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Introduction

Since 2003, a significant number of uncon-
ventional states that do not fit in the con-
ventional quark model have been detected
in experiments and predicted theoretically
are called exotic hadrons or simply exotics
[1–7]. The recent discovery of all-charm
tetraquarks X(6900) and the study of all-
bottom tetraquarks [bb][b̄b̄] (which we will
refer to as T4b), are among the heaviest
tetraquarks, were crucial in understanding the
quark confinement within tetraquarks [8–12].

The CMS collaboration discovered Υ(1S)
pair formation in pp collisions at

√
s = 8

TeV in 2017, and an excess at 18.4 GeV in
the Υ(1S)l−l+ decay channel was proposed in
a subsequent preliminary study [13] whereas
RHIC reported a similar observation at 18.2
GeV in Cu+Au collisions [14]. The LHCb
collaboration, on the other hand, has not
found any evidence in the Υ(1S) µ− µ+ in-
variant mass spectrum [15]. In the invariant
mass distributions e+e− → Υ(nS)π+π−, n =
1, 2, 3 and e+e− → hb(mP )π+π−, m = 1, 2,
the Belle collaboration reported two charged
bottomonium-like resonances Zb(10610) and
Zb(10650),(hence referred to as Zb and Z ′b)
[16, 17].

This article’s primary emphasis is on in-
vestigating the mass-spectra of all-bottom
tetraquark states [bb][b̄b̄], which we will re-
fer to as T4b, as well as the double bottom
tetraquark states bqb̄q̄, (q=u,d) in a non rela-
tivistic model. The detail analysis of this work
can be found in our recent article [11].
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Theoretical Approach
Tetraquarks are made up of a diquark [QQ]

and an antidiquark [Q̄Q̄] in color antitriplet 3̄
and triplet 3 configurations respectively, that
are held together by colour forces [18–20]. The
diquark [QQ] and antidiquark [Q̄Q̄] are made
up of two quarks (antiquarks) in antitriplet
(triplet) color states [21].
We have utilized the cornell-like potential
VC+L(r), which consists of a coulomb term
governing gluonic interaction and a linear
term governing quark confinement [18].

VC+L(r) =
ksαs

r
+ br (1)

The central potential also includes the non-
perturbative form of relativistic mass correc-
tion V 1(r) which is not yet known, but leading
order perturbation theory [22–25] and yields
term;

V 1(r) = −CFCA

4

α2
s

(r)2
(2)

where CF = 4
3 and CA = 3 are the Casimir

charges of the fundamental and the adjoint
representation respectively [22]. The spin-spin
interaction is included pertubatively in the
central potential [18], which gives;

VSS(r) = CSS(r)S1 · S2, (3)

The mass-spectra of T4b and bqb̄q̄ tetraquarks
states have been calculated by;

MQQQ̄Q̄ = mQQ +mQ̄Q̄ +E[QQ][Q̄Q̄] + 〈V 1(r)〉
(4)

Results and Discussion
The masses of low-lying S-wave T4b and bqb̄q̄

states are anticipated to be in the range of 18-
20 GeV and 10-11 GeV, respectively [26], in
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TABLE I: The mass-spectra of S-wave hidden bot-
tom tetraquarks. Parameters are taken from re-
cent updated PDG [27].

N2S+1LJ JPC Mbbb̄b̄ Mbqb̄q̄

11S0 0++ 18749 10429
13S1 1+− 18764 10454
15S2 2++ 18792 10505
21S0 0++ 19914 10987
23S1 1+− 19416 10995
25S2 2++ 19421 11009

the current study, the masses are also found
to be in this range. The masses of S-wave
heavy-light bottom tetraquark states bqb̄q̄, are
in good agreement with B±B±, B±B∗, and
B∗B∗ meson thresholds [27], with a difference
of less than 200 MeV between the two me-
son thresholds and the model’s mass (mf

i ).
The two most discussed bottom resonances,
Zb(10610) and Zb(10650), both with (1+−),
may be recognised as possible candidates for
bqb̄q̄ states [17], which have a mass variation

of 150 MeV from the model’s mass (mf
i ).

Due to the fact that fully bottom tetraquark
states bbb̄b̄ are heavier than heavy-light
tetraquark states (bqb̄q̄), and they are likely
to be recognised below two meson thresholds
[27], namely 2ηb, 2Υ or ηbΥ with masses rang-
ing from 18.7 GeV to 19 GeV. Our findings are
in excellent accord with other non-relativistic
models and other studies cited in the litera-
ture [19, 28, 29].
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