
Two-Point Correlators of Fermionic Currents
in External Magnetic Field

Alexandra Dobrynina1,�, Ilya Karabanov1,��, Alexander Parkhomenko1,���, and Lubov
Vassilevskaya2

1P. G. Demidov Yaroslavl State University, Yaroslavl, Russia
2Fulda University of Applied Sciences, Fulda, Germany

Abstract. We study the two-point correlation functions under an influence of the con-
stant homogeneous magnetic field. In addition to the correlators of scalar, pseudoscalar,
vector and axial-vector fermionic currents, we calculate the non-diagonal one including
the tensor and pseudoscalar currents. The tensor current is a fermionic part of the Pauli
Lagrangian relevant for the electromagnetic interaction of fermions through the anoma-
lous magnetic moment. Its contribution to the photon polarization operator is briefly
discussed.

1 Introduction

The Standard Model — the gauge theory based on the S U(3)C⊗S U(2)L⊗U(1)Y group — is intensively
testing for its consistency and no significant experimental deviations from theoretical predictions have
been found yet [1]. More important, many experiments are quite sensitive to vacuum effects which are
usually calculated as radiative corrections to observables within the perturbation theory. In particular,
to get a good agreement with experimental data at the Large Hadron Collider (LHC), production
cross-sections should be known in the Next-to-Leading Order (NLO) and some of them even in the
Next-to-Next-to-Leading Order (NNLO). Moreover, vacuum effects can also generate rare processes
which are forbidden at the tree level in the Standard Model. Good examples of such processes are the
radiative H → γγ and gluonic H → gg Higgs decays, already observed at the LHC [1].

In a difference to LHC, electron-positron colliders allow to get detail information about the photon
propagation from the energy scan in the electron-positron annihilation process e−e+ → hadrons. In
this case, one needs to know the photon polarization function (see, for example, [2, 3]):

3Q2 Π(Q2) = i
∫

d4x ei(qx)〈0|T
{
jµ(x) jµ(0)

}
|0〉, (1)

where jµ(x) =
∑

f ψ̄ f (x)γµψ f (x) is the flavor-singlet quark vector current and Q2 = −q2. The Feyn-
man diagram describing the γ → γ transition via virtual charged fermions in the one loop approxi-
mation is presented in Fig. 1. To get the vacuum average in (1), one needs to put yµ = 0. The func-
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Figure 1. Feynman diagram describing the γ → γ
transition via virtual fermions. Double lines indicate
that effects of an external electromagnetic field are
taken into account exactly in the fermion propagators.

Figure 2. Feynman diagram describing the a → a
transition via virtual fermions. Double lines indicate
that effects of an external electromagnetic field are
taken into account exactly in the fermion propagators.

tion Π(Q2) can be related with a similar two-point correlation function (the photon polarization func-
tion) Πem(Q2) [2, 3] originated by the quark electromagnetic current jem

µ (x) =
∑

f q f ψ̄ f (x)γµψ f (x),
where q f is the electric charge of the quark. Many physical observables are connected with Πem(Q2)
(see, for example, [4]), in particular, the cross-section ratio is proportional to the imaginary part of
Πem(Q2) as follows:

R(s) ≡ σ(e−e+ → hadrons)
σ(e−e+ → µ−µ+)

= 12π ImΠem(−s − iε). (2)

In addition to the vector-current correlator, massless correlators of scalar and tensor quark currents at
higher orders in αs were also calculated recently [5].

For more complicated physical systems like astrophysical objects and the early Universe or in
heavy-ion collisions one needs to take into account effects of an external medium. Note that such
a medium can significantly modify a wave-function and dispersion properties of a charged fermion
and, as a consequence, change substantially the quantum field of the photon. The Feynman diagram
describing the γ → γ transition via virtual charged fermions is presented in Fig. 1, where double
lines indicate that fermion propagators are modified by an external electromagnetic field and plasma.
Detail discussions of the photon polarization operator under external conditions can be found in the
books [6, 7] and references therein. In what follows, we neglect the plasma effects on the fermion
propagator and restrict ourselves by accounting effects of the background electromagnetic field only.

The matrix element of the a → a transition in an external electromagnetic field background also
exemplifies the two-point correlation function of two axial-vector currents. The corresponding Feyn-
man graph is shown in Fig. 2. This diagram determines the electromagnetic correction to the axion
mass squared m2

a [8–10]. The effective neutrino-photon interaction, ν̄νγ-vertex, in an external electro-
magnetic field [7] is the other example of the two-point correlations which, in addition to the diagonal
vector correlator responsible for the photon polarization operator and diagonal axial-vector correlator,
includes the non-diagonal correlator of vector and axial-vector electron currents.

The general case of the two-point correlator modified by the constant homogeneous magnetic field
was studied in Ref. [11]. The Lagrangian density of a local fermion interaction with a generalized
current JA(x) which can be, for example, a photon field, neutrino current, derivative of the axion field
and etc. (with the corresponding constants), has the following form [7, 11]:

Lint(x) =
[
f̄ (x)ΓA f (x)

]
JA(x), (3)

where f (x) is the quantum fermion field and ΓA is any of the γ-matrices from the standard set
{1, γ5, γµ, γµγ5} [12]. The two-point correlation function based on the fermionic currents of the form
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Lint(x) =
[
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in (3) can be presented as follows [7, 11]:

ΠAB =

∫
d4X e−i(qX) Sp {S F(−X) ΓA S F(X) ΓB} , (4)

where S F(X) is the Lorentz-invariant part of an exact fermion propagator calculated in an external
field background [13]. We assume that the external field is equal to the constant homogeneous
magnetic field. Among the existing representations of S F(X) for this field, we accept the so-called
Fock-Schwinger one [13, 14] in which the fermion propagator has the explicitly Lorentz covariant
form. Correlations among the scalar, pseudoscalar, vector and axial-vector fermionic currents in the
Fock-Schwinger formalism were already studied [7, 11] but correlators of the tensor fermionic cur-
rent Jµν(x) ≡

[
f̄ (x)σµν f (x)

]
with the other currents JA(x) introduced above, under an influence of the

magnetic field was not considered in this approach, on the best of our knowledges.
In this paper, we present the propagator of a charged fermion in the constant homogeneous mag-

netic field in the Fock-Schwinger representation, show some selected results for the two-point corre-
lation functions and conclude with a discussion of further applications of the formalism considered.

2 Propagator in Constant Homogeneous Magnetic Field

The equation for the fermion propagator in the electromagnetic field is as follows [13]:
[
i ∂̂ − e Qf Â(x) − mf

]
GF(x, y) = δ(4)(x − y), (5)

where Qf and mf are the relative charge and mass of the fermion, ∂̂ = ∂µ γµ, and Â = Aµ γµ with Aµ(x)
being the external-field four-potential. The general representation of the charged fermion propagator
in the Fock-Schwinger representation is known well [13, 14]:

GF(x, y) = eiΩ(x,y) S F(x − y), (6)

where the Lorentz non-invariant phase Ω(x, y) can be written in the form [13, 14]:

Ω(x, y) = −eQf

∫ x

y

dξµ
[
Aµ(ξ) +

1
2

Fµν(ξ − y)ν
]
. (7)

Here Fµν is the strength tensor of the external electromagnetic field. In the two-point correlation
function, the phase factors of the two propagators cancel each other:

Ω(x, y) + Ω(y, x) = 0, (8)

and the Lorentz-invariant part of the fermion propagator is required only [see Eq. (4)].
Let us consider a pure constant homogeneous magnetic field, B = (0, 0, B). The corresponding

four-potential can be written in the exactly Lorentz-covariant form, Aµ(x) = −Fµνxν/2. Minkowski
space filled with the constant homogeneous magnetic field is divided into two subspaces: the Eu-
clidean one with the metric tensor Λµν = (ϕϕ)µν which is nothing else but the plane orthogonal to the
field direction, and pseudo-Euclidean one with the metric tensor Λ̃µν = (ϕ̃ϕ̃)µν. The metric tensor of
Minkowski space can be written as a difference of the subspace metrics, gµν = Λ̃µν − Λµν. In each
subspace there are also the Levi-Civita symbols ϕµν and ϕ̃µν which are the dimensionless tensor of the
external magnetic field and its dual:

ϕµν =
Fµν
B
, ϕ̃µν =

1
2
εµνρσϕ

ρσ, (9)
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where εµνρσ is the antisymmetric Levi-Civita symbol with the definition ε0123 = 1 [12]. An arbitrary
four-vector aµ = (a0, a1, a2, a3) can be decomposed into the two orthogonal components:

aµ = Λ̃µνaν − Λµνaν = a‖µ − a⊥µ. (10)

For the scalar product of two four-vectors one has

(ab) = (ab)‖ − (ab)⊥, (11)

where the terms on r. h. s. are non-trivial in one subspace only, i. e.:

(ab)‖ = (aΛ̃b) = aµΛ̃µνbν, (ab)⊥ = (aΛb) = aµΛµνbν. (12)

After these notations are introduced, we can write the Lorentz-invariant part of the fermion prop-
agator as follows [7]:

S F(X) = − iβ
2(4π)2

∞∫

0

ds
s2

{
(XΛ̃γ) cot(βs) − i(Xϕ̃γ)γ5

− βs

sin2(βs)
(XΛγ) + mf s

[
2 cot(βs) + (γϕγ)

] }
(13)

× exp
(
−i
[
m2

f s +
1
4s

(XΛ̃X) − β cot(βs)
4

(XΛX)
])
,

where β = eB|Qf |. Note that Eq. (4) is written in terms of this part of the charged fermion propagator.

3 Natural Orthogonal Basis in Magnetic Field Background

Correlators having rank different from zero, are convenient to decompose in some set of four inde-
pendent vectors. In the magnetic field background, such an orthogonal basis naturally exists [7]:

b(1)
µ = (qϕ)µ, b(2)

µ = (qϕ̃)µ (14)

b(3)
µ = q2 (Λq)µ − (qΛq) qµ, b(4)

µ = qµ,

and an arbitrary four-vector aµ can be presented as follows:

aµ =
4∑

i=1

ai
b(i)
µ

(b(i)b(i))
, ai = aµb(i)

µ = (ab(i)). (15)

The norms of the vectors (14) can be calculated easily:

(b(1)b(1)) = −(qΛq), (b(2)b(2)) = −(qΛ̃q), (16)
(b(3)b(3)) = −q2 (qΛ̃q) (qΛq), (b(4)b(4)) = q2.

An arbitrary second-rank tensor Tµν can be decomposed similarly:

Tµν =
4∑

i, j=1

Ti j
b(i)
µ b( j)
ν

(b(i)b(i)) (b( j)b( j))
, Ti j = b(i)

µ T µνb( j)
ν = (b(i)Tb( j)). (17)

This procedure can be extended to higher rank tensors.
As all the technical details are already discussed, let us present several examples of the two-point

correlators.
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correlators.

4 Examples of Correlators

Here, we present several examples of two-point correlation functions.

4.1 Photon Polarization Operator

The photon polarization operator is the typical example of the two-point correlation function.
The Lagrangian density of the fermion-photon interaction in QED is well-known [12, 15]:

LQED(x) =
∑

f

eQf

[
f̄ (x)γµ f (x)

]
Aµ(x), (18)

where f (x) and Aµ(x) are quantized fermion and photon fields, respectively, and QF is the electric
charge of the fermion in units of the elementary charge, e > 0. Comparison of (18) with the general-
ized Lagrangian (3) shows that the generalized current is Jµ(x) = eQf Aµ(x).

In the momentum space, the matrix element of the γ → γ transition induced by the La-
grangian (18) can be written in the form [12, 15]:

iMγ→γ = ε∗µ(q)Πµν(q) εν(q), (19)

where εµ(q) is the polarization vector of the photon with the momentum qµ. The Lorentz tensorΠµν(q)
is the photon polarization operator, very well studied within QED both in vacuum [12, 15] and under
an influence of an active media [6, 7].

4.2 Axion Self-Energy

The other example of the two-point correlation function is the axion self-energy. In the magnetic field,
it was calculated in Refs. [8–10].

The Lagrangian density of the fermion-axion interaction is as follows [6]:

La f (x) =
∑

f

ga f

2mf

[
f̄ (x)γµγ5 f (x)

]
∂µ a(x), (20)

where f (x) and a(x) are quantum fermion and axion fields, respectively, ∂µ a(x) = ∂a(x)/∂xµ, ga f =

C f mf / fa is the dimensionless Yukawa constant, C f is the dimensionless factor dependent on the axion
model [6], and γ5 = −iγ0γ1γ2γ3 [12]. This Lagrangian is also of the type (3) with the generalized
current Jµ(x) =

(
ga f /2mf

)
∂µ a(x).

The a→ a transition amplitude, Ma→a, calculated in the momentum space determines the shift of
the axion mass squared due to the vacuum effects [10]:

Ma→a = −δm2
a. (21)

The corresponding diagram is shown in Fig. 2 where double solid lines indicate that effects of the
external magnetic field on the fermion propagator are taken into account exactly. So, one can see
that Ma→a is the two-point correlation function determined by the time-ordered product of two axial-
vector fermionic currents. Our calculations confirm the results presented in Ref. [10]:

Ma→a(q2, q2
⊥, β) =

∑
f

g2
a fβ

8π2

∞∫

0

dt
sin(βt)

1∫

0

du
[
q2
‖ cos(βt) − q2

⊥ cos(βtu)
]
× (22)

× exp

−i

m2
f t −

q2
‖

4
t (1 − u2) + q2

⊥
cos(βtu) − cos(βt)

2β sin(βt)


 ,
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where q2 = q2
‖ − q2

⊥. Note that two proper-time variables s1 and s2 entering each of the propagators
have been replaced by the other two: t = s1 + s2 and u = (s1 − s2)/t.

The invariant matrix element (22) contains both pure vacuum and field-induced parts and the
field-induced contribution ∆M(q2, q2

⊥, β) to Ma→a is as follows:

∆M(q2, q2
⊥, β) = Ma→a(q2, q2

⊥, β) − Ma→a(q2, 0, 0). (23)

Note that this quantity is free from the ultraviolet divergences [10].

4.3 Correlator of Pseudoscalar and Tensor Currents

The non-diagonal correlator of pseudoscalar and tensor currents is the second-rank tensor. Taking into
account its antisymmetry under permutations, from six independent coefficients in the basis decom-
position (17), three only are non-trivial:

Π
(PT)
12 (q2, q2

⊥, β) =
β

8π2 q2
‖ q2
⊥

∞∫

0

dt

1∫

0

du
sin(βtu)
sin(βt)

[
cot(βt) − u cot(βtu)

]

× exp

−i

m2
f t −

q2
‖

4
t (1 − u2) + q2

⊥
cos(βtu) − cos(βt)

2β sin(βt)


 ,

Π
(PT)
23 (q2, q2

⊥, β) = −
β

8π2 q2
‖

∞∫

0

dt

t sin2(βt)

1∫

0

du
{
4 sin2(βt)

[
m2

f t + i
]

+ q2
‖ t
[
2 cos(βt) cos(βtu) + 2u sin(βt) sin(βtu) +

(
1 − u2

)
sin2(βt) − 2

]}

× exp

−i

m2
f t −

q2
‖

4
t (1 − u2) + q2

⊥
cos(βtu) − cos(βt)

2β sin(βt)


 ,

Π
(PT)
24 (q2, q2

⊥, β) =
β

32π2 q2
‖ q2
⊥

∞∫

0

dt

t sin2(βt)

1∫

0

du
{
4 sin2(βt)

[
m2

f t + i
]

+ q2
‖ t
(
1 − u2

)
sin2(βt) − 2q2

⊥t
[
cos(βt) cos(βtu) + u sin(βt) sin(βtu) − 1

]}

× exp

−i

m2
f t −

q2
‖

4
t (1 − u2) + q2

⊥
cos(βtu) − cos(βt)

2β sin(βt)


 .

The coefficients Π(PT)
21 (q2, q2

⊥, β), Π
(PT)
32 (q2, q2

⊥, β), and Π(PT)
42 (q2, q2

⊥, β) differ by the sign from
Π

(PT)
12 (q2, q2

⊥, β), Π
(PT)
23 (q2, q2

⊥, β), and Π(PT)
24 (q2, q2

⊥, β) because of the tensor anti-symmetry.
Correlators of other generalized currents with the tensor one will be presented elsewhere [16].

5 Applications of Correlators

As discussed in Subsec. 4.1, the standard polarization operator is related with the correlator of two
vector currents. Models beyond the Standard Model can effectively modify the QED Lagrangian with
an extra term called the Pauli Lagrangian density [17–19]:

LAMM(x) =
µ f

4

[
f̄ (x)σµν f (x)

]
Fµν(x), (24)
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2β sin(βt)


 ,

Π
(PT)
23 (q2, q2

⊥, β) = −
β

8π2 q2
‖

∞∫

0

dt

t sin2(βt)

1∫

0

du
{
4 sin2(βt)

[
m2

f t + i
]

+ q2
‖ t
[
2 cos(βt) cos(βtu) + 2u sin(βt) sin(βtu) +

(
1 − u2

)
sin2(βt) − 2

]}

× exp

−i

m2
f t −

q2
‖

4
t (1 − u2) + q2

⊥
cos(βtu) − cos(βt)

2β sin(βt)


 ,

Π
(PT)
24 (q2, q2

⊥, β) =
β

32π2 q2
‖ q2
⊥

∞∫

0

dt

t sin2(βt)

1∫

0

du
{
4 sin2(βt)

[
m2

f t + i
]

+ q2
‖ t
(
1 − u2

)
sin2(βt) − 2q2

⊥t
[
cos(βt) cos(βtu) + u sin(βt) sin(βtu) − 1

]}

× exp

−i

m2
f t −

q2
‖

4
t (1 − u2) + q2

⊥
cos(βtu) − cos(βt)

2β sin(βt)


 .

The coefficients Π(PT)
21 (q2, q2

⊥, β), Π
(PT)
32 (q2, q2

⊥, β), and Π(PT)
42 (q2, q2

⊥, β) differ by the sign from
Π

(PT)
12 (q2, q2

⊥, β), Π
(PT)
23 (q2, q2

⊥, β), and Π(PT)
24 (q2, q2

⊥, β) because of the tensor anti-symmetry.
Correlators of other generalized currents with the tensor one will be presented elsewhere [16].

5 Applications of Correlators

As discussed in Subsec. 4.1, the standard polarization operator is related with the correlator of two
vector currents. Models beyond the Standard Model can effectively modify the QED Lagrangian with
an extra term called the Pauli Lagrangian density [17–19]:

LAMM(x) =
µ f

4

[
f̄ (x)σµν f (x)

]
Fµν(x), (24)

where µ f is the anomalous magnetic moment (AMM) of the fermion. Note that this term is gauge-
and Lorentz-invariant but non-renormalizable within the modified QED. The existence of (24) in the
effective QED Lagrangian should also change the photon polarization operator. A contribution linear
in the fermion AMM is related with the correlator of the vector and tensor fermionic currents. Its
influence on the photon properties requires a detail discussion and will be presented elsewhere [16].

The strong-field limit can be also important as the resulting expressions are simplified drastically
and allow detail understanding of results without cumbersome numerical analysis. It is worth to note
the strong-magnetic-field formalism suggested by Loskutov and Skobelev [20, 21] which allow to per-
form calculations similar to the conventional ones developed for vacuum. Unfortunately, some loop
diagrams are uncertain and a clear procedure is required to fix them. Let us mentioned in connection
with this the analysis of the axion self-energy in the magnetic field [8–10]. The correct result was
obtained only after the strong-field limit was found explicitly [10].

The technique we presented here can be extended for calculations of three-point correlation func-
tions. The well-known example of such a correlator is the three-photon vertex in the external constant
homogeneous magnetic field calculated by Adler [22]. Two of us have already an experience of cal-
culating the three-point correlation functions connected with the effective aγγ-vertex of the axion
interacting with two photons in the crossed [23, 24] and magnetic [25] field configurations of the
external background. Note that the same vertex calculated in the crossed field later by Skobelev [26]
differs from ours but a reason still remains unclear. One should also mentioned the recent analysis of
the magnetic-field influence on the radiative Higgs decay [27]. Some other three-point vertices, like
the one describing an interaction of neutrinos with two photons, are also of special importance for
astrophysics [6, 7].

6 Conclusions

Two-point correlators in presence of a constant homogeneous external magnetic field are considered.
This analysis extended the previous one [11] by including the fermionic tensor current into consider-
ation. With new correlators, modifications of the photon polarization operator induced by the Pauli
Lagrangian density can be studied. The computer technique developed for two-point correlators is
planned to be applied for three-point correlation functions.
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