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Abstract. We investigate compactification by k-monopole in nonlinear sigma model with
kinetic termsK(X) = −X−β−2X2. We use both Einstein equations and effective potential from
dimensional reduction to determine radius of compactification. The compactification channels
can be found by introducing effective potential, and its derivatives shall determine the stability.

1. Introduction

Monopole is a noncontractible point defect due to its second fundamental group being nontrivial,
π2(S

2) = Z [1, 2]. Specifically due to the absence of gauge field, global monopole has divergent
energy. It causes a peculiar feature when coupled to gravity: it gives no gravitational force on the
surrounding matter, except near the core due to its tiny mass [3]. However, the space around
global monopole suffers from deficit solid angle ∆ ≡ 8πGη2, which makes it non-Euclidean.
This deficit angle has a critical value η <

√

1/8πG. In [4], the authors suggest that when η is
a little bigger than this upper bound, two angular dimensions of the space around the global
monopole might be compactified into a cylinder. In [5, 6] global monopole was investigated in
higher-dimensional spacetime when the staticity assumption is relaxed, i.e., the geometry can
then be thought of as a “cigar”. In other words, compactification of this type can be seen as
nonstatic solution. Numerically, as discussed in [7], regular solutions in four-dimensional space
could exist up to η .

√

3/8πG. Above that value, the singularity is interpreted in [8, 9] as the
appearance of topological inflation.

Nonlinear terms in Lagrangian kinetic term, whose defects can arise from without providing a
symmetry-breaking potential term [10], are named in [11] as k-defect. In the case of topological
defect from monopoles, they are called in [12] as k-monopole.

In [13, 11] global k-monopole has been studied, and investigations of its gravitational field
were done in [12, 14]. Qualitatively, they show that the gravitational property of Barriola-
Vilenkin monopole still holds. The difference is their mass can be negative or positive, depending
on the specific model of k-term considered. The region outside the monopole can be studied
using the vacuum approximation where the Higgs field is approximation, where Higgs field is
approximated as |φ| ≃ η so that the analytical solutions can be found. The authors of [15] show
some gravitational solutions at the exterior of two different types of global k-monopoles [12].

Here we report our finding for a different model: a sigma model based on [16] with a
cosmological constant and nonlinear term based on [11]. We investigate static compactification
solutions and its stability by introducing an effective potential.
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2. Global k-monopole in sigma model

Here we use (+−−...) metric gMN (M,N = 0, ..., p, θ1, ..., θD−2) for static (p+D)-dimensional
spacetime

ds2 = gMNdx
MdxN = A2(r)ηµνdx

µdxν −B2(r)dr2 − C2dΩ2
D−2, (1)

with (p+1)-dimensional flat space and (D−2)-sphere denoted by gµνdx
µdxν = A(r)2ηµνdx

µdxν

(µ, ν = 0, ..., p) and gijdx
idxj = −C2dΩ2

D−2 (i, j = θ1, ..., θD−2) respectively, C is a real-valued
constant and D ≥ 4. The metric is induced in the action

S =

∫

dp+Dx
√

|g|

[

R− 2Λ

2κ
+K(X)−

λ

4

(

~Φ2 − η2
)2
]

, (2)

with K(X) = −X− β−2
X
2 and X ≡ −(1/2)gMN∂M ~Φ · ∂N ~Φ. κ is Newton constant in (p +D)-

dimensional spacetime. The nonlinear term containing β in the kinetic part goes linear when
β → ∞.

The action, being defined to be invariant under SO(n) transformation, has n degrees of

freedom. Our object of interest is nonlinear sigma model with a constraint ~Φ2 = η2, which
means that the last term in (2) is just a term multiplied by Lagrange multiplier λ. The scalar
field lives in n-dimensional manifold, but now it is constrained to a surface of (n−1)-sphere. By

this we can introduce its internal basis coordinates in the Sn−1 by ~Φ ≡ ~Φ(φi) with i = 1, ..., n−1.
By these constructions (following [16]) we can write a nonlinear σ-model action

S =

∫

dp+Dx
√

|g|

[

R− 2Λ

2κ
−X − β−2X2

]

, (3)

with X = −(1/2)η2hijg
MN∂Mφ

i∂Nφ
j. Its inner space metric hij(φ

k) = ∂~Φ
∂φi

· ∂~Φ
∂φj

is defined to

be dependent on φ1, ..., φn−1.
The nonlinear σ-model action then gives us the scalar-field’s equation of motion and the

energy-momentum tensor for the Einstein equation by the usual variational method

1
√

|g|
∂M

(

√

|g|(1 + 2β−2X)η2hij∂
Mφj

)

= (1 + 2β−2X)
η2

2
∂Mφ

m∂Mφn
∂hmn
∂φi

, (4)

TMN = δMN

[

Λ

κ
+X + β−2X2

]

+ (1 + 2β−2X)η2hij∂
Mφi∂Nφ

j . (5)

Now it is crucial to choose an appropriate ansatz for the scalar field that satisfies the field
equation of motion. This we follow the methods used in [16, 17]. The field’s equation of motion
is satisfied by choosing the scalar field to be dependent on the angular coordinates θ1, ..., θD−2

(the scalar field is now constrained in SD−2 with D ≥ 4, following [6])

φi(θi) = θi (6)

if and only if we choose its inner metric hij(φ
k) to be related to gij(C, θ

k) by

hij(φ
k) = −C−2gij(C, θ

k), (7)

with C a real-valued constant which givesX = (D−2)η2/2C2. This then gives us the components
of energy-momentum tensor

T 0
0 = T rr =

[

Λ

κ
+X + β−2X2

]

, (8)
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T θθ = T 0
0 − (1 + 2β−2X)

η2

C2
, (9)

for some cosmological constant Λ of (p+D)-dimensional space. The Einstein tensor’s components
from the metric are

G0
0 = −

p

B2

A′′

A
−
p(p− 1)

2B2

(

A′

A

)2

+
p

B2

A′B′

AB
+

(D − 2)(D − 3)

2C2
, (10)

Grr = −
p(p+ 1)

2B2

(

A′

A

)2

+
(D − 2)(D − 3)

2C2
, (11)

Gθθ = −
(p+ 1)

B2

A′′

A
−
p(p+ 1)

2B2

(

A′

A

)2

+
(p+ 1)

B2

A′B′

AB
+

(D − 4)(D − 3)

2C2
. (12)

Combining the above equations we have a useful expression

pGθθ − (p + 1)G0
0 −Grr = −2Λ−

(p+D − 2)κη2

C2
−

(2p +D − 2)(D − 2)κη4

2C4β2

= −
(p+D − 2)(D − 3)

C2
. (13)

Solving this when Λ = 0 we get

C2 =
(2p +D − 2)(D − 2)κη4

2β2(p+D − 2)(D − 3− κη2)
, (14)

and when Λ 6= 0 we get

C2
± =

(p +D − 2)(D − 3− κη2)

4Λ

±

√

(p+D − 2)2(D − 3− κη2)2 − 4Λ(2p +D − 2)(D − 2)κη4β−2

4Λ
. (15)

The dimension is constrained with p+D > 2 since D ≥ 4. We can see that (14) satisfies

η2 < η2crit ≡ (D − 3)/κ (16)

so that if (16) is applied to (14), C2
± is greater than zero. This condition also makes

the first term in (15) greater than zero. As we limit (15) by β → ∞, C2
− → 0 and

C2
+ → (p+D − 2)(D − 3− κη2)/2Λ. The latter is in agreement with [4].
Now we discuss metric solutions for the compactified space with manifold Zp+2 × SD−2. We

obtain

B−2

(

A′B′

AB
−
A′′

A

)

= ±ω2, (17)

using Gθθ −Grr, and we define

±ω2 ≡
D − 3

(p + 1)C2
−

(1 + 2β−2(D − 2)η2/2C2)

(p+ 1)

η2

C2
. (18)

This can be considered as the cosmological constant of Zp+2 space for the following reasons.
We use positive-negative signs to ensure ω2 ≥ 0; the positive (negative) sign is for

B−2
(

A′B′

AB − A′′

A

)

> (<) 0. Using B = 1, (17) gives us

ds2 =











1
ω2 (sin

2 χ ηµνdx
µdxν − dχ2)− C2dΩ2

D−2, for positive sign,

ηµνdx
µdxν − dr2 − C2dΩ2

D−2, for ω = 0,
1
ω2 (sinh

2 χ ηµνdx
µdxν − dχ2)− C2dΩ2

D−2, for negative sign,

(19)
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with χ ≡ ωr. Using B = A−1,

ds2 =











(1− ω2r2) ηµνdx
µdxν − dr2

(1−ω2r2)
− C2dΩ2

D−2, for positive sign,

ηµνdx
µdxν − dr2 − C2dΩ2

D−2, for ω = 0,

(1 + ω2r2) ηµνdx
µdxν − dr2

(1+ω2r2)
− C2dΩ2

D−2, for negative sign.

(20)

These give us the manifold of compactified space:

Zp+2 =



















dSp+2, for B−2
(

A′B′

AB − A′′

A

)

> 0,

Mp+2, for B−2
(

A′B′

AB − A′′

A

)

= 0,

AdSp+2, for B−2
(

A′B′

AB − A′′

A

)

< 0.

(21)

3. Compactification solutions stability

To study the stability of above metric solutions (19) and (20) with their radius (14) or (15)
depending on their cosmological constant Λ, we look for the effective potential of the radion
V (ψ) by dimensional reduction. Considering a metric with signature (+−− . . . )

ds2 = G
(p+D)
MN dxAdxB, (22)

with G
(p+D)
MN metric on (p+D)-dimensional action

S =

∫

dp+Dx
√

|G|

[

R(p+D)

2κ
+ Lm

]

. (23)

By defining the metric as

ds2 = g(p+2)
µν (x)dxµdxν − b2(x)γ

(D−2)
ij (y)dyidyj , (24)

with γ
(D−2)
ij a metric for a space with constant curvature with radius R0, the action becomes

S =
V(D−2)

2κ

∫

dp+2x
√

|g|
[

bD−2R(p+D) + 2κbD−2Lm

]

. (25)

Performing Weyl transformation to R(p+D) by

g(p+2)
µν (x) = b2a(x) g̃(p+2)

µν (x) (26)

with a = −(D − 2)/p, we obtain

S =
V(D−2)

2κ

∫

dp+2x
√

|g̃|

[

R̃(p+2) +
(D − 2)(D − 3)

b2(p+D−2)/pR2
0

+
2(D − 2)

p
g̃µν∇̃µ(∂̃ν ln b)

−
(D − 2)(p +D − 2)

p
g̃µν(∂̃µ ln b)(∂̃ν ln b) + 2κb−(D−2)/pL̃m

]

. (27)

After we define the radion as

b ≡ exp

[
√

p

(D − 2)(p +D − 2)

ψ

MP

]

, (28)



5

1234567890

Conference on Theoretical Physics and Nonlinear Phenomena 2016 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 856 (2017) 012008 doi :10.1088/1742-6596/856/1/012008

with a (p + 2)-dimensional Planck mass MP ≡
√

V(D−2)/κ, we obtain an action in Einstein’s

frame

S =

∫

dp+2x
√

|g̃|

[

M2
P R̃

(p+2)

2
−

1

2
g̃µν ∂̃µψ∂̃νψ − V (ψ)

]

, (29)

whose effective potential is

V (ψ) = −eσψ/MP
M2
P (D − 2)(D − 3)

2R2
0

− eχψ/MPM2
PκL̃m, (30)

with σ ≡ −2
√

(p+D − 2)/p(D − 2) and χ ≡ −2
√

(D − 2)/p(p +D − 2); its metric is given by

ds2 = eχψ/MP g̃(p+2)
µν dxµdxν − eξψ/MP γ

(D−2)
ij dyidyj, (31)

with ξ ≡ 2
√

p/(D − 2)(p +D − 2). We restrict p ≥ 1 so that σ 6= ∞, χ 6= ∞ and ξ 6= 0.
Now we can write metric (31) by setting it as

ds2 = eχψ/MP

[

A2(r)η(p+1)
µν dxµdxν −B2(r)dr2

]

− eξψ/MP

[

C2dΩ2
(D−2)

]

, (32)

such that it resemble (1) as ψ = 0. The radius R0 now becomes C. By applying (32) into the
matter terms in (3) we obtain the Lagrangian density L̃m in (30) as

L̃m = −
Λ

κ
+K(X), with X =

(D − 2)η2

2C2
e−ξψ/MP , (33)

with K(X) = −X − β−2X2. This hence give us the effective potential for our model

V (ψ) = −eσψ/MP
M2
P (D − 2)(D − 3)

2C2
+ eχψ/MPM2

PΛ

+M2
Pκ

[

(D − 2)η2

2C2
e(χ−ξ)ψ/MP +

(D − 2)2η4

4β2C4
e(χ−2ξ)ψ/MP

]

. (34)

Choosing the extrema to be at ψ = 0, we solve V ′(ψ = 0) = 0 or

0 = χΛ+
(D − 2)

2

[

(χ− ξ)κη2 − σ(D − 3)
] 1

C2
+

[

(χ− 2ξ)(D − 2)2κη4

4β2

]

1

C4
, (35)

then we obtain

C2 =
(2p +D − 2)(D − 2)κη4

2β2(p+D − 2)(D − 3− κη2)
, (36)

when Λ = 0, and

C2 =
(p+D − 2)(D − 3− κη2)

4Λ

[

1±

√

1−
(2p +D − 2)(D − 2)κη4β−2

4Λ(p +D − 2)2(D − 3− κη2)2

]

, (37)

when Λ 6= 0. Equation (37) needs to be C2 = (p+D− 2)(D− 3− κη2)/2Λ at β → ∞, which is
only satisfied with positive sign in (37), not the minus sign. Both are the same as (14) and (15),
which we find using Einstein equations. By choosing the positive sign, it is clear that Λ cannot
have negative value, otherwise it makes C2 < 0. Both solutions have a stability condition

V ′′(ψ = 0) =
4(D − 2)Λ

p(p+D − 2)
+

2(κη2 −D + 3)(p +D − 2)

pC2
+

(2p +D − 2)2(D − 2)κη4

p(p+D − 2)β2C4

> 0. (38)
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Equations (36) and (37) have a more compact expression with arbitrary Λ

1

C2
±

=
(D − 3− κη2)(p +D − 2)β2

(2p+D − 2)(D − 2)κη4

(

1±

√

1−
4Λ(2p +D − 2)(D − 2)κη4

(p+D − 2)2(D − 3− κη2)2β2

)

, (39)

which arises from (35). We use C+ to ensure it becomes (36) when Λ = 0, but we use C− for
Λ 6= 0 due to C2

− = (p+D− 2)(D− 3−κη2)/2Λ at β → ∞ thus C− corresponds to the positive
sign in (37). The term under the square root needs to be positive, and thus we need β2 > 0
when Λ ≤ 0 or

β2 ≥ β2crit ≡
4Λ(2p +D − 2)(D − 2)κη4

(p+D − 2)2(D − 3− κη2)2
, (40)

when Λ > 0. It is clear that (16) must be satisfied. We set the minimum of the potential
positioned at ψ = 0 for simplicity.

When the above condition is satisfied, we can set V (ψ = 0,Λ = Λ∗) = 0. Substituting (39)
in to (35) to get

0 = Λ∗ −
(D − 3− κη2)2p(p+D − 2)β2

2(2p +D − 2)2κη4

(

1 +
2Λ∗(2p +D − 2)(D − 2)κη4

p(p+D − 2)(D − 3− κη2)2β2

)

∓
(D − 3− κη2)2p(p+D − 2)β2

2(2p +D − 2)2κη4

√

1−
4Λ∗(2p +D − 2)(D − 2)κη4

(p+D − 2)2(D − 3− κη2)2β2
. (41)

Since the left hand side is equal to zero, we can arrange it to get

±

√

1−
4Λ∗(2p +D − 2)(D − 2)κη4

(p+D − 2)2(D − 3− κη2)2β2
=

2Λ∗(2p+D − 2)(2p)κη4

p(p+D − 2)(D − 3− κη2)2β2
− 1. (42)

After squaring both sides we get Λ∗ = 0 and

Λ∗ =
(D − 3− κη2)2β2

4κη4
. (43)

We will use the latter expression and we restrict Λ∗ > 0 so that (16) is satisfied. This treatment
follows the method used in [16].

To see whether this compactification is stable we need to investigate the second derivative of
the potential. After substituting (43) into (39), the inverse of radius squared becomes

1

C2
±

=
4(p+D − 2)Λ∗

(2p +D − 2)(D − 2)(D − 3− κη2)

(

1±

√

1−
Λ(2p +D − 2)(D − 2)

Λ∗(p +D − 2)2

)

. (44)

This expression tells us that Λ cannot have higher value than Λ = (p +D − 2)2Λ∗/(2p +D −
2)(D − 2) otherwise 1/C2

± will be complex valued. Substituting (44) into (38) gives us

V ′′(ψ = 0, C2
±) =

2(p +D − 2)(D − 3− κη2)2β2

(2p +D − 2)(D − 2)κη4

(

1±

√

1−
4Λ(2p +D − 2)(D − 2)κη4

(p+D − 2)2(D − 3− κη2)2β2

)

−
8Λ

(p+D − 2)

= −
8Λ

(p+D − 2)
+

8(p +D − 2)Λ∗

(2p +D − 2)(D − 2)

(

1±

√

1−
Λ(2p +D − 2)(D − 2)

(p+D − 2)2Λ∗

)

(45)



7

1234567890

Conference on Theoretical Physics and Nonlinear Phenomena 2016 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 856 (2017) 012008 doi :10.1088/1742-6596/856/1/012008

where positive and negative signs correspond to C+ and C−, respectively. If V ′′ ≥ 0 then the
minimum of the potential at ψ = 0 can be determined by

V (ψ = 0, C2
±)

M2
P

=
2pΛ

(2p+D − 2)

−
p(p+D − 2)(D − 3− κη2)2β2

(2p+D − 2)22κη4

(

1±

√

1−
4Λ(2p +D − 2)(D − 2)κη4

(p+D − 2)2(D − 3− κη2)2β2

)

=
2pΛ

(2p+D − 2)
−

2p(p +D − 2)Λ∗

(2p+D − 2)2

(

1±

√

1−
Λ(2p +D − 2)(D − 2)

(p+D − 2)2Λ∗

)

. (46)

Now we can determine the compactified space and its stability. In the case of Λ = 0,

V (ψ = 0, C+,Λ = 0)

M2
P

= −
4p(p+D − 2)Λ∗

(2p+D − 2)2
< 0, (47)

V ′′(ψ = 0, C+,Λ = 0) =
16(p +D − 2)Λ∗

(2p+D − 2)(D − 2)
> 0, (48)

since Λ∗ > 0 which imply that the compactification channel is Mp+D → AdSp+2 × SD−2 and
stable. In the case of Λ > 0,

V (ψ = 0, C−)

M2
P

=
2pΛ

(2p +D − 2)
−

2p(p+D − 2)Λ∗

(2p +D − 2)2

(

1−

√

1−
Λ(2p +D − 2)(D − 2)

(p+D − 2)2Λ∗

)

, (49)

V ′′(ψ = 0, C−) = −
8Λ

(p+D − 2)
+

8(p +D − 2)Λ∗

(2p +D − 2)(D − 2)

(

1−

√

1−
Λ(2p +D − 2)(D − 2)

(p+D − 2)2Λ∗

)

.

(50)

Now we consider positive but nearly zero Λ

V (ψ = 0, C−)

M2
P

≃
2pΛ

(2p +D − 2)
−

Λ(D − 2)p

(2p +D − 2)(p +D − 2)
=

2pΛ

(p+D − 2)
≃ 0, (51)

V ′′(ψ = 0, C−) ≃ −
8Λ

(p+D − 2)
+

8Λ

(p +D − 2)
= 0, (52)

and at Λ = (p+D − 2)2Λ∗/(2p +D − 2)(D − 2)

V (ψ = 0, C−)

M2
P

=
2p(p+D − 2)2Λ∗

(2p +D − 2)2(D − 2)
−

2p(p +D − 2)Λ∗

(2p+D − 2)2
=

2p2(p+D − 2)Λ∗

(2p +D − 2)2(D − 2)
, (53)

V ′′(ψ = 0, C−) = −
8(p +D − 2)Λ∗

(2p +D − 2)(D − 2)
+

8(p +D − 2)Λ∗

(2p+D − 2)(D − 2)
= 0. (54)

Both cases need the third derivative of V , which is

V ′′′(ψ = 0, C−) ≃ 8

√

p

(D − 2)(p +D − 2)

Λ∗

MP

[

(p+D − 2)3 − (D − 2)2
]

p2(p+D − 2)
> 0 (55)

for Λ ≪ Λ∗ case, and

V ′′′(ψ = 0, C−) =

[

(p +D − 2)3 − (D − 2)2
]

(D − 2)p2
Λ∗

MP

√

p

(D − 2)(p +D − 2)
> 0 (56)
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for Λ = (p + D − 2)2Λ∗/(2p + D − 2)(D − 2) case, respectively. These imply that the
compactification channels dSp+D → (dS,M)p+2 × SD−2 are unstable since the potential at
ψ = 0 is a strictly increasing point of inflection. Combining these results we get tunneling
channels Yp+D −→ Zp+2 × SD−2 (with Λ and V (ψ = 0) denoting Yp+D and Zp+2 respectively)

dSp+D −→

{

dSp+2 × SD−2,

Mp+2 × SD−2,
(57)

Mp+D −→ AdSp+2 × SD−2. (58)

4. Conclusions

Here we investigate compactification by k-monopole in nonlinear sigma model with kinetic
terms K(X) = −X − β−2X2. We can use both Einstein equations or effective potential from
dimensional reduction to determine radius of compactification. The compactification channels
can be found by introducing effective potential and its derivatives will determine the stability.
Here we report that the compactification channels fromMp+D and dSp+D to Zp+2×S

D−2, where
Z is some topological manifold, are stable and unstable, respectively.
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