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Abstract The Jeans instability is regarded as an important
tool for analyzing the dynamics of a self-gravitating system.
However, this theory is challenging since astronomical obser-
vation data show some Bok globules, whose masses are less
than the Jeans mass and still have stars or at least undergo the
star formation process. To explain this problem, we investi-
gate the effects of the higher-order generalized uncertainty
principle on the Jeans mass of the collapsing molecular cloud.
The results in this paper show that the higher order general-
ized uncertainty principle has a very significant effect on the
canonical energy and gravitational potential of idea gas, and
finally leads to a modified Jeans mass lower than the original
case, which is conducive to the generation of stars in small
mass Bok globules. Furthermore, we estimate the new gener-
alized uncertainty principle parameter γ0 by applying various
data of Bok globules, and find that the range of magnitude of
γ0 is 1011−1012.

1 Introduction

Einstein’s theory of general relativity is regarded as the cor-
nerstone of the development of modern physics and astron-
omy. However, with the deepening of research, it is found
that general relativity has flaws, which lead to many prob-
lems, such as the black hole information paradox and naked
singularity of spacetimes [1]. One of the most promising
candidates to solve those problems is quantum gravity (QG).
Now, based on these frameworks that explicate QG, people
hypothesize that exists a minimum measurable length of the
order of the Planck length in QG, which is supported by
Gedanken experiments [2–4].

According to the minimum measurable length, many such
studies have converged on the idea that the Heisenberg
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uncertainty principle (HUP) can be modified as the general-
ized uncertainty principle (GUP). In 1995, Kempf, Mangano
and Mann proposed a quadratic form of the GUP, which
we now call as the “KMM model” with the expression,
ΔxΔp ≥ h̄

2

[
1 + βΔp2

]
, where β = β0

/
M2

pc
2 = β0�

2
p

/
h̄2

and β0 is the GUP parameter. It is easy to find that the KMM
model predicts a minimal length ΔxKMM

min ≈ �p
√

β0 [5].
Subsequently, incorporating the idea of maximal momen-
tum, Ali, Das and Vagenas constructed another GUP (ADV

model) ΔxΔp ≥ h̄
2

[
1 + 2α0�p 〈p〉/h̄+ 4

〈
p2
〉
α2

0�2
p

/
h̄2
]
,

where α0 is the GUP parameter. Moreover, this linear and
quadratic GUP model suggests the existence of a mini-
mal length ΔxADV

min ≈ α0�p and a maximal momentum
ΔpADV

max ≈ �p
/
α0 [6]. In recent years, the KMM model

and ADV model have played important roles in the research
of many physics contexts. For instance, in Refs. [7,8], the
Scardigli et al., discussed the relation between GUP, gen-
eral relativity, and the Lorentz violation. Besides, by using
the KMM model, researchers derived the GUP corrected
Hamilton-Jacobi equation and investigated the modified tun-
neling rate of particles with arbitrary spins from the event
of curved spacetimes [9]. Moreover, the KMM model and
ADV model can also be extended to the Proca equation,
which leads to the modified Hawking temperature of black
holes [10–12]. In addition, Vagenas et al. studied the valid-
ity of the no-cloning theorem within the framework of GUP.
They pointed out that the energy required to send informa-
tion to a black hole is affected by quantum gravity [13]. In
Refs. [14,15], the authors investigated how the KMM model
affects the Casimir wormhole spacetime, and obtained a class
of asymptotically flat wormhole solutions.

Although the KMM model and ADV model are two of
the most studied GUPs, they still have some defects, e.g., the
minimal length and the maximal momentum are only valid
for small GUP parameters, and do not imply noncommutative
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geometry [16]. To overcome these difficulties, Pedram intro-
duced a nonperturbative higher-order GUP, which agrees
with various proposals of QG [17]. Subsequently, this higher
order GUP was used to correct the blackbody radiation spec-
trum and predict the cosmological constant. Based on this
heuristic work, many new forms of higher order GUP were
presented (see, e.g. Refs. [18–21] and references therein).
Recently, in Ref. [18], Chung and Hassanabadi proposed a
generalized canonical commutation relations as follows:

[x̂, p̂] = i h̄

1 − γ
∣∣ p̂
∣∣ , γ > 0 (1)

which leads to a new higher order GUP (hereafter, we call
this GUP as the CH model):

ΔxΔp ≥ h̄

2

〈
1

1 − γ |p|
〉

= h̄

2

〈
1 + γ |p| + γ 2P2 + γ 3|p|p2 + γ 4

(
p2
)2 + · · ·

〉

≥ h̄

2

[
1 + γ 〈|p|〉 + γ 2(Δp)2 + γ 3(Δp)3

+γ 4(Δp)4 + · · · 〉
]

≥ h̄

2

[
−γ (Δp) + 1 + γ (Δp) + γ 2(Δp)2 + γ 3(Δp)3

+γ 4(Δp)4 + · · · 〉
]

= h̄

2

[
−γ (Δp) + 1

1 − γ (Δp)

]
,

(2)

where |p| =
√∣
∣p2
∣
∣ and γ = γ0

/
Mpc = γ0�p

/
h̄ are

associated with the dimensionless GUP parameter γ0, the
Planck mass Mp, and the Planck length �p. In addition,
we set 〈p〉 = 0, 〈|p|〉 ≥ 0 and utilized the identities〈(
p2
)n〉 ≥ (〈

p2
〉)n

and |〈(AB + BA)〉| ≥ 2
√〈

A2
〉√〈

B2
〉

[18]. In addition, Eq. (2) guarantees the existence of an abso-
lute smallest uncertainty in position Δxmin = 3h̄γ

/
2 for

Δp = 1
/

2γ , which never appears in the framework of the
HUP. In addition, the CH model has merit since it involves
no perturbation and overcomes some conceptual problems
raised in the previous forms of GUP (e.g. the divergence of
the energy spectrum of the eigenfunctions of the position
operator), however, when γ → 0, it reduces to the HUP.
Besides, for γ � 1, the last term of Eq. (2) can be expanded
as ΔxΔp ≥ h̄

2

[
1 + γ 2Δp2 + O (γ 3

)]
, which indicates that

the CH model coincides with the KMM model to the second
order in γ ; hence, one has the relation γ 2 ∼ β.

According to the CH model (2), people investigated the
modified eigenfunctions and eigenvalues for the particle in
a box and one-dimensional hydrogen atom, respectively.
Moreover, one may also find that the higher order GUP cor-
rected the behavior of Bohr–Sommerfeld quantization, which

can be used to calculate the energy spectra of quantum har-
monic oscillators and quantum bouncers [20]. In light of pre-
vious works, it is believed that a higher-order GUP will not
only give new implications to quantum systems, but also to
astrophysics. For example, it is well known that the Jeans
mass is an important theory to study the collapse of molecu-
lar clouds. However, in recent years, this theory is has been
since some astronomical data have shown that there are some
Bok globules, whose masses are less than the Jeans mass that
still have stars or at least undergo the star formation process
[22,23]. For solving this problem, Moradpour et al. corrected
the limit of Jeans mass due to the KMM model. Their results
showed that the modifications were less than the original case
and were related to the properties of the GUP model [24]. As
we discussed above, the higher order GUP has different prop-
erties from the KMM model and the ADV model, and it is
interesting to investigate how the higher order GUP affects
the Jeans mass. Therefore, in the present paper, we try to
extend the CH model (2) into the Jeans instability and calcu-
late the GUP corrected limit of Jeans mass of those especial
Bok globules.

The paper is organized as follows: Sect. 2 is devoted to
a review of the Jeans instability limit in the classical case.
In Sect. 3, according to the new higher order CH model, we
compute the corrections to the potential energy and canonical
energy of a molecular cloud. Then, we discuss the modified
Jeans gravitational instability, and then derive the GUP cor-
rected Jeans mass to explain the problem of Bok globules.
By using the GUP corrected Jeans mass, the dimensionless
parameter γ0 of the GUP is constrained in Sect. 4. Finally,
conclusions can be found in Sect. 5.

2 The Jeans mass and the HUP

In this section, we briefly outline how to derive the Jeans mass
in the classical case. Based on the argument that relies upon
the virial theorem in Ref. [24], the collapse of the molecular
cloud occurs if the gravitational potential energy Ep is larger
than the canonical energy U , to wit

U < −Ep
/

2. (3)

Obviously, to obtain the Jeans mass, it is necessary to derive
the expressions of gravitational potential energy and canon-
ical energy.

It is well known that spacetime is flat in the classical
case. Therefore, the Newton’s law of gravitation is F0 =
GMm

/
r2 with the constant of universal gravitation G, and

the gravitational potential becomes V (r) = −GM
/
r . The

corresponding potential energy is given by
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Ep =
∫ M

0
V (r) dr =

∫ R

0
4πρ (r) rGMdr

= −3GM2

5R
, (4)

where the density of dark cloud ρ (r) in Eq. (4) is assumed
to be a constant ρ0 for simplicity.

Next, the classical fundamental commutation relation can
be expressed as [x̂, p̂] = i h̄, which implies HUP ΔxΔp ≥
h̄
/

2. When considering the Liouville theorem and HUP, the
state density in momentum space in the spherical coordi-
nate system can be expressed as D (p) dp = 4πV p2dp

/
h3,

which leads directly to the original partition function of the
ideal gas as follows

Z = ZN

N ! = (4πV )N

N !
∫ [

p2

h3 exp

(
− p2

2μkBT

)]N
dp

= (4πV )N

N !
(2πμkBT )3N/2

h3N , (5)

where N , μ, and T are the numbers, mass, and tempera-
ture of noninteracting particles of the ideal gas, respectively
[25–27]. Besides, the total mass of the ideal gas satisfies
the relationship M = μN . According to Eq. (5), one can
straightforward to derive the equation of state of the ideal gas
PV = NkBT , and the canonical energy can be expressed as

U0 = kBT
2
(

∂ ln Z

∂T

)

N ,V
= 3

2
NkBT . (6)

Clearly, the original canonical energy is dependent only on
the number of noninteracting particles N and their tempera-
ture T .

Now, substituting Eq. (4) and Eq. (6) into inequality (3),
and supposing that the distribution of ideal gas in space is
spherical, the result is

M >

(
5kBT

Gμ

) 3
2
(

3

4πρ0

) 1
2

, (7)

where the radius is R = (
3M

/
4πρ0

) 1
3 . The above men-

tioned equation indicates a lower bound of the cloud mass to
collapse, which is known as the Jeans mass

MJ
0 =

(
5kBT

Gμ

) 3
2
(

3

4πρ0

) 1
2

. (8)

Although the formation of most stars can be examined by
the original Jeans instability and Jeans mass, people still
observed some Bok globules, such as CB 84 and CB 110,
have masses less than MJ

0 but still have stars or at least

undergo the star formation process [23]. To explain this prob-
lem, we investigate the modified Jeans mass in the framework
of the higher-order GUP.

3 The Jeans mass in the higher-order GUP

The GUP has various implications for a wide range of phys-
ical systems. Moreover, they are regarded as a powerful tool
to solve various difficult problems in these research fields.
Therefore, to obtain the modified Jeans mass, we derive
the GUP corrected entropy, gravitation potential energy, and
canonical energy of ideal gases. For the sake of simplicity,
we shall takes the units h̄ = c = kB = 1 in the next research.

3.1 GUP corrected gravitation potential energy

To derive the modified gravitation potential energy in the
presence of the CH model, we need to use the theory of
entropic force, which is an intriguing explanation for New-
ton’s law of gravity that is based on the holographic principle
and an equipartition rule. Now, by using Eq. (2), one can eas-
ily obtain the following inequality

Δp ≥ 1

2γ

(

1 −
√

1 − 4γ

2Δx + γ

)

= 1

2Δx

[
1 + γ 2

4Δx2 + O
(
γ 3
)]

. (9)

Based on the arguments of Refs. [29–33], a massless quantum
particle (e.g., a photon) can be used to determine the position
of quantum particles with the energy ω = pc (i.e. Δω =
Δpc), so that the HUP Δp ≥ 1

/
2Δx can be translated to

the lower bound ω ≥ 1
/

2Δx . Accordingly, from Eq. (9), the
GUP version reads

ω ≥ 1

2Δx

[
1 + γ 2

4Δx2 + O
(
γ 3
)]

. (10)

From Verlinde’s entropy force theory, to calculate the mod-
ified entropic force, one should consider a spherically sym-
metric gravitational system (e.g., a black hole), which allows
the quantum particles to enter or exit its horizon [34]. As
Ref. [35] pointed out, when a strong gravitational system
absorbs or emits a quantum particle with energy ω and size
R, the minimal change in the area of the system becomes
ΔAmin ≥ 8πωR�2

p. Then, the arguments of Refs. [36,37]
implies that the size of a quantum particle cannot be smaller
than its uncertainty in the position (i.e. R ≥ Δx), which
gives ΔAmin ≥ 8πωΔx�2

p. Substituting this relation into
Eq. (10), one has
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ΔAmin ≥ 4π�2
p

[
1 + γ 2

4Δx2 + O
(
γ 3
)]

. (11)

Furthermore, considering that a spherical gravitational sys-
tem with Schwarzschild radius r , and the area of this system is
A = 4πr2. Moreover, near the event horizon, Δx is approxi-
mately equal to the orbital radius r ; that is, Δx ≈ 2r [32,38–
40]. Hence, the relation between Δx and A is given by
Δx2 = 4r2 = A

/
π . Substituting this relation into Eq. (11),

the minimal change in the horizon area of the gravitational
system can be recast as

ΔAmin 
 λ�2
p

[
1 + πγ 2

4A
+ O

(
γ 3
)]

, (12)

where λ is an undetermined coefficient. In Ref. [36], the
authors pointed out that the information of the gravitational
system is reflected in its area. On the other hand, based on
the information theory, it is believed that the area of one
system can affect its smallest increase in entropy [41]. Since
the fundamental unit of entropy as one bit of information is
ΔSmin = b = ln 2, one obtains

dS

dA
= ΔSmin

ΔAmin
= b

λ�2
p

[
1 + πγ 2

4A
+ O

(
γ 3
)]−1

, (13)

Considering that γ is a small parameter, one can obtain the
GUP corrected entropy according to Eq. (13),

S = A

4�2
p

[
1 − πγ 2

4A
ln (4A) + O

(
γ 3
)]

, (14)

where we fix b
/
λ by demanding matching the original

entropy-area law in the limit γ → 0. Hence, one has
b
/
λ = 1

/
4 [35]. Moreover, there is a logarithmic term

ln (4A) in the bracketed term of Eq. (14), which is coincident
with the requirements of QG [42–49]. According to the holo-
graphic principle and entropy-area law, which is averagely
distributed in N -bits information, the number of bits can be
expressed as follows:

N = 4S = A

�2
p

[
1 − πγ 2

4A
ln (4A) + O

(
γ 3
)]

. (15)

Next, one can further denote the total energy of the gravita-
tional system as E , which is the average distribution in N
bits (please see the [50] for details). Consequently, each bit
contains T

/
2 energy, then, following the equipartition rule,

the total energy takes the form

E = N T
/

2. (16)

On the other hand, Verlinde demonstrated that the entropic
force is more fundamental than gravity. For a gravitational
system, the entropic force can be expressed as follows [34]:

FΔx = TΔS, (17)

where F is the entropy force, T is the temperature, ΔS is
the change in entropy of the gravitational system, and Δx
represents the displacement of the particle with the mass m
from the gravitational system, which satisfies the relation
ΔS = 2πmΔx [51,52]. Now, substituting the expression of
the change in entropy, Eq. (14)-Eq. (16) into Eq. (17), then
considering E = Mc2, A = 4πr2 and �2

p = G, Newton’s
law of gravitation should be corrected as follows:

FGUP = GMm

r2

[
1 + γ 2

16r2 ln
(

16πr2
)

+ O
(
γ 3
)]

. (18)

Clearly, in the limit γ = 0, Eq. (18) reduce to the origi-
nal Newton’s gravitation F0 = GMm

/
r2. Next, based on

the modified Newton’s law of gravitation, the corresponding
GUP corrected gravitational potential is

VGUP =
∫

FGUP

m
dr

= −GM

r

[

1 + 2 + 3 ln
(
16πr2

)

144r2 γ 2 + O
(
γ 3
)]

.

(19)

Applying Eq. (19) to a molecular cloud with radius R, mass
M and the almost uniform density ρ0, the following expres-
sion for the modified potential energy is obtained

EGUP
p =

∫ R

0
VGUP (r) dM

= −3GM2

5R

[

1 + 5 ln
(
16πR2

)

144R2 γ 2 + O
(
γ 3
)]

.

(20)

Obviously, the above equation is related to the mass M ,
radius R, and GUP parameter γ . In addition, one can see
that Eq. (20) lacks the first-order correction term since the
CH model (2) becomes the KMM model for small γ . This
indicates that the properties of the gravitational system are
affected by the higher-order term of γ . In the limit γ = 0,
the result agrees with the original potential energy (4).

3.2 GUP corrected canonical energy of ideal gases

By virtue of Eq. (2) and the viewpoint in Refs. [53,54], the
partition function of a dark cloud, which is approximated as
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the ideal gas containing N noninteracting particles with mass
m at temperature T , can be expressed as follows:

Z = ZN

N ! , (21)

where

Z = 4πV

N !
∫ ∞

0

p2

h3 (1 − 3γ |p|)3 exp

(
− p2

2μT

)
dp. (22)

Using the spherical coordinate and Gaussian integral, the
GUP corrected partition function for the dark cloud reads

ZGUP = (4πV )N (2kBμT )3N/2

N !h3N ΘN (γ ) , (23)

where Θ (γ ) =
√

π

4

[
1 − 6

√
2μT
π

γ + 9μT γ 2 + O (γ 3
)]

.

The GUP corrected canonical energy is presented as

UGUP = T 2
(

∂ ln ZGUP

∂T

)

N ,V

= U0

[

1 − 2

√
2

π
Aγ − 6

π
(4 − π)A2γ 2 + O

(
γ 3
)]

(24)

with A = √
μT and the original canonical energy U0 is

given in Eq. (6). Note that, the modified canonical energy is
different from the original case, it does only not relate to the
original case U0, but also to parameter γ , the mass of the
noninteracting particle μ and its temperature T .

3.3 GUP corrected Jeans mass

With the above results in place, one can derive the modified
Jeans mass and further investigate how the GUP affects the
Jeans mass. Using Eq. (20) and Eq. (24) and recalling Eq. (3),
one yields

NT

[

1 − 2

√
2

π
Aγ − 6

π
(4 − π)A2γ 2+O

(
γ 3
)]

<
GM2

5R

[

1 + 5 ln
(
16πR2

)

144R2 γ 2 + O
(
γ 3
)]

. (25)

Considering the radius R = (
3M

/
4πρ0

) 1
3 , Eq. (25) can be

rewritten as follows:

5T

[
1 − 2

√
2
π
Aγ − 6

π
(4 − π)A2γ 2+O (γ 3

)]

Gμ
(
4πρ0

/
3
) 1

3

< M
2
3 χ,

(26)

where χ = 1 + 5γ 2

144
(

3M
/

4πρ0

)2 ln
[
16π

(
3M

/
4πρ0

)2]+ O
(
γ 3
)
. On the one hand, if γ = 0, the upper bound of mass

goes to the Jeans mass MJ
0 = (

5T
/
Gμ

) 3
2
(
3
/

4πρ0
) 1

2 . On
the other hand, because M � 1 and γ is finite, the GUP
corrected Jeans mass is obtained by saturating Eq. (26), with
the result

MJ
GUP = M

> MJ
0

[

1 −
√

8μT

π
γ − (4 − π)

6μT

π
γ 2 + O

(
γ 3
)]

3
2

.

(27)

One may see that the GUP corrected Jeans mass MJ
GUP is

related to the original Jeans mass MJ
0 , the mass of ideal gas

μ, the temperature of gravity system T , and the GUP param-
eter γ . Furthermore, it should be noted that the mass of ideal
gas and the temperature of the gravity system must be real
numbers greater than zero. When considering γ > 0, MJ

GUP

is positive when 1 >

√
8μT

/
πγ − (4 − π) 6μT γ 2

/
π +

O (γ 3
)

is lower than MJ
0 . To date, the astronomical obser-

vations have shown that some Bok globules’ masses are less
than their corresponding Jeans masses. The GUP corrections
to the Jeans mass can be a candidate to explain those observa-
tional facts. Our results show that the effect of GUP is able to
reduce the Jeans mass, which is conducive to the generation
of stars in small-mass Bok globules.

4 Constraints for GUP parameter γ0

The GUP parameters are always assumed to be of order
unity so that the modified results are negligible unless energy
approaches the Planck scale. However, if the assumptions
regarding the GUP parameters are not considered, the bound
of GUP parameters can be obtained by previous experimen-
tal and observational data. In previous works, people mainly
focused on the constraints on the GUP parameters of the
KMM model and the ADD model [55–71]. Now, armed with
the previous results, we estimate the parameter of the CH
model based on the data of Bok globules. First, for simplic-
ity, by keeping the leading order term of γ , inequality (27)
can be written as follows

MJ
GUP > MJ

0

(

1 −
√

8μT

π

γ0

Mpc

) 3
2

. (28)
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Table 1 The ID, temperature T , mass MJ
GUP and Jeans mass MJ

0 of Bok globules, γ0 and γ 2
0 are the first power and second power of the upper

bound on the GUP parameter of the CH model, βKMM
0 is the upper bound on the GUP parameter of the KMM model

ID
T

(K)
[22]

MJ
GUP

(M
)
[22]

MJ
0

(M
)
[22] γ0 γ 2

0 βKMM
0 [24]

CB 87 11.4 2.73 9.6 5.31 × 1012 2.82 × 1024 6.33 × 1025

CB 110 21.8 7.21 8.5 7.03 × 1011 5.00 × 1023 6.11 × 1024

CB 131 25.1 7.83 8.1 1.41 × 1011 1.99 × 1022 1.02 × 1024

CB 161 12.5 2.79 5.4 3.18 × 1012 1.01 × 1025 3.62 × 1026

CB 188 19.0 7.19 7.7 3.24 × 1011 1.05 × 1023 3.05 × 1024

FeSt 1-457 10.9 1.12 1.4 1.32 × 1012 1.75 × 1024 1.60 × 1025

Lynds 495 12.6 2.95 6.6 1.70 × 1012 1.37 × 1025 4.20 × 1025

Lynds 498 11.0 1.42 5.7 5.76 × 1012 3.31 × 1025 6.99 × 1025

By solving the above equation, one yields

γ0 <
cMp

2

√
π

2μT

⎡

⎣1 −
(
MJ

GUP

MJ
0

)2/3
⎤

⎦ . (29)

Now, based on the data of Bok globules in Ref. [22], the
upper bounds on γ0 are shown in Table 1.

In Table 1, we set Mp = 2.18 × 10−8kg, c = 2.99 ×
108m · s−1, and M
 denotes the Sun mass. The final results
are determined by the mass of noninteracting particles μ. To
obtain the exact value of the upper bounds on γ0, we fur-
ther assume that the noninteracting particles are composed
of hydrogen atoms, which are the most abundant element
in the universe with the mass μH = 1.67 × 10−26kg. In
this case, one can see that the range of upper bounds of
γ0 is 1011 ∼ 1012. Furthermore, the GUP parameter in the
CH model has a special relationship with that of the KMM
model, which can be inferred from Eq. (2), as γ 2 ∼ β (or
γ 2

0 ∼ β0). Hence, it is easy to find that the upper bound
of the GUP parameter in the CH model γ 2

0 is 1-2 orders
of magnitude more stringent than those in the KMM model

βKMM
0 <

[
1 − (

MJ
GUP

/
MJ

0

)2
/

3
]
M2

pc
2
/

2μT from Ref.

[24].

5 Discussion

In this paper, by incorporating a new higher-order GUP with
virial equilibrium and Verlinde’s entropy force theory, we
investigated the modified canonical energy UGUP and the
modified gravitational potential energy EGUP

p of a molecular
cloud. Subsequently, according to those modifications, the
GUP corrected Jeans mass MJ

GUP is obtained. It is found that
the GUP can effectively increase the gravitational potential,
and reduce the canonical energy and the Jeans mass. This
leads to the collapse of Bok globules with masses less than

the standard value MJ
0 , which is consistent with astronomical

observations. Finally, using the different data of Bok glob-
ules, we constrain the upper bounds of the GUP parameter
γ0, whose range turn out to be 1011 ∼ 1012.
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