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Quantum chemistry as a benchmark for near-term quantum
computers
Alexander J. McCaskey 1,2,5*, Zachary P. Parks1,2, Jacek Jakowski 1,3,5*, Shirley V. Moore1,2, Titus D. Morris1,4, Travis S. Humble1,3 and
Raphael C. Pooser1,3,5*

We present a quantum chemistry benchmark for noisy intermediate-scale quantum computers that leverages the variational
quantum eigensolver, active-space reduction, a reduced unitary coupled cluster ansatz, and reduced density purification as error
mitigation. We demonstrate this benchmark using 4 of the available qubits on the 20-qubit IBM Tokyo and 16-qubit Rigetti Aspen
processors via the simulation of alkali metal hydrides (NaH, KH, RbH), with accuracy of the computed ground state energy serving as
the primary benchmark metric. We further parameterize this benchmark suite on the trial circuit type, the level of symmetry
reduction, and error mitigation strategies. Our results demonstrate the characteristically high noise level present in near-term
superconducting hardware, but provide a relevant baseline for future improvement of the underlying hardware, and a means for
comparison across near-term hardware types. We also demonstrate how to reduce the noise in post processing with specific error
mitigation techniques. Particularly, the adaptation of McWeeny purification of noisy density matrices dramatically improves
accuracy of quantum computations, which, along with adjustable active space, significantly extends the range of accessible
molecular systems. We demonstrate that for specific benchmark settings and a selected range of problems, the accuracy metric can
reach chemical accuracy when computing over the cloud on certain quantum computers.
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INTRODUCTION
Noisy intermediate-scale quantum (NISQ) devices have been used
recently to demonstrate a variety of different small-scale quantum
computations.1–5 These demonstrations underscore the progress
in developing programmable quantum processing units (QPUs) as
well as advances in how to use these devices for scientifically
meaningful computations. However, evaluating the impact of
these demonstrations is complicated by the interplay of unique
features available from different quantum computing technolo-
gies (superconducting electronics, trapped ions, etc.) and the
multitude of programming choices that influence observed
performance. Several properties quantify the intrinsic utility of a
QPU including the capacity of the quantum register, the fidelity of
the available instructions, the connectivity between register
elements, etc. While these hardware-specific parameters char-
acterize progress in quantum hardware development, they do not
directly benchmark the performance of a quantum computer for a
given computational task.
Benchmarks for application-specific metrics are needed to

evaluate the efficiency and applicability of quantum computing
for scientific applications. In particular, comparing the benchmark
performance of quantum computation to alternative computa-
tional approaches should rely on definitions that are meaningful
across computational paradigms. Application-specific perfor-
mance metrics have been used recently to evaluate the utility of
near-term QPUs with respect to computational accuracy, including
examples from machine learning6 and nuclear physics.4 However,
the design and demonstration of an application-specific bench-
mark to evaluate QPU performance across scalable problem
instances has been absent from the literature up to now.

We present a quantum chemistry simulation benchmark to
evaluate the performance of quantum computing by defining a
series of electronic structure calculation instances that can be
realized on current hardware. We outline and investigate an array
of parameter choices that influence quantum computational
performance. Our approach uses multiple techniques including
density matrix purification and active-space reduction via frozen-
core approximation and truncation of the virtual space to
accommodate hardware limitations such as a limited number of
noisy qubits (low circuit width) and a limited achievable circuit
depth (the number of parallel gate executions), while staying
within the well-known hierarchy of quantum chemistry methods.
For calculations on small molecular systems, such as alkali metal
hydride molecules with multiple electrons presented here, the
complexity of the quantum computation can be reduced to two
valence electrons and the equivalent of a hydrogen molecule in
minimal basis set. These approximations can be gradually lifted as
the quality of quantum devices improves to provide a flexible
benchmarking model.
The quantum algorithmic primitive at the center of this

benchmark is the state preparation circuit—the unitary coupled
cluster (UCC) ansatz7 or hardware-efficient (HWE) ansatz,3,8,9 for
example—used in the variational quantum eigensolver (VQE),1,10 a
noise-resilient algorithm which has been implemented on current
noisy QPUs. This hybrid algorithm uses a classical search for the
lowest eigenvalue of a given observable using the variational
principle and the chosen ansatz, which is prepared and measured
on the quantum computer. The utility of this algorithm has been
demonstrated in a number of fields, including high-energy and
nuclear physics4,11 in addition to quantum chemistry.8 Its success
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is primarily due to the reliance on finite classical computing
resources in tandem with invocations of the quantum computer
for exponentially scaling aspects of the problem. We use multiple
variations of the state-preparation primitives noted above in order
to illustrates its effect on performance and accuracy of quantum
computations. The benchmark assesses accuracy of VQE for
recovering the ground state energy for a series of molecules when
using different parameterized trial circuits and error mitigation
strategies. The alkali metal hydrides currently included in the
benchmark are NaH, KH, and RbH. We implemented calculations
of the ground state energies of each of these molecules using four
qubits on the 20-qubit IBM Tokyo and 16-qubit Rigetti Aspen
superconducting circuit devices.
The variational quantum eigensolver (VQE) has been used

previously to calculate ground state energy,1,12 and it has become
a leading example of quantum-classical computing. Several
groups have demonstrated VQE applications using a variety of
QPUs and trial circuits to target small molecular systems.1,4,5,8,9,13–15

VQE recovers the ground state energy of a Hamiltonian by
searching for the quantum state that minimizes the observed
energy expectation value. The complexity of this classical search
through the parameter space depends strongly on the form of the
underlying trial circuit. Optimization of the energy expectation
value uses preparation and measurement of the parameterized
quantum circuit to drive the classical search method executed on
a conventional computer. Existing demonstrations of VQE have
revealed that despite the algorithm’s noise resilience, error
mitigation is required to overcome the extensive noise present
in current platforms.16–18

For chemistry applications, the main difference between HWE
and UCC choices is that the latter provides a rigorous, electron
number-conserving procedure for describing a trial wavefunction,
but the corresponding circuit has a relatively large depth even for
small systems. The HWE ansatz offers shorter circuit depth, but it
supports a larger parameter space, and it prepares states with
varying numbers of electrons that yield unphysical results.
In ref. 8, the number of parameters, and hence the circuit depth,

is reduced for the UCC ansatz by using pre-screening of cluster
amplitudes. This pre-screening discards all the excitation opera-
tors for which the second order Møller-Plesset perturbation
amplitudes are below a chosen threshold. The number of qubits
required for the VQE-UCC calculation, as well as the number of
parameters required for preparation of the ansatz, are also
reduced by using an active space approximation which divides
the orbital space into a set of inactive and active orbitals with the
occupation of the orbitals in the inactive space remaining
unchanged. In the present work we use a frozen core, second-
quantized Hamiltonian approximation to further enable mapping
of benchmark problems to noisy quantum hardware in a
computational framework such as OpenFermion.19

Electronic structure calculations require a choice of basis set
and simulation approach, which together have an impact on
resource cost and accuracy of the simulation. The hierarchy of the
theoretical methods and basis sets has been established over the
years. The most popular methods in order of increasing accuracy
(and computational cost) are Hartree-Fock (HF), density functional
theory (DFT), perturbation theories (PT) and configuration inter-
action (CI), coupled cluster methods, full configuration interaction
(FCI). Neither HF nor FCI is used in any practical calculations since
the former one is too inaccurate while the latter one is too
expensive. Similarly, basis sets of increasing flexibility and size
have been developed. The two most popular classes of basis
functions are Pople basis sets (for example, 3-21G or 6-31G) and
Dunning basis sets (for example cc-pVDZ, cc-pVTZ). The smallest
available basis set, also called the minimal basis set, is denoted as
STO-3G (Slater Type Orbital contracted with 3 Gaussians).
Although the STO-3G basis set is not used in practical classical

calculations, it represents a good first model for development and
benchmarking of new computational methods.
Mapping the quantum chemistry problem to quantum compu-

ters involves several steps: (1) molecule specification (structure,
charge etc.); (2) generation of the integrals and Hartree-Fock
calculations to set an initial reference state; (3) transformation of
the Hamiltonian from second quantization formalism to a qubit
representation using either the Jordan-Wigner20 or the Bravyi-
Kitaev21 transformation; (4) generation of a quantum circuit that
represents the trial wavefunction; and (5) mapping the quantum
circuit to specific quantum computing hardware.
The electronic structure calculations in the benchmark seek the

ground state energy configuration of the Hamiltonian described
as a sum of a nuclear repulsion (0-electrons) H0 term, a one-
electron term (kinetic energy of electrons plus interaction with
core ions) H1, and a two electron Hamiltonian H2

Ĥ ¼ H0 þ H1 þ H2

¼ H0 þ
X
p;q

hpq � p̂yq̂þ
1
2

X
p;q;r;s

gpqsr � p̂yq̂y r̂ŝ
; (1)

where p, q, r, s run over all molecular spin orbitals, p̂y, q̂ etc. are
corresponding electron creation and annihilation operators, and
hpq are matrix elements of the core Hamiltonian (kinetic energy of
electrons plus interaction with core ions). The gpqsr are two-electron
repulsion integrals gpqsr ¼ hp; qjs; ri. The above expression for the
Hamiltonian in the chemistry notation can be equivalently written
in the so called physicists notation:

Ĥ ¼ H0 þ
X
p;q

hpq � p̂yq̂þ
1
4

X
p;q;r;s

gpqsr � p̂yq̂y r̂ŝ; (2)

with gpqsr being an anti-symmetrized repulsion integral

gpqsr ¼ gpqsr � gpqr;s ¼ hp; qjs; ri � hp; qjr; si: (3)

To reduce depth and enable execution on noisy near-term
quantum computers, we neglect the contribution to electronic
correlation from the lowest energy core electrons. We treat only
the interaction of correlated electrons with core electrons in an
average mean-field fashion. Thus we generate the following
reduced effective Hamiltonian:

H ¼ H
0
0 þ H

0
1 þ H

0
2; (4)

with H
0
0 given by

H
0
0 ¼ Enucl þ

X
a

haa þ
1
2

X
b

gabab

 !
; (5)

where a and b run over frozen-core spin orbitals. Similarly, the
one-body term is given by

H
0
1 ¼

X
p;q

p̂yq̂ � hpq þ
1
2

X
a

gapaq

 !
(6)

and the two-body part is

H
0
2 ¼

1
4

X
p;q;r;s

gpqsr � p̂yq̂y r̂ŝ: (7)

Here we note that in the last three expressions, the indices p, q, r, s
run over active-spin orbitals instead of all spin orbitals. Indices a
and b run over frozen-core orbitals which are not active. Finally,
one can exclude the specific virtual orbitals from the active space.
Figure 1 illustrates partitioning of orbital space onto frozen core,
active space and inactive virtual space.
In order to calculate the ground state energy of Eq. (1) using

VQE, one begins by mapping the fermionic representation to an
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equivalent spin-based Hamiltonian

Ĥ ¼
X
i;α

hiασ
i
α þ

X
i;j;α;β

hijαβσ
i
ασ

j
β

þ
X

i;j;k;α;β;γ

hijkαβγσ
i
ασ

j
βσ

k
γ þ ¼

(8)

via well-known transformations.21,22 Here, Pauli tensor product
σiα 2 fσx; σy ; σz; Ig acts on the ith qubit. Next, the qubit register is
initialized to an unentangled reference state ψ0j i, followed by the
application of a parameterized unitary UðθÞ producing the state
ψðθÞj i ¼ UðθÞ ψ0j i. Measurements dictated by the Pauli tensor
product terms in Eq. (8) are then performed on this state to
compute the individual Pauli term expectation values, which are
then contracted with term coefficients to produce the variational
energy EðθÞ ¼ ψðθÞh jĤ ψðθÞj i. The parameters θ are then updated
as part of a user-specified classical optimization routine and the
entire process is repeated until convergence to the minimum of
EðθÞ.

RESULTS
Our benchmark performs calculations of ground state energy for
three different alkali metal hydrides— NaH, KH, and RbH. For each
of these molecules, we restricted the active space by freezing
inner-core electrons, leaving four active orbitals with two
fermionic degrees of freedom. All fermionic Hamiltonians were
mapped to spin Hamiltonians via the Jordan-Wigner transforma-
tion. We then executed the benchmarks on the 20-qubit IBM
Tokyo and the 16-qubit Rigetti Aspen QPUs.
First, we considered a reduced, single parameter UCC ansatz

(labeled ucc-1; see Eq. (13) and Fig. 6 in the Methods section), with
readout-error correction applied, and at an inter-atomic distance
close to the equilibrium configuration of the molecule (R=
1:914388; 2:473066; 2:319238Å for NaH, RbH, and KH, respectively).
Since this is a 1-parameter problem, we swept this parameter from
½�π; π� and used a cubic spline interpolation to compute the
optimal angle. These parameter sweeps (from the IBM QPU) are
shown in Fig. 2. Each energy point is the average of 8192 shots,
and error bars are smaller than the markers (on the order of 0.001).
We then computed the energy at the optimal parameter twice (to
accumulate statistics over 16384 shots) and performed error
mitigation with an increasing number of noisy CNOT identity pairs
(r= 1 is the original circuit, r= 3 has each CNOT replaced with 3
CNOTs; see Methods section). With this data, we performed both
linear and quadratic extrapolation to r= 0 (the theoretical zero-
noise point) to get an estimate of the energy. For this
extrapolation, we used the SciPy curve_fit function to perform a
non-linear least squares fit with knowledge of the uncertainty in
the data. The linear and quadratic extrapolations are provided by
the inset plots for each of the plots in Fig. 2. In addition, our results
are provided in Table 1.
We next considered the hardware-efficient ansatz, labeled hwe

in the table, with which we classically optimized a 20-parameter

search space (d ¼ 1, nearest neighbor entanglement) using the
Constrained Optimization BY Linear Approximation (COBYLA)
method with 30 iterations.23 We initialized the optimization using
a set of angles taken from the simulated optimal set in an effort to
avoid local minima. For the hwe experiments, we also considered a
reduction of the Hamiltonian via application of discrete Z2

symmetries that reduced the qubits needed.24 The results for
these computations are provided in Table 1.
We found that the hwe ansatz was unable to produce results

comparable to energies calculated using a classical, full config-
uration interaction (FCI) method. Symmetry reductions of the total
Hamiltonian improved the energy accuracy, but these results still
did not get below the theoretical Hartree-Fock energy (an
uncorrelated state). The single parameter UCC ansatz performed
better than the hardware-efficient ansatz, despite three additional
CNOT gates in the UCC ansatz with an otherwise similar depth
circuit. With readout-error correction and quadratic Richardson
extrapolation, our benchmark energy metric is comparable to
classical FCI results within error bars for all of the reduced four-
qubit Hamiltonians considered here.
To improve the accuracy of our results, we employed a new

error mitigation technique called reduced density matrix (RDM)
purification (see the Methods section) while running the bench-
marks on both the IBM and Rigetti quantum computers. Figure 3
shows the results of RDM purification for NaH on Tokyo (top) and
Aspen (bottom) using the ucc-1 ansatz. Using this error mitigation
approach we observe chemical accuracy at the optimal angle on
the Rigetti QPU.
We also considered a more algorithmically correct 3-parameter

extension to the UCC ansatz (labeled ucc-3; see Fig. 7 in the
Methods section) for NaH. We classically optimized the parameters
via the COBYLA method as shown for IBM (top) and Rigetti QPUs
(bottom) in Fig. 4. These computations employed 1000 shots on
Rigetti and 8192 shots on IBM. The inset plots demonstrate the
difference between purified energy points and the FCI energy,
with the solid line denoting chemical accuracy (0.0016 Ha). The
Rigetti results obtain chemical accuracy for this three parameter
optimization. This marks a key milestone in NISQ computing,
where advanced error mitigation techniques have enabled
chemical accuracy over remote cloud quantum computing
resources on a true variational optimization calculation.
Finally, we applied RDM purification to the computation of the

NaH energy surface. We chose four inter-atomic distance values, R,
and computed EðRÞ with the one-parameter UCC ansatz. We
repeated this five times for each value of R to gather statistics.
Figure 5 shows the results of this computation, with errors on the
order of 0.01 (smaller than the markers).

DISCUSSION
Near-term quantum computation is limited in the total number of
operations that can be performed. It is limited in the number of
two-qubit entangling gates that can be present in a program

Fig. 1 Frozen-core approximation which partitions the orbital space into frozen core, active space, and inactive virtual space. Here active
space (arbitrary system) consists of six orbitals and six electrons (marked red)
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before systematic noise renders the results meaningless. Classical
post-processing of the raw experimental data is a requirement to
produce usable, classically comparable results. At this nascent
stage of quantum computing, a useful computational benchmark
that enables cross-platform comparison of various scientific use
cases must take these limitations into account.
Here we have proposed and demonstrated such a benchmark

—a quantum chemistry benchmark that incorporates the robust
VQE algorithm, an active space reduction of the electronic
structure Hamiltonian, corresponding reduced and extended

unitary coupled cluster ansatzes, and various error mitigation
strategies. We have demonstrated this primitive benchmark on
the IBM Tokyo and Rigetti Aspen machines for alkali metal
hydrides like NaH, RbH, and KH. Using the computed ground state
energy as a metric, we observe results that are comparable to
classical simulation results. As new quantum hardware comes
online, one can immediately apply this proposed benchmark as a
litmus test for the usability of the hardware for quantum
chemistry. As existing hardware improves, the active orbitals
space and the ansatz complexity can be increased to continue to
assess hardware performance. The extensibility and existing
infrastructure provided by our benchmark suite leave us flexibility
in increasing benchmark complexity as hardware implementations
improve. We have shown that for certain configurations, the
benchmark returns chemically accurate results when our error
mitigation scheme is used. If desired, this metric may be used as a
pass/fail criterion to describe a QPU’s utility for this very specific
task. One conclusion to draw from this benchmark is contained in
the error mitigation results: improving CNOT fidelity would
improve performance. Alternatively, if one were to replace CNOTs
and rotations with native controlled rotations directly (while
crucially still maintaining the same trial wavefunctions), it would
reduce circuit depth, resulting in improved accuracy. Such actions
that improve performance without changing the ansatz are within
the spirit of benchmarking; as long as the same ground state
energy calculations are performed using the same VQE algorithm,
the benchmark serves the purpose of providing a rigorous test of
current and emerging NISQ hardware.
We note that RDM purification and the subspace extension to

the ansatz were both able to produce improvements over the raw
circuit execution. In the case of ansatz extension, this represents a
correction to algorithmic error. Whether the computer can obtain
the predicted improvement from algorithmic corrections is
indirectly a measurement of systematic hardware error. The
RDM purification is another indirect measurement of systematics.
The extent to which RDM purification improves our answer tells us
about the mixed state of the quantum register. Our work provides
a relative baseline for improvements in both hardware and
algorithmic approaches for quantum chemistry on quantum
computers. In this context, we consider whether this benchmark
can indicate if a machine will demonstrate a quantum advantage
in the future. Sampling a quantum state and calculating an
expectation value is classically hard under certain conditions.25 If a
quantum computer performs well at this task as the size of the
algorithm scales up, then it will be able to achieve a quantum
advantage. However, error mitigation as it exists today is not yet
scalable. This means that the more error mitigation required to
reach a good accuracy, the less scalable the algorithm is on that
machine. Not surprisingly, none of the publicly available hardware
is capable of a quantum advantage, but this does not preclude
future iterations of the same hardware from reaching this regime.
Further, the basic form of the ansaëtze used here apply to other

fields—nuclear physics effective field theory computations and in
quantum field theory, for example. This means that in addition to
quantum chemistry, if a quantum computer performs well on this
benchmark, once can expect that it will perform well in
applications that use a similar ansatz.
Finally, we note that while we ran the benchmark on two

different hardware platforms, we do not take the performance
difference between the two to be indicative of long-term trends or
to be definitive enough to declare a “winner”. Rather, we intend
for the benchmark to provide a user with information on what to
expect when running a given application on a particular machine,
independent of other devices.

Fig. 2 The dependence of the energy as a function of the variational
parameter θ for the one-parameter UCC ansatz for NaH (top), KH
(middle), and RbH (bottom) on the 20-qubit IBM Tokyo QPU. The
solid line corresponds to the theoretically exact EðθÞ and the ⧫ (▼)
markers correspond to raw (readout-error corrected) energies. The
error bars for these points are smaller than the points and are on the
order of 10�3. Linear and quadratic Richardson extrapolation results
are displayed in the inset for NaH (top), KH (middle), and RbH
(bottom) at optimal θ ¼ 0:04567616;�0:05485024;�0:01050553,
respectively. The teal and green data markers correspond to the
minimum energies obtained from the linear and quadratic
Richardson extrapolation, respectively
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Table 1. Computed ground state energies

Molecule Ansatz Tapering QPU EM E ΔE

NaH ucc-1 No Tokyo none −160.122 ± 0.002 0.181

NaH ucc-1 No Tokyo ro+re −160.347 ± 0.032 −0.044

NaH ucc-1 No Aspen none −159.980 ± 0.004 0.323

NaH ucc-1 No Aspen rdm −160.303 ± 0.004 0.0004

NaH ucc-1 No Tokyo none −159.973 ± 0.004 0.330

NaH ucc-1 No Tokyo rdm −160.279 ± 0.004 0.024

NaH ucc-3 No Aspen none −159.917 ± 0.013 0.39

NaH ucc-3 No Aspen rdm −160.301 ± 0.013 0.002

NaH ucc-3 No Tokyo none −160.049 ± 0.005 0.254

NaH ucc-3 No Tokyo rdm −160.297 ± 0.005 0.006

NaH hwe Yes Tokyo none −160.263 ± 0.009 0.040

NaH hwe Yes Tokyo ro+re −160.287 ± 0.002 0.016

NaH hwe No Tokyo none −160.037 ± 0.005 0.266

NaH hwe No Tokyo ro+re −160.085 ± 0.007 0.218

KH ucc-1 No Tokyo no −593.434 ± 0.002 0.141

KH ucc-1 No Tokyo ro+re −593.559 ± 0.035 0.016

RbH ucc-1 No Tokyo none −2908.058 ± 0.001 0.067

RbH ucc-1 No Tokyo ro+re −2908.158 ± 0.004 −0.033

This table details the computed energies (E) on the 20-qubit IBM Tokyo and the 16-qubit Rigetti Aspen QPUs for various alkali metal hydrides, ansätze, and
error mitigation strategies leveraged (EM-none, ro+re for readout-error and Richardson extrapolation, or rdm for RDM puri_cation). The FCI energies for 4-
qubit frozen-core NaH, RbH, and KH are −160.3034597, −2908.125112, and −593.5747682, respectively

Fig. 3 The dependence of the energy as a function of θ for the ucc-1
ansatz for NaH with and without RDM purification for IBM Tokyo
(top) and Rigetti QCS (bottom)

Fig. 4 Energy as a function of the optimization iteration for the 3-
parameter UCC (ucc-3) ansatz before and after RDM purification on
the IBM Tokyo (top) and Rigetti QCS (bottom). The inset plots
demonstrate the distance of the computed energy to the FCI
energy, with the solid black line denoting chemical accuracy
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METHODS
Benchmarking approach
The VQE algorithm introduces a number of critical input generation
decisions that are of interest to benchmarking efforts for quantum
chemistry on NISQ hardware. Aspects of this algorithm that one may vary
are the overall complexity of the spin Hamiltonian (e.g., consider
symmetry-reduced versions of Eq. (8)), the parameterized trial circuit
UðθÞ, and the error mitigation strategy. These choices dictate the
complexity of the electronic structure problem that can be solved, and
the accuracy, which is used as a benchmark metric.
Our approach first seeks to reduce the complexity of the Hamiltonian in

an effort to minimize the width of our quantum circuits. In addition to the
frozen-core approximation, we also reduce the number of qubits necessary
for simulation via the application of discrete Z2 symmetries.24 Next, we
choose a particular trial unitary class. Finally, we consider our benchmark-
ing results as a function of various error mitigation post-processing
techniques.

Trial circuits
The choice of ansatz dictates the depth of the program executed and
therefore the level of noise present in the computation. The number of
parameters in the circuit determines the difficulty of the classical
optimization step and the number of individual QPU calls required.
In the UCC method the wavefunction is represented using the

exponentiated operator1,8,26

ψðθÞj i ¼ eT�T
y
ψ0j i (9)

where ψ0j i is a reference state; for example, the Hartree-Fock solution. The
symbol T (T y) is a particle excitation (de-excitation) operator, given by

T ¼
XM
k¼1

TkðθÞ (10)

T1ðθÞ ¼
X
i2occ
a2virt

θiaa
y
aai (11)

T2ðθÞ ¼ 1
4

X
i;j2occ
a;b2virt

θi;ja;ba
y
aa
y
baiaj (12)

where M is the number of electrons and the θ parameters map directly to
the parameters found in the circuit decomposition of this unitary operator.
For UCC single doubles (UCCSD) the excitation operator is truncated to
single and double excitations only, T ¼ T1ðθÞ þ T2ðθÞ. In general, the
UCCSD ansatz is sufficient to map the exact FCI solution for 2-electron
systems, such as alkali hydrides within frozen-core approximation. Note
that for N spin-orbitals and M electrons, the number of parameters for the
UCCSD circuit scales as OðN2M2Þ,8 and therefore the depth for even
modest sized problems grows well past what is implementable on
currently available quantum computers. For a four-qubit, 2-electron

problem, the depth of this circuit is on the order of 100, and the number
of instructions is about 150. Thus, symmetry reduction is required to
implement the ansatz on current hardware.
One such reduction uses the fact that the spin terms that make up the

exponential argument of Eq. (9) for a hydrogenic problem (four orbitals,
two fermions) consist of eight four-site terms that all act identically on the
Hartree-Fock state. Therefore we can approximate the state with only one
term. Here, we use Y0X1X2X3 so that our parameterized unitary becomes

ÛðθÞ ¼ eiθY0X1X2X3 : (13)

The circuit for this unitary is shown in Fig. 6. This circuit structure is a
computational primitive that recurs in larger systems. This CX ladder
structure is therefore a prime example of an early benchmark for quantum
chemistry on quantum computers—if the quantum device cannot
adequately execute this circuit, it will perform poorly on all larger
fermionic systems. On the other hand, one can map larger molecules onto
this hydrogenic system via a frozen-core approximation, and apply this
circuit primitive to produce energy metrics for a cross-platform
comparison.
We note that this ansatz cannot produce FCI energy for four-qubit, 2-

electron problems, but it provides a UCCD solution. That is the single
parameter θ controls the contribution from doubly excited determinant:
ψðθÞ ¼ 1

N 1010j i þ cðθÞ 0101j ið Þ, where 1010j i is a reference ground state
Slater determinant, 0101j i is a doubly excited Slater determinant and N is
normalization factor. To correct for this, we append circuits that address
additional two-qubit subspaces in order to expand the total accessible
Hilbert space represented by the quantum register (see Fig. 7). This
extended UCC ansatz introduces an additional parameter that controls a
single excitation for each two-qubit spin subspace, allowing for the
electronic excitations to spread to fully cover all orbitals considered active
in the Hamiltonian.
For completeness, we also consider an implementation of the hardware-

efficient ansatz in ref. 3. The circuit is composed of alternating layers of
single-qubit rotations and two-qubit entangling operations (based on the
connectivity structure of the hardware). The number of parameters in this
circuit grows as Nð3d þ 2Þ, where N is the number of qubits and d is the
number of rotation+entangling layers. This ansatz is more amenable to
near-term execution than a naive implementation of the UCC ansatz due
to the controlled growth in its depth. However, the increase in the number
of variational parameters leads to an increase in costly QPU executions
(which are remote network calls for most available NISQ devices).
Furthermore, this ansatz has been shown to introduce barren plateaus—
regions where the probability that the gradient in a given direction is non-
zero becomes exponentially small as the number of qubits increases.27

Error mitigation strategies
Executing quantum circuits on current NISQ hardware will produce results
that do not compare well with classical theoretical values. This is due to a
number of factors, including intrinsic systematic noise present during
execution and qubit measurement readout errors. Therefore, in order to
produce valid results, some form of error mitigation must be employed.
We consider the type of and quantity of required error mitigation
strategies as a dimension of our near-term, quantum benchmarking
approach. We note that required strategies may vary from one QPU to
another, and therefore dictate which QPU may be more well-suited for the
given application or task. It is therefore important to parameterize our
benchmark with respect to these strategies. In this work, we examine three
such mitigation strategies: readout-error mitigation, entangling gate error
rate extrapolation, and reduced density matrix purification.

Fig. 5 Computed energy as a function of the distance between Na
and H for the one parameters UCC (ucc-1) ansatz before and after
RDM purification. The inset plot demonstrates the distance of the
computed energy from the FCI energy, with the solid black line
denoting chemical accuracy

Fig. 6 The single parameter UCC (denoted ucc-1) circuit ansatz for 4
qubits and 2 electrons. It serves as a primitive circuit type that will
be found as a sub-circuit in any UCC-type ansatz simulation, and
therefore serves as an excellent benchmark for quantum chemistry
on near-term quantum computers. A parameter θ controls a double
excitation amplitude resulting in UCCD ansatz
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We used a local, spatially uncorrelated readout-error model that requires
information about the probability of an unexpected bit flip during qubit
measurement. For each qubit, we compute the probability that a 1j i was
observed when a 0j i was expected, and the probability a 0j i was observed
when a 1j i was expected, pið1j0Þ, pið0j1Þ, respectively. Then, our readout-
error corrected expectation values are computed from the experimentally
observed bit string counts as

Z¼ Zh i ¼
X

x2counts
pðxÞ

Y
i2sitesðZ¼ ZÞ

ð�1Þxi � p�i
1� pþi

� �
; (14)

where pðxÞ is the probability of seeing bit string x and
p±
i ¼ pið0j1Þ± pið1j0Þ. i 2 sitesðZ¼ ZÞ represents the qubit indices

represented in the given measured Pauli term.
To mitigate against systematic two-qubit entangling gate noise, we

implemented the zero-noise extrapolation technique put forth in ref. 18.
We assume a generic two-qubit white noise error channel
N ¼ ð1� ϵÞρþ ϵI=4. We emulate increasing ϵ by introducing pairs of
CNOT gates, serving as a noisy identity. We introduce r pairs of these
entangling operations, compute the energy produced by the circuit each
time, and extrapolate back to r ¼ 0 to produce the noiseless energy.
Finally, we adapted a McWeeny purification scheme of non-idempotent

density matrices. We implemented a mixed-state purification approach
that depends on the computation of the two-body reduced density matrix
(RDM).28 Typically, VQE seeks the expectation value of an operator that can
be expressed as a sum of individual, weighted Pauli tensor products. If we
instead stay in the fermionic picture, we seek the minimum of the
following energy expression

EðθÞ ¼ ψðθÞh jH ψðθÞj i
¼
X
p;q

hpq ψðθÞh jaypaq ψðθÞj i þ 1
2

X
p;q;r;s

hpqrs ψðθÞh jaypayqasar ψðθÞj i; (15)

where ψðθÞh jaypayqasar ψðθÞj i is the two-body RDM (2-RDM), ρpqrs . From the
study of n-representability theory, an appropriate trace of the 2-RDM yields
the one-body RDM. Therefore the 2-RDM is sufficient for computing the
overall energy of the system.29 We can compute these 2-RDM elements by
constructing all physically-relevant aypa

y
qasar operators, mapping to the

spin representation, executing the chosen parameterized ansatz, and
performing measurements dictated by these transformed spin terms. This
computation, when done in the presence of systematic noise, produces a
statisical mixture of many pure states. Recall that the variational principle
ensures that Eg � EðθÞ for some pure state with corresponding eigenvalue
Eg . We therefore employ a strategy for purifying these RDM elements,
following the well-known McWeeny purification formula.30 To improve our
estimate of ρpqrs and therefore mitigate against inherent error on the
hardware, we purify the 2-RDM via the iterative approach ρpqrs  
3ðρpqrsÞ2 � 2ðρpqrsÞ3 until Trðρ2pqrs � ρpqrsÞ< ϵ, for ϵ� 1. Note that here
tensor multiplication is defined as the trace Cpquv ¼ ApqrsBrsuv (Einstein
summation implied). We note for clarity that this procedure is only
appropriate for 2 electron systems, and will not provide guidance for error
mitigation with more than 2 electron simulations. In order to purify a 2-
RDM encountered in systems with more than 2 electrons, one must utilize
the semidefinite constraints provided by N-representability, as in ref. 29. For
our current purposes, this was beyond the need and scope of this work. In
the future, we plan to extend this benchmark with error mitigation beyond
2 electron systems, which will require an extension to the purification
scheme.
In order to estimate the statistical error of the purified energies, we

utilitized a long established process called bootstrapping.31 This consists of
resampling each measured circuit according to probabilites estimated
from the measurement results. We used the resampled circuit outcomes to
produce a 2-RDM, which then was used to derive raw and purified
energies. This process was repeated to create 10,000 bootstrapped pairs of

raw and purified energies for each experiment, which provided an
estimate of the the mean and standard deviation. As a check, we verified
that the bootstrapped error estimates were almost identical to those
produced by the variance estimate for non purified energies also used in
this work, which indicates it is likely a good measure of the error for the
purification process as well.

Software implementation
Enabling a high-level, application-based benchmarking capability for near-
term quantum computation requires an extensible and modular approach
that abstracts away the underlying hardware and the benchmark
application domain. The goal is to provide an executable that can be
quickly and easily installed and an input deck that is expressive and
enables one to tailor all available benchmark parameters.
Our approach provides a hardware-independent benchmark that can be

extended to new domains for application-centric and algorithmic primitive
benchmarking. We have extended the Eclipse XACC quantum-classical
programming framework32 and provided a Pythonic approach for
designing and executing benchmarks across the major available QPUs.
Our approach extends the Python API provided by XACC with support for
runtime-contributed service interfaces for the various aspects of
application-centric and primitive benchmarking. The benchmark takes an
INI file as input. This file describes the benchmark to be run, including the
algorithm to use (VQE), input pertinent to the algorithm (trial circuit,
optimizer, etc.), molecular integral generation routine, error mitigation
strategies to implement (XACC automates the error mitigation strategies
described in the previous section), and the target QPU to benchmark. A
typical input file is shown in Listing 1. Providing a cross-platform
benchmark capability is therefore a matter of distributing these input files
for execution on currently available QPUs. Further details on the software
framework are given elsewhere.33

Listing 1. A typical benchmark input file for NaH molecule with STO-3G
basis set. Notice that indexes 0–9 in the spin orbitals lists correspond spin-
up orbitals whereas 10–19 correspond to spin-down orbitals.
[XACC]
accelerator: ibm:ibmq_20_tokyo
algorithm: vqe
[Error Mitigation]
readout-error: True
richardson-extrapolation: True
[VQE]
optimizer: cobyla
[Ansatz]
name: ucc-3
[Molecule]
basis: sto-3g
geometry: Na 0.0 0.0 0.0
H 0.0 0.0 1.914388
frozen-spin-orbitals: [0,1,2,3,4,
10,11,12,13,14]
active-spin-orbitals: [5,9,15,19]

DATA AVAILABILITY
The data that support the findings of this study are available from the authors upon
request.

CODE AVAILABILITY
The code used to generate the data in this paper is available as part of the open
source XACC programming environment at https://github.com/eclipse/xacc.

Fig. 7 The three parameter UCC (denoted ucc-3) circuit ansatz for 4 qubits and 2 electrons. This ansatz adds a parameter for each of two
additional two-qubit subspaces of the ucc-1 circuit ansatz so as to cover all active orbitals resulting in UCCSD circuit. The parameter θ1 (θ2)
controls single excitation amplitude within the α spin (β spin) block

A.J. McCaskey et al.

7

Published in partnership with The University of New South Wales npj Quantum Information (2019)    99 

https://github.com/eclipse/xacc


Received: 23 May 2019; Accepted: 4 October 2019;

REFERENCES
1. O’Malley, P. J. J. et al. Scalable quantum simulation of molecular energies. Phys.

Rev. X 6, 031007 (2016).
2. Linke, N. M. et al. Experimental comparison of two quantum computing archi-

tectures. Proc. Natl Acad. Sci. USA 114, 3305–3310 (2017).
3. Kandala, A. et al. Hardware-efficient variational quantum eigensolver for small

molecules and quantum magnets. Nature 549, 242–246 (2017).
4. Dumitrescu, E. F. et al. Cloud quantum computing of an atomic nucleus. Phys. Rev.

Lett. 120, 210501 (2018).
5. Klco, N. & Savage, M. Digitization of scalar fields for quantum computing. Phys.

Rev. A 99, 052335 (2019).
6. Hamilton, K. E., Dumitrescu, E. F. & Pooser, R. C. Generative model benchmarks for

superconducting qubits. Phys. Rev. A 99, 052335 (2019).
7. Shen, Y. et al. Quantum implementation of the unitary coupled cluster

for simulating molecular electronic structure. Phys. Rev. A 95, 020501 (2017).
8. Romero, J. et al. Strategies for quantum computing molecular energies using the

unitary coupled cluster ansatz. Quant. Sci. Technol. 4, 014008 (2018).
9. Ryabinkin, I. G., Yen, T.-C., Genin, S. N. & Iamaylov, A. F. Qubit coupled cluster

method: a systematic approach to quantum chemistry on a quantum computer.
J. Chem. Theory. Comput. 14, 6317–6326 (2018).

10. Aspuru-Guzik, A., Dutol, A. D., Love, P. J. & Head-Gordon, M. Simulated quantum
computation of molecular energies. Science 309, 1704–1707 (2005).

11. Klco, N. et al. Quantum-classical computation of Schwinger model dynamics
using quantum computers. Phys. Rev. A 98, 032331 (2018).

12. Peruzzo, A. et al. A variational eigenvalue solver on a photonic quantum pro-
cessor. Nat. Commun. 5, 4213 (2014).

13. Kandala, A. et al. Extending the computational reach of a noisy superconducting
quantum processor. arXiv e-prints arXiv:1805.04492 (2018).

14. Hempel, C. et al. Quantum chemistry calculations on a trapped-ion quantum
simulator. Phys. Rev. X 8, 031022 (2018).

15. Shen, Y. et al. Quantum implementation of the unitary coupled cluster for
simulating molecular electronic structure. Phys. Rev. A 95, 020501 (2017).

16. Temme, K., Bravyi, S. & Gambetta, J. M. Error mitigation for short-depth quantum
circuits. Phys. Rev. Lett. 119, 180509 (2017).

17. Bonet-Monroig, X., Sagastizabal, R., Singh, M. & O’Brien, T. E. Low-cost error
mitigation by symmetry verification. Phys. Rev. A 98, 062339 (2018).

18. Li, Y. & Benjamin, S. C. Efficient variational quantum simulator incorporating
active error minimization. Phys. Rev. X 7, 021050 (2017).

19. McClean, J. R. et al. OpenFermion: the electronic structure package for quantum
computers. arXiv e-prints arXiv:1710.07629 (2017).

20. Jordan, P. & Wigner, E. Über das Paulische Äquivalenzverbot. Zeitschrift für Physik
47, 631–651 (1928).

21. Bravyi, S. B. & Kitaev, A. Y. Fermionic quantum computation. Annal. Phys. 298,
210–226 (2002).

22. Seeley, J. T., Richard, M. J. & Love, P. J. The bravyi-kitaev transformation for
quantum computation of electronic structure. J. Chem. Phys. 137, 224109 (2012).

23. Powell, M. J. D. Direct search algorithms for optimization calculations. Acta
Numerica 7, 287 (1998).

24. Bravyi, S., Gambetta, J.M., Mezzacapo, A. & Temme, K. Tapering off qubits to
simulate fermionic Hamiltonians. arXiv e-prints arXiv:1701.08213 (2017).

25. Boixo, S. et al. Characterizing quantum supremacy in near-term devices. Nat.
Phys. 14, 595 (2018).

26. Taube, A. G. & Bartlett, R. J. New perspectives on unitary coupled-cluster theory.
Int. J. Quantum Chem. 106, 3393–3401 (2006).

27. McClean, J. R., Boixo, S., Smelyanskiy, V. N., Babbush, R. & Neven, H. Barren
plateaus in quantum neural network training landscapes. Nat. Commun. 9, 4812
(2018).

28. Morris, T. Improved optimization for effective field theory simulations with a ucc
ansatz (in preparation).

29. Rubin, N. C., Babbush, R. & McClean, J. Application of fermionic marginal con-
straints to hybrid quantum algorithms. New J. Phys. 20, 053020 (2018).

30. Truflandier, L. A., Dianzinga, R. M. & Bowler, D. R. Communication: generalized
canonical purification for density matrix minimization. J. Chem. Phys. 144, 091102
(2016).

31. Efron, B. Bootstrap methods: another look at the jackknife. Annal. Statistics 7, 1
(1979).

32. McCaskey, A. et al. A language and hardware independent approach to
quantum-classical computing. SoftwareX 7, 245–254 (2018).

33. McCaskey, A. & Parks, Z. A dynamic service-oriented platform for benchmarking
quantum computers (In preparation).

ACKNOWLEDGEMENTS
This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-
00OR22725 with the U.S. Department of Energy. The authors acknowledge fruitful
discussions with E. Dumitrescu. R.C.P. acknowledges helpful discussions with R.S.
Bennink. The authors acknowledge DOE ASCR funding under the Quantum Computing
Testbed Pathfinder program, FWP number ERKJ332. Z.P. was supported in part by an
appointment to the Oak Ridge National Laboratory HERE Program, sponsored by the U.S.
Department of Energy and administered by the Oak Ridge Institute for Science and
Education. This research used quantum computing system resources supported by the
U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing
Research program office.

AUTHOR CONTRIBUTIONS
R.C.P. conceived of the project, supervised the research, and interpreted results.
A.J.M. and Z.P. conducted the experiments by developing the benchmarking
software, programming the quantum computers, and taking data. S.V.M. contributed
to design of the experiments and interpreted results. J.J. contributed quantum
chemistry Hamiltonians and developed custom ansatz for optimization. T.D.M.
implemented reduced density matrix purification and bootstrapping. T.S.H.
interpreted results. All authors participated in writing the paper.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Correspondence and requests for materials should be addressed to A.J.M., J.J. or R.C.P.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

This is a U.S. government work and not under copyright protection in the U.S.; foreign
copyright protection may apply 2019

A.J. McCaskey et al.

8

npj Quantum Information (2019)    99 Published in partnership with The University of New South Wales

http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Quantum chemistry as a benchmark for near-term quantum computers
	Introduction
	Results
	Discussion
	Methods
	Benchmarking approach
	Trial circuits
	Error mitigation strategies
	Software implementation

	References
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




