Because the

front of the Trifoil is shielded by a foil that prevents any fusion evaporation products

from being transmitted, the majority of events detected by the Trifoil will be caused by

25Na nuclei or particles from the beam; the latter of which are limited to a focused dead

spot at the centre of the scintillator. The histogram in Figure 4.28 shows the amount of

counts detected at different times. The peak represents the reacted 25Na nuclei. Gating

on events between a time of 40 and 52 on the histogram when looking at γ and particle

excitation spectra reduces noise caused by the fusion evaporation protons.

Figure 4.28: Time at which 25Na nuclei are detected in the Trifoil.

4.4 Establishing the Excitation Energy Spectrum

The energy of 25Na against the γ-ray energies were plotted in Figure 4.29. The high

density of counts grouped together in narrow horizontal lines represent events where

a well defined γ-ray is detected in coincidence with a proton in SHARC. This figure

reveals some preliminary information to the structure of 25Na because it shows the γ-

rays associated with each excited state, and gives an early indication as to which photon

energies to expect when analysing a particular excited state. This early look at the

data provided information which was used to create the start of a level diagram of the

nucleus. The process of building up a level scheme is described in detail in this section.
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4.4.1 Gamma Spectra

The first obvious characteristic of the histogram in Figure 4.29 is the widths of the

grouped data. The energy resolution of SHARC is significantly worse than that of

TIGRESS, and so any measurement of the energy of a particle in the silicon detectors

will be significantly less precise than the energy of a detected photon in the germanium

detectors. For this reason, the γ-rays are particularly useful in determining the excitation

energy of the nucleus.

Figure 4.29: Excitation energy as calculated from the energy and angle of the detected
proton vs γ-ray energy. The line indicates decays directly to the ground-state(Ex = Eγ).

A γ-ray lying on the x = y line means that an excited state at this energy decays directly

to the ground-state because the emitted γ-ray has the same energy as the source particle.

Groups of data within the region y > x occur when a state decays through a lower excited

state. Photons with the same y co-ordinate (same EEx) occur in a cascade event as a

25Na nucleus decays to the ground-state via another excited state. The γ-rays with the

same x co-ordinate give an indication that the excited states are linked by a possible

decay chain.

There only appear to be two occurrences where an excited state decays directly to the

ground-state in Figure 4.29. One occurrence is close to the origin and so is difficult to see

on this plot. The other is around an excitation energy of 2.5 MeV - 3.0 MeV. Gating on

this energy range to examine the γ-ray allowed the value of the excited state to be found.

The γ peaks that were detected as part of a cascade were identified by gating on the

excitation energy of 25Na in steps of 0.5 MeV. The γ-rays with a summed energy lying
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within the gate on excitation energy were noted as belonging to a cascade from an energy

state within that region. This did not allow all γ-rays at each excitation energy range to

be identified; peaks that did not sum to the total energy of the excited region were noted

and a spectrum of excitation energy gated on these peaks was produced. An example of

one of these spectra is shown in Figure 4.30 for the peak found at 2.788 MeV. Creating

spectra like this gave information regarding the actual excitation energies associated

with the γ-ray emission, which allowed a more accurate excitation energy window to be

used for gating upon.

Figure 4.30: Excitation energy gated on the γ-ray at 2.788 MeV.

This iterative procedure helped to establish excitation energies that appeared to cor-

respond to the states in 25Na. The γ-ray emissions associated with the energies were

examined in more detail. Figures 4.31 to 4.42 show the γ-rays observed while gating on

a mean excitation energy ±0.2 MeV. This energy range of ±0.2 MeV is equal to ±σ for

the average σ value representing the experimental widths of the excitation energy peaks

(the process of obtaining σ is described in Section 4.4.3). In some instances, weakly

populated states in 25Na are overshadowed by close neighbours that are strongly pop-

ulated. This causes difficulty in examining the γ-rays that are emitted from the weak

state because γ-rays from the strong state will always contaminate the γ-ray energy

spectrum. This problem is remedied somewhat by exploiting the angular distributions

of the populated states. States of different spins and parities will have different angular

distributions (see Section 5.1) which affect the relative population of peaks for different
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excitation energies at different angles. Gating on an excitation energy region and a

specific angular region where the ratio between the strong and weak peak is minimised

allows the γ-rays associated with the weak state to be seen more clearly. An example

of this occurs between the strong 3.455 MeV peak and the weak 3.995 MeV peak. The

ratio of the strength of the peak at 3.455 MeV compared to the 3.995 MeV peak reaches

a minimum between 119◦ and 143◦, as can be seen in Figure 4.45.

Figure 4.31: The γ-ray spectrum when gated on the excited energy spectrum at
0.089±0.2 MeV (blue) (extending below zero allows for resolution effects). Background

(red) gated by 0.5± 0.2 MeV.

Gating on the excitation region around 0.089 MeV showed a γ-ray at 0.089 MeV, as

shown in Figure 4.31, which proves that there is a state at this energy that decays to

the ground-state. Also shown in Figure 4.31 is the background spectrum (red) taken at

the energy region at 0.5 ± 0.2 MeV. This is an empty energy region where no state is

apparent in 25Na This background shows a second peak at ∼ 0.2 MeV which is caused

by a fusion evaporation product that has not been completely filtered out by the Trifoil.

The state at 2.416 MeV was previously known to exist [11], but is predicted to be weakly

populated during the transfer reaction by the shell-model. This results in a low count

rate when gating on the 2.416 MeV excitation energy. Figure 4.32 shows a γ peak at

2.416 MeV as well as another peak at 2.788 MeV. This second peak is caused by the

width of the gate overlapping with an adjacent excitation peak at 2.788 MeV.

The 2.788 MeV gated spectrum has a very clear peak when examining the excitation

spectra (see Figure 4.20). The peak to the ground-state is clearly seen at 2.788 MeV,

shown in Figure 4.33.
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Figure 4.32: The γ-ray energy spectrum when gated on 2.416 ± 0.2 MeV (blue).
Background (red) is for the 1.7± 0.2 MeV gate.

Figure 4.33: The γ-ray energy spectrum when gated on 2.788 ± 0.2 MeV (blue).
Background (red) is for the 1.7± 0.2 MeV gate.
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Figure 4.34: The γ-ray energy spectrum when gated on 2.914 ± 0.2 MeV (blue).
Background (red) is for the 1.7± 0.2 MeV gate.

The state at 2.914 MeV is included in the analysis because that state had already been

seen to exist. The state is known to decay through the 0.089 MeV energy level to the

ground-state meaning that the γ-rays of energy 2.825 and 0.089 MeV are expected to be

seen [11]. However, Figure 4.34 shows there is no evidence for these γ-rays, suggesting

that this state was not populated during this experiment. There is an overlap in the

energy range used to gate on the 2.914 MeV state and the nearby 2.788 MeV state which

results in the observation of the 2.788 MeV γ-ray shown in the figure. Figures 4.33 and

4.34 also show the the Compton edge of the 2.788 MeV peak at Eγ ∼ 2.554 MeV. These

Compton scattered γ-rays are not suppressed because they are scattered out of the front

face of the detector and so are not detected by the BGOs surrounding clover detectors.

Additionally, back scatter peaks are also seen at low energies.

As with the 2.788 MeV state, there is a state that is strongly populated at 3.455 MeV.

The γ-ray spectrum found when gating on this energy is shown in Figure 4.35 and clearly

shows γ-rays at 1.039 and 2.416 MeV showing that the excited state decays through the

2.416 MeV state.

Figure 4.36 shows the spectrum when gating on the 3.995 MeV energy region and by

gating on the angular range between 117◦ and 145◦. Despite losing counts by adding the

additional angle gate, two peaks are still visible at 1.207 and 2.788 MeV showing that

the 3.995 state decays via the 2.788 MeV state to the ground-state. The inset shows

the spectrum obtained when no angle gate is applied and shows the γ peaks associated
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Figure 4.35: The γ-ray energy spectrum when gated on 3.455 ± 0.2 MeV (blue).
Background (red) is for the 4.5± 0.2 MeV gate.

with with the 3.455 MeV state. This figure demonstrates the effectiveness of using the

angular resolution provided by the SHARC array to distinguish between different states

that are close together.

Figure 4.37 shows the γ-ray energy spectra gated at an excitation energy of 4.132 MeV.

At this energy there is some evidence for a γ-ray with Eγ = Ex suggesting there may be

a state at this energy that decays directly to the ground-state. However, the efficiency

of the HPGe detectors is low at these energies and so the count rate is not much higher

than the background level (displayed in red) making it hard to determine with certainty

that a state at this energy was seen in this experiment.

Figure 4.38 shows the γ-ray energy spectrum for the 5.22 MeV state gating on the

angular range of θ = 113 − 137. This angular range was used to try and minimise the

contribution of any γ-rays that might be seen from the nearby state at 5.85 MeV. The

inset shows a spectrum gated angular range of θ = 90 − 180 and shows evidence for

peaks at 2.416 and 2.804 MeV, which suggests that the 5.22 MeV state decays to the

ground-state via the 2.416 MeV state. However, the 2.804 MeV peak is only visible in

the inset, which looks at the whole angular range. The 2.804 MeV γ-ray is included in

Figure 4.43 as a dashed line to indicate that it has been seen, but its connection to the

5.22 MeV state is uncertain since it disappears at 113◦ − 137◦.
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Figure 4.36: The γ-ray energy spectrum when gated on 3.995±0.2 MeV and angular
region of θ = 117− 145◦ (blue). Background (red) is for the 4.5± 0.2 MeV gate. The

inset shows the γ-ray energy spectrum gated on θ > 90◦.

Figure 4.37: The γ-ray energy spectrum when gated on 4.132 ± 0.2 MeV (blue).
Background (red) is for the 4.6± 0.2 MeV gate.
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Figure 4.38: The γ-ray energy spectrum when gated on 5.22± 0.2 MeV and angular
region of θ = 113− 137◦ (blue). Background (red) is for the 4.5± 0.2 MeV gate. The

inset shows the γ-ray energy spectrum gated on θ > 90◦.

Figure 4.39: The γ-ray energy spectrum when gated on 5.85 ± 0.2 MeV (blue).
Background (red) is for the 4.5± 0.2 MeV gate.
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The γ-ray energy spectrum when gated around an excitation energy of 5.85 MeV is given

in Figure 4.39. Two γ-ray chains can be observed in this spectrum: one decaying to the

ground through the 2.416 MeV state and emitting a γ-ray at 2.416 and 3.434 MeV, and

a second decay branch through the 2.788 MeV state which emits 2.788 and 3.062 MeV

γ-rays.

Figure 4.40: The γ-ray energy spectrum when gated on 6.005±0.2 MeV and angular
region of θ = 103 − 119◦ (blue). Background (red) is for the gate 4.5 ± 0.2 MeV. The

inset shows the γ-ray energy spectrum gated on θ > 90◦.

A state at an energy of 6.005 MeV was used in order to fit the excitation spectrum

as described in Section 4.4.3. However, Figure 4.40 does not reveal any γ-rays at this

energy region apart from those also seen for the 5.85 MeV state as shown in Figure

4.39. This remains true even when the contamination caused by the 5.85 MeV state is

minimised by gating on the angular range between 103◦ and 119◦.

Gating on the excitation energy around 6.55 MeV yields the γ-ray energy spectrum

shown in Figure 4.41. Four γ-ray peaks are identified in this spectrum at 1.039, 2.416,

3.095 and 4.134 MeV. This indicates two decay chains taken by the state at 6.55 MeV

to the ground-state via the 2.416 MeV state (emitting the 4.134 MeV γ-ray to the 2.416

MeV state, and then decaying to the ground-state), and via the 3.455 MeV state (by

emitting the 3.095 MeV γ-ray and then following the same decay path observed for the

3.455 MeV state).

The state at 7.48 MeV was included in the analysis in order to provide an adequate fit at

that energy in the excitation energy spectrum as is described in section 4.4.3. However,
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Figure 4.41: The γ-ray energy spectrum when gated on 6.55 ± 0.2 MeV (blue).
Background (red) is for the 4.5± 0.2 MeV gate.

Figure 4.42: The γ-ray energy spectrum when gated on 7.48 ± 0.2 MeV (blue).
Background (red) is for the 4.5± 0.2 MeV gate.
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Figure 4.42 does not show any γ-rays that total 7.48 MeV. As a result, it is difficult to

specify the energy of this state with precision; 7.48 MeV is therefore an approximation

of the energy of this state and is deduced simply from the excitation energy fitting.

Although Figure 4.42 does not show direct evidence of a state at 7.48 MeV, it does show

γ-rays at 2.416 and 2.804 MeV, which could suggest a decay through the 5.22 MeV state.

A peak at 4.132 MeV is also seen, adding to the credibility of the state at 4.132 MeV

existing.

Some peaks were difficult to place because they came from relatively weakly populated

states, or they came from states that were fairly close in energy to an already identified

state, but decayed via a different pathway. These γ-rays were identified while examining

a smaller subset of the data. While perfoming the fits on the excitation energies, as

described in Section 4.4.3, the data were examined as a function of angle. Some peaks

grew in strength relative to surrounding peaks at certain angles, allowing for those γ-rays

to be identified more clearly when compared to surrounding peaks.

A final energy scheme was determined using the data collected from the γ spectra and

is shown in Figure 4.43.

The γ spectra at angles θLab < 90◦ were also examined. The spectrum over this range

is shown in Figure 4.44. These gamma-rays are not associated with the 24Na(d, p)25Na

reaction because SHARC is not sensitive to protons from this reaction between 0◦ and

90◦.

These peaks originate from 24Na particles that are inelastically scattered and decay in

flight. The peak at 1.512 MeV is the γ-ray emission from the 5+ state at the same

energy in 24Na, which decays to the ground-state. Also shown is a peak at 0.869 MeV

which is associated with the γ-ray cascade from the 2+ state at 1.341 MeV to the 1+

state at 0.472 MeV. The γ-ray emission from the 1−+ state to the 4+ ground-state is

not seen because because the half life of the state is long and so the particle does not

decay until after it has passed through the detector. The peak seen in this region is

therefore not caused by the decay of the 1+ state, but is instead the result of the 0.511

MeV peak associated with an electron being Doppler shifted when detected in the 135◦

detector ring in TIGRESS.

4.4.2 Particle Spectra

Figure 4.20 shows the excitation energy spectrum of the 25Na nuclei. The dashed lines

represent the positions of the initial estimates of the main energy states that are popu-

lated during the (d, p) reaction. These estimates were used as starting values as to which
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Figure 4.43: Final level scheme of 25Na and the γ-ray cascades. Dashed lines represent
transitions that remain tentative due to lack of statistics.

energies should have gates placed to look at the γ-ray energy spectrum. Observing the

γ peaks in these gated spectra allowed for a more accurate estimate as to the energy

observed. This iterative process, coupled with the previously known information about

the shell structure of 25Na [8] gave enough information to allow an attempt at fitting

the excitation spectra in Figure 4.20. The degree to which this fit correctly reproduces

the shape of the excitation energy spectrum gives more information as to whether or

not an energy peak is missing from the fit.

Viewing the particle spectra when gated on a γ-ray provided information about a particle

that was detected in coincidence with the the gated γ event. An example is shown in
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Figure 4.44: Gamma-ray energies when gated on protons detected at θ < 90◦.

Figure 4.30 which shows the particle excitation energy spectrum gated on the 2.788

MeV γ peak. Here it can be seen that the γ-ray is associated with an excited state of

2.788 MeV meaning that this state decays directly to the ground-state (as was seen in

Fingure 4.29). There also appears to be a peak at ∼ 4 MeV and evidence of several less

clearly defined peaks at > 5 MeV. Some peaks exist at an energy higher than that of

the γ-ray used for gating, suggesting that there are excited states that decay through

the 2.788 MeV state. This information is used to try and find other γ-rays arising from

these higher excitation energies.

Using both the particle and γ energy spectra, a level scheme was constructed. This is

shown in Figure 4.43. Here states and γ-rays which have some evidence of existing, but

could not be confirmed due to a lack of statistics are represented as dashed lines. The

excitation energies identified for states in 25Na were then used as the basis for the fitting

algorithm implemented in Section 4.4.3.

4.4.3 Fitting the Excitation Energy Spectra

The energy values of the peaks seen in Figure 4.20 were discerned with the help of

the γ-ray analysis described in Section 4.4.1. However, in some cases, it was difficult to

conclude which energy states were being populated using the γ spectra alone. The fitting

of the excitation spectrum therefore took place in tandem with the analysis performed

on the γ-ray data in order to cement the understanding of the states.

Performing a simple Gaussian fit on each of the peaks that can be seen is not an ap-

propriate method for this task as it allowed the fitting program too much freedom to

adjust the parameters to match the histogram. That is, the statistics and the resolution
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Excited State (MeV)

0.000
0.089
2.41
2.788
2.914
3.455
3.995
5.22
5.39
5.85
6.005
6.55
7.48

Table 4.6: Final excited states used in fitting particle spectra data.

were not sufficient to fit the spectrum reliably without further constraints. Instead, the

equation used to fit was,

f(E) =

n∑
i=1

(
ai exp

(
−1

2

(E − (∆E + Ei))
2

σ2
i

))
+ h(E), (4.27)

where Ei is the energy of the peak, h(E) is a linear background of the spectrum, and ai

is the amplitude of the ith peak. The values of the energy of each peak were adjusted

over the course of this analysis as and when it became clear that these peaks were not

needed in the fit, or if a peak was discovered to be missing. The final values for Ei are

listed in Table 4.6.

Equation 4.27 is an adjusted Gaussian equation which allows some parameters to be fixed

while allowing for some small variation needed to perform the fit. The ∆E represents

a small shift allowed in the position of the peak. This shift was not fixed, but was

limited to ±0.1 MeV and was constant over each peak, meaning that the resulting fit

was forced to place a peak close to the estimated values, but was allowed to compensate

for a systematic error that might have occurred in a previous stage of the analysis. The

value of σ of each peak was limited to be a function of energy, such that

σi = g(Ei) = mEi + c. (4.28)

The linear term, m, was forced to be positive in order to represent the decrease in energy

resolution as energy increases due to the energy loss in the target.
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The constants, ai, determine the heights of the fitted peaks. This parameter was set to

be greater than 0 since allowing the value to be negative was non-physical. Allowing

the fitting program to do so gave it the freedom to artificially reduce the width of

a neighbouring peak by subtracting counts. As a result, a requirement for ai to be

positive was placed on the parameter. The addition of this meant that the fit could

assign a value of zero to the peak, inferring that the state at this energy was not being

populated, but not allowing the program to change the shape of the function to create

a falsely appropriate fit.

The evidence seen for the previously known states in 25Na below 4.5 MeV was fairly

strong when considering the γ-ray data. There was also little evidence to suggest that

there were any previously unknown states occurring in this energy region. These two

factors meant that the peaks below this energy could be used as a test to ensure that

this part of the analysis was working as intended before analysis on the higher – and less

well understood – energy states was carried out. Once the process for fitting the peaks

seen below 4.5 MeV had been perfected, the entire observed energy range was fitted.

Figure 4.20 shows the data for the excited states over the entire angular range of the box

and CD detectors. Since finding the angular distribution of individual states is important

for finding the spectroscopic factors of those states (as described in section 5.2), it is not

useful in this work to fit these data without first separating the data into different angle

bins. The fitting algorithm was therefore applied several times for different angles. The

original angle bins where set to a width of 8◦ which spanned the angular range covered

by the box detectors (95◦−143◦) and the CD detectors (148◦−172◦). The fits produced

with this are shown in Figure 4.45.

This first step in fitting the excitation spectra allowed for the value for σ to be dependent

on energy. This assumption was checked by examining the values of m and c in Equation

4.28 at different angles. This revealed an average energy coefficient of ∼ 0.005 and a

value of c with a typical value of ∼ 0.2 which decreased as the angle increased (Figure

4.46). The large difference in magnitude between m and c and the fact that there was a

clear relationship between σ and the angle of detection suggested that the energy does

not play a key role in the widths of the peaks in the particle spectra.

The relationship between σ and angle was investigated by substituting the appropriate

values of m and c into Equation 4.28 and using x = 3.1 at various values of θ and fitting

the results. This value of x was used because the peaks at 2.788 MeV and 3.455 MeV

were well defined at every value of θ. It is therefore reasonable to assume that the fits

of the histograms around this energy will be the most reliable. A σ that is a function of

angle is likely to have a differential of zero at 180◦ for reasons of continuity. The data
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Figure 4.46: Comparison between the magnitude of the two parameters used to
describe the energy dependence of σ (Equation 4.28).

appear to confirm this as the intercept line in Figure 4.46 flattens out as θLab approaches

180◦. An equation with this continuity condition was used to fit the data,

σ = a(θ − 180)2 + b, (4.29)

where a = 0.0000128 and b = 0.171 and θ is the lab angle. The physical reason that the

energy peak broadens at values close to 90◦ is related to the target material traversed

by protons from reactions at the back of the target. An argument could be made that

the function to describe the data should be trigonometric in form, but the quadratic

function in Equation 4.29 was used instead because it fit the data perfectly well.

The shift parameter, ∆E, used in Equation 4.28 was used to allow the fitting algorithm

freedom to shift the input values for the peaks. The peaks being fitted at this stage in

the analysis (between 0 MeV and 4.5 MeV) have already been documented in literature.

This is important to note because it means that the energies of these peaks are not in

dispute. Therefore, if the fitting algorithm returns a non-zero result for ∆E, it would

suggest that there was an error in the fitting equation or that there is a systematic

error included in the analysis prior to this stage (for example, an error in the assumed

thickness of the target). This shift was constrained to be constant over all peaks for each

angle. The amplitudes of the shifts are listed in Table 4.7 and plotted in Figure 4.47.

There is a clear trend in the shift parameter for both the Box and CD detectors. This

suggests that there is in fact a small but identifiable systematic error in the analysis and

that it is a different error for both the CD and the Box detectors. The inclusion of this
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Detector θLab (◦) ∆E (MeV)

Box Detectors

101 0.08 (5)
105 0.04 (2)
109 0.03 (2)
113 0.02 (2)
117 0.008 (14)
121 0.02 (1)
125 0.01 (1)
129 0.007 (2)
133 −0.05 (1)
137 −0.06 (3)
141 −0.03 (2)

CD Detectors
152 0.078 (8 )
160 0.080 (7)
168 0.097 (8)

Table 4.7: Values of the fitted shift parameter, correcting for systematic errors, as a
function of angle in the upstream Box and CD detectors. There are plotted in Figure

4.47.

shift parameter in the fitting process compensates for any small error that has occurred

in the analysis, without the need to identify the source of the error.

Figure 4.47: Values of the fitted shift parameter, correcting for systematic errors, as
a function of angle in the upstream Box and CD detectors.

The number of counts under the fitted peak is required in order to calculate the differ-

ential cross sections of each peak. The integral of each peak can be calculated after the

fit has been performed, but the errors in the fitting parameters could not give the error

in the area without a modification. Equation 4.27 has to be modified in order to make

the area one of the variables in the fitting equation.
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Figure 4.48: Final fits between 95◦ and 111◦ for the downstream box detector. The
total fit (red) and the contributing peaks are shown.

The area, A, of a Gaussian peak is given by

A = aσ
√

2π, (4.30)

where a is the amplitude and σ is the standard deviation of the Gaussian peak. Rear-

ranging this and substituting into Equation 4.27 gives:

f(E) =

n∑
i=1

((
Ai

σ
√

2π

)
exp

(
−1

2

(E − (∆E + Ei))
2

σ2

))
+ h(E) (4.31)

Making Ai in Equation 4.31 an adjustable parameter in the fitting equation allows the

number of counts under a peak and the error in this value to be extracted directly.

Once the fitting process had been perfected for this range of energies, the fit range was

increased to include the whole energy range seen in this experiment. The shifts shown

in Table 4.7 were fixed so that they would be included for higher energy peaks. If the

fit failed to represent the histogram at higher energies, it suggested that the inputs for

the centroid positions of peaks above 4.5 MeV are incorrect, and could then be adjusted

in order to fit the data more accurately.
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Figure 4.49: Final fits between 111◦ and 127◦ for the box detector. The total fit (red)
and the contributing peaks are shown. The vertical line shows the maximum energy

range used in the fit. The value of this energy is discussed in Section 4.4.4.

The first analysis employed 8◦ binning for the Box and CD detectors as described above,

and shown in Figure 4.45. Once the fitting methods were optimised, 4◦ bins for the Box

detector still gave enough counts to give a satisfactory fit to the histogram. The final

fits produced for the box detectors at each angle are shown in Figures 4.48, 4.49 and

4.50. The final fits for each bin are shown in Figure 4.51. The vertical lines in each of

these figures shows the maximum of the energy range used in the fit. These maximum

energies derive from the lower threshold on energy as set in the silicon detectors and are

discussed in Section 4.4.4.

4.4.4 DSSSD Thresholds

The threshold energy of the SHARC detectors was mistakenly placed at a higher setting

than optimum during the experiment. The effect of this can be seen in Figure 4.18,

where there is an obvious cut-off in the data below 2 MeV for the box detectors. This

threshold cut-off effect is also seen in Figure 4.19 where energy states at high levels are

progressively cut off as the angle increases. This is also seen in the CD detectors, where

the thresholds were set to 2 MeV for three of four detectors, with the threshold for

the remaining detector being set to 1.5 MeV. This means that there is limited angular

distribution data for higher lying energy states.
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Figure 4.50: Final fits between 127◦ and 143◦ for the box detector. The total fit (red)
and the contributing peaks are shown. The vertical line shows the maximum energy

range used in the fit. The value of this energy is discussed in Section 4.4.4.

Figure 4.51: Final fits found for the entire range of the CD detector. The total fit
(red) and the contributing peaks are shown. The vertical line shows the maximum

energy range used in the fit. The value of this energy is discussed in section 4.4.4
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The excited energy peaks near the cut-off are affected by the drop off in effective solid

angle (see Figure 4.7) since the detector rapidly becomes less efficient at detecting par-

ticles as angle increases. This rapid change means that the measured number of counts

in an excited state peak near the threshold cut-off is unreliable and should not be used

in further analysis to determine the spectroscopic factor of the state. A protocol was

devised for the case of the upstream box detector and the CD detectors in order to

determine which energy peaks were suitable to continue to be included in the analysis.

The protocol decided for the box detectors will be discussed first, since it is the most

complicated. A function for how the threshold cut-off energy, EThreshold, varied with

angle was established by measuring the angle at which the energy efficiency of the

detector started to drop off appreciably for each energy level. The position at which this

happens can be seen visually in Figure 4.7, and

EThreshold = aθ2 + bθ + c, (4.32)

where a = 0.001788, b = −0.5618 and c = 0.1756. An energy peak will have a distri-

bution of 2σ where σ is given in Equation 4.29. For example, consider a peak with an

energy, E1, and a width, 2σ1. If E1 is less than 2σ1 above EThreshold at a given θ, it will

contribute counts to the excitation spectra. In this situation, it is impossible to know

how many counts are being contributed to the spectrum because there is no information

available as to the height of the peak at E1. This means that if a second peak with a

centroid energy E2 has the conditions E2 < EThreshold and E2 > E1 − 2σ1, then there

will be an indeterminate number of extra counts of in peak E2. In this case, peak E2

cannot be included further in the analysis because it is not possible to obtain a reliable

value for counts in the peak. The boundary at which peaks will fail to be applicable

to be used in the analysis, which shall hereby be referred to as the ‘analysis limit func-

tion’, is shown in Figure 4.52. The value of the highest energy level not excluded by the

analysis limit function for each angle bin is given in Table 4.8, which shows that peaks

below 5.22 MeV never get excluded from the angular distribution analysis.

This reasoning, however, creates a problem: if peak E2 is excluded, then any peak that

has a peak value greater than E2 − 2σ2 must also be excluded from further analysis for

the same reasons. To avoid this, peaks were excluded from the analysis, but not from

the fitting range used to fit the excited peaks. Extending the fit range past the analysis

limit line in Figure 4.52 gives the fitting algorithm freedom to fit the counts measured

for the E2 peak, and therefore allows the next lowest to be fitted without being affected

by any unknowable counts.
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Figure 4.52: Limit on which peaks can be used in the analysis (red). This limit is
always 2σ below the first state energy state above EThreshold (green).

Angle, θLab (◦) Highest excited state
accepted for further
analysis (MeV)

Highest excited state
included in the fit
range (MeV)

Upper limit of fit
range (MeV)

97 7.48 8.0 8.2
101 7.48 8.0 8.2
105 7.48 8.0 8.2
109 7.48 8.0 8.2
113 7.48 8.0 8.0
117 7.48 7.48 7.7
121 6.55 6.55 7.0
125 6.55 6.55 6.6
129 6.005 6.005 6.1
133 5.22 6.005 6.1
137 5.22 5.22 5.4
141 5.22 5.22 5.4

Table 4.8: Comparison between the final peaks included for further analysis, and the
peaks included in the fits for the spectra given in Figures 4.49, 4.50 and 4.51.
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The choice of the upper fitting limit of the graphs produced a new problem. If the value

of the limit contained the tail end of a peak, the program would try and fit a Gaussian

to this small subset of data in the tail. As a result, the program might misrepresent

the strengths of the peaks used in the analysis used to find the spectroscopic factors.

Three fit ranges where discussed and used to examine the stability of the fit: the first

range extended from −1 to the analysis limit function; the second extended from −1

to EThreshold; and the third had a range that was based on a visual examination of the

excitation spectra shown in Figure 4.45, and could extend beyond EThreshold.

This third method aimed to use as much information available from Figure 4.45 as

possible to fit the data. This method does not have a definitive way in which to pick

the fit range. Instead it judged the appropriate range bassed on whether or not certain

criteria where met. It was decided that if 50% of a peak was within the fitting region

then the fitting program should be able to adequately fit a Gaussian to it. In the instance

where the centroid position of a peak lands below EThreshold and above the energy given

by the analysis limit, then it can be used in the fit, but rejected for further analysis.

The fit range used for each angular bin is given in Table 4.8.

Comparing the three fitting methods (Figure 4.53) showed that each fit gave the same

results within errors for the majority of points. An exception to this is seen when

observing the 5.85 MeV and 6.005 MeV (4.53b) state at 129◦. The discrepancy at these

points between the ‘threshold’ upper limit, and the other fitting limits was caused by

the tail end of the 6.55 MeV peak being included in the fit which distorted the 5.85

MeV and 6.005 MeV peaks. The other two methods agreed with each other, suggesting

that the fitting algorithm was stable. The ‘individual’ method was used because it used

a fit range tailored for each angle bin. In summary, the setting of an a unusually high

discriminator threshold caused some difficulty in fitting the region excitation energies

close to the threshold, but a robust procedure was developed for dealing with the angle-

dependent cut-off in excitation energy that resulted.

Fitting the excitation energy spectrum at different angles in the CD detector was a

simpler task. This was essentially because the energy of protons for a given excitation

energy has only a weak angular dependence in the CD region. Three of the four CD

detectors were set with a threshold of 2 MeV prior to the experiment, causing a cut off

effect similar to that described for the box detectors. However, one CD has a threshold

of 1.5 MeV, which covers the whole excited energy spectrum for most of the detector

(counts can be seen over the whole CD range in Figure 4.19). Only the data from this

CD detector were used to fit the excitation spectra above 4.7 MeV (4.7 MeV marking

an obvious gap between excited state peaks). Peaks below 4.7 MeV were fitted using all
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(a)

(b)

Figure 4.53: (A) Comparison of fitting methods at 117◦. (B) Comparison of fitting
methods for the 6.005 MeV state.
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CD detectors. This required a new value for the solid angle coverage for one CD only,

which was calculated using Equation 4.8.

The switch from using all four CD detectors to only using one results in a discontinuity

in the graphs being fit because the number of counts detected above 4.7 MeV drops by a

factor of four. This drop in counts can be seen in Figure 4.54, which shows the spectrum

found for θ = 152◦.

Figure 4.54: Discontinuity of counts in the CD detector at the transition between
using all of the CD detectors (Energy < 4.7) and only using one detector (Ex > 4.7).

The sudden drop in counts in this region causes the background to be underestimated,

which affects the number of counts found in any weak peak close to the 4.7 MeV transi-

tion. However, this underestimation of counts was considered the most desirable option

for proceeding in the analysis since only using one CD detector for the entire energy

range would result in a drop in statistics.

4.4.5 Angular Distributions

The data normalisation was discussed in Section 4.2.5 where a scaling factor was derived

that was proportional to the beam current and number of particles in the target. The

angular distributions of the differential cross section were found by multiplying this

scaling factor by NE
dΩ where NE is the number of counts in the fitted excited peak at

energy E and dΩ is the solid angle calculated using Equation 4.8. The graphs showing

the angular distributions (differential cross sections) for the energy states observed in

the experiment are shown in Figures 4.55 and 4.56.
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Figure 4.55: Differential cross sections of states up to the 3.455 MeV energy state.
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Figure 4.56: Angular distributions of states above the 3.455 MeV energy state.
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Results

5.1 Identification of States in 25Na

5.1.1 TWOFNR

The theoretical cross sections for a single-particle state were calculated using the code

TWOFNR [68] which used the zero-range ADWA method for different l-transfers at

different energies, spins and parities. The input parameters used for the calculations

matched those of this experiment: the cross sections were calculated for the 24Na(d, p)25Na

reaction at 8 MeV/A with a ground-state of 24Na being 4+. The reaction Q-value for

25Na was given as 6.786 MeV with higher level energy states having Q-values which vary

accordingly as the excitation energy increases. The excitation energies used to calcu-

late the Q-values are the excitation energies found from fitting the data as described

in Section 4.4.3 and are listed in Table 4.6. The default integration range of 0− 30 fm

with steps of 0.1 fm was used with 70 partial waves in the nucleon single-particle radial

wave function. Non-locality corrections were not performed. The ADWA Johnson-Soper

potential was used for the initial state potential, and the Chapel-Hill optical potential

for the out-going proton. The default value for the 〈p|d〉 vertex constant of D0 = −122.5

MeV fm3/2 was implemented, which was treated as zero-range. The parameters for ra-

dius, R, and diffuseness, a, in the Wood-Saxon potential (Equation 2.3) were set to 1.25

fm and 0.65 fm respectively, and the spin-orbit strength of l-sigma is 6 MeV. Both the

bound state non-locality and the spin-orbit radius parameter were set to zero.

The code outputs four data files containing the points on a graph showing the differential

cross section angular distributions for a single-particle state in: a) the centre-of-mass

frame, b) the lab frame, c) the centre-of-mass frame for the heavy particle in inverse

kinematics, and d) the centre-of-mass frame for the light particle in inverse kinematics.

114
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The profile of the graphs outputted only changed significantly when different values of

l were input. Changing input parameters such as the final energy of the reaction alters

the scale of graph, or the relative height of the peaks, but does not alter the angle at

which the peaks (and troughs) occur in the angular distributions. The general shape of

these angular distributions for l = 0, 1, 2, and 3, is shown in Figure 5.1 between 90◦ and

180◦, which is the angular range studied in the experiment.

Figure 5.1: Angular distribution for different l values between 90◦ and 180◦. These
lines are all calculated using the same TWOFNR input parameters using an excitation

energy of 4 MeV.

TWOFNR was used at various times in order to obtain the results found in this work.

Its initial use is to determine the dominant transfer into each state by identifying which

l, shown in Figure 5.1, best matches the profile of the experimental data for any given

energy state. Later, once the spin and parity of each energy state has been determined,

the TWOFNR code was used again using the specific values of excitation energy and

spin and parity input parameters to calculate the state specific s, p, d, f-wave angular

distributions and use them to find the spectroscopic factors. These processes will be

described in more detail in the following sections.
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5.1.2 Identifying the Dominant l Transition

Each populated energy is described by considering the superposition of two potential

states that may be populated by the transferred neutron. If it is significantly more likely

for an energy state to be populated via the transfer of a neutron of an l = 0 spin, for

example, than it is to be populated with a neutron of spin l = 2, then the differential

cross section of that state will look much more like the differential cross section of a fully

l = 0 transfer. The differential cross sections found experimentally can be compared to

the TWOFNR outputs for different energy states.

At this stage, the spin of the final state is not known, and so it is not possible to correctly

input this parameter into the TWOFNR code. A final spin, J , of the energy state was

therefore chosen that could be obtained using any value of l. The spin J = 9/2 was used

which meant that it was assumed, for the purposes of this stage in the identification

process, that each energy was achieved by populating the s1/2, p3/2, d3/2, or f7/2 shells.

The profile of the experimental data should, in some cases, have some similarities to

the profile of the theoretical results. Finding these similarities can provide insight as

to which l contributes the most to the energy state in question. For clarity, the theory

calculations are not expected to be scaled correctly to fit the data at this stage; that

will occur when the spectroscopic factors are found in Section 5.2. The important factor

to take into account when considering Figures 5.2 to 5.13 is therefore not how close the

data is to the theory, but how closely the shape of the data matches the shape of one of

the theoretical lines.

A common feature of all of these graphs is how the points at 97◦ and 101◦ diverge from

the general trend shown for the rest of the points in the graph. This inaccuracy is caused

by the drop off in solid angle of the SHARC detector at these angles (Figure 4.7). This

rapid decrease in solid angle causes a drop off in counts, as is seen in Figures 4.18 and

4.48.

Figure 5.2 shows good agreement with the l = 2 (green) line, suggesting that this state

has a positive parity and is dominated by a d-wave transfer.

The data obtained for the 0.089 MeV state do not appear to fit any of the theory

calculations shown in Figure 5.3 well. The differential cross section appears to drop

below 10−6 at specific angles, suggesting the fit that was performed on the data as

described in Section 4.4.3 did not require this energy state in order to recreate the

energy spectrum. As a result, it does not appear possible to discern an information

about the 0.089 MeV state at this stage.
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Figure 5.2: Comparison between experimental data and theoretical calculations for
differential cross section using different values for l at 0.0 MeV. The l represented by

each line is colour coded in the same way as is shown in Figure 5.1.

Figure 5.3: Comparison between experimental data and theoretical calculations for
differential cross section using different values for l at 0.089 MeV. The l represented by

each line is colour coded in the same way as is shown in Figure 5.1.
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Figure 5.4: Comparison between experimental data and theoretical calculations for
differential cross section using different values for l at 2.416 MeV. The l represented by

each line is colour coded in the same way as is shown in Figure 5.1.

The 2.416 MeV state also does not appear to be strongly populated in the reaction and

so does not have a very prominent peak in the fits described in Section 4.4.3. This gives

the data points shown in Figure 5.4 to having large associated errors, however, the data

points do appear to follow the same trend as the l = 0 (red) line, suggesting that the

s-wave dominates the transfer reaction to this state and that the state has a positive

parity.

Figure 5.5for the 2.788 MeV level clearly shows the data following the same trend as

the l = 0 (red) theoretical line, suggesting that the s-wave transfer is the dominant

transition and that the state has a positive parity.

The differential cross section of the 2.914 MeV state, shown in Figure 5.6, shows that

the state was not strongly populated due to the low cross sections found at most angles.

Because of this, it seems unwise to try and decipher the dominant l−wave for this state

based on so few counts.

The data shown in Figure 5.7 for the 3.455 MeV state clearly show a dip at the same

angle that the dip in the l = 0 (red) theoretical line occurs, demonstrating that this

state is dominated by the s-wave transfer and suggesting that this state has a positive

parity.

The data for the 3.995 MeV state shown in Figure 5.8 appear to have quite a flat profile.

This would suggest that two l−waves play an equally strong role in populating this state.
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Figure 5.5: Comparison between experimental data and theoretical calculations for
differential cross section using different values for l at 2.788 MeV. The l represented by

each line is colour coded in the same way as is shown in Figure 5.1.

Figure 5.6: Comparison between experimental data and theoretical calculations for
differential cross section using different values for l at 2.914 MeV. The l represented by

each line is colour coded in the same way as is shown in Figure 5.1.
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Figure 5.7: Comparison between experimental data and theoretical calculations for
differential cross section using different values for l at 3.455 MeV. The l represented by

each line is colour coded in the same way as is shown in Figure 5.1.

Figure 5.8: Comparison between experimental data and theoretical calculations for
differential cross section using different values for l at 3.995 MeV. The l represented by

each line is colour coded in the same way as is shown in Figure 5.1.
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Despite this observation, the data do appear to exhibit similarities to the l = 2 (green)

theoretical line since this line and the data rise into a peak at θLab ∼ 120◦. This implies

that the parity of this state is positive.

Figure 5.9: Comparison between experimental data and theoretical calculations for
differential cross section using different values for l at 5.22 MeV. The l represented by

each line is colour coded in the same way as is shown in Figure 5.1.

The data for the 5.22 MeV state, shown in Figure 5.9 clearly show similarities with the

l = 2 (green) theoretical line, giving a strong indication that this state is populated via

the d-wave and suggests a positive parity.

The data for the 5.85 MeV state shown in Figure 5.10 do not show any clear similarities

with any of the theoretical lines shown. The difficulty in identifying the shape of the data

is caused by the discontinuity of the points seen at θLab = 105◦, 113◦ and 117◦. Ignoring

these points gives the impression that the data increases to a peak at θLab ∼ 120◦, giving

a tentative identification of the d-wave (green) being dominant in the transfer to this

state. The data obtained at this energy state and above start to suffer from the fact

that high angles of the box detectors are cut off due to the threshold of the detectors.

This may make it difficult to identify a s-wave transfer if there are no data points past

130◦ to show the associated secondary peak.

As with the 3.995 MeV state, the 6.005 MeV state shown in Figure 5.11 appears to have

a rather featureless profile, making it difficult to identify. Two different l-wave might

combine to give the total profile that is shown by the data. It is easy to see that there

are multiple ways to combine two of the l-waves shown in Figures 5.2 to 5.13 that might
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Figure 5.10: Comparison between experimental data and theoretical calculations for
differential cross section using different values for l at 5.85 MeV. The l represented by

each line is colour coded in the same way as is shown in Figure 5.1.

Figure 5.11: Comparison between experimental data and theoretical calculations for
differential cross section using different values for l at 6.005 MeV. The l represented by

each line is colour coded in the same way as is shown in Figure 5.1.
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result in a total differential cross section that is relatively flat. Figure 5.12, showing the

data for the 6.55 MeV state, is similarly featureless, making it difficult to identify.

Figure 5.12: Comparison between experimental data and theoretical calculations for
differential cross section using different values for l at 6.55 MeV. The l represented by

each line is colour coded in the same way as is shown in Figure 5.1.

The data for the 7.48 MeV state in particular suffers from lack of data at higher angles

in the box detector due to the high thresholds. The small amount of points makes it

difficult to correctly identify, but tentative evidence suggests that the state could be

dominated by the f-wave transition (black), suggesting that the state has a negative

parity. This early conclusion is reached using the downward trend exhibited by the four

points from the box detector at θ = 105◦, 109◦, 113◦ and 117◦

5.1.3 Gamma-ray Transitions

The shell-model also provides predictions of the γ-ray decay transitions that may occur

between the predicted states. Some of the states given by the shell-model and their

γ-ray transmissions are shown in Figure 5.17.

The γ-rays seen in the experiment have already been described in Section 4.4.1 (and a

level scheme depicting the γ-ray transitions is given in Figure 4.43). Finding similarities

between the observed γ-ray decay scheme and the decay scheme predicted by the shell-

model provides evidence for assignment of the spin and parity to the experimentally

observed energy states. The final assignment of each energy is fully described in Section
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Figure 5.13: Comparison between experimental data and theoretical calculations for
differential cross section using different values for l at 7.48 MeV. The l represented by

each line is colour coded in the same way as is shown in Figure 5.1.

5.1.5, but for ease of comparison, the energy scheme obtained from the experiment with

the final spin/parity assignments is displayed in Figure 5.15.

The shell-model is not perfect; it does not correctly give the true values of the energy

states that are possible, nor will it give completely accurate predictions as to the tran-

sitions of the γ-rays. However, it has shown success in describing the structure of the

nucleus, as described in Section 2.1. Therefore, not all the transitions that are predicted

and shown in Figure 5.14 are seen in the experiment. The transition strengths might be

the cause of discrepancies between theory and experiment; a weak transition may result

in the γ-ray not being detected in the experiment, even though it is really emitted. It

is also possible there is a problem with the experiment that keeps some γ photons from

being detected. An example of this is would be in the efficiency of the TIGRESS clovers;

high energy γ-rays are less likely to be detected by TIGRESS, and so some γ-ray transi-

tions might be missed. The result of all these points is to conclude that the absence of a

γ-ray does not invalidate the identification of a state. Instead, the similarities between

the shell-model transition predictions and the experimentally observed transitions are

used to provide evidence - not proof - of a state’s spin and parity.
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Figure 5.14: shell-model energy level scheme and γ transitions.

5.1.4 Strengths of the Populated States

Of the low energy states already known in 25Na, only three have a spin and parity that

are confirmed and are also detected in this experiment (see Table 1.1). The spins of

the unidentified states were identified by finding the theoretical ‘reaction strength’ of

the state, i.e. the strength of a reaction taking into account the Spectroscopic Factors

and spin designations from the shell-model, and the theoretical cross sections, σ, and

comparing with the number of counts for that state detected in the experiment.

To find the theoretical reaction strengths, the cross section, σ, needed to be found for

different values of l. TWOFNR was used for this purpose. Using a target nucleus spin

of 4+ and a spin value of 9/2 for the final nucleus state, the differential cross sections,

dσ/dΩ, were calculated for a transferred nucleon of spin s1/2, p3/2, d3/2 and f7/2. The
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Figure 5.15: Experimentally obtained level scheme including γ transitions and spin/-
parity designation.

other parameters input into TWOFNR were the same as those described in Section

5.1.1. The value of σ was found by integrating dσ/dΩ over the coverage given by the

Box and CD detector as in Equation 5.1,

σ =

∫
Box

dσ

dΩ
2π sin θdθ +

∫
CD

dσ

dΩ
2π sin θdθ, (5.1)

where 2π sin θdθ is the value for dΩ given in Equation 4.5. The cross section, σ, was

found this way for several energies ranging from 0 MeV to 8 MeV. Plotting these values

showed how the theoretical values of cross sections for different l varied over the energy

range of the peaks detected in the experiment. The points for each l were then fitted in

order to be able to find a value of σ for any given energy. This is shown in Figure 5.16.
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Figure 5.16: Variation of cross section as energy increases at different values of l.

Energy (MeV)
Threshold Angle, θ (◦)
Box CD

0 143.0 172.0
2 143.0 172.0
4 143.0 172.0
6 133.6 172.0
8 116.2 153.1

Table 5.1: Threshold cut off at various energies.

The value of σ is dependent on the angular coverage of the Box and CD detectors. At

∼ 6 MeV, the experiment was subject to the threshold effects described in Section 4.4.4.

The angular coverage of the Box and CD DSSSDs had to be adjusted in order to be a

true comparison between the theoretical results and the experiment. The upper angular

limits of both the Box and CD detectors are caused by the high thresholds are given in

Table 5.1 at various energies.

The constant 2π in Equation 5.1 was obtained by assuming full coverage in φ (see

Equation 4.5). Even though this assumption is not completely accurate given the exper-

imental set-up, it is a close approximation to it at most energies and angles. However,

at energies greater than 4.7 MeV, only a quarter of the CD detector is used, meaning

that the integral over the CD detector becomes
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Energy (MeV)
Spectroscopic Factors

l = 0 l = 1 l = 2 l = 3

0 0.53861
0.181 0.7311
2.552 0.04687 0.03866
2.791 0.64902 0.09495
2.919 0.01554
3.263 0.36835 0.32253
3.928 0.03433 0.20302
4.097 0.00184 0.15766
4.753 0.2899
5.185 0.01638 0.42662
6.154 0.2313 0.1058
6.233 0.3963 0.2793
6.822 0.2225 0.4709
7.044 0.1535
7.322 0.0929 0.0863
7.816 0.4877
8.105 0.0856 0.0478
8.617 0.069 0.01
8.982 0.3048

Table 5.2: Spectrocopic factors given by the shell-model per l.

σCD =

∫
CD

dσ

dΩ

π

2
sin θdθ. (5.2)

These modifications occur at high energies and cause the values of σ shown in Figure

5.16 to be lower than they would have been otherwise. Below 4.7 MeV, σ increases for

every l as energy increases.

The theoretical cross sections of the states listed in Table 5.2 were found using the fit

lines for each value of l in Figure 5.16. However, this is still not an accurate comparison

to the number of counts obtained in the experiment because it does not address the

occupancy of the state being populated. For instance, for 25Na, the ground-state is

known to have a spin of 5/2. The degeneracy of this state, i.e. the number of quantum

states that have the same energy, is given by 2J + 1, which equals 6 in the case that

J = 5/2. This means that the probability of a neutron being deposited in the ground-

state is six times more likely due to the degeneracy of the state.

The spectroscopic factors, S, given by the shell-model also play a roll in what is expected

to be seen in the experiment. The values for S for each excited state is given in Table

5.2. The final value of the reaction strength predicted by the theory is then given by

R = S(2J + 1)σ. (5.3)



Chapter 5. Results 129

Figure 5.17: Strengths and the spins and parities of states predicted by the shell-
model.

The values of R are shown graphically in Figure 5.17 for all the energies listed in Table

5.2.

5.1.5 Assigning Spin and Parity to States in 25Na

Finally assigning the spin and parity to the states observed in the experiment requires

combining all the information obtained in sections 5.1.2 to 5.1.3. Figure 5.18 shows the

total counts of each energy state that was seen in the experiment. The final spin and

parity designations for each state are also labelled. The process used to find these labels

is described here.

Consider the 7/2+ and 9/2+ states at 2.791 MeV and 3.263 MeV in Figure 5.17. The

reaction strength, R, is the highest of all the states shown in this figure, suggesting

that there will be a high count rate of these states in the experiment. Table 5.2 shows

that the s-wave contributionr is predicted to be strong in both of these states. These

facts produce a strong argument that these states are the experimentally observed states

found at 2.788 MeV and 3.455 MeV. These experimental energies both have a strong

s-wave dependence, as can be seen in Figures 5.5 and 5.7, and have a high count rate,

as is shown in Figure 5.18. The 2.788 MeV and 3.455 MeV states are therefore assigned

a spin and parity of 7/2+ and 9/2+ respectively.

This provides a starting point that can be used to identify other experimentally observed

energy states. The 2.788 MeV state that was just identified is fed by the 3.995 MeV
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Figure 5.18: Strengths and the spins and parities of experimentally observed states.

state as is shown by Figure 5.15. The 3.995 MeV state has a d-wave dependence as is

shown in Figure 5.8. In the shell-model, there are four states that are predicted to feed

into the corresponding 7/2+ state at 2.791. The 3.263 MeV 9/2+ state has already been

established to correspond to the 3.455 MeV experimental state. Of the three other states

that feed into 2.791 MeV, only two are predicted to have a strong d-wave dependence:

3.928 MeV and 5.185 MeV with spins and parities of 9/2+ and 7/2+ respectively. The

7/2+ MeV is dismissed due to the large difference between the observed energy of 3.995

MeV and the predicted energy of 5.185 MeV. Therefore, the 3.995 MeV is identified to

be the 9/2+ state.

The experimentally observed state at 3.455 MeV (now identified as 9/2+) is seen to

decay through the state at 2.416 MeV and then to the ground-state. The 2.416 MeV

is weakly populated, but has an s-wave dependence as shown in Figure 5.4. Comparing

this information to the data given by the shell-model gives evidence for the 2.416 MeV

being the 9/2+ state at 2.522 MeV. This state also appears to be dependent on the

s-wave, is predicted to be relatively weakly populated when compared to the strongly

populated state at 3.263 MeV (Figure 5.17), and is the only state that is fed by the

3.263 state and also decays to the ground-state (Figure 5.14). Therefore, it is concluded

that the experimental state at 2.416 has a spin and parity of 9/2+.

Now consider the experimental state found at 5.85 MeV. It was not possible to identify

which l was dominant in the transition of this state (see Figure 5.10), so the only method

available to identify the corresponding state predicted by the shell-model is by using the

observed γ-ray decay scheme. The experimental data show that the 5.85 state decays
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through the states at 2.416 and 2.788 MeV, which have already been identified to have

spin and parity assignments of 9/2+ and 7/2+ respectively. The only state that exhibits

this same decay pattern as predicted by the shell-model is the 5.185 MeV, 7/2+ state.

Based on this, the observed 5.85 state is assigned the spin and parity of 7/2+.

The experimental state found at 5.22 MeV was shown using Figure 5.9 to have a strong

d-wave dependence, and was seen to decay through the 2.416 MeV, 9/2+ state. When

applying this information to the shell-model predictions, there are three states that pass

through the equivalent 9/2+ state that are also dominated by the d-wave transition.

These are the 3.928 MeV, 9/2+ state, the 4.753 MeV , 11/2+ state, and the 5.185 MeV,

7/2+ state. The states at 3.928 and 5.185 MeV already correspond to the experimentally

observed states at 3.995 and 5.85 MeV respectively, and so can not be considered in the

assignment of the 5.85 MeV energy level. This leaves the 11/2+ state at 4.753 MeV.

Therefore, it is concluded that the state at 5.22 MeV is has the spin and parity of 11/2+.

The highest three states observed in the experiment are difficult to identify; it was not

possible to determine which l-wave was dominant in the transfer reaction because the

differential cross section obtained from the data was too flat to be able to compare to

the profiles given by TWOFNR. The γ-ray decays seen for these levels offer little help

because only the state at 6.55 MeV has a γ-ray associated with it that decays through

an energy level that has already been identified. In comparison, the state at 6.005 MeV

has no γ-rays associated with it, and the γ-rays associated with the 7.48 MeV follows a

decay chain that is independent to the decay chains that have been taken by every other

state discussed thus far. The only other clues as to the spin and parity of the states

that are available is the reaction strengths of the predicted energy levels shown in Figure

5.17 and how they compare to the counts seen in the experiment for these three states.

Figure 5.18 shows that there is quite a high count rate for these three energy states.

This high count rate appears to be reflected in the reaction strength given to the states

predicted by the shell-model at 6.233, 6.822 and 7.816 MeV with a spin and parity of

9/2−, 11/2− and 13/2− respectively. Based solely on this observation, the experimental

states at 6.005, 6.55 and 7.48 MeV where identified as a 9/2−, 11/2− and 13/2− state

respectively. This designation is supported for the 6.55 MeV state by the γ-ray that is

associated with its decay. Since the state decays through the 2.416 MeV energy level,

which mirrors the shell-model prediction that the 11/2− state will to the ground-state

via the two 9/2+ states.

The final states that have not yet been discussed are at 0.089 MeV and at 2.914 MeV.

Both theses states are very weak, as can be seen when looking at Figures 5.3 and 5.6.

There are no data that allows these energies to be assigned to a specific parity and spin.

However, these states have already been seen and their spins are already known [69].
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They are therefore labelled here as 3/2+ for the 0.089 MeV state, and 5/2+ for the 2.914

MeV state.

The difference in the energy of the experimentally observed states compared to those

predicted in theory is shown in Figure 5.19 with the newly assigned spins and parities

labelled.
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Figure 5.19: Comparison between the energy levels found in the experiment and those
predicted by theory.

5.2 Spectroscopic Factors

The spectroscopic factor (SF) of a reaction describes how much like a single-particle

state the final reacted state corresponds to. A simple description of the transfer reaction

describes an unpaired nucleon being placed into an unoccupied shell, creating an energy

state that has a specific spin and parity. This ‘single-particle state’ is described as such

because it is the one transferred nucleon that determines the spin of the state. However,
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it is possible for a nucleon to be placed into a completely different nuclear shell and still

produce an energy state with the same spin and parity as the single-particle state. This

happens when two nucleons in the same shell couple together to a spin other than zero.

If a state is formed purely by the single-particle transfer reaction, then the state has a

SF of one. However, if the state is formed by two or more particles coupling to a state

of the same spin and parity at the same energy, then the SF is reduced.

The shell-model predictions for the SF have already been used to calculate the reaction

strength for each of the predicted energies and are listed in Table 5.2. However, at this

stage, it was not important to know the J value of the transferred nucleons since only

the total SF per l was required. Table 5.3 gives the predicted energy of the states along

with the SFs of the state for each J .

Multiplying the appropriate theoretical lines given by TWOFNR by the predicted mag-

nitudes of each SF given in Table 5.3 gives the final theoretical predictions for each

excited energy. The single-particle states that contributed the most to the cross section

of the reaction, as predicted by the shell-model, were used to provide the comparison

between theory and data. This comparison is shown in Figures 5.20 to 5.23.

It can be seen here that the shell-model predicts the spectroscopic factors with varying

success. Some energies, such as the ground-state and 5.22 MeV excited state appear to

have relatively good agreement with theory. Other states, such as the 2.788 MeV, 2.416

MeV and 3.455 MeV appear to have had the magnitudes of each SF over estimated,

resulting in a theoretical line that is greater than the data. The 6.005 MeV and 6.55

MeV states show a difference in the predicted magnitude of the spectroscopic factors

found and the relative proportion between the single-particle state that make the total

theoretical line. This is demonstrated by the calculated lines having a different form

compared to the data.

5.2.1 Minimising Chi squared

The values for the spectroscopic factors predicted by theory does not give satisfactory

results for all the energy states observed. The outputs from TWOFNR must have a χ2

minimisation performed on them in order to obtain the final values for the spectroscopic

factors for each state.

The angular distribution of a state is given by the sum of the single-particle state angular

distributions multiplied by the spectroscopic factors of those single-particle states,

(
dσ

dΩ

)
Total

= a

(
dσ

dΩ

)
1

+ b

(
dσ

dΩ

)
2

, (5.4)
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Figure 5.20: Comparison between theory and data for various energy levels.



Chapter 5. Results 135

Figure 5.21: Comparison between theory and data for various energy levels.
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Spin Excitation Spectroscopic factor
/ Parity Energy (MeV) s1/2 p3/2 d3/2 d5/2 f7/2

5/2+ 0.0 0.0034 0.53521
3/2+ 0.181 0.7311
9/2+ 2.522 0.04687 0.03194
7/2+ 2.791 0.64902 0.08391
5/2+ 2.919 0.01519
9/2+ 3.263 0.36835 0.17443
9/2+ 3.928 0.03433 0.17516
11/2+ 4.753 0.21832
7/2+ 5.185 0.01638 0.41194
9/2− 6.154 0.2025 0.0969
11/2− 6.822 0.2225 0.4706
13/2− 7.816 0.4861

Table 5.3: Theoretical spectroscopic factors for each level.

where the subscript denotes the nth single-particle state used in the calculation and a

and b are the spectroscopic factors of these states. The unknown quantities, a and b,

will be obtained using the following process.

A code was written which minimised the χ2 value of (dσ/dΩ)Total to the data points.

The spectroscopic factors in Equation 5.4 were set as variable parameters that could

have a value between 0 and 2. A spectroscopic factor greater than 1 is non-physical,

however, the code was allowed this extra degree of freedom in order to see how much

greater than 1 the code would want to set the parameters in order to appropriately

minimise the theory to the data. Using an iterative process, different values of a and

b were substituted into Equation 5.4. During each iteration, the value of (dσ/dΩ)Total

was evaluated at the centre angle of each angle bin and substituted into Equation 5.5.

Subsequently, a value for χ2 for these values of a and b were found using

χ2 =
∑
θ

((
dσ
dΩ

)
Exp,θ

−
(

dσ
dΩ

)
Th,θ

∆
(

dσ
dΩ

)
Exp,θ

)2

, (5.5)

where (dσ/dΩ)Exp,θ and (dσ/dΩ)Th,θ are the differential cross sections from the exper-

imental data and theory respectively at a lab angle θ, and ∆ (dσ/dΩ)Exp,θ is the error

in the differential cross section of the experimental data.

Due to the high threshold, and other hindrances such as dead strips causing fewer counts

to be detected at certain angles, some values of θ were excluded from the measurement

of χ2 so not to skew the final result. The excluded angles at different energies are listed

in Table 5.4.
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Figure 5.22: Comparison between theory and data for various energy levels.

In some instances, a state is created by the transfer of a particle with the same l,

but different j values. An example of this is shown in 5.3 for the ground-state, which is

predicted to have a spectroscopic factor of 0.0034 and 0.53521 for the d3/2 and d5/2 levels

respectively. The method used to obtain the experimental values of the spectroscopic

factors described above is not able to distinguish between the angular distributions of

the d3/2 and d5/2 levels, and so it can only find the spectroscopic factors for states the

are a superposition of different l values. In the instance where l is the same, as is the

case with the ground-state, variable b in Equation 5.4 is set to 0 and the value found for

a is quoted in Table 5.5 as the spectroscopic factor of the l with the largest theoretically

predicted value.

The final values for the spectroscopic factors for each single-particle state at every energy
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Figure 5.23: Comparison between theory and data for various energy levels.

examined in this analysis are listed in Table 5.5. The fits that these spectroscopic factors

give are shown in Figures 5.24 to 5.33. Also shown in these figures are the contributions

of the each single-particle state to the final fit. Graphs for the 0.089 and 2.914 MeV

states are not shown because the minimisation program failed due to the lack of counts

observed for these states.

The ground-state of 25Na seems to be a pure d-wave transfer as shown in Figure 5.24.

The shell-model predicts that the state is made up of two d-wave components in the

transfer reaction (Table 5.3). The d3/2 component does not contribute much to the total

state compared to the d5/2, and so it was not used to fit the data.
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Excitation Energy (MeV) Omitted Angles (◦)

0.0 97, 101, 141

0.089 97, 101, 141

2.416 97, 101, 141

2.788 97, 101, 141

2.914 97, 101, 141

3.455 97, 101, 141

3.995 97, 101, 141

5.22 97, 101, 141

5.85
97, 101, 133

137, 141

6.005
97, 101, 133

137, 141

6.55
97, 101, 129
133, 137, 141

7.48
97, 101, 121
125, 129, 133
137, 141, 168

Table 5.4: Angles omitted when applying χ2 minimisation scheme.

Spin/ Excitation Spectroscopic factors
Parity Energy (MeV) s1/2 p3/2 d3/2 d5/2 f7/2

5/2+ 0.0 1.08 (4)
3/2+ 0.089 0.02 (5)
9/2+ 2.416 0.028 (4) 0.01 (2)
7/2+ 2.788 0.66 (1) 0.46 (3)
5/2+ 2.914 0.006 (16)
9/2+ 3.455 0.51 (2) 0.41 (2)
9/2+ 3.995 0.024 (6) 0.56 (2)
11/2+ 5.22 0.83 (2)
7/2+ 5.85 0.00 (4) 0.52 (6)
9/2− 6.005 0.38 (5) 1.3 (1)
11/2− 6.55 0.15 (2) 1.07 (3)
13/2− 7.48 0.83 (2)

Table 5.5: Experimental spectroscopic factors for each level.

The state at 2.419 MeV was not predicted to be strongly populated in the transfer reac-

tion. The inclusion of the state in the fitting of the excitation spectra given by SHARC

was based on the knowledge that it had been detected previously [69]. Previously known

information about the state was limited to the energy of the state, and its decay path.

The energy did not have a spin associated with it. Figure 5.25 shows the final fit found

for the energy level. The total fitted angular distribution does not appear to deviate

greatly from the s-wave contribution to the reaction. The d-wave contribution is also

show, though it appears to to be several orders of magnitude weaker than the s-wave

component.
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Figure 5.24: Fitted angular distributions for 0.00 MeV. Contributions of the d-wave
to the total fit are shown.

Figure 5.25: Fitted angular distributions for 2.416 MeV. Contributions of s-wave and
d-wave to the total fit are shown.

The state at 2.788 MeV was also known prior to the experiment, however, the spin

and parity values were uncertain, being thought to be one of: 1/2+, 3/2 or 5/2−[69].

Figure 5.26 demonstrates a clear s and d-wave dependence on the shape of the angular

distribution, eliminating the possibility of the state having a negative parity. The state

has been identified, with strong evidence, as a 7/2+ state (different from what was

previously thought). The figure shows that the s-wave component dominates for most

of the angular range provided, with a d-wave dependency at ∼ 125◦ − 135◦.

The spin and parity of the state at 3.455 MeV was previously unknown. It was identified

in this experiment as a 9/2+ state. As with the 2.788 MeV state, Figure 5.27 shows a
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Figure 5.26: Fitted angular distributions for 2.788 MeV. Contributions of s-wave and
d-wave to the total fit are shown.

Figure 5.27: Fitted angular distributions for 3.455 MeV. Contributions of s-wave and
d-wave to the total fit are shown.

strong s-wave dependence, with a d-wave component that become dominant within the

angular range of ∼ 125◦ − 135◦.

Literature gives the the spin and parity of the state at 3.995 MeV to be 1/2− [69].

However, the fit to the angular distribution in Figure 5.28 shows a strong d-wave transfer

(and a weaker, but still important s-wave transfer), confirming a positive parity. The

d-wave dominates the reaction. The s-wave does not contribute much to the total shown,

but does become significant above 150◦.
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Figure 5.28: Fitted angular distributions for 3.995 MeV. Contributions of s-wave and
d-wave to the total fit are shown.

Figure 5.29: Fitted angular distributions for 5.22 MeV. Contributions of the d-wave
to the total fit are shown.

Prior to this experiment, the 5.22 MeV energy level did not have a known spin or parity.

It was identified to be an 11/2+ state in this work. Table 5.3 shows that spectroscopic

factor of the state at 5.22 MeV consists of a pure d-wave transfer. Figure 5.29 supports

this. Unlike the state at 3.995 MeV, at which the data diverges from the l = 2 line

at 150◦ when the s-wave becomes significant, the data for the 5.22 MeV state seems

to follow the l = 2 line though out the entire angular range suggesting that there is no

other significant l contributing to the state.

The state at 6.005 MeV has previously been established to have a negative parity [69],

but the spin of the state has not been decisively established. Figure 5.31 shows the
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Figure 5.30: Fitted angular distributions for 5.85 MeV. Contributions of the d-wave
to the total fit are shown.

Figure 5.31: Fitted angular distributions for 6.005 MeV. Contributions of p-wave and
f-wave to the total fit are shown.

contributions of the l = 1 and 3 waves produce good fits to the data, thus adding to the

conclusion that this state does have a negative parity. The spin was found to be 9/2,

though this was based solely on the comparison between the counts seen in the state

during the experiment and the expected reaction strength.

The state at 6.55 MeV was presumed to have a spin and parity of 3/2− [69]. Figure 5.32

does assume a negative parity due to the good fit produced by the l = 1 and 3 lines,

but identified the state to have an 11/2 spin based on a comparison to the theoretical

reaction strength.
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Figure 5.32: Fitted angular distributions for 6.55 MeV. Contributions of p-wave and
f-wave to the total fit are shown.

Figure 5.33: Fitted angular distributions for 7.48 MeV. Contributions of the f-wave
to the total fit are shown.

The state at 7.48 MeV was not previously known, so no data exist for it. Figure 5.33

shows an f-wave contribution to the state which demonstrates some agreement to the

data, though there are not many data points to fit due to threshold issues encountered

during the experiment. The state was tentatively labelled as a 13/2− state.

Some comments about Figures 5.24 to 5.33 follow. The ground-state angular distribution

shown in Figure 5.24 has been fitted using a purely d-wave transfer. This fits the data

well between 109◦ and 141◦, but undershoots the data points above 152◦. This same

characteristic is also seen in Figure 5.28 in which the three data points above 145◦
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do not follow the d-wave angular distribution. In the case of the 3.995 MeV state,

the divergence of these points can be accounted for by considering the s-wave angular

distribution, which becomes more prominent at high lab angles. However, there is no

s-wave in the ground-state because it is not possible to create a 5/2+ state in 25Na by

coupling the spin of a neutron in the s1/2 sub-shell the the 4+ ground-state of 24Na.

Figure 5.24 then, could show evidence for higher order contributions playing a small but

noticeable role in the population of the ground-state.

The states that were identified with negative parities during the experiment consistently

fail to match the spin values seen in literature. These states were identified using the

predicted reaction strengths calculated in Section 5.1.4, a process that depends upon

the accuracy of the predictions of the spectroscopic factors given by the shell-model.

Figures 5.20 and 5.21 were created using these predictions and highlight the reliability

of the shell-model. The identification of other states took the reaction strength into

account, but used a host of other evidence to come to a conclusion as to what the state

was. The only evidence that was available to identify the negative parity states was the

reaction strength.

A comparison of the SF predicted by the shell-model and found in this experiment is

shown in Figure 5.34.
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Figure 5.34: Spectroscopic factors predicted by the shell-model (top panel) compared
to those found in the experiment (bottom panel).



Chapter 6

Discussion

The experiment discussed in this work aimed to examine the shell structure of 25Na,

in particular, the excitation energies between 3.4 and 4.0 MeV. This energy range is

within 0.6 MeV of the proton threshold of 25Na’s mirror nucleus, 25Si. Due to a weak

beam intensity, during the experiment, some of the weakest states predicted by the shell-

model (which could still be important astrophysically) were not able to be studied, but

the more strongly populated states, including two states that are relevant to the energy

region of interest, could be studied in detail.

This chapter will discuss the results in two parts: the first will compare the observed

structure of 25Na to the structure predicted by the shell-model, the second will discuss

the states relevant to the 24Al(p, γ)25Si reaction. The shell-model predictions for energy

and spectroscopic factors were taken from WBC calculations, which incorporates USD-

A shell-model calculations. The occupancies of each state were obtained from WBP-M

calculations, which derives from USD calculations. The reason for taking values from

different shell-models is simply that there is currently no algorithm to calculate the

occupancies in the newer WBC model and so WBP-M is used when it is not possible to

use WBC.

6.1 The Structure of 25Na

6.1.1 Positive Parity States

States with a positive parity have no p or f-wave contribution to the wave functions since

the nucleons all remain in the sd-shell (and so l = 0, 2) for the low-lying states in 25Na.

The average occupancies, n, of the sub-shells in these positive parity states (Tables 6.1,

147
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Jπn SF (d5/2) SF (s1/2) SF (d3/2) n(d5/2) n(s1/2) n(d3/2)

7/2+
1 0.08 0.65 0.11 6.77 1.46 0.78

7/2+
2 0.02 0.01 0.00 6.68 1.49 0.83

7/2+
3 0.05 0.00 0.11 6.89 1.23 0.88

7/2+
4 0.00 0.02 0.01 6.60 1.39 1.01

7/2+
5 0.01 0.02 0.41 6.62 1.00 1.38

7/2+
6 0.01 0.00 0.03 6.28 1.39 1.32

7/2+
7 0.00 0.01 0.00 6.56 1.29 1.15

Table 6.1: The spectroscopic factors for each sub shell in the sd-shell for 7/2+ states
as calculated by the WBC shell-model. The average occupancies for each sub shell in

the sd-shell for 7/2+ states as calculated by the WBP-M shell-model.

Jπn EExp (MeV) EWBC (MeV) EWBP−M (MeV) Shift (keV)

7/2+
1 2.788 2.791 2.730 +61

7/2+
2 3.421 3.019 +402

7/2+
3 4.097 4.003 +94

7/2+
4 4.694 4.657 +37

7/2+
5 5.85 5.185 4.940 +245

7/2+
6 5.644 5.361 +283

7/2+
7 6.107 5.974 +33

Table 6.2: A comparison between the WBC, WBP-M shell-model predictions and the
experimentally seen energies for 7/2+ states. The shifts between the different shell-

model energies are also shown.

6.3 and 6.5) will all sum up to nine because there are three protons and six neutrons

coupling together to create the state.

As discussed in Chapter 1, the coupling of the three protons in 25Na make up the first

5/2+, 3/2+ and 9/2+ states when the neutrons fill up the d5/2 shell and are coupled to 0+.

The WBC shell-model calculates the spectroscopic strengths of the 5/2+ ground-state

and the first 3/2+ state to be dominated by the d5/2 wave function in both cases. This

prediction is not observed within the experimental results (Figure 5.34) which shows a

large d5/2 contribution to the ground-state, but gives a near zero spectroscopic strength

for the 3/2+ excited state. This discrepancy between theory and experiment is likely

caused by the experimental limitation to resolve the ground-state from the 3/2+ state at

0.089 MeV. This poor resolution caused the fitting algorithm used to fit the excitation

spectra to put all the strength into the ground-state and ignore the 3/2+ state. This

resulted in the large spectroscopic factor of 1.08± 0.04 for the ground-state, an a small

spectroscopic factor of 0.02± 0.04 for the 3/2+ state.

The details of the first seven 7/2+ states predicted by the shell-model are given in Table

6.2. Of these listed states, only two are observed experimentally during this work. A

difference of less than 200 keV between experiment and theory is generally considered to

be acceptable for excitation energies. The first observed 7/2+ state at 2.788 MeV is well
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Jπn SF (d5/2) SF (s1/2) SF (d3/2) n(d5/2) n(s1/2) n(d3/2)

9/2+
1 0.01 0.05 0.03 7.46 0.77 0.76

9/2+
2 0.17 0.37 0.15 6.94 1.14 0.92

9/2+
3 0.03 0.03 0.18 6.91 1.22 0.87

Table 6.3: The spectroscopic factors for each sub shell in the sd-shell for 9/2+ states
as calculated by the WBC shell-model. The average occupancies for each sub shell in

the sd-shell for 9/2+ states as calculated by the WBP-M shell-model

within this range since the difference between this energy and that given by the WBC

calculation is 3 keV. The second observed 7/2+ state observed differs quite dramatically

from the theoretical prediction, as can be seen in Figure 5.19. The observed energy of

this state is 5.85 MeV, and corresponds with the theoretical energy of 5.185 MeV, and

so the difference between the two is −665 keV. However, as is seen in Table 6.2, the

7/2+
6 state has an energy of 5.644, which is −206 keV from the experimental energy. It

is therefore possible that the experimentally observed energy has been misidentified as

the 7/2+
5 state when it is in fact the 7/2+

6 state and the shell-model has failed to obtain

the correct phases or other properties in the wave functions. This argument is supported

by the average occupancies of the sub-shells of the 7/2+
5 and 7/2+

6 states shown in Table

6.1, which are very similar to each other.

The comparison of the spectroscopic factors between theory and experiment is shown

graphically in Figure 5.34. The s1/2 component of the wave function for the first 7/2+

state is shown here to give a similar value for both the theory and the experiment (0.65

and 0.66± 0.01 respectively). In comparison, the differences between the experimental

and theoretical values for the d5/2 portion of the wave function for this state are very

different, with the experimental value being found to be 0.46, approximately six times

larger, than the predicted value of 0.08.

The same information for the 9/2+ states are given in Tables 6.4 and 6.3. The lowest

of these states has an almost zero spectroscopic factor, which is reflected in the results

shown in Figure 5.34. The occupancies for this level (and indeed, for all other 9/2+

states) shows that the transferred neutron is most likely to be found in the d5/2 sub-

shell, which completes a pair. When the neutron is found in this level, then the spin of

the neutrons will couple to zero, and so the 9/2+ will be created by the coupling of the

protons in the d5/2 sub-shell. The protons are only expected to be coupled to 9/2+ 3%

of the time. In a single-step direct reaction, which is assumed to be dominant in a (d, p)

reaction, it is inherent that the lowest 9/2+ will be weakly populated for this reason.

The second 9/2+ state is very strongly populated in the data. The comparison between

theoretical and experimental spectroscopic factors for the s1/2 portion of the wave func-

tion remains the biggest contribution to the wave function, but has a value of 0.51±0.02
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Jπn EExp (MeV) EWBC (MeV) EWBP−M (MeV) Shift (keV)

9/2+
1 2.416 2.522 2.542 −20

9/2+
2 3.455 3.263 3.155 +108

9/2+
3 3.995 3.927 3.918 +9

Table 6.4: A comparison between the WBC, WBP-M shell-model predictions and the
experimentally seen energies for 9/2+ states. The shifts between the different shell-

model energies are also shown.

Jπn SF (d5/2) SF (s1/2) SF (d3/2) n(d5/2) n(s1/2) n(d3/2)

11/2+
1 0.07 0.00 0.22 6.93 1.05 1.02

11/2+
2 0.01 0.00 0.08 6.85 1.12 1.04

11/2+
3 0.00 0.00 0.08 6.81 1.12 1.07

11/2+
4 0.00 0.00 0.15 6.81 1.04 1.15

Table 6.5: The spectroscopic factors for each sub shell in the sd-shell for 11/2+ states
as calculated by the WBC shell-model. The average occupancies for each sub shell in

the sd-shell for 11/2+ states as calculated by the WBP-M shell-model.

experimentally and 0.37 theoretically. The theory predicts the d-wave contribution to

the wave function to be divided fairly evenly between the d5/2 and d3/2, with the spec-

troscopic factors being 0.17 and 0.15 respectively. Experimentally, the d5/2 state was

found to have a spectroscopic factor of 0.41. It should be pointed out, however, that

fitting the d-wave angular distributions to the data was the method for discerning the

experimental spectroscopic factors. This method does not distinguish between the d5/2

and d3/2 states, and so the experimentally obtained value could be a mix of the d5/2

and d3/2 contribution to the wave function. If the d-wave contribution is split evenly

between d5/2 and d3/2, as the shell-model predicts, then the spectroscopic factors for

each state will be approximately ≈ 0.21, which is close to the theoretical value.

Only the first 11/2+ state was observed in the experiment. The WBC model fails in

assigning the correct spectroscopic strength and energy to this state. The energy of

the state predicted by the shell-model is given in Table 6.6. The difference between

the experimental energy and what is predicted by the WBC model is 467 keV, which is

much larger than is usually expected. This could mean that the observed state is the

second 11/2+ state and that the spectroscopic strength obtained from the WBC model

is weighted incorrectly.

With regard to the spectroscopic strength, if the observed state is the first 11/2+ state,

then the theory predicted a value of 0.07 and 0.22 (Table 6.5) for the d5/2 and d3/2 states

respectively. The experimental value obtained for d3/2 was 0.83, which is significantly

higher than the theoretical value.
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Jπn EExp (MeV) EWBC (MeV) EWBP−M (MeV) Shift (keV)

11/2+
1 5.22 4.753 4.540 +210

11/2+
2 5.394 5.587 -193

11/2+
3 6.177 5.919 +258

11/2+
4 7.043 6.940 +103

Table 6.6: A comparison between the WBC, WBP-M shell-model predictions and
the experimentally seen energies for 11/2+ states. The shifts between the different

shell-model energies are also shown.

6.1.2 Negative Parity States

For 25Na, a negative parity state is primarily formed by inserting a neutron into the pf-

shell and so these states are generally seen at higher energy levels than positive parity

states. The average occupancies for each sub-shell in Table 6.7 equates to a value less

than one because it is possible to create a negative parity state by exciting a neutron

from the p-shell to the in the core of 25Na to the sd-shell in addition to creating a negative

parity state by placing a neutron in the pf-shell. This is appears to be especially true in

the case of the 7/2−1 and 9/2−1 states shown in Table 6.7.

The first negative parity states with significant spectroscopic factors predicted by the

shell-model does not occur until 5.804 MeV (Table 6.8), however, the first energy level

seen experimentally is the 9/2− state at 6.005 MeV. The energies of the 9/2−2 , 11/2−1 and

13/2−1 states where observed to have a lower energy than predicted by the WBC by 228,

272 and 336 keV respectively. This degree of agreement is reasonable for the relatively

high excitation energy of the state. A similar shift could place the 7/2−2 state at 6.4

MeV, which would be difficult to resolve from the 11/2−1 state in this experiment. If this

is the case, then the γ-ray transition from the 7/2−2 level, which is heavily dominated

by the transition to the ground-state of 25Na, would not be observed due to the low γ

detection efficiency at 6.4 MeV. Thus, some of the p-wave strength attributed to the

11/2−1 may come from the unidentified and unresolvable 7/2−1 state.

The spectroscopic factors found in this work and quoted in Table 5.5 for the f-wave

component of the wave function for the negative parity states are greater than one for

the 9/2−2 and 11/2−1 states. The experimental errors derived from uncertainties in the

data are quoted, but do not take into account the errors that are associated with the

theory used to describe the reaction. Reference [70] quantifies this error for nuclei in the

range of Z = 8 − 28 to be ±40%, which reduces the observed spectroscopic factors for

these states to a reasonable value.

Overall, The WBC shell-model is seen to provide an acceptable model of structure and

relative energy of the negative parity states in 25Na.
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Jπn SF (f7/2) SF (p3/2) SF (p1/2) n(f7/2) n(p3/2) n(p1/2)

7/2−1 0.07 0.03 0.00 0.16 0.04 0.01
7/2−2 0.10 0.20 0.03 0.21 0.25 0.05
9/2−1 0.03 0.03 0.01 0.12 0.03 0.01
9/2−2 0.03 0.39 0.01 0.37 0.43 0.04
11/2−1 0.47 0.22 0.00 0.52 0.37 0.02
13/2−2 0.49 0.00 0.00 0.65 0.27 0.01
15/2−1 0.30 0.00 0.00 0.78 0.15 0.01
15/2−2 0.20 0.00 0.00 0.61 0.08 0.01

Table 6.7: The spectroscopic factors for each sub shell in the pf-shell as calculated
by the WBC shell-model. The average occupancies for each sub shell in the pf-shell as

calculated by the WBP-M shell-model.

Jπn EExp (MeV) EWBC (MeV) EWBP−M (MeV) Shift (keV)

7/2−1 5.804 5.778 +26
7/2−2 6.154 6.154 +0
9/2−1 5.875 5.819 +38
9/2−2 6.005 6.233 6.206 +27
11/2−1 6.55 6.822 6.797 +25
13/2−1 7.48 7.816 7.783 +33
15/2−1 8.982 8.940 +42
15/2−2 10.331 10.396 -65

Table 6.8: A comparison between the WBC, WBP-M shell-model predictions and the
experimentally seen energies. The shifts between the different shell-model energies are

also shown.

The difference between the spectroscopic factors predicted using the WBC shell-model

and the experiment is shown in Tables 5.3 and 5.5. Aside from a tendency to reduce

the strength of the f7/2 level in lowest negative parity states and some other minor

differences in spectroscopic strengths described in this and the preceding section, the

WBC shell-model is able to describe the energy scheme of 25Na reasonably well.

6.1.3 Comparison to Literature

The current knowledge of 25Na was described in the Introduction with a summary of

the energies, spins and parities given in Table 1.1. A comparison between the results

found in this work to the results found in previous studies is given in Table 6.9.

The spin assignments assigned from the current work do not always agree with those

from the literature. The most serious discrepancy between literature and this work is

for the 3.995 MeV excited state which was reported to be a 1/2− state in reference [12]

which populated 25Na using the (d, t) reaction. The angular distribution reported for the

3.995 in [12] is not dramatically different to that given for the 5/2+ ground-state, which

could indicate the pick up of a d5/2 proton. There is some disagreement about which
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spin and parity should be assigned to the state at 2.788 MeV. As stated in reference

[69], the literature spin value of this state is assumed, in part, because of the γ decay

of the 3.995 MeV energy through the 2.788 MeV energy level, which then decays to the

ground-state. Hence, the incorrect spin for the 2.788 MeV energy is derived from the

incorrect spin assignment of the higher energy state. The 2.788 MeV excited energy

level was very strongly populated in this experiment, and so there is strong evidence for

it being 7/2+, and the present work confirms the state at 3.995 MeV as having a 9/2+

spin and parity. The WBC shell-model predicts the lowest 1/2− to lie closer to 3.0 MeV

than 4.0 MeV, which could relate to a state that has not yet been observed, or could be

the spin assignment of a state at 3.353 MeV (Table 1.1).

6.2 Astrophysical Relevance - the 25Si Nucleus

The 25Si nucleus is the mirror partner of 25Na. It is proton bound and is expected to

have a level scheme very similar to 25Na. States between the proton separation energy

of 3.414 MeV and 4MeV are of astrophysical relevance. For 25Na, this energy region

is bound since the neutron separation energy is Sn = 9.011 MeV, hence, information

gained about the states in this region in the present work can provide information about

the certain unbound states in 25Si.

The Coulomb barrier heavily hinders the proton channel in the 24Al(p, γ)25Si reaction,

and so the preferred decay mode of the resonance is through γ-ray emission. Equation

2.29 shows that the resonance strength is proportional to Γ(+)Γ(−)/(Γ(+) + Γ(−)). In

a (p, γ) reaction, Γ(+) = Γp and Γ(−) = Γγ . If Γp � Γγ then Γγ ≈ Γp + Γγ , and so

Excitation Energy (MeV) Jπ (Present Work) Jπ (Literature)[33] Jπ [5]

0.00 5/2+ 5/2+ 5/2+
0.089 3/2+ 3/2+ 3/2+
2.416 9/2+ 9/2+
2.788 7/2+ (1/2+, 3/2, 5/2−) 7/2+
2.914 5/2+ 5/2+ 5/2+
3.455 9/2+ 3/2+
3.995 9/2+ 1/2−
5.22 11/2+
5.85 7/2+
6.005 (9/2−) (1/2, 3/2)−
6.55 (11/2−) 3/2−
7.48 (13/2−)

Table 6.9: Comparison between spins and parities from the current work and litera-
ture. The third column gives the spins from NNDC [33]. The fourth column gives the

spins from Herndl et al [5].
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the reaction rate is effectively proportional to Γp for resonances in 25Si. The ratio of

σ/σSPM gives the spectroscopic factor of a reaction (Equation 2.20). Since σ ∝ ωγ, then

this also means that the ratio of the proton width to the single-particle proton width

also gives the spectroscopic factor. By applying this method in reverse, the value of

the proton width, Γp can be estimated from the measured spectroscopic factor obtained

from studying 25Na.

Experiments show that many pairs of mirror nuclei at A ≈ 25 share a similar energy

structure to each other [33] except for when the s1/2 sub-shell is populated. In these

instances, the large rms radius of the s1/2 nucleons and the associated change in Coulomb

interaction with the core protons causes a shift in the energy level [5]. The change in

the Coulomb potential between the mirror pair causes a downward shift in the energy

of the state for the proton rich nucleus due to matching of the proton wave function

before and after the reaction takes place. This shift is known as the Thomas-Ehrman

shift which is described in detail in reference [71].

The few energy levels of 25Si that have been determined experimentally were obtained

using the 28Si(3H,6He)25Si reaction [72]. Figure 6.1 shows the energy scheme obtained

from this experiment and compares it to the energy scheme of 25Na. The lines that

tentatively link the states are taken from reference [72] except for the uppermost state

where the line connects to the 3.995 MeV state that was observed during this experi-

ment whereas the original connection was to the 3.928 MeV energy in 25Na. The only

information available for the states in 25Si are their energies, and so the only basis for

these connections is the similarity between the energies of the states. Matching the 3.820

MeV state in 25Si to the 3.995 MeV state in 25Na is therefore reasonable.

Regarding the energy range of astrophysical relevance. Only two states observed in this

experiment are observed between 3.414 and 4.000 MeV: the 9/2+
2 state at 3.455 MeV,

and the 9/2+
3 state at 3.995 MeV. Of these, the state at 3.455 MeV is very strongly

populated, but is only 41 keV over the 3.414 MeV threshold which means that the

Coulomb barrier will greatly suppress the population of this state. In addition to this,

the state also has a strong s-wave contribution to its wave function, as is shown in

Figure 5.27, and so will experience a large Thomas-Ehrman shift to below 3.414 MeV.

This means that the 9/2+
2 state is likely a bound state in 25Si, and therefore not relevant

to the astrophysical rp-process. However, it may still be useful to consider the results

gained in this work for this state and compare to results presented by Herndl et al. [5].

Table 6.10 gives the spectroscopic factors for the states examined by Herndl et al. and

compares them to the spectroscopic factors found in this work.

The most significant result in Table 6.10 is the agreement between the s-wave spectro-

scopic factor found from the experiment and given by the shell-model used by Herndl et
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Figure 6.1: Comparison of 25Na and 25Si energy levels. The lines connecting states
are tentative and are based purely on the similarity of the energy levels between the

nuclei.

Jπn EWBC (MeV) EExp (MeV)
SFHerndl SFExp

d5/2 s1/2 d3/2 d5/2 s1/2 d3/2

9/2+
2 3.263 3.455 0.18 0.33 0.17 0.41 0.51

5/3+
3 3.813 0.02 0.01

9/2+
3 3.927 3.995 0.03 0.02 0.144 0.02 0.53

7/2+
3 4.097 0.04 0.01 0.16

5/2+
4 4.153 0.04 <0.01

5/2+
5 4.416 <0.01 <0.01

Table 6.10: Comparison of spectroscopic factors calculated by Herndl et al. and
observed in experiment. All experimental errors for the spectroscopic factors equate to

±0.02 except for 0.02 which is ±0.01.
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al. The absence of experimental results for the other states listed in the table confirms

that these state in the energy region of interest are too weak to be observed.

The reaction rates for each of the resonant states for p+24Al calculated by Herndl et

al. are shown in Figure 2.5. The lowest energy plotted is for ER = 0.19 MeV, which

corresponds to the 5/2+
3 . The resonance at ER = 0.41 MeV corresponds to the 9/2+

3

state which is measured during this experiment. The s component of the wave function

found from experiment for this state matches the value used by Herndl et al. which is

relevant because s-transfers are usually the dominating reaction channel in astrophysical

reactions due to their zero angular momentum. The ER = 0.50 and 0.51 MeV resonances

correspond to the 7/2+
3 and 5/2+

4 states respectively, and were not measured during this

experiment, and so it can be deduced that the shell-model gives the correct order of

magnitude for their spectroscopic factors.
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Conclusion

New knowledge has been obtained about the structure of 25Na. The use of the TIGRESS

HPGe detector array in conjunction with the SHARC DSSSD array demonstrates the

benefits of simultaneous particle and γ-ray detection. Silicon detectors such as those used

in SHARC tend to have poor energy resolution when compared to the HPGe detectors

used in TIGRESS. Using both types of detector allows for the efficient detection of

particles which is necessary in order to determine the excited energies populated during

the (d, p) reaction while simultaneously being able to resolve energy doublets using the

coincident γ-rays that are emitted from these states. This feature of the experimental

set-up allowed for the identification of the the excited sate appearing at 0.089 MeV,

which was otherwise unresolvable from the ground-state.

A thick 1.0 mg/cm2 target was used in order to increase the probability of a reaction

occurring given the low beam intensity of 104 pps. The decision to do this caused the

energy resolution in SHARC to decrease due to a greater spread of energies with which

the protons will emerge from the target. However, this drop in resolution proved to be

necessary in order to utilise TIGRESS effectively since it was very difficult to identify

some of the energy peaks seen in the γ-ray spectra. Using a 0.5 mg/cm2 target, as

originally planned, would have made some of the γ-ray peaks indistinguishable from

background. This observation leads to the conclusion that the 104 pps is the limit of

this technique’s effectiveness to measure the spectroscopic factors of the d(24Na, p)25Na

reaction.

The position of SHARC relative to the target was required to calculate the excitation

energies of the 25Na nucleus. Previous experiments using the SHARC and TIGRESS

arrays to find the structure of 26Na [57] [63] acquired the detector positions by fitting

kinematic lines to the data. Due to issues with the threshold during this work, it was

discovered that the kinematic lines for inelastic scatter did not follow the value that

157
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theory dictated close to the threshold cut-off energy. Additionally, particles that punch

through the DSSSDs only deposit a fraction of their total energy in the detector. These

combined effects cause the kinematics from the data to have a shollower gradient than

the theoretical kinematic line. These effects are small and therefore do not usually affect

the fit of the data to theory. During this work, the threshold of the detectors was set

to 2 MeV for all but one of the DSSSDs, making a fit to the theoretical kinematic lines

impossible. A technique was developed in order to correctly position SHARC that did

not rely on fitting the kinematic data to theory. Spectra from individual pixels in the

DSSSDs were analysed in order to determine the shift required to position the array at

the correct position.

The state at 2.416 MeV was overshadowed by the nearby 2.788 MeV peak. The state at

2.416 MeV was very weakly populated in this experiment due to the fact that it arose

from proton excitation, which is unlikely to occur in a (d, p) reaction. The energy level

had been identified previously, but no spin/parity value had been assigned to it. The

spin/parity values were obtained for each state observed by analysing the γ-rays detected

by TIGRESS and by comparing the expected “Reaction strength”, R = S(2J + 1)σ,

to the yield of each energy level obtained experimentally. Using this method, the levels

with previously unknown spins and parities at 2.416, 3.455, 5.22 and 5.85 MeV where

assigned 9/2+, 9/2+, 11/2+ and 7/2+ respectively. Negative parity states were also

identified using this technique, though the results are less conclusive due to a lack of

γ-ray statistics and the fact that the angular distributions appear to be very flat.

The third 9/2+ state was shown to be at an excited energy of 3.995 MeV. This energy

level had previously been identified to have a spin and parity of 1/2−, which lead to the

state at 2.788 MeV to be given an incorrect spin/parity value shown in Table 6.9 based

on the observed decay pain through this state. The 2.788 MeV state was very clear in

this experiment, which led to strong evidence of it being the first 7/2+ state. The γ-ray

decay scheme, coupled with the angular distribution obtained for the excited state at

3.995 MeV confirm that this state should be identified as the third 9/2+ state.

The spectroscopic factors found in this experiment generally support those predicted by

the WBC shell-model with a few exceptions: the spectroscopic factors for the ground-

state and 3/2+ state appear to be under and over estimated respectively. This is prob-

ably due to the experiment’s inability to resolve these two states which results in the

strength of the state being assigned to the ground-state while the 3/2+ first excited

state is ignored. There also appears to be a tendency for the f7/2 level to dominate the

structure of low-lying negative parity states in the experiment, compared to predictions

made by the shell-model. In general, however, the WBC calculations are a good guide

to the strongly populated states, as is shown graphically in Figures 5.17 and 5.18.
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Astrophysically, the only observed state that is expected to contribute to the rp-process

that is in the energy region of interest is the 9/2+ state at 3.995 MeV. The spectroscopic

factor for the s-component of the wave function of this state matches the value predicted

by Herndl et al. [5]. The inability to detect any other state within the energy region

of interest is also in keeping with what was predicted by Herndl, suggesting that their

reaction rate calculations do not need to be greatly modified. The 9/2+ state at 3.455

MeV appears at an energy that would be unbound in 25Si, but is expected to be Thomas-

Ehrman shifted below threshold and so is not expected to contribute to astrophysical

reaction rates.
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