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T r- i
Certains ont prétendu ramener ce plaidoyer à I9 état de cause pragmatique tendant

à une opposition de lois. Ils disent: "Ici aussi deux lois, par 1' effet des circonstances,

s' opposent I1 une à 1' autre; de ces lois, 1' une se trouve violée par le fait que V autre

est observée." Mais rous répondons que, dans 1' état de cause pragmatique tendant à

une opposition de lois, aucune des deux lois n' est violée; on examine seulement laquelle

doit être violée.

Demosthène

Plaidoyer Contre Androtion, Accusation d'Illégalité

355 av. J. C.

A la mémoire de ma grand-mère, Maria Barth (1906-1986);

par son excellence, elle est toujours mon guide...
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Introduction

La Physique des constituants élémentaires de la matière est le domaine où la

Théorie Quantique des Champs trouve ses applications naturelles. Les progrès effectués

dans la description du spectre des particules observées dans la Nature, doivent beaucoup

au principe de 1' existence d' un Lagrangien fondamental. Ces Lagrangiens sont

habituellement formulés en termes de multiplets de fermions élémentaires interagissant

par V intermédiaire des bosons de jauge associés à des invariances découlant de symétries

internes. D' autre part il est bien connu que les interactions fondamentales obéissent

à une hiérarchie compliquée, bâtie sur 1' intensité du couplage entre les champs de

particules. Pour les interactions électromagnétiques et faibles il est naturel de décrire

les interactions dans le cadre de la théorie des perturbations. Celle-ci ne constitue une

bonne approximation à la solution exacte que si la constante de couplage est faible, ce

qui est (e cas des interactions éléctrofaibles.

Cependant la théorie des perturbations n' est pas d' une grande utilité pour les

interactions fortes, responsables de la cohésion de la matière. Dans la théorie des inter-

actions fortes, le Lagrangien "fondamental" sur lequel beaucoup d1 espoirs sont fondés,

est celui de la chromodynamique quantique (QCD). Les champs fondamentaux de cette

théorie sont des multiplets "colorés" de fermions (quarks) dont les interactions sont as-

surées par des champs de Yang-MiUs de masse nulle (gluons). Une propriété essentielle

et bien connue que la QCD assigne aux interactions fortes, la liberté asymptotique,

fait que les phénomènes aux courtes distances peuvent être décrits par la théorie des

perturbations. Pour la description des propriétés à basse énergie des hadrons (dont la

taille est de F ordre du fermi), tout schéma perturbatif est complètement illusoire, car
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pour ces distances, la constante de couplage des interactions fortes est très grande. Le

fait que les quarks sont confinés [1] à F intérieur des hadrons n' est qu' une illustration

du caractère non-perturbatif des interactions fortes. Comme il n' existe pas à 1' heure

actuelle de méthode non-perturbative fiable et suffisamment simple, applicable au cas

de la QCD, force est de construire, pour la description des spectres des hadrons, des

modela où les quarks sont confinés par un mécanisme plus ou moins "ad-hoc" comme les

modèles de quarks non-relativistes, de cordes, de sacs, diélectriques etc.. Ces modèles

sont assez arbitraires car chacun d' eux simule le confinement, alors que le mécanisme

de ce dernier reste inconnu.

Dans cette thèse nous allons adopter une autre approche pour la description du

monde hadronique. Puisque les quarks et les gluons sont confinés à F intérieur des

hadrons il est, peut être, plus approprié d'éliminer ces degrés de liberté et d'incorporer

leurs effets dans une théorie effective des particules observées (les mésons et les baryons).

Ce point de vue est étayé par une conjecture de Witten [2], selon laquelle à basse énergie

et à la limite où le nombre de couleurs Nc devient grand, la QCD est équivalente à une

théorie effective de mésons interagissant faiblement. Les baryons émergent de cette

théorie comme des solitons. Cette idée est attrayante car elle offre la possibilité de

décrire les mésons et les baryons dans le cadre d1 une seule théorie unifiée. En fait, un

exemple d'une telle théorie avait été proposé par Skyrme [3] il y a trente ans, bien avant

1' avènement de la QCD. Skyrme a construit une théorie où le champ fondamental est

le pion et où les baryons sont les solutions de type soliton topologique. Curieusement

ses travaux n' ont pas été remarqués en leur temps et ils n* ont été remis en vogue que

récemment.
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L'idéal serait de dériver à partir de la QCD une théorie effective de mésons. L'impos-

sibilité d'effectuer une telle dérivation à V heure actuelle laisse une certaine liberté pour

le choix de la forme spécifique du Lagrangien effectif de la QCD. Certes, ce Lagrangien

doit traduire les propriétés essentielles de la QCD, comme la brisure spontanée de la

symétrie chirale e t c . , mais ceci est encore très général. Une possibilité est de se laisser

guider par la phénoménologie bien connue des mésons afin de réduire et même éliminer

le degré d' arbitraire dans le choix du Lagrangien effectif, en respectant toujours les

symétries essentielles des interactions fortes.

L' objet de V étude présentée dans cette thèse est d' examiner à quel point une

théorie effective de mésons a des chances réelles de fournir en même temps une descrip-

tion quantitative et physiquement cohérente des observables baryoniques via le concept

des solitons topologiques.

Ce concept est basé sur l'existence d'un type de solutions pour des équations classiques

non-linéaires, localisées dans 1' espace. La différence entre ces solutions et les paquets d'

onde usuels de la mécanique quantique est que les solitons, contrairement aux paquets

d' onde, gardent leur énergie dans une région finie de 1' espace. Cette région ne s' étale

pas au cours du temps et elle évolue comme un objet en entier, le soliton. Ces solutions

ont été trouvées dès le siècle dernier [4J-[SJf. Quelques unes d' entre elles possèdent la

propriété remarquable d' être obtenues par une superposition algébrique de solutions

linéaires [7]. Un exemple d1 équation de ce type qui a été utilisée pour la description

de particules étendues en 1 + 1 dimensions, est 1' équation de Sine-Gordon [B]. Ses

solutions ont des propriétés topologiques non-triviales qui résultent des conditions aux

limites dans Y espace. Il apparaît alors une charge conservée qu' on peut identifier

f Le nom soliton a été pour la première fois employé par les auteurs de [6]



r au nombre baryonique. La conservation de cette charge repose sur !a topologie de la

solution et caractérise le soliton [9].

Alors que les particules des théories quantiques usuelles sont les quanta élémentaires du

champ, les solitons préservent leur caractère de particules même à la limite classique

S s O . La quantification naturelle de ces solutions peut s' appuyer sur des méthodes

semiclassiques (1O]-[Il]. De plus il a été montré que dans certains cas la fonction d'

onde du soliton d' une théorie de champs de bosons, se transforme comme un fermion

[12], Cet aspect remarquable, montre qu' il n' est pas déraisonnable d' espérer décrire

un spectre fermionique (les baryons) à partir d' un Lagrangien fondamental de bosons

(les mésons).

Cette thèse sera organisée de la façon suivante: dans le chapitre I, nous proposons

un modèle généralisant le modèle original de Skyrme. Ce modèle comprend outre le

pion, les mésons les plus légers. Il est basé sur le modèle <r linéaire dans lequel les

mésons vecteurs sont introduits comme des champs de jauge non-abéliens. Le Lagrang-

ien sera construit de façon à respecter les symétries importantes des interactions fortes.

Il dépend, comme on le verra, de plusieurs paramètres qui, conformément à I1 esprit

de notre approche, vont être fixés par la physique des mésons. Nous nous intéressons

ensuite aux solutions de type sob'ton de la théorie, qui vont être identifiées aux baryons.

Pour savoir dans quelle mesure cela est raisonnable, il faut tester le modèle sur des

observables bien connues expérimentalement de la physique des baryons. Nous nous

sommes essentiellement concentré sur F interaction nucléon-nucléon que nous dérivons

de P interaction soliton-soliton. A l'issue de cette étude nous saurons plus précisément si

notre généralisation du modèle de Skyrme peut être considérée comme un bon candidat

pour la théorie unifiée des mésons et des baryons aux basses énergies.
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Pendant notre étude nous avons rencontré un problème de cohérence générale

propre à certains modèles du même type que celui considéré ici. Ce problème est lié

aux fluctuations quantiques de 1' énergie du soliton qui peuvent être parfois grandes.

Concernant ce point, les chances de réussite d'une théorie effective peuvent être évaluées

dans le cadre de 1' approximation semi-classique. Les premières corrections quantiques

aux observables (par exemple la masse) du soliton sont très importantes à cet égard.

Le chapitre II est consacré à 1' étude de 1' énergie due aux fluctuations du vide autour

des solutions classiques. Le modèle de Skyrme y est analysé dans cet optique afin de

déterminer s ' i l est cohérent avec le développement semi-classique. Si ce n' est pas le

cas, nous verrons dans quelle direction il faudrait chercher à le généraliser.

Nous avons été aussi intéressés par un problème annexe, lié- au mécanisme de

stabilisation du soliton par un méson p. Ce problème n' a été que partiellement traité

par le passé, et des ambiguïtés subsistent encore sur le rôle joué par ce méson dans la

stabilité du soliton. Dans le chapitre III nous allons élucider ce problème en mettant I1

accent sur l'importance des lois de transformation ckirales du méson p. A cet égard, il

sera montré que la façon de réaliser la symétrie chirale avec des champs vecteurs joue

un rôle important pour la stabilité.

1



Chapitre I

Un modèle, des interactions fortes
à basses énergies



Comme nous 1' avons rappelé dans 1' introduction, Skyrme a proposé, il y a

trente ans, un modèle unifiant les mésons et les baryons. Dans ce modèle le Lagrangien

de départ ne contient que des mésons et les baryons apparaissent comme des solitons

topologiques. Plus récemment la recherche d' un schéma d' approximation de la QCD

non-perturbative a fourni des arguments confirmant cette idée de Skyrme.

D' abord t' Hooft [13] a montré qu' il existe un paramètre de développement non-trivial

dans les théories de jauge non-abéliennes: le nombre de couleurs. Quand ce paramètre

devient très grand QCD se réduit à une théorie effective de mésons faiblement couplés

entre eux. Dans les théories à couplage faible il existe parfois des solutions de type

monopole ayant une masse inversement proportionnelle à la constante de couplage.

Witten [14] a appliqué cette idée au cas de la QCD pour émettre la conjecture que les

baryons peuvent être considérés comme des solitons à la limite où Ne devient infini.

Mais comme nous 1' avons déjà mentionné cette limite reste actuellement hors

d' atteinte. Dans ce chapitre nous allons suivre la conjecture de Witten et essayer de

construire un Lagrangien effectif basé sur notre connaissance phénoménologique de la

physique des mésons. Notre motivation principale est la construction d' un modèle

théorique simple et cohérent pour la description unifiée de la physique des hadrons aux

basses energies. Dans la section 1 nous présentons le modèle de Skyrme et résumons son

pouvoir prédictif dans le secteur des baryons tel qu' il apparaît dans la littérature. La

section 2 mettra en evidence la nécessité de généraliser ce modèle primitif pour rendre

compte de la phénoménologie des hadrons. Nous allons proposer ensuite (section 3) un

modèle basé sur la physique des mésons les plus légers: TT—p—w — Ai— e. Les paramètres

du modèle vont être fixés sur les observables du secteur des mésons dans la section 4.

Les solutions classiques de .type soliton représentant les baryons sont recherchées dans

13



la section 5. L1 interaction baryon-baryon est calculée dans la section 6. Le chapitre

se terminera par la section 7 dans laquelle nous allons présenter les résultats et nos

conclusions sur le modèle unifié proposé ici.

1. Les solitons du modèle de Skyrme

Le Lagrangien effectif le plus simple formulé en termes de pions et réalisant la

brisure spontanée de la symétrie chirale est celui du modèle a non-linéaire:

fi (M)

/ , est la constante de désintégration du pion expérimentalement bien déterminée (/„ =

0.093 GeV). La matrice U = exp{i-^-) contient le champ du pion 7? et est un élément

du groupe 517(2). La conséquence immédiate de 1' unitarité de la matrice U est la

présence d' un courant conservé,

,/lisa/)

^ * * * (1-2)

II est clair sur cette formule même que B^ satisfait à une loi de conservation O11B^ = 0

qui ne résulte pas d' une symétrie du Lagrangien. Ce courant est identifié au courant

baryonique.

Il a été montré dans la réf. [14] que si le terme de Wess-Zumino est inclus dans le

Lagrangien (1.1) les solitons de ce modèle ont les nombres quantiques des baryons.

Bn fait pour Ic cas des deux saveurs, qui est celui que 1' on considérera, Ie terme d' anomalie est nul si

1' on considère une théorie de pions uniquement. Mais il a été montré dans la réf. [15] que le courant

baryonique (1.2) même dans Ie cas de SU(2) peut être retrouvé en considérant la contribution des

boucles de fermions au courant 17(1).

14
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Cependant le modèle (1.1) ne possède pas de solutions statiques d' énergie finie car il

est instable par rapport aux dilatations [16]. Des solutions classiques stables existent

uniquement en la présence de termes d' ordre supérieur. Le premier candidat suggéré

pour la description des baryons comme des solitons d' une théorie où les mésons sont

les champs élémentaires est le modèle de Skyrme, dont le Lagrangien est de la forme:

CSK = (1.3)

e étant un paramètre sans dimension. En développant le champ U en puissances du

champ du pion

=1 + iïi((x) - y + .-

on obtient le secteur à charge topologique nulle. Les différents termes obtenus en rem-

plaçant 1' expression (1.4) dans (1.3) décrivent les interactions dans le secteur des pions.

Le secteur des baryons correspond à des configurations non-triviales dans lesquelles le

champ U pointe radialement dans 1' espace de configuration et dans 1' espace d'isospin:

U = exp(tf.fF(r))

= cos F(r) + i(f.f) sin F(r)
(1.5)

f étant le vecteur unitaire radial dans 1' espace des coordonnées. Cette configuration

est communément appelée hérisson (hedgehog) pour des raisons évidentes. Les solu-

tions classiques de charge baryonique m , n étant un nombre entier, doivent verifier les

conditions aux limites F(Q) = nn et F(oo) = 0. H est facile de montrer que la charge

topologique du soliton est:

= j d*xB0[F(r)} = ^(F(O) - F(oo)) = n.

t

(1.6)
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La fonction "chirale" F(r) est trouvée en extrémisant 1' énergie statique du soliton

pour une valeur donnée de n. Cette extrémisation consiste à résoudre les équations

du mouvement classiques. L1 objet qui en résulte ne peut cependant pas encore être

identifié aux baryons de la Nature (nucléons, deltas etc.) , la configuration U (eq. (1.5))

étant dégénérée en spin et en isospin. Un procédé de quantification de ces degrés de

liberté consiste à effectuer une rotation de la solution U dans 1' espace de spin et d'

isospin et ensuite la projeter sur les états propres de spin et d'isospin. Oe procédé a été

utilisée par les auteurs de [17], qui ont ainsi calculé les propriétés statiques du secteur

B=I (nucléon, delta). Leurs résultats montrent que les baryons du modèle de Skyrme

sont assez proches de ceux observés dans la nature, / ' accord étant de «50%.

Cependant, dans leur approche la constante de désintégration du pion /„ a été

prise égale à « 0.06 GeV, largement inférieure à la valeur expérimentale. Si on veut

préserver la description de la physique des mésons au niveau du Lagrangien effectif on

ne peut pas se donner la liberté de modifier la valeur expérimentale de /*. On comprend

pourquoi la conclusion principale de plusieurs auteursf sur le secteur B = 1 du modèle

de Skyrme est finalement la suivante:

La masse du baryon s' avère être trop large dans le modèle de Skyrme si les

paramètres du Lagrangien sont fixés sur la physique des mésons.

Une autre observable de la physique des hadrons à basses énergies très bien

déterminée expérimentalement et constituant un test sévère pour les modèles théoriques

est l'interaction nucléon-nucléon. Il est donc naturel de se demander, si ce modèle repro-

duit les caractéristiques bien connues de cette interaction . Pour ceci, il faut construire

le secteur JS = 2 du Lagrangien (1.3), et projeter sur les canaux de spin et d' isospin

1

t qui ultérieurement on, remis fK à sa valeur expérimentale.

16



de l' opérateur potentiel NN. Une méthode simple et systématique a été inventée dans

[18]. Ces auteurs ont trouvé (leurs résultats sont en accord avec ceux de la réf. [19]

qui utilisent une méthode sérieusement plus compliquée car elle fait appel à des degrés

de liberté de quarks) que les canaux spin-spin et tenseur de 1' interaction entre deux

baryons du Lagrangien (1.4) sont bien reproduits, surtout à longue distance. Par con-

tre, les forces dans le canal central de l'interaction nucléon-nucléon sont répulsives pour

toute séparation R entre les nucléons, comme il est montré sur la figure (1.1).

1000

900

Figure 1.1

Composante centrale de l'interaction nucléon-nucléon dans le modèle de Skyrme avec / „ = 93 MeV

et e - 3.6, réf. [18].

17



Quand on sait que la liaison des noyaux est justement due à une (faible) attraction

dans ce canal de l'interaction, on peut faire la remarque suivante sur le secteur B = 2

du modèle de Skyrme

Les baryons du modèle de Skyrme ne peuvent pas former des noyaux, car à

moyenne portée leurs interactions sont répulsives.

Récemment, un calcul numérique [20] a montré qu' une attraction émerge quand on résoud

exactement le système B = 2. Cette attraction est cependant d' une portée plus grande que celle qui

est nécessaire à la cohésion des noyaux.

Ces résultats sur la masse du nucléon et 1' interaction NN peuvent conduire

à penser que les modèles où les nucléons sont des solitons topologiques ne sont pas

vraiment réalistes. Toutefois, avant de remettre en cause 1* approche toute entière, on

peut se demander si le Lagrangien (1.3) décrit de façon réaliste la physique des mésons.

Il est à cet égard essentiel de préciser que le terme de Skyrme est un terme de la série

du développement chiral, i.e. le développement en puissances des dérivées du champ du

pion. A priori il n' y pas de raison de sélectionner ce terme particulier d1 ordre quatre,

et non pas 1' autre terme d' ordre quatre (symétrique en dérivées du champ du pion),

ou même des termes d' ordre six, etc.. .

D* un autre côté, il existe une pléiade de résultats expérimentaux montrant 1' existence

de résonances dans les ondes 5 , P etc. de 1' amplitude de diffusion 7nr. Par exemple,

on sait que 1' onde S de la diffusion TTTT est dominée par une résonance autour de 1 GeV

(le méson e). Les experiences de diffusion irn ont révélé aussi 1' existence de résonances

dans les ondes de spin-1, bien en dessous de 1 GeV: les mésons p et w (de masses 0.77

GeV et 0.78 GeV respectivement). Ces mésons constituent des pôles de 1' amplitude de

diffusion et ils ne peuvent pas être contenus dans des Lagrangiens locaux comme ceux du
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type (1.3) définis en termes du champ du pion uniquement. Comme à 1' heure actuelle,

il n' existe pas d' approche systématique capable d' engendrer dynamiquement des

résonances en théorie des perturbations, un bon point de départ pour rendre compte du

rôle de ces résonances dans la physique des hadrons à basse énergie est de les introduire

directement dans le Lagrangien effectif.

L' inclusion de ces résonances n' est peut-être pas capitale aux échelles énergétiques de brisure

de symétrie de la QCD (typiquement I1 échelle de masse du pion SJ 0.1 GeV), mais il en est pas

forcement de même pour la physique aux échelles des baryons (£& 1 GeV).

L' avantage des Lagrangiens effectifs en termes de mésons (pion, méson scalaire,

mésons vecteurs etc..) est de fournir une description unifiée des mésons et des baryons

comme il a été suggéré dans [21].

2. Généralisations du modèle de Skyrme

Les observations faites dans la section précédente sur la nécessité de généraliser

le modèle de Skyrme ont conduit de nombreux auteurs à construire des Lagrangiens à

partir des mésons au-delà du pion, et examiner leurs effets sur les propriétés statiques

des baryons. On a vite réalisé que le terme de Skyrme, aussi bien qu' un des termes d'

ordre six dans le développement chiral, peuvent être interprétés comme les limites locales

d' un Lagrangien contenant les mésons p [22] et « [23] explicitement. Par exemple le

terme d' ordre six qui n' est rien d' autre que le courant baryonique au carré:

L6 - -0£t U11 , (2.1)

est la limite du Lagrangien de la réf. [23] quand le méson u devient très massif (le

paramètre b peut être relié au couplage uirmr comme on verra par la suite). Une étude
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des effets des mésons vecteurs (w,p,Ai) dans le secteur baryonique a été faîte dans

[24-25]. Il y a été trouvé que les propriétéa statiques des baryons sont sensiblement

améliorées par rapport au modèle de Skyrme original (à part la masse du baryon qui

reste trop large).

Pour ce qui est des degrés de liberté scalaires, ils ont d' abord étés introduits dans

le Lagrangien effectif à travers un terme d' ordre quatre dans le développement chiral,

symétrique dans les dérivées du champ U:

(2.2)

La constante 7 est directement liée aux longueurs de diffusion a0 et 02 de 1'

interaction TTTT. En ce qui concerne les baryons, il n' est pas difficile de voir sur cette

relation que la contribution à la masse du soliton provenant de Cs esi, négative. Alors

que cette observation montre d' abord que le seul méson ayant la propriété de faire

baisser la masse du soliton au niveau même de 1' approximation locale est bien le méson

scalaire, le signe négatif de cette contribution peut entraîner une déstabilisation du

soliton. Dans la réf. [26] la valeur critique de la constante 7 (au-delà de laquelle

les solutions sont instables) est déterminée aussi bien que les propriétés statiques des

baryons dans un régime de 7 inoffensif pour la stabilité. Il y a été trouvé que les

prédictions pour la masse du baryon sont sensiblement améliorées par la seule inclusion

de ce terme. Par ailleurs, une extension "non-locale" de ce Lagrangien, de façon à inclure

les effets du méson scalaire quand ce dernier est de masse finie a été étudiée dans [27] f

dans le cadre de l'interaction nucléon-nucléon. Des forces attractives apparaissent dans

le canal central de cette interaction, mais elles sont de longue portée. A moyenne portée

f où le méson w est aussi présent
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Ia répulsion, bien que diminuée par rapport à celle du modèle de Skyrme (section 1),

persiste. En fait 1' inclusion du champ scalaire dans cette approximation n' a que peu

d' effets sur le champ du ta qui est le principal responsable de la répulsion. Dans la

section 3, on étudiera une façon d' inclure le champ scalaire qui aura aussi des effets

non-triviaux sur le champ du w.

H faut aussi préciser ici que la présence du méson scalaire n' est pas seulement dictée

par la phénoménologie mésonique. Elle peut aussi traduire, au niveau du Lagrangien

effectif, 1' anomalie d' échelle de la QCD [28]. Dans ce contexte, l'interaction nucléon-

nucléon acquiert des contributions attractives dans son canal central, mais là encore

cette attraction est de longue portée [29].

Nous allons maintenant construire un Lagrangien effectif contenant les mésons les

plus légers (ir, p, A\,w et le méson scalaire e), d' une façon qui respecte la symétrie

chirale, les anomalies du secteur mésonique et de façon générale les propriétés de basse

énergie de ces mésons.

t

3. Un modèle unifiant les mésons et les baryons

Nous allons présenter dans cette section un modèle [30] qui constitue une extension

du Lagrangien effectif proposé par les auteurs de la réf. [24] de façon à inclure des degrés

de liberté scalaires. En gardant les motivations des auteurs de cet article, on examinera

les effets de 1' inclusion de la résonance scalaire du canal S de la diffusion irir, sur le

secteur des méaons et surtout sur la physique des baryons.

Le Lagrangien sera divisé en deux parties, celle qui correspond au secteur SU(2)® SU(2)

décrivant la physique des interactions des mésons ir,€,p,Ai à laquelle on ajoutera la

partie décrivant les interactions du pion dans le secteur U(I) avec le méson w. Dans
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cette deuxième partie nous allons inclure les couplages anormaux du pion aux mésons

vecteurs par 1' intermédiaire du terme d' anomalie de Weas-Zumino. Ecrivons d' abord

ce Lagrangien, on verra ensuite comment y arriver:

*» — i 4" (3.1)

avec donné par:

- r2)2 - Y2 )
1 pu)

m Am2

Î + Y? -
(3.2)

et Cnu, par 1' expression:

„ 1 o 771...

(3.3)

Dans les expressions (3.2) et (3.3) les champs £ and W11 représentent le champ scalaire

et celui du u) respectivement. Nous avons utilisé les définitions suivantes:

U = eu™

D11U = O11U + Ig(X11U - UY11)

**(IV ^ ^(l^*-V ~~ *"V^(l T" t&[•**• fl$ -**-u\

Y^ = d,Yv - O11Y11 + Ig[Y11, Yv) (3.4)

L11 =

R11 =

1
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où TT est le champ du pion, et les champs X11 = T.X^ et Y1x = T.YM sont des champs

d' isospin unité de chiredite gauche et droite respectivement. Les théories invariantes

chirales peuvent être formulées plus naturellement en termes de ces champs gauche et

droit. C est la raison pour laquelle on préfère les utiliser eux, plutôt que les champs

vecteur et pseudo-vecteur. On verra dans la section suivante comment ces champs

gauche et droit sont reliés au champs des mésons p et A\. Regardons maintenant de

plus près ce Lagrangien.

a) Le Lagrangien CnçpAt

La première partie du Lagrangien de l'équation (3.2) est basée sur le modèle <r linéaire.

Ce modèle décrit les interactions entre le pion et son partenaire durai scalaire, le champ

a. Il est commode de paramétriser ces deux champs d'une façon compacte par un champ

matriciel V = <r(s)+ir.7r(sc). Alors la densité Lagrangienne du modèle a linéaire s'écrit:

C = i i ^ W V * ) - A QTr(VV+) - T2) (3.5)

II est clair sur cette expression que Ia forme bilinéaire Tr(|VV*) doit atteindre la valeur

F2 pour minimiser 1' énergie potentielle. La constante T est reliée à la constante de

désintégration du pion / T .

Paramétrisons maintenant le champ du quaternion V d1 une façon a en extraire son

contenu isoscalaire £:

V = t(*)U(z) = «*) exp (£**(*)) (3-6)

où £(a:) est défini par £2(x) = ff2(aî) + ^(as)» cette définition manifeste son caractère

scalaire par une rotation chirale, et le champ du pion est présent à travers la matrice

unitaire U. L' équation (3.5) se met maintenant sous la forme:

C = Id11Wt + ^-Tt(OpUd^tf) - \(? - T2)2 (3.7)
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Le modèle a non-linéaire peut être retrouvé lorsque le paramètre A tend vers 1' infini.

En effet, quand A —> oo, £ doit tendre vers la valeur F pour que I1 énergie potentielle

soit finie dans Is équation (3.7).

Il faut remarquer que cette écriture du modèle <r linéaire simplifie considérablement le

formalisme, car les champs U et £ ont des propriétés de transformation simples pour

une rotation chirale.

En effet, la loi de transormation des champs U et £ par une rotation SU(2)L ®

SU{2)n est:
U -» A(x) U B\x)

(3.8)

avec les matrices A(x) £ SU(2)L et B(x) G SU(2)R. Il suffit de rendre maintenant le

Lagrangien (3.7) invariant sous une transformation chirale locale. Puisque les matrices

A et B sont des fonctions de 1' espace-temps, on introduit des champs de jauge non-

abéliens Xu et Yu pour compenser la variation due aux dérivées dans 1' équation (3.7).

La substitution des gradients O11U par les gradients covariants D11U définis plus haut,

assure 1' invariance locale de 1' action. Au Lagrangien obtenu il faut aussi ajouter les

termes cinétiques des champs de jauge gauche et droit, et le résultat sera invariant sous

les transformations (3.8) pour U et £ et

,A* - -Ad Aj

9 (3.9)

pour les champs X11 et Y11. La symétrie locale SU(2)L ® SU(2)R est ensuite brisée

de façon minimale en ajoutant des termes de masse pour les champs gauche et droit.

Remarquons ici que le méson scalaire introduit par le biais du modèle sigma linéaire,

donne lieu à une contribution positive à 1' énergie comme 1' équation (3.7) le montre.
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Un autre avantage de jauger le groupe SU(2)L ® SU(2)R est d' avoir une description

symétrique des mésons p et A\y car ils sont décrits en tant que partenaire» chiraux.

b) Le Lagrangien Cn^

V équation (3.3) décrit le secteur U(I) des interactions mésoniques aux basses

energies. Le premier terme dans cette équation décrit le couplage du w aux trois pions

dans le secteur des mésons, et son couplage au nombre baryonique dans le secteur non-

trivial. Ensuite vient le terme d' anomalie que 1* on doit inclure, car le secteur U(I)

est le secteur dans lequel les anomalies de Wess-Zumino [31] font leur apparition (voir

plus bas). Mis à part ces considérations dans le secteur des mésons, le couplage du u

au courant baryonique est essentiel pour la stabilité des solutions classiques [32] dans le

cas où le champ chiral se couple à des champs de Yang-Mills massifs. Si on adopte ce

point de vue, la présence du u> dans le Lagrangien effectif est donc d' une importance

capitale pour la physique des mésons (anomalies) aussi bien que pour celle des baryons

(stabilité).

Bn fait, ces anomalies sont ducs à la présence d' une symétrie discrète que Ie modèle sigma (non)-

linéaire possède, et qui n' est pas observée dans la nature. Cette symétrie "redondante" interdirait des

processus où le nombre des bosons n' est pas conservé [14]. Le terme de Wess-Zumino effectif, assure

que ]' on tient compte de ces processus dans le secteur mésonique du Lagrangien effectif, car il brise

cette symétrie. La dérivation du terme d1 anomalie quand les champs de jauge sont présents, peut être

trouvée dans la littérature [33].

On n' a pas considéré le couplage direct des degrés de liberté scalaires au méson

h>. Ces couplages ont été étudiés dans [34], pour la photoproduction de pions. Les

résultats montrent que les couplage? du type f 2W* engendrent un état lié dans 1' onde

S, en désaccord avec la phénoménologie.
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Y f- 1
On va s'intéresser maintenant aux propriétés de transformation du Lagrangien

(3.1). Celles-ci peuvent être utilisées pour calculer les courants de Noether associés à

des rotations de SU(2)L et SU(2)R aussi bien que celles de U(I).

Effectuons des transformations locales sur les champs du Lagrangien (3.1)

U -*U+iQLU

y*

,X11) - Mk QL = ̂ M f (3.ioa)
9 «

pour SU(2)L et

U -^U-WQR

^ QL = ^ (3.106)
9

JlkJf ~^ ^fi

pour SU(2)R. CL(Z) et CR(X) sont des fonctions arbitraires. La variation du Lagrangien

satisfait alors les relations suivantes (à une intégration par parties près):

(-ft - ^r ^

avec les courants gauches et droits j£> J^- En calculant les membres de gauche de ces

équations avec les lois de transformation (3.10) et en combinant les expressions de ces

courants on arrive à 1' expression des courants vecteurs et axiaux:

=# + J? = iTr Jf[I(PT,^,,] + [K,^]) +=# + J? = iTr Jf[I(PT,^,,] + [K",^]) + £(D,UU* +

(3.12o)
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=# - jf? =

V + Ra) - igdpuiv{Xa + Ya •

(3.126)

On peut montrer que ces courants, toujours en vertu de l'équation (3.11), satisfont aux

équations suivantes:

8 ' TT2

(3.13)

Ces relations, témoignent de la conservation du courant vectoriel et de la non-

conservation du courant axial, cette dernière étant due à 1' anomalie. Elles sont bien

connues et vérifiées par 1' expérience. Pour retrouver PCAC, il faut ajouter un terme

de masse du pion comme il a été fait dans [24]. Il est utile d' observer aussi que

dans le terme qui couple le w aux champs TT, X et Y (équation (3.3)) le contreterme de

Bardeen (proportionnel à g2) assure que 1' anomalie subsiste uniquement dans Ie courant

axial (équation (3.13)). Cette soustraction a aussi pour effet de briser explicitement la

symétrie chirale.

Le courant U(I) déduit du Lagrangien (3.1) est identifié au courant baryonique.

Son expression est:

- Y01R1) + i (3.14)

Ce courant est normalisé à la moitié du nombre baryonique et satisfait à la relation

B1, Ji-^ = 0, car comme on a vu dans la section 1 B11 est totalement conservé et la

contribution du terme de Wess-Zumino à (3.14) est une divergence totale.
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Notre Lagrangicn de mésons possède une structure conforme aux propriétés générales

des interactions fortes, nous pouvons maintenant examiner sa limite locale, c' est à dire

les termes du développement chiral en puissances de dérivées du champ du pion qui en

résultent lorsque les autres mésons (p,o>, Ai, e) deviennent très massifs. Nous avons déjà

remarqué que quand le paramètre A (qui est proportionnel au carré de la la masse du

méson scalaire) devient très grand on retrouve le modèle a non-linéaire. Pour ce qui est

de la contribution des mésons vecteurs, on peut montrer (Appendice C) en utilisant les

equations d' Euler-Lagrange pour les champs X^Y11 et U1,, qu' en l'absence du terme de

Wess-Zumino et quand les masses mw,mp,m.4, deviennent très grandes le Lagrangien

se réduit à:

(3.15)

On obtient donc les premiers termes du développement chiral avec I1 absence du terme d'

ordre quatre symétrique en dérivées du champ du pion. Cette propriété est la bienvenue

car elle empêche la déstabilisation du soliton comme il a été vu plus haut. Bile est une

conséquence de l'introduction du champ scalaire par le biais du modèle sigma linéaire:

seuls les termes ayant une contribution positive à V énergie sont présents.

On a donc répondu à la demande des sections 1 et 2 en construisant un Lagrangien

qui généralise le modèle de Skyrme. Pour savoir si ce modèle a des chances d' être un

bon modèle effectif, on doit d1 abord étudier les prédictions de ce Lagrangien pour les

observables dans le secteur mésonique.
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4. Le secteur des mésons

Nous allons nous intéresser maintenant aux masses, couplages et propriétés des

mésons dans notre modèle. Les différentes observables dans ce secteur sont obtenues en

développant le champ U en puissances du champ du pion:

U =exp(-rf.7r(aj))

1 +r ( i ) (4.1)

Le champ du méson c est relié au champ £ par la relation e = F — £. En remplaçant

cette expression dans 1' équation (3.2) on trouve la relation pour la masse du scalaire:

m? =
Considérons maintenant la contribution dans le secteur des mésons des termes qui

ne dépendent pas du champ scalaire dans 1' équation (3.1), et remplaçons U par son

développement en champ du pion. Il est facile de voir que si 1' on utilise la définition

naive du champ axial A*1 = (X11 — Y11) on obtient des couplages linéaires avec le champ

du pion : (CIe)O11Tr. A*1. Pour les faire disparaître, on doit diagonaliaer le Lagrangien à 1'

ordre le plus bas. Le résultat de cette diagonalisation aussi bien que de 1* identification

de la masse physique du méson Ai est exprimé par les relations suivantes:

-L

(4.2)

m2
p + Am2

La présence des champs de jauge conduit à la relation suivante entre la constante T et

t . T2 - f2
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En sélectionnant maintenant les termes cubiques et quartiques dans les champs,

on obtient les couplages d'interaction forte des mésons. Il est aussi possible d' obtenir

les interactions électromagnétiques de ces mésons. Pour cela, il suffit de jauger le groupe

{/(l)-éléctromagnetique dans 1' équation (3.1).

Ces couplages peuvent être utilisés pour le calcul d' observables mésoniques au premier

ordre des perturbations. Nous donnons ici 1' expression de la largeur 1^,-.«» calculée

avec le Lagrangien (3.1), d' autres expressions pouvant être trouvées dans [24]:

Les observables mésoniques, comme l'illustre la relation (4.3) dépendent des paramètres

présents dans le Lagrangien (3.1). On fixe ces paramètres en ajustant certaines de ces

observables, ce qui donne:

mp = 0.769 GeV

mw = 0.782 GeV

g = 3.78

Am2 = -0.462m2

U = 0.093 GeV

fiu = 9.3

rrip, mu ont été prises égales aux masses physiques de ces mésons. Les valeurs de g et

Am2 reproduisent la valeur expérimentale de la masse du méson Ai (m.4, = 1.194

GeV) et la largeur rp_w w . Celle de /3W reproduit la largeur électromagnétique de

désintégration du u> en un pion et un photon. En ce qui concerne la masse du méson

e (proportionnelle à v^X), remarquons que ce dernier a une largeur assez grande. Nous

avons préféré pour cette raison laisser libre m r , à varier entre 0.5 GeV et 1.0 GeV.

1
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Une fois les paramètres fixés sur certaines observables mésoniques, il faut remar-

quer que le Lagrangien (3.1) peut prédire d' autres observables dans le secteur des

mésons. Ceci a été illustré dans la référence [24] où le modèle a non-linéaire était à

1' étude (la limite A -> ce de notre modèle). Dans le cadre de notre modèle, le choix

de la valeur de 1 GeV pour la masse du scalaire donne pour la largeur partielle du A\

(équation (4.3)) une valeur de 0.1 %, qui est en accord avec la limite expérimentale

(< 1.0 %).

Le couplage du méson A\ au champ scalaire e modifie la constante de couplage e-jnr:

St = ^(1 — mî+£mi )• En utilisant cette relation, on peut éventuellement donner une

prédiction pour les longueurs de diffusion irir qui dépendent de St. Avec me = 1 GeV

on obtient ao = '0.235 fm et a2 = —0.056 fm, à comparer aux valeurs expérimentales

O0 = 0.36 ± 0.07 fm et a2 = -0.039 ± 0.017 fm [35].

En résumé, nous avons déterminé les paramètres du modèle a linéaire, de façon à

ce qu' il puisse décrire la physique des mésons 7T,/j,w,yii,e et de leurs interactions. Une

fois ces paramètres fixés sur un nombre d'observables égal au nombre de ces paramètres,

il est clair que ce Lagrangien possède encore un pouvoir de prédiction important dans

le secteur des mésons [24].

Nous allons examiner maintenant à quel point une théorie réaliste de mésons peut être

utilisée pour décrire aussi les baryons. Ceux-ci se trouvent dans le secteur non-trivial

du Lagrangien effectif, celui des solitons topologiques.

5. Le secteur baryonique

Construisons d' abord les solutions à une unité de charge baryonique. Ces solu-

tions des équations du mouvement, sont statiques et ont une énergie finie.
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Les composantes Ao, Yu,u*j = 0 sont nulles à la limite statique. On considère les champs

classiques (hérisson) suivants:

i/=exp(tf.fF(r)),

Xt =a(r)ri + {(3{r) - a{r)){Tt)ti + 7(r)(f X f ),.,

Yi = - Q(r)r,- - (/?(r) - a(r)){ff)fi + 7(r)(f X r),, (5.1)

où les profils F,a,7,/?,w, £ sont des fonctions radiales. L' énergie de la configuration de

type soliton est égale à — J" £d3f. Son expression est donnée par:

= An f* r2drU(1 - g(a2 + y2))2 + 2(7 + 2 - 2Sa/3)8 + 2(d +
Jo I r r

ili
+25(acosF-7sinF))2] + \- - T 2 )2 )2 (5.2)

2(a2 + 7
2)] + Am2[2(a cos F - 7 sin F)'

" ù asm2 F 7 s in2F

- -(u>2 + m2w2)

in2 F - g sin 2F(a2 - 7
2)] \

Nous allons rendre ensuite cette fonctionnelle stationnaire par rapport aux variations

arbitraires des champs F,a,/3,j,£,ii> en résolvant les équations d' Euler-Lagrange as-

sociées. Ces équations sont des équations non-linéaires couplées. On trouvera leurs

expressions assez longues et compliquées dans 1' Appendice A. Les configurations de

nombre baryonique unité et d'énergie finie satisfont aux conditions aux limites F(Q) = 7r,

F(oo) = 0 pour le champ chiral et £(0) = 0, £(oo) = F pour le champ scalaire. Celles

pour les champs de jauge résultant des équations du mouvement sont: à(0) = /9(0) =

w(0) = 0, 7(0) = 0, a(oo) = /3(oo) = 7(oo) = w(oo) = 0. Les solutions classiques pour

les profils F et e sont représentées sur la figure (1.2).
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Figure 1.2

Solutions classiques éxtrémisant I1 énergie du soliton. Sur cette figure le champ chiral F est sans

dimension, et le champ scalaire e est en fm . On a représenté sur les courbes pleines les solutions du

modèle linéaire avec X = 0.8 et sur la courbe en pointillés la solutions pour F du modèle non-linéaire

(A = oc).

05 1
R(fm)

Les solutions des équations du mouvement diffèrent tant qualitativement que quanti-

tativement de celles du modèle non-linéaire. Un des aspects essentiels du couplage du

scalaire au champ chiral est la diminution de la fonction de profil .F à l'intérieur du
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soliton comme il est clair sur la figure (1.2). Cet effet du champ scalaire a été aussi ob-

servé dans la réf. [29]. Mais dans notre modèle, la présence du champ scalaire influence

aussi la solution classique des champs a,/?,7,w:

Figure 1.3

Solutions classiques pour les composantes spatiales des champs de jauge a , 7 et pour le champ du U).

Tous les champs sont est en fm . On a représenté sur les courbes pleines les solutions du modèle

linéaire avec A = 0.8 et sur les courbes en pointillés les solutions du modèle non-linéaire (A = OO).

-0.9

En effet, comme nous pouvons le constater sur cette figure, le couplage du champ scalaire

au champs de jauge via le terme —Tt(D11UD11U^) supprime fortement ces champs au

niveau classique (d' un facteur 5 quand la masse du scalaire est égale à 0.5 GeV). Plus

étonnant encore est l'effet sur le champ classique du w. Ce dernier voit sa portée réduite
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dans le cas linéaire. Ce phénomène, est observé uniquement quand les mésont p et A\

sont présents comme nous 1' ont indiqué des analyses numériques du cas où la constante

g tend vers zéro. Ceci montre l'importance d'inclure les mesons de masse finie dans

le Lagrangien effectif.

Quels sont maintenant les effets sur les propriétés statiques du secteur baryonique? Pour

le savoir, il faut calculer des observables telles que la masse du nucléon, la constante

de couplage axiale, e tc . . Nous avons calculé des quantités qui dépendent seulement

des solutions classiques des équations du mouvement, c' est à dire la masse du soli*

ton, le rayon isoscalaire du baryon et la constante de couplage axiale. Nous n' avons

pas considéré des observables comme la masse du nucléon et du delta ou les moments

magnétiques, car leur calcul nécessite des corrections quantiques à la solution classique.

L' évaluation de ces corrections, même dans 1' approximation semi-classique est lour-

dement compliquée par la présence des mésons vecteurs. Par ailleurs, ces effets n' ont

pas d'importance pour le calcul des interactions statiques entre les solitons. La masse

du soliton est donnée par 1' expression (5.2). Pour ce qui est du rayon isoscalaire, en

remplaçant les expressions (5.1) dans celle de la densité baryonique (2 JJ-Q), on trouve:

r2 > / = 0 = - t°°r2drl - F ain2F
* Jo I

+ Ag sin F[a(l - 2gyr) sin F + y cos F + gr cos F(a2 - f2)] i
(5.3)

La constante de couplage axiale ÇA du nucléon peut être calculée par projection directe

sur I1 élément de matrice de la troisième composante du courant axial entre deux états

de nucléon comme il a été fait dans [17]. En appliquant le théorème de la divergence à

1' équation (3.14), on trouve 1* expression suivante:

9A = " 5 (5.4)
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Comme il est illustré sur la figure (1.4) la présence du champ scalaire conduit à une

diminution notable de la masse classique du soliton, mais aussi de < r2 >/_ 0 et de gx

en comparaison avec le modèle non-linéaire.

Figure 1.4

Variations de quelques observables statiques (courbe pleine: masse, pointillée : g.\ et chaîne-pointillée:

< T > J_o) dans le secteur B=I quand la masse du scalaire varie entre 0.5 et 2 GeV. Les valeurs

sont normalisées à celles du modèle non-linéaire [24].

1

1 1.5
M1(GeV)

6. L' interaction nucléon-nucléon

Pour calculer l'interaction entre deux solitons il est nécessaire d' approximer la

forme des champs U, X7 Y,u>, ( dans le secteur B = 2, car la forme exacte de ceux-ci dans
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le cadre de notre modèle est très compliquée à déterminer. Une approximation simple

connue sous le nom d' approximation du produit, offre une description raisonnable de.

1' interaction entre deux soli tons statiques, c. a. d. deux solutions du secteur B = I.

Cette approximation consiste à supposer que la configuration des champs, quand les

deux solitons sont séparés d' une distance R, est un produit de la forme:

0 [ T , K ) = U0 [ r - —)U0 + (6.1)

où U0 -
1 est la solution B = I trouvée dans la section précédente. Les mérites, aussi bien

que les défauts de cette approximation sont très largement discutés dans la littérature

[19]. Pour notre part, nous allons insister sur deux aspects importants que seul 1' ansatz

du produit contient de façon naturelle. D' abord, étant donné que 1' on'veut calculer un

potentiel local, la définition de la séparation entre les deux solitons doit être dépourvue

d'ambiguïtés, ce qui est le cas de 1' approximation (6.1). Ensuite, le nombre baryonique

associé à la configuration du membre de droite de (6.1) est automatiquement égal à 2.

Dans un calcul exact on ne peut tenir compte de ces conditions essentielles sans aggraver

la complexité du problème [36].

On ne s1 attend pas à ce que I1 approximation du produit puisse donner une bonne de-

scription de l'interaction aux courtes distances. Cependant, le centre de notre intérêt est

la moyenne portée (R > 1 fm) du potentiel nucléon-nucléon, région où V approximation

du produit devrait être adéquate.

La configuration (6.1) est dégénérée en spin et en isospin, car elle est purement

classique. Il en résulte que 1' interaction entre les deux objets du membre de droite de

cette équation n' est pas identifiable à l'interaction baryon-baryon. Pour construire 1'

interaction nucléon-nucleôn il faut lever cette dégénérescence en effectuant des rotations
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(6.2)

dans 1' espace SU(2) des deux solitons séparément: Uti(r + §) -» AUo(r +

U0(F- §) -• BUM(T- J)B* avec les matrices A = a0 + if.a et B = b0 + if.b.

On suppose maintenant que les champs de jauge gauche et droit se transforment comme:

Xi(T1R1C) = A[Xi(V1) + Uo(

Yi(T1R1C) = B[Yi(T2) + ^0
t(f2)

pour ces mêmes rotations A et B. On a utilisé les notations fi = f+ j and T2 — f— y .

Il est évident que seule la rotation relative C — A*B = Co +ifc importe dans le système

à deux solitons et 1' interaction baryon-baryon comme on le verra par la suite s' écrit

comme une fonction de ce produit C = .4*5. La transformation (6.2) des champs de

jauge Xi and Yi est conforme à leur loi de transformation à la limite locale (voir section

3). En effet, à cette limite les champs de jauge tendent vers les gradients du champ

du pion: X{ -> ^d1UW = ^U et y- -+ ^diUW = ±Ri, et il est facile de

montrer que les courants Li et Ri se transforment comme la loi (6.2) par une rotation

de SU(2) ® SU(2).

Pour ce qui est du champ scalaire il est clair qu' il ne peut dépendre que des variables

f et R. Une forme compatible avec 1' approximation du produit pour le champ U et 1'

équation (3.6) est:

Ces formes (6.2) et (6.3) pour les champs de jauge et le champ scalaire dans le secteur

B = 2 bien que cohérentes, ne satisfont pas équations du mouvement dans ce secteur.

Mais pour ce qui est du champ du w on n' a pas cette liberté, car ce champ ne se

propage pas, il est simplement contraint. La composante temporelle de ce champ obéit

à 1* équation suivante:

(didi - ml)uf = 5 (6.4)
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où S est la fonction source S — 2/3wJj=0. Jj=0 est le courant baryonique défini en

(3.14). Il est clair que les configurations des champs U> Xi et K, une fois choisies celle

du w est automatiquement donnée par 1' expression (6.4)f.

L' équation (6.4) peut être reécrite comme w(r) = jG(r-r')S(r')d3r', avec G(r) =

-± txp(-mu\f\)^ E n i n s é r a n t i e s configurations des champs U,X{ et YJ (6.1-6.2) dans cette

expression on obtient celle du champ u> dans le secteur B = 2:

w(r*, R1 C11) = w(fi ) + Uf(V2) + wr(f, R, Cf1) (6-5)

Les deux premiers termes du membre de droite de cette équation ont déjà été con-

sidérés dans [27] où le terme mixte IOT avait été négligé parce qu' il est de courte portée.

En fait le calcul exact des termes contenant WT dans V interaction est sérieusement

compliqué du point de vue numérique, la raison est la dimensionalité élevée (R6) des

intégrales qu' il faut évaluer. Néanmoins nous avons effectué les calculs numériques

de ces termes pour certains points autour de 1 fin., pour s' apercevoir que pour le cas

de notre modèle ces termes sont petits. Nous avons par conséquent négligé wy dans 1'

expression (6.5). Pour être cependant complet on donne son expression:

VTFIR1CH) = 0W f d*r'G(r-r')lTB(r',R,Cp)+ TA(T^RIC11U

avec TB(r, R,C) = ^Tt(R]CL)LlCi - R\R)CL%Ci) (6.6)

et

- CYfC* X\

+ X2Yf)\ \ (6.7)

t Ceci est vrai pour tous les secteurs baryoniques B = 1,2, ..,JV.
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Nous avons fait usage des notations compactes I] = U*(fi)Xi(fi)U(fi), If =

U(f2)Yi(f2)U*(f2), R] = OiUi(T1)U(T1), L] = W(T2)U *(?2), U1 = I7(*i)f IZ2 =

Ufr), Xf = Xi(?2), Y> = Yift), X} = *,(fi), Y? = YiHf2) •

L' opérateur potentiel soliton-soliton est donné par 1' expression:

V(R,cJ = - Jd3ÂCoMn^c11) -2CB^1(T)X (6.8)

Pour notre modèle, il faut remplacer les configurations du secteur B = 2 présentées plus

haut dans cette équation. Le résultat peut être écrit comme la somme de deux termes:

V(R,Cll) = J (6.9)

Dans cette expression la première partie est la contribution associée à CnÇpAi décrivant

les effects dûs aux champs p,A\,^ et la seconde correspond à la contribution des cou-

plages du méson u>:

UspAl(r,R,cJ = ^TvIiFy [Cd1X)C* - CQjXfC* - R]CX)C* + R)CXfC*

+ CX)C*R] - CXfC*R) + Ig(C[Xf,X)]C* + CXfC*l) - CX)C*Ij

+ I]CX)C* - IjCXfC*)] + 2R]CX)C*[R]CX)C* - R)CXfC*

+ 2Ig(I)CXfC* - I]CX)C* - [I],Ij])] +4R]CXJ[-diX)C*

+ OjXfC* - X)C*R] + XfC*R) + ig(X)C*l] - XfC*Ij - [Xf,X)]C*)]

+ ACOiX)[X)C*R] -XfC*R) + ig(XfC*Ij -X)C*I] + [I]Jj])]

+ 2CX)C*R] [CX)C*R] - CXf C*R) + 2ig(CXfC*Ij - CX)C*I] + [I],Ij])]

+ AigX)C*R] [I]CX) - IjCXf + C[Xf,X)]] + Ai9BiX)C*[l]CX) - IJCXf]
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V l - CXfC*(l)ljll + I}l}lj - 2IjIlIj) - C*llC(X]x]Xf + XfXfX]

2X]XfX]) - IUlCX]X]C* - 11I)CX]XfC* + 211IjCXfX]C*

± [c xfc* i}{cxfc* I) - cx]c*il) + c* il c X] (c* il c X] - c*ijcxf)]] I

fr - FfjyC - CV/ - If1Xf - Y?,R] -

iîiC[I? + ig(Xf - If)]C* + C*[Y> - //]C[tSI? + g\lf - Xf)}}

^+ ^~)Tt[lfC*Y>C + ilCXfC*} - ^

62) (2 -

fC* + Y

(6.10)

+ (wi + w2)[TB{f, R, C11) + TA(P, R, C11)]

+ «r(f, R, c,,) \BI + A1 + BQ + A2

avec les notations

, ̂ , cM)] J
(6.11)

(6.12)
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Après avoir intégré sur la variable f, il nous reste une fonction de R et des variables C11.

Il n' est pas difficile de montrer que cette fonction est en fait un polynôme d' ordre pair

en ces C11:

9C,,) = V0(R) + V2(R1C^) + Vi(R9C11) +V6(R, C11)

avec la forme générale pour les v*,p (p = 1,2...) :

vs(R, C11) = ati+ a2cl + ctsc\

?, cj = /J1 + ftcg + /?3c§ + ftcj + fâ 4

(6.13)

(6.14)

Pour arriver à ces expressions nous avons pris le vecteur R parallèle à V axe z de l'espace

de configuration f. Maintenant, les fonctions a et /? peuvent être calculées en prenant

différentes projections de la matrice C dans le membre de droite des équations (6.6),

(6.7) et (6.10), (6.11). Pour donner un exemple, la fonction ctj est égale au membre de

droite de 1' équation (6.9), dans laquelle il faut retenir seulement les termes quadratiques

en C11 et prendre C = ir\. L' expression exacte des on,Pi est donnée dans 1' appendice B.

Les termes d' ordre six dans le polynôme de l'équation (6.13) proviennent du terme de

Wess-Zumino (ce terme contribue aussi à U0, «2 et v*). Nous avons négligé ces termes

dans notre étude car ils contribuent essentiellement à des opérateurs en représentation

de spin élevé. L' approximation de négliger V6 peut être partiellement justifiée par les

résultats de la réf. [24] où U a été trouvé que le terme de Wess-Zumino a globalement

un petit effet sur les observables du secteur B — 1.

Pour extraire maintenant les canaux physiques (de spin et isospin définis) de I1

interaction, on utilise la méthode simple de projection qui a été introduite dans la réf.

f On a le droit d' effectuer cette projection car le potentiel ne dépend que de \R\.
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[18]. La decomposition naturelle de 1' opérateur potentiel non-relativiste agissant dans

un espace à deux nucléons est:

V(R) = Vc+(|fl|) + (M)Vc (1*1) + (ft-*)M
2 - &.*>)] [Vx

+(IiI) +
(6.15)

Pour calculer les six composantes V4
+* Vc ,... dans notre modèle, il faut six équations.

On les obtient en égalant six éléments de matrice de V(R) (6.15) avec ceux de l'opérateur

V(R1C11) (6.9), ces derniers étant exprimés en termes des fonctions d' onde de spin et

d'isospin du nucléon. La solution de ce système d' équations est:

= Ida, /IJ
= V0 +ai +fit + l-(a2 +02 + as +03)+ ^(04

Vf = bl ~
(6.16)

• /
da,

où les Op sont les variables du nucléon 1 et b^ celles du nucléon 2. Dans ces formules les

fonctions fctfct••• s o n* ^ e s densités dans 1' espace 51/(2) ® SU(2). Leurs expressions
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sont données par:

/ f («n " »8 "
+ (oiau - t'(a2a0 + O1O3) - +1(6260 -J- 61 b3) — 6363) [ (6.17)

5-7(0100 - »(o20o + ai03) — a2a3)(616o + »'(6260 + 6163) — 6263)

Pour les calculs numériques les expressions en a,- et /?,- sont cependant d' une plus grande

utilité. C est aussi celles que nous avons utilisées pour calculer les différents canaux de

l'interaction nucléon-nucléon dans le notre modèle.

Il est à noter ici que les fonctions Ct,-,/?,- peuvent être utilisées pour calculer non seulement les inter-

actions entre nucléons mais aussi celles entre des baryons de spin plus élevé. Ceci a été fait dans [18].

Dans notre modèle le calcul de ces interactions nécessiterait 1' inclusion des termes comme Vg dans

(6.13).

On va s1 intéresser maintenant aux résultats, pour estimer si des modèles effec-

tifs basés sur une description cohérente des mésons peuvent reproduire les aspects car-

actéristiques de l'interaction nucléon-nucléon telle qu' elle est observée par 1* expérience.

7. Discussion des résultats

Nous avons calculé numériquement les différentes composantes Vc1 Vf, V^3 avec

les fonctions de profil F, a, /3, 7, w, e obtenues dans le secteur B = I (section 5).

Tout d' abord, nous avons trouvé que la contribution du terme d' anomalie de Wess-

Zumino au potentiel est très petite. Ceci est en accord avec 1' observation des auteurs
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[24] qui ont trouvé (dans le cadre du modèle a non-linéaire) que ce terme bien qu'

important pour la bonne description de la physique des mésons est beaucoup moins

important dans le secteur des baryons.

La contribution essentielle à Uu est due au couplage du o> aux trois pions. On peut mon-

trer (aussi bien analytiquement que numériquement) que si le terme de Wess-Zumino

est négligé, la contribution de Uw au potentiel VQ est répulsive. Par ailleurs on a vu

lors de 1' étude du secteur B = I que le champ du w dans le modèle linéaire est d' une

portée inférieure à celle qu' il a si le paramètre A est très large (modèle non-linéaire).

Cet effet est à 1' origine de la suppression de la portée du terme Uu dans le canal central

de l'interaction (table 1). La répulsion due au champ du méion ta est de courte portée

dans notre modèle. Cet effet est dû à V inclusion simultanée de tous les mesons.

En ce qui concerne la contribution du terme UçpAi à VQ, on peut montrer que le premier

terme de 1' équation (6.10) est positif alors que les deux derniers (absents du modèle de

Skyrme) sont négatifs. Il est à noter que ces deux derniers termes disparaissent dans le

cas non-linéaire (£ —> T). En comparant les profils linéaires aux non-linéaires pour les

fonctions F,a,@,*f (figure (1-3)), on comprend pourquoi la partie répulsive de UÇPA, est

sérieusement diminuée dans notre modèle (table 1).

Table 1

Contribution des mesons vecteurs au canal central de 1' interaction nucléon-nucléon, quand

ceux-ci sont introduits en jaugeant le modèle sigma non-linéaire (A = OO) ou le modèle sigma linéaire

(A = 0.8). R est en fermi et le potentiel est en MeV.
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R
0.0
0.5
1.0
1.5
2.0

PyA1(X = OO)

596.0
400.5
110.6
18.6
3.4

^yI1(A = O-S)
122.0
108.0
22.0
2.3
0.4

w(A = oo)
405.2
247.5
63.7
10.7
1.5

w(A = 0.8)
872.5
405.6
54.9
5.7
0.6

Nous montrons sur la figure (1.5) les résultats pour V^ obtenus avec une masse du

scalaire de 0.62 GeV. Pour comparaison, nous y avons dessiné les résultats du modèle

non-linéaire, (le cas où le champ du scalaire est éliminé) et les valeurs du potentiel de

Paris [37].
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Figure 1.5

Composante centrale de I1 interaction nucléon-nucléon dans le modèle <T linéaire jaugé avec m c = 0.62

GeV (courbe pleine), le modèle non-linéaire (courbe pointillce) et dans le modèle du potentiel de Paris

[37] (courbe en tirets).
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1
Notre étude a montré que quand la masse du méson isoscalaire augmente I1 at-

traction est poussée au-delà de 1.5 fm. On peut penser que le fait d' avoir besoin d'

une masse mc assez petite pour que 1' attraction soit placée au bon endroit, constitue

un problème car la phénoménologie veut que la résonance 5 de la diffusion 7TTr se situe

plutôt vers 1 GeV. A ce sujet, rappelions-nous du cas des modèles d'échange de bosons,

là aussi, il est nécessaire d' introduire un champ scalaire assez léger (m ~ 0.5 GeV)

pour reproduire correctement 1' interaction nucléon-nucléon. Dans le cadre de cette

description I1 introduction de ce méson scalaire fictif peut être évitée en considérant

explicitement 1' échange de deux pions [38]. Malheureusement, il n' existe pas à 1' heure

actuelle une méthode qui permettrait de tenir compte de ces effets dans notre problème.

D' un autre côté, comme nous-le verrons plus loin, il n' est pas impossible que dans

notre modèle on obtienne les forces attractives avec une masse plus grande du méson

scalaire, proche de la valeur expérimentale.

On a donc montré qu' une généralisation du modèle de Skyrme décrivant la

physique du pion et des mésons scalaires et vecteurs est capable de reproduire 1' es-

sentiel de Ia physique des interactions baryon-baryon, à savoir une répulsion à courte

portée et une attraction de moyenne portée dans le canal central de cette interaction.

De 1' attraction mais à longue portée a été obtenue par d' autres auteurs, toujours par

le biais de 1' inclusion des degrés de liberté scalaires mais dans des contextes différents

(anomalie d' échelle de la QCD [29], corrections à une boucle de pions [39]). Notre

modèle suggère que pour que cette attraction soit vraiment de moyenne portée (en

accord avec la phénoménologie) il faut inclure non seulement le méson scalaire mais

aussi les mésons vecteurs ptta,Ai dans le Lagrangien effectif. A cet égard, observons

sur la figure (1.5) que même en 1' absence du méson scalaire la répulsion est fortement
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diminuée par rapport au modèle de Skyrme. Pour illustrer la nécessité d'inclure simultanément

les mésons e,p,(j),A\ nous avons effectué un calcul de I' interaction NN (figure (1.6)) dans le cas ou

seuls Ic pion et Ic scalaire sont présents dans Ic Lagrangion effectif. Nous avons considère Ic modèle

- r2)2

(7.1)

ISOO

tsoo

1100

700

300

-100
R(fm)

Figure 1.6

Composante centrale de 1' interaction NN dans le modèle (7.1) avec une masse du scalaire tnf = 0.5

GeV (courbe pleine), le modèle non-linéaire (courbe pointillée). Les paramètres C et 6 sont liés aux

paramètres mésoniques de la section 4 (équation (3.15)).

Lc modèle (7.1) est très proche au modèle de la réf. [29] mais ici le terme d' ordre six est inclus

car il n' est pas justifié de le négliger. A la limite où A —» OO on retrouve le Lagrangien (3.15) en
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termes de pions uniquement. Sur la figure (1.6) on voit que 1' attraction n' a plus la bonne portée

quand les masses des mésons p,U>, Ai deviennent infinies.

Il est donc clair qu' un Lagrangien effectif de pions et de scalaires seulement

ne peut fournir que de V attraction à longue portée, confirmant ainsi notre conclusion

principale.

Faisons quelques remarques maintenant sur la validité de 1' approximation du pro-

duit adoptée au cours de notre étude. Dans notre travail aussi bien que dans ceux des

références [29] et [39], le potentiel NN est calculé en approximant le système 5 = 2 par

la configuration simple de 1' équation (6.1). Récemment les auteurs de [36] ont trouvé

que la répulsion du modèle de Skyrme est sensiblement diminuée si 1' ansatz de Manton-

Singer est utilisé dans un calcul semi-exact. D' autre part les auteurs de [20] trouvent

même de 1' attraction dans le modèle de Skyrme par des méthodes numériques assez

compliquées mais cette attraction n' a pas la bonne portée. Ces calculs numériques

utilisant des approximations allant au-delà de celle du produit ont 1 'air de suggérer

que cette dernière n' est pas adéquate pour le calcul de 1' interaction. L' avantage de

1' approximation du produit est qu' elle est simple et suffisament transparente pour ex-

traire les aspects phénoménologiques connus de 1' interaction nucléon-nucléon. Comme

on 1' a vu auparavant, les signes des différentes contributions au potentiel sont con-

nus et cohérents avec les ingrédients physiques du modèle (3.1). Nous pensons que les

différentes approximations peuvent affecter la magnitude de ces contributions mais pas

leur signe. De plus, dans tous les calculs précités, on calcule un potentiel local et seule

1' approximation du produit offre une définition non ambiguë de 1' interdistance entre

deux solitons. Si les résultats de [20] et [36] sont corrects, ils donnent à penser que

1' approximation du produit sous estime 1' attraction que le Lagrangien (3.1) produit.
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Autrement dit si notre modèle est traité numériquement avec les méthodes des réfs.

[20] ou [36], il est très probable qu' il fournisse trop d' attraction avec mt = 0.62 GeV.

Dans ce cas, en augmentant la valeur de me jusqu' à la valeur expérimentale (1 GeV)

on pourrait retrouver 1' attraction JViV empirique. Il serait en effet très intéressant d'

effectuer le traitement numérique de [20] dans le cadre de notre modèle qui, comme nous

1' avons vu dans les sections précédentes, est plus réaliste que le modèle de Skyrme.

L'interaction dans le canal spin-spin aussi bien que celle du canal tenseur ont été aussi

calculées dans le modèle linéaire et non-linéaire (figures 1.7 et 1.8).
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Figure 1.7

Composante spin-spin V ^ de 1' interaction nucléon-nucléon dans le modèle (3.1) avec Tn6 = 0.62

GeV (courbe pleine), et le modèle non-linéaire (courbe pointillée).
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1
La présence du champ scalaire supprime fortement ces deux canaux. Nos résultats

sont en accord qualitatif avec ceux de la réf. [29].

Figure 1.8

Composante tenseur VjT de l'interaction nucléon-nucléon dans le modèle (3.1) avec tnt = 0.62 GeV

(courbe pleine), et le modèle non-linéaire (courbe pointillée).

Une dernière remarque importante doit être faite. Un degré de liberté qui ne doit

pas manquer dans les modèles des hadrons à basse énergie est celui du méson w. Il
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est bien connu que sa contribution à 1' interaction NN est fortement repulsive aussi

bien dans les modèles d' échange de mésons que dans le cadre des modèles que nous

considérons ici. Son absence dans les travaux [20],[29],[36],[39] est injustifiée. Dans

notre travail il est bien présent, et malgré cela 1' attraction persiste. Ce phénomène est

le résultat d' un mécanisme non-trivial dû à l'inclusion simultanée de tous les mésons.

En résumant les calculs de ce chapitre on peut dire que le modèle que nous avons

étudié ici et qui généralise le modèle de Skyrme de façon à décrire correctement la

physique des mésons, est non seulement capable de prédire mieux les propriétés statiques

des baryons, mais aussi de produire une interaction nucléon-nucléon en accord quantitatif

avec la phénoménologie.

Il faut aussi garder dans V esprit qu' à la 'limite où le nombre des couleurs devient

grand, QCD est équivalente à une théorie effective d' un nombre infini de mésons f. Par

conséquent il n' y a aucune raison de considérer le pion seulement.

La prise en compte des mésons les plus légers dans le Lagrangien effectif est en fait plus

qu' une façon de tester le développement semi-classique des observables baryoniques

comme il a été suggéré par Witten [21]. Le Lagrangien (3.1) que nous avons proposé

dans ce chapitre offre surtout un cadre théorique simple et cohérent où les mésons (les

champs élémentaires) et les baryons (leurs excitations de type soliton topologique) sont

décrits simultanément. Nous espérons qu' ils constitueront le point de départ d' une

théorie unifiée des mésons et des baryons.

T

f ceci pour conserver la liberté asymptotique
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Appendice A

On donne ici 1' expression des équations différentielles non-linéaires couplées, dont

la solution éxtrémise la fonctionnelle d' énergie dans le secteur B=I (section 5 du texte).

Pour simplifier quelque peu les formules, il est utile de définir les différents "moments"

«, v et t qui sont associés, aux champs F, a et 7 respectivement:

(Al)v = àr + a - /3(1 - 2gyr)

t = <yr + 7 - 2ga(3r

Alors les équations du mouvement sont de la forme:

ù = £2 [ sin 2F[(1 - 2<ryr)2 - V a V ] + Agar cos 2F(I - 2(/7r)]

- 2AmV[2a7cos2F + (a2 - 7
2) sin 2FJ + jSw^j [ - 2g[fr + gr*(a2 - y2)] cos 2F

- 2^ar(l - 2^7r) sin 2F - sin2 F] (A.2)

v = 4gar[g(a2 + 72) - -J - 2g0t + g(2 cos F[sin F + 2gr(a cos F - 7 sin F)]

+ m2
par - Am3r cos F(7 sin F - a cos F) — /3wg—^[sin2 F ( I - 2gyr) + gar sin 2F]

(A3)

i = -2(1 - 2s7r)(s(a2 + 72) - - ] + 2g0v -

+ ro27r + Am2r sin F(7 sin F - a cos F) -

sin F[sin F + 2gr(a cos F - 7 sin F)]

ls in 2^X1 - 2tf7r) ~ 4 S« r sin2 F\

(AA)
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i
w = ml u) - 2 - - ^fjlF [sin2 F + 25ar sin 2F(I - 2<ryr)

r 2ir r* I

+ 25 7r cos 2F + 25
2r2(a2 - 7

2 ) cos 2FJ + g[2(àr + a)(sin2 F(I - 2gyr) (A.5)

+ gar sin 2F) + (-yr + 7)(sin 2F(I - 2g^r) - Agar sin2 F)] 1

+ 2g/3)2 + 2( ̂  + 2S(a cos F - 7 sin F))2I

La fonction /3 obéit à la contrainte suivante:

Appendice B

Dans cet appendice on explicite les fonctions a et /9 qui apparaissent dans le texte

(équation (6.14)). Pour les calculer il faut d' abord séparer les termes quadratiques

(1*2) des termes quartiques (v^) en la matrice C dans les expressions du potentiel, et

ensuite prendre différentes projections de cette dernière. On a bien pris le soin d' écrire

ces formules sous leur forme la plus générale, car elles sont indépendantes du modèle

considéré.

I) Termes quadratiques

ai =v2(iri)

at = u 2 ( / ) - v2{iri) [BA)

OS =V2(*T3) - U 2 ( I T i )

II) Termes quartiques
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^

=4u4((/ + i

= - \ [viiin) - 25u4(i(2ri + ir3)/\/5)]

=2[v4(/) +

/J5 =4u4((/ + ir3)/V2) + 7v4(tn) - 4v4((/

5u4(iT1) + ^ 4 ( i r 3 ) - JU 4 ^(Zr 1 + Î

Appendice C

Dans cet appendice nous allons montrer qu'à la limite des grandes masses pour

les mésons p,u),Ai,e le Lagrangien (3.1) tend vers 1* expression donnée par 1' équation

(3.15). Nous allons négliger dans ce qui suit le terme de Wess-Zumino.

Tout d' abord il est clair que quand la masse du méson scalaire tend vers 1' infini

(A = oo) le champ scalaire e disparaît car à cette limite £ — F.La solution de 1' équation

du mouvement du champ W11 quand les paramètres mUi0u tendent vers 1* infini (en

gardant le rapport /3w/mw fixe) est U)11 = y B111 ce qui implique que le Lagrangien

B2

du système TTU> tend vers 1' expression — " B11B* (équation (3.15)).
2m£

En ce qui concerne les champs de jauge, 1' équation d' Euler-Lagrange pour le champ

gauche s' écrit:

+9 T )X" ~ (S r + ~~)UYU = d [
(Cl)
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L1 equation du mouvement pour le champ droit est obtenue en remplaçant dans ( C l )

Xp par Y11 et U par U*. Faisons tendre les masses des mésons physiques p et A\ vers

1' infini. A cette fin il faut prendre les limites mp -> oo, Am2 -» -oo en respectant la

relation m* + Am2 = 2(j2/2 pour que le dénominateur de 1' équation (4.2) s' annule.

Alors le coefficient T, proportionnel à m^,, devient très grand. Nous pouvons alors

négliger les termes figurant dans le membre de droite de 1' équation ( C l ) . La solution

de cette équation à cette limite et pour g fini est:

y
(C.2)

m
= —W

25

donnant pour les tenseurs X^v et Y111, les identités suivantes:

X^ _> -Hl -

y * -• ^-(i -

2(7 2 l " '
(CS)

TO*

En remplaçant les expressions (C.2) et (C.3) dans le Lagrangien (3.2) nous obtenons le

modèle sigma non-linéaire plus un terme d' ordre quatre, antisymétrique par rapport

aux dérivées du champ du pion. La constante de Skyrme correspondante est donnée

par e = y/2g, ce qui donne le facteur ^-^ figurant dans 1' équation (3.15).
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Chapitre II

Sur le développement semi-classique
de la masse du soliton
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Les solutions solitoniques du type considéré dans le chapitre précédent, étudiées

d' abord par Skyrme puis reprises par la réf. [17] et les travaux ultérieurs sont des

solutions classiques de théories de champs non-linéaires. Leur quantification consiste à

construire des états quantiques autour de ces solutions. Les observables physiques se

développent alors en puissances de h [10]. Pour le cas du nucléon, il a été montré [12]

que le paramètre de développement semi-classique est en fait —, de sorte que sa masse

se met sous la forme:

(/.1)A/N = JVc [M0 + -fî-Mi + ^M2 + ...]

La convergence de ce développement repose fortement sur les valeurs des coefficients

MoiMi,M.2 qui sont dépendants du modèle.

Le but de ce chapitre est d'illustrer cette dépendance pour les différents modèles

basés sur les Lagrangiens de mésons. Nous allons montrer que certains d' entre eux ont

plus de chances que d' autres de fournir un développement (Ll) bien défini. Nous allons,

dans ce qui va suivre nous intéresser à la première correction quantique à la masse du

soli ton, le terme M\. Nous allons établir que le terme M.\ est une énergie de Casimir

[40], et donner son expression. Cette énergie possède une divergence ultraviolette qui

peut être régularisée dans le schéma de la fonction zêta. Nous calculons numériquement
Mi

le rapport pour le modèle de Skyrme et une de ses généralisations possibles.
N0Mo

Les résultats obtenus apportent quelques conclusions sur la validité du développement

semi-classique pour la masse du nucléon.

t
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1. L' énergie de Casimir du soliton

En effectuant des fluctuations quantiques sur des degrés de liberté collectifs autour

de la solution du modèle de Skyrme, les auteurs de [17] ont obtenu une partie des

contributions à Mz (éq. (1.1)). Mais curieusement le terme M\ n' a reçu que très peu

d' attention dans le passé. Ce terme est certainement plus difficile à évaluer car il met

en jeu des fluctuations non-collectives. Afin de trouver son expression, effectuons des

fluctuations autour de la solution classique Uo définies par les paramètres S:

= U0 exp(if.o) (1.1)

et considérons la fonctionnelle génératrice des fonctions de Green en 1' absence de

sources:

WE = M I V[U]e~s^u) (1.2)

5 E étant 1' action euclidienne associée au Lagrangien du modèle considéré et Af une

constante de normalisation. Cette action peut être développée autour de la configuration

classique UQ qui est un point stationnaire de SE-

SE(U) = SE(U0)+ (1.3)

La deuxième variation de I1 action est un opérateur qui dépend de la solution classique:

-U = -i (1.4)

Dans ce qui va suivre, seule la contribution du modèle sigma non-linéaire à 1' opérateur

potentiel Vab va être prise en compte: Vab(U0) = ie<,ieTt(reU^dt,Uo)dft. Nous allons

justifier par la suite cette approximation.
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WE peut être évaluée dans 1' approximation de la phase stationnaire. Cette méthode

consiste à intégrer les fluctuations de SE qui sont quadratiques en a:

WE =

L'intégrale Gaussienne peut être effectuée exactement [41]:

ab)

WE = [det '(-V»«.» + V86(
1-1/2

(1.6)

Dans cette expression, le prime sur le déterminant indique que les valeurs propres nulles

de 1' opérateur ( 2 )86 sont omises [44]. Pour extraire de cette formule Mi, il suffit
SUQ

d' écrire 1' expression de WE SOUS la forme WE = exp ( -MT) , où M est la masse du

soliton et T est un facteur de temps Euclidien. Après avoir effectué la soustraction de

1' énergie des fluctuations du vide, 1' énergie de Casimir du soliton s' écrit:

M1 = -L JiVlog(-V;«.» + Vab) - Trlog(-V^at) j = _I[Se//(tf0) _ Seff(0)]

(1.7)

Sous cette forme, on comprend pourquoi M\ est une énergie de Casimir. Il s' agit

de la différence entre 1' énergie des fluctuations du vide avec et sans la présence de la

solution classique. En remettant les facteurs h à leur place, il n' est pas difficile de

voir qu' il s' agit de la première correction quantique à la masse. Mais il est aussi

manifeste sur 1' expression (1.7) que cette énergie possède une divergence ultraviolette

à laquelle il faudra prêter attention. En effet, 1' action effective Sef/ se développe en

théorie des perturbations comme une somme sur les diagrammes à une boucle engendrés

par le potentiel d' interaction V(U0) [42]. Comme le Lagrangien de base est non-

renormalisable, on peut s'attendre à des problèmes dans le calcul du Tr log de l'équation

(1.7).
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En fait nous n' aurons besoin que d' un nombre ^m' de contretermes pour régulariser 1'

énergie de Casimir. Par exemple si V est obtenu en effectuant des fluctuations autour de

la solution classique du Lagrangien du modèle a non-linéaire, alors toutes les fonctions

de Green à une boucle peuvent être rendues finies par des contretermes d' ordre quatre

qui sont connus [43].

Nous allons maintenant simplifier 1' équation (1.7) en tenant compte du fait que le

potentiel V ne dépend pas du temps Euclidien. Réécrivons la différence des Tr log sous

la forme [45]:

Mi = ~ HdT T-1Tr(C^o) T r ( e - n ° r - e~n r) (1.8)

avec les opérateurs tridimensionnels il = — V? Sab + Vab et Q0 = — Vf 6ab- Sur la

première trace de cette équation on reconnaît la fonction de partition de la particule libre

à une dimension: Tr(eTfl°) =

[42] de 1' énergie de Casimir :

L' intégration sur T donne 1' expression connue

M1 =^
(1.9)

où w* et (w£)2 représentent les valeurs propres des opérateurs Cl et QQ respectivement.

Notre estimation de M\ sera basée sur cette expression.

Mis à part la divergence de la somme sur les modes qui est une particularité de la théorie

quantique des champs, 1' équation (1.9) est tout à fait naturelle.

En effet, rappelons nous du cas d' une particule non-rclativiste se mouvant dans un puits de

potentiel unidimensionnel V possédant un minimum en ZQ:

1
(1.10)
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Classiquement, la trajectoire dans 1' espace des phases minimisant I' énergie est celle pour laquelle la

particule reste immobile ( i = 0) en Zo. Son énergie classique est Mcl — V(XQ). Si le couplage est

faible (si A est petit et positif) le premier état quantique a une énergie M = V{XQ) + -hu>. En d'
ù

autres termes M est la somme de

a) V énergie d' une solution indépendante du temps des équations du mouvement

classique et

b) d1 une correction quantique proportionnelle à w, la racine carée de la dérivée seconde

du potentiel prise au point stationnaire x = !C0.

L1 analogue du terme a) en théorie des champs est la masse classique du soli ton (Ic terme N0MQ)

et 1' analogue de la correction b) (avec la dérivée seconde remplacée par une dérivée fonctionnelle) est

1' énergie de Casimir du soliton, le terme M.\. La différence en théorie quantique des champs est

que pour obtenir la première correction quantique il faut sommer sur une infinité de modes et aussi

soustraire 1' énergie de vide. En particulier I1 énergie de Casimir peut être négative.

En pratique, le calcul de la trace dans I' équation (1.9) se fait plus facilement en se

plaçant dans un volume fini (mais grand) dans 1' espace. Le spectre des opérateurs

fi, O0 devient alors discret. Le passage à la limite continue se fait en multipliant les

valeurs propres Wn associées au vecteur d' onde kn par la densité des niveaux. En

effectuant la soustraction de 1' énergie du vide on obtient alors 1' expression [46] :

dS(E)
Mi = dE E

dE
(1.11)

où 6(E) est le déphasage associé au potentiel Vab pour 1' énergie propre E. Comme V est

à symétrie sphérique, les fonctions propres se développent sur une base d' harmoniques
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sphériques vectorielles indicées par j , avec j = I + î, où / est le moment angulaire spatial.

Alors le déphasage s' écrit:

S(E) = £(2j +
j

(1.12)

Le calcul de 1' énergie de Casimir consiste donc à évaluer les déphasages associés au

potentiel V de 1' opérateur tridimensionnel Q = - V2£a(, + Vab- L' expression de V en

fonction de la solution classique F est:

. „ . dF. . , sin2 F
= 2

/ sin 2J

\-~27 (1.13)

Nous allons nous concentrer maintenant au calcul des déphasages associés à 1' opérateur

fî et à leur régularisation.

2. Calcul des déphasages.

Traitement des divergences ultraviolettes

Les propriétés de transformation par des rotations d' espace de la solution clas-

sique permettent d' écrire les fonctions propres de 1' opérateur perturbé îl comme une

somme sur les ondes partielles j :

OO

a = Y1(Uj(T)YjJ-I + Vj(T)YjJ + Wj(r)Yji+l ) (2.1)
J=O

Les fonctions Y sont les harmoniques sphériques vectorielles. L' équation aux valeurs

propres O a = E2a se décompose, pour chaque valeur de j , en trois équations radiales

T
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sur les composantes UjtVj,wy.

^ J - ( ^ - *• + tt - + OX-O +

- 2

(2.2)

—
r̂ 2 /• o \2s in f . _ , .sin2F ndF,

- fi2 - Cî + 2)—^-)u»i + Sj(-j-J-VJ + 2-^-«,

avec Cj =

Le comportement asymptotique de la solution (ujtVj,Wj) de ces équations aux valeurs

propres donne le déphasage dû au potentiel V dans 1' équation de Schrodinger. En

effectuant la somme des trois déphasages associés aux trois équations (2.2) on obtient le

déphasage total Sj(E) pour 1' onde partielle j , avec le facteur de dégénérescence (2j +1).

Nous avons montré dans la réf. [47] que les fonctions Sj pour j = 1,2,3... se comportent

à haute énergie comme 1/E ce qui veut dire que même avant de sommer sur toutes

les ondes partielles, 1' intégrale en (1.11) diverge logarithmiquement à grand E. L'

introduction d' un schéma de régularisation de façon à ce que 1' intégrale (1.11) soit

définie s'impose. Elle s'impose d'autant plus que la sommation sur les ondes partielles

donne une divergence encore plus violente de sorte que le comportement à grand moment

p de la phase totale est:

O2

(2.3)

Les coefficients ai, 02 peuvent être reliés au développement du noyau de la chaleur de 1'

opérateur il [48]. Notre méthode de régularisation consiste à calculer non pas la somme
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divergente Y* (<*>2J7, mais plutôt la somme Y^ (wj)' ' où s est une variable complexe.
n n

Cette fonction est bien définie sur le plan complexe. En termes de déphasages

(2.4)

où 1' on a introduit une masse M comme régulateur infrarouge. L' énergie de Casimir

est égale à cette expression à la b'mite où a —» 0. Pour extraire la partie finie de

cette énergie, il sera pratique d' utiliser une méthode susceptible de régulariser aussi

les fonctions de Green à une boucle qui sont à 1' origine du comportement (2.3). Ces

fonctions sont engendrées par 1' action effective (1.7) qui est égale à n~J~{a — O)* Dans

cette expression (o est la fonction zêta [49] associée à 1' opérateur O = —d* + Q + M2:

f
Jo

drr'-1 exp (-rO) (2.5)

où on a introduit une échelle fi. En fonction des déphasages la fonction £ s' écrit:

2) 2» f°° j / 2 W 2 N ' - . dS(p) /„«%

—— fi I dp (p + M ) 5 —-— (2.6)
\3) Jo

r Kr ' dp

L' astuce consiste maintenant à soustraire et rajouter le comportement asymptotique

(2.3) dans 1* expression des déphasages, tout en introduisant un régulateur infrarouge

M2:
O 2 .

En remplaçant cette forme dans 1' expression de la fonction £, 1' énergie de Casimir s'

écrit comme la somme d' une intégrale finie sur les phases et d' un terme dépendant de
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1' échelle /x. Cette dépendance est explicitement calculée en utilisant des fonctions béta

[45]. Nous obtenons 1' expression:

\ a i M> (1 + log - Ia2

(2.7)

L' intégrale sur les déphasages est maintenant devenue finie. La divergence est im-

plicitement contenue dans la dépendance en (i de 1' expression (2.7). On utilise ensuite

P identité [45] /°° dp{(p2 + M 2 ) " 1 ' 2 - (p2 + M2)~1/2} = \ l°g vW • N o u s intégrons
Jo 2 M

par parties la somme sur les déphasages, pour finalement prendre la limite M —* O et

arriver à P expression simple et finie de Mi((i):

= ~h r dp
lit J

- aiP - " (2.8)

A cette expression il faut ajouter maintenant les contretermes. Leur rôle est précisément

de faire disparaître la dépendance par rapport à P échelle de P énergie de Casimir. Les

contretermes d' ordre chiral quatre régularisant les diagrammes à une boucle engendrés

par P opérateur O, ont été déterminés dans la réf. [43]. On ajoute leur contribution à

P expression de la correction quantique à la masse du soliton. Il vient,

(2.9)

avec Lft = (1/2I)Tr(TtZo^tZo), Uo étant la solution classique dans le secteur à charge

baryonique unité. Les paramètres î i , ^ contiennent la partie finie et physiquement
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observable des contretermes d' ordre chiral quatre. Leurs valeurs numériques ont été

déterminées dans la réf. [50]:

Ii = -0.97 ± 1.22, I2 = 5.77 ± 0.72

C est 1' expression (2.9) que nous avons utilisé pour les résultats numériques. Il faut

préciser ici que cette expression de Mi n' est pas totalement indépendante de 1' échelle

(j, parce que nous avons tronqué 1' opérateur V de façon à ne garder que la contribution

de la fluctuation autour de £2. En effet, on peut montrer que le coefficient asymptotique

<z2 associé au potentiel V tronqué, est égal à un facteur multiplicatif près à:

(2.10)

La dépendance en fi des deux premiers termes va être absorbée par les contretermes d'

ordre quatre de 1' équation (2.9). Par contre, pour faire disparaître la dépendance en \i

provenant du terme en (O11 L11)
2 il faudrait inclure des contretermes d' ordre supérieur

à quatre. Il est clair qu' en raison de 1' équation du mouvement classique du modèle de

Skyrme:

$„£* = J-^dM(L1,!,) - Lt(L1,!,)], (2.11)

la quantité (O11L11)
2 est d' ordre chiral huit. L' énergie de Casimir sera complètement

indépendante de 1' échelle fi si on y ajoute les contretermes correspondants . Nous n'

allons pas effectuer cette dernière soustraction ici, la partie finie (et donc physique) de

ces contretermes n' étant pas connue à 1' heure actuelle. Nous justifierons par la suite

cette approximation.

En 1' absence du terme de Skyrme (sa contribution à 1' équation du mouvement figure dans le membre

de droite de 1* équation (2.11)), la quantité O11L11 est identiquement nulle, et 1' énergie de Casimir
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peut-être rendue complètement indépendante de 1' échelle. Malheureusement, dans ce cas il n' y a pas

de solution classique de type soliton.

Nous allons maintenant présenter les résultats pour la première correction à la

masse du soliton. Nous calculerons M\ dans deux cas: celui du modèle de Skyrme et

celui où 1' on ajoute à ce dernier un terme d' ordre six.

3. Résultats
Les phases de 1' opérateur (I ont été calculées dans la réf. [47]. Elles ont été

calculées pour les solutions classiques

I) du modèle de Skyrme: CSK = j T r ( ^ 1 P d ^ ) + ^Tr{[d»UU\dvUU]]2)

II) du modèle où 1' on inclut le terme d' ordre six déjà rencontré lors du chapitre

précédent: C2+i+6 = CSK - ^

Nous avons trouvé que les ondes partielles (à / ' exception de V onde j = 1) ont

un déphasage nul à p — 0, et que pour j grand les phases s' "aplatissent" à petit p.

Le fait le plus important pour 1' énergie de Casimir est que le déphasage pour 1' onde

j = l soit égal à 2n pour p = 0. Ce comportement n' est pas dû à la présence de vrais

états liés de 1' opérateur il, mais à la présence de deux "modes zéro" i.e. deux fonc-

tions propres à énergie nulle. Leur existence traduit l'invariance de 1' énergie Mo[Uo]

par des transformations continues de la solution classique UQ. H existent quatre telles

opérations continues et deux d' entre elles donnent naissance à des modes propres nor-

malisables. Chacun contribue d' un facteur ir au déphasage à 1' origine de sorte que 1' on

ait: Sj-i(p — Q) — 2ir. Ce résultat est fortuit car à priori 1' opérateur tronqué Vab n* a

t
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pas les mêmes modes zéro que l'opérateur complet. Cette circonstance justifie partielle-

ment notre approximation de négliger les contributions à 1' opérateur de fluctuation V,

provenant du terme de Skyrme.

En effectuant la somme sur j des déphasages Sj (équation (1.12)), nous obtenons la

fonction de phase totale S(p). Nous avons vérifié que pour des valeurs de p grandes

(en pratique p > 5fi) le comportement de la solution numérique S(p) est conforme aux

prédictions analytiques (équation (2.3)). L' integrand de 1' équation (2.8) est montré

sur la figure (2.1).

B
«o

Figure 2.1

Phase totale associée à I1 opérateur de fluctuation V. La courbe en trait pointillé correspond au modèle

CsK et celle en trait plein au modèle £2+4+6- Les valeurs des paramètres sont /„• = 0.093 GeV,

e = 5.5, b = 1 et 1' échelle fl est égale à la masse du méson p (fi = mp = 0.77 GeV).
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Observons que les courbes partent d' une valeur proche de 6ir et qu' elles deviennent

pratiquement nulles vers p « 0.5 - 0.7 GeV. Ceci veut dire que ce sont les fluctuations

à basse énergie qui dominent 1' énergie de Casimir. Ce résultat est très important car il

justifie en quelque sorte la validité d' un Lagrangien effectif tronqué à un ordre chiral

donné. Il est clair que V énergie de Casimir du soliton est contrôlée par les propriétés

d'invariance de la solution classique et par son extension spatiale.

Est-ce que les déphasages vont changer si 1' on inclut dans Y opérateur Vaj les

fluctuations provenant du terme de Skyrme et du terme d'ordre six qui ont été négligées

dans notre travail? La réponse est qu' ils vont différer sensiblement mais seulement à

haute énergie. Les phases de l'opérateur complet du modèle de Skyrme ont été calculées

il y a assez longtemps par les auteurs de la réf. [51]. A première vue ces phases ne

ressemblent en rien aux nôtres. En particulier, elles divergent linéairement en p. Ceci

veut dire que la phase totale de 1' opérateur complet possède une divergence cubique:

S(p) « aop3 + ..., mais d' après ce que nous venons de voir, elle n' intervient pas dans

1* énergie de Casimir, car elle est essentiellement soustraite de 1* expression à intégrer

(2.8). C est le comportement à basse énergie qui domine JAi et on s' aperçoit que

dans la région des petits p les phases trouvées dans [51] sont qualitativement proches

des nôtres. On espère aussi que la valeur à 1' origine de la phase totale £(0) = 6ir — sa.

ne va pas être très modifiée pour le cas de 1' opérateur complet Vaj,. Les résultats de la

réf. [52] indiquent que dans ce cas le coefficient <i2 pour le modèle de Skyrme ne serait

pas très différent du nôtre, de sorte que la relation S{0) « 6TT ait un caractère général.

Pour le modèle de Skyrme nous avons trouvé pour la première correction quantique

à la masse du soliton: (MI)SK = -1.169 + (-0.070) GeV (3.1)
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Entre parentheses figure la contribution du contreterme. Comme nous 1' avions an-

noncé, c' est 1' intégrale sur les déphasages qui domine le résultat, la contribution du

contreterme est de Rs 6 %. On s' attend à ce que les contretermes (inconnus) d' or-

dre supérieur à quatre soient encore plus petits. Même si le résultat (3.1) n' est pas

complètement indépendant de 1' échelle fi choisie, nous pensons qu' il constitue une

bonne approximation de 1' énergie de Casimir du soliton pour des échelles typiques des

masses des hadrons. Nous avons étudié la variation du résultat en fonction de 1' échelle,

et nous avons trouvé que si au lieu de n = mp on prend fi = 2mp par exemple, M\

change à peu près de 10 % ce qui semble raisonnablement petit.

Pour ce qui est de la valeur de M\ remarquons d' abord que son signe est négatif.

Ce signe est en accord avec les réfs. [53-54]. Par contre la valeur de Mi est quatre à cinq

fois celle trouvée dans ces travaux. La raison physique de ce désaccord est très simple;

les calculs [53-54] sont basés sur une approximation de Born des déphasages ignorant 1'

existence d' états propres non-perturbatifs comme les modes zéro. Or ces états, nous 1'

avons vu, dominent 1' énergie de Casimir par leur contribution au déphasage ^i, et ne

peuvent être négligés. De façon très générale et à cause du théorème de Levinson, ces

modes zéro "forcent" la fonction 6(p) d' être égale à 6ir à 1' origine p = 0. Remarquons

ici que la première correction quantique à la masse des solitons dans les théories en 1 + 1

dimensions résulte d' une simple somme sur les états liés de 1' opérateur de fluctuation

[55].

Le résultat (3.1) nous amène à émettre des doutes sur la validité de 1' approxima-

tion semi-classique pour le calcul de la masse du nucléon dans le modèle de Skyrme. Le

rapport de la première correction quantique sur la masse classique (qui est égale à 1.23
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GeV) est:

Cette valeur nous fait penser que 1' approximation semi-classique ne constitue pas un

très bon cadre pour traiter le soliton du modèle de Skyrme car ce dernier est sujet à des

effets quantiques très importants. Ces derniers ne peuvent pas vraiment être interprétés

comme des "corrections" devant la masse classique. Le "skyrmion" est probablement

un soliton à couplage fort. Ce serait peut-être plus adapté à 1' approche des Lagrangiens

effectifs de construire une approximation à couplage faible.

Nous allons voir maintenant que nos espoirs pour la description semi-classique du

nucléon ne sont pas vains moyennant quelques considérations phénoménologiques du

même type que celles qui conduisent à généraliser le modèle de Skyrme en incluant les

mésons de basse énergie. Pour étudier leurs effets, prenons pour simplifier le Lagrangien

local £2+4+6 qui correspond à la limite des grandes masses du modèle unifié proposé

lors du chapitre I.

Calculant 1' énergie de Casimir avec la solution classique de ce nouveau Lagrangien

(les phases sont tracées sur la figure (2.1)) nous trouvons qu' elle diminue notablement:

(Mi )2+4+6 = -0.795 + (-0.035) GeV (3.2)

La contribution du contreterme est aussi diminuée par rapport au modèle de Skyrme.

La masse classique, NcMo est plus grande (1.59 GeV) dans ce modèle et le rapport de

la première correction quantique sur le terme dominant de la masse du nucléon est:

1
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La diminution de V énergie de Casimir du soliton dans le modèle £2+4+8 peut être

expliquée physiquement par une augmentation de la taille du soliton dans ce dernier

par rapport au soliton du modèle de Skyrme. On pourrait à la limite "deviner" ce

résultat simplement en observant la courbe des phases (figure (2.1)). Sur cette courbe

il est clair que 1' inclusion du terme d' ordre six a comme effet de réduire la région

pour laquelle la phase est importante, et par conséquent 1' effet Casimir sur la masse

du soliton. Cet effet a été aussi observé dans [56] dans une étude des effets quantiques

vibrationnels à la masse. Le fait que les effets quantiques soient plus petits pour un

objet ayant une extension spatiale plus importante n' est qu' une simple manifestation

du principe d'incertitude de Heisenberg.

On trouve donc que contrairement au modèle de Skyrme, une simple généralisation à

un Lagrangien effectif qui contient les f.ffets des interactions du pion avec un méson «

infiniment massif (ou tout simplement l'inclusion d'un terme d'ordre supérieur dans le

développement chiral) conduit à un secteur baryonique consistent avec le développement

semi-classique. Le profil classique dans ce dernier modèle conduit à une hiérarchie bien

définie parmi les différentes contributions à la masse du nucléon:

NcMcMo (3.3)

Le profil de la solution classique décroît plus vite en présence du terme d' ordre six, de

sorte que 1' on ait:

-Jd3XC2 > -Jd3XC4 > -Jd3XC6 (3.4)

ce qui justifie encore plus notre approximation qui consiste à négliger les contretermes

d' ordre six, huit etc. dans le développement chiral.
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1
Une dernière remarque concernant la constante de couplage axiale du nucléon g\. La

valeur de cette dernière est grande au niveau classique pour le modèle £2+4+0 {9A —

1.37). Même si nous n' avons pas calculé les contributions des boucles de pions à cette

observable on peut penser, à cause des résultats qualitatifs de la réf. [53], que ces

corrections vont dans la bonne direction. U faut préciser ici qu' un calcul complet de

ces corrections quantiques à g A va probablement se compliquer par 1' introduction des

coordonnées collectives du nucléon.

4. Conclusions

Nous avons vu dans ce chapitre que le coefficient Mi constituant la première

correction quantique à la masse du soli ton-nucléon dépend fortement de la structure

spécifique du Lagrangien effectif. En particulier, nous avons montré la nécessité d'

inclure des termes d' ordre supérieur à quatre dans le développement cbiral. D est

maintenant clair que le développement en h/Nc a des chances de fournir une bonne

description du secteur baryonique, seulement quand le modèle de Skyrme est généralisé

de façon à inclure certains des effets du méson u>. Ces conclusions restent valables quand

on envisage d' effectuer les calculs de 1' énergie de Casimir avec 1' opérateur fi complet

[57].

H est intéressant de remarquer qu' on arrive qualitativement à la même conclusion qu'

au chapitre I, où nous proposons un Lagrangien effectif pour la description unifiée des

mésons et des baryons. Le fait que le développement semi-classique des observables

baryoniques (équation (Ll)) est meilleur dans le modèle £2+4+8 est en accord avec 1'

idée d' inclure dans le Lagrangien Effectif plus de degrés de liberté que ceux qui sont

présents dans le modèle de Skyrme [58].
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Le cadre théorique pour calculer systématiquement les corrections quantiques à la

masse du nucléon dans le contexte de Ia théorie de perturbation chirale a été récemment

proposé [59]. Connaissant le rôle important que jouent les mésons vecteurs p,w et

scalaires dans la physique de la diffusion nir il serait très intéressant dans 1' avenir d'

aller plus loin et de calculer 1' énergie de Casimir dans un modèle où les mésons scalaires

et vecteurs sont explicitement présents. L' issue d' un tel calcul sera de la plus haute

importance pour le développement semi-classique des observables baryoniques et de son

utilité pratique.

Un aspect qui ne doit pas être néglige clans les futures études des fluctuations quantiques autour des

solutions classiques des Lagrangicns effectifs est la détermination des contretermes d' ordre supérieur.

Même si comme on a vu leur partie finie ne doit pas affecter beaucoup la magnitude de la masse du

nucléon, ils sont nécessaires pour éliminer la dépendance par rapport à 1' échelle fl des observables

physiques.

Pour ce qui est des ordres supérieurs à quatre dans le développement chiral, très peu

d' auteurs ont entrepris une étude systématique pour justifier le choix des termes à y

inclure. Ces études sont compliquées par le manque d'informations expérimentales sur

les constantes qui figurent devant ces termes d' ordre supérieur. On peut éventuellement

envisager d'introduire des contraintes pour spécifier la forme du Lagrangien effectif aux

ordres chiraux élevés, comme il a été suggéré par les auteurs des références [60] et [61].

Terminons ce chapitre en faisant une dernière remarque sur les calculs de la résonance Roper du nucléon

avec ces modèles de soliton topologique. D' après nos résultats il ne semble pas étonnant que le calcul

de cette observable dans le cadre du modèle de Skyrme soit en désaccord avec la phénoménologie. Une

première amélioration de la prédiction pour la masse de cette résonance peut-être envisagée après I1

inclusion du terme d1 ordre six.
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Chapitre III

Sur la stabilité des solitons topologiques
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Le nucléon étant une particule stable, cette stabilité doit être retrouvée dans les

modèles où le nucléon est considéré comme un soliton topologique. Dans ce contexte,

il faut donc s' assurer non seulement de 1' existence de la solution de type soliton, mais

aussi de la positivité du spectre des petites fluctuations autour de cette dernière.

Cette question de la stabilité a été d' abord posée par Skyrme dans son travail

original. Il a remarqué que le modèle er non-linéaire ne possède pas de solution non-

triviale stable par rapport aux dilatations. Pour construire une solution de type soliton

il a proposé d' ajouter à ce modèle un terme d'ordre quatre par rapport au gradient du

champ unitaire U. Plus tard il a été proposé [22] de stabiliser le modèle cr non-linéaire

par des termes couplant le champ du pion au méson p, ce dernier étant considéré comme

un champ de Yang-Mills massif. La solution classique du système irp trouvée dans ce

contexte [62] est instable comme il a été montré plus tard [63]. Ce résultat nous semble

tout à fait surprenant car à la limite où le champ du p devient très lourd, le système

irp considéré dans ces travaux, tend vers le modèle de Skyrme qui bien sûr possède des

solutions stables. L'instabilité du soliton quand le pion se couple au champ du p est d'

autant plus embarassante, si on se rappelle que le système irw [23], du point de vue de

la stabilité, est parfaitement cohérent [32] avec sa limite locale.

1. Réalisations non-linéaires de la symétrie chirale

Dans ce chapitre nous allons étudier en détail le système irp dans le but d1 éclaircir

ce problème d'instabilité, et de lever les ambiguïtés qui existent dans la littérature. L '

accent sera mis sur les différentes manières possibles d'introduire le méson p dans les

Lagrangiens phénoménologiques, quand la symétrie chirale est réalisée d'une façon non-

linéaire [64]. La réalisation non-linéaire est définie en spécifiant l'action de l'élément G
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de SU(2) ® SU(2) sur les éléments u(H) de T espace quotient SU(2) ® SU(2)/SU(2)y.

u(7r) étant la racine carrée du champ chiral: u = U1^2 = e*Tt7r/ . gi et gn sont des

matrices de SU(2)L et SU(2)R respectivement. Il est clair sur l'équation (1.1) que cette

loi de transformation pour u est non-linéaire car la matrice de rotation h doit dépendre

du champ du pion pour satisfaire à 1' égalité (1.1). Avec cette définition le champ chiral

U se transforme linéairement: U -* gLUg^.

Deux représentations différentes pour le champ du méson p vont être considérées

ici. L' une, conventionnelle [65], consiste à supposer que ce champ vecteur (V11) se

transforme comme un boson de jauge du groupe "caché" h(ir):

+ - J (1.2)

Dans la section 2 nous allons revoir rapidement ce qui a été fait dans la littérature en ce

qui concerne l'instabilité du soliton dans cette approche. La section 3 sera consacrée à

1' étude détaillée de la stabilité du soliton dans le cas d' une transformation homogène

pour les champs vecteurs:

V11 ̂  h{n)V»h\n) (1.3)

Les solitons topologiques du système np, quand la symétrie chirale est régie par les lois

de transformation (1.1) et (1.3), seront étudiés. Nous serons particulièrement attentifs

au rôle similaire joué par les mésons p et u dans le mécanisme de stabilisation du soliton.
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2. Le soliton du système np dans une formulation "Yang-Mills"

II n1 est pas difficile de montrer que le Lagrangien minimal respectant la symétrie chirale

dans la représentation définie par les lois (1.1) et (1.2), s' écrit comme:

Cl? = -^Tr(V,,V") + ̂ M2Tr([V, - ^ ] 2 ) + ̂ T r ^ ) (2.1)

avec %„ = dpVv - dv% - ig[%, V11], T11 = | ( u f ô ^ u + Ud11U*) et U11 = ^d11U - uc^u*).

Le Lagrangien C\£l contient outre les termes quadratiques, des termes cubiques

et quartiques par rapport aux champs vecteurs. Le couplage irp dans le secteur des

mésons est en accord avec la notion de dominance vectorielle [65], et de façon générale

ce Lagrangien décrit raisonnablement bien les interactions entre les mésons ir et p.

Nous allons revoir brièvement ce qui a été fait dans la littérature pour ce qui concerne

le secteur baryonique de ce modèle.

Remarquons qu' à la limite où la masse du méson p devient grande, le terme de Yang-

Mills [66] V*v donne naissance à un terme 'e Skyrme dans le développement local. Par

cette observation on pourrait penser que (2.1) possède des solutions classiques stables. //

n' en est rien. Pour le voir il faut d' abord écrire la masse du soliton en termes de profils

sphériques en adoptant 1' ansatz du hérisson pour le champ chiral et la configuration la

plus générale pour les composantes spatiales du champ V11 classique:

VJ = VI(T{ - (f.f)fi) + V2(T.r)fi + Vs(T x f){ (2.2)

Alors la masse statique du soliton, exprimée en termes des profils radiaux F(r), iii(r) (i =

1,2,3) se met sous la forme

.Sm2F1
M=Av fylF2+ 2- ]+ -cosF))2]

f " " • / - 2 i - 2 \ \ 2 i nf~ i "3

[~ + g(vl+vl)y + 2(v3 + j
W 1 - W 2

(2.3)

1
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t
II existe des configurations spéciales pour lesquelles M possède des solutions classiques.

Par exemple, les auteurs de la réf. (62] ont montré qu' il existe une solution non-triviale

des équations du mouvement F(r),V3(r),tii =«2 = 0 (avec V3 = ~ 2r P o u r retrouver

leurs notations). Cependant, il a été ultérieurement montré par les auteurs de la réf.

[63], que cette solution n' est pas stable car elle peut être rendue triviale ( F = V3 = 0)

par une déformation continue des composantes $1, v?. Ceci est possible dans 1' approche

de Yang-Mills, car les composantes «i,«2 se couplent à V3. Comme on peut voir sur 1'

équation (2.3) ces couplages déstabilisants ont lieu dans les termes cubiques et quartiques

de la densité d' énergie de Yang-Mills. Ces instabilités se manifestent aussi dans le cas

le plus général qui consiste à extremiser la fonctionnelle (2.3) non seulement par rapport

.aux fluctuations de JP,$3 mais aussi par rapport à celles de t5i,«2. Ceci a été étudié

dans [67] où il est trouvé que la seule solution est celle qui correspond au vide trivial

F = iii = 0 (i = 1,2,3), donnant ainsi M = O.// n' existe pas de solution stable dans le

secteur non-trivial du Lagrangien (2.3).

Une autre propriété des solitons du Lagrangien (2.3) doit retenir notre attention

ici. Supposons que 1' on ajoute à C\p! des termes stabilisateurs d' ordre supérieur en

dérivées du champ U. Dans ce cas, il existe des solutions classiques non-triviales pour

les fonctions F, i>i, û2, U3 [67], mais un nouveau problème apparaît: 1' existence de deux

solitons dégénérés dans le spectre classique. Ceci est dû à 1' invariance de la masse

classique du soliton par rapport à la transformation discrète des fonctions de profils :

V2 —» —t

V3 —» V3

(2.4)

82



Les solutions (F, Vi1Va1Vs) et (F, - v i , -V2,vs) forment un doublet de solitons. Une

fois quantifié, ce doublet de solitons donnera naissance à deux états baryoniques quasi'

dégénérés. Ceci n' est évidemment pas observé dans la Nature.

Quelques mots sur ce doublet de baryons. Les auteurs de [67] 1' ont interprète comme un "doublet de

parité". Pour notre part, nous nous gardons de 1' appellcr ainsi, car Ia transformation (2.4) n' a rien d'

une opération de parité telle qu' elle est définie en théorie des perturbations [68]. Pour le voir il suffit

d' écrire Ie champ du vecteur de façon à expliciter les indices de spin et d'isospin dans la configuration

(2.2): Vi = TjfeVjfc,-

Vki = vi(9ki - TkVi) + V2^kTi - v3e*imfm (2.5)

g étant Ic tenseur métrique Euclidien. Alors la transformation (2.4) pour les composantes du champ

du p, s' exprime de la façon compacte:

Vki -» -K-* (2.6)

Cette transformation n' a rien d1 habituel, car il s1 agit d'inverser le signe du champ et échanger les

indices de spin et d' isospin. Cette symétrie ne peut exister que dans le secteur topologique du

Laj»rangion (2.1), où précisément les indices de spin et d'isospin des champs sont confondus à ceux de

V espace de configuration pour un hérisson. C est la raison pour laquelle nous pensonsf qu' il ne faut

pas interpréter cette transformation comme une transformation de parité.

Pour résumer donc les résultats existants dans la littérature: quand le meson p est

supposé se transformer comme un boson de jauge du groupe caché h (équation (1.2)), le

système -xp ne possède pas de solution classique stable en V absence de termes d* ordre

supérieur. En présence de termes stabilisateurs, il apparaît un doublet non-physique d'

états baryoniques.

f Sous réserve d' une démonstration future du contraire.
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3. Transformation homogène des champs vecteurs

La loi de transformation chirale du champ du méson p sera donnée dans ce qui suit par:

V11 -» h{it)V^k\it) (3.1)

/iétant la matrice définie pari ' équation (1.1). Puisque h est locale, les gradients doivent

être généralisés pour se transformer eux aussi comme les champs V1,. Pour cela il faut

y ajouter un terme contenant la quantité F,, définie dans la section précédente:

Le Lagrangien du système 7T/J, à I1 ordre le plus bas par rapport aux champs vecteurs,

et invariant par les transformations (1.1) et (3.1), est donné par:

Cy = 4 T r { ^ " +*^(W,])2} + ^ T W V ) + ̂  Tr(«%) (3.2)

où Vf11, = Vj1Vi, - VvV11, gv est la constante de couplage du pion au méson p. Comme il

sera montré dans 1' Appendice A, le Lagrangien (3.2) est le plus simple conduisant à un

Hamiltonien qui soit borné injérieurement. Ce Lagrangien est quadratique par rapport

aux champs vecteurs.

Nous allons étudier la stabilité du secteur topologique dans le système zp, mais nous

voulons aussi établir une analogie entre le mécanisme de stabilisation dans le système

irp et celui du système 7rw. En fait, on peut montrer que dans ce dernier modèle, la

stabilité est due à une contrainte secondaire à laquelle le champ du u? obéit. Pour mieux

illustrer le rôle joué par les contraintes dans le mécanisme de stabilisation du soliton

pour Ie système TT/J, nous avons délibérément choisi de ne pas considérer dans ce qui

va suivre la théorie (3.2), dans laquelles les champs contraints VQ ne peuvent pas se
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coupler au courants statiques du pion. Nous allons plutôt étudier une théorie avec des

contraintes, eçutvafen(eà(3.2), l'équivalence étant comprise au sens des transformation»

canoniques et sera montrée dans V Appendice A. Dans cette théorie le champ du p

est défini en termes de champs tenseurs antisymétriques W^ se transformant comme

W1Iu —* H(Tr)W1^bJ[Tr) par une rotation chirale, et la densité Lagrangienne est donnée

par [43]:
1

Cwp = - ^
4 r "" (3-3)

avec Wp11 = TitWJly k étant un indice d' isospin. La contribution de 1' échange d'

un p à la diffusion irir avec les couplages du Lagrangien (3.3) a été systématiquement

étudiée dans [69] et [70] pour le cas de trois saveurs. Il a été trouvé par les auteurs de

[70] que cette contribution est identique à celle due au Lagrangien (2.1). L' équivalence

des deux approches dans les ordres dominants de la diffusion irir est mieux perçue à

la limite des grandes masses pour le méson p. En effet, 1' équation du mouvement du

champ Wp„, à cette limite, nous dit que W/,v -* *—[uj,,u,,]. En remplaçant cette

dernière expression de W11U dans (3.3), on obtient:

oo) - fiurfolWtf•) + ^Ti{[d,VU*,dvUUt]2) (3.4)

en utilisant la relation U11 = iu*(d,,UU*)u. Comme nous 1' avons mentionné dans la

section précédente, la limite locale du Lagrangien £ * / ' e s t a u " » donnée par 1' équation

(3.4). La contribution du prochain terme (d' ordre six) du développement en puis-

sances du champ du pion, à la composante temporelle du tenseur impulsion-énergie, est

négative, comme on peut le voir sur son expression:

K.tt^V.K.u"]) (3.5)
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En vertu de cette relation nous pouvons anticiper que 1* énergie de la solution classique

de 1' équation (3.3) sera inférieure à celle du Skyrmion de I1 équation (3.4).

Représenter des champs vecteurs par des tenseurs antisymétriques suppose que I1 on

contraint les degrés de liberté redondants. Il est donc naturel de se consacrer en premier

à la construction du Hamiltonien associé au Lagrangien (3.3), afin d'éliminer les champs

obéissant à des contraintes.

a. Le Hamiltonien

II n' est pas difficile de voir que les composantes spatiales du tenseur W111, ne sont pas

des degrés de liberté physiques par construction. En effet, les moments canoniquement

conjugués du champ W^ que 1' on appelera IT111I sont donnés par:

fe *" (3-6)
T] étant la métrique de 1' espace-temps. Il est immédiat de déduire que TT;J = 0, et par

conséquent les champs Wy ne se propagent pas. Contrairement au cas des théories de

Yang-Mills massives où les champs contraints Vb se couplent à des dérivées temporelles

disparaissant à la limite statique, ici les champs contraints Wy se couplent au courants

statiques du pion. Pour trouver la contrainte à laquelle les Wy obéissent il faut calculer

le Hamiltonien primaire. La terminologie "primaire" utilisée dans le formalisme de

Dirac-Bergmann [71], sous-entend que cet Hamiltonien contient tous les champs, même

ceux qui sont contraints. Il sera utile de paramétriser de la façon suivante le champ

chiral:

(3.7)

|
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Avec cette définition le Lagrangien du modèle a non-linéaire s' écrit sous la forme

compacte:

/*_»r» =^2- dpF* Q d^F

2 s in2F . ( 3" 8 )

=FaFb + (ga6 - FaFb)

L'isotenseur Q est en fait la "métrique" du groupe S*C/(2)f. Avec ces notations, FM et

les gradients du pion uM sont donnés par:

c

. F (3-9)
U^-Ta [F0F6 + ~r{9ab ~ FaFt))O^Fb

On a également besoin de 1' expression du moment conjugé <j> du champ F . Il est de la

forme:

* ! F Ï = f l Q k
avec la définition suivante des opérateurs d'isospin //{ et Moi '•

=epqadiFr^- [(I - ^r)(FpFbgqr + FqFTgpb) + •
(3.11)

On élimine les dérivées temporelles des champs, en inversant les équations (3.6) et (3.10),

ce qui permet d'écrire le Hamiltonien de la théorie en termes de variables canoniquement

con jugées: Hp = / d3x(ifliVdoWli'' + $doF - Cnp). Négligeant les termes de surface,

on obtient après intégration par parties 1' expression:

Ca1F g diP + Â*M +

(3.12)

t II faut remarquer que les valeurs propres de Q sont positives
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avec les notations:

\ (3.13)

Définissons maintenant les crochets de Poisson fondamentaux, liant les champs canon-

iquement conjugués:

} I 3{x - y) (3.14)

où 1* on a antisymetrisé les indices de spin dans 1' expression habituelle, k et I sont

des indices d'isospin. Remarquons que cette équation est incompatible avec la relation

7T,;- = 0. Pour s'en sortir il suffit de traiter les variables 7?,-;- de façon un peu particulière.

Imposons la conservation dans le temps de la contrainte primaire. Les variations des

champs étant égales à leur crochets de Poisson avec le Hamiltonien, cette conservation

est assurée par:

{*ii(z)t HP)=Q (3.15)

En reportant 1' expression de Hp (eq. (3.12)) dans ce crochet, et en utilisant les crochets

fondamentaux définis plus haut, on arrive à l'équation de la contrainte secondaire après

quelques intégrations par parties. Cette dernière peut-être écrite sous forme matricielle:

Wa = 2 j p ! - t\/2Gp[uuUj) + V1-TT0J - VjTTo,-1 (3.16)

Cette formule est 1' équivalente de la loi de Gauss [72].

L' équation de la contrainte (3.16) est formellement analogue à celle obtenue par les auteurs de [32],

pour Ic système TTU):

"U
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pour la composante temporelle du champ du meson W dans le modèle de la réf. [23]. î îj sont les

moments conjuges des champs O>i et BQ est la densité de charge baryonique.

Nous sommes maintenant en positionf d' écrire le Hamiltonien physique (sec-

ondaire), en remplaçant W,j (équation (3.16)) dans Hp. Nous obtenons:

h 1 rr 4G

+ SfdiF G diF + 4,,- -f M2
pWl

1 ri îGp l 2 l

(3.17)

En principe, il faut ajouter à cet Hamiltonien des multiplicateurs de Lagrange, pour s'

assurer que les contraintes primaire et secondaire soient prises en compte dans la dy-

namique. Ici nous simplifions le problème, en posant ces multiplicateurs identiquement

égaux à zéro, mais ceci n' altérera pas la généralité de nos conclusions.

Avant de passer à la construction des solutions statiques, observons la forme de

cet Hamiltonien, qui est une fonctionnelle des champs qui se propagent: F, <j>, W0,- et

7?oi . Remarquons d' abord qu' il est manifestement positif. Ensuite, on vertu de 1'

équation de la contrainte secondaire, il est clair que la tentative d' annuler le champ

du p par une déformation continue va rencontrer la répulsion du terme de Skyrme,

explicitement présent dans le Hamiltonien secondaire. Ceci nous rappelle fortement le

mécanisme de stabilisation du soli ton dans le cas du système iru> [23], où la répulsion

stabilisatrice provient d' un terme d' ordre six dans le développement durai.

Nous allons maintenant chercher les solutions classiques de 1' équation (3.17) dans

le secteur de charge baryonique unité.

f Pour être complet, il faudrait s' assurer aussi que cette contrainte est conservée

dans le temps, mais il serait étonnant d'y trouver une contrainte autre que (3.16).
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1
b. Solutions classiques

Considérons V ansatz du hérisson, déjà rencontré au cours des chapitres précédents:

F = rF, Woi = fK [W1(Ti - (f.r)f.) + u;2(f.f)f,- - W3(T X f),]

. r2 r (3.18)
0 = f ^ , 7Tth- = i l [^(r. - (?.*)#<) + 7T2(f.f)f,- - TT3(T X f )«]

La forme (3.18) pour les champs vecteurs Wij» e t ""oi est la configuration la plus générale,

compatible avec la symétrie sphérique. Les profils F,<j>,u>i,to2,w3,Vi,^z,TTJ sont des

fonctions de la variable radiale r (et du temps éventuellement, mais de toute façon

cette dépendance n' est qu' implicite dans le formalisme Hamiltonien). Une fois les

configurations (3.18) reportées dans le Hamiltonien (3.17), il est naturel de séparer ce

dernier en deux parties, car les champs se découplent exactement:

(3.19)

Le premier terme, HQ, est positif et quadratique dans les champs ^ , t B i , ^ , ^ , ^ , ^ :

1 2 2

HQ = - (# + 2^pW3 sin .F)2 + "—• + ^J- + (rw2 +2w2-2 cos FiO1 )
2

1 *
+ (Mprf(w\ + 2w\ + 2wj) + -^(7V1 - c o s F ^ )

gp est la constante de couplage sans dimension, gp = 2y/2Gp/fn.

Cet Hamiltonien est nu/ à la limite statique. Pour le prouver, considérons Y ensemble d'
»00

équations 6[ I CITHQ] = 0 pour des champs qui ne dépendent pas du temps. Tout d'

abord, celles concernant les champs <f> et W3 donnent identiquement <j> = W3 = 0. Pour

les autres champs il suffit de remplacer les variables toi, w2, 7Tj, Ir2 par les variables pi

et p2:

M*r

2 cos F
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Les équations de Hamilton se réduisent à:

Pi=(M2
p + ^~)pi » = 1,2 (3-22)

En multipliant cette équation par p,- et en intégrant par parties le membre de gauche

on arrive à 1' expression:

/ dr [p? + P]{Ml + ^ Z ) ] = 0 (3.23)
o r

La seule solution est évidemment la solution triviale p,- = p, = 0, par conséquent

To1 = u>2 = 7Ti = 7T2 = 0 ce qui complète la démonstration. Pour des solutions de type

soliton, nous avons donc montré que:

{HQ),taUque = 0 (3.24)

II est clair que la dégénérescence au niveau de la masse classique rencontrée dans la

section 2, ne peux pas avoir lieu ici, les champs WI,W2,7TI,7T2 sont nuls de façon triviale.

En plus, ils se découplent de la composante non-nulle à la limite statique 73.

En ce qui concerne la deuxième partie du Hamiltonien, nous trouvons 1' expression

suivante pour Tinp:

K«P =\[{rï? + 2^F + ^l] + JL{(s,sinFF-*3)* + 2 ( 3 , ^ -cosF^)2}

(3.25)

Nous allons chercher des solutions ayant une charge topologique unité. Pour cela, il faut

imposer des conditions aux limites F(O) = n et F(oo) = 0 et résoudre les deux équations
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de Hamilton, qui vont rendre Hnp stationnaire par rapport aux variations arbitraires

des champs F and 7T3. Ces équations sont de la forme:

p = sin 2F + Qp-Ki sin F + 2D**™ (3.26a)

(3.266)

avec C = g p sin F F - £3, D = gp —- cos F — et p = T2F. Ces équations sont

résolues numériquement (voir figure (3.1)).

On vérifie très aisément que la forme asymptotique de la solution des équations (3.26a-

b) est compatible avec les conditions aux limites imposées au champ chiral. La solution

asymptotique de (3.26b) pour le champ 7Ta est de la forme (Cte)e~M'T. La valeur de g,,

utilisée (gp =2.1) reproduit la largeur de désintégration p —> irn au premier ordre des

perturbations.

Il est intéressant d' observer que notre solution classique pour les champs F, W3 est

qualitativement semblable à celle obtenue par les auteurs de [62] pour les champs corre-

spondants F, V3. La masse classique de la solution présente à la figure (3.1) est de 1.14

GeV, légèrement inférieure à celle que 1' on trouve dans le modèle de Skyrme correspon-

dant (e = y/2Mp/fxgp)t comme nous 1' avions prédit au début de cette section. Cette

"attraction" provenant de 1' interaction du champ chiral avec le méson p est aussi à V

origine de la compression légère que la solution subit par rapport au modèle de Skyrme

(voir figure). En effet, si 1' on calcule le rayon isoscalaire du soliton

>/=„= - f°°r2dr(-F SiU
* Jo

(3.27)

nous trouvons < r2 >/=.0
= 0-35 fm, contre 0.4 fm dans le modèle de Skyrme.
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Figure 3.1

La solution des équations (3.26a) et (3.26b) extrémisant la fonctionnelle de Hamilton J0 Wffp(r)<fr.

La ligne en trait plein correspond au champ F(r) dans le présent calcul, alors que sur la courbe en

pointillés on montre la solution du modèle de Skyrme correspondant. Sur la ligne en traits-pointillés

e s ' tracé.

0.8 1.2

r(fm)
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1
Nous avons aussi vérifié qu' il existe une solution des équations (3.26a-b) pour toute

valeur de la constante de couplage gp.

c. Stabilité

On va donc s'intéresser au signe de la seconde variation du Hamiltonien (3.19) par

rapport aux petites fluctuations des champs autour de la solution classique. Les termes

linéaires dans les fluctuations disparaissent car on développe le Hamiltonien autour d'

un point stationnaire. On s'intéresse aux fluctuations monopolaires [73], correspondant

à un mode de vibration scalaire:

F = Fa(r) + 6F(r, t), <f> = fo(r) + 6<j>{r, t)
(3.28)

*i = 7if(r) + ftrf(r,0» Wi = wt(r) + 6wi(r,t) t = 1,2,3

Considérons d' abord le terme HQ. En vertu des résultats analytiques vus plus

haut, la partie statique des champs 7Ti,^2,^1,102,1^3,^ est nulle. Alors, leur contribu-

tion à la variation du Hamiltonien se découple des fluctuations de JF1, et on a la relation

simple

S{2)'H.Q{F,<l>,witW2,W3,iTi,ir2) = HQ[FO1S^SWI,6w2y6w^S'Ki,6i{2) (3.29)

Nous avons montré analytiquement que HQ ne peut avoir qu' une contribution posi-

tive à la fluctuation de la masse. Il en résulte que les composantes TI,7T2,WI,U>2 ne

déstabilisent pas le soliton.

Intéressons nous maintenant au terme H*p, pour déterminer si des fluctuations

arbitraires des champs F et n-3 ne déstabilisent pas la solution classique. D' abord,

effectuons un test préliminaire pour déterminer si cette solution est un minimum local

par rapport à une classe de transformations d'échelle. Considérons à cette fin 1* intégrale
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/ = Jjj50 dr[hKp(F,TT2)]. Cette intégrale est la masse du soliton à un facteur multiplicatif

près, et elle peut s1 exprimer comme une somme / = /j + h + h + h + /5 avec

= I f°cfr[(rF)2+2sin2jF]

2 ^ ^ " ) 2 ] (3.30)

Effectuons maintenant la transformation suivante de la solution classique:

F0(V) -> F0(Ar) , 7r3°(r) -> 7T3°(Ar) (3.31)

A et 7 étant deux paramètres arbitraires. Par cette transformation d'échelle globale, /

devient:

/A7 = i ( 7
2 / i + /2) + A(J3 + -yh + 72Zs) (3.32)

Développons cette expression autour de la solution classique (A = 1 + e>,7 = 1 + C7)

avec e\,ey « 1. Au premier ordre, la stationnante de 1' Hamiltonien fournit des

relations entre les différentes contributions à la masse. On trouve

h + h =h + /4 + /5
(3.33)

2(I1+I5) =-I4

relations que 1' on vérifie avec la solution de la section précédente. Par ailleurs ceci con-

stitue un excellent test de la méthode de résolution numérique. La variation quadratique

maintenant peut se mettre sous la forme:
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Parmi les valeurs propres de la matrice de cette forme quadratique une est positive. La

positîvité de la deuxième valeur propre est moins simple à établir. On peut formuler la

condition nécessaire pour la stabilité de la solution classique] par l'inégalité:

(Z1+Z2)(Z1+Z5)-4Z1
2 > 0 (3.35)

Nous n' avons malheureusement pas pu établir analytiquement que la solution de la

section précédente satisfait à cette inégalité. Malgré tout le membre de gauche de

(3.35) peut se calculer numériquement et en effet, nous avons trouvé qu' il est positif

pour toute solution classique (en fait pour toute valeur de la constante gp). Le soliton

est donc un minimum local par rapport à la transformation (3.31).

Le fait que la solution soit un minimum'local pour des transformations d' échelle, ne

constitue pas une condition suffisante pour sa stabilité (pour une discussion voir 1'

appendice B). Pour déterminer une telle condition, il faut considérer des fluctuations

plus générales, de la forme F = F0 + 6F(r,t) 7Ts = IrJ + Sir3(r,t).

La variation de 1' Hamiltonien au second ordre par rapport à ces fluctuations est:

t
Jo

(3.36)

où i> est un vecteur à deux composantes -tf1 = (SF Sirs ) et M est un opérateur hermi-

tique, fonction de la variable r. Ses éléments de matrice sont:

t Théorème de Derrick généralisé pour le système np

T
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Ir- l
d ' ' • 9o sin2F0)4 + 2cos2F0

in2F0F0 +cos2F0F0
2 - - ^ ( 3 - 4sin2F0)]

^ [a, cos F0(Tr3V + TT3°(9 sin2 F 0 - 2)) - 2(Tr3
0)2 cos 2F0]

i n F o ^ + ^(-2sin2F0Tr3
0 + <7P(3sin2 F0 - 2)smF0)]

II est intéressant de noter que sur les deux premières lignes de cette équation, et parce

que les termes en ?r3 dans (3.37) aussi bien que le potentiel sont d' ordre 1/M* ou plus,

on retrouve 1' opérateur de fluctuation du Skyrmion. Cet opérateur a un spectre positif

comme il est montré dans la réf. [74].

Pour montrer finalement la stabilité il faut montrer que le spectre de M. se situe

du côté des fréquences positives. C est ce qui a été fait dans [72] en utilisant deux

méthodes différentes. La première consiste à diagonaliser une approximation discrétisée

de M., dans laquelle nous n' avons trouvé que des valeurs propres positives et la deuxième

consiste à résoudre les équations aux valeurs propres pour des energies négatives, pour

laquelle nous avons trouvé que le determinant de Jost [75] associé à A4 ne change pas

de signe.

En définitive, nous avons montré que le méson p peut stabiliser le soliton d' une

manière très similaire à celle que 1' on rencontre quand on introduit le méson c*>.
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4. Conclusions
II a été montré par les auteurs de la réf. [70], qu' avec le Lagrangien donné par 1'

équation (3.2) (ou (3.3)), les couplages effectifs induits dans le secteur des pions par 1'

échange d1 un p sont équivalents aux couplages produits par des Lagrangiens du même

type que celui de 1' équation (2.1). Cependant, nous avons noté une différence cruciale

entre les secteurs baryoniques correspondants:

Quand la transformation du champ du méson p par une rotation chirale "cachée", est

supposée être homogène, les solitons topologiques du système irp sont stables par rapport

aux fluctuations des champs mésoniques, alors que dans les approches "non-minimales",

où le méson p est couplé au pion comme un boson de jauge de ce même groupe caché,

le solitpn est instable. De plus, dans la première approche il n' y a pas de doublet de

baryons.

Il est donc clair que les ambiguïtés existant dans la littérature pour le système irp,

sont en grande partie dues au choix particulier de réalisation de la symétrie chirale par

les champs vecteurs.

Il n' est pas difficile en fait de montrer [70] qu' il existe une transformation non-

linéaire entre les champs VJ1 et V11, par le biais de laquelle on peut trouver une relation

entre les Lagrangiens (2.1) et (3.2):

- — ~
(4.1)

Nous pensons que c ' est justement le dernier terme (proportionnel à •—) dans le membre

de droite de cette équation qui est responsable des instabilités dans le secteur baryonique

du Lagrangien £™ J .
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D' un autre côté, et dans le secteur des mésons, ces termes cubiques et quartiques en

champs vecteurs (équation (4.1)) contribuent à des processus mettant en jeu plusieurs

mésons p (trois ou quatre), et du fait de la symétrie de jauge des relations particulières

doivent exister entre ces processus. La question de savoir si ces couplages, et surtout si

ces relations, sont réalistes du point de vue expérimental reste ouverte.

Il faut noter ici que les lois (1.2) et (1.3) ont la bonne propriété de former un groupe, et il est

probable qu' elles soient les seules à la posséder [76]. Par exemple, la transformation inhomogène

V11 -* /l(7r)VjJ/i(7r)t + aôwfe(îr)V'|1ôl'M(ir) ne satisfait pas à P associativité.

Finissons ce chapitre en disant qu' il sera intéressant de clarifier la structure

topologique de la solution classique quand le Lagrangien contient non seulement Ie

champ U mais aussi des champs vecteurs, axiaux etc. . On sait que la structure

topologique de la solution joue un rôle non-trivial dans la stabilité des solitons pour

les théories en 1 + 1 dimensions [8j,[9j. Mais la situation se complique beaucoup dans

les théories à 3 + 1 dimensions [77] et plus particulièrement pour les modèles où le

champ chiral se couple à des mésons. On peut se poser la question de savoir si les

propriétés topologiques non-triviales des champs de jauge [78] sont vraiment à 1' origine

de 1' instabilité des solitons des Lagrangiens tels que (2.1). Nous espérons qu' une fu-

ture étude de ce Lagrangien va répondre à cette question, et simplifier beaucoup notre

compréhension du rapport qui pourrait exister entre la stabilité des solitons des théories

en 3 + 1 dimensions et leur topologie.
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Appendice A.

Dans cet appendice nous allons étudier une description des mésons vecteurs en

termes de champs vecteurs V11, se transformant comme VM —» H(Tr)V11Ii* (ic) par une

rotation chirale non-linéaire. Notre but est d' abord de montrer que le Lagrangien

invariant chiral, qui satisfait aux conditions suivantes:

a) être d' ordre le plus bas en champs vecteurs

b) conduire à un Hamiltonien borné inférieurement

est donné par le Lagrangien de 1' équation (3.2). L' équivalence formelle de la formu-

lation en termes de vecteurs à celle en termes de tenseurs antisymétriques sera ensuite

montrée.

Considérons d' abord un Lagrangien qui satisfait seulement à la condition a):

Cv = - IT1(V11, V") + ^

I

avec V11U = V11V1, — VvV11. Ce Lagrangien a été étudié par les auteurs de la réf. [70]

dans un autre contexte. Il n' est pas difficile de s' apercevoir que la limite locale (méson

p très lourd) de ce Lagrangien, contient le terme à deux dérivées, un terme à six dérivées

etc...:l' ordre quatre est absent de C'y. En fait, il a été montré dans [70] que le rayon

de charge du pion dans ce modèle est égal à zéro, d1 où la nécessité d1 ajouter à C'y

un terme local (en fait, le terme de Skyrme en SU(2)). Ces auteurs ont aussi montré

que la présence de ce terme est nécessaire pour être en accord avec le comportement

asymptotique de la QCD. Dans leur analyse, ils n' ont pas considéré la contribution des

termes contenant la connection T11 dans V111,, mais dans ce qui va suivre, nous allons

au contraire tenir compte de ces termes de façon à respecter la symétrie chirale à tous
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les ordres du développement chiral. Nous verrons que simplement en demandant au

Hamiltonien de satisfaire à la condition b), on peut arriver à la même conclusion que

les auteurs de [7Oj, à savoir qu' il faut ajouter un terme local d' ordre quatre à C'y.

Nous aUons considérer le Hamiltonien associé au Lagrangien (A.l). Pour ceci faire, il

faut d' abord calculer les moments conjugués Tf11 (la barre est pour éviter la confusion

avec les floi de la section 3) et <f> de VJ4 et F respectivement. Ceux du champ vecteur

sont donnés par:

En vertu de la relation qui en résulte pour les composantes spatiales #,-, le moment du

champ chiral se met sous la forme:

avec les matrices Ç,Afi définies par les équations (3.8,3.11). Pour avoir 1' expression de

M.i il suffit de remplacer Wbi par Vi dans 1' expression de la matrice Moi définie par

les mêmes équations.

La contrainte primaire se lit sur 1' équation (A.2): 7f0 = 0. Ce qui veut dire

que VJ) n' est pas un degré de liberté de la théorie. Pour 1' éliminer, il faut i) inverser

les équations (A.2) et (A.3) pour obtenir le Hamiltonien primaire et ii) imposer la

conservation dans le temps de la contrainte primaire en annulant son crochet de Poisson

avec cet Hamiltonien. Ces opérations conduisent à la relation secondaire,

Vo = V * <
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En utilisant cette relation, on arrive au Hamiltonien exprimé en termes de vrais degrés

de liberté F,<j>,Vi,#i :

Hs = + \[$- StB,] A-1 {$ -Bm + ffdiF Q diF +^0
(A.5)

Observons maintenant la partie dépendante de <j> de cet Hamiltonien. La contribution

de ces termes n' est pas manifestement positive, car il n' est pas exclu que la matrice

A ait des valeurs propres négatives quand la constante de couplage gy est non-nullef.

Pour se rendre compte du problème, plaçons-nous dans la configuration du hérisson

pour le champ du pion F ~ F(r)r. Il est alors immédiat d'inverser cette matrice:

Calculons maintenant la contribution à HQ due aux termes dépendant du moment du

pion. Pour une configuration sphérique du champ vecteur:

r "•
(A.7)

nous arrivons, en vertu des équations (A.5), (A.6) et (A.7), à la forme suivante :

1 (</> + 2V5gV7r3 sin F)2

2 l-8ftà*

Cet Hamiltonien a un pôle, et n' est pas borné inférieurement si gy et F sont non-nuls.

Ceci n' est évidemment pas acceptable. Il est important de préciser ici, que même

f si la constante de couplage est nulle, A est égale à f%G et ses valeurs propres sont

positives.
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1
si nous avons fait usage d' un ansatz particulier pour compléter la démonstration, la

conclusion sur la validité de la théorie (A.l) est générale. Notamment, nous n' avons

pas vérifié si cette configuration satisfait aux équations du mouvement pour des valeurs

de la fonction F différentes de zéro. Même si ce n' est pas le cas au niveau classique,

ces configurations non-perturbativea déstabiliseront la théorie quantique.

Nous avions anticipé sur 1' origine de cette pathologie en observant que la matrice A est

susceptible d' acquérir une contribution négative du couplage pion-/?. La façon la plus

simple de "régulariser" cette matrice, et par conséquent le Hamiltonien, est d' ajouter

un terme local à C'y compensant cette contribution :

(A9)

Ce terme n' est rien d' autre que le terme de Skyrme; le nouveau Hamiltonien est

maintenant manifestement positif:

H = -Bfa] + &*PG Z
(A.10)

Nous concluons donc que le Lagrangien satisfaisant aux conditions a) et b) énoncées au

début de cet appendice est donné par 1' expression (3.2). Remarquons que le seul fait d'

imposer au Hamiltonien d'être positif, détermine la constante de Skyrme : e = (2Ji-)"1.

Il n' est pas difficile de montrer maintenant que le Hamiltonien (A.10) est exactement

égal au Hamiltonien en termes de tenseurs antisymétriques (3.17):

H [F, $, V1, iti] = Hs [F1 J1 W9i% m] •
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En fait, il existe une transformation canonique entre les deux ensembles de champs

{F,<f>, V;,7r;} et {F,<f>, Wui.Toi} en effectuant Ie remplacement gv —* Gp/Mp:

V1 -> ^0 '

Nous avons montré 1' équivalence de la formulation en termes de vecteurs (3.2) et de celle

en termes de tenseurs antisymétriques (3.3). Il est donc évident que les conclusions faites

sur la stabilité des solutions classiques du Lagrangien (3.3) s' appliquent sans aucune

ambiguïté et telles quelles au cas des solitons topologiques du Lagrangien (3.2).

Appendice B.

La présente discussion peut paraître assez triviale. Cependant, elle nous semble

nécessaire pour éliminer une certaine confusion que 1' utilisation du formalisme La-

grangien peut éventuellement susciter. Nous allons voir qu' en général il ne suffit pas de

montrer que la masse classique du soliton soit un point de selle, par rapport à un certain

ensemble de transformations continues, pour conclure que la solution est instable. Pour

traiter le problème de la stabilité il faut considérer les fluctuations les plus générales.

Supposons que 1' on calcule 1' extremum de la fonctionnelle de masse du soliton,

sachant que 1' on cherche une solution statique rendant cette quantité finie. Alors, on

peut effectuer directement 1' extremisation de — J d3rC. On va illustrer ceci en adoptant

ce point de vue pour le cas du Lagrangien (3.3). Alors, 1' énergie du soliton, exprimée

en termes des variables généralisées (même de celles qui sont contraintes, les W1-,-) est

égale à:

M = - JdV[~Tr(ViW0VmWroi - ViWoiVjWoj) + ^ T r ( W 0 W y -

(fl.1)
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1
Pour trouver la solution classique, plaçons nous dans une configuration sphérique:

F = F(r) f

WOi =[vn{Ti - {f.f)fi) + W2(T.7% - W3(f X f)i] (B.2)

Wij = [ ^ i ( V j - TjTi) + faeijkTk + faeijmfm(T.r)]

En fonction de ces variables M est de la forme M = An I M dr, avec M donné par
Jo

M =~[(rF)2 + 2sin2 F] - 2[2# + ( ^ 1 + ^1)2 + (rfc - fa?)

- 4(1 - cos F){ - 2<j>\ + (h + fa)(r<j>2 - h)] - 2(1 - cosF)2 [2<j>\ + (<fo + ^3)2]

- 2(M,r)2[# + # + \(4>2 + hf] + V5Gp[2sin2 F(<j>2 + ^3) + 4 sin F(Fr)<j>2]

+ (rw2 + 2io2 - 2 cos Fw1)
2 + (Mprf(w\ + 2t«2 + 2w|)

(B.3)

Cherchons maintenant les solutions des équations du mouvement qui rendent M station-

naire, par rapport aux variations arbitraires des champs F, <j>\, fc, 4>z, w\, W2, W3 avec des

conditions aux limites telles que ces solutions possèdent une charge baryonique unité.

Tout d' abord il est clair que les composantes W\,w2,W3 sont identiquement nulles au

niveau classique. La même chose arrive aussi au champ <f>\ dont 1' équation du mouve-

ment

^1 + 201 = ( 2 ^ Z + M > (BA)

n' a que des solutions triviales. Il reste une fonctionnelle des champs F,<j>2,<f>3 à extrem-

iser. Supposons que 1' on résoud le problème numérique, pour extrémiser la masse du

soliton. Nous allons montrer que tant que l'on considère les variables F, fa, fa comme

des variables indépendantes, V extrémum n' est pas un minimum par rapport à une
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certaine classe de transformations a" échelle. Pour cela, écrivons la masse du soliton

comme une somme de quatre termes : M = Mi + M2 + M3 + Mi

M1 =2TT/2 / dr[(rF)2 + 2sin2 F]
Ja

M2 = - 8TT / dr[{rfa - h) + (1 - cosF)(<f>2 + ̂ 3 ) ] 2

Jo

M3 = - STTM* H drr2 [<% + h<f>2 + ̂ 3)2]
Ju *

/

CO

dr [2 sin2 F(4>2 + ̂ 3) + 4 sin F(rF)^2]

et effectuons la transformation de changement d'échelle (compatible avec les conditions

aux limites sur les champs) suivante:

(B.5)

F{r) -» F(ar) , ^2|3

Par cette transformation, la masse devient:

(BA)

Ma = -(M1 +M2 + M4) + -^J

La stationnarité de M envers cette transformation s' exprime par: dMa

da

(B.7)

(a -> 1) = O

soit Mi + M2 + Mj + 3M3 = O. Alors, en utilisant cette dernière relation la deuxième

variation de la masse quand le paramètre a tend vers 1 est:

do?r = 6M3 (A.8)

qui complète la démonstration car en vertu de (B.5) le terme M3 est négatif. Mais

le fait que la solution classique ne soit pas un minimum local ne signifie nullement

qu' elle soit instable. Nous avons au contraire démontré que la solution classique de

(B.l) est stable dans la section 3. En fait, pour examiner le problème de la stabilité
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dans le cadre du formalisme Lagrangien il ne suffit pas de calculer la masse statique du

soli ton. Il faut considérer des fluctuations autour de la solution classique et tenir compte

des contraintes, ce qui signifie implicitement qu' il faut introduire une dépendance par

rapport au temps et résoudre les équations d' Euler-Lagrange. Nous avons aussi résolu

ce problème. Il a été trouvé que le spectre des fluctuations dépendantes du temps,

et autour de la solution classique du Lagrangien (3.3) est positif. Il est clair que si

1' on tient compte des contraintes (équation (3.16)) le formalisme Lagrangien donne

les mêmes résultats que le formalisme Hamiltonien. Ce dernier est seulement plus

transparent quand on a affaire à une théorie avec contraintes.
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Conclusions

Nous nous sommes concentré dans cette thèse à la description des nucléons en tant

que solitons topologiques d' une théorie effective de mésons. Le but de cette étude est

de construire une théorie unifiée des mésons et des baryons, comme il a été suggéré en

[21]. Cette théorie est sensée modéliser la Chromodynamique Quantique (QCD) dans

son régime non-perturbatif, aux échelles des distances t'es baryons (1 fm). Dans notre

approche, basée en partie sur une vieille idée de Skyrme [2], les mésons sont considérés

comme des champs élémentaires et les baryons comme leurs excitations de type soliton

topologique. Les interactions (fortes) entre les mésons sont décrites par un Lagrangien

effectif qui doit respecter les propriétés de la théorie sous jacente, la QCD. Ce Lagrangien

doit ainsi respecter la symétrie chirale, la brisure de 1' invariance d' échelle de la QCD

etc. Mais ces propriétés générales ne sont pas assez contraignantes pour déterminer la

forme spécifique du Lagrangien effectif. Ce degré d' arbitraire dans la détermination

du Lagrangien effectif peut être éliminé si 1' on tient compte de la phénoménologie bien

connue du secteur des mésons. C est ce qui a été proposé dans la réf. [24]. Notre

travail a consisté d' abord à étudier une extension du modèle de la réf. [24] dans le

but d' y inclure des degrés de liberté scalaires. Ceci nous a conduit dans le chapitre

I à introduire les champs vecteurs comme des champs de jauge non-abéliens dans le

modèle a linéaire [30] plutôt que dans le modèle a non-linéaire [24]. Cette formulation

nous amène naturellement à un Lagrangien effectif contenant les mésons les plus légers

(TT,p,u), Ai,e). Les paramètres du modèle sont déterminés en ajustant les observables

du secteur mésonique. Nous construisons alors les solutions de type soliton dans le

secteur à charge baryonique unité, et nous étudions les propriétés statiques des baryons.
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Un autre test important et sévère pour le modèle considéré est fourni par les propriétés

de 1' interaction entre les baryons. Nous avons étudié les interactions statiques entre

ces solitons. En projetant ces interactions sur les différents canaux de spin et isospin

[30] nous avons obtenu les composantes centrale, spin-spin et tenseur de 1' interaction

nucléon-nucléon.

Les résultats montrent que même dans le cas où 1' approximation du produit est adoptée

pour le système à deux solitons, des force» attractive! ayant la bonne portée apparais-

sent dans le canal central de 1' interaction JViVT. Ceci est à opposer à tous les calculs

précédents effectués à partir du modèle de Skyrme, qui n' aboutissent qu' à des forces

répulsives (ou attractives mais à longue portée). Nous pensons à cet égard que la

présence du champ scalaire est d' une importance cruciale.

Dans le but d' éclaircir le problème de la masse des baryons dans les modèles

où ces derniers sont considérés comme des solitons topologiques, nous avons effectué

une analyse semi-classique du modèle de Skyrme, en évaluant la première correction

quantique à la masse du soliton [47]. Dans le chapitre II, nous avons montré que cette

correction est très grande (elle est du même ordre de grandeur que la masse classique)

dans le cas du modèle de Skyrme original. Nos résultats suggèrent que ce modèle ne

peut pas être considéré comme une théorie effective réaliste. Nous avons ensuite montré

que la situation est nettement améliorée si 1' on envisage d'inclure dans le Lagrangien

effectif des termes d'ordre supérieur, par exemple un terme d'ordre six dans les dérivées

du champ du pion. Ces résultats donnent à penser qu' il faut généraliser le modèle de

Skyrme si on veut modéliser QCD à grand Nc. Le modèle que nous avons proposé au

chapitre I est un bon candidat pour cette généralisation car à la limite des grandes
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masses pour les mésons, il contient, outre le terme de Skyrme, un terme d' ordre six tel

que celui discuté plus haut.

Un autre problème qui requiert attention est celui de la stabilité des solitons, car

les nucléons sont stables par l'interaction forte. Dans le chapitre III nous avons étudié

le rôle joué par les mésons vecteurs dans la stabilité des solitons topologiques, dans le

cadre du système 7jy>. Aujourd' hui on sait que 1' introduction du méson p comme un

champ de Yang-Mills massif se couplant au pion, peut déstabiliser le soliton, et que

la symétrie de jauge est à 1' origine de 1' existence d' un doublet quasi-dégénéré dans

le spectre baryonique. Ces ambiguïtés n' existent pas dans le cas du méson w. Nous

avons montré qu' elles peuvent disparaître aussi dans le cas du méson p, si ce dernier

est supposé se transformer d' une façon homogène par une rotation du groupe chiral

non-linéaire [72]. Ainsi les mésons p et w jouent un rôle similaire dans le mécanisme

de stabilisation du soliton. Ceci est satisfaisant parce qu' à la limite où ces mésons

deviennent très lourds (limite locale) la contribution du méson p tend vers le terme de

Skyrme (ordre quatre) et celle du w tend vers un terme d' ordre six. Ces deux termes

à leur tour stabilisent le soliton séparément.

Un certain nombre de questions en rapport avec les études présentées ici restent

ouvertes:

I ) D ' abord, 1' extraction du potentiel nucléon-nucléon dans le modèle que nous avons

proposé pour la description unifiée des mésons et des baryons, peut être faite par des

méthodes numériques de minimisation exacte dans le secteur à deux solitons. Le résultat

d' un tel calcul pourrait nous donner une indication quasi-définitive sur la validité de

ce modèle pour la description d' un grand éventail de phénomènes de la physique des

hadrons.
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Dans le cas où ce calcul compliqué donne un résultat positif, on aura abouti à un

résultat important, celui à" avoir établi un pont entre un schéma d'approximation de la

QCO et les théories "mésiques" utilisées depuis plus de vingt ans pour interpréter avec

succès les phénomènes nucléaires à basse énergie.

2) Les observables des baryons (les masses par exemple) dans les théories effectives

précédentes s' expriment comme un développement en puissances de h/Nc. Il est im-

portant de savoir si ce développement est perturbatif et convergent. L' étude exposée

dans le chapitre II apporte les premier;, éléments de réponse à cette question. Il est

donc naturel maintenant non seulement de calculer les premières corrections quantiques

à d' autres observables telle la constante de couplage axiale du nucléon, mais aussi et

surtout d' évaluer ces corrections pour les modèles plus réalistes où le champ chiral se

couple à des champs vecteurs, scalaires etc.. .

3) Notre étude sur la stabilité des solitons suggère qu' il sera très intéressant d'

essayer de trouver un lien précis entre la structure topologique de la solution classique

et sa stabilité, en particulier pour les modèles effectifs où le champ chiral se couple à

des mésons vecteurs, scalaires etc..
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1
Abstract

This thesis is devoted to the study of a unified field theory of mesons and baryons.
In such a theory, mesons are the elementary fields of a highly nonlinear effective La-
grangian, and baryons emerge as their topological soliton excitations. In chapter I
we undertake the construction of an effective Lagrangian with the low mass mesons
(T, P, AI, W and the scalar meson e) generalizing the Skyrme model [Proc. Roy. Soc.
A260 (1961) 127]. The vector meson fields are introduced as gauge fields in the linear
sigma model instead of the non linear sigma model. The parameters of the model are
fixed by fitting to the low energy meson observables. We then look for topological soliton
solutions of the model and investigate the nucleon-nucleon interaction in the product
approximation. The results [Phys. Lett. B283 (1992) 13; Phys. Rev. D46 (1992) 3903]
show that the scalar degrees of freedom i) lower significantly the soliton mass, ii) give
rise to attractive NN forces in contrast to the vector mesons which yield only repulsive
forces.

In chapter II we evaluate the leading correction to the classical skyrmion mass,
that is, the Casimir energy. The main ultraviolet divergence is cancelled by well known
chiral counterterms. We show that the result is controlled by the low energy behavior
of the phase shifts which are large and positive due to the presence of two normalizable
zero modes. As a consequence, the correction is found to be negative and rather large,
of the order of 1 GeV for the original Skyrme model. We finally show [Phys. Lett. B272
(1991) 196] that for the purpose of consistency with the semiclassical approximation,
the low energy effective Lagrangian should at least include a sixth order term in powers
of the derivatives of the pion field.

The problem of the stability of topological solitons when vector fields enter the
chiral Lagrangian is the subject of chapter III. Isospin one vector mesons (in particular
the p) are usually described as massive Yang-Mills particles in the chiral Lagrangian.
We investigate some aspects of an alternative approach in the soliton sector. It is found
[Phys. Lett. B300 (1993) 256] that the soliton is stable in very much the same way
as with the w-meson and that peculiar classical doublet solutions do not exist. The
formulation in terms of antisymmetric tensors is shown to be canonically related to a
vector field description provided the Skyrme term is added to the latter.



Résumé _-,

Cette thèse est consacrée à 1' étude d' une théorie unifiée des mésons et des
baryons. Dans une telle théorie les champs élémentaires sont les mésons et les baryons
sont les solutions de type soliton topologique. Au cours du chapitre I nous constru-
isons un Lagrangien effectif, qui décrit les interactions entre les mésons les plus légers
(w,p,u,Ai et le méson scalaire e) et qui généralise le modèle de Skyrme [Proc. Roy.
Soc. A260 (1961) 127]. Les champs vecteurs sont introduits comme des champs de jauge
dans le modèle <r non-linéaire, et les paramètres sont fixés sur les observables connues
du secteur des mésons. Nous calculons ensuite les solutions de type soliton topologique,
pour étudier l'interaction nucléon-nucléon, dans 1' approximation dite du produit. Les
résultats [Phys. Lett. B283 (1992) 13; Phys. Rev. D46 (1992) 3903] montrent que P
inclusion des degrés de liberté scalaires a comme effets a) de réduire la masse du soliton,
b) d' engendrer des forces attractives entre deux nucléons.

Dans le chapitre II nous évaluons la première correction quantique à la masse du
soliton (énergie de Casimir). La divergence ultraviolette de cette correction est annulée
par des contrctermes chiraux bien connus. Nous avons montré que le résultat est contrôlé
par le comportement à basses énergies des déphasages de 1' opérateur de fluctuation
autour de la solution classique. Ces déphasages sont positifs et leur magnitude est «s 6w
pour p = 0, à cause de la présence de deux zéro-modes normalisables. En conséquence,
la première correction quantique à la masse est négative et de 1' ordre de 1 GeV pour le
modèle de Skyrme. Nous montrons [Phys. Lett. B272 (1991) 196] que cette correction
diminue si 1' on inclut un terme d' ordre six dans le développement en puissances de
dérivées du champ du pion. Cette conclusion ne fait que confirmer la nécessité de
généraliser le modèle de Skyrme.

Finalement, nous nous intéressons au problème de la stabilité des solitons
topologiques dans le cadre du système Trp. Le champ du p est habituellement introduit
dans le Lagrangien effectif comme un champ de Yang-Mills massif et il est bien établi
qu' alors les solutions de type soliton sont instables. Nous étudions le système np dans
le contexte d' une réalisation différente de la symétrie chirale. Nous montrons [Phys.
Lett. B300 (1993) 256] semi-analytiquement que dans cette autre approche le soh'ton
est stable, et que le mécanisme de stabilisation est très similaire à celui du système 7rw.


