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It is generally believed that General Relativity (GR) is of secondary importance in the

explosion of core-collapse supernovae (CCSN). However, as 3D simulations are becom-
ing more and more detailed, GR effects can be strong enough to change the hydrody-

namics of the supernova and affect the explosion. Since a 3D simulation in full GR is

computationally extremely challenging, it is valuable to modify simulations in a spher-
ically symmetric spacetime to incorporate 3D effects. This permits exploration of the

parameter dependence of CCSN with a minimum of computational resources. In this

proceedings contribution we report on the formulation and implementation of general
relativistic neutrino-driven turbulent convection in the spherically symmetric code GR1D.

This is based upon STIR, a recently proposed Newtonian model based on mixing length

theory. When the parameters of this model are calibrated to 3D simulations, we find that
our GR formulation significantly alters the correspondence between progenitor mass and

explosion vs. black-hole formation. We therefore believe that, going forward, simulating

CCSNe in full GR is of primary importance.

Keywords: Supernovae - Simulations - Mixing Length Theory - General Relativistic Hy-

drodynamics

1. Introduction

This proceedings contribution is based on work published in Ref. [1]. Core-collapse

supernovae (CCSNe) have been at the core of cutting-edge computational research

for more than 50 years. Despite that, the details of the mechanisms driving the

explosion still remain unknown, even though significant progress has been made

since the first attempts at explaining CCSNe.2–4

Historically, one-dimensional (1D) spherically symmetric simulations were able

to assess the crucial role of neutrinos in aiding the expansion of the shock through

the so-called delayed neutrino-heating mechanism.5,6 Two-dimensional (2D) simula-

tions7,8 and three-dimensional (3D) simulations,9 have been only recently accessible

thanks to the fast technological improvements of the last three decades.
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Spherically symmetric simulations, however, have unfortunately, not led to self-

consistent explosions of Fe-core CCSNe (which are the most common) since they

involve all stars with masses > 11 M⊙. On the other hand, there have been sev-

eral simulations in 2D and 3D that have led to successful explosions.10–16 However,

2D simulations have been recently shown17 to favor explosions by an artificial en-

hancement of neutrino-heating behind the shock via an inverse turbulence cascade

which is not present in 3D. Therefore, only 3D simulations can provide the final

explanation as to what causes the explosion. However, despite the technological im-

provements of the last few decades, 3D simulations continue to present a difficult

computational challenge, even for modern supercomputers.

In comparison, modern 1D simulations are significantly faster to run and are also

more consistent across different codes.18 In other words, when the initial conditions

are the same, different groups obtain similar results. This guarantees a somewhat

solid foundation, making 1D simulations an ideal tool to study how different input

physics can affect the explosion of supernovae. To do that, first one needs to arti-

ficially trigger an explosion. In a recent paper Couch et al.19 (hereafter CWO20)

developed STIR (Simulated Turbulence In Reduced-dimensionality), a parametric

model based upon Mixing Length Theory (MLT) that incorporates the effects of

3D turbulence in spherically symmetric simulations.

The simulations from CWO20 use Newtonian hydrodynamics and only partially

include general relativistic effects through a General Relativistic Effective Potential

(GREP) from Ref. [20], which is a common practice in the supernova community.

However, we know that General Relativity (GR) plays an important role in the

explosion of supernovae.10,21 Hence, simulations in full GR are desirable, and in

this proceedings contribution we summarize the extension of the STIR model to a

general relativistic treatment.1 Throughout the manuscript, we adopt natural units,

i.e. G = c = M⊙ = 1.

2. Methods

2.1. The STIR model of Couch et al. (2020)

A detailed description of STIR can be found in Refs. 22, 23 and CWO20. There,

it is shown that the effects of turbulence can be treated as a perturbation on the

background fluid. After a Reynolds decomposition of the compressible Euler equa-

tions, and several other approximations valid in typical supernova thermodynamic

environments, one arrives to the following equation describing the evolution of the

turbulent kinetic energy:

∂ρv2turb
∂t

+
1

r2
∂

∂r
[r2(ρv2turbvr − ρDK∇v2turb)]

= −ρv2turb
∂vr
∂r

+ ρvturbω
2
bvΛmix − ρ

v3turb
Λmix

,

(1)
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where

Λmix = αmlt
P

ρg
, (2)

ω2
bv = geff

(
1

ρ

∂ρ

∂r
− 1

ρc2s

∂P

∂r

)
. (3)

In the above equations, ρ is the mass density, vr is the radial velocity, Λmix is the

mixing length, ωbv is the Brunt-Väisälä frequency, cs is the sound speed, DK is a

diffusion coefficient due to turbulence and geff is the magnitude of the local effective

acceleration. For a fluid in hydrostatic equilibrium, geff simply reduces to the local

gravitational acceleration g. More generally, however, in the rest frame one should

take the acceleration of the fluid into account. Therefore, the total acceleration geff
can be expressed as:

geff = g − vr
∂vr
∂r

, (4)

as described in CWO20.

The mixing length Λmix is the average distance that a convective element will

travel before being mixed with (and increasing the internal energy of) the surround-

ing material. The Brunt-Väisälä frequency ωbv is the rate at which the convective

elements are rising. As one can notice from Eq. (3), ω2
bv can be either positive or neg-

ative: when ω2
bv > 0 the fluid is convectively unstable, i.e. convection is generated;

when ω2
bv < 0 the fluid is convectively stable, i.e. convection is damped. Ultimately,

the main parameter of the model is αmlt, which scales the mixing length to the

pressure scale height in Eq. (2). Typically αmlt ∼ O(1).

The diffusion coefficient DK is defined as:

DK = αKvturbΛmix . (5)

Similar terms appear in the internal energy, electron fraction, and neutrino energy

density evolution equations (for the complete set of hydrodynamic equations used

in the model, (see Eqs. 25-29 and 33 in CWO20). Therefore, strictly speaking, STIR

has 4 additional free parameters: αK , αe, αYe, αν . However, the convective motions

are not very sensitive to the value of these parameters, so we set them to 1/6 for

simplicity, consistent with the choices of Ref. [24] and CWO20.

In the next section we describe a general relativistic version of the model de-

scribed above.

2.2. STIR in General relativity

The first attempts to create a general relativistic model for convection date back to

Ref. [25]. We follow the same approach, but using a slightly different formalism.

All the simulations described here1 were run with the open-source, spherically

symmetric, general relativistic code GR1D.26 The Boltzmann equation for neutrino
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transport is solved using an M1-scheme, with opacity tables generated using the

open-source code NuLib.27

The metric evolved in GR1D is Schwarzchild-like:

ds2 = gµνx
µxν

= −α(r, t)2dt2 +X(r, t)2dr2 + r2dΩ2,
(6)

where α and X can be expressed as functions of a metric potential ϕ (which reduces

to the Newtonian potential in the Newtonian limit) and the enclosed gravitational

mass Mgrav:

α(r, t) = exp[ϕ(r, t)],

X(r, t) =

(
1− 2Mgrav(r, t)

r

)−1/2

.
(7)

For the present work, we first note that turbulence is mostly relevant far from

the proto-neutron star (PNS) where GR effects can be treated as a perturbation.

Therefore, one can simply make a few changes to the terms in Eq. (1) without having

to re-derive the entire Reynold’s decomposition. The expression for ω2
bv, however,

must be carefully re-derived. Far from the PNS, we invoke the following:

(1) replace the conserved variable ρ with its GR counterpart, i.e. D = WXρ, where

W = (1− v2)−1/2 and v = Xvr;

(2) multiply the RHS of Eq. (1) by αX.

(3) multiply the spatial flux in Eq. (1) by α/X (see Ref. [26] for more details on the

derivation of the hydrodynamic equations in GR1D).

The expression of ω2
bv can be derived using conservation of momentum for a

convective eddy in a background fluid in hydrostatic equilibrium. The case of a

fluid with non zero acceleration can be derived with ad-hoc corrections for general

relativistic effects. The derivation can be found in Ref. [1], and it leads to:

ω2
bv =

α2

ρhX2

(
dϕ

dr
− v

∂v

∂r

)(
∂ρ(1 + ϵ)

∂r
− 1

c2s

∂P

∂r

)
, (8)

where v = Xvr.

The main difference between Eqs. (3) and (8) is the inclusion of ∂ρϵ/∂r in the

latter. In the gain region the internal energy decreases with radius, i.e. ∂ρϵ/∂r < 0.

This decreases the magnitude of ωbv and therefore the amount of turbulence that

is generated. We will come back to this in Section 3.2

3. Results: Comparison with 3D simulations

3.1. Results using an effective potential

Inspired by the work of CWO20, we compare our GREP model to the mesa20 LR v

3D simulation,28 by using the same setup chosen by CWO20. That is, we simulate
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the collapse of a 20 M⊙ progenitor from,29 adopting the SFHo EOS30 and assuming

Nuclear Statistical Equilibrium (NSE) everywhere. The algorithm used in FLASH

to solve the neutrino radiation transport closely resembles the one used in GR1D.27

Additionally, the set of NuLib opacities we adopted is the same used by CWO20.

Finally, we use 12 neutrino energy groups geometrically spaced up to ∼250 MeV.

The upper panels of Figure 1 (modified from Ref. [1]) show the shock radius ver-

sus time and the turbulent velocity profile at ∼135 ms post-bounce for our GREP

model (to be compared to Figures 1 and 2 of CWO20). The main difference be-

tween our results using GR1D and the ones from CWO20 using FLLASH is that GR1D

consistently gives larger values for the turbulent velocity at a given αmlt. This then

translates into larger shock radii at a given time. Except for these small differences,

the agreement between the two models is very good, and both yield explosions for

αmlt ≳ 1.2.

When it comes to the comparison with the 3D results, however, our MLT-like

model does not captures some features that are present in the 3D case. Specifically,

the profile at ∼135 ms post-bounce of the convective speed in 3D has a longer tail

at 50-80 km. This has already been noticed by CWO20, and it is due to angular

variations present in the 3D model, rather than a deeper convection extending in

the region below the gain layer. In our model, convection shuts off at 80 km, as

one would expect, since that is approximately the location of the gain layer. A more

interesting difference is the lack of PNS convection at 25 km, not captured by our

MLT-like model. A possible explanation for this is that STIR is not taking lepton

number-driven convection into account, which is not easily tractable with MLT

models, and therefore a more careful treatment of this type of convection might

ease the discrepancy with the 3D results. We are currently working on adjusting

some of the parameters of STIR deep inside the PNS to match the 3D result, and

therefore analyze the impact of PNS convection on the explosion, but this goes

beyond the scope of this conference proceedings.

3.2. Results using GR

One can compare the results obtained using the simple GREP approach with results

in full GR. We show the results using full GR in the bottom panels of Figure 1,

while the upper panels refer to the runs using our GREP model. The most important

difference to point out is the range of αmlt used in the GR and GREP simulations. To

produce shock radii and turbulent velocities that are similar to the GREP results,

the value of αmlt that needs to be used in full GR is ∼ 20% larger. The reason

behind this increase in αmlt lies in the expression of ωbv. As pointed out in Section

2.2, including the internal energy gradient into eq. (8) is the main difference between

the GREP and GR models.

In the gain region, where turbulent convection is most relevant, the gradient of

the internal energy is negative. This decreases the magnitude of ω2
bv, making the

fluid more stable against convection. Including ρϵ in the definition of ωbv is hence
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(a) (b)

(c) (d)

Fig. 1. The plots on the upper row were generated using our GREP model, while the plots on

the bottom row were generated using full GR. Panels (a,c) show the time evolution of the shock

radius for different values of the parameter αmlt, and can be compared to Figure 2 from CWO20.
Panels (b,d) show a snapshot at ∼ 135 ms post bounce of vturb, and can be compared to Figure

1 from CWO20. The dashed lines represent the 3D simulation from Ref. [28].

needed to realistically characterize turbulent convection. If one takes the form of

ωbv from Eq. (8) and implements it in the GREP model, the value of αmlt needed

to achieve an explosion increases, becoming comparable to the one used in the GR

model.

3.3. Progenitor Study

In the previous Sections we summarized the validation of our turbulent convection

model1 by comparing it to the 3D results of Ref. [31]. In this section, we summarize

the use1 of our calibrated models to simulate the collapse and subsequent shock

revival of 20 progenitors from Ref. [32]. We use three different values of αmlt, for

which the fraction of successful explosions is roughly between 25% and 80%.

Our GREP model generates results1 that are compatible with the ones obtained

by CWO20 shifted by ∆αmlt ≃ 0.05. If one compares the left panel of Figure 2

with Figure 6 from CWO20, it is clear that our model tends to yield explosions for
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slightly smaller values of αmlt. This shift mainly depends on two differences between

our model and the one from CWO20: (i) we used a finer resolution in space and

energy; (ii) the numerical algorithms used to solve the hydrodynamic equations and

the neutrino transport are different.

(a)
(b)

Fig. 2. Explosion pattern (modified from Ref. [1]) of CCSN for the GREP (left panel) and GR

(right panel) models as a function of the Zero Age Main Sequence mass. Orange bands represent
successful explosions (i.e. the shock has reached 500 km), while dark blue bands represent failed

explosions.

Even more importantly, Figure 2 shows that a General Relativistic treatment of

turbulent convection does not simply reproduce the results obtained by the GREP

model. By looking at Figure 1 one might conclude that, since the value of αmlt

required to generate an explosion in GR is larger, using GR with larger values of

αmlt would produce the same patterns shown in the left panel of Fig. 2. However,

that is not the case, and GR modifies the explosion pattern of CCSNe. To even

more accurately characterize the differences between the patterns of explodability

in the GR and GREP models, a systematic study with hundreds of progenitors and

more values of αmlt would be desired. That, however, is beyond the scope of this

conference proceedings.

We can conclude from Figure 2 that general relativity changes which progenitors

are more likely to explode. By focusing on the patterns associated with αmlt = 1.27

and αmlt = 1.48 one can see that, using the GREP model, the 24, 25 and 30 M⊙
progenitors explode, whereas the 18 M⊙ doesn’t. In the GR model it is the exact

opposite. It should be pointed out that the pattern of explodability generated by

the GR model with αmlt = 1.48 is intermediate between the results of CWO20 and

Ref. [32]: (i) like the former (but unlike the latter), it shows failed explosions for low

mass progenitors with M = 13 -15 M⊙; (ii) like the latter (and unlike the former) it

shows that higher mass progenitors with M = 24 -25 M⊙ result in failed explosions.

It is worth mentioning that the explodability pattern obtained using the GR

model with αmlt = 1.48 cannot be reproduced by the GREP model. One can see

that, from the left panel of Figure 2, for αmlt = 1.23, the 25 M⊙ progenitor fails,

and all progenitors below 22 M⊙ fail as well. This shows that the GREP model

 T
he

 S
ix

te
en

th
 M

ar
ce

l G
ro

ss
m

an
n 

M
ee

tin
g 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 G
E

R
M

A
N

 E
L

E
C

T
R

O
N

 S
Y

N
C

H
R

O
T

R
O

N
 @

 H
A

M
B

U
R

G
 o

n 
01

/3
0/

23
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



3191

cannot produce successful explosions for progenitors with masses 15-18 M⊙ and

at the same time failed explosions of the 24-25 M⊙ progenitors, like we see in the

right panel of Figure 2. Notably, the GR model with αmlt = 1.5 reproduces the

same pattern of explodability found in the GREP model with αmlt = 1.27 (with

the only exception of the 18 M⊙ progenitor). This tells us that: (i) the threshold

between failed and successful explosions is a steep function of αmlt; and (ii) GR can

reproduce the GREP results for large values of αmlt and large explosion fractions.

Overall, our results1 have shown that including general relativistic effects can

modify how turbulence behaves in a one-dimensional, MLT-like model. It is hard

to predict if this effect will translate to multi-dimensional simulations, given the

differences between 1D and multi-D. Nonetheless, these results suggest that GR (as

opposed to GREP) can have a significant impact on the explosion of CCSNe. A de-

tailed comparison between full-GR and Newtonian simulations, performed with 2D

and 3D codes across multiple progenitors, will clarify whether this effect translates

to higher dimensions, where turbulent convection is generated self-consistently.

4. Conclusions

In this proceedings contribution we have summarized our development1 of extended

STIR, the MLT-like model of CWO20, to a full general relativistic formalism. Our

implementation of STIR in GR1D can reproduce the results of CWO20 when using

the same GREP model that they developed. The GR version of STIR needs larger

values of αmlt to achieve shock dynamics that are similar to the ones obtained

with a GREP model.1 The reason behind this is that, as can be seen from Eq. (8),

one needs to include the gradient of the internal energy gradient in the expression

for ωbv. This reduces the magnitude of ω2
bv in the gain region, which inhibits the

generation of turbulence. The net result is that larger values of Λmix (and therefore

of αmlt) are needed to develop a convective mixing that is as strong as the one

obtained without the inclusion of GR.

After comparing our model to the 3D results of Ref. [28], we simulated1 the

collapse and subsequent shock expansion of 20 different progenitors32 for different

values of αmlt, for both the GREP and GR models. Our main finding1 is that GR

changes the pattern of explodability of CCSNe. Specifically, the 24 M⊙ and the 25

M⊙ progenitors need comparatively much larger values of αmlt to explode with the

GR model. This produces an explodability as a function of progenitor mass that is

intermediate between the results of CWO20 and Ref. [32]. However, the GR model

also shows, for values of αmlt that yield large explosion fractions (i.e. αmlt = 1.5), an

explodability that is compatible with the results obtained using the GREP model.
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