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Certains ont prétendu ramener ce plaidoyer a I’ état de cause pragmatique tendant
a une opposition de lois. Ils disent: “Ici aussi deux lois, par I’ effet des circonstances,
s’ opposent I’ une a I’ autre; de ces lois, I’ une se trouve violée par le fait que I’ autre
est observée.” Mais rous répondons que, dans I’ état de cause pragmatique tendant a
une opposition de lois, aucune des deux lois n’ est violée; on ezamine seulement laquelle
doit étre violée.
Demosthéne
Plaidoyer Contre Androtion, Accusation d’ Illégalité
355 av. J. C.

A la mémoire de ma grand-mére, Maria Barth (1906-1986);

par son ezcellence, elle est toujours mon guide...
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Introduction

La Physique des constituants élémentaires de la matiére est le domaine oti la
Théorie Quantique des Champs trouve ses applications naturelles. Les progrés effectués
dans la description du spectre des particules observées dans la Nature, doivent beaucoup
au principe de I’ existence d’ un Lagrangien fondamental. Ces Lagrangiens sont
habituellement formulés en termes de multiplets de fermions élémentaires interagissant
par |’ intermédiaire des bosons de jauge associés a des invariances découlant de symétries
internes. D' autre part il est bien connu que les interactions fondamentales obéissent
& une hiérarchie compliquée, bitie sur 1’ intensité du couplage entre les champs de
particules. Pour les interactions éléctromagnétiques et faibles il est naturel de décrire
les interactions dans le cadre de la théorie des perturbations. Celle-ci ne constitue une
bonne approximation 3 la solution exacte que si la constante de couplage est faible, ce
qui est le cas des interactions éléctrofaibles.

Cependant la théorie des perturbations n’ est pas d’ une grande utilité pour les
interactions fortes, responsables de la cohésion de la matiére. Dans la théorie des inter-
actions fortes, le Lagrangien “fondamental” sur lequel beaucoup d’ espoirs sont fondés,
est celui de la chromodynamique quantique (QCD). Les champs fondamentaux de cette
théorie sont des multiplets “colorés” de fermions (quarks) dont les interactions sont as-
surées par des champs de Yang-Mills de masse nulle (gluons). Une propriété essentielle
et bien connue que la QCD assigne aux interactions fortes, la liberté asymptotique,
fait que les phénoménes aux courtes distances peuvent étre décrits par la théorie des
perturbations. Pour la description des propriétés a basse énergie des hadrons (dont la

taille est de 1’ ordre du fermi), tout schéma perturbatif est complétement illusoire, car



pour ces distances, la constante de couplage des interactions fortes est trés grande, Le
fait que les quarks sont confinés [1] 4 I’ intérieur des hadrons n’ est qu’ une illustration
du caractére non-perturbatif des interactions fortes. Comme il n’ existe pas a I’ heure
actuelle de méthode non-perturbative fiable et suffisamment simple, applicable au cas
de la QCD, force est de construire, pour la description des spectres des hadrons, des
modéles ol les quarks sont confinés par un mécanisme plus ou moins “ad-hoc” commeles
modéles de quarks non-relativistes, de cordes, de sacs, diéléctriques etc... Ces modéles
sont assez arbitraires car chacun d’ eux simule le confinement, alors que le mécanisme
de ce dernier reste inconnu.

Dans cette these nous allons adopter une autre approche pour la description du
monde hadronique. Puisque les quarks et les gluons sont confinés & I' intérieur des
hadrons il est, peut étre, plus approprié d’ éliminer ces degrés de liberté et d’ incorporer
leurs effets dans une théorie effective des particules observées (les mésons et les baryons).
Ce point de vue est étayé par une conjecture de Witten {2}, selon laquelle a basse énergie
et i la limite ol le nombre de couleurs N, devient grand, la QCD est équivalente & une
théorie effective de mésons interagissant faiblement. Les baryons émergent de cette
théorie comme des solitons. Cette idée est attrayante car elle offre la possibilité de
décrire les mésons et les baryons dans le cadre d’ une seule théorie unifiée. En fait, un
exemple d’ une telle théorie avait été proposé par Skyrme [3] il y a trente ans, bien avant
I’ avénement de la QCD. Skyrme a construit une théorie ou le champ fondamental est
le pion et ol les baryons sont les solutions de type soliton topologiqgue. Curieusement
ses travaux n’ ont pas été remarqués en leur temps et ils n’ ont été remis en vogue que

récemment.
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L’ idéal serait de dériver & partir de la QCD une théorie effective de mésons. L' impos-
sibilité d’ effectuer une telle dérivation & 1’ heure actuelle laisse une certaine liberté pour
le choix de la forme spécifique du Lagrangien effectif de 1a QCD. Certes, ce Lagrangien
doit traduire les propriétés essentielles de la QCD, comme la brisure spontanée de la
symétrie chirale etc..., mais ceci est encore trés général. Une possibilité est de se laisser
guider par la phénoménologie bien connue des mésons afin de réduire et méme éliminer
le degré d’ arbitraire dans le choix du Lagrangien effectif, en respectant toujours les
symétries essentielles des interactions fortes.

L’ objet de I’ étude présentée dans cetie thése est d’ ezaminer d quel point une
théorie effective de mésons a des chances réelles de fournir en méme temps une descrip-
tion quantitative et physiquement cohérente des observables baryoniques via le concept
des solitons topologiques.

Ce concept est basé sur I’ existence d’ un type de solutions pour des équations classiques
non-linéaires, localisées dans I’ espace. La différence entre ces solutions et les paquets d’
onde usuels de la mécanique quantique est que les solitons, contrairement aux paquets
d’ onde, gardent leur énergie dans une région finie de I’ espace. Cette région ne s’ étale
pas au cours du temps et elle évolue comme un objet en entier, le soliton. Ces solutions
ont été trouvées dés le siécle dernier [4]-[5]f. Quelques unes d’ entre elles possédent la
propriété remarquable d’ étre obtenues par une superposition algébrique de solutions
linéaires [7]. Un exemple d’ équation de ce type qui a été utilisée pour la description
de particules étendues en 1 + i dimensions, est I’ équation de Sine-Gordon [8]. Ses
solutions ont des propriétés topologiques non-triviales qui résultent des conditions aux

limites dans I’ espace. Il apparait alors une charge conservée qu’ on peut identifier

t Le nom soliton a été pour la premiére fois employé par les auteurs de [6]



au nombre baryonique. La conservation de cette charge repose sur la topologie de la
solution et caractérise le soliton [9].

Alors que les particules des théories quantiques usuelles sont les quanta élémentaires du
champ, les solitons préservent leur caractére de particules méme & la limite classique
k - 0. La quantification naturelle de ces solutions peut s’ appuyer sur des méthodes
semiclassiques [10]-[11]. De plus il a été montré que dans certains cas la fonction d’
onde du soliton d’ une théorie de champs de bosons, se transforme comme un fermion
[12]. Cet aspect remarquable, montre qu’ il n’ est pas déraisonnable d’ espérer décrire
un spectre fermionique (les baryons) & partir d’ un Lagrangien fondamental de bosons
(les mésons).

Cette thése sera organisée de la fagon suivante: dans le chapitre I, nous proposons
un modéle généralisant le modéle original de Skyrme. Ce modéle comprend outre le
pion, les mésons les plus légers. Il est basé sur le modéle o linéaire dans lequel les
mésons vecteurs sont introduits comme des champs de jauge non-abéliens. Le Lagrang-
ien sera construit de fagon i respecter les symétries importantes des interactions fortes.
Il dépend, comme on le verra, de plusieurs paramétres qui, conformément & 1’ esprit
de notre approche, vont étre fixés par la physique des mésons. Nous nous intéressons
ensuite aux solutions de type soliton de la théorie, qui vont étre identifiées aux baryons.
Pour savoir dans quelle mesure cela est raisonnable, il faut tester le modéle sur des
observables bien connues expérimentalement de la physique des baryons. Nous nous
sommes essentiellement concentré sur I’ interaction nucléon-nucléon que nous dérivons
de I’ interaction soliton-soliton. A I’ issue de cette étude nous saurons plus précisément si
notre généralisation du modéle de Skyrme peut étre considérée comme un bon candidat

pour la théorie unifiée des mésons et des baryons aux basses énergies.




Pendant notre étude nous avons rencontré un probléme de cohérence générale
propre & certains modéles du méme type que celui considéré ici. Ce probléme est lié
aux fluctuations quantiques de I' énergie du soliton qui peuvent étre parfois grandes.
Concernant ce point, les chances de réussite d’ une théorie eflective peuvent étre évaluées
dans le cadre de I’ approximation semi-classique. Les premiéres corrections quantiques
aux observables (par exemple la masse) du soliton sont trés importantes a cet égard.
Le chapitre II est consacré & 1’ étude de I’ énergie diie aux fluctuations du vide autour
des solutions classiques. Le modéle de Skyrme y est analysé dans cet optique afin de
déterminer s’ il est cohérent avec le développement semi-classique. Si ce n’ est pas le
cas, nous verrons dans quelle direction il faudrait chercher a le généraliser.

Nous avons été aussi intéressés par un probléme annexe, lié- au mécanisme de
stabilisation du soliton par un méson p. Ce probléme n’ a été que partiellement traité
par le passé, et des ambiguités subsistent encore sur le réle joué par ce méson dans la
stabilité du soliton. Dans le chapitre III nous allons élucider ce probléme en mettant I’
accent sur I’ importance des lois de transformation chirales du méson p. A cet égard, il
sera montré que la fagon de réaliser la symétrie chirale avec des champs vecteurs joue

un role important pour la stabilité.
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Chapitre I

Un modéele.des interactions fortes
a basses énergies
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Comme nous I’ avons rappelé dans 1’ introduction, Skyrme a proposé, il y a

trente ans, un modéle unifiant les mésons et les baryons. Dans ce modéle le Lagrangien
de départ ne contient que des mésons et les baryons apparaissent comme des solitons
topologiques. Plus récemment la recherche d’ un schéma d’ approximation de la QCD
non-perturbative a fourni des arguments confirmant cette idée de Skyrme.
D’ abord t’ Hooft [13] a montré qu’ il existe un paramétre de développement non-trivial
dans les théories de jauge non-abéliennes: le nombre de couleurs. Quand ce parameétre
devient trés grand QCD se réduit & une théorie effective de mésons faiblement couplés
entre eux. Dans les théories & couplage faible il existe parfois des solutions de type
monopole ayant une masse inversement proportionnelle 4 la constante de couplage.
- Witten [14] a appliqué cette idée au cas de la QCD pour émettre la conjecture que les
baryons peuvent étre considérés comme des solitons & la limite oi N, devient infini.

Mais comme nous I’ avons déji mentionné cette limite reste actuellement hors
d’ atteinte. Dans ce chapitre nous allons suivre la conjecture de Witten et essayer de
construire un Lagrangien effectif basé sur notre connaissance phénoménologique de la
physique des mésons. Notre motivation principale est la construction d’ un modéle
théorique simple et cohérent pour la description unifiée de la physique des hadrons aux
basses energies. Dans la section 1 nous présentons le modéle de Skyrme et résumons son
pouvoir prédictif dans le secteur des baryons tel qu’ il apparait dans la littérature. La
section 2 mettra en evidence la nécéssité de généraliser ce modéle primitif pour rendre
compte de la phénoménologie des hadrons. Nous allons proposer ensuite (section 3) un
modéle basé sur la physique des mésons les plus légers: 7 —p—w— A; —e. Les paramétres
du modéle vont étre fixés sur les observables du secteur des mésons dans la section 4.

Les solutions classiques de type soliton représentant les baryons sont recherchées dans
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la section 5. L’ interaction baryon-baryon est calculée dans la section 6. Le chapitre
se terminera par la section 7 dans laquelle nous allons présenter les résultats et nos

conclusions sur le modéle unifié proposé ici.

1. Les solitons du modéle de Skyrme
Le Lagrangien effectif le plus simple formulé en termes de pions et réalisant la

brisure spontanée de la symétrie chirale est celui du modéle o non-linéaire:
L = &T nyt 1.1
oNL = t(8,U0"U") (1.1)
frestla cof;stante de désintégration du pion expérimentalement bien déterminée (f, =
0.093 GeV). La matrice U = ezp(iif) contient le champ du pion 7 et est un élément
du groupe SU(2). La conséquence ,;mmédiate de I’ unitarité de la matrice U est la

présence d’ un courant conservé,

praf
B* = S Tx(9,UU'8,UU*9,UU") (12)

Il est clair sur cette formule méme que B* satisfait & une loi de conservation 8,B* = 0
qui ne résulte pas d’ une symétrie du Lagrangien. Ce courant est identifié au courant
baryonique.

Il a été montré dans la réf. [14] que si le terme de Wess-Zumino est inclus dans le
Lagrangien (1.1) les solitons de ce modéle ont les nombres quantiques des baryons.

En fait pour le cas des deux saveurs, qui est celui que I’ on considérera, le terme d’ anomalie est nul si
I’ on considére une théorie de pions uniquement. Mais il a été montré dans la réf. [15] que le courant
baryonique (1.2) méme dans le cas de SU(2) peut étre retrouvé en considérant la contribution des

boucles de fermions au courant U(1).
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Cependant le modéle (1.1) ne posséde pas de solutions statiques d’ energie finie car il

est instable par rapport aux dilatations [16]. Des solutions classiques stables existent

uniquement en la présence de termes d’ ordre supérieur. Le premier candidat suggéré

pour la description des baryons comme des solitons d’ une théorie oa les mésons sont

les champs élémentaires est le modéle de Skyrme, dont le Lagrangien est de la forme:

Lsic =Long + ﬁl—e;Tr([B,‘UU*,B,UU*][B“UU*,B"UU*]) (1.3)

e étant un parametre sans dimension. En développant le champ U en puissances du

champ du pion
U =exp (i7.7(z))
=2 (1.4)
=1 + i77(z) — 52— +

on obtient le secteur a charge topologique nulle. Les différents termes obtenus en rem-

plagant I’ expression (1.4) dans (1.3) décrivent les interactions dans le secteur des pions.

Le secteur des baryons correspond a des configurations non-triviales dans lesquelles le

champ U pointe radialement dans I’ espace de configuration et dans 1’ espace d’ isospin:

U =exp (s7.7F(r))
(1.5)

= cos F'(r) + (7.#) sin F(r)

+# étant le vecteur unitaire radial dans I’ espace des coordonnées. Cette configuration

est communément appelée hérisson (hedgehog) pour des raisons évidentes. Les solu-

tions classiques de charge baryonique n , n étant un nombre entier, doivent verifier les

conditions aux limites F(0) = nx et F(co) = 0. 11 est facile de montrer que la charge

topologique du soliton est:

Q= [ L2BolF()] = L(F(O) - Floo)) =n. (16)
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La fonction “chirale” F(r) est trouvée en extrémisant 1’ énergie statique du soliton

pour une valeur donnée de n. Cette extrémisation consiste a résoudre les équations

du mouvement classiques. L’ objet qui en résulte ne peut cependant pas encore étre

identifié¢ aux baryons de la Nature (nucléons, deltas etc..), la configuration U (eq. (1.5))

étant dégénérée en spin et en isospin. Un procédé de quantification de ces degrés de

liberté consiste a eflectuer une rotation de la solution U dans ' espace de spin et d’

isospin et ensuite la projeter sur les états propres de spin et d’ isospin. Ce procédé a été

utilisée par les auteurs de [17], qui ont ainsi calculé les propriétés statiques du secteur

B=1 (nucléon, delta). Leurs résuliats montrent que les baryons du modéle de Skyrme

sont assez proches de ceux observés dans la nature, [’ accord étant de ~30%.

Cependant, dans leur approche la constante de désintégration du pion fr a été

prise égale & =~ 0.06 GeV, largement inférieure & la valeur experimentale. Si on veut

préserver la description de la physique des mésons au niveau du Lagrangien effectif on

ne peut pas se donner la liberté de modifier la valeur experimentale de fr. On comprend

pourquoi la conclusion principale de plusieurs auteurst sur le secteur B = 1 du modele

de Skyrme est finalement la suivante:

La masse du baryon s’ avére étre trop large dans le modéle de Skyrme si les

paramétres du Lagrangien sont fizés sur la physique des mésonas.

Une autre observable de la physique des hadrons & basses énergies trés bien

déterminée expérimentalement et constituant un test sévére pour les modeles théoriques

est I’ interaction nucléon-nucléon. Il est donc naturel de se demander, si ce modéle repro-

duit les caractéristiques bien connues de cette interaction . Pour ceci, il faut construire

le secteur B = 2 du Lagrangien (1.3), et projeter sur les canaux de spin et d’ isospin

t qui ultérieurement on. remis fr a sa valeur experimentale.




de I’ opérateur potentiel NN. Une méthode simple et systématique a été inventée dans

[18]. Ces auteurs ont trouvé (leurs résultats sont en accord avec ceux de la réf. [19]

qui utilisent une méthode sérieusement plus compliquée car elle fait appel & des degrés
de liberté de quarks) que les canaux spin-spin et tenseur de I’ interaction entre deux
baryons du Lagrangien (1.4) sont bien reproduits, surtout a longue distance. Par con-
tre, les forces dans le canal central de I’ interaction nucléon-nucléon sont répulsives pour

toute séparation R entre les nucléons, comme il est montré sur la figure (1.1).

Figure 1.1
Composante centrale de I’ interaction nucléon-nucléon dans le modéle de Skyrme avee fi

et € = 3.6, réf. [18).




———

Quand on sait que la liaison des noyaux est justement diie & une (faible) attraction
dans ce canal de I’ interaction, on peut faire ]a remarque suivante sur le secteur B =2
du modéle de Skyrme
Les baryons du modéle de Skyrme ne peuvent pas former des noyauz, car d
moyenne portée leurs interactions sont répulsives.
Récemment, un calcul numérique {20] a montré qu’ une attraction émerge quand on résoud
exacteruent le systéme B = 2. Cette atiraction est cependant d’ une portée plus grande que celle qui
est nécessaire 3 la cohésion des noyaux.
Ces résultats sur la masse du nucléon et I’ interaction NN peuvent conduire
a penser que les modéles out les nucléons sont des solitons topologiques ne sont pas
vraiment réalistes. Toutefois, avant de remettre en cause I’ approche toute entiére, on
peut se demander si le Lagrangien (1.3) décrit de fagon réaliste la physique des mésons.
Il est & cet égard essentiel de préciser que le terme de Skyrme est un terme de la série
du développement chiral, i.e. le développement en puissances des dérivées du champ du
pion. A priori il n’ y pas de raison de sélectionner ce terme particulier d’ ordre quatre,
et non pas I’ autre terme d’ ordre quatre (symétrique en dérivées du champ du pion),
ou méme des termes d’ ordre six, etc... .
D’ un autre c6té, il existe une pléiade de résultats expérimentaux montrant I’ existence
de résonances dans les ondes S, P etc. de ]’ amplitude de diffusion ##x. Par exemple,
on sait que I’ onde § de la diffusion 77 est dominée par une résonance autour de 1 GeV

(le méson €). Les experiences de diffusion 77 ont revélé aussi I’ existence de résonances

dans les ondes de spin-1, bien en dessous de 1 GeV: les mésons p et w (de masses 0.77

GeV et 0.78 GeV respectivement). Ces mésons constituent des péles de 1’ amplitude de

diffusion et ils ne peuvent pas étre contenus dans des Lagrangiens locaux comme ceux du




type (1.3) définis en termes du champ du pion uniquement. Comme & I’ heure actuelle,

il n’ existe pas d’ approche systématique capable d’ engendrer dynamiquement des

résonances en théorie des perturbations, un bon point de départ pour rendre compte du

réle de ces résonances dans la physique des hadrons a basse energie est de les introduire

directement dans le Lagrangien effectif.

L’ inclusion de ces résonances n’ est peut-étre pas capitale aux échelles energetiques de brisure

de symétrie de la QCD (typiquement 1’ échelle de masse du pion = 0.1 GeV), mais il en est pas

forcement de méme pour la physique aux échelles des baryons (& 1 GeV),

L’ avantage des Lagrangiens effectifs en termes de mésons (pion, méson scalaire,

mésons vecteurs etc...) est de fournir une description unifiée des mésons et des baryons

comme il a été suggéré dans [21].

2. Généralisations du modéle de Skyrme

Les observations faites dans la section précédente sur la nécéssité de généraliser

le modéle de Skyrme ont conduit de nombreux auteurs & construire des Lagrangiens &

partir des mésons au-dela du pion, et examiner leurs effets sur les propriétés statiques

des baryons. On a vite réalisé que le terme de Skyrme, aussi bien qu’ un des termes d’

ordre six dans le développement chiral, peuvent étre interprétés comme les limites locales

d’ un Lagrangien contenant les mésons p (22] et w (23] explicitement. Par exemple le

terme d’ ordre six qui n’ est rien d’ autre que le courant baryonique au carré:

Le = -bB*B, , (2.1)

est la limite du Lagrangien de la réf. [23] quand le méson w devient trés massif (le

paramétre b peut étre relié au couplage wxam comme on verra par la suite). Une étude
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des effets des mésons vecteurs (w,p, A,) dans le secteur baryonique a été faite dans

[24-25). 1l y a été trouvé que les propriétés statiques des baryons sont sensiblement

améliorées par rapport au modéle de Skyrme original (4 part la masse du baryon qui

reste trop large).

Pour ce qui est des degrés de liberté scalaires, ils ont d’ abord étés introduits dans

le Lagrangien effectif & travers un terme d’ ordre quatre dans le développement chiral,

symétrique dans les dérivées du champ U:

Ls = [Tx(8,U8"U")]? (2.2)

La constante 4 est directement lide aux longueurs de diffusion ay et a; de I

interaction 77. En ce qui concerne les baryons, il n’ est pas difficile de voir sur cette

relation que la contribution 4 la masse du soliton provenant de Ls es. négative. Alors

que cette observation montre d’ abord que le seul méson ayant la propriété de faire

baisser la masse du soliton au niveau méme de I’ approximation locale est bien le méson

scalaire, le signe négatif de cette coniribution peut entrainer une déstabilisation du

soliton. Dans la réf. [26) la valeur critique de la constante v (au-deld de laquelle

les solutions sont instables) est déterminée aussi bien que les propriétés statiques des

baryons dans un régime de 4 inoflensif pour la stabilité. Il y a été trouvé que les

prédictions pour la masse du baryon sont sensiblement améliorées par la seule inclusion

de ce terme. Par ailleurs, une extension “non-locale” de ce Lagrangien, de fagon & inclure

les effets du méson scalaire quand ce dernier est de masse finie a été étudiée dans [27]}

dans le cadre de I’ interaction nucléon-nucléon. Des forces attractives apparaissent dans

le canal central de cette interaction, mais elles sont de longue portée. A moyenne portée

t ou le méson w est aussi présent




la répulsion, bien que diminuée par rapport & celle du modéle de Skyrme (section 1),

ersiste. En fait 1’ inclusion du champ scalaire dans cette approximation n’ a que peu
P

d’ effets sur le champ du w qui est le principal responsable de la répulsion. Dans la

section 3, on étudiera une fagon d’ inclure le champ scalaire qui aura aussi des effets

non-trivieuz sur le champ du w.

Il faut aussi préciser ici que la présence du méson scalaire n’ est pas seulement dictée

par la phénoménologie mésonique. Elle peut aussi traduire, au niveau du Lagrangien

effectif, I’ anomalie d’ échelle de la QCD [28]. Dans ce contexte, I’ interaction nucléon-

nucléon acquiert des contributions attractives dans son canal central, mais 1 encore

cette attraction est de longue portée [29].

Nous allons maintenant construire un Lagrangien eifectif contenant les mésons les

plus légers (m, p, Aj,w et le méson scalaire €), d’ une fagon qui respecte la symétrie

chirale, les anomalies du secteur mésonique et de fagon générale les propriétés de basse

energie de ces mésons.

3. Un modele unifiant les mésons et les baryons

Nous allons présenter dans cette section un modéle [30] qui constitue une extension

du Lagrangien effectif proposé par les auteurs de la réf. [24] de fagon & inclure des degrés

de libérté scalaires. En gardant les motivations des auteurs de cet article, on examinera

les effets de I’ inclusion de la résonance scalaire du canal S de la diffusion #n, sur le

secteur des mésons et surtout sur la physique des baryons.

Le Lagrangien sera divisé en deux parties, celle qui correspond au secteur SU(2)® SU(2)

décrivant la physique des interactions des mésons m,¢,p,4; 3 laquelle on ajoutera la

partie décrivant les intéractions du pion dans le secteur U(1) avec le méson w. Dans
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cette deuxiéme partie nous allons inclure les couplages anormaux du pion aux mésons

vecteurs par |’ intermédiaire du terme d’ enomalie de Wess-Zumino. Ecrivons d’ abord

ce Lagrangien, on verra ensuite comment y arriver:

L= £1r€p.-ll + l:n'w

avec Ly¢pq, donné par:

1 2 1
Lators = 5000 + LTHDLUDMYY) - XEE — T - ZT(X2, +¥2) 02

m2 A 2
+ =L TH(XE+ YD) + ——8"-‘—1&(x,3 +Y2 - UtX,UY")

et L, par |’ expression:

1 2
Lry = --wl, + ﬂw: + ﬂwwﬂB"

[349‘” * (33)
- i—s-‘-"“_—z-e"""’ﬁa,,w,Tr(XaLp ~ Yo Rp +ig(UY Ut X5 — Yo Xp))

Dans les expressions (3.2) et (3.3) les champs ¢ and w, représentent le champ scalaire

et celui du w respectivement. Nous avons utilisé les définitions suivantes:
U=el-??
DU =8,U +1ig(X,U -UY,)
X =0,X,-0.X,+ig[X,,X,]

Y, =8,Y, —8,Y, +igl¥,,Y,]

epval
= dn?
L, =8,uut

B T(L,LoLg)

R, =8,U'U




ot 7 est le champ du pion, et les champs X, = 7.X, et Y, = 7.Y, sont des champs

d’ isospin unité de chiralité gauche et droite respectivement. Les théories invariantes

chirales peuvent étre formulées plus naturellement en termes de ces champs gauche et

droit. C’ est la raison pour laquelle on prefére les utiliser eux, plutét que les champs

vecteur et pseudo-vecteur. On verra dans la section suivante comment ces champs

gauche et droit sont reliés au champs des mésons p et A;. Regardons maintenant de

plus prés ce Lagrangien.

a) Le Lagrangien Lxepa,

La premiére partie du Lagrangien de I’ équation (3.2) est basée sur le modéle o linéaire.

Ce modele décrit les interactions entre le pion et son partenaire chiral scalaire, le champ

o. Nl est commode de paramétriser ces deux champs d’ une fagon compacte par un champ

matriciel V = o(z)+i7.#(z). Alors la densité Lagrangienne du modéle & linéaire s’ écrit:

2
£ = Ae@,v6rv1) - 2 (%Tr(vv*) - r=) (3.5)

1l est clair sur cette expression que la forme bilinéaire Tr(%vvf) doit atteindre la valeur

I'? pour minimiser I’ energie potentielle. La constante I' est reliée & la constante de

désintégration du pion fx.

Paramétrisons maintenant le champ du quaternion ¥V d’ une fagon a en extraire son

contenu isoscalaire §:

L3

Y = {(z)U(z) = €&(z)exp (%;1’.1?(3)) (3.6)

olt £(z) est défini par £%(z) = o2(z) + #%(z), cette définition manifeste son caractére

scalaire par une rotation chirale, et le champ du pion est présent & travers la matrice

unitaire U. L’ équation (3.5) se met maintenant sous la forme:

£= 30,808 + %ﬁ(a,‘vaﬂv*) — A(€? - )2 3.7)
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Le modtle o non-linéaire peut étre retrouvé lorsque le paramétre A tend vers I’ infini.

En effet, quand A — o0, § doit tendre vers la valeur I' pour que I’ energie potentielle

soit finie dans I’ équation (3.7).

Il faut remarquer que cette écriture du modéle o linéaire simplifie considérablement le

formalisme, car les champs U et £ ont des propriétés de transformation simples pour

une rotation chirale,

En effet, la loi de transormation des champs U et £ par une rotation SU(2), ®

SU(2)R est:
U — A(z) U Bi(z)

(3.8)

§ ¢

avec les matrices A(z) € SU(2)L et B(z) € SU(2)s. 1l suffit de rendre maintenant le

Lagrangien (3.7) invariant sous une transformation chirale locale. Puisque les matrices

A et B sont des fonctions de I’ espace-temps, on introduit des champs de jauge non-

abéliens X, et Y, pour compenser la variation diie aux dérivées dans I’ équation (3.7).

La substitution des gradients 8,U par les gradients covariants D,U définis plus haut,

assure 1’ invariance locale de I’ action. Au Lagrangien obtenu il faut aussi ajouter les

termes cinétiques des champs de jauge gauche et droit, et le résultat sera invariant sous

les transformations (3.8) pour U et § et

X, — AX,At - iAB,.A*

: (3.9)
Y, — BY,B'- ;BB,,B*

pour les champs X, et Y. La symétrie locale SU(2)L ® SU(2)n est ensuite brisée

de fagon minimale en ajoutant des termes de masse pour les champs gauche et droit.

Remarquons ici que le méson scalaire introduit par le biais du modéle sigma linéaire,

donne lieu & une contribution positive & I’ énergie comme I’ équation (3.7) le montre.
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Un autre avantage de jauger le groupe SU(2)L ® SU(2)r est d’ avoir une description

symétrique des mésons p et A;, car ils sont décrits en tant que partenaires chirauz.

b) Le Lagrangien Lx,

L’ équation (3.3) décrit le secteur U(1) des interactions mésoniques aux basses

energies. Le premier terme dans cette équation décrit le couplage du w aux trois pions

dans le secteur des mésons, et son couplage au nombre baryonique dans le secteur non-

trivial. Ensuite vient le terme d’ anomalie que I’ on doit inclure, car le secteur U(1)

est le secteur dans lequel les anomalies de Wess-Zumino [31] font leur apparition (voir

plus bas). Mis & part ces considérations dans le secteur des mésons, le couplage du w

au courant baryonique est essentiel pour la stabilité des solutions classiques [32] dans le

cas ol le champ chiral se couple & des champs de Yang-Mills massifs. Si on adopte ce

point de vue, la présence du w dans le Lagrangien effectif est donc d’ une importance

capitale pour la physique des mésons (anomalies) aussi bien que pour celle des baryons

(stabilité).

En fait, ces anomalies sont diies & la présence d’ une symétrie discréte que le modéle sigma (non)-

linéaire posséde, et qui n’ est pas observée dans la nature. Cette symétrie “redondante” interdirait des

processus ol le nombre des bosons n’ est pas conservé [14]. Le terme de Wess-Zumino effectif, assure

que 1’ on tient compte de ces processus dans le secteur mésonique du Lagrangien effectif, car il brise

cette symétrie. La dérivation du terme d’ anomalie quand les champs de jauge sont présents, peut étre

trouvée dans la litiérature [33).

On n’ a pas considéré le couplage direct des degrés de liberté scalaires au méson

w. Ces couplages ont été étudiés dans [34], pour la photoproduction de pions. Les

résultats montrent que les couplages du type ¢%w? engendrent un état lié dans I’ onde

S, en désaccord avec la phénoménologie.




On va s’ intéresser maintenant aux propriétés de transformation du Lagrangien
(3.1). Celles-ci peuvent étre utilisées pour calculer les courants de Noether associés &

des rotations de SU(2), et SU(2)p aussi bien que celles de U(1).

Effectuons des transformations locales sur les champs du Lagrangien (3.1)

U—-U+iQU
Xy — X, +ilQr, X, - 8—"5—’1 QL = a',,(;).; (3.10a)
Y, Y,
- pour SU(2) et
U U -ilUQr
0,Qr €r(z).7 (3.108)

fo Y, +i@u il - 238 g, = B
Xy - X,
pour SU(2)a. €L(z) et €r(z) sont des fonctions arbitraires. La variation du Lagrangien

satisfait alors les relations suivantes (& une intégration par parties prés):

Zuy = <, 6£ 1 -
8sv(2) £ = — (BudL)ér + (=37 — 735
B

Pty - oc 1 -
550(2);:5 =- (aqui)fR + ("sz - 5}7'2;)3,‘ €R
I

(3.11)

avec les courants gauches et droits ff, ;ﬁ En calculant les membres de gauche de ces
équations avec les lois de transformation (3.10) et en combinant les expressions de ces
courants on arrive a 1’ expression des courants vecteurs et aziauz:
f/‘ 3L , R _ ; D) 1 v v £2 + t
p =0y iy = zTr{-r[4([X y X + YV, Y, ]) + Z(D"UU +D,UtU)

B el (L7 ~ B+ igu(-X* + Y= 1 Uy vy},

+ 1672
(3.124)

26



A N (UrS | 2
All =Jf - Jf = ITI‘{T[Z([X",X“,] - lyu, Ypu]) + %(D,,UU* - D“UfU)

lg €upvalwP”(L* + R®) — igduw*(X* + Y + U XU + UY”U')]]}
(3.12b)
On peut montrer que ces courants, toujours en vertu de I’ équation (3.11), satisfont aux

équations suivantes:

8,V =0
8, Ar Tr[“gzﬁwe " w¥(XY?P ayf (3.13)
= - = wapd'w’(XY? + Y2 XP)

Ces relations, témoignent de la conservation du courant vectoriel et de la non-
conservation du courant azial, cette derniére étant diie & I' anomalie. Elles sont bien
connues et vérifiées par I’ expérience. Pour retrouver PCAC,.ii faut ajouter un terme
de masse du pion comme il a été fait dans [24). Il est utile d’ observer aussi que
dans le terme qui couple le w aux champs 7, X et ¥ (équation (3.3)) le contreterme de
Bardeen (proportionnel & g?) assure que I’ anomalie subsiste uniquement dans le courant
axial (équation (3.13)). Cette soustraction a aussi pour effet de briser explicitement la

symétrie chirale.

Le courant U(1) déduit du Lagrangien (3.1) est identifié au courant baryonique.

Son expression est:

Bl‘
Tt g

T — " PTH[8,(XaLp — YaRp +ig(UYalU'Xp - Yo X))  (3.14)

Ce courant est normalisé & la moitié du nombre baryonique et satisfait a la relation
3uJfo = 0, car comme on a vu dans la section 1 B, est totalement conservé et la

contribution du terme de Wess-Zumino & (3.14) est une divergence totale.
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Notre Lagrangien de mésons posséde une structure conforme aux propriétés générales
des interactions fortes, nous pouvons maintenant examiner sa limite locale, ¢’ est a dire
les termes du développement chiral en puissances de dérivées du champ du pion qui en
résultent lorsque les autres mésons (p,w, 41, €) deviennent trés massifs. Nous avons déja

remarqué que quand le paramétre A (qui est proportionnel au carré de la la masse du

méson scalaire) devient trés grand on retrouve le modéle ¢ non-linéaire. Pour ce qui est

de la contribution des mésons vecteurs, on peut montrer (Appendice C) en utilisant les
equations d’ Euler-Lagrange pour les champs X,,,Y,, et w,, qu’ en ]’ absence du terme de
Wess-Zumino et quand les masses m,,,m,,m 4, deviennent trés grandes le Lagrangien
se réduit a:
L - Lopgpe= f-’ima,‘vaw*) + —l—Tr([B,,UU*,a,,UU"]z) - ff'—B,,B" (3.15)
4 6492 2m?,
On obtient donc les premiers termes du développement chiral avec 1’ absence du terme d’
ordre quatre symétrique en dérivées du champ du pion. Cette propriété est la bienvenue
car elle empéche la déstabilisation du soliton comme il a été vu plus haut. Elle est une
conséquence de 1’ introduction du champ scalaire par le biais du modéle sigma linéaire:
seuls les termes ayant une contribulion positive & I’ energie sont présents.
On a donc répondu & la demande des sections 1 et 2 en construisant un Lagrangien
qui généralise le modéle de Skyrme. Pour savoir si ce modéle a des chances d’ étre un
bon modéle effectif, on doit d’ abord étudier les prédictions de ce Lagrangien pour les

observables dans le secteur mésonique.




4. Le secteur des mésons

Nous allons nous intéresser maintenant aux masses, couplages et propriétés des

mésons dans notre modéle. Les différenties observables dans ce secteur sont obtenues en

développant le champ U en puissances du champ du pion:

U =exp(}‘:—'i".1'r'(z))
L 1 72
=]+ —;;1'.7[(3) - F ;2)

n

(4.1)

Le champ du méson ¢ est relié au champ € par la relation € = I' — £, En remplagant

cette expression dans I’ équation (3.2) on trouve la relation pour la masse du scalaire:

m? = 8AI'%,

Considérons maintenant la contribution dans le secteur des mésons des termes qui

ne dépendent pas du champ scalaire dans I’ équation (3.1), et remplagons U par son

développement en champ du pion. 1l est facile de voir que si I’ on utilise la définition

naive du champ axial A* = (X, — Y,) on obtient des couplages linéaires avec le champ

du pion : (Cte)d,7.A". Pour les faire disparaitre, on doit diagonaliser le Lagrangien a1’

ordre le plus bas. Le résultat de cette diagonalisation aussi bien que de I’ identification

de la masse physique du méson A, est exprimé par les relations suivantes:

2gf1l' =
m2 + Am? Ou7)

m% + Am?

1
(m% + Am? — 2¢2f2)?

(Xu - Yy + (4.2)

La présence des champs de jauge conduit a la relation suivante entre la constante I et
2
m
M= A,
Ix Jx m2 + Am?




En sélectionnant maintenant les termes cubiques et quartiques dans les champs,
on obtient les couplages d’ interaction forte des mésons. Il est aussi possible d’ obtenir
les interactions éléctromagnétiques de ces mésons. Pour cela, il suffit de jauger le groupe
U(1)-éléctromagnetique dans I’ équation (3.1).
Ces couplages peuvent étre utilisés pour le calcul d’ observables mésoniques au premier
ordre des perturbations. Nous donnons ici I’ expression de la largeur I' 4, ¢ calculée

avec le Lagrangien (3.1), d’ autres expressions pouvant étre trouvées dans [24]:

8I2g2 2¢%f2 2 \ . o 2 213
e = - v - - 4.3
r.'h ¢ lgzwmfhf’% mz + Amz [(m.'h + mn‘ m() 4m-“lm‘l‘] ( )

Les observables mésoniques, comme !’ illustre la relation (4.3) dépendent des paramétres

présents dans le Lagrangien (3.1). On fixe ces parameétres en ajustant certaines de ces

observables, ce qui donne:

m,,- = 0.769 GeV
m,, = 0.782 GeV
g=3.18
Am? = —0.462m?
fx =0.093 GeV
B, =93
m,, m, ont été prises égales aux masses physiques de ces mésons. Les valeurs de g et
Am? reproduisent la valeur experimentale de la masse du méson 4; (m,4, = 1.194
GeV) et la largeur T'yixr. Celle de B, reproduit la largeur éléctromagnétique de
désintégration du w en un pion et un photon. En ce qui concerne la masse du méson
€ (proportionnelle & w,/X), remarquons que ce dernier a une largeur assez grande. Nous

avons préféré pour cette raison laisser libre m,, & varier entre 0.5 GeV et 1.0 GeV.
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Une fois les paramétres fixés sur certaines observables mésoniques, il faut remar-

quer que le Lagrangien (3.1) peut prédire d’ autres observables dans le secteur des

mésons. Ceci a été illustré dans la référence [24] ot le modéle o non-linéaire était &

I’ étude (la limite A — oo de notre modéle). Dans le cadre de notre modéle, le choix

de la valeur de 1 GeV pour la masse du scalaire donne pour la largeur partielle du 4,

(équation (4.3)) une valeur de 0.1 %, qui est en accord avec la limite experimentale

(< 1.0 %).

Le couplage du méson A, au champ scalaire € modifie la constante de couplage ex=:

2 22
6 = L(1 - —"T;g_;,—f‘,—"—;). En utilisant cette relation, on peut éventuellement donner une

prédiction pour les longueurs de diffusion 7w qui dépendent de §,. Avec m, =1 GeV

on obtient a9 ='0.235 fm et a; = —0.056 im, & comparer aux valeurs experimentales

ap = 0.36 3 0.07 fm et a; = —0.039 & 0.017 fm [35]. {.

En résumé, nous avons determiné les paramétres du modéle ¢ linéaire, de fagon &

ce qu’ il puisse décrire la physique des mésons =, p,w, 4;, € et de leurs interactions. Une
p P

fois ces parameétres fixés sur un nombre d’ observables égal au nombre de ces paramétres,

il est clair que ce Lagrangien posséde encore un pouvoir de prédiction important dans

le secteur des mésons [24].

Nous allons éxaminer maintenant a quel point une théorie réaliste de mésons peut étre

utilisée pour décrire aussi les baryons. Ceux-ci se trouvent dans le secteur non-trivial

du Lagrangien effectif, celui des solitons topologiques.

5. Le secteur baryonique

Construisons d’ abord les solutions & une unité de charge baryonique. Ces solu-

tions des équations du mouvement, sont statiques et ont une energie finie.
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Les composantes Xy, Yy,w; = 0 sont nulles & la limite statique. On considére les champs

classiques (hérisson) suivants:

U =exp (:7.+F(r)),

Xi =a(r)r + (8(r) = a(r))(7#)i + 2(r )7 x 7);,

Y; = — a(r)ri - (B(r) — a())(F); + (e )(7 x F);, (5.1)

wo =w(r),

£ =¢(r)

ol les profils F,a,v,8,w, £ sont des fonctions radiales. L’ energie de la configuration de

type soliton est égale & — f Ld>F. Son expression est donnée par:

E= 4w/°°r2dr{4(1 ~gla? +72))2 +2(% + L = 2gaB)? + 2(& + 2= B+ 268y
0 r T r
+ L1t 20 +2E s agfacos Py + S 4@ -T2 (52) i*

. 1.
+m2[B? + 2(a® + 4?)] + Am?[2(acos F — ysin F)? + %] — é(w2 + m2w?) ‘

sin’ F
27 2p2

asin®? F ysin2F
+ Bow - r

. +4garysin® F — gsin 2F(a® — 1’)]}

. w
F +ﬁw9§5[—2

Nous allons rendre ensuite cette fonctionnelle stationnaire par rapport aux variations

arbitraires des champs F,a,f3,7,£,w en résolvant les équations d’ Euler-Lagrange as-

sociées. Ces équations sont des équations non-linéaires couplées. On trouvera leurs

expressions assez longues et compliquées dans I’ Appendice A. Les configurations de

nombre baryonique unité et d’ energie finie satisfont aux conditions auz limites F(0) = =,

F(oo) = 0 pour le champ chiral et £(0) = 0, £(c0) = T pour le champ scalaire. Celles

pour les champs de jauge résultant des équations du mouvement sont: &(0) = 4(0) =

@(0) = 0, 4(0) =0, a(c0) = B(o0) = ¥(o0) = w(cc) = 0. Les solutions classiques pour

les profils F et € sont représentées sur la figure (1.2).
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Figure 1.2

Solutions classiques éxtrémisant 1' energie du soliton. Sur cette figure le champ chiral F' est sans

dimension, et le champ scalaire € est en fm"l . On a representé sur les courbes pleines les solutions du

modele linéaire avec A = 0.8 et sur la courbe en pointillés la solutions pour F' du modéle non-linéaire

(A = oo).

Les solutions des équations du mouvement différent tant qualitativement que quanti-
tativement de celles du modéle non-linéaire. Un des aspects essentiels du couplage du

scalaire au champ chiral est la diminution de la fonction de profil F & I’ intérieur du
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soliton comme il est clair sur la figure (1.2). Cet effet du champ scalaire a été aussi ob-

servé dans la réf. [29). Mais dans notre modéle, la présence du champ scalaire influence

aussi la solution classique des champs a, 8,v,w:

Figure 1.3
Solutions classiques pour les composantes spatiales des champs de jauge &,< et pour le champ du w.
Tous les champs sont est en fm_l. On a representé sur les courbes pleines les solutions du modéle

lindaire avec A = 0.8 et sur les courbes en pointillés les solutions du modéle non-linéaire (A = 00).

En effet, comme nous pouvons le constater sur cette figure, le couplage du champ scalaire
2

au champs de jauge via le terme %—Tr(D,.U D*Ut) supprime fortement ces champs au

niveau classique (d’ un facteur 5 quand la masse du scalaire est égale & 0.5 GeV). Plus

étonnant encore est I’ effet sur le champ classique du w. Ce dernier voit sa portée réduite
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dans le cas linéaire. Ce phénoméne, est observé uniqguement gquand les mésons p et A,

sont présents comme nous I’ ont indiqué des analyses numériques du cas o1 la constante

g tend vers zéro. Ceci montre I’ importance d’ inclure les mésons de masse finie dans

le Lagrangien effectsf.

Quels sont maintenant les effets sur les propriétés statiques du secteur baryonique? Pour

le savoir, il faut calculer des observables telles que la masse du nucléon, la constante

de couplage axiale, etc... Nous avons calculé des quantités qui dépendent seulement

des solutions classiques des équations du mouvement, ¢’ est & dire la masse du soli-

ton, le rayon isoscalaire du baryon et la constante de couplage axiale. Nous n’ avons

pas considéré des observables comme la masse du nucléon et du delta ou les moments

magnétiques, car leur calcul nécessite des corrections quantiques & la solution classique.

L’ évaluation de ces corrections, méme dans I’ approximation semi-classique est lour-

dement compliquée par la présence des mésons vecteurs. Par ailleurs, ces effets n’ ont

pas d’ importance pour le calcul des intéractions statigues entre les solitons. La masse

du soliton est donnée par 1’ expression (5.2). Pour ce qui est du rayon isoscalaire, en

remplagant les expressions (5.1) dans celle de la densité baryonique (2J}.,), on trouve:

o0
< >i= '1-2;/ rzdr{ — F sin®F
0

(5.3)
+ 4gsin Fla(l — 2gyr)sin F + ycos F + gr cos F(a® — 72)]}

La constante de couplage axiale g4 du nucléon peut étre calculée par projection directe

sur ]’ élément de matrice de la troisitme composante du courant axial entre deux états

de nucléon comme il a été fait dans [17]. En appliquant le théoréme de la divergence &

P équation (3.14), on trouve !’ expression suivante:

g4 = ——-—a'fz h ( 3y - 4 ﬂw‘/ r*(a? — 4 )odr (5.4)
0
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Comme il est illustré sur la figure (1.4) la présence du champ scalaire conduit & une
diminution notable de le masse classique du soliton, mais aussi de < r? >}}=0 et de g4
en comparaison avec le modéle non-linéaire.

Figure 1.4
Variations de quelques observables statiques (courbe pleine: masse, pointillée : g4 et chaine-pointillée:

L]
< 72 >7_) dans le secteur B=1 quand la masse du scalaire varie entre 0.5 et 2 GeV. Les valeurs

sont normalisées & celles du modéle non-linéaire [24].

1.5

M, Gev)

6. L’ interaction nucléon-nucléon
Pour calculer 1’ interaction entre deux solitons il est nécessaire d* approximer la

forme des champs U, X,Y,w, ¢ dans le secteur B = 2, car la forme exacte de ceux-ci dans
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ey ey

le cadre de notre modéle est trés compliquée & déterminer. Une approximation simple

connue sous le nom d’ approximation du produit, offre une description raisonnable de.

I’ interaction entre deux solitons statiques, c. a. d. deux solutions du secteur B = 1.

Cetle approximation consiste & supposer que la configuration des champs, quand les

deux solitons sont séparés d’ une distance R, est un produit de la forme:

2s B ciyw Rypeyo, R
VS R) = UP='(F - 5)Us 1(r+-2l (6.1)

oit UZ= est la solution B = 1 trouvée dans la section précédente. Les mérites, aussi bien

que les défauts de cette approximation sont trés largement discutés dans la littérature

[19]. Pour notre part, nous allons insister sur deux aspects importants que seul I’ ansatz

du produit contient de fagon naturelle. D’ abord, étant donné que I’ on‘veut calculer un

potentiel local, la définition de la séparation entre les deux solitons doit étre dépourvue

d’ ambiguités, ce qui est le cas de I’ approximation (6.1). Ensuite, le nombre baryonique

associé 3 la configuration du membre de droite de (6.1) est automatiquement égal a 2.

Dans un calcul exact on ne peut tenir compte de ces conditions essentielles sans aggraver

la complexité du probléme [36].

On ne s’ attend pas & ce que I’ approximation du produit puisse donner une bonne de-

scription de I’ interaction aux courtes distances. Cependant, le centre de notre intéret est

la moyenne portée (R > 1 fm) du potentiel nucléon-nucléon, région o1 I’ approximation

du produit devrait étre adéquate.

La configuration {6.1) est dégénérée en spin et en isospin, car elle est purement

classique. 11 en résulte que I’ interaction entre les deux objets du membre de droite de

cette équation n’ est pas identifiable & I’ interaction baryon-baryon. Pour construire I’

interaction nucléon-nucleén il faut lever cette dégénérescence en effectuant des rotations




{

dans I' espace SU(2) des deux solitons séparément: Uy(7 + g) — AUY(7 + -2’-1.:)44",

Uo(7 - —g) — BUy(7 - -{‘,—i)Bf avec les matrices A = aq + i7.d et B = by + i7.b.

On suppose maintenant que les champs de jauge gauche et droit se transforment comme:

Xi(7, R,C) = A[Xi(R) + Uo(7)CXi(72)CUL (71)) A
(6.2)

Yi(7, R, C) = B[Yi(#2) + Ul (72)C'Yi(71)CUy(72)) B

e

pour ces mémes rotations 4 et B. On a utilisé les notations 7} = 7+ -g- and 72 =7~

Il est évident que seule la rotation relative C = A'B = ¢y + i7¢importe dans le systéme

a deux solitons et I’ interaction baryon-baryon comme on le verra par la suite s’ écrit

comme une fonction de ce produit C = A'B. La transformation (6.2) des champs de

jauge X; and Y; est conforme & leur loi de transformation & la limite locale (voir section

3). En effet, & cette limite les champs de jauge tendent vers les gradients du champ

du pion: X; — 1,”,;[;3;UU" = 5‘;L,~ et Y; — %?B;U"U = 5‘3R,~, et il est facile de o

montrer que les courants L; et R; se transforment comme la loi {6.2) par une rotation

de SU(2) ® SU(2).

Pour ce qui est du champ scalaire il est clair qu’ il ne peut dépendre que des variables

7 et . Une forme compatible avec I’ approximation du produit pour le champ U et I’

équation (3.6) est:

g ) = {0 (7) (6.9

Ces formes (6.2) et (6.3) pour les champs de jauge et le champ scalaire dans le secteur

B = 2 bien que cohérentes, ne satisfont pas équations du mouvement dans ce secteur.

Mais pour ce qui est du champ du w on n’ a pas cette liberté, car ce champ ne se

propage pas, il est simplement contraint. La composante temporelle de ce champ obéit

a I’ équation suivante:

(8 —m2)w = S (6.4)
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ol § est la fonction source § = 26,Jf ;. Jf-o est le courant baryonique défini en

(3.14). 11 est clair que les configurations des champs U, X; et ¥; une fois choisies celle

du w est automatiquement donnée par I’ expression (6.4)t.

L’ équation (6.4) peut étre reécrite comme w(F) = f G(F — #')S(7')d>+', avec G(7) =

o ﬂﬂ:ﬁ'ﬁlﬂl. En insérant les configurations des champs U, X; et Y; (6.1-6.2) dans cette

expression on obtient celle du champ w dans le secteur B = 2:

w(F, Byey) = w(ft) + wlfe) + we(F, By c,) (6.5)

Les deux premiers termes du membre de droite de cette équation ont déja été con-

sidérés dans [27] ol le terme mixte wr avait été négligé parce qu’ il est de courte portée.

En fait le calcul ezact des termes contenant wr dans I’ interaction est sérieusement

compliqué du point de vue numérique, la raison est la dimensionalité élévée (R®) des

intégrales qu’ il faut évaluer. Néanmoins nous avons efféctué les calculs numériques

de ces termes pour certains points autour de 1 fm., pour s’ apercevoir que pour le cas

de notre modéle ces termes sont petits. Nous avons par conséquent négligé wr dans I’

expression (6.5). Pour étre cependant complet on donne son expression:
wr(7, Ry eu) = Bu / d*r'G(7 ~ F'){Tg(i”, R,c,) + Ta(7', R, c,,)}

Ts(7, R,C) = %Tr(R}CL?LiC" - RIR}CLiCY) (6.6)

avec

8

Tu(7, R, eu) = ’—“’-E'gia.-{'l‘r[I}CLiC* - Rlexict - Rieriet + vjieLic!

+ig(IiCcIiCt + Y] CXiCt - CY}C' X}

- vfcuictycuctu,cxict - xicujotyeu,ct

+ XY} - Ujcyictu,cxict + Xiy?)) } (6.7)

t Ceci est vrai pour tous les secteurs baryoniques B = 1,2,...N.
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Nous avons fait usage des notations compactes I} = UYM)Xi(A)U(F), I?
UR)Yi(R)UNR), Rl =8UNAWGE), L =aU@UNR) Ui=UF), U=
U(f2), X = Xi(72), Y} =Yi(R), X} = Xi(71), Y7 =Yi(72) .

L’ opérateur potentiel soliton-soliton est donné par I’ expression:
V(R.,C,.) = —/d3F{£B=2(F1,F2,C”) - 2£D=1(1-")} (6.8)

Pour notre modeéle, il faut remplacer les configurations du secteur B = 2 présentées plus

haut dans cette équation. Le résultat peut étre écrit comme la somme de deux termes:

V(R,c,) = / d"i‘{ Uepa, (7, By ) + U7 R, c,.)} (6.9)

Dans cette expression la premiére partie est la contribution associée & Lo, décrivant
les effects diis aux champs 5, A;,¢ et la seconde correspond & la contribution des cou-

plages du méson w:

Ueoar(7, Rycu) = %Tr{ur,.‘,. [caxict-co;xict - RiCcX}C! + RiCX}EC!
+ CX2C'R} - CXIC'R} +ig(CIX?,X2]C! + CX?C'I} - OXICH]
+I}CX}iCt - 1;CX]CY)] + 2RICX]Ct[RiCX}C! - RiCX}C!
+2g(I}cxict - ricxict - (I, I)]))] + 4RI CX}[ - 8, X}C?
+8;X]C' - X;C'R} + X]C'R} +ig(X]C'I} - X}C'I} — [X},X?|CY)]
+4C8:X2[X2CR} - X2CIR} +ig(X2CHT} - X2C'T} + 1}, 1Y)
+2CX;C'R}[CX]C'R} — CX]C'R} + 2ig(CX}C'I} - CXICHI} + I}, 1}))]

+4igX;C'R} (I} C X} - I}CX} + C[X}, X}]) + 4igd.X}CH I} CX? - I} CXE)
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- 4g° [ -cxieNnnnl + il - 2 1M}) - C'C(XF X3XE + XPX?X]
-2X}X:X}) - Hlexixict - rjrjcxixict + 2l rjexi x:ct

1
+5 [cxictri(cxictn} - cxict}) + ClIioxi(CMIC X} - Ct} CX,?)]] }

* <Fifi - F.%-,C—’ CtaIa'l - Ia'zaxiz - Y‘-l,R,! - L'2>

24 2
+ S ] o +ig(x - IO + O - BICHaLE +.%F - X))}

2

2 2
+ (Egz + _A_;_Z‘__ JTHIZCtY}C + FCX?CH) - é?—'I‘r[I.-‘C'I?’C'* +Y!oXx}icl

- Ltesat - -0 - ) (2 - 826
(6.10)

U (7, R.,c,.) = -—%’-{wl(Bg + A?) +wa (B + Al)
+ (“’1 + “’2)[TB(F: R.» cu) + TA(Fa jia cu)]

+ wp (T, E, €u) [Bé + A+ Bg + A%+ Ts(r, E: cu) + TA(;’ fi, c,.)]

(6.11)
avec les notations
Fl; = UN®)8iX;(M)U(R), F} = U(2)8iYj(72)U (72), By = ;::: Te(LiL;L}),
B} = 33 TS L), A" = A(R), 4° = A(R2), & = £(R). & = €(R2),
wy = w(F1), w2 = w(72)
(6.12)
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Aprés avoir integré sur la variable 7, il nous reste une fonction de R et des variables Cye

Il n’ est pas difficile de montrer que cette fonction est en fait un polynéme d’ ordre pair

en ces c,:

V(R,c,) = vo(R) + vo( R,c,) + vs(R, ¢,) + vs(R,c,) (6.13)

avec la forme générale pour les vy, (p=1,2...) :

va(R,cy) = a1 + o2ct + ascl

vy(R,e,) = Br + Bac? + Bsc? + Bsct + Pscicl + Poct (6.14)

‘Ue(ﬁ, c,,) = o

-
Pour arriver & ces expressions nous avons pris le vecteur R paralléle a1’ axe z de I’ espace

de configuration}. Maintenant, les fonctions o et B peuvent étre calculées en prenant

différentes projections de la matrice C dans le membre de droite des équations (6.6),

(6.7) et (6.10), (6.11). Pour donner un exemple, la fonction a; est égale au membre de

droite de I’ équation (6.9), dans laquelle il faut retenir seulement les termes quadratiques

en ¢, et prendre C = i73. L’ expression exacte des a;, 8; est donnée dans I’ appendice B.

Les termes d’ ordre six dans le polynéme de 1’ équation (6.13) proviennent du terme de

Wess-Zumino {ce terme contribue aussi & vg, vz et vs). Nous avons négligé ces termes

dans notre étude car ils contribuent essentiellement a des opérateurs en représentation

de spin élévé. L’ approximation de négliger vs peut étre partiellement justifiée par les

résultats de la réf. [24] ol il a été trouvé que le terme de Wess-Zumino a globalement

un petit effet sur les observables du secteur B = 1.

Pour extraire maintenant les canaux physiques (de spin et isospin définis) de I’

interaction, on utilise la méthode simple de projection qui a été introduite dans la réf.

t On ale droit d’ effectuer cette projection car le potentiel ne dépend que de |R].
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[18]. La décomposition naturelle de I' opérateur potentiel non-relativiste agissant dans

un éspace & deux nucléons est:

V(R) = VE(IR)) + (ABVE (1) + (51.62) [Vs(IR]) + (71.7)Vs5(1R))]

+ [3(51.R)(52-R)/ R? - (61.52)] (V4 (1BI) + (7. %)V (IR)))

Pour calculer les six composantes V&, VS ,... dans notre modéle, il faut six équations.

On les obtient en égalant six éléments de matrice de V() (6.15) avec ceux de I’ opérateur

V(R,c,) (6.9), ces derniers étant éxprimés en termes des fonctions d’ onde de spin et
o P

d’ isospin du nucléon. La solution de ce systéme d’ équations est:

‘ ‘ .
VC'." = /da,,/db,,ﬁ(;az - 1)5(; bz - 1)V(R,¢n)f3(4mba)

= o +a1+ B+ §(ar +Bs + s +fs) + 5(0s +Ba) + 5B

4 4
Vy = / da, / db, ()" a2 —1)8( 82 ~ 1)V(R, cu)f7 (a0:5,)
=1 u=1

1
432

4 4 -
Ves = [ dou [[ab,8(3 a2 - DAY 8 = V(R fislansb)
s=1 u=1

(6.16)

= —s—lz(aa +B3)+ —==05 + %ﬂs

1 1 1 1 1
= %‘(az + f2) - m(aa +83)+ Zgﬂ-: + mﬁs - mﬂo

ol les a, sont les variables du nucléon 1 et b, celles du nucléon 2. Dans ces formules les

fonctions f%, f5,... sont des densités dans I’ espace SU(2) ® SU(2). Leurs expressions




sont données par:

1
fg(ambu) = 5;.1‘(“? +a§)(bf + bg +b§ + b;‘;)

- 1
F(ombe) = g { (0 + a8 + ] — 83— B

+ (4100 - i(azdo + 0103) - azda)(b1 bu + i(bzbu + b1ba) - bzba)} (6‘17)

fgs(ambu) = fq_*(am bu)

+ 531}-;(0.1(10 - i(azao + 0.1(13) - dzda)(b1bo + i(bzbo + 6163) — 6263)

Pour les calculs numériques les expressions en a; et 3; sont cependant d’ une plus grande
utilité. C’ est aussi celles que nous avons utilisées pour calculer les différents canaux de
P interaction nucléon-nucléon dans le notre modéle.
Il est & noter ici que les fonctions &, B; peuvent étre utilisées pour calculer non sculement les inter-
actions entre nucléons mais aussi celles entre des baryons de spin plus élevé. Ceci a été fait dans (18],
Dans notre modéle le calcul de ces interactions nécessiterait 1’ inclusion des termes comme vg dans
(6.13).

On va s’ intéresser maintenant aux résultats, pour estimer si des modéles effec-
tifs basés sur une déscription cohérente des mésons peuvent reproduire les aspects car-

actéristiques de !’ interaction nucléon-nucléon telle qu’ elle est observée par 1’ expérience.

-

7. Discussion des résultats

Nous avons calculé numériquement les différentes composantes Vc}" » Vo, Vgg avec
les fonctions de profil F, a, B, 7, w, € obtenues dans le secteur B =1 (section 5).
Tout d’ abord, nous avons trouvé que la contribution du terme d’ anomalie de Wess-

Zumino au potentiel est trés petite. Ceci est en accord avec I’ observation des auteurs
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[24] qui ont trouvé (dans le cadre du modéle ¢ non-linéaire) que ce terme bien qu’

important pour la bonne description de la physique des mésons est beaucoup moins

important dans le secteur des baryons.

La contribution essentielle & U, est diie au couplage du w aux trois pions. On peut mon-

trer (aussi bien analytiquement que numériquement) que si le terme de Wess-Zumino

est négligé, la contribution de U, au potentiel VI est répulsive. Par ailleurs on a vu

lors de I’ étude du secteur B = 1 que le champ du w dans le modéle linéaire est d’ une

portée inférieure & celle qu’ il a si le paramétre A est trés large (modéle non-linéaire).

Cet effet est a1’ origine de la suppression de la portée du terme U, dans le canal central

de I’ interaction (table 1). La répulsion die au champ du méson w est de courte portée

dans notre modéle. Cel effet est di & I’ inclusion simultenée de tous les mésons.

En ce qui concerne la contribution du terme Ug,.4, & V¥, on peut montrer que le premier

terme de I’ équation (6.10) est positif alors que les deux derniers (absents du modéle de

Skyrme) sont négatifs. Il est & noter que ces deux derniers termes disparaissent dans le

cas non-linéaire (§ — I'). En comparant les profils linéaires aux non-linéaires pour les

fonctions F,a, 8, (figure (1.3)), on comprend pourquoi la partie répulsive de Ug, 4, est

sérieusement diminuée dans notre modéle (table 1).

Table 1

Contribution des mésons vecteurs au canal central de I’ interaction nucléon-nucléon, quand

ceux-ci sont introduits en jaugeant le modéle sigma non-linéaire (A = 00) ou le modtle sigma linéaire

(A = 0.8). R est en fermi et le potentiel est en MeV.




R

pyA1(A = o0)

P A (A= 08)

w(A = 00)

w(A = 0.8)

0.0

596.0

122.0

405.2

872.5

0.5

400.5

108.0

247.5

405.6

1.0

110.6

22.0

63.7

54.9

1.5

18.6

2.3

10.7

5.7

2.0

3.4

0.4

1.5

0.6

Nous montrons sur la figure (1.5) les résultats pour VI obtenus avec une masse du

scalaire de 0.62 GeV. Pour comparaison, nous y avons dessiné les résultats du modéle

non-linéaire, (le cas oti le champ du scalaire est éliminé) et les valeurs du potentiel de

Paris [37].
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Figure 1.5

Composante centrale de I' interaction nucléon-nucléon dans le modéle o linéaire jaugé avec m, = 0.62
GeV (courbe pleine), le modéle non-linéaire (courbe pointillée) et dans le modéle du potentiel de Paris

[37] (courbe en tirets).




Notre étude a montré que quand la masse du méson isoscalaire augmente I’ at-

traction est poussée au-deld de 1.5 fm. On peut penser que le fait d’ avoir besoin d’

une masse m, assez petite pour que 1’ attraction soit placée au bon endroit, constitue

un probléme car la phénoménologie veut que la résonance § de la diffusion 77 se situe

plutdt vers 1 GeV. A ce sujet, rappellons-nous du cas des modéles d’ échange de bosons,

la aussi, il est nécessaire d’ introduire un champ scalaire assez léger (m ~ 0.5 GeV)

pour reproduire correctement 1’ interaction nucléon-nucléon. Dans le cadre de cette

description I’ introduction de ce méson scalaire fictif peut étre évitée en considérant

explicitement 1’ échange de deuz pions [38]. Malheureusement, il n’ existe pas & I’ heure

actuelle une méthode qui permettrait de tenir compte de ces effets dans notre probléme.

D’ un autre c6té, comme nous:le verrons plus loin, il n’ est pas impossible que dans

notre modéle on obtienne les forces attractives avec une masse plus grande du méson

scalaire, proche de la valeur expérimentale.

On a donc montré qu’ une généralisation du modele de Skyrme décrivant la

physique du pion et des mésons scalaires et vecteurs est capable de reproduire 1’ es-

sentiel de la physique des interactions baryon-baryon, a savoir une répulsion & courte

portée et une attraction de moyenne portée dans le canal central de cette interaction.

De I’ attraction mais a longue portée a été obtenue par d’ autres auteurs, toujours par

le biais de 1’ inclusion des degrés de liberté scalaires mais dans des contextes différents

(anomalie d’ échelle de la QCD [29], corrections & une boucle de pions [39]). Notre

modéle suggére que pour que cette attraction soit vraiment de moyenne portée (en

accord avec la phénoménologie) il faut inclure non seulement le méson scalaire mais

aussi les mésons vecteurs p,w, A, dans le Lagrangien effectif. A cet égard, observons

sur la figure (1.5) que méme en I’ absence du méson scalaire la répulsion est fortement




diminuée par rapport au modéle de Skyrme. Pour illustrer la néeéssité d’ inclure simultanément
les mésons €, p,w, A; nous avons effectué un calcul de ! interaction NN (figure (1.6)) dans le cas ou
sculs le pion et le scalaire sont présents dans le Lagrangicn effectif. Nous avons considéré le modéle
1 2
Lrg =50,60"¢ + L Te(8,U8"UY) — Mg - T?)?
: ; (7.1)

= t h2y . [
+ 32‘EzTr([a,,UU y8,UUT)%) 2}.33,43

R (;m)
Figure 1.6
Composante centrale de I’ interaction NN dans le modéle (7.1) avec une masse du scalaire m¢ = 0.5
GeV (courbe pleine), le modéle non-linéaire (courbe pointillée). Les paramétres € et b sont liés aux
paramétres mésoniques de la section 4 (équation (3.15)).

Le modtle (7.1) est trés proche au modéle de la réf. [29] mais ici le terme d? ordre six est inclus

car il n’ est pas justifié de le négliger. A la limite ot A — 00 on retrouve le Lagrangien (3.15) en

1




termes de pions uniquement. Sur la figure (1.6) on voit que I’ attraction n’ a plus la bonne portée

quand les masses des mésons p,w, A; deviennent infinies.

Il est donc clair qu’ un Lagrangien effectif de pions et de scalaires seulement

ne peut fournir que de I’ atiraction & longue portée, confirmant ainsi notre conclusion

principale.

Faisons quelques remarques maintenant sur la validité de |’ approzimation du pro-

duit adoptée au cours de notre étude. Dans notre travail aussi bien que dans ceux des

références [29] et [39], le potentiel NN est calculé en approximant le systéme B = 2 par

la configuration simple de I’ équation (6.1). Récemment les auteurs de [36] ont trouvé

que la répulsion du modéle de Skyrme est sensiblement diminuée si I’ ansatz de Manton-

Singer est utilisé dans un calcul semi-exact. D’ autre part les auteurs de [20] trouvent

méme de I’ attraction dans le modéle de Skyrme par des méthodes numériques assez

compliquées mais cette attraction n’ a pas la bonne portée. Ces calculs numériques

utilisant des approximations allant au-deld de celle du produit ont 1 ’air de suggérer

que cette dernitre n’ est pas adéquate pour le calcul de I’ interaction. L’ avantage de

I’ approximation du produit est qu’ elle est simple et suffisament transparente pour ex-

traire les aspects phénoménologiques connus de I’ interaction nucléon-nucléon, Comme

on I' a vu auparavant, les signes des différentes contributions au potentiel sont con-

nus et cohérents avec les ingrédients physiques du modéle (3.1). Nous pensons que les

différentes approximations peuvent affecter la magnitude de ces contributions mais pas

leur signe. De plus, dans tous les calculs précités, on calcule un potentiel local et seule

I’ approximation du produit offre une définition non ambigue de 1’ interdistance entre

deux solitons. Si les résultats de [20] et [36] sont corrects, ils donnent & penser que

I’ approximation du produit sous estime I’ attraction que le Lagrangien (3.1) produit.




Autrement dit si notre modéle est traité numériquement avec les méthodes des réfs.

[20] ou [36], il est trés probable qu’ il fournisse trop d’ attraction avec m, = 0.62 GeV.

Dans ce cas, en augmentant la valeur de m. jusqu’ & la valeur experimentale (1 GeV)
on pourrait retrouver I’ attraction NN empirique. Il serait en effet trés intéressant d’
effectuer le traitement numérique de [20] dans le cadre de notre modéle qui, comme nous
I’ avons vu dans les sections précédentes, est plus réaliste que le modéle de Skyrme.

L’ interaction dans le canal spin-spin aussi bien que celle du canal tenseur ont été aussi

calculées dans le modele linéaire et non-linéaire (figures 1.7 et 1.8).

R T 1

15 2 25
R (fm)

Figure 1.7
Composante spin-spin Vgg de I’ interaction nucléon-nucléon dans le modéle (3.1) avec m¢ = 0.62

GeV (courbe pleine), et le modéle nen-linéaire {courbe pointillée).
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La présence du champ scalaire supprime fortement ces deux canaux. Nos résultats

sont en accord qualitatif avec ceux de la réf. [29].

Figure 1.8
Composante tenseur Vi de I’ interaction nucléon-nucléon dans le modéle (3.1) avec m, = 0.62 Gev

(courbe pleine), et le modéle non-linéaire (courbe pointillée).

Une derniére remarque importante doit étre faite. Un degré de liberté qui ne doit

pas manquer dans les modéles des hadrons & basse energie est celui du méson w. 11
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est bien connu que sa contribution a I’ interaction NN est fortement repulsive aussi

bien dans les modeles d' échange de mésons que dans le cadre des modéles que nous

considérons ici. Son absence dans les travaux [20],[29],(36],[39} est injustifiée. Dans

notre travail il est bien présent, et malgré cela I’ attraction persiste. Ce phénomene est

le résultat d’ un mécanisme non-trivial di a I’ inclusion simultanée de tous les mésons.

En résumant les calculs de ce chapitre on peut dire que le modéle que nous avons

étudié ici et qui généralise le modéle de Shyrme de fagon & décrire correctement la

physique des mésons, est non seulement capable de prédire mieux les propriétés statiques

des baryons, mais aussi de produire une interaction nucléon-nucléon en accord quantitatif

avec la phénoménologie.

Il faut aussi garder dans |’ esprit qu’ a la limite ol le nombre des couleurs devient

grand, QCD est équivalente & une théorie effective d’ un nombre infini de mésonst. Par

conséquent il n’ y a aucune raison de considérer le pion seulement.

La prise en compte des mésons les plus légers dans le Lagrangien effectif est en fait plus

qu’ une facon de tester le développement semi-classique des observables baryoniques

comme il a été suggéré par Witten [21]. Le Lagrengien (3.1) que nous avons proposé

dans ce chapitre offre surtout un cadre théorique simple et cokérent ot les mésons (les

champs élémentaires) et les baryons (leurs ezcitations de type soliton topologique) sont

décrits simultanément. Nous espérons qu’ ils constitueront le point de départ d’ une

théorie unifiée des mésons et des baryons,

1 ceci pour conserver la liberté asymptotique




Appendice A

On donne ici I’ expression des équations différentielles non-linéaires couplées, dont
la solution éxtrémise la fonctionnelle d’ energie dans le secteur B=1 (section 5 du texte).
Pour simplifier quelque peu les formules, il est utile de définir les différents “moments”

u, v et ¢ qui sont associés aux champs F', a et 7 respectivement:
u = £2r%(F + 290)
v =ar +a— [(1 - 2gyr)
t=9r + v —2gafir

Alors les équations du mouvement sont de la forme:

4 = §*[sin 2F[(1 - 2g77)* ~ 4g%a*r?] + 4gar cos 2F(1 - 2g7r)]

— 2Am?*r?[2ay cos 2F + (a® ~ 4%)sin 2F] + ﬁu-z-% [ - 2glyr + gr*(a® — 4?)] cos 2F
(A2)

— 2gar(l — 2g7yr)sin 2F — sin® F)

¥ = 4garfg{e® ++°) - %] ~ 29/t + g¢2 cos Flsin F + 2gr{a cos F — vsin F))

+ miar — Am?r cos F(ysin F — acos F) - ,f'),‘,g‘;.,~?.‘,-[sin2 F(1 ~2g9r) + garsin2F)
(4.3)

i = -2(1 - 2gyr)jg(a® +v%) - ;—r] + 2gBv ~ g€ sin Flsin F 4 2gr(c cos F — v sin F)]

+mZyr + Am’rsin F(ysin F — acos F) — ﬁwgé%[sin 2F(1 - 2gvyr) — 4gar sin® Fj

(A4)




r  2mw2p?

+ 2gyr cos 2F + 2g%r%(a® — v?) cos 2F] + g[2(&r + a)(sin® F(1 — 2gyr) (A.5)

O =miw— 9L _ —&—{F"[sinz F + 2garsin2F(1 — 2gyr)

+ garsin2F) + (47 + v)(sin 2F(1 — 2gyr) — 4gar sin® F)]}

sin I

T

= —25— +E|(F +298) +2 +2g(acos F — ysin F))z] +4X¢(8% ~T?) (A.6)

La fonction 3 obéit a la contrainte suivante:

1

g = m - gu + 4gart + 2v(1 — 2971‘)} (A.7)

Appendice B

Dans cet appendice on explicite les fonctions & et 8 qui apparaissent dans le texte
(équation (6.14)). Pour les calculer il faut d’ abord séparer les termes quadratiques
(v2) des termes quartiques (v;) en la matrice C dans les expressions du potentiel, et
ensuite prendre différentes projections de cette derniére. On a bien pris le soin d’ écrire
ces formules sous leur forme la plus générale, car elles sont indépendantes du modéle
considéré.

I) Termes quadratiques

) =‘Ug(i1'1)
az =vy(I) — va(im) (B.1)

aa =v;(irs) — va(iny)

II) Termes quartiques
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B =vy(in1)
B2 =4vy((I +i11)/V2) - 3vy(in) — vy(I)
By = - i[m(i'ra) _ 25uy(i(2my + ima)/V/B)] — bus(in)
Bs =2[v4(I) + vy(im)] — dv4((I +im1)/V2) (B.2)
Bs =4vs((1 + ir3)/VE) + Toslim) = 40s((1 + im)/VE) = Svaliny)
- Zuylitzn +irs)/ V)

Bs =5vy(iny) + gv.;(i'ra) - 24—51)4(1:(27‘1 +i13)/V/5)

Appendice C

Dans cet appendice nous allons montrer qu'a la limite des grandes masses pour
les mésons p,w, 4;, ¢ le Lagrangien (3.1) tend vers I’ expression donnée par 1’ équation
(3.15). Nous allons négliger dans ce qui suit le terme de Wess-Zumino.
Tout d’ abord il est clair que quand la masse du méson scalaire tend vers 1’ infini
(A = 00) le champ scalaire € disparait car a cette limite ¢ = I'.La solution de 1’ équation
du mouvement du champ w, quand les paramétres m,,f., tendent vers I’ infini (en

gardant le rapport 8,,/m,, fixe) est w, = —-ﬂ—"’B y Ce qui implique que le Lagrangien
] m2 H g gl
(")

2
du systéme nw tend vers I’ expression — 26:2 B, B* (équation (3.15)).
w

En ce qui concerne les champs de jauge, 1’ équation d’ Euler-Lagrange pour le champ

gauche s’ écrit:

1. 2 1 5, Am? 5, 1, 500, Am? t _ v | OLreps,

(€.1)
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L’ équation du mouvement pour le champ droit est obtenue en remplagant dans (C.1)
X, par Y, et U par U'. Faisons tendre les masses des mésons physiques p et 4; vers
I’ infini. A cette fin il faut prendre les limites m, — oo, Am? — —o0 en respectant la
relation m2 + Am? = 2¢%f2 pour que le dénominateur de I’ équation (4.2) s’ annule.
Alors le coefficient I', proportionnel & m4,, devient trés grand. Nous pouvons alors
négliger les termes figurant dans le membre de droite de I’ équation (C.1). La solution

de cette équation & cette limite et pour g fini est:

. 2 .
x# 9 gyt = L
m% 29
igl? i (€2)
y* - sty = ZRe
m¥y 2g
donnant pour les tenseurs X, et Y, les identités suivantes: .
. 2 2 »
X _, _’_(1 - i%)[Lu’Lv] - il[L",L"]
29 mé 292
i g°r? i1l (€3)
4 —_ - A I V] = m v

En remplagant les expressions (C.2) et (C.3) dans le Lagrangien (3.2) nous obtenons le
modéle sigma non-linéaire plus un terme d’ ordre quatre, antisymétrique par rapport
aux dérivées du champ du pion. La constante de Skyrme correspondante est donnée

par e = v/2g, ce qui donne le facteur Eﬁ’ figurant dans I’ équation (3.15).
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Chapitre 11

Sur le développement semi-classique
de la masse du soliton




Les solutions solitoniques du type considéré dans le chapitre précédent, étudiées
d’ abord par Skyrme puis reprises par la réf. [17] et les travaux ultérieurs sont des
solutions classiques de théories de champs non-linéaires. Leur quantification consiste a
construire des états quantiques aulour de ces solutions. Les observables physiques se
développent alors en puissances de k [10]. Pour le cas du nucléon, il a été montré [12]
que le paramétre de développement semi-classique est en fait Nic’ de sorte que sa masse

se met sous la forme:

k K2
My = N [Mo + EMl + N—czMz + ] (1.1)

La convergence de ce développement repose fortement sur les valeurs des coeflicients
My, M1, M; qui sont dé;;endants du modéle.

Le but de ce chapitre est d’ illustrer cette dépendance pour les différents modéles
basés sur les Lagrangiens de mésons. Nous allons montrer que certains d’ entre eux ont
plus de chances que d’ autres de fournir un développement (I.1) bien défini. Nous allons,
dans ce qui va suivre nous intéresser a la premiére correction quantique & la masse du
soliton, le terme M;. Nous allons établir que le terme M, est une énergie de Casimir
[40], et donner son expression. Cette énergie posséde une divergence ultraviolette qui
peut étre régularisée dans le schéma de la fonction zéta. Nous calculons numériquement

pour le modéle de Skyrme et une de ses généralisations possibles.

le rapport M,
PP N. M,
Les résultats obtenus apportent quelques conclusions sur la validité du développement

semi-classique pour la masse du nucléon.
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1. L’ énergie de Casimir du soliton
En effectuant des fluctuations quantiques sur des degrés de liberté collectifs autour

de la solution du modéle de Skyrme, les auteurs de {17] ont obtenu une partie des

contributions & M» (éq. (I.1)). Mais curieusement le terme M; n’ a regu que trés peu

d’ attention dans le passé. Ce terme est certainement plus difficile & évaluer car il met

en jeu des fluctuations non-collectives. Afin de trouver son expression, effectuons des

fluctuations autour de la solution classique U, définies par les parametres &:

U ="Uy exp(i7.Q)

(1.1)

et considérons la fonctionnelle génératrice des fonctions de Green en I’ absence de

sources:

2

Wg=N / D[U]e~ 5V (1.2)

S étant 1’ action euclidienne associée au Lagrangien du modéle considéré et N une

constante de normalisation. Cette action peut étre développée autour de la configuration

classique Uy qui est un point stationnaire de Sg:

16%Sg

SE(U) = SE(Uo) + 53:[705-

(U + ... (1.3)

La deuxiéme variation de ]’ action est un opérateur qui dépend de la solution classique:

§28 :
(—J—Ij‘zg)ab = _apap Jab + Vab(UO) (1.4)
0

Dans ce qui va suivre, seule la contribution du modéle sigma non-linéaire i 1’ opérateur

potentiel V,; va étre prise en compte: Vy3(Up) = ieabcTr(chJa,,Uo)a . Nous allons

justifier par la suite cette approximation.
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Wg peut étre évaluée dans |’ approximation de la phase stationnajre. Cette méthode

consiste a intégrer les fluctuations de Sg qui sont quadratiques en a:

§Sg

W)ab o) (1.5)

Wg = NeSe(lo) /'D[&'] exp(—%au (

L’ intégrale Gaussienne peut étre effectuée exactement [41]:

Wi = Ne=55Wo) [ det '(~V26ap + Vas(Uo))) /2 (1.6)

Dans cette expression, le prime sur le déterminant indique que les valeurs propres nulles

2
de I’ opérateur (Z—l}s;?)ab sont omises [44]. Pour extraire de cette formule M, il suffit
0

d’ écrire I' expression de Wg sous la forme Wg = exp (—MT) , ol M est la masse du
soliton et T est un facteur de temps Euclidien. Aprés avoir effectué la soustraction de

I’ énergie des fluctuations du vide, I’ énergie de Casimir du soliton s’ écrit:

1 1
Ml = ﬁ{Tt, log(—VzGab + Vab) - Trlog(—-Vf,Jab)} = —T[seff(Uo) - Seff(o)]
(1.7)

Sous cette forme, on comprend pourquoi M, est une énergie de Casimir. Il s’ agit
de la différence entre 1’ énergie des fluctuations du vide avec et sans la présence de la
solution classique. En remettant les facteurs k & leur place, il n’ est pas difficile de
voir qu’ il s’ agit de la premiére correction quantique a la masse. Mais il est aussi
manifeste sur I’ expression (1.7) que cette énergie posséde une divergence ultraviolette
a laquelle il faudra préter attention. En efet, I action effective S.;; se développe en
théorie des perturbations comme une somme sur les diagrammes a une boucle engendrés
par le potentiel d’ interaction V(U;) [42]. Comme le Lagrangien de base est non-

renormalisable, on peut s’ attendre & des problémes dans le calcul du Trlog de I’ équation

(7).




En fait nous n’ aurons besoin que d’ un nombre fini de contretermes pour régulariser I’
énergie de Casimir. Par exemple si V est obtenu en effectuant des fluctuations autour de
la solution classique du Lagrangien du modéle o non-linéaire, alors foutes les fonctions
de Green & une boucle peuvent étre rendues finies par des contretermes d’ ordre quatre
qui sont connus [43].

Nous allons maintenant simplifier I’ équation (1.7) en tenant compte du fait que le
potentiel V ne dépend pas du temps Euclidien. Réecrivons la différence des Trlog sous

la forme [45):

M; = 1 / dr T'lTr(erag) Tr(e~ %™ — ¢~97) (1.8)
2T Jy

avec les opérateurs tridimensionnels @ = —~V? §,;, + V., et Qg = —V? §,5. Surla

premiére trace de cette équation on reconnait la fonction de partition de la particule libre

a une dimension: Tr(e’ag) = . L’ intégration sur 7 donne I’ expression connue
vanT

[42] de I’ énergie de Casimir :
My =3 TH(2 — 0}/?)

=‘12‘(an - ng)

(1.9)

ot w? et (wl)? représentent les valeurs propres des opérateurs € et 2y respectivement.
Notre estimation de M; sera basée sur cette expression.
Mis & part la divergence de la somme sur les modes qui est une particularité de la théorie
quantique des champs, I’ équation (1.9) est tout a fait naturelle.

En effet, rappelons nous du cas d’ une particule non-relativiste se mouvant dans un puits de

potenticl unidimensionnel v possédant un minimum en Zg:
[/ ¥, 1 2 2 4
V(z) = V(zg) + 3% (2 —20)* + Mz — z)
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Classiqueinent, la trajectoire dans 1’ espace des phases minimisant I’ énergie est celle pour laquelle la
particule reste immobile (& = 0) en 2. Son énergie classique est My = ‘7(30 ). Si le couplage est
faible (si A est pelit et positif) le premicr état quantique a une éncrgie M = f’(Zo) + %Tw End’
autres termes M est la somme de

a) P éncrgie d' une solution indépendante du temps des équatlions du mouvement
classique et

b) d’ une correction quantique proportionnelle & w, la racine carée de la dérivée seconde
du potentiel prise au point stalionnaire z = 2.

L’ analogue du terme a) en théorie des champs est la masse classique du soliton (le terme N, M)
et I' analogue de la correction b) (avec la dérivée seconde remplacée par une dérivée fonctionnelle) est
I’ énergie de Casimir du soliton, le terme M. La différence en théorie quantique des champs est
que pour obtenir la premigre correction quantique il faut sommer sur une infinité de modes et aussi
soustraire |’ énergie de vide. En particulier I’ énergie de Casimir peut étre négative.

En pratique, le calcul de la trace dans I’ équation (1.9) se fait plus facilement en se
plagant dans un volume fini (mais grand) dans |’ espace. Le spectre des opérateurs
0,90 devient alors discret. Le passage a la limite continue se fait en multipliant les
valeurs propres w, associées au vecteur d’ onde k, par la densité des niveaux. En

effectuant la soustraction de I’ énergie du vide on obtient alors I’ expression [46) :

1o, ds(E)
My = 21r./o ag £ =2 (1.11)

ol §( E) est le déphasage associé au potentiel V;; pour I’ énergie propre E. Comme V est

a symétrie sphérique, les fonctions propres se développent sur une base d’ harmoniques
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sphériques vectorielles indicées par j, avec j = I+1, ol I est le moment angulaire spatial.

Alors le déphasage s’ écrit:

20

8(E) =3 _(2% + 1)4(E) (1.12)

J

Le calcul de I' énergie de Casimir consiste donc a évaluer les déphasages associés au

potentiel ¥V de I’ opérateur tridimensionnel § = ~V264p + Vap. L’ expression de V en

fonction de la solution classique F est:

in2F . s dF . . in®F
Vub =2 Eabc{ = s";r (Jct' - Tc"'l') - 'd_"“"'crl' + SInr fc:’mrm}vi (1'13)

Nous allons nous concentrer maintenant au calcul des déphasages associés a I’ opérateur

Q et a leur régularisation.

2. Calcul des déphasages.

Traitement des divergences ultraviolettes

Les propriétés de transformation par des rotations d’ espace de la solution clas-

sique permettent d’ écrire les fonctions propres de I’ opérateur perturbé ! comme une

somme sur les ondes partielles j:

@ = (uj(r)¥j-1 +v;(r)¥s; +0j(r)¥j541) (2.1)
=0

Les fonctions Y sont les harmoniques sphériques vectorielles. L’ équation aux valeurs

propres & = E?& se décompose, pour chaque valeur de 7, en trois équations radiales

et -




sur les composantes u;,v;,w;:

V"’ - (J(J 1) ~E24(j - )2sm F)u, + GG + 1)sm 2F 2£i—F—'v,)
1 2 F 2F dF,
vj = (J(J +1) _E_ sin )v, +Ci(-( - 1)5m . +2'¢‘i‘;uj) -
2F dF '
+ 850 +2) 22wy - 250 0)

4+ 1) + 2 ) 2 F 2F dF
SCLDICL2) NI 0L SV FEPLL LIS &

avee C; = /G + /& +1), S; = /57 +1).

Le comportement asymptotique de la solution (uj,vj,w;) de ces équations aux valeurs

propres donne le déphasage dii au potentiel V dans I’ équation de Schrodinger. En

effectuant la somme des trois déphasages associés aux trois équations (2.2) on obtient le

déphasage total §;(E) pour I’ onde partielle j, avec le facteur de dégénérescence (2; +1). {

Nous avons montré dans la réf. [47] que les fonctions §; pour j = 1,2, 3... se comportent

a haute énergie comme 1/E ce qui veut dire que méme avant de sommer sur toutes

les ondes partielles, |’ intégrale en (1.11) diverge logarithmiquement & grand E. L’

introduction d’ un schéma de régularisation de fagon a ce que I’ intégrale (1.11) soit

définie s’ impose. Elle s’ impose d’ autant plus que la sommation sur les ondes partielles

donne une divergence encore plus violente de sorte que le comportement 4 grand moment

p de la phase totale est:

o0

§(p) = Y (2 + 1)8i(p) ~ a1p + % + o (2.3)

i=0

Les coefficients a;,a; peuvent étre reliés au développement du noyau de la chaleur de I’

opérateur {0 [48]. Notre méthode de régularisation consiste & calculer non pas la somme




-~

N

1] -
divergente Z (w?)?, mais plutdt la somme Z (wﬁ)* * ol s est une variable complexe.

n n
Cette fonction est bien définie sur le plan complexe. En termes de déphasages

-Tr(m-'—Tn%")= —j dp (p* + M2)i~* ‘“(") (2.4)

ou I’ on a introduit une masse M comme régulateur infrarouge. L’ énergie de Casimir
est égale & cette expression a la limite o s — 0. Pour extraire la partie finie de
cette énergie, il sera pratique d’ utiliser une méthode susceptible de régulariser aussi
les fonctions de Green & une boucle qui sont & I’ origine du comportement (2.3). Ces
fonctions sont engendrées par I’ action effective (1.7) qui est égale a = (s = 0). Dans

cette expression (o est la fonction zéta [49] associée & I’ opérateur 0 = -33 + 0+ M2

Co(s) = rl‘l’(“:) -/:0 drr*"lexp(-70) (2.5)

ou on a introduit une échelle x. En fonction des déphasages la fonction { s’ écrit:

_T T(s-1/2) z,f“ 2 ae2y3-s 96(p)
O =it Sy PEMT G @
L’ astuce consiste maintenant & soustraire et rajouter le comportement asymptotique

(2.3) dans I’ expression des déphasages, tout en introduisant un régulateur infrarouge

M2
az az

§p) = (8(p) ~a1p — ——=)+ m1p + ———=
(P) ( (P) 1P W) 1P W
En remplacant cette forme dans I’ expression de la fonction {, I’ énergie de Casimir s’

écrit comme la somme d’ une intégrale finie sur les phases et d’ un terme dépendant de




I’ échelle u. Cette dépendance est explicitement calculée en utilisant des fonctions béta

[45]. Nous obtenons I’ expression:

M) = - - %0 =) = L [" eI - 0 ]

27T ds

1 s u
+ Zale (1 + log W) - 5(12(2 + log m) - M&(O)}
(2.7)

L’ intégrale sur les déphasages est maintenant devenue finfe. La divergence est im-

plicitement contenue dans la dépendance en u de I’ expression (2. 7) On utilise ensuite
I’ identité [45) f dp{(p® + M?)™/2 — (p* + p?)"1?} = log 7R Nous intégrons

par parties la somme sur les déphasages, pour finalement prendre la limite M — 0 et

arriver & |’ expression simple et finie de M, ():

M) = =2 [ do (60) - a0 - —=23) (28)

A cette expression il faut ajouter maintenant les contretermes. Leur réle est précisément

de faire disparaitre la dépendance par rapport a 1’ échelle de I’ énergie de Casimir. Les

contretermes d’ ordre chiral quatre régularisant les diagrammes & une boucle engendrés

par I’ opérateur O, ont été déterminés dans la réf. (43]. On ajoute leur contribution a

I’ expression de la correction quantique & la masse du soliton. 1l vient,
My = My(p) ! (L —1+1o mf,)___ /da (L,.L,)?
1 = My(p Fonz 1 g u 12 zz a)

2
mey e 3V [, Ly
;5‘)+§§ 35( aLv)

1 -
—{3—2}—2(12 —'1+lOg

avec L, = (1/2i)Te(7U8,U,), U étant la solution classique dans le secteur & charge

Les paramétres I;,l; contiennent la partie finie et physiquement

baryonique unité.




observable des contretermes d’ ordre chiral quatre. Leurs valeurs numériques ont été

déterminées dans la réf. [50):

I, =~0.97 + 1.22, I, =5.77 + 0.72

C’ est I’ expression (2.9) que nous avons utilisé pour les résultats numériques. Il faut

préciser ici que cette expression de M; n’ est pas totalement indépendante de I’ échelle

4 parce que nous avons tronqué I’ opérateur V de fagon & ne garder que la contribution

de la fluctuation autour de £3. En effet, on peut montrer que le coefficient asymptotique

ay associé au potentiel V' tronqué, est égal & un facteur multiplicatif prés a:

a=T j d%{ %(1";,,.5,,)2 + g(i;‘,.‘z,f - (a,,z,.)z} (2.10)

La dépendance en p des deux premiers termes va étre absorbée par les contretermes d’

ordre quatre de I’ équation (2.9). Par contre, pour faire disparaitre la dépendance en

provenant du terme en (3, E,, )2 il faudrait inclure des contretermes d’ ordre supérieur

a quatre. Il est clair qu’ en raison de I’ équation du mouvement classique du modéle de

Skyrme:

BML:: = (—e—fl_)ia“ [Lt(fvﬁv) - Lt(in'fv)]v (2'11)

la quantité (8,L,)? est d’ ordre chiral huit. L' énergie de Casimir sera complétement

indépendante de I’ échelle u si on y ajoute les contretermes correspondants . Nous n’

allons pas eflectuer cette derniére soustraction ici, la partie finie (et donc physique) de

ces contrelermes n’ étant pas connue & |’ heure actuelle. Nous justifierons par la suite

cette approximation.

En I’ absence du terme de Skyrme (sa contribution & 1’ équation du mouvement figure dans le membre

de droite de I’ équation (2.11)), la quantité 6,,L,, est identiquement nulle, et I' énergic de Casimir
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peut-étre renduc complétement indépendante de 1’ échelle. Malheureusement, dans ce cas il n’ y a pas
de solution classique de type soliton,

Nous allons maintenant présenter les résultats pour la premiére correction & la
masse du soliton. Nous calculerons M; dans deux cas: celui du modéle de Skyrme et

celui ol I’ on ajoute & ce dernier un terme d’ ordre six.

3. Résultats

Les phases de I' opérateur Q0 ont été calculées dans la réf. [47]. Elles ont été
calculées pour les solutions classiques
I) du modéle de Skyrme: Lsx = -ffn(a,,va,,vf) + 5-51;5'1'r([<9,,vvf,ézf,UU*]’)
1I) du modéle ot I’ on inclut le terme d’ ordre six déja rencontré lors du chapitre
précédent: Lo1446 = Lsk — —2;;5 [%Tr(a”UUfaaUUfaﬁUUf)]z

Nous avons trouvé que les ondes partielles (é I’ ézception de I’ onde j = 1) ont
un déphasage nul & p = 0, et que pour j grand les phases s’ “aplatissent” a petit p.
Le fait le plus important pour I’ énergie de Casimir est que le déphasage pour I’ onde
J = 1 soit égal & 27 pour p = 0. Ce comportement n’ est pas di & la présence de vrais
états liés de I' opérateur 2, mais & la présence de deuz “modes 2éro” i.e. deux fonc-
tions propres & énergie nulle. Leur existence traduit I’ invariance de 1’ énergie Mg[Up]
par des transformations continues de la solution classique Uj. Il existent quatre telles
opérations continues et deux d’ entre elles donnent naissance a des modes propres nor-

malisables. Chacun contribue d’ un facteur 7 au déphasage a I’ origine de sorte que 1’ on

ait: §;=1(p = 0) = 2x. Ce résultat est fortuit car & priori I’ opérateur tronqué V3 n’ a
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pas les mémes modes zéro que I’ opérateur complet. Cette circonstance justifie partielle-
ment notre approximation de négliger les contributions & I’ opérateur de fluctuation V,
provenant du terme de Skyrme.

En effectuant la somme sur j des déphasages §; (équation (1.12)), nous obtenons la
fonction de phase totale §(p). Nous avons vérifié que pour des valeurs de p grandes
(en pratique p > 5u) le comportement de la solution numérique é(p) est conforme aux
prédictions analytiques (équation (2.3)). L’ intégrand de I’ équation (2.8) est montré

sur la figure (2.1).

18

15

12

Figure 2.1
Phase totale associée 4 1’ opérateur de fluctuation V. La courbe en trait pointillé correspond au modéle
Lsk et celle en trait plein au modéle £344+6. Les valeurs des paramétres sont fr = 0.093 GeV,

e =5.5,b0=1et I’ échelle f£ est égale & la masse du méson p (4 = m, = 0.77 GeV).
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Observons que les courbes partent d’ une valeur proche de 67 et qu’ elles deviennent
pratiquement nulles vers p = 0.5 — 0.7 GeV. Ceci veut dire que ce sont les fluctuations
a basse énergie qui dominent I’ énergie de Casimir. Ce résultat est trés important car il
justifie en quelque sorte la validité d’ un Lagrangien effectif tronqué a un ordre chiral
donné. 1l est clair que I’ énergie de Casimir du soliton est contrélée par les propriétés
d’ invarience de la solution classique et par son ezlension spatiale.

Est-ce que les déphasages vont changer si I’ on inclut dans I’ opérateur V3 les
fluctuations provenant du terme de Skyrme et du terme d’ ordre six qui ont été négligées
dans notre travail? La réponse est qu’ ils vont différer sensiblement mais seulement &
haute énergie. Les phases de I’ dpérateur complet du modéle de Skyrme ont été calculées
il y a assez longtemps par les auteurs de la téf. [51]. A premiére vue ces phases ne
ressemblent en rien aux nétres. En particulier, elles divergent linéairement en p. Ceci
veut dire que la phase totale de I’ opérateur complet posséde une divergence cubique:
5(p) =~ aop® + ..., mais d’ aprés ce que nous venons de voir, elle n’ intervient pas dans
I’ énergie de Casimir, car elle est essentiellement soustraite de I’ expression a intégrer
(2.8). C’ est le comportement & basse énergie qui domine M; et on s’ apergoit que
dans la région des petits p les phases trouvées dans [51) sont qualitativement proches
des nétres. On éspére aussi que la valeur & I’ origine de la phase totale §(0) = 6w — $2
ne va pas étre trés modifiée pour le cas de I’ opérateur complet V,;. Les résultats de la
réf. [52] indiquent que dans ce cas le coefficient a; pour le modéle de Skyrme ne serait
pas trés différent du nétre, de sorte que la relation §(0) ~ 6= ait un caractére général.
Pour le modéle de Skyrme nous avons trouvé pour la premiére correction quantique

4 la masse du soliton: (M) )sk = —1.169 + (-0.070) GeV (3.1)
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Entre parenthéses figure la contribution du contreterme. Comme nous I’ avions an-

noncé, ¢’ est I’ intégrale sur les déphasages qui domine le résultat, la contribution du

contreterme est de & 6 %. On s’ attend & ce que les contretermes (inconnus) d’ or-

dre supérieur a quatre soient encore plus petits. Méme si le résultat (3.1) n’ est pas

complétement indépendant de 1’ échelle p choisie, nous pensons qu’ il constitue une

bonne approximation de I’ énergie de Casimir du soliton pour des échelles typiques des

masses des hadrons. Nous avons étudié la variation du résultat en fonction de I’ échelle,

et nous avons trouvé que si au lieu de g = m, on prend p = 2m, par exemple, M,

change a peu prés de 10 % ce qui semble raisonnablement petit.

Pour ce qui est de la valeur de M; remarquons d’ abord que son signe est négatif.

Ce signe est en accord avec les réfs. [53-54]. Par contre la valeur de M est quatre & cing

fois celle trouvée dans ces travaux. La raison physique de ce désaccord est trés simple;

les calculs [53-54) sont basés sur une approximation de Born des déphasages ignorant I’

existence d’ états propres non-perturbatifs comme les modes zéro. Or ces états, nous I’

avons vu, dominent I’ énergie de Casimir par leur contribution au déphasage §;, et ne

peuvent étre négligés. De fagon trés générale et & cause du théoréme de Levinson, ces

modes zéro “forcent” la fonction é(p) d’ étre égale & 6m 4 I’ origine p = 0. Remarquons

ici que la premiére correction quantique & la masse des solitons dans les théories en 141

dimensions résulte d’ une simple somme sur les états liés de I’ opérateur de fluctuation

[55].

Le résultat (3.1) nous améne & émettre des doutes sur la validité de I’ approxima-

tion semi-classique pour le calcul de la masse du nucléon dans le modéle de Skyrme. Le

rapport de la premiére correction quantique sur la masse classique (qui est égale a 1.23
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GeV) est:

Cette valeur nous fait penser que I’ approximation semi-classique ne constitue pas un
trés bon cadre pour traiter le soliton du modéle de Skyrme car ce dernier est sujet & des
effets quantiques trés importants. Ces derniers ne peuvent pas vraiment étre interprétés
comme des “corrections” devant la masse classique. Le “skyrmion” est probablement
un soliton 3 couplage fort. Ce serait peut-étre plus adapté & 1’ approche des Lagrangiens
effectifs de construire une approximation a couplege faible.

Nous allons voir maintenant que nos espoirs pour la description semi-classique du
nucléon ne sont pas vains moyennant quelques considérations phénoménologiques du
méme type que celles qui conduisent a généraliser le modéle de Skyrme en incluant les
mésons de basse énergie. Pour étudier leurs effets, prenons pour simplifier le Lagrangien
local £24446 qui correspond & la limite des grandes masses du modéle unifié proposé

lors du chapitre I.

Calculant I’ énergie de Casimir avec la solution classique de ce nouveau Lagrangien
(les phases sont tracées sur la figure (2.1)) nous trouvons qu’ elle diminue notablement:
(Mi1)24446 = —0.795 + (—0.035) GeV (3.2)
La contribution du contreterme est aussi diminuée par rapport au modéle de Skyrme.
La masse classique, N, M, est plus grande (1.59 GeV) dans ce modéle et le rapport de

la premiére correction quantique sur le terme dominant de la masse du nucléon est:

(nds
NcMO

R R 4

Jrir = —0.52

L gy
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La diminution de I’ énergie de Casimir du soliton dans le modéle £34446 peut étre

expliquée physiquement par une augmentation de la taille du soliton dans ce dernier

par rapport au soliton du modéle de Skyrme. On pourrait & la limite “deviner” ce

résultat simplement en observant la courbe des phases (figure (2.1)). Sur cette courbe

il est clair que I’ inclusion du terme d’ ordre six a comme effet de réduire la région

pour laquelle la phase est importante, et par conséquent I’ effet Casimir sur la masse

du soliton. Cet effet a été aussi observé dans (56] dans une étude des effets quantiques

vibrationnels & la masse. Le fait que les eflets quantiques soient plus petits pour un

objet ayant une extension spatiale plus importante n’ est qu' une simple manifestation

du principe d’ incertitude de Heisenberg.

On trouve donc que contrairement au modéle de Skyrme, une simple généralisation d

un Lagrangien effectif qui contient les effets des interactions du pion avec un méson w

infiniment massif (ou lout simplement I’ inclusion d’ un terme d’ ordre supérieur dans le

développement chiral) conduil ¢ un secteur baryonique consistent avec le développement

semi-classique. Le profil classique dans ce dernier modéle conduit & une hiérarchie bien

définie parmi les différentes contributions a la masse du nucléon:

1
NMo > M; > -]—V—Mz (33)

Le profil de la solution classique décroit plus vite en présence du terme d’ ordre six, de

sorte que I’ on ait:

—/dazﬁz > —/dazﬁ.; > —/d’z[.d (3.4)

ce qui justifie encore plus notre approximation qui consiste 4 négliger les contretermes

d’ ordre six, huit etc. dans le développement chiral.
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Une derni¢re remarque concernant la constante de couplage axiale du nucléon g4. La

valeur de cette derniére est grande au niveau classique pour le modéle £o1 446 (94 =

1.37). Méme si nous n’ avons pas calculé les contributions des boucles de pions & cette

observable on peut penser, & cause des résultats qualitatifs de la réf. [53], que ces

corrections vont dans la bonne direction. Il faut préciser ici qu’ un calcul complet de

ces corrections quantiques & g4 va probablement se compliquer par I’ introduction des

coordonnées collectives du nucléon.

4. Conclusions

Nous avons vu dans ce chapitre que le coefficient M; constituant la premiére

correction quantique & la masse du soliton-nucléon dépend fortement de la structure

spécifique du Lagrangien effectif. En particulier, nous avons montré la nécessité d’

inclure des termes d’ ordre supérieur & quatre dans le développement chiral. Il est

maintenant clair que le développement en i/N. a des chances de fournir une bonne

description du secteur baryonique, seulement quand le modéle de Skyrme est généralisé

de fagon 4 inclure certains des effets du méson w. Ces conclusions restent valables quand

on envisage d’ effectuer les calculs de I’ énergie de Casimir avec I’ opérateur 2 complet

[57).

Il est intéressant de remarquer qu’ on arrive qualitativement a la méme conclusion qu’

au chapitre I, ot nous proposons un Lagrangien effectif pour la description unifiée des

mésons et des baryons. Le fait que le développement semi-classique des observables

baryoniques {équation (I.1)) est meilleur dans le modéle £2444¢ est en accord avec I’

idée d’ inclure dans le Lagrangien Effectif plus de degrés de liberté que ceux qui sont

présents dans le modéle de Skyrme [58].




Le cadre théorique pour calculer systématiquement les corrections quantiques a la

masse du nucléon dans le contexte de la théorie de perturbation chirale a été récemment

proposé [59]. Connaissant le réle important que jouent les mésons vecteurs p,w et

scalaires dans la physique de la diffusion 77 il serait trés interessant dans I’ avenir d’

aller plus loin et de calculer I’ énergie de Casimir dans un modéle ol les mésons scalaires

et vecteurs sont ezplicitement présents. L’ issue d’ un tel calcul sera de la plus haute

importance pour le développement semi-classique des observables baryoniques et de son

utilité pratique.

Un aspect qui ne doit pas étre négligé dans les futures études des fluctuations quantiques autour des

solutions classiques des Lagrangiens effectifs est la détermination des contretermes d’ ordre supérieur.
q g

Méme si comme on a vu leur partie finie ne doit pas affecter beaucoup la magnitude de la masse du

nucléon, ils sont nécessaires pour éliminer la dépendance par rapport & |' échelle it des observables

physiques.

Pour ce qui est des ordres supérieurs a quatre dans le développement chiral, trés peu

d’ auteurs ont entrepris une étude systématique pour justifier le choix des termes a y

inclure. Ces études sont compliquées par le manque d’ informations experimentales sur

les constantes qui figurent devant ces termes d’ ordre supérieur. On peut éventuellement

envisager d’ introduire des contraintes pour spécifier la forme du Lagrangien effectif aux

ordres chiraux élevés, comme il a été suggéré par les auteurs des références {60] et [61].

Terminons ce chapitre en faisant une derni¢re remarque sur les calculs de la résonance Roper du nucléon

avec ces modeéles de soliton topologique. D' aprés nos résultats il ne semble pas étonnant que le calcul

de cette observable dans le cadre du modéle de Skyrme soit en désaccord avec la phénoménologie. Une

premitre amélioration de la prédiction pour la niasse de cette résonance peut-étre envisagée aprés I’

inclusion du terme 4’ ordre six.
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Chapitre III

Sur la stabilité des solitons topologiques
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Le nucléon étant une particule stable, cette stabilité doit étre retrouvée dans les
modeles ol le nucléon est considéré comme un soliton topologique. Dans ce contexte,
il faut donc s’ assurer non seulement de I’ existence de la solution de type soliton, mais
aussi de la positivité du spectre des petites fluctuations autour de cette derniére.
Cette question de la stabilité a été d’ abord posée par Skyrme dans son travail
original. Il a remarqué que le modéle o non-linéaire ne posséde pas de solution non-
triviale stable par rapport aux dilatations. Pour construire une solution de type soliton
il 2 proposé d’ ajouter 4 ce modéle un terme d’ ordre quatre par rapport au gradient du
champ unitaire U. Plus tard il a été proposé [22] de stabiliser le modéle & non-linéaire
par des termes couplant le champ du pion au méson p, ce dernier étant considéré comme
un champ de Yang-Mills massif. La solution classique du systéme 7p trouvée dans ce
contexte [62] est instable commme il a été montré plus tard [63]. Ce résultat nous semble
tout & fait surprenant car & la limite ol le champ du p devient trés lourd, le systéme
wp considéré dans ces travaux, tend vers le modéle de Skyrme qui bien siir posséde des
solutions stables. L’ instabilité du soliton quand le pion se couple au champ du p est d’
autant plus embarassante, si on se rappelle que le systéme 7w (23], du point de vue de

la stabilité, est parfaitement cohérent [32] avec sa limite locale.

1. Réalisations non-linéaires de la symétrie chirale
Dans ce chapitre nous allons étudier en détail le systéme mp dans le but d’ éclaircir
ce probléme d’ instabilité, et de lever les ambiguités qui existent dans la littérature. L’
accent sera mis sur les différentes maniéres possibles d’ introduire le méson p dans les
Lagrangiens phénoménologiques, quand la symétrie chirale est réalisée d’ une fagon non-

linéaire [64]. La réalisation non-linéaire est définie en spécifiant I’ action de 1’ élément G




de SU(2) ® SU(2) sur les éléments u(7) de I’ espace quotient SU(2) ® SU(2)/SU(2)v:

u(7) o gru(@)hH(F) = h(F)u(F)g} (1.1)

u(#) étant la racine carrée du champ chiral: u = U'/? = eTF/2, gL et gr sont des

matrices de SU(2), et SU(2)R respectivement. Il est clair sur I’ équation (1.1) que cette

loi de transformation pour u est non-linéaire car la matrice de rotation k doit dépendre

du champ du pion pour satisfaire a I’ égalité (1.1). Avec cette définition le champ chiral

U se transforme linéairement: U — gLUg;'i.

Deux représentations différentes pour le champ du méson p vont étre considérées

ici. L' une, conventionnelle [65], consiste & supposer que ce champ vecteur (V) se

transforme comme un boson de jauge du groupe “caché” h(x):

7, — KVt ) + gh(w)a,,h(w)* (1.2)

Dans la section 2 nous allons revoir rapidement ce qui a été fait dans la littérature en ce

qui concerne I’ instabilité du soliton dans cette approche. La section 3 sera consacrée a

I’ étude détaillée de la stabilité du soliton dans le cas d’ une transformation homogéne

pour les champs vecteurs:

V. — h(x)V.hi(x) (1.3)

Les solitons topologiques du systéme mwp, quand la symétrie chirale est régie par les lois

de transformation (1.1) et (1.3), seront étudiés. Nous serons particuliérement attentifs

au rdle similaire joué par les mésons p et w dans le mécanisme de stabilisation du soliton.




2. Le soliton du systéme rp dans une formulation “Yang-Mills”
Il n’ est pas difficile de montrer que le Lagrangien minimal respectant la symétrie chirale

dans la représentation définie par les lois (1.1) et (1.2), s’ écrit comme:
o = Lo, vy 4 b ([, - P, + e 2.1
xp "‘_Z (ﬂ” )+§ pr([#—E#] )+z-r(uu,.,) (‘)

avec V,, = 8.V, —8,V, —ig[V,,, V,), Ty = 3(u'8,u +uduut) et u, = i(utduu —ud,ul).
Le Lagrangien E::’ contient outre les termes quadratiques, des termes cubiques
et quartiques par rapport aux champs vecteurs. Le couplage wp dans le secteur des
mésons est en accord avec la notion de dominance vectorielle {65, et de fagon générale
ce Lagrangien décrit raisonnablement bien les interactions entre les mésons 7 et p.
Nous allons revoir briévement ce qui a été fait dans la litt€rature pour ce qui concerne
le secteur baryonique de ce modéle.
Remarquons qu’ 4 la limite olt ]a masse du méson p devient grande, le terme de Yang-
Mills [66] f"fv donne naissance & un terme e Skyrme dans le développement local. Par
cette observation on pourrait penser que (2.1) posséde des solutions classiques stables. I!
n’ en est rien. Pour le voir il faut d’ abord écrire la masse du soliton en termes de profils

sphériques en adoptant I’ ansatz du hérisson pour le champ chiral et la configuration la

plus générale pour les composantes spatiales du champ 1.’,, classique:
1-/,- = by (7 — (FF)F) + 52(‘?.1“)1‘,' + 93(7 X #); (2.2)

Alors la masse statique du soliton, exprimée en termes des profils radiaux F(r),5;(r) (i =

1,2,3) se met sous la forme
sin? F
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F 42+ g3 + ) + 2bs + 2+ 29015)° + 25 +
(23)
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Il existe des configurations spéciales pour lesquelles M posséde des solutions classiques.

Par exemple, les auteurs de la réf. [62] ont montré qu’ il existe une solutivn non-triviale

des équations du mouvement F(+),%3(r),9; = 2 = 0 (avec 33 = %(,-'-)- pour retrouver

leurs notations). Cependant, il a été ultérieurement montré par les auteurs de la réf.

[63], que cette solution n’ est pas stable car elle peut étre rendue triviale (F = 93 = 0)

par une déformation continue des composantes ¥;,92. Ceci est possible dans I’ approche

de Yang-Mills, car les composantes #;, %2 se couplent a #3. Comme on peut voir sur I’

équation (2.3) ces couplages déstabilisants ont lieu dans les termes cubigues et quartiques

de la densité d’ énergie de Yang-Mills. Ces instabilités se manifestent aussi dans le cas

le plus général qui consiste 4 extrémiser la fonctionnelle (2.3) non seulement par rapport

.aux fluctuations de F,?3 mais aussi par rapport a celles de 9;,9;. Ceci a été étudié

dans [67] ol il est trouvé que la seule solution est celle qui correspond au vide trivial

F=4%;=0(i=1,2,8), donnant ainsi M = 0. Il n’ eziste pas de solulion stable dans le

secteur non-triviel du Lagrangien (2.3).

Une autre propriété des solitons du Lagrangien (2.3) doit retenir notre attention

ici. Supposons que I’ on ajoute & LY} des termes stabilisateurs d’ ordre supérieur en

dérivées du champ U. Dans ce cas, il existe des solutions classiques non-triviales pour

les fonctions F,#,,7;,7; [67], mais un nouveau probléme apparait: 1’ existence de deuz

solitons dégénérés dans le spectre classique. Ceci est dii & I’ invariance de la masse

classique du soliton par rapport a la transformation discréte des fonctions de profils :

- -

-

v

(2.4)




Les solutions (F,%,,93,%;) et (F,—¥;,~72,9;) forment un doublet de solitons. Une |

fois quantifié, ce doublet de solitons donnera naissance 4 deuz états baryoniques quasi-
dégénérés. Ceci n’ est évidemment pas observé dans la Nature.

Quelques mots sur ce doublet de baryons. Les auteurs de [67] I’ ont irterpreté comme un “doublet de
parité”. Pour notre part, nous nous gardons de 1’ appeller ainsi, car la transformation (2.4) n’ a rien d’
une opération de parité telle qu’ elle est définie en théorie des perturbations [68]. Pour le voir il suffit
d’ écrire le champ du vecteur de fagon a expliciter les indices de spin et d’ isospin dans la configuration
@2) Vi = Vi

Vii = t1(gri — Fafi) + Dofri — BaerimPm (2.5)

g dtant le tenseur métrique Euclidien, Alors la transforination (2.4) pour les composantes du champ

dup, s’ ex‘prime de la fagon compacte:

{ Vii — Vi (2.6) ¢

Cette transformation n’ a rien d’ habituel, car il s’ agit d inverser le signe du champ et échanger les
indices de spin et d’ 1s0spin. Cette symétrie ne peut exister que dans le secteur topologique du
Lagrangien (2.1), ol précisément les indices de spin et d’ isospin des champs sont confondus & ceux de
I’ espace de configuration pour un hérisson. C’ est la raison pour laquelle nous pensonst qu’ il ne faut
pas interpréter cette transformation comme une transformation de parité.

Pour résumer donc les résultats existants dans la littérature: quand le méson p est
supposé se transformer comme un boson de jauge du groupe caché h (équation (1.2)), le
systéme wp ne posséde pas de solution classique stable en I’ absence de termes d’ ordre

supérieur. En présence de termes stabilisateurs, il apparait un doublet non-physique d’

états baryoniques.

t Sous réserve d’ une démonstration future du contraire,
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3. Transformation homogéne des champs vecteurs

La loi de transformation chirale du champ du méson p sera donnée dans ce qui suit par:

Vi — h(x)V, hi(x) (3.1)

h étant la matrice définie par 1’ équation (1.1). Puisque A est locale, les gradients doivent
étre généralisés pour se transformer eux aussi comme les champs V,,. Pour cela il faut

¥ ajouter un terme contenant la quantité I';, définie dans la section précédente:

Vva =6,, v, + [Pus Vv]

Le Lagrangien du systéme 7p, a I’ ordre le plus bas par rapport aux champs vecteurs,

et invariant par les transformations (1.1) et (3.1), est donné par:
1 gV M} 2 a
Ly = ~—ZTr{(V,,., + zg‘/—i[u,,,u.,])z} + -—2—‘°Tr(V,, V#) + T"Tr(u”u,,) (3.2)

ou V,, = V,V, — V,V,, gv est la constante de couplage du pion au méson p. Comme il
sera montré dans I’ Appendice A, le Lagrangien (3.2) est le plus simple conduisant & un
Hamiltonien qui soit borné inférieurement. Ce Lagrangien est quadratique par rapport
aux champs vecteurs.

Nous allons étudier la stabilité du secteur topologique dans le systéme 7p, mais nous
voulons aussi établir une analogie entre le mécanisme de stabilisation dans le systéme
np et celui du systéme ww. En fait, on peut montrer que dans ce dernier modéle, la
stabilité est diie & une contrainte secondaire a laquelle le champ du w obéit. Pour mieux
illustrer le role joué par les contraintes dans le mécanisme de stabilisation du soliton
pour le systéme 7p, nous avons délibérément choisi de ne pas considérer dans ce qui

va suivre la théorie (3.2), dans laquelles les champs contraints Vi ne peuvent pas se
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coupler au courants statiques du pion. Nous allons plutét étudier une théorie avec des
contraintes, équivalente & (3.2), I’ équivalence étant comprise au sens des transformations
canoniques et sera montrée dans I’ Appendice A. Dans cette théorie le champ du p
est défini en termes de champs tenseurs antisymétriques W),, se transformant comme

Wy, — h(x)W,, k(x) par une rotation chirale, et la densité Lagrangienne est donnée

par [43]:
2

M
Loy =~ STR(VPW,, Vo W) + L Te(W,, WH)
2 4 (3.3)

2 G
+ %Tr(u,,u") + iE—%Tr(W,w[u“,u"])

75
avec W, = 'rkW:,, k étant un indice d’ isospin. La contribution de I’ échange d’
un p & la diffusion mx avec les couplages du Lagrangien (3.3) a été systématiquement
étudiée dans [69] et [70] pour le cas de trois saveurs. Il a été trouvé par les auteurs de
[70] que cette contribution est identique & celle diie au Lagrangien (2.1). L’ équivalence
des deux approches dans les ordres dominants de la diffusion 77 est mieux pergue &

la limite des grandes masses pour le méson p. En effet, 1’ équation du mouvement du
G,
i2M?

derniére expression de W, dans (3.3), on obtient:

champ W,,, A cette limite, nous dit que W, — [v4,us). En remplagant cette

2 G2
Lrp(M,,Gp — 00) — %Tr(a‘,Ua“Uf) + SM’;.2 Tr((8,UU1,8,UUT?) (3.4)

en utilisant la relation u, = iu*(8,UU")u. Comme nous I’ avons mentionné dans la
section précédente, la limite locale du Lagrangien [.X)’ est aussi donnée par 1’ équation
(3.4). La contribution du prochain terme (d’ ordre six) du développement en puis-
sances du champ du pion, a la composante temporelle du tenseur impulsion-energie, est

négative, comme on peut le voir sur son expression:

ﬁff) ~ Te(VH [y, )V, [u”,u"]) (3.5)
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En vertu de cette relation nous pouvons anticiper que I’ energie de la solution classique
de I’ équation (3.3) sera inférieure & celle du Skyrmion de I’ équation (3.4).

Représenter des champs vecteurs par des tenseurs antisymétriques suppose que I’ on
contraint les degrés de liberté redondants. Il est donc naturel de se consacrer en premier
i la construction du Hamiltonien associé au Lagrangien (3.3), afin d’ éliminer les champs

obéissant a des contraintes.

a. Le Hamiltonien
Il n’ est pas difficile de voir que les composantes spatiales du tenseur W,, ne sont pas
des degrés de liberté physiques par construction. En effet, les moments canoniquement

conjugués du champ W, que I’ on appelera ,, sont donnés par:

v __ al: rp
9[0oWo]

Lo = 29"V, W7 (3.6)
7 étant la métrique de I’ espace-temps. Il est immédiat de déduire que 7;; = 0, et par
conséquent les champs W;; ne se propagent pas. Contrairement au cas des théories de
Yang-Mills massives ou les champs contraints Vs se couplent & des dérivées temporelles
disparaissant a la limite statique, ici les champs contraints W;; se couplent au courants
statiques du pion. Pour trouver la contrainte a laquelle les W;; obéissent il faut calculer
le Hamiltonien primaire. La terminologie “primaire” utilisée dans le formalisme de
Dirac-Bergmann (71}, sous-entend que cet Hamiltonien contient tous les champs, méme
ceux qui sont contraints. Il sera utile de paramétriser de la fagon suivante le champ
chiral:

U = exp (i7F'F) (3.7)
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Avec cette définition le Lagrangien du modéle o non-linéaire s’ écrit sous la forme

compacte: )
Loni =£21 8,F g o*F
3.8
sin? F (3:8)
Gap =Fu By + 2 (9ab — E.Ry)

L’ isotenseur G est en fait la “métrique” du groupe SU(2)f. Avec ces notations, I', et

les gradients du pion u, sont donnés par:

.« 2
P“ =i§l'n—‘(i,ﬁl/-2‘27'ufubcﬁ'bach
(3.9)

. - inF n =
2y = — 1o [FuFy + Es-%,—(gau» ~ FuRy))0,Fy

On a également besoin de |’ expression du moment conjugé ¢ du champ F. Il est de la

forme:
$= aa[go’;-’,-] = f2G 8 F + %J\/}Wf’o; ~ M} o (3.10)

avec la définition suivante des opérateurs d’ isospin Af; et My; :

Wies Y sin F [ sin F

nkF
(1- )(F Fb.‘]qr + F, q r.‘]pb) + F qrgr't]

2sin? (F/2)[ (3.11)
F

(Moi)as = —~ 9as(F . Woi) — Fa(Woi)s]

On élimine les dérivées temporelles des champs, en inversant les équations (3.6) et (3.10),
ce qui permet d’ écrire le Hamiltonien de la théorie en termes de variables canoniquement
conjugées: Hp = / & 2(7,, WH + $8F — L,,). Négligeant les termes de surface,
on obtient apres intégra.tion par parties I’ expression:

<2
Hp = /daz{f‘:—i + -5 [¢ meN + FoiMoi] 671 [ - \%’N;WM + MY 7]

+ -,g—a.-F G O;F + A + MEW,

M? iG
- ’2—"W3 \/f(W., Ylwi, uj]e — 7"0"4”1}

(3.12)

t 1l faut remarquer que les valeurs propres de G sont positives
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avec les notations:

1
(Aagy)x =§Tr(TkVaWa-,)
(3.13)

1
(i w5l =5 Te(rului,u;])
Définissons maintenant les crochets de Poisson fondamentaux, liant les champs canon-

iquement conjugués:

1 g
{W:u(z)$ ﬂ‘,‘)d(y)} = Eg“(ﬂquua - 7],“,17,,,,)63(2 - !7) (3.14)

[zo=yo]

ou I’ on a antisymetrisé les indices de spin dans 1’ expression habituelle, &k et ! sont
des indices d’ isospin. Remarquons que cette équation est incompatible avec la relation
#;; = 0. Pour s’ en sortir il suffit de traiter les variables #;; de fagon un peu particuliére.
Imposons la conservation dans le temps de la contrainte primaire. Les variations des
champs étant égales & leur crochets de Poisson avec le Hamiltonien, cette conservation

est assurée par:

{mij(z), Hp} =0 (3.15)

En reportant I’ expression de Hp (eq. (3.12)) dans ce crochet, et en utilisant les crochets
fondamentaux définis plus haut, on arrive & 1’ équation de la contrainte secondaire aprés

quelques intégrations par parties. Cette derniére peut-étre écrite sous forme matricielle:

1 .
Wi; =§1Tf3_{ - iV2G  uiy u5) + Vimg; — V,-vro.-} (3.16)

Cette formule est 1’ équivalente de la loi de Gauss [72].

L’ équation de la contrainte (3.16) est formellement analogue 4 celle obtenue par les auteurs de [32),

pour le systéme TTw:

1
wp = ;n—g(—ﬁwBo + 9i%;)
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pour la composante temporelle du champ du méson w dans le modéle de la réf. [23]. ; sont les
moments conjugés des champs w; et By est la densité de charge baryonique.
Nous sommes maintenant en positionf d’ écrire le Hamiltonien physique (sec-

ondaire), en remplacant W;; (équation (3.16)) dans Hp. Nous obtenons:

fai , 1 » 4G, o L 1 tr 4G, tew .
Hs = /433{140—'- + ﬂg['ﬁ - -;/"QEWMM + %Mo) 67 [6 - “\-/——ép-N.-fWOi + M 7oi]

+ L0 F g 6iF + B+ M2V
+ 5,:*4—3[%(%*0:' =~ Vimoi) - %[unu:‘]k]z}
(3.17)
En principe, il faut ajouter & cet Hamiltonien des multiplicateurs de Lagrange, pour s’
assurer que les contraintes primaire et secondaire soien{ prises en compte dans la dy-
namique. Ici nous simplifions le probléme, en posant ces multiplicateurs identiquement
égaux a zéro, mais ceci n’ altérera pas la généralité de nos conclusions.

Avant de passer a la construction des solutions statiques, observons la forme de
cet Hamiltonien, qui est une fonctionnelle des champs qui se propagent: }-7’., ¢,;5., Woi et
7oi - Remarquons d’ abord qu’ il est manifestement positif. Ensuite, zn vertu de I’
équation de la contrainte secondaire, il est clair que la tentative d’ annuler le champ
du p par une déformation continue va rencontrer la répulsion du terme de Skyrme,
explicitement présent dans le Hamillonien secondaire. Ceci nous rappelle fortement le
mécanisme de stabilisation du soliton dans le cas du systéme 7w [23], ol la répulsion
stabilisatrice provient d’ un terme d’ ordre six dans le développement chiral.

Nous allons maintenant chercher les solutions classiques de I’ équation (3.17) dans

le secteur de charge baryonique unité.

1 Pour étre complet, il faudrait s’ assurer aussi que cette contrainte est conservée

dans le temps, mais il serait étonnant d' y trouver une contrainte autre que (3.16).
P q
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b. Solutions classiques
Considérons I' ansatz du hérisson, déja rencontré au cours des chapitres précédents:
F=#F, Wy= fr [wl(-r. = (F#):) + wa(7 7)o — wa(7 x 7); ]

. f

(3.18)
¢= Fore, mi= f— [m(7i = (F#)) + mo FF)F — ma(F % 7)i]

La forme (3.18) pour les champs vecteurs Wy; et my; est la configuration la plus générale,
compatible avec la symétrie sphérique. Les profils F, ¢, w;,wa, w3, 7,72, 73 sont des
fonctions de la variable radiale r (et du temps éventuellement, mais de toute fagon
cette dépendance n’ est qu’ implicite dans le formalisme Hamiltonien). Une fois les
configurations (3.18) reportées dans le Hamiltonien (3.17), il est naturel de séparer ce

dernier en deux parties, car les champs se découplent ezactement:

H =47rf:/ dr['Hq(F,¢,w1,w2,w3,7r1,1rz) +H1rp(F,7|'3)] (319)
0

Le premier terme, Hq, est positif et quadratique dans les champs ¢, w;, we, w3, 1, 72!

Ho =%(¢ + 2g,w; sin F)? + 2 + + (r2 + 2wz — 2cos Fu, )?
(3.20)
+ (M) (w} + 20f + 2w,) + 2—M—3(fn - cos F22)?

g, est la constante de couplage sans dimension, g, = 2v/2G,/ f».
Cet Hamiltonien est nul  la limite statique. Pour le prouver, considérons I’ ensemble d’
[ ]
équations 6[ / dr'Hq] = 0 pour des champs qui ne dépendent pas du temps. Tout d’
0

abord, celles concernant les champs ¢ et w3 donnent identiquement ¢ = w3 = 0. Pour

les autres champs il suffit de remplacer les variables w;,ws, 7,7 par les variables p,

et P2:
wy =EES—FP1 we = i
Mz 2T ME
" =_1§3_ rp = 2cost2 (3.21)
M? ’ M2r
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Les équations de Hamilton se réduisent a:

2cos? F . (3.22)

pi =(M: + 2 i i=12

En multipliant cette équation par p; et en intégrant par parties le membre de gauche

on arrive a |’ expression:

2cos? F
rz

[o <]
/ dr [7 + (M2 + ) =0 (3.23)
0
La scule solution est évidemment la solution triviale p; = p; = 0, par conséquent

w; = wp = m = m = 0 ce qui compléte la démonstration. Pour des solutions de type

soliton, nous avons donc moniré que:

(HQ)Jtaﬁquc =0 (3.24)

Il est clair que la dégénérescence au niveau de la masse classique rencontrée dans la
section 2, ne peuz pas avoir lieu ici, les champs w;, w3, , 72 sont nuls de fagon triviale.
En plus, ils se découplent de la composante non-nulle ¢ la limite statique m,.

En ce qui concerne la deuxiéme partie du Hamiltonien, nous trouvons |’ expression

suivante pour Hy,:

sin? F

2r

1. . 1 NP
Hup =5 [(rF)? + 2sin® F 4 w3] + oo {(gpsin FF = ) + 2(g, - cos P2}
p

(3.25)

Nous allons chercher des solutions ayant une charge topologique unité. Pour cela, il faut

imposer des conditions aux limites F'(0) = 7 et F(c0) = 0 et résoudre les deux équations
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de Hamilton, qui vont rendre H,, stationnaire par rapport aux variations arbitraires

des champs F and 3. Ces équations sont de la forme:

. . . w3 sin F
p=sin2F + g,m3sin F + 2D_]WET (3.26a)
. cos F 2
C =2D ~ M (3.26b)

r
. sin? F 3 : , .

avec C = g,sinFF - 73, D = 9o, — Cos F—;— et p = r?F. Ces équations sont
résolues numériquement (voir figure (3.1)).
On vérifie trés aisément que la forme asymptotique de la solution des équations (3.26a-
b) est compaiible avec les conditions aux limites imposées au champ chiral. La solution
asymptotique de (3.26b) pour le champ 7, est de la forme (Cte)e™™+". La valeur de g,
utilisée (g, = 2.1) reproduit la largeur de désintégration p — wr au premier ordre des
perturbations.
Il est intéressant d’ observer que notre solution classique pour les champs F,7; est
qualitativement semblable & celle obtenue par les auteurs de [62] pour les champs corre-
spondants F,#;. La masse classique de la solution présente a la figure (3.1) est de 1.14
GeV, légérement inférieure a celle que I’ on trouve dans le modéle de Skyrme correspon-
dant (e = v2M,/frg,), comme nous I’ avions prédit au début de cette section. Cette
“attraction” provenant de I’ interaction du champ chiral avec le méson p est aussi a I’
origine de la compression légére que la solution subit par rapport au modéle de Skyrme

(voir figure). En effet, si I’ on calcule le rayon isoscalaire du soliton
2 f> .
<7? >pm0= -_;f r2dr(—F sin®F) (3.27)
0

nous trouvons < r? >}/=20= 0.35 fm, contre 0.4 fm dans le modéle de Skyrme.
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La solution des ¢quations (3.26a) et {3.26b) extrémisant la fonctionnelle de Hamilton f;o 'H,‘-,,(r)dr.
La ligne en trait plein correspond au champ F' (1‘) dans le présent calcul, alors que sur la courbe en

pointillés on montre la solution du modéle de Skyrme correspondant. Sur la ligne en traits-pointillés

—~73(7) est tracé.
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Nous avons aussi vérifié qu’ il existe une solution des équations (3.26a-b) pour toute

valeur de la constante de couplage g,.

c. Stabilité
On va donc s’ intéresser au signe de la seconde variation du Hamiltonien (3.19) par
rapport aux petites fluctuations des champs autour de la solution classique. Les termes
lindaires dans les fluctuations disparaissent car on développe le Hamiltonien autour d’
un point stationnaire. On s’ intéresse aux fluctuations monopolaires [73], correspondant

a un mode de vibration scalaire:

F = Fy(r) + §F(n,1), & = do(r) + §¢(r,1)
(3.28)

m o= a2l(r) + 6mi(nt),  wi=wi(r) + bwi(r,t) i=1,2,3
Considérons d’ abord le terme Hg. En vertu des résultats analytiques vus plus
haut, la partie statique des champs w1, 72, Wy, w2, w3, ¢ est nulle. Alors, leur contribu-
tion i la variation du Hamiltonien se découple des fluctuations de F, et on a la relation

simple

6(2)HQ(F, ¢, Wi, Wa2,W3, T, 7I'2) = 'HQ(F(), 6¢, 6‘!1)1 N 6‘!1)2, 6‘!D3, 67I'1 ,67I'2) (3.29)

Nous avons montré analytiguement que H ne peut avoir qu’ une contribution posi-
tive & la fluctuation de la masse. Il en résulte que les composantes my, 7z, wy,wy ne
déstabilisent pas le soliton.

Intéressons nous maintenant au terme H,,, pour déterminer si des fluctuations
arbitraires des champs F et w3 ne déstabilisent pas la solution classique. D’ abord,
effectuons un test préliminaire pour déterminer si cette solution est un minimum local

par rapport & une classe de transformations d’ échelle. Considérons & cette fin ]’ intégrale
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I = [ dr[Hzo(F,m)). Cette intégrale est la masse du soliton & un facteur multiplicatif

pres, et elle peut s’ exprimer comme une somme I = Iy + Iy + Iy + I, + I avec

1 [, ,
I1=-2~‘/0' drm;

1 [= .
I2=§/ dr[(rF)2+25in2F]
0

1 [ g sin’ F
L= 5 fo dr[(gp sin FEY? +2(gp™— ] (3.30)
SR St w3, sin’ F
Iy = —mf/o‘ dr[27r3(gpsmFF)+4cosF—;‘—(g,, " )]
Iy = 1 ‘/.mdr[v'r2 + 2 cos? Fﬁ]
s 2M3 ] 3 7‘2
Effectuons maintenant la transformation snivante de la solution classique:
Fo(r) = Fo(dr), 73(r) — am3(Ar) (3.31)

A et v étant deux paramétres arbitraires. Par cette transformation d’ échelle globale, I

devient:

Iy = %(‘7211 + )+ ML + 7L + ¥ I5) (3.32)

Développons cette expression autour de la solution classique (A =1+ €x,y =1 + ¢€,)
avec €),64, << 1. Au premier ordre, la stationnarité de I’ Hamiltonien fournit des

relations entre les différentes contributions 4 la masse. On trouve

L+L=Li+I1i+1Is
(3.33)
2h+I)=—-1

relations que I’ on vérifie avec la solution de la section précédente. Par ailleurs ceci con-
stitue un excellent test de la méthode de résolution numérique. La variation quadratique

maintenant peut se mettre sous la forme:

by lry =(ex ) (2(112;112) 2 I—x 4_:1[5)) (u) (3:39)

€y
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Parmi les valeurs propres de la matrice de cette forme quadratique une est positive. La
positivité de la deuxitme valeur propre est moins simple & établir. On peut formuler la

condition nécessaire pour la stabilité de la solution classiguet par I’ inégalité:

(h+ L)L +1s)-4IF > 0 (3.35)

Nous n’ avons malheureusement pas pu établir analytiquement que la solution de la
section précédente satisfait & cette inégalité. Malgré tout le membre de gauche de
(3.35) peut se calculer numériquement et en effet, nous avons trouvé qu’ il est positif
pour toute solution classique (en fait pour toute valeur de la constante g,). Le soliton
est donc¢ un minimum local par rapport & la transformation (3.31).

Le fait que la solution soit un minimum’local pour des transformations d’ échelle, ne
constitue pas une condition suffisante pour sa stabilité (pour une discussion voir I’
appendice B). Pour déterminer une telle condition, il faut considérer des fluctuations
plus générales, de la forme F = Fy + §F(r,t) 13 = 73 + 8m3(r,1).

La variation de I' Hamiltonien au second ordre par rapport & ces fluctuations est:

§Hy, = 22 / ” Pt Mapdr (3.36)
0

ol ¥ est un vecteur a deux composantes %' = (6F ém3) et M est un opérateur hermi-

tique, fonction de la variable r. Ses éléments de matrice sont:

{ Théoréme de Derrick généralisé pour le systéme mp
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2
9,
Msrpr) = - —(r + =5 M sin Fo)— +2cos2F,

sm Fo

[sm 28, Fy + cos 2Ry 2 — (3 - 4sin? Fy )]

5 [9p cos Fo(#3r? + x3(9sin® Fy — 2)) — 2(73)? cos 2F,)

&2
M §n3,6%3) =-Mp;[— e

+ =

M2 (3.37)

(M2 + 2cos R )

M sF,5m3) =-M}p; [9osin Fy ;;‘; + ;15(—2 sin 2Fy 73 + g,(3sin? Fy — 2)sin F, )]

M sny5F) =(MsFsma))!
Il est intéressant de noter que sur les deux premiéres lignes de cette équation, et parce
que les termes en «J dans (3.37) aussi bien que le potentiel sont d’ ordre 1/M; ou plus,
on retrouve |’ opérateur de fluctuation du Skyrmion. Cet opérateur a un spectre positif
comme il est montré dans la réf. [74].

Pour montrer finalement la stabilité il faut montrer que le spectre de M se situe
du coté des fréquences positives. C’ est ce qui a été fait dans [72] en utilisant deux
méthodes diflérentes. La premiére consiste i diagonaliser une approximation discrétisée
de M, dans laquelle nous n’ avons trouvé que des valeurs propres positives et la deuxiéme
consiste a résoudre les équations aux valeurs propres pour des energies négatives, pour
laquelle nous avons trouvé que le determinant de Jost [75] associé & M ne change pas
de signe.

En définilive, nous avons montré que le méson p peut stabiliser le soliton d’ une

maniére trés similaire & celle que I’ on rencontre quand on introduit le méson w.
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4. Conclusions

Il a été montré par les auteurs de la réf. [70], qu’ avec le Lagrangien donné par I’
équation (3.2) (ou (3.3)), les couplages effectifs induits dans le secteur des pions par I’
échange d’ un p sont équivalents aux couplages produits par des Lagrangiens du méme
type que celui de I’ équation (2.1). Cependant, nous avons noté une différence cruciale
entre les secteurs baryoniques correspondants:

Quand la transformation du champ du méson p par une rotation chirale “cachée”, est
supposée étre homogene, les solitons topologiques du systéme 7p sont stables par rapport
aux fluctuations des champs mésoniques, alors que dans les approches “non-minimales”,
ol le méson p est couplé au pion comme un boson de jauge de ce méme groupe caché,
le soliton est instable. De plus, dans la premiére approche il n’ y a pas de doublet de
baryons.

Il est donc clair que les ambiguités ezistant dans la litiérature pour le sysiéme wp,
sont en grande partie diies au choiz particulier de réalisation de la symétrie chircle par
les champs vecleurs.

Il n’ est pas difficile en fait de montrer [70] qu’ il existe une transformation non-
linéaire entre les champs f’,, et V,, par le biais de laquelle on peut trouver une relation
entre les Lagrangiens (2.1) et (3.2):

Vi =V, + ;:'Pm 9=

1
v8gy
EEM(T,) =C0 Vi) + 20TV WP) + T (Vi + i SV, V1)
(4.1)

Nous pensons que ¢’ est justement le dernier terme (proportionnel ¢ ;‘; ) dans le membre
de droite de cette équation qui est responsable des instabilités dans le secteur baryonique

du Lagrangien LY M.
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D’ un autre coté, et dans le secteur des mésons, ces termes cubiques et quartiques en
champs vecteurs (équation (4.1)) contribuent & des processus mettant en jeu plusieurs
mésons p (trois ou quatre), et du fait de la symétrie de jauge des relations particuliéres
doivent exister entre ces processus. La question de savoir si ces couplages, et surtout si
ces relations, sont réalistes du point de vue expérimental reste ouverte.

1l faut noter ici que les lois (1.2) et (1.3) ont la bonne propriété de former un groupe, et il est
probable qu' clles soient les scules & la posséder [76]. Par exemple, la transformation inhomogéne
f’,, — h(w)l",,h(w)f + aa,,h(w)l“f,,a"hf(w) ne satisfait pas a I’ associativité.

Finissons ce chapitre en disant qu’ il sera intéressant de clarifier la structure
topologique de la solution classique quand le Lagrangien contient non seulement le
champ U mais aussi des champs vecteurs, axiaux etc... On sait que la structure
topologique de la solution joue un réle non-trivial dans la stabilité des solitons pour
les théories en 1 + 1 dimensions [8],[9). Mais la situation se complique beaucoup dans
les théories & 3 + 1 dimensions [77] et plus particuliérement pour les modéles ot le
champ chiral se couple & des mésons. On peut se poser la question de savoir si les
propriétés topologiques non-triviales des champs de jauge [78] sont vraiment & I’ origine
de I’ instabilité des solitons des Lagrangiens tels que (2.1). Nous ésperons qu’ une fu-
ture étude de ce Lagrangien va répondre 3 cette question, et simplifier beaucoup notre
compréhension du rapport qui pourrait exister entre la stabilité des solitons des théories

en 3 4 1 dimensions et leur topologie.
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Appendice A.

Dans cet appendice nous allons étudier une description des mésons vecteurs en
termes de champs vecteurs V,,, se transformant comme V, — h(r)V, k() par une
rotation chirale non-linéaire. Notre but est d’ abord de montrer que le Lagrangien
invariant chiral, qui satisfait aux conditions suivantes:

a) étre d’ ordre le plus bas en champs vecteurs

b) conduire & un Hamiltonien borné inférieurement

est donné par le Lagrangien de I’ équation (3.2). L’ équivalence formelle de la formu-
lation en termes de vecteurs a celle en termes de tenseurs antisymétriques sera ensuite
montrée.

Considérons d’ abord un Lagrangien qui satisfait seulement i la condition a):
grangi

1] 1 py : M
v == TV V™) + ———‘21'1‘1-(V,.V )
(A1)

2 .
+ !—'-Tr(u,,u") - i-2—q‘—2Tr(V,w [u¥,u"])

4 v2

avec Vy,, = V,V, — V,V,. Ce Lagrangien a été étudié par les auteurs de la réf. [70]
dans un autre contexte. Il n’ est pas difficile de s’ apercevoir que la limite locale (méson
p trés lourd) de ce Lagrangien, contient le terme & deux dérivées, un terme a six dérivées
etc...!I’ ordre quatre est absent de £}-. En fait, il a été montré dans [70] que le rayon
de charge du pion dans ce modéle est égal & zéro, d’ ol la nécessité d’ ajouter & LY,
un terme local (en fait, le terme de Skyrme en SU(2)). Ces auteurs ont aussi montré
que la présence de ce terme est nécessaire pour étre en accord avec le comportement
asymptotique de la QCD. Dans leur analyse, ils n’ ont pas considéré la contribution des
termes contenant la connection I', dans V), mais dans ce qui va suivre, nous allons

au contraire tenir compte de ces termes de fagon A respecter la symétrie chirale & tous
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les ordres du développement chiral. Nous verrons que simplement en demandant au
Hamiltonien de satisfaire & la condition b), on peut arriver & la méme conclusion que
les auteurs de [70}, & savoir qu’ il faut ajouter un terme local d’ ordre quatre & £j..

Nous allons considérer le Hamiltonien associé au Lagrangien (A.1). Pour ceci faire, il
faut d’ abord calculer les moments conjugués #, (la barre est pour éviter la confusion
avec les my; de la section 3) et @ de V, et F respectivement. Ceux du champ vecteur

sont donnés par:

Ty =~ (2Vo, +iV2gv[uo, 1)) (A.2)

En vertu de la relation qui en résulte pour les composantes spatiales #;, le moment du

champ chiral se met sous la forme:
d=AdF + Bl%

A=At=f2¢g - %("%’Af,-f)(i%/\f.-) (A.3)

B; =% E\%—N‘. - 2M;)
avec les matrices G, N; définies par les équations (3.8,3.11). Pour avoir I’ expression de
M; il suffit de remplacer Wy; par V; dans I’ expression de la matrice Mg; définie par
les mémes équations.

La contrainte primaire se lit sur I’ équation (A.2): ® = 0. Ce qui veut dire
que V; n’ est pas un degré de liberté de la théorie. Pour I’ éliminer, il faut i) inverser
les équations (A.2) et (A.3) pour obtenir le Hamiltonien primaire et ii) imposer la
conservation dans le temps de la contrainte primaire en annulant son crochet de Poisson

avec cet Hamiltonien. Ces opérations conduisent 3 la relation secondaire,

Vo = —= V& (A4)



[

En utilisant cette relation, on arrive au Hamiltonien exprimé en termes de vrais degrés
. - T
de liberté F,¢,V;,#; :

:.2
Hs=/d°{ : %[qﬁ #Bi) A' [¢ - Bl® ]+f"6FGBF+(Z;;'2)"
(4.5)

- V2
+M§V‘-2 u + z\g/‘-/(vu)k[uuujl}

Cbservons maintenant la partie dépendante de ¢ de cet Hamiltonien. La contribution
de ces termes n’ est pas manifestement positive, car il n’ est pas exclu que la matrice
A ait des valeurs propres négatives quand la constante de couplage gy est non-nullet.
Pour se rendre compte du probléme, plagons-nous dans la configuration du Aérisson

pour le champ du pion F = F(r)#. 1l est alors immédiat d’ inverser cette matrice:

a1 1 oy F? 1 i
Aab - fz (1 49 2sm= F) TaTh + SinzF (1 _ 4_%:;[5;“,1, +F2]) (an Tn'rb) (A.G)

Calculons maintenant la contribution a Mg die aux termes dépendant du moment du

pion. Pour une configuration sphérique du champ vecteur:
- fﬂ — - AN A - - AN~ - — - A
Ti= [7r1(-r,- — (FR);) + 7o (FA)F; — Ta(F % r).-] (A7)

nous arrivons, en vertu des équations (A.5), (A.6) et (A.7), & la forme suivante :

Ho = LB 2v2gy 73 sin F)?
? = 21— 8gZsin? F/f2r2

(A.8)

Cet Hamiltonien a un pdle, et n’ est pas borné inférieurement si gy et F sont non-nuls.

Ceci n’ est évidemment pas acceptable. Il est important de préciser ici, que méme

t sila constante de couplage est nulle, A est égale & f2G et ses valeurs propres sont

positives.
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si nous avons fait usage d’ un ansatz particulier pour compléter la démonstration, la
conclusion sur la validité de la théorie (A.1) est générale. Notamment, nous n’ avons
pas vérifié si cette configuration satisfait aux équations du mouvement pour des valeurs
de la fonction F différentes de zéro. Méme si ce n’ est pas le cas au niveau classique,
ces configurations non-perturbatives déstabiliseront la théorie quantique.

Nous avions anticipé sur |’ origine de cette pathologie en observant que la matrice A est
susceptible d’ acquérir une contribution négative du couplage pion-p. La fagon la plus
simple de “régulariser” cette matrice, et par conséquent le Hamiltonien, est d’ ajouter

un terme local 3 £}, compensant cetie contribution :
P
Ly =Ly + —g—’-Tr([u“,u"][u,,,u,,]) (A.9)

Ce terme n’ est rien d’ autre que le terme de Skyrme; le nouveau Hamiltonien est

maintenant manifestement positif:

=2

o= [Ty g7 6 [6-87] + rafgaf . Uk
/z{4+ S[¢-7B:) G~ [4- |+ SOF G OF + 250tk i 410

+ T+ 3 [de+ Lpusush]}

Nous concluons donc que le Lagrangien satisfaisant aux conditions a) et b) énoncées au
début de cet appendice est donné par I’ expression (3.2). Remarquons que le seul fait d’
imposer au Hamiltonien d’ étre positif, détermine la constante de Skyrme : e = (2gy-)~1.
Il n’ est pas difficile de montrer maintenant que le Hamiltonien (A.10) est ezactement

égal au Hamiltonien en termes de tenseurs antisymétriques (3.17):

H[F.a‘;:vi,ii] = HS[F-‘:‘;:WOHWO:'] .
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En fait, il existe une transformation canonigue entre les deux ensembles de champs

{F-',q-S', V.',1'r.~} et {F‘, é, Wu.',ﬂ'o.'} en effectuant le remplacement gy — G,/M:

o
e Vi
2M, (A.11)
T — 2Mqu.'

Nous avons montré 1’ équivalence de la formulation en termes de vecteurs (3.2) et de celle
en termes de tenseurs antisymétriques (3.3). Il est donc évident que les conclusions faites
sur la stabilité des solutions classiques du Lagrangien (3.3) s’ appliquent sans aucune

ambiguité et telles quelles au cas des solitons topologiques du Lagrangien (3.2).

Appendice B.

La présente discussion peut paraitre assez triviale. Cependant, elle nous semble
nécessaire pour éliminer une certaine confusion que I’ utilisation du formalisme La-
grangien peut éventuellement susciter. Nous allons voir qu’ en général il ne suffit pas de
montrer que la masse classique du soliton soit un point de selle, par rapport 4 un certain
ensemble de transformations continues, pour conclure que la solution est instable. Pour
traiter le problérne de la stabilité il faut considérer les fluctuations les plus générales.

Supposons que I’ on calcule I’ extremum de la fonctionnelle de masse du soliton,
sachant que I’ on cherche une solution statique rendant cette quantité finie. Alors, on
peut effectuer directement I’ extremisation de — [ d*rL. On va illustrer ceci en adoptant
ce point de vue pour le cas du Lagrangien (3.3). Alors, I’ energie du soliton, exprimée
en termes des variables généralisées (méme de celles qui sont contraintes, les W;;) est
égale a:

1 My
=— /d" [-2-Tr(V.-W.-,-V,,,Wm,- ~ VW, V;Wo;) + —4"-Tr(W.'jWij — 2Wo:Wy;)

12 . G, s aas
- T'rr(a.-va.-vf) ~ z;ﬁTr(W., [u.,u,})]
(B.1)
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Pour trouver la solution classique, plagons nous dans une configuration sphérique:

Woi = [wi (7 — (77)F:) + wa(F7)f; — walF x #)i] (B-2)

Wij =[81(Fimj — #im) + daeijeme + Pa€ijmPm(7.7)]
> )
En fonction de ces variables M est de la forme M = 4« / M dr, avec M donné par
0

M =£2’zi [(rF)? + 2sin® F] - 2[2¢2 + (ré1 + $1)? + (rd2 — $3)°]
~4(1 — cos F)[ — 2¢2 + (42 + ¢3)(rdz — $3)] — 2(1 ~ cos F)?[2¢% + (¢2 + 62)?]
~2(M,r)? 83 + 43 + %(m + ¢3)?] + V2G,[2sin® F(¢2 + ¢3) + 4sin F(Fr)¢,]

+ (rig + 2wy — 2cos Fuy )? + (Mpr)2(wd + 2wl + 2w?)
(B.3)

Cherchons maintenant les solutions des équations du mouvement qui rendent M station-

naire, par rapport aux variations arbitraires des champs F, ¢, ¢2, @3, w1, w2, w; avec des

conditions aux limites telles que ces solutions possédent une charge baryonique unité.
Tout d’ abord il est clair que les composantes w;,wy,ws sont identiquement nulles an

niveau classique. La méme chose arrive aussi au champ ¢ dont I’ équation du mouve-

ment
cos? F

re

1 + 2—(5_’1 = (2 + M2)¢: (B4)

n’ a que des solutions triviales. Il reste une fonctionnelle des champs F, ¢z, @3 3 extrem-
iser. Supposons que I’ on résoud le probléme numérique, pour extrémiser la masse du
soliton. Nous allons montrer que tant que I’ on considére les variables F, s, ¢35 comme

des variables indépendantes, I’ ezirémum n’ est pas un minimum per rapport d une
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certaine classe de transformations d’ échelle. Pour cela, écrivons la masse du soliton

comme une somme de quatre termes : M = M, + M, + M3 + M,
M =21rf:/ dr[(rF)2 + 2sin® F]
v
oo
M, =- 81r/ dr[(rd:z —@3) + (1 — cos F)(¢2 + ¢3)]2
Y e ) (B.5)
My = - 87rM: / drr? [ng + —2-((;51 + ¢3)2]
v
M, =41r\/§G,,/ dr[2 sin? F(¢z + ¢3) + 4sin F(TF)¢2]
0

et eflectuons la transformation de changement d’ échelle (compatible avec les conditions

aux limites sur les champs) suivante:

F(r) — F(ar), ¢2,3(r) — ¢2,3(ar) (B.6)

Par cette transformation, la masse devient:

1 1
My = =(My + Mz + My) + — M, (B.7)
a o

. ‘s . . M,
La stationnarité de M envers cette transformation s’ exprime par: 33 “(a—1)=0
o
soit M; + My + My + 3My = 0. Alors, en utilisant cette derniére relation la deuxiéme
variation de la masse quand le paramétre « tend vers 1 est:

M,

aor = 65 (4.8)

qui compléte la démonstration car en vertu de (B.5) le terme M; est négatif. Mais
le fait que la solution classique ne soit pas un minimum local ne signifie nullement
qu’ elle soit instable. Nous avons au contraire démontré que la solution classique de

(B.1) est stable dans la section 3. En fait, pour éxaminer le probléeme de la stabilité
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dans le cadre du formalisme Lagrangien il ne suffit pas de calculer la masse statique du
soliton. Il faut considérer des fluctuations autour de la solution classique et tenir compte
des contraintes, ce qui signifie implicitement qu’ il faut introduire une dépendance par
rapport au temps et résoudre les équations d’ Euler-Lagrange. Nous avons aussi résolu
ce probléme. Il a été trouvé que le spectre des fluctuations dépendantes du temps,
et autour de la solution classique du Lagrengien (3.3) est positif. Il est clair que si
I’ on tient compte des contraintes (équation (3.16)) le formalisme Lagrangien donne
les mémes résultats que le formalisme Hamiltonien. Ce dernier est seulement plus

transparent quand on a aflaire 4 une théorie avec contraintes.
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Conclusions

Nous nous sommes concentré dans cette thése a la description des nucléons en tant
que solitons topologiques d’ une théorie effective de mésons. Le but de cette étude esi
de construire une théorie unifiée des mésons et des baryons, comme il a été suggéré en
[21]). Cette théorie est sensée modéliser la Chromodynamique Quantique (QCD) dans
son régime non-perturbatif, aux échelles des distances des baryons (1 fm). Dans notre
approche, basée en partie sur une vieille idée de Skyrme [2}, les mésons sont considérés
comme des champs élémentaires et les baryons comme leurs excitations de type soliton
topologique. Les interactions (fortes) entre les mésons sont décrites par un Lagrangien
effectif qui doit respecter les propriétés de la théorie sous jacente, la QCD. Ce Lagrangien
doit ainsi respecter la symétrie chirale, la brisure de I’ invariance d’ échelle de la QCD
etc. Mais ces propriétés générales ne sont pas assez contraignantes pour déterminer la
forme spécifique du Lagrangien effectif. Ce degré d’ arbitraire dans la détermination
du Lagrangien effectif peut étre éliminé si I’ on tient compte de la phénoménologie bien
connue du secteur des mésons, C’ est ce qui a été proposé dans la réf. [24]. Notre
travail a consisté d’ abord & étudier une extension du modéle de la réf. [24] dans le
but d’ y inclure des degrés de liberté scalaires. Ceci nous a conduit dans le chapitre
I & introduire les champs vecteurs comme des champs de jauge non-abéliens dans le
modéle o linéaire [30] plutdt que dans le modéle o non-linéaire [24]. Cette formulation
nous améne naturellement & un Lagrangien effectif contenant les mésons les plus légers
(7, p,w, A1,€). Les paramétres du modéle sont déterminés en ajustant les observables
du secteur mésonique. Nous construisons alors les solutions de type soliton dans le

secteur  charge baryonique unité, et nous étudions les propriétés statiques des baryons.
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Un autre test important et sévére pour le modéle considéré est fourni par les propriétés
de ]’ interaction entre les baryons. Nous avons étudié les interactions statiques entre
ces solitons. En projetant ces interactions sur les différents canaux de spin et isospin
[30] nous avons obtenu les composantes centrale, spin-spin et tenseur de I’ interaction
nucléon-nucléon.
Les résultats montrent que méme dans le cas ol I’ approximation du produit est adoptée
pour le systéme a deux solitons, des forces altractives ayant la donne portée apparais-
sent dans le canal central de I’ interaction W N. Ceci est 4 opposer & tous les calculs
précédents éffectués a partir du modéle de Skyrme, qui n’ aboutissent qu’ & des forces
répulsives (ou attractives mais & longue portée). Nous pensons a cet égard que la
présence du champ scalaire est d’ une importance cruciale. .
Dans le but d’ éclaircir le probléeme de la masse des baryons dans les modéles
ol ces derniers sont considérés comme des solitons topologiques, nous avons effectué
une analyse semi-classique du modéle de Skyrme, en évaluant la premiére correction
quantique & la masse du soliton {47]. Dans le chapitre II, nous avons montré que cette
correction est trés grande (elle est du méme ordre de grandeur que la masse classique)
dans le cas du modéle de Skyrme original. Nos résultats suggérent que ce modéle ne
peut pas étre considéré comme une théorie effective réaliste. Nous avons ensuite montré
que la situation est nettement améliorée si I’ on envisage d’ inclure dans le Lagrangien
effectif des termes d’ ordre supérieur, par exemple un terme d’ ordre six dans les dérivées
du champ du pion. Ces résultats donnent & penser qu’ il faut généraliser le modéle de
Skyrme si on veut modéliser QCD & grand N.. Le modéle que nous avons proposé au

chapitre I est un bon candidat pour cette généralisation car & la limite des grandes
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masses pour les mésons, il contient, outre le terme de Skyrme, un terme d’ ordre six tel
que celui discuté plus haut.

Un autre probléme qui requiert attention est celui de la stabilité des solitons, car
les nucléons sont stables par I’ interaction forte. Dans le chapitre III nous avons étudié
le role joué par les mésons vecteurs dans la stabilité des solitons topologiques, dans le
cadre du systéme wp. Aujourd’ hui on sait que I’ introduction du méson p comme un
champ de Yang-Mills massif se couplant au pion, peut déstabiliser le soliton, et que
la symétrie de jauge est & I’ origine de I’ existence d’ un doublet quasi-dégénéré dans
le spectre baryonique. Ces ambiguités n’ existent pas dans le cas du méson w. Nous
avons montré qu’ elles peuvent disparaitre aussi dans le cas du méson p, si ce dernier
est supposé se transformer d’ une fagon homogeéne par une rotation du groupe chiral
non-linéaire [72]. Ainsi les mésons p et w jouent un réle similaire dans le mécanisme
de stabilisation du soliton. Ceci est satisfaisant parce qu’ & la limite oll ces mésons
deviennent trés lourds (limite locale) la contribution du méson p tend vers le terme de
Skyrme (ordre quatre) et celle du w tend vers un terme d’ ordre six. Ces deux termes
3 leur tour stabilisent le soliton séparément.

Un certain nombre de questions en rapport avec les études présentées ici restent
ouvertes:

1) D’ abord, I’ extraction du potentiel nucléon-nucléon dans le modéle que nous avons
proposé pour la description unifiée des mésons et des baryons, peut étre faite par des
méthodes numériques de minimisation exacte dansle secteur & deux solitons. Le résultat
d’ un tel calcul pourrait nous donner une indication quasi-définitive sur la validité de
ce modéle pour la description d’ un grand éventail de phénoménes de la physique des

hadrons.
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Dans le cas o ce calcul compliqué donne un résultat positif, on aura abouti a un

résultat important, celui d’ avoir établi un pont entre un schéma d’ approximation de la
QCD et les théories “mésiques” utilisées depuis plus de vingt ans pour interpréter avec
succes les phénoménes nucléaires & basse énergie.
2) Les observables des baryons (les masses par exemple) dans les théories effectives
précédentes s’ expriment comme un développement en puissances de A/N.. Il est im-
portant de savoir si ce développement est perturbalif et convergent. L’ étude exposée
dans le chapitre II apporte les premier. éléments de réponse a cette question. Il est
donc naturel maintenant non seulement de calculer les premiéres corrections quantiques
4 d’ autres observables telle la constante de couplage axiale du nucléon, mais aussi et
surtout d’ évaluer ces corrections pour les modéles plus réalistes ol le champ chiral se
couple a des champs vecteurs, scalaires etc... .

3) Notre étude sur la stabilité des solitons suggere qu’ il sera trés intéressant d’
essayer de trouver un lien précis entre la structure topologique de la solution classique
et sa stabilité, en particulier pour les modéles effzctifs ot le champ chiral se couple a

des mésons vecteurs, scalaires etc...
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Abstract

This thesis is devoted to the study of a unified field theory of mesons and baryons.
In such a theory, mesons are the elementary fields of a highly nonlinear effective La-
grangian, and baryons emerge as their topological soliton excitations. In chapter I
we undertake the construction of an effective Lagrangian with the low mass mesons
(7, p, A1, w and the scalar meson ¢) generalizing the Skyrme model [Proc. Roy. Soc.
A260 (1961) 127]. The vector meson fields are introduced as gauge fields in the linear
sigma model instead of the non linear sigma model. The parameters of the model are
fixed by fitting to the low energy meson observables. We then look for topological soliton
solutions of the model and investigate the nucleon-nucleon interaction in the product
approximation. The results [Phys. Lett. B283 (1992) 13; Phys. Rev. D46 (1992) 3903]
show that the scalar degrees of freedom i) lower significantly the soliton mass, ii) give
rise to attractive NN forces in contrast to the vector mesons which yield only repulsive
forces.

In chapter II we evaluate the leading correction to the classical skyrmion mass,

that is, the Casimir energy. The main ultraviolet divergence is cancelled by well known
chiral counterterms. We show that the result is controlled by the low energy behavior
of the phase shifts which are large and positive due to the presence of two normalizable
zero modes. As a consequence, the correction is found to be negative and rather large,
i of the order of 1 GeV for the original Skyrme model. We finally show [Phys. Lett. B272
i (1991) 196] that for the purpose of consistency with the semiclassical approximation,
the low energy effective Lagrangian should at least include a sixth order term in powers
i of the derivatives of the pion field.
' The problem of the stability of topological solitons when vector fields enter the
) - chiral Lagrangian is the subject of chapter III. Isospin one vector mesons (in particular
' the p) are usually described as massive Yang-Mills particles in the chiral Lagrangian.
; We investigate some aspects of an alternative approach in the soliton sector. It is found
; [Phys. Lett. B300 (1993) 256] that the soliton is stable in very much the same way
{ " as with the w-meson and that peculiar classical doublet solutions do not exist. The
formulation in terms of antisymmetric tensors is shown to be canonically related to a
vector field description provided the Skyrme term is added to the latter.




Résumé .

Cette these est consacrée a I’ étude d’ une théorie unifiée des mésons et des
baryons. Dans une telle théorie les champs élémentaires sont les mésons et les baryons
sont les solutions de type soliton topologique. Au cours du chapitre I nous constru-
isons un Lagrangien effectif, qui décrit les interactions entre les mésons les plus légers
(7, p,w, A, et le méson scalaire €) et qui généralise le modéle de Skyrme [Proc. Roy.
Soc. A260 (1961) 127]. Les champs vecteurs sont introduits comme des champs de jauge
dans le modéle o non-linéaire, et les paramétres sont fixés sur les observables connues
du secteur des mésons. Nous calculons ensuite les solutions de type soliton topologique,
pour étudier |’ interaction nucléon-nucléon, dans I’ approximation dite du produit. Les
résultats [Phys. Lett. B283 (1992) 13; Phys. Rev. D46 (1992) 3903] montrent que I’
inclusion des degrés de liberté scalaires a comme effets a) de réduire la masse du soliton,
b) d’ engendrer des forces attractives entre deux nucléons.

Dans le chapitre II nous évaluons la premiére correction quantique a la masse du
soliton (energie de Casimir). La divergence ultraviolette de cette correction est annulée
par des contretermes chiraux bien connus. Nous avons montré que le résultat est controlé
par le comportement & basses énergies des déphasages de I’ opérateur de fluctuation
autour de la solution classique. Ces déphasages sont positifs et leur magnitude est &~ 67
pour p = 0, & cause de la présence de deux zéro-modes normalisables. En conséquence,
la premiére correction quantique & la masse est négative et de !’ ordre de 1 GeV pour le
modéle de Skyrme. Nous montrons [Phys. Lett. B272 (1991) 196] que cette correction
diminue si I’ on inclut un terme d’ ordre six dans le développement en puissances de
dérivées du champ du pion. Cette conclusion ne fait que confirmer la nécessité de
généraliser le modéle de Skyrme.

Finalement, nous nous intéressons au probléme de la stabilité des solitons
topologiques dans le cadre du systéme 7p. Le champ du p est habituellement introduit
dans le Lagrangien effectif comme un champ de Yang-Mills massif et il est bien établi
qu’ alors les solutions de type soliton sont instables. Nous étudions le systéme 7wp dans
le contexte d’ une réalisation différente de la symétrie chirale. Nous montrons [Phys.
Lett. B300 (1993) 256] semi-analytiquement que dans cette autre approche le soliton
est stable, et que le mécanisme de stabilisation est trés similaire & celui du systéme 7w.



