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About this thesis

This document collects part of the work developed during my Ph.D. at the In-
stituto de Física Teórica in Madrid under the direction of Prof. Germán Sierra
and Prof. Javier Rodríguez-Laguna. The main goal of this thesis is to improve
our understanding of the quantum entanglement properties of low-dimensional
inhomogeneous systems. The thesis is based on the following publications:

• N. Samos Sáenz de Buruaga, S. N. Santalla, J. Rodríguez-Laguna and G.
Sierra, Symmetry protected phases in inhomogeneous spin chains, JSTAT 093102
(2019).

• N. Samos Sáenz de Buruaga, S. N. Santalla, J. Rodríguez-Laguna and G.
Sierra, Piercing the rainbow state: Entanglement on an inhomogeneous spin chain
with a defect, Phys. Rev. B 101, 205121 (2020).

• N. Samos Sáenz de Buruaga, S. N. Santalla, J. Rodríguez-Laguna and G.
Sierra, Entanglement in noncritical inhomogeneous quantum chains, Phys. Rev. B
104, 195147 (2021).

I declare that this thesis is the result of my own original work and that it has not
been submitted for any other degree or academic award. In cases where the work
of others is presented, appropriate citations are used.

Quantum entanglement has recently become a cornerstone in theoretical
physics, being, therefore, a very rich and complex subject. This is why I have made
a theoretical introduction in some detail that is intended to be useful for a student
or researcher entering this field. The thesis presents appendices in each chapter
that collect either the most laborious calculations or a review of basic content that
the expert reader can skip.

The characterization of inhomogeneous systems requires different techniques,
both numerical and analytical. All figures presented in this paper have been
created expressly or belong to the aforementioned papers. Likewise, all the results
have been obtained using codes written in C++ with the Hvb library1 or in Python.
Do not hesitate to contact me if you want any code.

1Hvb is free software, and is released under the GPL. You can download it from the github
repository:

http://github.com/jvrlag/hvb
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Resumen

En esta tesis caracterizamos las propiedades de entrelazamiento cuántico de esta-
dos fundamentales de sistemas inhomogeneos en 1D. En particular consideramos
modelos inhomogeneos de cadenas de fermiones libres y sus correspondientes ver-
siones de espín obtenidas con la transformación de Jordan-Wigner. Las versiones
homogéneas de estos modelos han sido ampliamente estudiadas y constituyen una
buena referencia a la hora de estudiar la nueva física debida a la inhomogeneidad.
Por ejemplo, la mayoría de los estados fundamentales obedecen la llamada ley del
área de la entropía de entrelazamiento, la cual establece que la cantidad de entre-
lazamiento presente entre un subsistema y su entorno es proporcional a la medida
de su frontera. Los estados fundamentales de ciertos sistemas inhomogeneos
constituyen un ejemplo de violación de la ley del área. Un caso paradigmático
se conoce asimismo como modelo arco-iris que describe una cadena de espín XX
cuyos acoplos decrecen exponencialmente con una tasa h desde el centro de la
cadena hacia los extremos. Su estado fundamental es el llamado estado arco-iris
debido a que en el régimen de alta inhomogeneidad h≫ 1, el grupo de Renormal-
ización de Fuerte Desorden predice un sólido de valencia de enlace formado por
estados máximamente entrelazados (pares de Bell) concéntricos como puede verse
en la Fig. 1.

El estado arco-iris presenta entrelazamiento de largo alcance y viola (máxi-
mamente) la ley del área. Ademas, la teoría de campos que describe el modelo
en el régimen de baja inhomogeneidad h ≪ 1 se corresponde con una teoría de
campos conforme con carga central c = 1. En esta tesis usamos este estado como
punto de partida para explorar los efectos que genera la inhomogeneidad, car-
acterizando las propiedades de entrelazamiento con diversas herramientas. En
particular estudiamos las entropias de Rényi, el Hamiltoniano de entrelazamiento,
el espectro de entrelazamiento y también el contorno de entrelazamiento. Los
cuatro primeros capítulos son introductorios y presentan la tecnología básica ya
introducida en la literatura2. Así, el Capítulo 1 pretende hacer una introducción
general, no técnica del campo. En el Capítulo 2 se introduce el entrelazamiento
cuántico y su caracterización. El Capítulo 3 discute en detalle la caracterización
del entrelazamiento en una cadena homogenea XX, y finalmente en el Capítulo

2Es justo decir que la sección 4.2 es una generalización presentada por primera vez en este
documento.
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Figure 1: Arriba. Ilustración del estado arco-iris. Los sitios conectados por los
arcos están entrelazados. Abajo izquierda (derecha) los estados plegados respecto al
acoplo (sitio) central. El estado de la izquierda es topologicamente trivial mientras
que el estado de la derecha es no-trivial.

4 introducimos una familia de modelos inhomogeneos y en particular el modelo
arco-iris. Los tres capítulos siguientes presentan contenido original de esta tesis.

En el Captítulo 5 exploramos las implicaciones de añadir un defecto con inten-
sidad variable γ en el modelo arco-iris. En el régimen de alta inhomogeneidad,
mostramos que es posible generar transiciones entre fases con entrelazamiento
corto (fases dimerizadas) y largo (fase arco-iris) sólo con cambiar la intensidad
del defecto. Calculamos parámetros de orden y energías del Hamiltoniano de
primera cuantización para apoyar este hecho. En lo que concierne al régimen de
baja inhomogeneidad, mostramos que el sistema puede ser descrito con una teoría
de campos conforme en espacio-tiempo curvo pero con una carga central efectiva
dependiente de γ.

En el Capítulo 6 discutimos la posibilidad de caracterizar las fases críticas en
el marco de las llamadas fases topológicas protegidas por simetría. Mostramos
que una transformación de plegado de la cadena convierte el entrelazamiento de
largo en entrelazamiento de corto alcance, permitiendo la descripción eficiente
en término de estados producto de matrices (MPS) y la clasificación en fases
topológicas protegidas por simetría. Aquellas fases que presentan una simetría de
reflexión respecto al acoplo central son topologicamente triviales, mientras que las
que presentan una simetría de reflexión respecto al sitio central son no triviales (vea
la Fig. 1). De hecho, encontramos un estado fundamental que pertenecen a la fase
AIII de la clasificación de aislantes topológicos cuyo representante paradigmático
es el modelo de Su-Schrieffer-Heeger y un estado fundamental de una cadena
inhomogénea con simetría SU(2)muy similar al estado AKLT, perteneciente a la
fase de Haldane. Además, proponemos una extensión de este resultado a cadenas
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con espín mayor, encontrando una correspondencia entre fases con y sin gap de la
protección topológica por simetría.

En el Capítulo 7 proponemos un modelo arco-iris de Ising con campo transverso.
En el régimen de inhomogeneidad fuerte, el estado fundamental es un estado
arco-iris de fermiones de Majorana, i.e. una colección de singletes de SU(2)2. El
régimen de baja inhomogeneidad es descrito por una teoria conforme con carga
central c = 1/2 en espacio-tiempo hiperbólico. Por otro lado, consideramos una
modificación de los acoplos del modelo arco-iris de Ising con nuevo parametro
δ. Así, el régimen de baja inhomogeneidad se describe por una teoría cuántica
de campos con una masa proporcional a δ en el espacio-tiempo hiperbólico. El
régimen de alta inhomogeneidad es rico y variado. En función de δ se obtienen
estados pertenecientes a la fase D de invariantes topológicos cuyo modelo más
representativo es la cadena de Kitaev. Asimismo, obtenemos estados con una
estructura de entrelazamiento de alto y bajo alcance.

El Capítulo 8 contiene las conclusiones en inglés y castellano del trabajo hecho y
los resultados obtenidos en esta tesis. Finalmente, una lista de todas las referencias
citadas a lo largo del documento concluye la tesis.
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Summary

In this thesis we characterize the quantum entanglement properties of ground
states of 1D inhomogeneous systems. In particular, we consider free fermion
inhomogeneous chains and their corresponding spin versions obtained through
the Jordan-Wigner transformation. Homogeneous models have been extensively
studied, so they constitute a good reference when studying new physics due to
inhomogeneity. For example, many ground states obey the so-called area law
of entanglement entropy, which establishes that the amount of entanglement
present between a subsystem and its environment is proportional to the measure
of its boundary. Ground states of certain inhomogeneous systems constitute an
example of a violation of the area law. A paradigmatic case is the so-called rainbow
model describing an XX spin chain whose couplings decay exponentially with
a rate h from the center towards the edges of the chain. Its ground state is the
so-called rainbow state because in the regime of strong inhomogeneity h≫ 1, the
strong disorder Renormalization Group predicts a valence bond solid formed by
concentric maximally entangled states (Bell pairs) as it can be seen in Fig. 2.

Figure 2: Top. Illustration of the rainbow state. The sites connected by the bonds
are entangled. Bottom left (right). Folded version of the states with respect to the
central coupling (site). The state on the left is topologically trivial while the state on
the right is non-trivial.

The rainbow state exhibits long-range entanglement and violates (maximally)
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the area law. Moreover, the field theory describing the model in the weak inho-
mogeneity regime h ≪ 1 corresponds to a conformal field theory with central
charge c = 1. In this thesis we use this state as a starting point to explore the
effects generated by inhomogeneity, characterizing the entanglement properties
with various tools. In particular we study the Rényi entropies, the entanglement
Hamiltonian, the entanglement spectrum and also the entanglement contour.

The first four chapters are introductory and present the basic technology al-
ready presented in the literature3. Thus, Chapter 1 is intended to give a general,
non-technical introduction to the field. Chapter 2 introduces quantum entangle-
ment and its characterization. Chapter 3 discusses in detail the characterization of
entanglement in a homogeneous XX chain, and finally in Chapter 4 we introduce
a family of inhomogeneous models and in particular the rainbow model. The
following three chapters present the original content of this thesis.

In Chapter 5 we explore the implications of adding a central defect with
varying intensity γ in the rainbow model. In the strong inhomogeneity regime,
we show that it is possible to generate transitions between phases with short
(dimerized phases) and long (rainbow phase) entanglement just by changing
the defect intensity. We calculate order parameters and single-body energies to
support this fact. As far as the weak inhomogeneity regime is concerned, we
show that the system can be described through a conformal field theory in curved
space-time but with an effective central charge dependent on γ.

In Chapter 6 we discuss the possibility of characterizing the critical phases
in the framework of the so-called symmetry-protected topological phases. We
show that a folding transformation converts long-range entanglement into short-
range entanglement, allowing an efficient description in terms of matrix product
states (MPS) and classification into symmetry-protected topological phases. Those
states presenting a reflection symmetry with respect to the central coupling are
topologically trivial, while those presenting a reflection symmetry with respect
to the central site are non-trivial (see Fig. 2). In fact, we find a ground state
belonging to the AIII phase of the classification of topological insulators whose
paradigmatic representative is the Su-Schrieffer-Heeger model and a ground state
of an inhomogeneous chain with SU(2) symmetry very similar to the AKLT state
which belongs to the Haldane phase. Furthermore, we propose an extension of this
result to chains with higher spin, finding a correspondence between the symmetry
protection of gapped and gapless phases.

In Chapter 7 we propose a rainbow Ising model with transverse magnetic field.
In the strong inhomogeneity regime, the fundamental state is a rainbow state of
Majorana fermions, i.e. a collection of SU(2)2 singlets. The low inhomogeneity
regime is described by a conformal theory with central charge c = 1/2 in hyperbolic
space-time. On the other hand, we consider a modification of the couplings of the
Ising rainbow model adding a new parameter δ. Thus, the weak inhomogeneity

3Section 4.2 is a generalization presented for the first time in this thesis.
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regime is described by a massive quantum field theory in the hyperbolic space-
time. The high inhomogeneity regime is rich and varied. As a function of δ
we obtain states belonging to the D phase of topological invariants whose most
representative model is the Kitaev chain. Likewise, we obtain states with a high
and low range entanglement structure.

Chapter 8 contains a discussion in English and Spanish of the work done and
the results obtained in this thesis. Finally, a list of all references cited throughout
the document concludes the thesis.
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Chapter 1

Introduction and motivation

This chapter aims to present a global, non-technical view of quantum entanglement
in many-body systems and to introduce the concepts that will appear in the thesis.
It is intended to provide a general intuition and to prevent one from not being
able to see the forest from the trees.

Entanglement is a meeting point between quantum information, condensed
matter, and quantum gravity and is, therefore, a vast and complex subject. The
narrative we present has a condensed matter perspective.

A bird’s eye view of theoretical condensed matter

The purpose of condensed matter physics is to characterize material systems
where the interaction among a very large number of constituent particles is crucial.
They are called interacting many-body systems and their properties may differ
remarkably from those of a system with the same number of constituent elements
but isolated. We can make the distinction between those systems where the
interactions can be averaged yielding an effective non-interacting system and
those where this is not possible. The former case is developed in Landau-Fermi
liquid theory (Landau 1957) that has been extremely successful in explaining the
properties of metals. The theory is based on the assumption that a system of
interacting fermions presents elementary excitations called quasiparticles and
quasiholes that behave in a similar way to electrons and holes in a Fermi gas.
Widespread mean-field (self-consistent) numerical methods like Hartree-Fock or
density functional theory are suitable for systems that follow the Fermi liquid
paradigm. Systems that belong to the second group of our classification are usually
called non-Fermi liquids, or more generally, strongly correlated systems, such as
the so-called Luttinger liquid that describes certain many-body interacting system
in one dimension. Phenomenologically, the quasiparticle picture fails as they are
confined to move along the line, so they cannot move freely –as dictated by the
Fermi gas– without “pushing” others , as can be seen in Fig. 1.1. As a consequence,
only collective wave-like excitations can exist. Indeed, low-dimensional systems,
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Figure 1.1: (a) In high dimensions, almost free individual quasiparticles are allowed
so Fermi-liquid theory satisfactorily describes metals in high dimensional systems.
In one dimension, however, quasiparticles cannot be properly defined as they cannot
move without affecting their neighbours. Hence, only collective excitations can
exist.

and in particular two-dimensional ones that encompass (1 + 1)D quantum1 or
classical equilibrium 2D systems are often dominated by strong correlations and
non-perturbative effects. So there is the surprising situation where the approximate
methods that best characterize physics in high-dimensional systems very often fail
to explain the low-dimensional models that were initially proposed as toy models.

Indeed, low dimensional systems are interesting in themselves, and constitute
a good arena where a large variety of theoretical physics methods and disciplines
–such as integrability, quantum field theory (QFT), conformal field theory (CFT),
renormalization group, and perturbation approaches among others– and numeri-
cal methods –like exact diagonalization, quantum Monte Carlo or density matrix
renormalization group (DMRG)– find common ground. Thanks to the discovery
of the fractional quantum Hall effect, high-temperature superconductors as well
as the recent possibility of synthesizing (effective) low-dimensional materials,
the study of low-dimensional systems has become of paramount importance for
applications and is a very active field of research.

It is fair to say that the field of low-dimensional magnetism was born with the
Ising model (Ising 1925) and the Heisenberg model (Heisenberg 1928). These mod-
els were proposed as toy models that would help to explain magnetic materials.
Despite the simplicity of the Hamiltonians which at most involve quadratic terms
of spins with local interactions, these models capture a wide variety of magnetic
phenomena. Bethe (1931) found an exact solution for the spin-1/2 1D Heisenberg
model by means of what is now known as Bethe ansatz. This method allows us to
solve systems whose many-body scattering matrix is non-trivial (i.e., non-Fermi
liquids), but can be obtained by successive products of scattering matrices of two
quasiparticles. These quasiparticles are the magnons with spin s = 1 for the fer-
romagnetic case and the spinons with spin s = 1/2 for the antiferromagnetic case.

1In this thesis, we will work with quantum spin chains, and we shall generally use the term
one-dimensional systems.
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In fact, spinons are fermionic gapless excitations that constitute an example of
the fractionalization phenomena appearing in low dimensional physics. Moreover,
Onsager (1944) obtained an analytical expression for the free energy of the 2D clas-
sical Ising model in a square lattice using the theory of Lie algebras. Later, Schultz
et al. (1964) rederived it by considering an analogous many-body fermionic system.
We can also mention the Hubbard model (Hubbard 1963) which was proposed
to describe electrons in solids whose solution for the 1D case was also found via
the Bethe ansatz, and the Kondo model (Kondo 1964) that describes a localized
quantum impurity coupled to a large reservoir of non-interacting electrons. The
solution of this model came instead from renormalization group ideas.

The renormalization group. Critical points

One of the main purposes of condensed matter physics is the distinction and char-
acterization of phases of matter. The perspective provided by the renormalization
group2 (RG) is crucial in this topic. The RG scheme focuses on how the physical
phenomena change with the length scale. Starting from a physical Hamiltonian
H({g}) depending on a set of coupling constants {g}, the RG scheme characterizes
how H({g}) changes under a re-scaling3 R of the lattice spacing a (or UV-cutoff)
a→ ba with b > 1. The RG transformation {g′} =R({g}) can be seen as a flow from
point {g} to {g′}. A fixed point is reached when {g∗} = R({g∗}). The correlation
length of the system does not change with the scale transformation, but it must
be measured with respect to the new scale, so it has to be shrinked R(ξ) = (1/b)ξ.
Thus, in the fixed point ξ = 0 or ξ =∞. For systems in equilibrium, the first case
is a trivial fixed point and it characterizes a phase, as the short-distance physics
cannot be neglected. On the contrary, if ξ = ∞, short distances are irrelevant
and the fixed points characterize a critical point or phase transition. Due to their
scale invariance, critical points can be characterized with conformal field theories.
Belavin et al. (1984) laid down the foundations of two-dimensional conformal field
theory. In this thesis we will make special use of Kadanoff’s real space approach
(Kadanoff 1966): a lattice of spins can be partitioned into blocks each of which
behaves similarly to single spin with modified coupling constants. Thus, the num-
ber of degrees of freedom is reduced exponentially as we proceed, simplifying the
problem considerably. However, the practical implementation of this scheme was
(and is) complicated. The first successful implementation of the RG was carried
out by Wilson (1975) to solve the Kondo model mentioned above. Wilson designed

2The renormalization group has a misleading name: it is not a group in the mathematical sense
and it is not strictly related to eliminating divergencies of a quantum field theory. It has a broader
scope and, as Cardy (1996) wrote, It cannot be stressed too strongly that the renormalization group is
merely a framework, a set of ideas, which has to be adapted to the nature of the problem at hand.

3It is convenient to start the RG procedure with a Hamiltonian that respects the same symmetries
as the physical Hamiltonian but which incorporates all the necessary coupling constants that
guarantee that the functional form of the Hamiltonian is invariant under the scale transformation.
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the numerical renormalization group (NRG), which proceeds by conveniently
slicing the system into shells corresponding to different length scales, selecting the
lowest energy state of the deepest shell, and promoting it to the next one, creating
thus a new effective Hamiltonian, which is diagonalized in the next step.

However, the application of the NRG to other systems yielded erroneous
results. White (1992, 1993) realized that the less energetic state which is selected on
each step of the NRG does not have to be the optimal one. Why? Because the blocks
or shells into which the system is divided can be (strongly) correlated with the
environment. With this idea, White developed the density matrix renormalization
group (DMRG) which has made it possible to numerically find the ground state of
many 1D systems with very high accuracy. In this method, the most representative
state of each block is not the one with minimum energy but the one with the
largest eigenvalue of the density matrix. Thus, the DMRG provided a link between
condensed matter physics and quantum information4.

Entanglement meets condensed matter physics

Given two systems A and B, a quantum state defined on them exhibits entangle-
ment if the measurement of a local observable on A (B) alters the probabilities of
obtaining different results on B (A), regardless of the distance between A and B.
This attribute of entanglement led Einstein et al. (1935) to pose the famous EPR
thought experiment and to doubt that quantum mechanics provides a complete
description of reality. Local hidden variable theories were proposed to guarantee
local realism5 of quantum mechanics. Bell (1964) proved that the statistical corre-
lations between measurements of any two observers must satisfy an inequality
provided that local realism holds. Next, he showed that an entangled quantum
state can violate this inequality. Thanks to Bell’s work, the debate ceased to be
strictly philosophical as it was possible to check the validity of Bell’s inequality
in the lab. The first experiment carried out by Freedman and Clauser (1972) with
entangled photons concluded that there was a violation of the inequality. Since
then, there has been a battle between loophole finders and improved experiments
that has lasted until recently (Giustina et al. 2015; Rosenfeld et al. 2017). In all the
experiments, the violation of Bell’s inequality has been found.

During the last quarter of the past century, various works have appeared
where entanglement is used as a resource to develop technologies unattainable
with classical devices. This is the emerging domain of quantum technologies

4Although it is worth to say that that the word “entanglement” is not present in White’s seminal
papers.

5Local realism encompasses two requisites: all measurable properties of a system are well
defined prior to any measurement, and these properties depend exclusively on the past lightcone
of the system (realism) and there are no physical influences traveling faster than the speed of light
(locality).

4



which contains the field of quantum information6 (Nielsen and Chuang 2010). The
reader interested in the quantum information perspective of entanglement can
refer to the review by Horodecki et al. (2009).

As we have anticipated, entanglement and other concepts of quantum informa-
tion have made their appearance into the field of condensed matter (Amico et al.
2008; Laflorencie 2016; Rachel et al. 2015), becoming essential to understanding
the strongly correlated systems presented in the first subsection, and giving rise
to the birth of the field known as quantum matter (Preskill 2000; Zeng et al. 2019)
–to which this manuscript hopes to contribute–. It is important to note that the
development of these interdisciplinary domains aids to explore new physics. As
an example, we can consider quantum computation where the objects of study are
many-body systems whose Hamiltonians can be manipulated.

Given a many-body system S and a bipartition S = A⋃B, the state that de-
scribes A is given by the so-called reduced density matrix ρA = trB ρAB. Its spec-
trum7 {ωk} codify the entanglement properties of A. The entanglement entropy
is one of the most widespread characterizations of entanglement in condensed
matter. It is defined as

S(A) = − tr (ρA log ρA) . (1.1)

The entanglement entropy S(A)measures the amount of information associated
to the fact that the state ρA is not pure. It is important to note that the concept of
information has made it possible to connect the (apparently far) fields of quantum
gravity and condensed matter by means of the area law of entanglement entropy
(Eisert et al. 2010).

The area law of entanglement entropy

Bekenstein (1973) proposed that the entropy of a black hole is proportional to the
area of its event horizon A and Hawking (1975) found the constant of proportion-
ality:

SBH =
1

4`2
P

A, (1.2)

where `P is the Planck length. Bekenstein interpreted this expression from an
information theory point of view and wrote8: It is then natural to introduce the
concept of black-hole entropy as the measure of the inaccessibility of information (to an
exterior observer) as to which particular internal configuration of the black hole is actually
realized in a given case.

Bekenstein’s work motivated the investigation of the relation between infor-
mation theory and quantum field theory. First, Bombelli et al. (1986) and later

6In fact, quantum information encompasses quantum computation and quantum cryptography.
Other examples of quantum technologies (Dowling and Milburn 2003) are, quantum imaging
(Lugiato et al. 2002) and quantum sensing (Degen et al. 2017).

7And a related one called entanglement spectrum (Li and Haldane 2008).
8In page 2336 of Bekenstein 1973.
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Srednicki (1993) explored the entropy of a the ground state of a real scalar field
satisfying the Klein-Gordon equation on a fixed background. They found that the
entropy of a subsystem A with volume `D with ` much greater than the correlation
length is proportional to the measure of its boundary

S(A) = C ∣∂A∣ = C`D−1, (1.3)

where D is the space dimension, and in contrast to (1.2), C is a non-universal
cut-off dependent constant.

Figure 1.2: Schematic representation of the area law of entanglement entropy for
two dimensions (top) and one dimension (bottom). For the one dimensional system,
the boundary ∂A are just two points.

Hence, the area law can provide some intuition on how the correlations are
distributed in ground states. To see it, let us consider a spatially extended system
divided in two subsystems A and B as can be seen in Fig. 1.2. Then, the state that
describes the system is said to satisfy the area law if the only degrees of freedom
belonging to A that are correlated with B are those near the boundary ∂A.

Now we can understand the main reason behind the success of DMRG that
we introduced previously. The goal of the DMRG (and of any RG scheme) is to
describe the system effectively while keeping the dimensionality of the effective
Hilbert space small. Hence, the more representative the retained states are, the
more effective the DMRG is. Those states that fulfill the area law meet precisely
this requirement: most of the entanglement is encoded in a few eigenvalues of the
reduced density matrix. Nowadays the success of the DMRG is understood in the
framework of tensor networks, and in particular in their 1D realization: the matrix
products states (MPS) (Dukelsky et al. 1998; Östlund and Rommer 1995; Verstraete
et al. 2004).

Before briefly introducing the MPS, it is worth to mention that its origin is
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very related to the so-called Haldane conjecture9 (Haldane 1983) which states
that integer spin Heisenberg chains are gapped whereas half-integer ones are
gapless. Affleck et al. (1988) proposed a gapped spin 1 Hamiltonian whose ground
state (AKLT state) is a valence-bond state with finite correlation length. Fannes
et al. (1992) and Lange et al. (1994) extended the AKLT ideas and introduced the
finitely-correlated states which are precursors of MPS. As a matter of fact, tensor
networks (Orús 2014; Schollwöck 2011) describe many-body wave functions in a
basis in which the properties of entanglement and correlation lengths are the central
features. Hence, a tensor network is composed of tensors (multidimensional arrays
of complex numbers) interconnected in a particular way. For instance, the MPS is a
one dimensional tensor network where the tensors are matrices that are contracted
with the usual matrix multiplication, and the projected entangled pair states (PEPS)
are the two dimensional generalization of the MPS, proposed by Verstraete and
Cirac (2004).

The dimension of the contracted indices, known as ancillary indices, is called
bond dimension, and it is related to the amount of entanglement that a given state
possesses. In general, the bond dimension scales exponentially with the system
size N , making it computationally infeasible for being represented with an MPS.
However, Vidal (2003) showed that states with a saturated bond dimension10 are
efficiently simulated in classical computers by describing them using an MPS. He
called these states slightly-entangled, and intuitively we can think that states that
satisfy the area law are of this kind. Indeed this was rigorously proved by Hastings
(2007): the ground state of a local, gapped and finite strength Hamiltonian obeys
the area law and can be approximated with an MPS (Verstraete and Cirac 2006).

Violations of the area law

Page (1993) showed that the entanglement entropy of a bipartition of N/2 con-
stituents of a system described by a random state is S(A) ∼ (N/2) log d−1/2 where
d is dimension of the local Hilbert space. And indeed, excited states of ergodic
Hamiltonians present the same behaviour. These states, which fill up almost
entirely the Hilbert space are said to satisfy the volume law11. The states that satisfy
the area law represent a small corner of the whole Hilbert space.

As we have said above, Hastings proved that all the ground states of 1D
gapped Hamiltonians belong to this small corner. A ground state that violates

9It was rejected by multiple journals, and was labeled a “conjecture” even though it was, in my mind,
a clear prediction. I recall that one referee pontificated that my claims “were in manifest contradiction
to fundamental principles such as renormalization and continuity”! Of course, my predictions were
later vindicated both by numerical studies and experiments. . Duncan M. Haldane – Biographical.
NobelPrize.org. Nobel Prize Outreach AB 2021. Wed. 11 Aug 2021.

10Indeed, Vidal (2003) showed that the states whose bond dimension grows polynomially with
the number of sites are efficiently simulated.

11There is, however, a notorious exception with the excited states of many-body localized
systems which also follow the area law (Abanin et al. 2019).
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the area law must break at least one of the hypothesis of Hastings theorem. For
instance, non-local terms may yield ground states that violate the area law (Gori
et al. 2015; Shiba and Takayanagi 2014). The next paragraphs describe different
physical models whose Hamiltonians are local but gapless and their ground states
constitute examples of violation of the area law.

The ground state and low energy excitations of critical Hamiltonians are ex-
pected to violate the area law. This is so because even the degrees of freedom
far from the boundary ∂A can be correlated with the environment B since the
correlation length diverges at the critical point. Indeed, Srednicki (1993) showed
that the expression (1.3) is not valid for the massless case in D = 1 and that there is
a logarithmic dependency with the volume `. Holzhey et al. (1994) first computed
the entanglement entropy in a CFT in two dimensions and showed that

S ≈ c
3

log `, (1.4)

where c is the central charge of the associated CFT. A few years later, explicit calcu-
lations of the entanglement behavior in critical systems confirmed and extended
the predictions given by CFT (Calabrese and Cardy 2004; Jin and Korepin 2004;
Lambert et al. 2004; Latorre et al. 2003; Vidal et al. 2003) showing a logarithmic
violation of the area law (1.4). The same logarithmic scaling was found by Wolf
2006 for Fermi liquids for an arbitrary dimension. Because of the divergence of the
correlation length, ground states of critical systems cannot be described efficiently
with MPS. Does this mean that tensor networks can not describe critical points? Vi-
dal (2007) developed the multiscale entanglement renormalization ansatz (MERA)
which is able to describe efficiently states of a D dimensional lattice with a tensor
network in D + 1 dimensions. Layers of tensors are stacked along the additional
dimension where each layer describes a different length scale. In addition, Swingle
(2012) proposed that MERA is a discrete realization of the holographic-principle
(Ryu and Takayanagi 2006).

We may also find violations of the area law when considering disordered
systems. On one hand Anderson (1958) established that one-dimensional systems
with an uncorrelated disorder in the local potential display localization. Hence,
this kind of disorder respects the area law. However, correlated or off-diagonal
disordered systems –such as spin chains with random local couplings– lead in
certain cases to long-range correlations and to a logarithmic violation of the area
law (Refael and Moore 2004).

Another interesting example is provided by the ground states of the (colorful)
Motzkin spin-chains (Bravyi et al. 2012; Movassagh and Shor 2016) which exhibit
a violation of the area law S ∼

√
N that is not related to conformal invariance.

Their construction is based on Motzkin paths. These comprise all possible ways to
connect two points of the lattice (0,0) and (N,0) without crossing the x axis. The
connection with spins is done with the mapping {∣+1⟩ , ∣0⟩ , ∣−1⟩} to the degrees of
freedom for forming the path { / , , / }.
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Finally, and more importantly for this thesis, the ground state of some inhomo-
geneous systems violates the area law. Historically, disordered systems have been
confronted with homogeneous systems. This is misleading since disordered sys-
tems do not include those whose inhomogeneity does not depend on a probability
distribution, i.e. it is not random. In this thesis we are interested in non-disordered
inhomogeneous systems. Indeed, inhomogeneous systems with engineered cou-
plings can violate the area law, even maximally. The paradigmatic example is the
rainbow state that was proposed by Vitagliano et al. (2010) and studied profusely
by our research group (Ramírez et al. 2015, 2014; Rodríguez-Laguna et al. 2017). In
fact, the rainbow state is a central pillar of this manuscript, so we will devote a
chapter to explaining it in detail.

Entanglement and quantum phases

In addition to the contributions of the renormalization group that we have men-
tioned above, a crucial step in understanding and classifying the phases of matter
was given by Landau (1937) with his theory of symmetry-breaking. According
to this theory, two symmetry-breaking phases are distinguishable because they
present different symmetries that can be classified via symmetry groups. The
continuous phase transition or critical point is usually the point at which there
is a change in the number of symmetries describing the system. At this point,
the gap of the Hamiltonian closes, and the theory becomes gapless, whereas it
remains finite outside the critical point. Hence, using symmetry and the related
group theory it is possible to describe many different phenomena, ranging from
the 230 different crystals that can exist in three dimensions, to ferromagnetic and
paramagnetic phases, to superfluid phases, etc. The existence of different phases is
manifested in a local order parameter ∆(x) (for instance magnetization for ferro-
magnet) that vanishes in the paramagnetic phase, but not in the ferromagnetic one.
In addition, the symmetry breaking also provides the origin of many collective
gapless excitations by the mechanism of spontaneous symmetry breaking of a
continuous symmetry.

Physicist use to believed that Landau symmetry-breaking theory character-
izes all continuum phase transitions. However, important experimental results
obtained in the eighties such as the discovery of the fractional quantum Hall
(FQH) effect (Tsui et al. 1982) and high-temperature superconductors (Bednorz
and Muller 1986) opened the door to new phases of matter that are beyond the
so-called Landau paradigm. Indeed, FQH systems contain different phases at zero
temperature with the same symmetry. As we have mentioned, the entanglement
has proven to be a useful tool for improving the characterization of phases belong-
ing to the Landau paradigm. But it has become essential for distinguishing and
understanding phases of matter that cannot be explained in terms of changes in
symmetries.
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They key concept is the distinction between short-range entanglement (SRE)
and long-range entanglement (LRE) in ground states of gapped Hamiltonians. A
state is said to present SRE if it can be connected to a product state by means of a
unitary local evolution, i.e. by means of a quantum circuit whose depth does not
depend on the system size. If this is not possible, i.e., the depth of the quantum
circuit grows with the system size, the system presents LRE. The topological order
(Chen et al. 2010) quantifies the different patterns of LRE that ground states of
gapped Hamiltonians present. Changes in these patterns imply topological phase
transitions, which are characterized by quasiparticles with different fractional
statistics. These are the topological phases of matter first encountered with the
discovery of the fractional quantum Hall effect (Laughlin 1983).

Observe that gapped systems that satisfy the area-law necessarily present SRE.
Hastings theorem therefore ensures that there cannot be gapped one dimensional
states with LRE12 and, we can conclude that 1D gapped systems do not possess
topological order. However, 1D systems may possess non-trivial topological
properties. The entanglement of all gapped ground states can be removed using
local unitaries. Yet, if we impose that the unitaries must preserve some symmetries
of the system, some states cannot be transformed into a product state because of
constraints imposed by symmetry. Thus, the states belong to symmetry protected
topological (SPT) phases that we will encounter in this thesis. This terminology can
be misleading, as one might think that an SPT is identified by a topological order13

but it is very accepted by the community. If the system is closed, the ground state
belonging to an SPT phase does not spontaneously break the symmetry, and it
is not degenerate. On the contrary, if the system is open, non-trivial edge modes
make the ground state degenerate. In fact, a relevant example of SPT phase is the
Haldane phase for spin 1 that we have mentioned above, with the AKLT state
being the most representative. The entanglement spectrum has also proven to be a
reliable detector of this kind of phases (Pollmann et al. 2010), so we can conclude
this short tour by emphasizing the prominence that entanglement has taken in
understanding strongly correlated many-body systems.

Inhomogeneous systems

Non-homogeneous systems are the rule rather than the exception in nature. Real
materials present local random impurities that can dramatically change their
properties. This is the reason why frozen – also known as quenched – disorder
has received much interest (Iglói and Monthus 2005). The characterization of
non-disordered inhomogeneous systems has intensified since the experimental

12Notice that the definition of LRE and SRE applies exclusively to systems with finite correlation
length, so critical systems are not included in this distinction. However, as in these systems the
correlation length diverges, the depth of the quantum circuit grows with the system size.

13In fact, to emphasize the distinction, Wen (2017) coined the term symmetry protected trivial
(SPT) order.
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realization of ultracold quantum gases which offers a unique setting for quantum
simulation of interacting many-body systems (Bloch et al. 2012). The local potential
and hopping amplitudes that these atoms experience can be fine-tuned by making
use of the interference pattern of overlapping laser beams. This has made it
possible to explore phenomena of QFT in curved spacetime by placing the atoms
with inhomogeneous hopping amplitudes simulating a position-dependent index
or refraction (Boada et al. 2011). Moreover, inhomogeneous models such as the
celebrated Sadchev-Ye-Kitaev (SYK) model (Maldacena and Stanford 2016) or
experiments with Rydberg atoms (Bernien et al. 2017) which are governed by
long-range interactions are useful tools in the understanding of quantum chaos.

This thesis explores the entanglement properties of inhomogeneous spin chains.
In particular, we will work with Hamiltonians whose parameters vary locally,
depending on an inhomogeneity parameter h ≥ 0. Standard numerical tools can
be used to characterize the system for any values of h. Yet, from the analytical
perspective it is convenient to distinguish between two asymptotic regimes.

• In the strong inhomogeneity regime h≫ 1 there exist many different energy
scales, so it is possible to apply an RG scheme that decimates the degrees
of freedom associated to each energy scale, in decreasing order. This RG is
the strong-disorder renormalization group (SDRG) that was proposed by
Dasgupta and Ma (1980) and Ma et al. (1979) and characterized in detail by
Fisher (1995).

• The opposite situation is the weak inhomogeneity regime where h→ 0. The
system is thus almost homogeneous so it is possible to study the differences
due to the inhomogeneity by studying the continuum limit of the theory
defined in the same region where the field theory of the homogeneous system
is relativistic.

In the following chapters we develop in more detail some of the topics raised
in this bird’s eye view of condensed matter and entanglement theories. We begin
by defining entanglement and its characterization by means of the reduced density
matrix in Chapter 2. In Chapter 3 we analyze the entanglement properties of ho-
mogeneous spin chains. We shall focus on the XX model and work it out in some
detail as it is important for the correct understanding of this thesis. In Chapter 4 we
shall describe the SDRG and its validity regime. We shall also illustrate the charac-
terization of the strong and weak inhomogeneity regimes of an inhomogeneous
XX model whose ground state is the rainbow state: a concentric valence-bond
state which violates maximally the area law in the strong inhomogeneity regime.
The weak inhomogeneity regime can be in turn understood as a massless fermion
placed on a curved spacetime that reproduces the inhomogeneity of the model.
The rainbow model will be our starting point in the following chapters.
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Chapter 2

Quantum Entanglement

2.1 Entanglement in pure states.

Given a quantum system composed of two subsystems A and B with finite dimen-
sional Hilbert spaces HA and HB respectively, a pure state is given by the vector
∣ψ⟩AB ∈HAB with HAB =HA ⊗HB. We can distinguish two situations:

• If the state can be written as

∣ψ⟩AB = ∣φ⟩A ⊗ ∣ϕ⟩B , ∣φ⟩A ∈HA, ∣ϕ⟩B ∈HB, (2.1)

then the state is said to be separable.

• If the above does not hold,

∣ψ⟩AB ≠ ∣φ⟩A ⊗ ∣ϕ⟩B , (2.2)

the system is said to be non-separable that is entangled.

Let us mention here that the characterization of entanglement and other kinds
of quantum correlations is richer and harder in mixed states. The reason is that the
mixed states that are said to be separable do not present entanglement but they dis-
play other kind of quantum correlations (Adesso et al. 2016) in contrast with pure
states. The characterization of these correlations via quantum coherence (Streltsov
et al. 2017), quantum discord (Modi et al. 2012), and others have recently attracted
great attention. Moreover, we have described the so-called bipartite entanglement
as it concerns two subsystems A and B. We mention here that it is possible to
study also the multipartite entanglement (Karlsson and Bourennane 1998) that
appears when more than two subsystems A, B, C, etc. are considered. Multipar-
tite entanglement requires the additional distinctions of partially-entangled and
partially-separable states besides the classes defined above.

In this thesis, we will work with ground states of spin chains, that is, with pure
states and we shall only consider bipartite entanglement so we will ignore the
term bipartite throughout the entire thesis.
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2.2 Reduced density matrix

Given a state ΨAB , the state that describes the degrees of freedom of A is in general
mixed, so it is convenient to use the density matrix formalism. In particular, the
entanglement can be characterized by means of the reduced density matrix ρA. Let
us recall that the density operator ρ is a Hermitian, positive-semidefinite operator
that verifies trρ = 1. The density matrix ρAB of the pure state ∣ψ⟩AB is

ρAB = ∣ψ⟩AB ⟨ψ∣AB . (2.3)

Let us now define the reduced density matrix ρA (and ρB). Consider an operator
ÕA = OA ⊗ 1B whose support lies in A. The expectation value is given by ⟨ÕA⟩ =
trAB (ρABÕA). The reduced density matrix ρA is a density operator acting on HA
such that:

⟨ÕA⟩ = trAB (ρABÕA) = trAB (ρAOA) . (2.4)

Thus, the reduced density matrix ρA (ρB) describes the state for an observer
restricted to the subsystem A (B). It is obtained by tracing out the inaccessible
degrees of freedom belonging to B (A):

ρA = trB ρAB, ρB = trA ρAB. (2.5)

Owing to its hermiticity, ρA can be diagonalized:

ρA =
NA

∑
k=1

ωk ∣φk⟩ ⟨φk∣ , 0 ≤ ωk ≤ 1, and
NA

∑
k=1

ωk = 1. (2.6)

Notice that {φk}NAk=1 is a orthonormal basis of HA with dimension NA.
A pure state ∣ψ⟩ ∈ HAB can be written by means of the so-called Schmidt

decomposition

∣ψ⟩ =
r

∑
k=1

sk ∣k⟩A ∣k⟩B , (2.7)

where sk > 0 are the Schmidt values, and {∣k⟩A}
NA
k=1 ({∣k⟩B}

NB
k=1) is an orthogonal

basis of HA (HB) and r ≤ min(NA,NB) is the Schmidt number. The Schmidt
decomposition is intimately related with the singular value decomposition and
we refer to appendix 2.A for a more detailed derivation.

Finally, using (2.7) and (2.4) the reduced density matrices are

ρA =
r

∑
k=1

s2
k ∣k⟩A ⟨k∣A , ρB =

r

∑
k=1

s2
k ∣k⟩B ⟨k∣B (2.8)

We can compare (2.8) with the general expression of the diagonalization of the
density operator (2.6). It follows that the nonzero eigenvalues ωk = s2

k with k =
1 . . . , r are the same for both matrices ρA and ρB and that they may differ in the
degeneracy of zero eigenvalues ωk = 0 for k = r + 1, . . . ,NA − r (k = r + 1, . . . ,NB − r).

The eigenvalues of the reduced density matrix codify the whole entanglement
structure of a system. Notice that if the Schmidt number r = 1, the sum in (2.7)
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reduces to one term and the state is a product state (2.1). In the other cases the
state is entangled and it is maximally entangled when s2

k = 1/min(NA,NB).
The reduced density matrix ρA, as every density operator, possesses non-

negative spectrum and it is Hermitian. As a consequence, it can be written as:

ρA = e−HA , (2.9)

where HA is a Hermitian operator1 which is known as entanglement Hamiltonian.
Notice that by taking the logarithm in (2.8) we find the spectrum of the entangle-
ment Hamiltonian which is also known as entanglement spectrum2:

Ek = −2 log sk. (2.10)

Having obtained the spectrum of ρA, we can introduce the entanglement entropy.

2.3 Entanglement entropy

There are many measures to characterize entanglement by means of the reduced
density matrix 3. It is a fundamental object from which correlations between A and
the exterior of A are obtained. For instance, the purity P (ρA) = trA ρ2

A measures the
degree of mixedness of the partition: if P (ρA) = 1 it means that ρA describes a pure
state and ∣ψ⟩AB is separable (2.1). On the contrary, if P (ρA) < 1 then ρA describes a
mixed state and ∣ψ⟩AB is entangled (2.2). Purity is thus bounded:

1

NA

≤ P (ρA) ≤ 1. (2.11)

The entanglement entropy is the most widespread magnitude in the characteri-
zation of bipartite entanglement. The concept of entropy was born in the fields of
thermodynamics (Clausius) and classical statistical physics (Boltzmann and Gibbs).
In this context, the macroscopic state that describes a system is characterized by a
probability distribution of microstates. The entropy of the system is

S = −∑
k

pk log pk, (2.12)

1Note that forHA to be well defined, ρA must be positive.
2The term was coined by Li and Haldane (2008)
3The are other measures that do not use the reduced density matrix. For instance, the negativity

is based on the partial transpose criterion (Horodecki et al. 1996; Peres 1996) which establishes that
if a state is separable, the partial transpose matrix ρTB (ρTA ) is a valid density matrix (i.e. positive
semidefinite). Given a density matrix ρ acting onHA ⊗HB

ρ = ∑
ijkl

M ij
kl ∣i⟩A ⟨j∣A ⊗ ∣k⟩B ⟨l∣B ,

the associated partial transpose matrix ρTB (ρTA ) is obtained by leaving untouched the degrees of
freedom of A (B) and transposing those of B (A)

ρTB ∶= ∑
ijkl

M ij
lk ∣i⟩A ⟨j∣A ⊗ ∣k⟩B ⟨l∣B
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where pi is the probability associated to the occurrence of the microstate i. Shannon
(1948) introduced the concept of entropy (2.12) into the field of classical informa-
tion theory. Shannon entropy quantifies the amount of uncertainty or the amount
of information that a message possesses. Von Neumann extended the concept of
entropy to quantum physics. The entropy is given in terms of the density matrix ρ
as S = − tr(ρ log ρ). Thus, the von Neumann entropy of the subsystem A is

S(ρA) = − tr (ρA log ρA) = −
NA

∑
k=1

ωk logωk, (2.13)

where {ωk}NAk=1 is the set of eigenvalues of ρA (2.6). Revisiting the von Neumann
entropy 2.13 under the perspective of Shannon theory leads to interpret S(ρA) as
the amount of information necessary to describe the subsystem A as a pure state
starting with the mixed state ρA. Or, in other words, it quantifies the correlations
that prevents describing A as a pure state. It is for that reason the von Neumann
entropy is nowadays called entanglement entropy.

Observe that the eigenvalues ωk = 0 do not contribute to the entanglement
entropy (2.13), so it can be given in terms of the Schmidt singular values sk (2.8):

S(ρA) = −
r

∑
k=1

s2
k log s2

k = S(ρB). (2.14)

Notice that if r = 1, the state is a product state, and S(ρA) = 0. The entanglement
entropy satisfies a series of mathematical properties which are the result of physical
requirements (Wehrl 1978). For instance, additivity:

S(ρA ⊗ ρB) = S(ρA) + S(ρB), (2.15)

and subbaditivity:
S(ρAB) ≤ S(ρA) + S(ρB), (2.16)

which establishes that the entropy of a given state ρAB ∈ HA ⊗HB is bounded by
the entropy of a product state ρA ⊗ ρB. Rényi (1961) proposed a generalization of
the entropy which fulfills all the properties of the entropy but with the relaxation
of the subadditivity4. They are known as Rényi entropies:

Sα(ρA) =
1

1 − n log ρnA, with n > 0, n ≠ 1, (2.18)

and it can be shown that the entanglement entropy can be obtained as a limit

lim
n→1+

Sn(ρA) = S(ρA). (2.19)

4Indeed subadditivity is a weak version of the strong-subadditivity which is also fulfill by the
entanglement entropy. It relates the entanglement entropy of three subsystems A, B, and C:

S(ρABC) + S(ρB) ≤ S(ρAB) + S(ρBC) (2.17)
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Rényi entropies are very useful in quantum field theory as they can be computed
directly with the so-called replica trick. Having introduced the quantum entan-
glement and its characterization by means of the reduced density matrix, we
shall apply these concepts in the next chapter to characterize the entanglement in
homogeneous spin chains.
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Appendices

2.A Schmidt decomposition

A pure state can be written as

∣ψ⟩ =
NA

∑
m=1

NB

∑
n=1

ψmn ∣m⟩A ⊗ ∣n⟩B , (2.A.1)

where {∣m⟩A}
NA
m=1 and {∣n⟩B}

NB
n=1 are orthonormal basis of the Hilbert spacesHA and

HB respectively, and the coefficients ψmn can be arranged in a rectangular NA ×NB

matrix ψ.
Attending to the definition of the reduced density matrix (2.5) we have:

ρA = trB ρAB =
NB

∑
n=1

B⟨n∣ψ⟩ ⟨ψ∣n⟩B =
NA

∑
m,m′=1

NB

∑
n=1

ψmnψ
∗
m′n ∣m⟩A ⟨m′∣A . (2.A.2)

Then ρA = ψψ† in the {∣m⟩A} basis and, in similar way ρB = ψ†ψ in the {∣n⟩B}
basis. As the NA ×NB matrix ψ is in general rectangular, it admits a singular value
decomposition (SVD):

ψ = UDV †, (2.A.3)

where U (V ) is a NA×NA (NB ×NB) unitary matrix, and D is a NA×NB rectangular
matrix with si ≥ 0 with i = 1, . . . ,min(NA,NB) in the diagonal 5. Applying the SVD
(2.A.3) to (2.A.1):

∣ψ⟩ =
min(NA,NB)
∑
k=1

sk (
NA

∑
m=1

Umk ∣m⟩A)(
NB

∑
n=1

V ∗nk ∣n⟩B) =
min(NA,NB)
∑
k=1

sk ∣k⟩A ∣k⟩B , (2.A.4)

where the sets {∣k⟩A(B)} are orthonormal basis of HA(B). If we consider the

r ≤min(NA,NB)

non-zero singular values sk > 0 (i.e. the rank of M ) we arrive at the Schmidt
decomposition

∣ψ⟩ =
r

∑
k=1

sk ∣k⟩A ∣k⟩B , (2.A.5)

where r is called the Schmidt number.
5Alternatively we can consider the D matrix to be square min(NA,NB) ×min(NA,NB). Then

U (V ) is a NA ×min(NA,NB) (min(NA,NB) ×NB) isometry UU † = 1 (V †V = 1).
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Chapter 3

Entanglement in homogeneous spin
chains

A spin chain is a collection of interacting spins arranged in a line that can be closed
or open. It is a realization of a many-body system and it helps to understand a
wide range of physical models. A paradigmatic example is the spin 1/2 Heisenberg
model

H = −
N

∑
m=1

J Sm ⋅ Sm+1 = −
N

∑
m=1

J

4
(σxmσxm+1 + σymσym+1 + σzmσzm+1) , (3.1)

where σim with i = x, y, z are the Pauli matrices that describe the spin 1/2 degrees
of freedom. It is an homogeneous spin chain because the exchange coupling
J does not depend on the position. In the next chapter we shall present the
inhomogeneous spin chains where J → Jm. The purpose of this chapter is to
discuss the entanglement properties of homogeneous spin chains. In order to
compute the entanglement entropy of a given subsystem or block A of the chain,
we need to first obtain the ground state of the theory and the density matrix, and
then compute the entanglement spectrum of the reduced density matrix ρA.

In general this is a hard task from a computational point of view. The reason is
that the Hilbert space that accommodates the ground state and the excited states
of a given spin 1/2 chain of N sites grows as 2N . If we could store information on
every atom of the universe, we would be able to diagonalize the Hamiltonian of 270
spins. It thus seems a priori an impossible task to diagonalize spin Hamiltonians
such as (3.1) by classical computational methods. We can see here the convenience
and necessity of developing quantum computation and quantum simulation, but,
as long as this technology is not available it is needed to resort to numerical
methods –such as exact diagonalization (Lanczos), DMRG, or quantum Monte
Carlo– or to search for exactly solvable systems such as (3.1) or the XX model that
we shall present in the next section.

With the objective of computing the entanglement properties of the XX model,
we shall first introduce and diagonalize this model in Section 3.1, showing that
it is gapless and that it can be described via CFT. We shall extract the leading
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order of the Rényi entropies which is fixed by conformal invariance, and we
shall obtain the non-universal properties by means of diagonalizing the two-
point correlation matrix in Section 3.2. We will also compute the entanglement
Hamiltonian, entanglement spectrum, and the so-called entanglement contour in
Section 3.3.

3.1 The XX model

The Hamiltonian of the XX model is given by

H = −
N−1

∑
m=1

J

4
(σxmσxm+1 + σymσym+1) − η

J

4
(σxNσx1 + σyNσ

y
1) , (3.2)

where the parameter η takes account of possible boundary conditions of the system.
In particular, η = 0 yields a Hamiltonian that describes a chain with open boundary
conditions (OBC) and η = 1 a closed chain with periodic boundary conditions
(PBC) σiN+1 = σi1, i = x, y. It is called the XX model because the Hamiltonian (3.2)
involves only the x and y components of the spin operators coupled with the same
exchange coupling J . It is convenient to write (3.2) in terms of the ladder operators
σ±m = (1/2)(σxm ± iσym).

H = −
N−1

∑
m=1

J

2
(σ+mσ−m+1 + σ−mσ+m+1) − η

J

2
(σ+Nσ−1 + σ+Nσ−1 )

=HOBC − ηJ
2
(σ+Nσ−1 + σ−Nσ+1 ) . (3.3)

Let us analyze the symmetries of the model. The total third component of the spin
Stot
z , also known as total magnetization

M = 1

2

N

∑
m=1

σz, (3.4)

commutes with the Hamiltonian [H,M] = 0. As a consequence, the Hamiltonian
(3.2) is invariant under rotations around the z axis. Moreover, the Hamiltonian
commutes with the parity operator

P =
N

∏
m=1

σz, (3.5)

so it is invariant under spin inversion. The Hamiltonian (3.3) acts non-trivially
only between nearest neighbour opposite spins, i.e.

∣↑↓⟩↔ ∣↓↑⟩ ,

but it is insensitive to the sign1 of J so we can consider for now on J > 0. In
addition, if the system is closed, the system presents translational invariance.

1Observe that in general this is not true. For instance, the Heisenberg Hamiltonian (3.1) presents
different physics depending on the sign of J .
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In this case (3.3) also commutes with the translation operator by one site and
therefore momentum k is a good quantum number to label the spectrum.

The XX model corresponds to a particular case of the more general XY model,
where the exchange couplings of each spin component can vary independently.
Indeed, Lieb et al. (1961) solved exactly this model – in the sense of finding its
ground state and their elementary excitations – by considering an analogous
system of free fermions. The mapping between spins and fermions is done by
means of the Jordan-Wigner transformation (Jordan and Wigner 1928), which
relates the spin and fermionic degrees of freedom:

σ+m = exp{−iπ
m−1

∑
k=1

c†
kck}cm

σ−m = exp{iπ
m−1

∑
k=1

c†
kck}c†

m (3.6)

σzm = 1 − 2c†
mcm.

At a single site the correspondence between the eigenstates of σz and the empty
and occupied sites of a fermion is

∣↑⟩↔ ∣0⟩ , ∣↓⟩↔ ∣1⟩ = c† ∣0⟩ . (3.7)

Observe that the Fock vacuum corresponds to the state withM = N/2

∣0⟩←→ ∣↑, . . . , ↑⟩ . (3.8)

The phase factor exp{±iπ∑m−1
k=1 c

†
kck} is a non-local operator that transforms the

commutation relations of the spins

[σ+m, σ−m′] = δmm′σzm, [σzm, σ±m′] = ±2δmm′σ±m, (3.9)

into anticommutation relations satisfied by the fermions (see Appendix 3.A for
more details):

{c†
m, cm′} = δmm′ , {cm, cm′} = {c†

m, c
†
m′} = 0. (3.10)

With the Jordan-Wigner transformation we find that the magnetization (3.4)
and the parity (3.5) become

M = 1

2

N

∑
m=1
(1 − 2c†

mcm) =
N

2
−Nf ,

P =
N

∏
m=1
(1 − 2c†

mcm) = (−1)Nf , (3.11)

where

Nf =
N

∑
m=1

c†
mcm, (3.12)
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is the operator that counts the total number of fermions. Hence, since [H,M] = 0,
the number of particles, and therefore the parity of the system, are fixed. Applying
the transformation (3.6) to the open XX Hamiltonian (3.3) leads to:

HOBC = −J
2

N−1

∑
m=1
(c†
mcm+1 + c†

m+1cm) . (3.13)

Thus, despite the non-local nature of the Jordan-Wigner transformation, (3.13)
is a local fermionic Hamiltonian that shares the same structure that the spin
Hamiltonian. However, when the spin Hamiltonian (3.3) describes a closed spin
chain, the non-locality of the transformation makes a big difference. The reason is
that the product of the localized spins at the ends of the chain gives

σ−Nσ
+
1 = (−1)Nf+1c†

Nc1, (3.14)

where we have taken into account (3.11). Hence, the fermionic map of (3.3) for
PBC η = 1 is:

HPBC =HOBC − J
2
(−1)Nf+1(c†

Nc1 + h.c). (3.15)

Hence, given that parity is conserved, it is possible to split the Hilbert space
and consider a Hamiltonian in each parity sector. They exclusively differ on the
boundary conditions applied to the fermionic system

Nf even⇒HP=1 =HOBC + J
2
(c†
Nc1 + h.c) ⇒ APBC cN+1 = −c1,

Nf odd⇒HP=−1 =HOBC − J
2
(c†
Nc1 + h.c) ⇒ PBC cN+1 = c1.

(3.16)

Hence, each sector is determined by the same Hamiltonian but the Fock spaces
are different due to the boundary conditions imposed. Let us see it more in detail.

3.1.1 Periodic boundary conditions

To diagonalize the Hamiltonians (3.16) we can exploit translational invariance.
This is done defining the discrete Fourier transform of the fermionic operators cm

dk =
1√
N
∑
m

e−ikmcm. (3.17)

The set of allowed values of the allowed values of the momentum ΩP is determined
by the boundary conditions (3.16):

Ω−1 = {k ∣ k =
2mπ

N
}

Ω1 = {k ∣ k =
(2m − 1)π

N
}

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

with
m = −L + 1, . . . , L, if N = 2L,

m = −L, . . . , L, if N = 2L + 1.
(3.18)

Inverting (3.17) and plugging it in (3.16) yields:

HP = −J ∑
k∈ΩP

cos(k)d†
kdk, (3.19)
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Figure 3.1: Dispersion relation ε(k) = −J cosk with J = 1 of the two parity sectors
given by (3.18) for chain (left) N = 20 and (right) N = 22. P = 1 imposes antiperiodic
boundary conditions on the fermionic chain and P = −1 periodic ones. The solid
line with circled points corresponds to the ground state of the XX chain.

The states of each fermionic Hamiltonian are constructed by filling the Fock
vacua.

∣ψ⟩P = ∏
k∈KP

d†
k ∣0⟩P , (3.20)

where KP ⊆ ΩP is a set of allowed values of momenta. In particular, the ground
state of each HP is obtained by filling all the negative energy levels (see Table 3.1).
Since the ground state of an even XX chain has zero magnetization, it follows from
(3.11) that NF = N/2. Then, if N = 4n, the ground state must be sought in the P = 1

sector that imposes antiperiodic boundary conditions (see (3.16)) on the fermionic
Hamiltonian whereas the ground state of a N = 4n + 2 spin chain must be sought
in the P = −1 sector. Observe that the Fermi momentum for even chains is:

kF ≡ π
Nf

N
= π

2
. (3.21)

N KP=−1 {k ∣ 2mπ
N } KP=1 {k ∣ (2m−1)π

N }
4n m ∈ [−n,n] m ∈ [−n + 1, n]

4n + 2 m ∈ [−n,n] m ∈ [−n,n + 1]

Table 3.1: The negative energy levels depend on the parity of the total number of
fermions N and the boundary conditions. The coloured cells denote the subspace
where the ground state of the XX spin chain must be sought.

Notice that the dimension of the Hilbert space of the XX spin chain is 2N and
that the dimension of the fermionic Hilbert space of each parity sector is also 2N .
As a consequence, there are 2N+1 fermionic states meaning that half of them are
redundant. Therefore, from each parity sector one has to keep only those 2N−1

fermionic states with the right parity.
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3.1.2 Open boundary conditions

The OBC chain is not translationally invariant due to the existence of bound-
aries. Nevertheless, the dispersion relation of HOBC (3.13) can be obtained by
diagonalizing the hopping matrix (also known as first-quantized Hamiltonian)

− J
2

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

0 1

1 0 1

⋱ ⋱ ⋱
1 0 1

1 0

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

φ1

φ2

⋮
φN−1

φN

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

= ε

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

φ1

φ2

⋮
φN−1

φN

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

⇒

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−J2φ2 = εφ1

−J2 (φl−1 + φl+1) = εφl, l∈[2,N−1]

−J2φN−1 = εφN ,

(3.22)
that it is diagonalized using the ansatz

φl = Aeikl +Be−ikl. (3.23)

It follows that ε(k) = −J cos(k), and imposing the OBC conditions φ0 = φN+1 = 0

we obtain the following set of allowed momenta:

Ω0 = {k ∣ k =
mπ

N + 1
, m ∈ [1,N]}, (3.24)

where we have assigned P = 0 to the OBC case in order to systematize notation.
Hence, we can write the Hamiltonian (3.13) as

HOBC = −J ∑
k∈Ω0

cos(k)b†
kbk, (3.25)

where

bk =
√

2

N + 1

N

∑
l=1

sin (kl) cl. (3.26)

Notice that the fermions {bk} satisfy the anticommutation relations (3.10) and
that they define the same Fock vacuum bk ∣0⟩ = cm ∣0⟩ = 0. As in the PBC case, the
ground state is obtained by filling the negative energy levels as in (3.20)

K0 = {k ∈ Ω0 ∣ m ∈ [1, L]}, if N = 2L. (3.27)

If the system has an odd number of spins, there is a zero mode, that is a state
with zero energy corresponding to the momentum k = π/2 (m = L + 1). As a
consequence, the ground state is degenerate since it is possible to define a ground
state with and without the zero mode. Indeed, observe that the definition of the
Fermi momentum kF ≡ πNF

N leads to kF = π/2 if N = 2L but there is an ambiguity
in its definition for odd systems N = 2L + 1 since NF = L or NF = L + 1. As a
consequence,

kF =
π

2
− π

2N
, or kF =

π

2
+ π
N
. (3.28)

Note that in the thermodynamic limit N →∞ and kF = π/2 for both parities and
both boundary conditions.
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3.1.3 The continuum limit

From what we have seen above it is clear that in the thermodynamic limit N →∞
the XX model is gapless for both PBC and OBC cases since it is possible to add
fermions with an energy arbitrarily close to the Fermi level kF = π/2. Indeed we
shall see that the model is described by a CFT with central charge c = 1. To do so,
we shall restrict ourselves to the region near the Fermi level, so we shall consider:

cm√
a
≈ eikF x/aψL(x) + e−ikF x/aψR(x), (3.29)

where we define the coordinate x =ma, where a is the lattice spacing and ψL(x)
and ψR(x) describe left and right moving Dirac fermionic fields which vary slowly
on the lattice scale, while the terms e±ikF x/a = im carry the rapid oscillations.
Plugging the above parametrization in (3.13) and taking into account that the sum
of the highly oscillating crossed term can be neglected2, and taking in addition the
usual continuum limit a→ 0, N →∞with N = Na kept constant yields:

H ≈ − iJa
2 ∫

N

0
dx [(∂xψR)†ψR − (∂xψL)†ψL + ψ†

L∂xψL − ψ†
R∂xψR] , (3.30)

where ψL(R)(x + a) = ψL(R)(x) + a∂xψL(R)(x) + o(a2). Integrating by parts,

H ≈ −iaJ ∫
N

0
dx (ψ†

L∂xψL − ψ†
R∂xψR) = −vF ∫

N

0
dxΨ†(x)σ3∂xΨ(x), (3.31)

where vF = Ja is the Fermi velocity, σ3 ≡ σz, and we have defined the spinor

Ψ(x) = (ψL(x)
ψR(x)

) . (3.32)

The expression (3.31) is called the masless Dirac Hamiltonian and it describes
a massless Dirac fermion field theory with ”speed of light“ given by vF . The
equations of motion are:

∂tΨ(x, t) = −vFσ3∂xΨ(x, t). (3.33)

Defining Ψ(x, t) ≡ Ψ(x)eiEt and plugging into (3.33) yields

ψL(x) = ALei
E
vF
x
,

ψR(x) = ARe−i
E
vF
x
.

(3.34)

Imposing the boundary conditions cN+1 = c0 = 0 with (3.29) yields

e
i2 E
vF
Na = (−1)N+1 ⇒

⎧⎪⎪⎨⎪⎪⎩

E = (m+1/2)πJ
N , m = 0,±1, . . . if N = 2L,

E = mπJ
N , m = 0,±1, . . . if N = 2L + 1

. (3.35)

2If we would instead consider J = 1 + (−1)mδ, the oscillation is canceled, so the right and left
moving fermions are coupled originating a mass m∝ δ in the theory.
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It is convenient for us to rescale time and to perform a Wick rotation t = −ivFx0

and x = x1. The equations of motion (3.33) can thus be written as

(i∂x0 + σ3∂x1)Ψ(x0, x1) = 0. (3.36)

We can write them in terms of the complex coordinates z = x1 + ix0 and z̄ = x1 − ix0:

∂zψL(z, z̄) = 0 ⇒ ψL(z, z̄) = ψL(z̄)
∂z̄ψR(z, z̄) = 0 ⇒ ψR(z, z̄) = ψR(z).

(3.37)

It can be shown that the holomorphic part of the stress energy tensor is

TR(z) = −
1

2
∶ ψ†

R(z)∂zψR(z) − ∂zψ†
R(z)ψR(z) ∶, (3.38)

where ∶∶ denotes the normal ordered product. The central charge c of the conformal
field theory appears in the operator product expansion (OPE) of the stress energy
tensor:

T (z1)T (z2) =
c/2

(z1 − z2)4
+ 2

(z1 − z2)2
T (z2) +

1

z1 − z2

∂T (z2), (3.39)

Then, taking in account that ⟨T (z)⟩ = 0 we have that the two-point correlator is

⟨T (z1)T (z2)⟩ =
c/2

(z1 − z2)4
. (3.40)

It is possible to show that c = 1 by computing ⟨T (z1)T (z2)⟩ with (3.38), using
Wick’s theorem and the two-point correlation functions

⟨ψR(z1)ψ†
R(z2)⟩ =

1

z1 − z2

, ⟨ψL(z̄1)ψ†
L(z̄2)⟩ =

1

z̄1 − z̄2

.

Due to the constraints imposed by conformal invariance, it is possible to obtain
a large amount of information from the system with CFT. In particular, we can
obtain the universal properties of entanglement entropy.

3.2 Entanglement entropy

In this section we shall discuss the entanglement entropy of the XX model in detail.
As we have shown in Chapter 2 the computation of the entanglement entropy
requires finding the singular values of the reduced density matrix. In the spin
chain case, this means that ρA scales as 2NA . We face then the same computational
difficulty that we encountered when diagonalizing the Hamiltonian of a spin chain.
A crucial simplification was found by Peschel (2003). He showed that the reduced
density matrices of free fermionic and bosonic states can be determined from their
two-point correlation function. Since the fermionic mapping of the XX model
yields a free fermion Hamiltonian (3.13), we can follow this strategy to compute
the entanglement entropy. Thus, in the next subsection we shall explain in detail
this procedure that has been employed to obtain all the numerical data appearing
in this thesis. Next, we shall describe the features of the entanglement entropy
that are fixed by conformal invariance, and finally the non-universal contributions
whose analytical expression is known.
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3.2.1 Entanglement entropy in free fermion systems

A fermionic or bosonic state is completely determined by the expectation values
of all the admissible operators acting on it. Thus, knowing the n point-functions
is equivalent to knowing all the expectation values and thus characterizing com-
pletely the state. Moreover, using Wick’s theorem, the n-point functions can be
written in terms of the two-point correlator. For instance

⟨c†
mc

†
nckcl⟩ = ⟨c†

mcl⟩ ⟨c†
nck⟩ − ⟨c†

mck⟩ ⟨c†
ncl⟩ . (3.41)

Then, the state is known as a Gaussian state as it is fully characterized by expecta-
tion values of quadratic operators. All the two-point correlators Cij = ⟨c†

i cj⟩ can be
arranged in the correlation matrix

C =
⎛
⎜⎜
⎝

⟨c†
1c1⟩ ⋯ ⟨c†

1cN⟩
⋮ ⋱ ⋮

⟨c†
Nc1⟩ ⋯ ⟨c†

NcN⟩

⎞
⎟⎟
⎠
, (3.42)

which completely characterizes the state3. The correlation matrix associated to the
block A that is denoted by CA is obtained by the corresponding restriction of C:

CA = {Cmn ∣m,n ∈ A}. (3.43)

The correlation matrix of the XX model is obtained with the fermionic operators
(3.17) and (3.26):

Cij = ⟨c†
i cj⟩ =

1

N
∑
k∈KP

eik(i−j), PBC (3.44)

Cij = ⟨c†
i cj⟩ =

2

N + 1
∑
k∈K0

sin(ki) sin(kj), OBC, (3.45)

where KP with P = ±1,0 are the corresponding sets of allowed momenta that
define the ground states for PBC (see Table 3.1) and for OBC (3.27). If we consider
the thermodynamic limit N →∞ we can approximate the sums above by integrals
and find:

Cij =
sin(kF (i − j))

π(i − j) , PBC (3.46)

Cij =
sin(kF (i − j))

π(i − j) − sin(kF (i + j))
π(i + j) , OBC. (3.47)

Since the state is Gaussian, the eigenvalues of CA must be related to the eigen-
values of ρA. To see it, let us first diagonalize CA:

NA

∑
m,n=1

U∗mk(CA)mnUnl = νklδkl, (3.48)

3For free fermion systems that do not conserve the number of particles, the correlator Fij = ⟨c†
ic

†
j⟩

must also be considered.
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Figure 3.2: Left. Color plot of the correlation matrix C of a closed chain of N = 20.
It can be seen that it is a Toeplitz matrix since all the entries along each diagonal
take the same value. Right. Matrix elements C1n for all values of n. In pale colors
we plot the asymptotic result (3.47),(3.47). The discrepancies are due to the finite
size.

where U is a unitary matrix. Thus, the two-point correlator of a new set of fermions
{fk}NAk=1 with

fk =
NA

∑
m=1

Umkck, (3.49)

is diagonal ⟨f †
kfl⟩ = νkδkl. Using the definition of the density matrix, ⟨O⟩ = tr(Oρ)

(2.4):
⟨f †
kfl⟩ = tr(f †

kflρA) = νkδkl (3.50)

The above equation implies that ρA = %1 ⊗ ⋅ ⋅ ⋅ ⊗ %NA in the chosen basis, so we can
focus on the eigenvalues of

%k = (
αk βk
β∗k 1 − αk

) .

Expressing the fermionic operators in its matrix representation

fk = (
0 0

1 0
) , f †

k = (
0 1

0 0
) , (3.51)

and imposing ⟨fk⟩ = 0 yields tr{fkρA} = βk = 0. Moreover, computing (3.50) leads
to αk = νk. So we can write

ρA =
NA

⊗
k=1

%k =
NA

⊗
k=1
(νk 0

0 1 − νk
) (3.52)

Then, it follows that

trρnA =
NA

∏
k=1

tr%nk =
NA

∏
k=1
(νnk + (1 − νk)n) , (3.53)
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so the Rényi entropies (2.18) are

Sn(A) =
1

1 − n
NA

∑
k=1

log (νnk + (1 − νk)n) , (3.54)

and the Von Neumann (2.19) is:

S(A) = −
NA

∑
k=1
(νk log νk + (1 − νk) log(1 − νk)) . (3.55)

The above expressions allow to compute numerically the Rényi entropies with
low computational cost. We can summarize the steps:

1. Compute the correlation matrix CA of the subsystem A.

2. Diagonalize CA.

3. Use (3.54) and (3.55).

This procedure can be also applied to spin chains by means of the Jordan-
Wigner transformation. However, it is only valid for connected blocks. For disjoint
blocks, the spin density matrix is different from that of fermions. This is due to the
non-locality of the transformation (3.6).

3.2.2 Universal properties of entanglement entropy

Let us consider an infinite fermionic chain. We are interested in computing the
Rényi entropies (2.18) of a subsystem A = [u, v] of length ` = ∣u−v∣ delimited by the
points x = u and x = v that are called entangling points as it can be seen in Fig.3.3

Figure 3.3: The block or subsystem A = [u, v] of an infinite chain.

Thanks to the conformal invariance, is possible to get insight into the entan-
glement even without diagonalizing explicitly the reduced density matrix ρA as
it was shown by Holzhey et al. (1994) and later by Calabrese and Cardy (2004).
Conformal field theory can provide the universal behaviour of the Rényi entropies
Sn(ρA) (2.18) but the non-universal one cannot be captured by CFT and, in general,
it cannot be neglected. The starting point is to write the density matrix of a thermal
state with inverse temperature β

ρ = e
−βH

Z
, Z = tr e−βH , (3.56)
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as a Euclidean path integral on the imaginary time interval (0, β). The constant Z
corresponds to the partition function that ensures the correct normalization and
it corresponds to a cylinder of circumference β obtained by sewing together the
edges along τ = 0 and τ = β. Thus, the reduced density matrix (2.5) corresponds to
the same cylinder but with an open cut in A. Next we consider n copies or replicas
(labelled by k = 1, . . . , n) of this cylinder sewed together along the cuts. Hence,
trρn corresponds to sewing the copies k = 1 and k = n together. This construction
defines a path integral denoted by Zn(A) over an n-sheeted Riemmann surface
Rn. Then trρnA = Zn(A)/Z1(A) and the Rényi entropies (2.18) are given by

Sn(A) =
1

1 − n log(Zn(A)) +
n

1 + n logZ1(A). (3.57)

Furthermore, it can be shown that

Zn(A)∝ ⟨Tn(u,0)T̃n(v,0)⟩ , (3.58)

where Tn(u,0) (T̃n(v,0)) is a local field called twist field. Hence, the Rényi entropies
take the form:

Sn(A) =
1

1 − n log(⟨Tn(u,0)T̃n(v,0)⟩) + c′n. (3.59)

So far we have not used yet the conformal invariance. It can be shown that the
twist fields are primary fields. They transform under an arbitrary conformal
transformation ω = f(z), ω̄ = f̄(z̄) as

Tn(z, z̄) = (
df

dz
)

∆n

(df̄
dz̄
)

∆̄n

T ′n(ω, ω̄), (3.60)

with
∆n = ∆̄n =

c

24
(n − 1

n
) .

Furthermore, the two-point correlator of primary fields is completely fixed by
conformal invariance:

⟨Tn(u,0)T̃n(v,0)⟩ = (
∣u − v∣
a
)
−2(∆n+∆̄n)

= ( `
a
)
− c

6
(n−1/n)

, (3.61)

where the lattice spacing a acts as an UV cut-off that makes the final result dimen-
sionless and it corresponds to the normalization of Z1(A). Finally, plugging (3.61)
into (3.59) leads to

Sn(A) = Sn(`) =
1

1 − n log ( `
a
)
− c

6
(n−1/n)

+ c′n =
c

6
(1 + 1

n
) log ( `

a
) + c′n, (3.62)

Using (2.19) we obtain the entanglement entropy:

S(`) = c
3

log
`

a
+ c′1, (3.63)

which is the expression found for the first time by Holzhey et al. (1994). By
considering different conformal mappings Calabrese and Cardy (2004) were able
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to compute the correlators of the twist fields associated to other geometries. For
instance, the entanglement entropy of a thermal state in an infinite long strip is

S(`) = c
3

log ( β
πa

sinh(π`
β
)) + c′1, (3.64)

that interpolates from (3.62) for ` ≪ β to the thermal (extensive) entropy S(`) =
cπ`/(3β) for `≫ β. The Rényi entropies associated with subsystem A of length `
in a finite system of length N with periodic boundary conditions is

Sn(`) =
c

6
(1 + 1

n
) log (N

πa
sin(π`

N
)) + c′n. (3.65)

The quantity inside the logarithm

D(`,N)
a

= N
πa

sin(π`
N
) , (3.66)

is the chord length and tends to ` for N ≫ 1, recovering thus the result for the
infinite system (3.62).

Figure 3.4: The subsystem A = [0, `] of a finite chain of lenght N .

The computation of the Rényi entropies in systems with open boundary condi-
tions is similar. Let us consider an open finite system of length N and a subsystem
A = [0, `] of length `. Observe that in this case there is only one entangling point
v = ` since u = 0 corresponds to the physical boundary of the system, as it can
be seen in Fig. 3.4. As a consequence, the computation of the partition function
Zn(A) over Rn is related to the correlator ⟨Tn(`,0)⟩. It can be shown (Calabrese
and Cardy 2004) that

Sn(`) =
c

12
(1 + 1

n
) log (2N

πa
sin(π`

N
)) + c̃′n. (3.67)

The non-universal constants of (3.67) and (3.65) are not the same, but they are
related by the so called boundary entropy proposed by Affleck and Ludwig (1991)

log g = c̃′n − cn/2 (3.68)

which is a universal magnitude related to the boundary conformal field theory,
which in turn is related to the degeneracy of the ground state. For the XX model
g = 1 (Affleck and Ludwig 1991) and we have that c̃′n = c′n/2 as it can be seen in
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Figure 3.5: (Left) The difference Sn(L,2L) − SCFT
n (L,2L) converges to a different

constant for PBC and OBC. Notice that for the entanglement entropy case n = 1,
c′1 ≈ 0.72 and c̃′1 ≈ 0.36 which is in agreement with the relation of these constants
fixed by the universal boundary entropy (3.68) with g = 1 c̃′n = c

′
n/2. (Right) Reading

the asymptotic value of this constant and adding it to the conformal prediction
(3.67) leads to the solid lines. Observe that the parity oscillations (pale color lines)
of the Rényi entropies are not captured by (3.67).

Fig. 3.5 left. Thus, the part of the entanglement entropy that is completely fixed by
conformal invariance can be written as

SCFT
n (`) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

c
6
(1 + 1

n
) log (D(`,N)a ) (closed chain),

c
12
(1 + 1

n
) log (2D(`,N)

a ) (open chain).
(3.69)

In Fig. 3.5 (left) we plot the difference between the Rényi entropies obtained by
numerical methods – that we shall explain below – and the conformal prediction
Sn(L,2L) − SCFT

n (L,2L) for different values of N = 2L. As it can be seen the
outcome converges to a constant. Let us identify then these numerical values of
the OBC case with c̃′n. As it can be seen in Fig. 3.5 (right), the expression (3.67)
captures satisfactorily the leading behaviour but there is an oscillating term whose
amplitude increases with the Rényi order n that it is not captured by the CFT and
the additive constant, meaning that (3.67) is incomplete.

3.2.3 Finite-size corrections to entanglement entropy

Jin and Korepin (2004) showed that the entanglement entropy can be written as a
contour integration in the complex plane with poles at νk

S(A) = 1

2πi
lim
ε→0+

NA

∑
k=1
∮
γ

fn(λ + 2ε+)
λ − νk

dλ, (3.70)

where γ is a closed circuit that surround the poles νk ∈ [0,1], and the shift 2ε is
used for avoiding the logarithmic cuts in

f1(x) = −x log(x) − (1 − x) log(x), or fn>1(x) =
1

1 + n log (xn + (1 − x)n)) .
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Observe that
NA

∑
k=1

1

λ − νk
= d

dλ
(
NA

∏
k=1

log(λ − νk)) =
d

dλ
(det (λ1 −CA)) =

d

dλ
(DNA(λ)) . (3.71)

Then we can write (3.70) in terms of the determinant of the resolvent of CA

S(A) = 1

2πi
lim
ε→0+∮γ fn(λ + 2ε) d

dλ
(DNA(λ)) , (3.72)

The problem of computing the Rényi entropies is therefore mapped to com-
puting a determinant DNA(λ). Observe that the correlation matrix of the PBC
case (3.47) verifies that Ci,j = Ci+1,j+1 with i < j. This property defines the class
of Toeplitz matrices which has been extensively studied in physics (Deift et al.
2013). Jin and Korepin (2004) used an important result on Toeplitz determinants
called the Fisher-Hartwig conjecture (Fisher and Hartwig 1969) to evaluate the
asymptotic behaviour of the entanglement entropy (NA = `). They found the
expression

S(`) = 1

3
log(`) + 1

3
log 2 +Υ1, (3.73)

with

Υ1 = −∫
∞

0
dt(e

−t

3t
+ 1

t sinh2(t/2)
− cosh(t/2)

2 sinh3(t/2)
) ≈ 0.49502.

Comparing expression (3.73) with the result obtained with CFT (3.63) leads us
to identify the non-universal constant c′1 = 1/3 log 2 +Υ1 ≈ 0.726 which coincides
with the blue line of Fig. 3.5. Jin and Korepin provided also expressions for Rényi
entropies with n > 1. For instance

Υ2 ≈ 0.40405, Υ3 ≈ 0.366365, Υ4 ≈ 0.346061. (3.74)

Observe that the oscillating behaviour of the Rényi entropies of Fig.3.5 is not
captured by the above result. However, the amplitude of the oscillations increases
with the Rényi parameter n, even blurring the universal behavior given by the CFT.
Cardy and Calabrese (2010) showed that these terms contain more information
about the underlying CFT, so they have been studied and computed for certain
spin chains (Xavier and Alcaraz 2011). In particular, for the infinite XX model –
and in general for infinite Lutinger liquids – Calabrese et al. (2010) proposed that
the oscillations obey a universal scaling law

Sn(`) ≈ SCFT
n (`) + c′n + fn cos(2kF `)∣2` sinkF ∣−pn , (3.75)

where pn = 2K/n is a universal parameter. Here K = 1 is the Luttinger parameter
for the XX model, kF is the Fermi level and fn is a non-universal term which is
known exactly for the XX model:

fn =
2

1 − n (
Γ(1

2 + 1
2n)

Γ(1
2 − 1

2n)
)

2

. (3.76)
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Figure 3.6: Rényi entropies for open chains of N = 120 with kF = π/2 (left) and
N = 121 (right) sites with kF given by (3.28). The dots are data from numerics while
the colored lines are theoretical predictions.

Note that f1 = 0 and there are no oscillating terms in the entanglement entropy of
a closed (or infinite) system. Hence, the full expression for a closed XX chain is:

Sn(`,L) ≈
1

6
(1 + 1

n
) log (D(`,L)

a
)

+Υn +
1

6
(1 + 1

n
) log 2 + fn cos(2kF `)∣2D(`,L) sinkF ∣−2/n,

(3.77)

where D(`,L) is the chord length (3.66). Notice that the universal behavior pre-
dicted by the CFT is expressed in the first row, while the second contains the
non-universal corrections. The constant term proportional to log 2 is usually
absorbed in the logarithm of the first row. It is explicitly detached in order to em-
phasize that it is not fixed by the CFT. Let us mention that the oscillatory behaviour
where obtained by considering a generalized version of Fisher-Hartwig conjecture
(Basor and Tracy 1991). Fagotti et al. (2011) studied the subleading corrections of
the infinite and finite OBC chain by applying also a generalized Fisher-Hartwig
conjecture. However they modified it accordingly to take into account that the
correlation matrix of the OBC case (3.47) is composed by a Toeplitz matrix plus a
Hankel matrix4:

Sn(`,L) ≈
1

12
(1 + 1

n
) log (2D(2` + 1,2(L + 1))

a
∣ sinkF ∣) +

Υn

2
+ 1

12
(1 + 1

n
) log 2

+ fn cos(2kF `)(4D(2` + 1,2(L + 1))∣ sinkF ∣)−1/n,
(3.78)

where kF = π/2 if N = 2L and kF = π/2+ π/(2(N + 1)) if N = 2L+ 1 as we discussed
in (3.28). In this case,

fn =
2

1 − n (
Γ(1

2 + 1
2n)

Γ(1
2 − 1

2n)
) , (3.79)

4A matrix M is a Hankel matrix if Mi,j =Mi+1,j−1 with i < j.
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allowing oscillations for n = 1 as f1 = −1. Notice the good agreement of this
expression with the numerical data in Fig. 3.6. Observe that the chord length of
the above expression considers an effective closed system of length 2(N + 1) that
is composed as the open chain and its mirrored image reflected by the boundaries
plus two additional sites (Fagotti et al. 2011).

3.3 Beyond entanglement entropy

In this section we shall characterize the entanglement properties of the XX model
with the entanglement Hamiltonian, entanglement spectrum and the entanglement
contour.

3.3.1 Entanglement Hamiltonian

In this section we shall consider more in detail the entanglement Hamiltonian
that we introduced in (2.9). The structure of the entanglement Hamiltonian HA
depends on the quantum state and on the subsystemA, so it differs in general from
the physical Hamiltonian H , since HA describes in general an inhomogeneous
system. The complete form of these parameters depends on each state, but there is
a common pattern: the intensity of the couplings increases with the distance to
the entangling points. This behaviour is well captured in the seminal works by
Bisognano and Wichmann (1975, 1976) where they computed HA5 of an infinite
subsystem A embedded in an infinite system described by a relativistic quantum
field theory in arbitrary dimensions. Particularizing for the one-dimensional case
with A = [0,∞)

HA = 2π∫
∞

0
xT00(x)dx, (3.80)

where the time-time component of the energy-momentum tensor T00(x) i.e. the
energy density of the physical system is modulated by a weight function x. The
expression (3.80) is referred as Bisognano-Wichmann theorem. The presence of the
physical Hamiltonian density motivates the interpretation of ρA as a thermal state
(3.56) with an inverse local temperature T (x) = 1/β(x) = 1/x which is referred as
entanglement temperature (Arias et al. 2017; Wong et al. 2013). The entanglement
temperature is thus maximal at the entangling point and decreases as 1/x moving
away from it.

It is possible to extend the Bisognano-Wichmann theorem (3.80) to confor-
mally invariant systems. Cardy and Tonni (2016) computed HA by mapping the
spacetime geometry associated to the Euclidean path integral formulation of ρA
into an annulus described by a complex coordinate w = f(z) for different system

5The work of Bisognano and Wichmann is previous to the proposal of the entanglement
Hamiltonian. It was obtained in the context of modular theory and that is why the entanglement
Hamiltonian is also known as modular Hamiltonian.
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geometries. The reason for choosing an annulus is that the theory is regularized
by removing infinitesimal disks around the entangling points that separate A and
B. Cardy and Tonni found the relation

HA = 2π∫
A
dxβ(x)T00(x), (3.81)

where the weight function β(x) is related to the conformal mapping to the annulus
f(z):

β(x) = 1

f ′(x) . (3.82)

Hence, each geometry requires a different conformal mapping f(z)which leads to
a different β(x). For instance, the weight function associated to a finite subsystem
of length ` with entangling points at 0 and ` of an infinite subsystem (see Fig. 3.3)
is

β(x) = x
`
(` − x), A = [0, `]. (3.83)

The above expression can be extended to a closed finite system of length 2L:

β(x) = D(` − x,2L)D(x,2L)
D(`,2L) , A = [0, `]. (3.84)

where D(x,2L) is the chord length (3.66). Finally, the weight function associated
to a subsystem A = [x0, L] of a finite system of length 2L centered at the origin
[−L,L] with the same boundary conditions at ±L is6:

β(x) = 2L

π

sin (πx2L
) − sin (πx02L

)
cos (πx02L

)
, A = [x0, L] (3.85)

Observe that the above result (3.85) can also be derived from the result of the
closed chain (3.84) with the parametrization x → x − x0 and ` → 2(2L − x0) since
the computation of the open system is equivalent to the computation of the closed
system composed by the original system plus its mirror image reflected by the
boundaries, as we also discussed below (3.78).

As we have mentioned in section 3.2.3, a fermionic state is Gaussian since it is
fully characterized by the expectation values of quadratic operators. Therefore it
must be also the ground state – or a thermal state – of a fermionic Hamiltonian
which is quadratic in the creation and annihiliation operators:

HA = cHc =∑
mn

Hmnc†
mcn. (3.86)

Since ρA = %1 ⊗ ⋅ ⋅ ⋅ ⊗ %NA in the basis of fermions {f}NAk=1 that diagonalizes the
correlation matrix (3.48), HA is diagonal also in terms of these fermions:

HA = −
NA

∑
k=1

εkf
†fk, (3.87)

6Notice that it is the system represented in Fig. 3.4 with different coordinates
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Figure 3.7: First quantized entanglement HamiltonianH (3.86) associated to the
half system of N = 16 fermions. As it can be seen in the left panel, the first neigh-
bours terms are the largest. However, there are non-zero 3th, 5th, etc neighbour
interactions, as it can be seen with logarithmic scale in the right panel.

where {εk}NAk=1 is the single-body entanglement spectrum. Hence, from (3.50) it
follows that

νkδkl = tr(f †
kflρA) = ∏

m≠k
tr(%m) tr(f †

kfk%k)δkl =
e−εk

1 + e−εk δkl. (3.88)

Hence, there is a relation between the eigenvalues of the correlation matrix and
the single-body entanglement spectrum

νk =
1

1 + eεk , εk = log (1 − νk
νk
) , (3.89)

that allows us to compute the entanglement Hamiltonian with the correlation
matrix (3.42) following these steps:

1. Diagonalize CA

U†CAU =Dν . (3.90)

2. Define the matrix
Dε = log(1 −Dν

Dν

) (3.91)

3. Compute the first-quantized Hamiltonian

H =UDεU
† (3.92)

.

Although Bisognano-Wichmann’s theorem is strictly defined for infinite and con-
tinuum systems, some recent works extend its scope to lattice Hamiltonians
(Dalmonte et al. 2018; Giudici et al. 2018). In Fig. 3.7 we show the first quantized
entanglement Hamiltonian H corresponding to the subsystem A = [8,16] of an
open system of N = 16 fermionic sites described by the Hamiltonian (3.13). As it
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Figure 3.8: Couplings β of the effective entanglement Hamiltonian (3.93) of the
half system x0 = 0 of a chain of 2L = 80. The continuous line corresponds to the
analytical result (3.85). The dashed black line is the Bisognano-Wichmann prediction
(3.80).

can be seen in the left panel, the most relevant terms connect sites that are first
neighbors but there are also non-zero long-range terms, in apparent contradic-
tion with Bisognano-Wichmann. Eisler and Peschel (2017) obtained the analytical
form of all couplings (short and long-range) for free fermion systems and then
Eisler et al. (2019) took the continuum limit recovering the Bisognano-Wichmann
prediction.

The obtainment of the first quantized HamiltonianH requires to numerically
distinguish between eigenvalues νk that can be exponentially close to 0 and 1. This
fact poses a very demanding computational task, since it requires a precision of
at least N digits for N sites (Arias et al. 2017; Eisler et al. 2020)7. Tonni et al. (2018)
developed an alternative way of obtaining an effective entanglement Hamiltonian.
As it can be seen in Fig. 3.7 left, the first neighbours interactions are the strongest
ones. The result of Bisognano-Wichmann ensures that if the physical Hamiltonian
involves exclusively first-neighbor interactions, the entanglement Hamiltonian
must present the same structure. These facts motivates the ansatz

HA = c†
H(β)c =

NA

∑
m=1

βm (c†
mcm+1 + c†

m+1cm) . (3.93)

The set of couplings β that defines the entanglement Hamiltonian is found mini-
mizing the norm

∣∣CA −CA(β)∣∣ (3.94)

using Powell’s method (Powell 1964), where

CA(β) =U†(β)Dν(β)U(β).
7Note that the computation of the entanglement entropy does not require this high-precision

numerics since the eigenvalues close to 0 and 1 contribute minimally to it.
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Figure 3.9: Entanglement spectrum {εk} from half-chain subsystems of lengthNA =

L. Observe that the dispersion relation is not linear, but the curvature decreases
with the size, as expected from the asymptotic result (3.97).

The matrix Dν(β) is obtained from (3.91) and U(β) is the unitary matrix that
diagonalizesH(β) (3.92). In Fig. 3.8 we present the couplings β that correspond
to the half chain subsystem of a chain of N = 40 and the prediction (3.85).

3.3.2 Entanglement spectrum

The full entanglement spectrum (2.10) can be obtained from the spectrum of
the single-body entanglement Hamiltonian, which we may call the single-body
entanglement spectrum.

E({nj}) =∑ εknk + r0 (3.95)

where r0 is a constant that ensures that trρA = 1, and each Ej is specified by
the set {nj} of occupied single-body levels. The term entanglement spectrum was
coined by Li and Haldane (2008) and they suggested that it contains more physical
information than the entanglement entropy. Indeed, in some cases, its low part
can be regarded as the energy spectrum of a boundary CFT (Läuchli 2013) and
Pollmann et al. (2010) showed that it can be used to detect of symmetry protected
topological phases. We shall use this result in Chapter 6. It is worth to say that
in this thesis we work exclusively with the single-body entanglement spectrum,
so we shall refer to it as entanglement spectrum. Peschel (2004) showed using
CFT arguments that the entanglement spectrum of a subsystem of length ` of an
infinite chain of free fermions described by (3.13) is equispaced:

εk =
π2

log `/ak, k = ±1

2
,±3

2
, . . . (3.96)

Hence, the first gap ∆1 = εk+1 − εk is

∆1 =
π2

log `/a. (3.97)
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Cardy and Tonni (2016) extended this result for other geometries with the formal-
ism developed for computing the entanglement Hamiltonian finding

∆1 ≈
2π2

log 4L
πa cos πx2L

, x ∈ A = [x0, L] (3.98)

for an open finite chain defined in the interval [−L,L] with the same boundary
conditions. Observe that we recover (3.97) by considering the half-chain block
x0 = 0.

However, the above behavior (3.97) is only expected when both ` and log ` are
large. If this is not the case, the eigenvalues vary as

εk =
π2

log ` + bk
k, k = ±1

2
,±3

2
, . . .

rather than (3.96). As a consequence, the dispersion relation of εk shows some
curvature – as it can be seen in Fig. 3.9 – for N ∼ O(103) and (3.97) must be
modified with sub-leading corrections

∆1 =
π2

log γ1`
, (3.99)

where γ ≥ 1.

3.3.3 Entanglement Contour

The Rényi entropies allow us to determine whether a state is entangled or not.
Let us consider a discrete system with N sites and suppose that subsystem A is
entangled Sn(A) > 0. How is the entanglement distributed over the sites m ∈ A?
Do all of them contribute equally? In order to address that question Chen and
Vidal (2014) proposed to define an entanglement contour as

Sn(A) = ∑
m∈A

s
(n)
A (m), (3.100)

although to define its properties it is more useful to define the contour for subre-
gions Ai ⊆ A.

s
(n)
A (Ai) = ∑

m∈Ai
s
(n)
A (m). (3.101)

It is important to emphasize that s(n)A (Ai) describes the entanglement of the region
Ai with B = Ā and it does not provide information about the entanglement of Ai
with the rest of A. Chen and Vidal proposed five requierements that the contour
function must verify

1. Positivity: s(n)A (Ai) ≥ 0.

2. Normalization: s(n)A (Ai → A) = Sn(A).

3. Upper bound: s(n)A (Ai) ≤ Sn(Ai)
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Figure 3.10: Entanglement contour s(1)A (x) where A corresponds to the half-chain
block of a system of N = 120. The data-points have been obtained with (3.102) and
the line is the prediction (3.105). Of course, the oscillations are not captured with
(3.105) since they are subleading corrections.

4. Correct behavior under symmetries of the system: Given a symmetry T such
that T A = A′ and T Ai = A′i then s(n)A (Ai) = s

(n)
A′ (A′i).

5. Correct behavior under unitaries: s(n)A (Ai)must be invariant under an uni-
tary that acts on Ai or in B.

These five conditions do not uniquely define a contour function. However, Wen
(2020) added a new condition that claimed to lead to a univocal definition of the
contour.

6. It must hold that s(n)A (Ai) = s
(n)
Āi
(B). where Āi is the complementary of Ai,

Chen and Vidal (2014) proposed a contour function for free fermions that
verifies all of the requisites. It is a weighted average of the eigenstates of the
correlation matrix (and therefore of the entanglement Hamiltonian)

s
(n)
A =

1

1 − n
NA

∑
k=1
∣Umk∣2 log (νnk + (1 − νk)n) , m ∈ A, (3.102)

where Umk is an element of the unitary matrix U that diagonalizes the correlation
matrix (3.48). From (3.100) we can write a continuous version of the entanglement
contour.

Sn(A) = ∫ s
(n)
A (x)dx (3.103)

Coser et al. (2017) proposed a candidate for the entanglement contour for the
conformal systems

s
(n)
A (x) =

c

12
(1 + 1

n
) 1

β(x) +
cn
`
. (3.104)
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Hence, the entanglement contour is proportional to the inverse of the weight
function – i.e. entanglement temperature T (x) = 1/β(x) – of the entanglement
Hamiltonian (3.82). Therefore, the contour of the subsystem A = [x0, L] of the
chain [−L,L] is given by the inverse of (3.85)

s
(n)
A (x) ≈

cπ

24L
(1 + 1

n
)

cos (πx02L
)

sin (πx2L
) − sin (πx02L

)
. (3.105)

In Fig. 3.10 we present the entanglement contour corresponding to the half-chain
block (A = [0,60]). Observe that the sites that are close to the entangling point
contribute more to the entanglement, as expected from Bisognano-Wichmann.
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Appendices

3.A Jordan-Wigner transformation

In this appendix we provide a more detailed explanation of the Jordan-Wigner (JW)
transformation. Let us start by pointing out that the commutation relations of two
spin operators (3.9) is another spin operator. On the contrary, the commutation
(anticommutation) relations of bosons (fermions) are numbers (0 or 1). Therefore,
it seems advantageous to map a spin chain to a bosonic or fermionic chain. This
process is known as bosonization or fermionization respectively.

A priori, bosonization seems more convenient since both bosons and spins
have commutation relations like spins. However, the Fock space associated with
a site can accommodate an arbitrary number of bosons. This does not make
sense in the spin language since a spin 1/2 has only two allowed states. To
solve this inconsistency, one must impose an infinite repulsion between bosons
(hard-core boson approximation) which makes the problem very difficult. Thus,
fermionization is more advantageous8, since the Pauli exclusion principle imposes
what we need.

As we have said, the Hilbert space of the spin 1/2 and a spinless fermion c

satisfying {c, c†} = 1 have the same dimension. We can make the identification
∣↓⟩ = ∣1⟩ and ∣↑⟩ = ∣0⟩ where

c ∣0⟩ = 0, c† ∣0⟩ = ∣1⟩ , (3.A.1)

The parallelism in the eigenvalues of Sz and the number operator n = c†c leads to
define

σz = 1 − 2c†c, (3.A.2)

and also σ− = c† and σ+ = c. However, this mapping is not valid for more than one
spin. The reason is that spin ladder operators at different positions commute while
fermionic operators anticommute. The transformation derived by Jordan and

8It turns out that bosonization is applied to convert interacting systems of fermions in (1+1)
dimensions to a system of massless, non-interacting bosons.
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Wigner (1928) solves this inconsistency by adding a phase to the transformation:

σ−m = exp{−iπ
m−1

∑
k=1

c†
kck}c†

m = (−1)Nm−1c†
m

σ+m = exp{iπ
m−1

∑
k=1

c†
kck}cm = (−1)Nm−1cm (3.A.3)

σzm = 1 − 2c†
mcm.

We see that the phase depends on the total number of fermions Nm−1 = ∑m−1
k=1 nk

placed at the left of the site m. Taking in account that (−1)Nm−1 commutes with a
fermionic operator on site m, that c†

m(−1)nm = c†
m, and that9 cm(−1)nm = −cm, the

commutation relations of the spins are mapped into anticommutation relations:

{c†
m, cm′} = δmm′ , {cm, cm′} = {c†

m, c
†
m′} = 0. (3.A.4)

For what follows it will be useful to compute the nearest neighbors spin-spin
terms:

σ−mσ
+
m+1 = c†

m(−1)nmcm+1 = c†
mcm+1 (3.A.5)

σ+mσ
−
m+1 = cm(−1)nmc†

m+1 = −cmc†
m+1 (3.A.6)

σ−mσ
−
m+1 = c†

m(−1)nmc†
m+1 = c†

mc
†
m+1 (3.A.7)

σ+mσ
+
m+1 = cm(−1)nmcm+1 = −cmcm+1, (3.A.8)

Let us discuss the mapping of the boundary conditions of the spin system to the
fermionic chain. The periodic boundary conditions (PBC) are common SN+1 = S1

for the spin operators. If we impose them in the fermionic chain

σ−Nσ
+
1 = (−1)NN−1c†

Nc1 = (−1)NN (−1)nN c†
Nc1 = −(−1)NN c†

Nc1,

σ−Nσ
−
1 = (−1)NN−1c†

Nc
†
1 = (−1)NN (−1)nN c†

Nc
†
1 = −(−1)NN c†

Nc
†
1, (3.A.9)

we see that the kind of boundary condition depends on the number of fermions
nf = NN , namely antiperiodic boundary conditions (ABC) if nf is even and periodic
boundary conditions (PBC) if nf is odd.

To summarize, thanks to the JW transformation it is possible to map the spin
chain into a spinless fermion chain. It is, therefore, a different but equivalent
physical system. Its usefulness is manifest if the fermionic Hamiltonian has no
interaction term (free fermion Hamiltonian) as one has to diagonalize at most a
2N × 2N matrix instead of a 2N × 2N of the spin Hamiltonian.

9The term c†
m(−1)nm = c†

m because c†
mcm must be 0, as it acts before c†

m. With the same reasoning,
we have that cm(−1)nm = −cm
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Chapter 4

Entanglement in inhomogeneous
spin chains. The rainbow state

In the previous chapter, we have studied the entanglement properties of the
ground state of the homogeneous XX spin chain. In the present chapter, we shall
do the same with the inhomogeneous XX spin chain. The inhomogeneous models
that we shall consider are obtained by a deformation of the critical models for
which the entanglement entropy violates the area law as it scales logarithmically
(Calabrese and Cardy 2004; Latorre et al. 2003) as we discussed in Chapter 1.
The effect of the lack of homogeneity may be, for some models, to increase this
violation that becomes linear in the size of the blocks, like a thermal entropy. This
mechanism has a geometrical interpretation related to the underlying conformal
field, according to which the inhomogeneity may correspond to a curvature of
spacetime (Rodríguez-Laguna et al. 2017; Tonni et al. 2018).

Let us consider the inhomogeneous XX spin chain whose Hamiltonian is given
by

H = −
N−1

∑
m=1

Jm(h)
4
(σxmσxm+1 + σymσym+1) − η

JN(h)
4
(σxNσx1 + σyNσ

y
1) , (4.1)

where η = 0 (η = 1) sets open (periodic) boundary conditions. Notice that the
couplings Jm(h) vary with the lattice position and that they depend on a parameter
h ≥ 0 that we shall call the inhomogeneity parameter. We impose that

Jm(0) = J, ∀m, (4.2)

recovering thus the homogeneous Hamiltonian (3.2). We can write (4.1) in terms
of spinless fermions by means of the Jordan-Wigner transformation (3.6):

H = −
N−1

∑
m=1

Jm(h)
2
(c†
mcm+1 + c†

m+1cm) − η(−1)Nf+1JN(h)
2
(c†
Nc1 + c†

1cN) ,

(4.3)

where we should recall that Nf is the total number of fermions present in the
fermionic chain. Observe that, since the parity operator (3.11) commutes with
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the above Hamiltonian, the discussion that we made in Section 3.1.1 about the
treatment of the homogeneous PBC case applies also here albeit there is no trans-
lational invariance symmetry and the analysis in Fourier space does not simplify
the problem. From now on we will restrict our attention to the open case η = 0.

As we anticipated in Chapter 1, it is convenient to distinguish between the
strong inhomogeneity regime h≫ 1 and the weak inhomogeneity regime h≪ 1 as they
require different theoretical approaches. It is worth to say that the numerical
approach is the same for all values of h and we refer to Appendix 4.A.2 for a
detailed explanation regarding the obtainment of the ground state and its asso-
ciated correlation matrix of free fermion Hamiltonians. In the remainder of this
chapter, we shall explain the theoretical approaches for each regime, particulariz-
ing the discussions for the so-called rainbow model that was originally proposed
by Vitagliano et al. (2010) and studied in detail by Ramírez et al. (2015, 2014). It
describes a fermionic chain with N = 2L sites whose Hamiltonian HR is given by
(4.3) with the engineered couplings

Jm(h) = e−h∣m−L∣, m ≠ L, JL(h) = e−
h
2 . (4.4)

Since h > 0, the intensity of the couplings decreases from the center of the chain
toward the edges. Additionally, observe that the above couplings are symmetric
under inversion around the central coupling JL(h), i.e. the system possesses
left-right symmetry. It is then convenient to label the fermions cm from the origin
with m = ±1/2, . . . ,±(L − 1/2)

HR = −
e−

h
2

2

⎛
⎝
c†
−1/2c1/2 +

L−3/2
∑

m=1/2
e−hm (c†

mcm+1 + c†
−(m+1)c−m) + h.c.

⎞
⎠
, (4.5)

where h.c. refers to the Hermitian conjugate. The ground state of the rainbow
model (4.5) is the rainbow state which is of paramount importance for this thesis
dissertation.

4.1 Strong inhomogeneity regime

In this section we shall introduce the strong disorder renormalization group and
apply it to the rainbow model introduced above.

4.1.1 The strong disorder renormalization group

As we have mentioned, the inhomogeneity prevents us from diagonalizing the
Hamiltonian (4.5) with the ansatz (3.23). However, it is possible to obtain the
ground state by implementing a real space renormalization group (see Chapter
1) scheme called the strong disorder renormalization group (SDRG) that allows
us to sequentially decimate the spins that are strongly coupled with the largest
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absolute value Jmax. Although it was designed for solving the antiferromagnetic
Heisenberg spin chain with random couplings by Dasgupta and Ma (1980), it can
be extended to the XX spin chain.

Figure 4.1: The subsystem composed of four sites (spins or fermions) considered
at each step of the SDRG.

Let us consider the inhomogeneous XX spin chain and a subsystem of four
spins (see Fig. 4.1) that involves the largest coupling Jmax and the first neighbors
whose Hamiltonian is

H4 = −Jmax (σ+1σ−2 + σ−1σ+2 ) − Jl (σ+l σ−1 + σ−l σ+1 ) − Jr (σ+2σ−r + σ−2σ+r ) . (4.6)

Let us assume that Jmax ≫ Jl, Jr. The spins coupled by Jmax are strongly correlated
and they form a state

∣ψ0⟩ =
1√
2
(∣+−⟩ + sign(Jmax) ∣−+⟩) , (4.7)

with energy E0 = −∣Jmax∣. Notice that ∣ψ0⟩ corresponds to the SU(2) singlet if
Jmax < 0. Therefore the spins are decoupled from the neighboring spins placed at l
and r. It is possible to show with degenerate (second order) perturbation theory
that the decimation induces an effective Hamiltonian

H(1) = −Jlr(σ+l σ−r + σ−l σ+r ), (4.8)

with
Jlr =

JlJr
Jmax

, (4.9)

Note that Jlr presents the same sign as Jmax and that we have described a single

Figure 4.2: Sites 1 and 2 are detached inducing a coupling between sites l and r.
State (4.7) is represented with a red bond.

step of the SDRG on which the two spins coupled with the largest coupling are
decimated inducing a chain with two spin less, as it can be seen in Fig. 4.2. Hence,
each step k is composed of three actions:
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1. Identify the strongest coupling J(k)max in the chain formed by N −2(k−1) spins
which is described by the Hamiltonian H(k). It should be understood that
the original Hamiltonian corresponds to k = 0, i.e H ≡H(0).

2. Decimate the involved spins by creating a state (4.7).

3. Define a new effective Hamiltonian H(k) which describes a chain with N −2k

spins. H(k) presents the same functional form and the same set of couplings
that H(k−1) with the exception of the removed spins coupled by J(k)max and the
new term (4.8).

Assuming that we can use the SDRG at every step of the process1, we obtain the
ground state of a chain with 2L sites after L iterations. Each further step allows
the formation of states (4.9) that involve spins that are far apart from each other.
The ground state obtained by this process is called a valence bond state. If the
inhomogeneous couplings are positive and obey a given random distribution, the
Hamiltonian (4.1) describes a disordered system and the ground state belongs to
the so-called random singlet phase, which is an example of an infinite randomness
fixed point (Fisher 1995, 1994) and is in close analogy with the fixed critical point
discussed in Chapter 1. However, it presents unique scaling properties 2 (Iglói
and Monthus 2005). Nonetheless, in this thesis we are interested in non-random
inhomogeneities such as (4.4) and we will not treat this kind of phase.

The SDRG can also be applied to free fermionic chains and the procedure that
we have explained for spins is also valid. However, the anticommutation relation
of the fermions induces a change in the sign of the effective coupling

Jlr = −
JlJr
Jmax

. (4.10)

As a consequence, the ground state is a tensor product of both bonding/anti-
bonding operators (b±)†,

∣GS⟩ =
L

∏
k=1
(bηkm,n)† ∣0⟩ , (4.11)

with

(bηkm,n)† =
1√
2
(c†
m + ηkc†

n) , (4.12)

and it follows that the phase ηk = ± depends on the sign of J(k)max.

1We shall discuss in the following chapters situations where the SDRG cannot be applied.
2Whereas the standard energy-length scaling is E ∼ 1/Lz , where z is called the dynamical

critical exponent. A critical point described by a CFT is characterized by z = 1. In turn, the scaling
of the infinite randomness fixed point case is log 1/E ∼ Lψ , where ψ = 1/2 in the case of the random
singlet phase.
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The SDRG applied to the rainbow model

Let us apply the ideas presented in the previous paragraphs to the concrete
example of the rainbow model (4.5). Since h > 0, the strongest coupling is the
central one, J(1)max = J−1/2 = e−h/2, so we decimate the central fermionic sites

(b+− 1
2
, 1
2

)† ∣0⟩ . (4.13)

The effective Hamiltonian is

H
(1)
R = −

e−
h
2

2

⎛
⎝
J−3/2c

†
−3/2c3/2 +

L−3/2
∑

m=3/2
e−hm (c†

mcm+1 + c†
−(m+1)c−m) + h.c.

⎞
⎠
, (4.14)

where J−3/2 = −e−3h/2 follows from (4.10).
In the second step, the strongest coupling is indeed the effective one created

in the previous step J
(2)
max = J−3/2 = −e−3h/2. We thus decimate the sites with an

antibonding operator

(b−− 3
2
, 3
2

)† ∣0⟩ , (4.15)

and

H
(2)
R = −

e−
h
2

2

⎛
⎝
e−2hc†

−5/2c5/2 +
L−3/2
∑

m=5/2
e−hm (c†

mcm+1 + c†
−(m+1)cm) + h.c.

⎞
⎠
. (4.16)

The strongest coupling at each RG step lies at the center of the effective chain, so
the k-th step yields

bηk1
2
−k,− 1

2
+k ∣0⟩ = (c

†
1
2
−k + ηkc

†
− 1

2
+k) ∣0⟩ k = 1, . . . , L. (4.17)

We can now see the reason why (4.5) is called the rainbow Hamiltonian and its
ground state the rainbow state. If we represent each fermionic operator (4.17) by
a bond that links the fermionic sites as in Fig. 4.2, the outcome of the SDRG is a
concentric set of bonds that reminds the shape of a rainbow, as it can be seen in
Fig. 4.3.

Using the left-right symmetry we shall simplify the notation bηk
1/2−k,−1/2+k →

bηk
k−1/2. Hence, particularizing (4.11) to this case yields

∣RS⟩ = (bηL
L− 1

2

)† . . . (b−3
2

)†(b+1
2

)† ∣0⟩ , (4.18)

where ηL = (−1)L+1.
Once we have obtained the ground state of an inhomogeneous chain (4.3),

and in particular the rainbow state (4.18), we shall focus on their entanglement
properties.
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m : −5 −4 −3 −2 −1 0 +1 +2 +3 +4 +5

Figure 4.3: Illustrating the rainbow state, GS of HR given by (4.5) with L = 6, for
h≫ 1. Links are indexed by the integer m. The bonds are established between sites
n and −n for n ∈ {±1/2,⋯,±(L − 1/2)}.

4.1.2 Entanglement in valence bond states

As we discussed in the previous chapter (see Section 3.2.1), the entanglement
entropy can be obtained from the eigenvalues of the correlation matrix associated
to a given block. We refer to Appendix 4.A.1 for a detailed derivation of the
obtaining of the correlation matrix.

However, the computation of the entanglement entropy is particularly simple
for valence bond states. Observe that (4.12) creates a Bell state or maximally
entangled state (Nielsen and Chuang 2010). Hence, the entanglement entropy
associated to cutting a bond is maximal, namely, log 2. As a consequence, the
entanglement entropy of a block A is

S(A) = nA log 2, (4.19)

where nA is the number of outgoing bonds from A (Refael and Moore 2009).

Entanglement in the rainbow

Let us compute the entanglement entropy of lateral blocks of the rainbow state

A` = {m ∣ m ≥ −(L + 1/2) + `}, ` ∈ [1,2L]. (4.20)

According to (4.19),
S(`) = ` log 2, (4.21)

where we have simplified S(A`) = S(`). Notice that the entanglement entropy
of these blocks is proportional to their volume – length in 1D – constituting one
example of the (maximal) violation of the area law. As we mentioned in Chapter
1 the rainbow state does not challenge Hastings theorem since (4.5) is a gapless
Hamiltonian. Indeed, notice that the lowest energy scale in the system is given by
the smallest coupling constant, which is proportional to e−hL and tends to zero in
the thermodynamic limit for all values of h.

In Fig. 4.4 we plot the correlation matrices at half-filling for h = 10 and h = 1 for
a chain with N = 22. Notice that the restriction of the correlation matrix associated
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Figure 4.4: Correlation matrix Cmn = ⟨c
†
mcn⟩ (3.42) obtained from the rainbow

state (4.18) at half filling. We refer to 4.A.1 for details of the computation of the
correlation matrix. (Left) h = 1 and (Right) h = 10 for a chain with N = 22. It is
worth to compare them with Fig. (3.2) corresponding to h = 1. Observe that for
h = 10, the restriction of a lateral block A` (4.20) is C` = 1/21`. As a consequence,
the entanglement entropy is given by (4.21).

to the lateral block A` (4.20) with ` < L in the valence bond picture is

(C`)mn
h→∞Ð→ 1

2
δmn,

and the eigenvalues are νk = 1/2 with k = 1, . . . , ` for ` = 1, . . . , L, as it can be seen
in Fig. 4.4 (right). Hence, using the expression of the Rényi entropies in terms of
the eigenvalues of the correlation matrix (3.54) yields (4.21).

In Fig. 4.5 we plot the entanglement entropy corresponding to all possible
lateral blocks (4.20) for different values of h. As we have mentioned, the validity
of the SDRG and the associated valence bond picture increases with h.

To summarize, we have described satisfactorily the strong inhomogeneity
regime by means of the SDRG leading to the linear growth prediction of the
entanglement entropy. In addition, the blue points of Fig. 4.5 correspond to the
entanglement entropy of the homogeneous case h = 0 that has been described in
the previous chapter (see Fig. 3.6). We shall now describe the regime of weak
inhomogeneity h≪ 1 and study the crossover between both regimes.

4.2 Weak inhomogeneity regime

In this section we shall consider the regime h≪ 1 where the SDRG and the valence
bond interpretation do not hold. As we have noticed, for h = 0 the inhomogeneous
Hamiltonian (4.3) becomes the homogeneous one (3.17) whose continuum limit
has been studied in Section 3.1.3 by defining x = ma and imposing x → 0 and
N → ∞ while keeping constant N = Na. Here we shall impose the additional
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Figure 4.5: Entanglement entropy of lateral blocks (4.20) over the rainbow state
with N = 60 at half filling for different values of h. The black line corresponds
to (4.21). Let us recall that the left-right S(`) = S(N − `) symmetry of the plot is
consequence of S(A) = S(B) for a bipartition A ∪B as was discussed in Chapter 2
see (2.14).

constrain h→ 0, so we define

ĥ = h
a
, (4.22)

that remains constant in the continuum limit. We shall make the assumption that
the lattice couplings tend to a continuous function

Jm(h)→ J(x, ĥ), J ∈ C0 for x ∈ [0,N ]. (4.23)

In addition, we assume that we can write the lattice fermions as in (3.29),

cm√
a
≈ eikF x/aψL(x) + e−ikF x/aψR(x),

where the the fermionic fields ψL,R(x) vary slowly on the spatial scale 1/kF . Finally,
if the lattice system is centered at the origin [−(N + 1)/2, (N + 1)/2], the continuum
limit maps to the interval [−L,L]with L = La forN = 2L. Performing an analogous
analysis to the one discussed in Section 3.1.3 we arrive at

H ≈ − ia
2 ∫

L

−L
J(x, ĥ)dx [(∂xψR)†ψR − (∂xψL)†ψL + ψ†

L∂xψL − ψ†
R∂xψR] . (4.24)

Integrating the above expression by parts yields

H ≈ −ia∫
L

−L
dxJ(x, ĥ)Ψ†(x)σ3 (∂x +

J ′(x, ĥ)
2J(x, ĥ)

)Ψ(x), (4.25)
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where ΨT (x) = (ψL(x), ψR(x)) and f ′(x) = (d/dx)f(x). The equations of motion
are

∂0Ψ(x0, x1) = −J(x1, ĥ)σ3 (∂1 +
J ′(x1, ĥ)
2J(x1, ĥ)

)Ψ(x0, x1), (4.26)

where we have rescaled the time coordinate t → ax0 and relabeled the space
coordinate x→ x1. Observe that (4.26) becomes (3.33) if h = 0 with the assumption
(4.2).

It is convenient to consider the massless Dirac equation on a curved spacetime
described by the static metric gµν with signature (−,+)

(i /D −m)Ψ = 0, (4.27)

where /D is the slashed covariant derivative (see details in Appendix 4.B). More
explicitly,

(γ0∂0 +
1

2
ω01

0 γ
0γ3 + E

1
1

E0
0

(γ1∂1 +
1

2
ω01

1 γ
1γ3))Ψ = 0, (4.28)

where γµ, µ = 0,1,3 are the usual gamma matrices that generate the Clifford
algebra

{γµ, γν} = −2ηµν1,

where ηµν is the Minkowski metric with signature (−,+), and Eµ
a is the inverse of

the zweibein eaµ, i.e. the vielbein formalism particularized for two dimensions

Eµ
a = gµνηabebν ,

gµν = eaµebνηab,
(4.29)

and ωabµ is the spin connection

ωabµ = eaν∂µEbν + eaνEbσΓνσµ, (4.30)

where ηab is the flat spacetime metric and Γνσµ are the Christoffel symbols. We refer
to Appendix 4.B for more details.

From now on we shall consider a = 1 which implies ĥ = h. Multiplying (4.26)
by σ2 and comparing it with (4.28) yields γ0 = σ2 and γ1 = σ1 and

E1
1

E0
0

= J(x1, h), ω01
1 = 0, ω01

0 = J ′(x1, h). (4.31)

Using the expressions (4.29) and (4.31) leads the condition

E1
1

E0
0

= −
√
−g00

g11

(4.32)

where we have assumed that the metric is static so it only has diagonal entries. In
addition, from (4.30) we obtain

∂1g00

g00

= −2J ′(x1, h)
J(x1, h) . (4.33)

55



Integrating the above expression we find that

g00 = −J2(x1, h). (4.34)

Plugging (4.34) in (4.32) yields
√
g11 = 1.

Additionally, we shall characterize more in detail the curved background by
computing its curvature. The Christoffel symbols are all zero except

Γ0
01 = Γ1

10 =
J ′(x1, h)
J(x1, h) ,

Γ1
00 = J(x1, h)J ′(x1, h).

(4.35)

With them, we can compute the diagonal entries of the Ricci tensor Rµν

R00 = J(x1, h)J ′′(x1, h), (4.36)

R11 = −
J ′′(x1, h)
J(x1, h) , (4.37)

where f ′′(x) = d2f(x)/dx2. Finally, the Ricci scalar, which completely characterizes
the curvature of the spacetime is

R(x,h) = gµνRµν = −2
J ′′(x1, h)
J(x1, h) . (4.38)

The Euclidean version of the metric is

ds2 = J2(x,h)dt2 + dx2, (4.39)

where we have restored the (t, x) coordinates for convenience. Observe that (4.39)
is Weyl equivalent to the flat metric

ds2 = Ω2(x,h) (dt2 + dx̃2) , ⇒ Ω(x,h) = J(x,h), (4.40)

where Ω(x,h) is the Weyl factor, and we have introduced a new spatial coordinate
x̃(x)

dx̃ = Ω−1(x,h)dx ⇒ x̃(x) = ∫
x

0

dy

J(y, h) , (4.41)

that we shall call tilded or deformed coordinate. Expressions (4.39) and (4.41)
are the most important of this section. With the key assumption (4.23), we have
shown that the continuum limit of the inhomogeneous lattice Hamiltonian (4.3)
describes a massless Dirac fermion on a curved background whose metric (4.39)
with curvature (4.38) depend on the (continuous version of) the couplings.

The rainbow model as a Dirac fermion in curved spacetime

Let us particularize the previous discussion to the rainbow model (4.5). The
analysis of the weak inhomogeneity regime was done firstly by Ramírez et al.
(2015) and later, Rodríguez-Laguna et al. (2017) proposed the rainbow model as
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a massless Dirac fermion in curved spacetime with an analogous formalism to
the one presented above. However, Rodríguez-Laguna et al. (2017) obtained the
resulting metric by comparing the generic Dirac Lagrangian with the rainbow
model Lagrangian. It turns out that it is more convenient to compare the equations
of motion rather than the Lagrangian in order to extend these results to models of
Majorana fermions, as we will see in Chapter 7.

The continuum limit of the rainbow model couplings is

J(x,h) = e−h∣x∣. (4.42)

Plugging (4.42) in (4.25) yields the continuum version of the rainbow Hamiltonian
(4.5):

HR ≈ −i∫
L

−L
dxe−h∣x∣Ψ†(x)σ3 (∂x −

h

2
sign(x))Ψ(x). (4.43)

The Weyl factor is thus
Ω(x,h) = J(x,h) = e−h∣x∣, (4.44)

and the Euclidean metric generated by the couplings is obtained from (4.39)

ds2 = e−2h∣x∣(dt2 + dx̃2), (4.45)

with the new spatial coordinate given by (4.41)

x̃(x) = sign(x)
h

(eh∣x∣ − 1) . (4.46)

The metric has a scalar curvature (4.38)

R(x) = 4hδ(x) − 2h2,

i.e. except at the origin, it is an homogeneous manifold with negative curvature
that can be mapped to the Poincaré metric in the upper half-plane (Rodríguez-
Laguna et al. 2017) or the anti-de Sitter (AdS) metric in 1+1D (MacCormack et al.
2019).

Finally, observe that the rainbow Hamiltonian (4.43) can be written in terms of
the deformed coordinate x̃. Using that

ψ̃L,R(x̃) = (
dx

dx̃
)

1/2
ψL,R(x), (4.47)

and (4.46) yields

HR ≈ −i∫
L̃

−L̃
dx̃ (ψ̃†

L∂x̃ψ̃L − ψ̃†
R∂x̃ψ̃R) , (4.48)

with
L̃ = 1

h
(ehL − 1). (4.49)

Notice that (4.48) presents the same functional form than the Dirac Hamiltonian
on Minkowski spacetime (3.31). In the next section we shall compute the entangle-
ment properties in the weak inhomogeneity regime.
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4.2.1 Entanglement entropy

In the previous section we have shown that the weak inhomogeneity regime
of a lattice inhomogeneous system (4.3) where the assumption of continuity of
the continuous version of the couplings (4.23) holds is described by a massless
Dirac fermion over a curved background whose metric is given by (4.39). As a
consequence, we can apply all the results presented in the previous chapter with
the substitution of flat space quantities by the deformed ones associated to the
curved space. In particular, the distance measured from the origin is given by x̃(x)
(4.41). We shall refer to this as a deformed length.

The entanglement entropy can be obtained by means of the correlators of the
twist operators placed at the entangling points. The Rényi entropies associated to
(the continuous version) of the lateral blocks (4.20) A = [−L,x0] for a given chain
is (Rodríguez-Laguna et al. 2017)

Sn(A) =
1

1 − n log ⟨τn(x0,0)⟩curved + c′n. (4.50)

We can rewrite the above expression in terms of the flat metric by means of a Weyl
transformation

⟨τn(x0,0)⟩curved = (
1

Ω(x0, h)
)

∆n

⟨τn(x̃(x0),0)⟩flat . (4.51)

Observe that ⟨τn(x̃(x0),0)⟩flat is completely fixed by conformal invariance (Cal-
abrese and Cardy 2004). Hence

Sn(A) ≡ Sn(x) =
1

12
(1 + 1

n
) log(2D̃(x,2L)

aΩ(x0, h)
) + c′n, (4.52)

where D(x,2L) denotes the chord length (3.66) centered at the origin

D(x,2L) = 2L

π
cos(π(2x + 1)

4L
) = 2L

π
cos(π(x + 1/2)

2L
,) (4.53)

and D̃(x,2L) corresponds to the deformed chord length

D̃(x,2L) = 2x̃(L)
π

cos(π
˜x + 1/2

2L̃
) , (4.54)

where we have taken into account that x̃(x) deforms lengths from the origin, so
the the deformed length Ñ of the chain centered at the origin is not x̃(N) but
2x̃(N/2). Expression (4.52) shall be compared with3 (3.67). Besides the change
x→ x̃, there is an additional term

1

12
(1 + 1

n
) log( 1

Ω(x0, h)
)

3Observe that in (3.67) we have written the non-universal constant as c̃′n in order to distinguish
from the non universal constant of the closed system. Here we avoid the tilde in order to not
generate confusion with the tilded quantities.
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proportional to the Weyl factor Ω(x0, h). Observe that we recover the functional
form of (3.67) if we define

ã(x0) ≡ Ω(x0, h)a, (4.55)

i.e. if the UV cutoff is also deformed accordingly.
In fact, we can extend this reasoning beyond the CFT result. Applying the

recipe that all distances from the origin x = 0 = x̃(0)must be deformed with x̃(x)
(4.41), we consider the expression of the entanglement entropy of an open finite
chain (3.78) obtained by Fagotti et al. (2011), which includes the non-universal
leading constant4 computed by Jin and Korepin (2004) (3.73) and the subleading
terms that account for the parity oscillations. In flat space, the entanglement
entropy of the open finite chain is computed by embedding it on a periodic one.
The resulting chain is composed of the physical chain withN sites, its mirror image
and two additional sites (Fagotti et al. 2011) yielding 2(N + 1) sites. We obtain the
entanglement entropy in the curved space case by appropriately deforming the flat
case. The length of the physical chain plus the two additional sites is 2x̃((N +1)/2).
Hence the total length of a chain with N = 2L sites is 4x̃(L + 1/2), and the chord
length (4.53) to be deformed is D(2x + 1/2,4(L + 1/2)). Thus, the entanglement
entropy is

Sn(x) =
1

12
(1 + 1

n
) logY (x) + Υn

2

+ fn cos(2kF (x +
N + 1

2
))( 1

Y (x))
n

, x ∈ [−L,x0],
(4.56)

with fn given by (3.79) and

Y (x) ≡2D̃(2x + 1/2,4(L + 1/2))
πΩ(x0, h)

∣ sinkF ∣

= 8x̃(L + 1/2)
Ω(x0, h)π

cos(πx̃(x + 1/2)
2x̃(L + 1/2)) ∣ sinkF ∣.

(4.57)

Entanglement entropy of the rainbow state

Let us particularize the discussion for the rainbow model (4.43). To do so, we have
to plug the tilded spatial coordinate (4.46) and particularize the Weyl factor to
(4.44) into the general expression of the entanglement entropy (4.56). In Fig. 4.6
we plot the von Neumann entropy of a chain with N = 60 for different values of
h. Observe that the entropy grows faster towards the center of the chain as the
inhomogeneity increases.

4Notice that the constant computed by Jin and Korepin does not depend on the spacetime
metric whereas the subleading parity oscillations are strongly modified. These facts suggest that
the asymptotic results do not depend on the curvature of the spacetime.

59



30 20 10 0 10 20 30
x

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

S(
x)

h
0.0
0.03
0.08
0.1

Figure 4.6: Von Neumann entropy of lateral blocks A = [−L,x0] for different values
of h. The points are obtained numerically with the eigenvalues of the correlation
matrix (3.54). The lines correspond to the theoretical prediction (4.56) particularized
for the rainbow model.

It is instructive to analyze the half-chain entanglement entropy x0 = 0 in the
regime hL≫ 1

Sn(0,2L) ≈
1

12
(1 + 1

n
) log(8(ehL − 1)

hπ
) ∼ 1

12
(1 + 1

n
)hL, for hL≫ 1, (4.58)

and to compare it with the entanglement entropy of a thermal state (3.64) with
inverse temperature β of an open system in the limit L/β ≫ 1

SA(β) =
1

12
(1 + 1

n
) log (βπ

a
sinh(2πL

β
)) ∼ 1

12
(1 + 1

n
) 2πL

β
. (4.59)

It follows that we can define a temperature TR that depends on the inhomogeneity
parameter h.

2π

β
= h ⇒ TR =

h

2π
. (4.60)

Finally, in Fig. (4.7) we plot the von Neumann entropy of the half-chain rainbow
state for different values of h as a function of L. We can see the extensive linear
behavior given by (4.58).

4.2.2 Entanglement Hamiltonian, entanglement spectrum and en-
tanglement contour

Tonni et al. (2018) carried out a rigorous study of the entanglement Hamiltonian
associated to ground states of inhomogeneous systems, mainly extending the
results obtained by Cardy and Tonni (2016), which we have described in 3.3.1
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Figure 4.7: Scaling of the entanglement entropy for different values of h. The points
correspond to numerical data and the lines correspond to the theoretical prediction
(4.56) for x0 = 0. Notice the linear behavior given by (4.58) in the regime hL≫ 1.

and subsequent sections. As in the case of the computation of the entanglement
entropy, all the quantities which are given by CFT results can be defined on the
curved background by substituting appropriately the flat-space quantities by the
tilded ones. Hence, the entanglement Hamiltonian associated to a block A of a
given state is (from (3.81))

HA = 2π∫
Ã
β̃(x̃)T00(x̃)dx̃. (4.61)

Observe that the domain of integration has also changed. For instance, given the
subsystem A = [x0, L], the domain in the curved background is Ã = [x̃0, L̃]. In
addition, the tilded weight function (3.82) is

β̃(x̃) = 1

f̃ ′(x̃)
,

where f̃(x̃) is the conformal transformation that maps the geometry imposed by
Ã into an annulus. It is possible to write it in terms of flat-space quantities

β(x) = 1
dx̃(x)
dx

df(x̃(x))
dx

= Ω(x,h)
f ′(x̃(x)) , (4.62)

where in the last equality we have used the definition x̃(x) (4.41). Let us recall
that Ω(x,h) = J(x,h) is the Weyl factor. Hence, the weight function associated to
the entanglement Hamiltonian of the subsystem A is obtained from (3.85)

β(x) = Ω(x,h)2x̃(L)
π

sin πx̃(x)
2x̃(L) − sin πx̃(x0)

2x̃(L)

cos πx̃(x0)2x̃(L)

(4.63)
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Concerning the entanglement spectrum, we implement the tilded quantities in
the expression for the entanglement gap (3.98) yielding

∆1 =
2π2

log (γ 4x̃(L)
πã cos (πx̃(x0)2x̃(L) ))

, (4.64)

where γ is a non universal constant that can be estimated through numerical
analysis, and ã is the deformed cutoff (4.55).

Finally, the entanglement contour (3.105) of a block A = [−L,0] is

s
(n)
A (x) ≈

1

12
(1 + 1

n
) 1

β̃(x̃)
= cπ

24x̃(L) (1 +
1

n
) Ω(x,h)

sin (πx̃(x)2x̃(L))
, A = [0, L], (4.65)

where we have particularized (4.63) for the half-chain x0 = 0.
Let us conclude this chapter particularizing these results for the rainbow model.

Entanglement hamiltonian, entanglement spectrum and entanglement contour
in the rainbow model.

For simplicity, let us restrict ourselves to the half chain block A = [0, L]. The
weight function of the entanglement Hamiltonian (4.63) particularized for the
tilded coordinate (4.46) and the Weyl factor (4.44) is

βR(x) =
2(ehL − 1)
ehxπh

sin(π(e
hx − 1)

2(ehL − 1)) , x ∈ [0, L]. (4.66)

It is instructive to consider the regime hL≫ 1 in the above expression

βR(x) ≈
1

h
(1 − e−hx) + . . . , (4.67)

where the dots denote subleading terms. We can distinguish between two regimes:

• If hx≪ 1, then β(x) ≈ x and we recover the Bisognano-Wichmann prediction
(3.80).

• If hx≫ 1, the entanglement Hamiltonian is then

HA ≈
2π

h ∫A T00(x)dx (4.68)

As we mentioned, the inverse of the weight function is also called entangle-
ment temperature. Indeed, observe that ρ = e−HA withHA given by the above
expression (4.68) describes a thermal state with temperature TR = h/(2π).
Let us recall that we have found also this expression in the analysis of the
entanglement entropy of the rainbow state in this regime (4.60). This fact
makes it possible to regard the rainbow state as thermofield double (Ramírez
et al. 2015). Given two copies l and r of a system with energies En and states
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∣n⟩, a pure state ∣ψ⟩ is said to be a thermofield double if each copy is a thermal
state with temperature T (see Appendix 2.A)

∣ψ⟩ =∑
n

e−
En
2T ∣n⟩l ∣n⟩r .

In our case, each copy corresponds to a half of the chain whose Hamiltonian
is, as we have seen, a CFT Hamiltonian in curved spacetime. The thermofield
double has been used to explore the connection between black holes and the
EPR=ER conjecture (Hartman and Maldacena 2013; Maldacena and Susskind
2013). In this context TR is the surface temperature corresponding to a
gravitational acceleration h = 2πTR.

In Fig. 4.8 we plot the weight function of the entanglement Hamiltonian for
different configurations that keep the product hL = const.
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Figure 4.8: Normalized weight function β(x)/L of the entanglement Hamiltonian
associated to the right half chain, i.e. blockA = [0, L] for different configurations that
keep hL = const. The numerical data are obtained with the optimization procedure
(3.94). Notice the plateau for values hL≫ 1 which signals the thermofield double
interpretation. The solid lines correspond to the prediction (4.66).

As we mentioned, the entanglement spectrum of a CFT Hamiltonian is asymp-
totically equispaced (3.89) (Peschel 1999). For finite and small chains, the disper-
sion relation shows some curvature, which is due to non-universal contributions.
Particularizing (4.64) for the rainbow model yields

∆1 =
2π2

log (γL̃)
= 2π2

log (γ 2
πh (ehL − 1))

, (4.69)

where L̃ is given by (4.49) and γ accounts for all the non-universal corrections and
it has been numerically found by Ramírez et al. (2015). Notice that in the regime
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Figure 4.9: Central part of the dispersion relation εk of the entanglement spectrum.
(Left) Chain with N = 160 sites and different values of h. Observe that the bigger h
the better the linear prediction. (Right) The inhomogeneity parameter is fixed to
h = 0.75.

hL≫ 1, L̃ is huge, meaning that

∆1 ≈
2π2

hL
= πβR

L
, (4.70)

yielding a dispersion relation

εk =
π2

hL
k, k = ±1

2
,±3

2
, . . . (4.71)

In Fig. 4.9 we plot the central part of dispersion relation of the entanglement
spectrum corresponding to the half chain. The solid lines correspond to the
linear prediction (4.71). It is important to note that since the accuracy of the CFT
prediction increases with h and L, the non universal contribution γ is less relevant
in this regime.

Tonni et al. (2018) computed the contour of the rainbow model for the block
A=[x0, L]. Here we review the case x0 = 0. Hence, as usual, we particularize the
CFT prediction of the contour in curved spacetime (4.65) for the tilded quantities
(4.46)

s
(1)
A =

1

6

1

β̃(x̃)
= πehxh

12(ehL − 1)
1

sin π(ehx−1)
2(ehL−1)

, (4.72)

where we have used the weight function of the rainbow model (4.66). Observe
that s(1)A ≈ h/6 in the regime hL≫ 1. In Fig. 4.10 we plot the contour function for
different values of h for a chain with N = 100. As we can see, there is a plateau
at h/6 for those sites far enough from the boundaries. Observe that the parity
oscillations deviations are expelled toward the edge as the inhomogeneity grows.

In this chapter we have studied the entanglement of connected blocks of the
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Figure 4.10: Entanglement contour for of the block A = [0,50] of a chain with
N = 100 sites for different values of h. The dotted lines correspond to the constant
h/6 predicted in the regime hL ≫ 1. In turn, solid lines represent the prediction
(4.72).

inhomogeneous XX model analyzing the fermionic model obtained by means of
the Jordan-Wigner transformation. We have described the strong inhomogeneity
h ≫ 1 regime with the strong disorder renormalization group and the weak
inhomogeneity h≪ 1 with a continuum limit around the Fermi point.

We have also presented the rainbow model proposed by Vitagliano et al. (2010)
and rediscovered by Ramírez et al. (2014) which is a free-fermionic chain with hop-
pings which decay exponentially from the center. Its ground state presents a linear
growth of the entanglement entropy in both the strong and weak inhomogeneity
regimes. The latter is described by a geometrical deformation of the free-fermionic
conformal field theory, associated to a hyperbolic spacetime metric. The strong
inhomogeneity limit is described as a valence bond state with concentric bonds
around the center, as it can be established using the Dasgupta-Ma renormalization
group.

It is worth to say that Ramírez et al. (2014) generalized the rainbow model to
the Heisenberg spin chain and computed numerically the entanglement with the
DMRG. However, as we discussed in Chapter 1, this method is deeply connected
with matrix product states, short-range entanglement and the area law. Since the
rainbow model violates the area law, the effective description with the DMRG
restricts the computations to small sizes. Moreover, Ramírez et al. (2015) consid-
ered a two dimensional version of the model, finding also a linear scaling of the
entanglement entropy with logarithmic corrections.
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Appendices

4.A Free fermion models

In this Appendix we shall describe the treatment of free fermion models and the
obtainment of the correlation matrix. We shall distinguish between models with
and without pairing terms. Consider a generic quadratic Hamiltonian.

H =Ψ†HΨ (4.A.1)

where

Ψ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

c1,η1

⋮
cN,ηN
c†

1,η1

⋮
c†
N,ηN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= ( c

c†
) (4.A.2)

is called a Nambu-spinor, and ηm takes account of other possible relevant quantum
numbers, such as spin. For now on, we will abuse notation and ignore the index
ηm. Here H is the many-body Hamiltonian or second quantized Hamiltonian while the
matrix H is the single-body Hamiltonian or first quantized Hamiltonian. The most
general quadratic Hamiltonian can be written as:

H = (c† c)( T P

−P∗ −T∗
)( c

c†
) , (4.A.3)

where due to hermiticity H =H†, the hopping matrix is Hermitian T = T† and the
pairing matrix is antisymmetric P = −PT . We can also write (4.A.3) as

H =∑
ij

(2Tijc†
i cj + Pijc†

i c
†
j + P ∗ijcjci) + trT. (4.A.4)

The spectrum and energy states of H are obtained by diagonalizing H. There
exists a unitary matrix UB ∈ SU(2N) such that UB

†HUB = D, where D is a
diagonal matrix that contains the eigenvalues εk with k = 1, . . . ,2N . Then we can
write (4.A.1) as:

H =Ψ†UBDUB
†Ψ =Φ†DΦ, (4.A.5)
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where

Φ =UB
†Ψ = ( b

b†
) (4.A.6)

is a new Nambu spinor.
The ground state ∣GS⟩ is obtained filling all the negative energy levels. We shall

distinguish two situations. If there are no pairing terms P = 0 the Hamiltonian H
commutes with the total number of c fermions, as we discussed in Chapter 3. As a
consequence, the Fock state of the {cm} fermions, defined as cm ∣0⟩ = 0 for all m, is
also the Fock state of the new fermions, bk ∣0⟩ = 0 for all k. On the contrary, if there
exist pairing terms P ≠ 0, there is no particle number conservation and the state ∣0⟩
is not anymore the Fock vacuum of the {b} fermions. Let us discuss the first case.

4.A.1 Without pairing terms

If P = 0 the Nambu spinor formalism is redundant and we can rewrite (4.A.1) as

H = c†Tc =∑
ij

Tijc
†
i cj, Tij = T ∗ji. (4.A.7)

There exists a unitary U ∈ SU(N) such that U†TU = D. We can thus write the
Hamiltonian as

H =
N

∑
k=1

εkb
†
kbk, (4.A.8)

with

bk =
N

∑
i=1
U∗ikci (4.A.9)

ci =
N

∑
k=1

Uikbk. (4.A.10)

The ground state ∣GS⟩ is obtained by filling all the negative energy levels:

∣GS⟩ = ∏
k∈ΩGS

b†
k ∣0⟩ , ΩGS ∶= { k ∣ εk < 0}. (4.A.11)

Consequently, the energy of the ground state is the sum of the negative single-body
energies:

EGS = ∑
k∈ΩGS

εk. (4.A.12)

The number of fermions that compose the ground state is then NF =#Ω, where #

denotes the cardinal of a set.
Notice that the excited states are obtained in a similar way, i.e. filling the

single-body energy levels specified by the set Ω.
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Correlation matrices

It is important for us to compute also the two point correlators of the physical
fermions ⟨GS∣c†

i cj ∣GS⟩ ≡ ⟨c†
i cj⟩ that can be arranged in a matrix C. Using matrix

notation and taking into account that ⟨bkb†
k⟩ = 0 for all k ∈ ΩGS:

⟨c c†⟩ =U ⟨b b†⟩U† =U

⎛
⎜⎜
⎝

⟨b1b†
1⟩ ⋯ ⟨b1b†

N⟩
⋮ ⋱ ⋮

⟨bNb†
1⟩ ⋯ ⟨bNb†

N⟩

⎞
⎟⎟
⎠

U† =U( 0NF 0

0 1N−NF
)U†

(4.A.13)
Finally, using the anticommutation relations, C = 1N − ⟨c c†⟩,

C =U( 1NF 0

0 0N−NF
)U†, (4.A.14)

or more explicitly:

Cij =
NF

∑
k=1

UikU
∗
jk. (4.A.15)

4.A.2 With pairing terms (no particle number conservation)

If P ≠ 0, we need to diagonalize the 2N × 2N matrix (4.A.5). Notice however that
the components of the Nambu spinors are not completely independent. Indeed,

σ
(N)
x Ψ = ( 0 1N

1N 0
)( c

c†
) = (Ψ†)T . (4.A.16)

Indeed, the operation σ(N)x interchanges creation by annihilation operators and
it implements a so-called particle-hole transformation. It can be shown that the
Hamiltonian (4.A.1) is symmetric under this transformation. As a consequence,if
u is an eigenvector of H with eigenvalue ε, then (σ(N)x u)∗ is also an eigenvector
with eigenvalue −ε. Hence, we can write

UB = (
V W∗

W V∗
) , D = ( ε 0

0 −ε
) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ε1
⋱

εN
−ε1

⋱
−εN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(4.A.17)

Thus, using (4.A.5) yields

H =
N

∑
k=1

2εk (b†
kbk −

1

2
) , εk > 0. (4.A.18)
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The ground state ∣GS⟩ coincides with the Fock space of the fermions b, that are
known as Bogoliubov particles (or bogoliubons):

bk ∣GS⟩ = 0, for all k ⇒ ∣GS⟩∝
N

∏
k=1

bk ∣0⟩ . (4.A.19)

It follows from (4.A.18) that the energy of the ground state is:

EGS = −
N

∑
k=1

εk. (4.A.20)

Majorana fermions

It is also worth to point out that there exists an alternative formulation in terms of
Majorana fermions, also known as real fermions. Let us start by defining them.
A Dirac fermion or complex fermion can always be decomposed into a real and
imaginary part:

αm = cm + c†
m, βm = i(c†

m − cm). (4.A.21)

Notice that they are by construction their own antiparticle α†
m = αm (β†

m = βm) and
that they satisfy the following anticommutation relations

{αm, β′m} = 0, {αm, α′m} = {βm, β′m} = 2δmm′ , (4.A.22)

provided that the anticommutation relations of the Dirac (or complex) fermions
(4.A.22) are satisfied. We can thus transform the Nambu spinor Ψ into a spinor of
Majorana fermions ξ by means of the matrix UM :

Ψ = ( c

c†
) = 1

2
UMξ ≡

1

2
( 1N i1N

1N −i1N
)(α
β
) , (4.A.23)

and write the generic Hamiltonian (4.A.1) in terms of Majorana fermions:

H =Ψ†HΨ = 1

4
ξTUMHU†

Mξ =
i

2
ξTAξ, (4.A.24)

where A = (1/2) Im(UMHU†
M) is antisymmetric5 A = −AT . There exists an orthog-

onal matrix Q ∈ SO(2N) that brings A to the so-called normal form Nε:

QTAQ ≡Nε = (
0N ε

ε 0N
) (4.A.26)

5In terms of the hopping T and P of the Dirac fermions (4.A.3):

A =
1

2
(

0 2(T −P)

−2(T +P) 0
) , (4.A.25)

where we have assumed that all the terms are real numbers. The antisymmetry is manifested
taking into account that PT = −P

70



where ε is defined in (4.A.17). Let us mention that the normal form Nε can also be
obtained by means of the real Schur decomposition. Putting (4.A.26) in (4.A.24)
leads to H = (i/2)ξTQNεQTξ, allowing us to define a new spinor and write

H = i
2
χTNεχ, QTξ ≡ χ = (µ

ν
) . (4.A.27)

We recover the Bogoliubov transformations (4.A.5) by inverting appropriately
(4.A.23):

H = i
2
χTNεχ =

i

2
ΦUMNεU

†
MΦ =ΦDΦ. (4.A.28)

Covariance matrix

The correlation matrix (4.A.13) in terms of b fermions is particularly simple

⟨ΦΦ†⟩ = ( 1N 0

0 0
) , (4.A.29)

where we have taken into account (4.A.11). Thus, the correlation matrix C = ⟨ΨΨ†⟩
is

C = ⟨ΨΨ†⟩ =UB ⟨ΦΦ†⟩U†
B = (

VV† VW†

WV† WW†
) , (4.A.30)

where we have used UB given by (4.A.17).
We can also express the correlators in terms of the Majorana fermions ⟨ΦΦ†⟩ =

UM ⟨χχT ⟩U†
M and those in terms of the physical Majorana fermions ξ given by

(4.A.23)

⟨ξξT ⟩ =QT ( 1N i1N

−i1N 1N
)Q, (4.A.31)

where we use the orthogonal matrix defined in (4.A.26). The symmetric part of the
matrix above is given by the anticommutation relation of the Majorana fermions,
while the antisymmetric part that contains all the non-trivial information is known
as the covariance matrix.

C =QT ( 0 1N

−1N 0
)Q, (4.A.32)

Entanglement Hamiltonian of Majorana fermions

The entanglement Hamiltonian can be obtained from the covariance matrix. Con-
sider a system of N = 2L Majorana fermions given by the quadratic Hamiltonian
(4.A.24). There exists a transformation O ∈ SO(2N) which brings the Hamiltonian
to the canonical form OTAO =N′ε, where N′ε is a block diagonal matrix
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N′ε =
L

⊕
k

( 0 εk
−εk 0

) , (4.A.33)

where ±εk with k = 1 . . . L are the eigenvalues of the matrix iA. Notice that N ′ε
(4.A.33), and Nε (4.A.26), are similar matrices meaning that O and Q differ in the
order of the elements of the basis. Oξ = ξ̃ with ξ given in (4.A.23) and

ξ̃T = (α1, β1, . . . , αN , βN) .

The transformation O is more convenient because the lateral blocks considered
in the main text are contiguous in this basis. Thus, the Hamiltonian reads also as
(4.A.27) after substituting Q by O. The density matrix ρ associated with the the
GS of a quadratic Hamiltonian can always be written as

ρ = Ke−H, (4.A.34)

where K is a normalization constant and H is the entanglement Hamiltonian
(see Section 3.3.1), given by (4.A.24). It is possible to obtain HA, the entangle-
ment Hamiltonian associated to the reduced density matrix ρA making use of the
associated partial covariance matrix (4.A.32) (CA)ij = ⟨[ξiξj]⟩ with i, j ∈ A.

CA =OTN′λO, (4.A.35)

where N′λ has the same structure as N′ε but contains the eigenvalues of CA. Since
the matrix O brings to the normal form both CA andHA, there is a relation between
the entanglement spectrum ε, and the eigenvalues of the covariance matrix:

λk = − tanh
εk
2

(4.A.36)

Hence, by inverting the above relation, it is possible to compute the entanglement
Hamiltonian knowing the covariance matrix,

H =OTN′ε(λ)O. (4.A.37)

4.B Dirac equation on a curved background

Let us consider the Dirac equation on curved spacetime:

(i /D −m)Ψ = 0, (4.B.1)

where /D = Eµ
aγaDµ is the slashed covariant derivative, and

Eµ
a = gµνηabebν , (4.B.2)
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is the inverse of the vielbein or tetrad basis, actually a zweibein eaµ that satisfies

gµν = eaµebνηab. (4.B.3)

Here ηab is the flat spacetime metric with signature (−,+). The covariant derivative
of the two component spinor Ψ is given by

DµΨ = (∂µ −
1

8
ωabµ [γa, γb])Ψ, (4.B.4)

where ωabµ is the spin-connection, which is defined in terms of the Christoffel
symbols Γνσµ and the inverse of the zweibein Eµ

a ,

ωabµ = eaν∂µEbν + eaνEbσΓνσµ. (4.B.5)

As we are considering a static system, it is reasonable to assume that the zweibein
matrix eaµ is diagonal (E1

0 = E0
1 = 0). Expanding (4.B.1) with this assumption leads

to

(iE0
0γ

0 (∂0 −
1

8
ωab0 [γa, γb]) + iE1

1γ
1 (∂1 −

1

8
ωab0 [γa, γb]) −m)Ψ = 0 . (4.B.6)

Taking into account that [γ0, γ1] = [−γ0, γ1] = −2γ3 and the antisymmetry of the
internal indices of the spin connection we arrive at

(γ0∂0 +
1

2
ω01

0 γ
0γ3 + E

1
1

E0
0

(γ1∂1 +
1

2
ω01

1 γ
1γ3) + i m

E0
0

)Ψ = 0 . (4.B.7)
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Chapter 5

Piercing the rainbow: defects and
inhomogeneity

In this chapter we add a tunable exchange coupling constant at the center of
the rainbow model, γ, and show that it induces entanglement transitions of
the ground state. At very strong inhomogeneity, the rainbow state survives for
0 ≤ γ ≤ 1, while outside that region the ground state is a product of dimers. In
the weak inhomogeneity regime the entanglement entropy satisfies a volume
law, derived from CFT in curved spacetime, with an effective central charge
that depends on the inhomogeneity parameter and γ. In all regimes we have
found that the entanglement properties are invariant under the transformation
γ ←→ 1 − γ, whose fixed point γ = 1

2 corresponds to the usual rainbow model.
This chapter contains content published in Samos Sáenz de Buruaga et al.
(2020).

In the last chapter we have introduced the rainbow model (4.42) for both strong
and weak inhomogeneity regimes finding that the ground state presents a linear
growth of the entanglement entropy for certain subsystems. Thus, it is relevant
to ask whether the weak and the strong inhomogeneity limits will match in all
possible situations. We have introduced a defect in the center of the rainbow system
and considered the entanglement structure as a function of the defect intensity
and the curvature. As we will show, both the Dasgupta-Ma and the field theory
approach that describes entanglement on a critical chain with a defect (Eisler
and Peschel 2010; Iglói et al. 2009; Levine 2004; Peschel 2005) can be extended
to the curved case in the strong and weak inhomogeneity regimes, respectively,
providing a complete physical picture.

This chapter is organized as follows. In Section 5.1 we present the model. The
strong inhomogeneity limit, studied with the Dasgupta-Ma RG, is described in
detail in Section 5.2, while Sec. 5.3 considers the weak-inhomogeneity regime
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through a perturbation of a conformal field theory. We characterize the entangle-
ment structure via the entropies and the entanglement spectrum, Hamiltonian
and contour.

5.1 The model

Let us consider an inhomogeneous XX spin chain with an even number N = 2L

whose Hamiltonian is defined as:

HL(h, γ) = −
1

2

L−1

∑
m=−L+1

JmS
+
m−1/2S

−
m+1/2 + h.c., (5.1)

and by performing a Jordan-Wigner transformation, its fermionic version:

HL(h, γ) = −
1

2

L−1

∑
m=−L+1

Jmc
†
m−1/2cm+1/2 + h.c., (5.2)

where cn(c†
n), with n = ±1

2 ,±3
2 ⋅ ⋅ ⋅ ±(L− 1

2) are fermionic annihilation (creation) oper-
ators that obey the standard anti-commutation relations. The coupling parameters
Jm are

Jm =
⎧⎪⎪⎨⎪⎪⎩

e−h∣m∣ if m ≠ 0,

e−hγ m = 0,
(5.3)

where h ≥ 0 is the inhomogeneity parameter, and γ ∈ R parametrizes the value of
the central coupling. Observe that for γ = 1/2 we recover the rainbow Hamiltonian
that we presented in the previous chapter. Here we will investigate how the central
coupling that we shall interpret as a defect modify the properties of the ground
state, with special focus in the entanglement characterization. Notice that sites
have half-integer indices, while links have integer ones. We will follow the same
scheme presented in the previous chapter. Firstly we shall consider the strong
inhomogeneity regime with the SDRG and later the weak inhomogeneity regime.

5.2 Strong inhomogeneity regime

When the inhomogeneity is large enough, it can be addressed through the SDRG
scheme as we discussed in Section 4.1.1. Let us recall that for a free-fermionic
chain with a Hamiltonian such as (5.2), the effective coupling obtained at each RG
step is

J̃i = −
Ji−1Ji+1

Ji
, ∣Ji∣≫ ∣Ji±1∣, (5.4)

and that the GS predicted by the SDRG is a valence-bond solid (VBS) given by
(4.11)

∣GS⟩ =
L

∏
k=1
(bηkik,jk)

† ∣0⟩ , (5.5)
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(a)
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(b) γ ∈ (0, 1)

5 4 3 2 1 γ 1 2 3 4 5

2− γ > 2
3− γ > 2

4− γ > 4
5− γ > 4

6− γ > 6

(c) γ < 0

5 4 3 2 1 γ 1 2 3 4 5

1 + γ > 1
2 + γ > 3

3 + γ > 3
4 + γ > 5

(d) γ > 1

5 4 3 2 1 0 1 2 3 4 5

2

4

(e) γ = 0

5 4 3 2 1 1 1 2 3 4 5

3

5

(f) γ = 1

Figure 5.1: (a) Illustration of the rainbow chain with a central defect, showing
the log-couplings (5.7) on each link; (b) SDRG procedure in the γ ∈ (0,1) case,
leading to the rainbow phase; (c) SDRG for the γ < 0 case; (d) SDRG for the γ > 1

case, both leading to dimerized phases; (e) and (f) transition cases, where the SDRG
approximation is not valid; the dashed boxes mark the ties between the couplings,
which demand a different RG approach.

where ηk = ±1 is a phase given by (5.4), and b+i,j (b−i,j) are bonding (anti-bonding)
operators

(b±ij)
† = 1√

2
(c†
i ± c†

j) . (5.6)

For our purposes, it is convenient to define the log-couplings (Rodríguez-Laguna
et al. 2016) of the original couplings Ji (5.3):

ti = − log
∣Ji∣
h
, (5.7)

where h is included for later convenience. In this language, the two fermionic sites
that are integrated out on each step of the RG are those connected by the lowest ti
and the effective coupling (5.4) is computed in additive way:

t̃i = ti−1 − ti + ti+1. (5.8)

Let us consider the GS of Hamiltonian (5.2) under the light of the SDRG for
h ≫ 1. For simplicity, we will only consider even L (the case of odd L can be
straightforwardly obtained), as a function of the defect parameter, γ. The different
phases will be discussed along the panels of Fig. 5.1.
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The different ground states obtained by means of the SDRG are presented in
Table 5.1, please refer to Appendix 5.A for the details. All of them are obtained at
half filling and it is important to note that the validity of the SDRG improves when
the renormalized coupling is much stronger than the surrounding ones, so all the
GS that we have found are better approximations for bigger h (and eventually
they are exact for h→∞ as they are fixed points of the RG).

In summary, we obtain a rainbow phase whose GS is constituted by concentric
bonds, two dimerized phases that are related to the two phases of the Su-Schrieffer-
Heeger (SSH) model (Heeger et al. 1988; Su et al. 1979) and two transition phases
whose structure is a blend of the two previous ones and it shall be understood in
what follows.

Phase Fig. 5.1 Ground State ∣GS⟩

Rainbow Phase γ ∈ (0,1) (b)
L−1

∏
i=0
(bηi−i−1/2,i+1/2)

†
∣0⟩ , ηi = (−1)i

Dimerized Phase I γ < 0 (c) (b−−L+ 1
2
,L− 1

2

)†
L
2
−1

∏
i=−L

2
+1

(b+
2i− 1

2
,2i+ 1

2

)† ∣0⟩

Dimerized Phase II γ > 1 (d)
L−1
2

∏
i=−L−1

2

(b+
2i− 1

2
,2i+ 1

2

)† ∣0⟩

Transition Phase I γ = 0 (e) (b−−L+ 1
2
,L− 1

2

)†
L
4

∏
i=1
(dηi

2i+ 1
2

)†(b+− 1
2
, 1
2

)† ∣0⟩,

Transition Phase II γ = 1 (f)
L
2

∏
i=1
(dηi

2i− 1
2

)† ∣0⟩

Table 5.1: All the possible ground states obtained via the SDRG in terms of the
defect amplitude γ. The b operator is given by (5.6) and the d operators are defined
in (5.9).

The d±k operators appearing in Table 5.1 create two particles on four fermionic
sites. The explicit form of these operators is given by the the two negative energy
modes of the open homogeneous system that we discussed in Chapter (3), i.e.
(3.26) particularized to N = 4 with energies ε(u) = −J cos π5 and ε(v) − J cos 2π

5 ,

(dηii )† = (vηi)†(uηi−1)† ∣0⟩ , ηi = (−1)i,

u±i =
1√

5 +
√

5
(c−i ± ci) +

1√
5 −
√

5
(c−i+1 ± ci−1),

v±i =
1√

5 −
√

5
(c−i ± ci) +

1√
5 +
√

5
(c−i+1 ± ci−1).

(5.9)

It is worth noticing the existence of a symmetry between the cases γ ≤ 0 and
γ ≥ 1. Consider a system HL(h, γ < 1). After performing the first RG step, the new

78



system is described by the renormalized Hamiltonian HL−1(h,2 − γ). If we now
subtract one from all the log-couplings (or equivalently we divide by e−h all the
couplings) the Hamiltonian becomes ehHL−1(h,1 − γ), which describes a system of
N − 2 sites and a defect with strength 1 − γ. Hence, the transformation

γ → γ̃ = 1 − γ, (5.10)

leaves the structure invariant up to a global constant. Note that this symmetry
can be considered as a local strong-weak duality of the defects, leaving the γ = 1/2
point invariant.
The aforementioned description, along with the evidences obtained by the study of
the energies, the correlators and the entanglement entropy, allow us to claim that
the rainbow system with a defect presents two entanglement transitions (Vasseur
et al. 2019) in the strong inhomogeneity regime.

5.2.1 Energies

Let us consider the single-body energy levels Ek(h, γ) with k ∈ {0,⋯,N − 1} of
HL(h, γ), obtained by diagonalizing the corresponding coupling matrix. Due to
the particle-hole symmetry, Ek = −EN−k, we need only consider values up to L − 1.
For large h, these single-body energy levels correspond to the couplings associated
with each valence bond, thus leading us to propose that the following limits are
finite,

lim
h→∞
− log ∣Ek(h, γ)∣

h
= Ξk(γ). (5.11)

Fig. 5.2 (top) plots these values, Ξk(γ) as a function of γ for L = 12, obtained
numerically using h = 15 (for which convergence has been achieved). Notice the
clear pattern: for γ > 1, all energy levels are degenerate, Ξ2k(γ) = Ξ2k+1(γ) = 2k + 1

for k ∈ {0,⋯, L/2 − 1}, while for γ < 0 all energy levels are degenerate and constant,
except the first and last which vary exponentially with γ, Ξ2k−1(γ) = Ξ2k(γ) = 2k

for k ∈ {1,⋯, L/2 − 1}. Indeed, these values correspond to the energies associated
to the successive valence bonds of the dimerized phases. On the other hand,
for γ ∈ (0,1) the energy levels are not degenerate, and we can observe the same
alternation of the renormalized log-couplings that we observed in the SDRG
description: Ξk(γ) = k + 1/2 + (−1)k(γ − 1/2). Thus, the transition points, γ = 0 and
γ = 1, correspond to the points where the degeneracy starts and ends.

The ground state energy is the sum of the energies of the occupied orbitals,
EGS(h, γ) = ∑L−1

k=0 Ek(h, γ). Notice that for large h and γ > 1, the lowest single-
body energy E0(h, γ) is the main contribution to EGS(h, γ) as its value grows
exponentially with γ (see the lowest line of the top panel of Fig. 5.2), so we have
considered instead the quantity
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scale of the system, ∆E/JL, for L = 12 and L = 13.

ẼGS(h, γ) = −EGS(h, γ) +E0(h, γ) = −
L−1

∑
k=1

Ek(h, γ). (5.12)

The values of ẼGS(h, γ) are plotted in Fig. 5.2 (bottom) for the same system L = 12

and h = 15, in logarithmic scale. Notice the three regions: for the dimerized phases,
ẼGS(h, γ) stays constant, while for the rainbow phase it grows exponentially.
Indeed, for h → ∞, the energy curve log(ẼGS(h, γ))/h becomes non-smooth at
γ = 0 and γ = 1, pointing at a phase transition.

In addition, the inset of Fig. 5.2 (bottom) plots the energy gap ∆E/JL =
(EL −EL−1) /JL, normalized with the lowest energy scale of the system (the lowest
coupling constant). We can see that it presents two types of behaviors, depending
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rainbow phase, while ∆r approaches one in the rainbow phase and zero in the
dimerized phases.

whether the spectrum has a long range mode (with EL−1(h, γ) = e−Lh): for even
L it is close to zero (∆E/JL ∼ e−h) for γ < 1, while for odd L it is close to zero
(∆E/JL ∼ e−h) for γ > 0. For γ ∈ [0,1], it is close to zero for all sizes.

5.2.2 Correlations and order parameters

In order to provide further support to our idea that there is a phase transition at γ =
0 and γ = 1 in the strong inhomogeneity limit, let us provide two order parameters,
that we will call the dimerization parameter, ∆d and the rainbow parameter, ∆r,

∆d =
1

N

L− 1
2

∑
i=−L+ 1

2

∣ ⟨ψ∣c†
i ci+1∣ψ⟩ ∣ (5.13)

∆r =
1

L

L− 1
2

∑
i=− 1

2

∣ ⟨ψ∣c†
i c−i∣ψ⟩ ∣. (5.14)

Fig. 5.3 shows the behavior of these two order parameters as a function of γ,
for two values of h and L = 10. For large h (h = 10 in the figure), we see that the
rainbow parameter ∆r tends to 1 in the rainbow phase (γ ∈ (0,1)), while it decays
to zero in the dimerized phases. The opposite behavior is true for the dimerization
parameter ∆d.
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5.2.3 Entanglement entropy

As we have mentioned in the previous chapter, the entanglement entropy of a
VBS, can be obtained by counting the number of bonds which are broken when we
detach the block from its environment, and multiplying by log(2), and the same
is true for all Rényi entropies. On the other hand, the correlation matrices can be
exactly obtained in the strong inhomogeneity limit, as it is shown in Appendix
5.C.

We have considered two different types of blocks: lateral blocks start from the
extreme of the chain, while central blocks are symmetric with respect to the center.
In the next paragraphs we will describe the behavior of their entanglement.

Lateral blocks. Half chain entropies

Lateral blocks A` = {−L+ 1
2 , . . . ,−L+ 1

2 + `} are contiguous blocks containing one of
the extremes of the chain. Concretely, we will be interested in the entanglement
entropy of the half chain, S(L) = S[AL] in the strong inhomogeneity regime for
different values of γ. Let us remind the reader that we will only consider even L
for simplicity, and that the different phases can be visualized either in Fig. 5.1 and
Fig. 5.5, where the blocks contain ` sites from the upper leg, starting from the right
end.

• Rainbow phase, γ ∈ (0,1): the entanglement entropy (and all other Rényi
entropies) are merely proportional to the length up to ` = L, S[A`]γ∈(0,1) =
log(2)min(`,2L + 1 − `) .

• Dimerized phases, γ < 0 or γ > 1: the lateral blocks cut either zero or one bonds
for γ > 1, S[A`]γ>1 = log(2)(1 − (−1)`)/2; yet, for γ < 0 there is always a long-
distance bond joining both ends, thus S[A`]γ<0 = log(2) (1 + (1 + (−1)`)/2).

• Transition cases: γ = 0 and γ = 1: The state is not a VBS, so the entanglement
entropy of a block can not be evaluated just by counting broken bonds. As
we can see in the folded view, Fig. 5.5, the sites are grouped into plaquettes
(except, maybe, for the extremes and the central link). Cutting one of these
plaquettes horizontally in half contributes a finite amount of entanglement
Sa, which is exactly evaluated in Appendix 5.C (see (5.9)):

Sa = log 20 −
4 tanh−1 ( 2√

5
)

√
5

≈ 0.4133, (5.15)

we are thus led to exact expressions for the half-chain entropy:

S[AL]γ=1 = SaL/2,

S[AL]γ=0 = Sa (L/2 − 1) + 2 log(2).
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marks 2 log 2, and the lower one marks Sb, see (5.16)

.

All these results can be checked in Fig. 5.4 (top) for two rainbow chains with
L = 20 and L = 21, using h = 10, where S[A`] is plotted as a function of ` for
different values of γ. We can see that the γ = −0.5 and γ = 1.5 cases show a properly
dimerized behavior, and the γ = 0.5 values correspond to the rainbow, linear with
(maximal) slope log(2). For the transition points, γ = 0 and γ = 1 we can observe a
linear behavior (with parity oscillations) with a slope Sa.

Central blocks

The structure of the different phases can be properly understood if we fold the
chain around the central link, as it is shown in Fig. 5.5 (a), converting the chain
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Figure 5.5: (a) Folding the rainbow into a two-rung ladder; (b) folded rainbow
structure, obtained for γ ∈ (0,1); (c) and (d) folded dimerized structures, for γ < 0

and γ > 1; (e) and (f) folded versions of the transition points, with the plaquettes
marked where operators d† act, see (5.9).

into a two-rung ladder where sites +k and −k face each other. This transformation
converts rainbow bonds into vertical bonds and the remaining local bonds into
horizontal bonds. The lower panels of Fig. 5.5 present the bond structure as a
function of γ.

In this subsection we consider the entanglement entropy of central blocks,
symmetrically placed around the center of the chain, B` = {−` + 1

2 ,⋯, ` − 1
2}. See

Fig. 5.5, where the blocks now include ` rungs starting from the left extreme.

• Rainbow phase, γ ∈ (0,1): we always have S[B`]γ∈(0,1) = 0.

• Dimerized phases, γ < 0 or γ > 1: central blocks either cut zero or two bonds.
Always using even L we have

S[B`]γ<0 = (1 + (−1)`) log(2), and

S[B`]γ>1 = (1 − (−1)`) log(2).

• Transition phases, γ = 0 or γ = 1: central blocks can cut plaquettes in half
vertically, in the folded view. Each such cut contributes a finite amount of
entanglement, given by (See Appendix 5.C and (5.9)):

Sb = log 5 −
coth−1 (

√
5)

√
5

≈ 1.1790, (5.16)

which leads us to the expressions

S[B`]γ=0 = (1 + (−1)`)Sb, and

S[B`]γ=1 = (1 − (−1)`)Sb.
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All these features can be checked in Fig. 5.4 (bottom), where we can see the central
blocks entropy S[B`] as a function of ` for different values of γ. Note that the
entanglement entropy of the central blocks is always bounded, thus obeying the
area law. Non-local fermionic operators of the type bi,−i and di (see (5.6) and (5.9))
become local with the folding operation, allowing us to describe the system state
using only short range entanglement (Samos Sáenz de Buruaga et al. 2019). We will
discuss this point more in detail in the next chapter.

5.3 Weak inhomogeneity regime

It is relevant to ask whether the phases described in the strong inhomogene-
ity limit and the corresponding entanglement transitions extend into the weak
inhomogeneity regime. The answer is no, but some relevant traits do.

In Fig 5.6 we show the dependence on h of the entanglement entropy of the half
chain, S(L) = S[AL], for different values of γ. We can observe a perfect symmetry
between γ and 1 − γ, and the three different trends in the large h limit that we
have explained on the previous section: for γ ∈ (0,1) the EE reaches its maximal
value; for γ ∈ {0,1}, it reaches an intermediate value (SaL/2); for γ /∈ [0,1], it stays
at log(2). Interestingly, the behavior is remarkably different for lower values of h,
as we will discuss.
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Figure 5.6: EE of the half system N = 22 as a function of h for different values of
the defect strength γ.

For h = 0 the Hamiltonian (5.2) becomes the standard massless free-fermionic
chain with open boundary conditions which can be described at low energies by a
conformal field theory (CFT) with c = 1 as we shown in 3.1.3. It is interesting to
discuss first such a system in presence of a defect.
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5.3.1 Homogeneous chain with defect

Let us consider an open homogeneous free fermionic chain and a defect on its
central link, parametrized by a coupling parameter τ ,

Hτ = −
τ

2
c†
− 1

2

c 1
2
− 1

2

L−3/2
∑
n=1/2

c†
ncn+1 + c†

−nc−n−1 + h.c. (5.17)

Let us take the continuum limit of (5.17) and characterize its low-energy properties
by expanding the local operators cn into slow left/right moving components ψ{L,R}
around the Fermi points, and introducing a physical coordinate x = an, with lattice
constant a→ 0, while L→∞with L = aL fixed.

cm ≈
√
a (eikF xψL(x) + e−ikF xψR(x)) . (5.18)

The boundary conditions satisfied by the fields at the edge boundaries ψL,R(±L)
are obtained by imposing c±(L+ 1

2
) = 0:

ψL(±L) = eiπ(L±
1
2
)ψR(±L). (5.19)

In order to characterize the effect of the defect τ , we need to distinguish between
the fields on the left side ψIL,R and the right side ψIIL,R of the defect, which are
related by a transfer matrix ψI = TψII (see Appendix 5.D):

(ψ
I
L

ψIR
) = 1

2τ
( τ 2 + 1 −i(τ 2 − 1)
i(τ 2 − 1) τ 2 + 1

)(ψ
II
L

ψIIR
) . (5.20)

It is important to realize that T only depends on the defect and a vicinity of radius
a (lattice sites ±1

2 and ±3
2 ). Also notice that for τ = 1, T = I. Following Sierra (2014),

we can associate this transfer matrix to the one associated with a massless Dirac
fermion with a δ term associated to a mass m and to a chiral mass m′,

TD =
1

1 − r2 − r′2 (
1 + r2 + r′2 2(ir + r′)
2(−ir + r′) 1 + r2 + r′2) , (5.21)

where r ∝m and r′ ∝m′ are the reflection coefficients associated to both terms. If
we assume r′ = 0 and compare with (5.20) we find that

r = 1 − τ
τ + 1

. (5.22)

Hence, the field theory associated to the homogeneous system in presence of a
defect (5.17) is a massless Dirac fermion with a δ potential term that mixes the left
and right moving fermions generating a local mass placed at the center.

The entanglement properties of this system were studied by Eisler and Peschel
(2010). The authors used a conformal mapping to an isotropic 2D classical model
to show that the entanglement entropy of the half chain presents a logarithmic
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behavior, as predicted by CFT, but with a coefficient that depends on the strength
of the defect which they called effective central charge:

S(L) = ceff

6
logL + c′, (5.23)

with

ceff =
6

π2
I(s), (5.24)

and I(s) given by (see Eq. (26) of Eisler and Peschel (2010)):

I(s) = −1

2
[((1 + s) log(1 + s) + (1 − s) log(1 − s)) log s

+(1 + s)Li2(−s) + (1 − s)Li2(s)] ,

with s = sin(2 arctan τ) and Li2(z) is the dilogarithm function (Abramowitz and
Stegun 1972).

5.3.2 Field theory of the rainbow model with a defect

Let us return to our rainbow model with a defect. In order to build the field theory
describing the low energy physics of Hamiltonian (5.2) in the weak inhomogeneity
regime we need to obtain the transfer matrix Th,γ associated to the defect. Since
the defect is local, we will conjecture that Th,γ is determined by the defect and its
closest vicinity (see Appendix 5.D):

Th,γ =
1

2
eh(γ−

1
2
) ( e−2h(γ− 1

2
) + 1 −i(e−2h(γ− 1

2
) − 1)

i(e−2h(γ− 1
2
) − 1) e−2h(γ− 1

2
) + 1

) . (5.25)

Note that Th,γ = T described in (5.20) if we define

τ = e−h(γ−1/2). (5.26)

Notice that the symmetry γ → 1−γ described in the previous section is also present
in the transfer matrix: Th,1−γ is Th,γ with opposite signs in the non diagonal terms
and that τ = 1 if h = 0 but also if γ = 1

2 . This implies that the defect has no effect in
HL(h, 1

2) or, in other terms, we will say that the defect is absent. Indeed, evaluating
the continuum limit of (5.18) over (5.2) leads to the effective Hamiltonian (4.43)
discussed in the previous chapter

H ≈ i∫
L̃

−L̃
dx̃ [ψ̃†

L∂x̃ψ̃L − ψ̃†
R∂x̃ψ̃R] , (5.27)

where x̃ is given by (see (4.41))

x̃ ≡ sign(x)e
h∣x∣ − 1

h
, (5.28)
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As a consequence, the field theory associated to the Hamiltonian HL(h, γ ≠ 1
2) for

low energies should be described by a free Dirac theory with a local defect –which
is analogous to the one studied in the previous subsection– but in the background
metric described above. In what follows we show that this is the case by studying
the entanglement properties such as the entanglement entropy, the entanglement
spectrum, the entanglement Hamiltonian and the entanglement contour.

5.3.3 Entanglement entropy

The case of the absence of defect, γ = 1
2 , has been discussed in the previous chapter

(see Section 4.2.1). The entanglement entropy can be evaluated can be evaluated
for intervals of the form A = [−L,x] within a 2D CFT by making an appropriate
use of transformation (5.28). Let us recall that besides the transformation of L and
x, we need to take into account the transformation of the UV cutoff, a, through the
Weyl factor (4.55), ã = e−h∣x∣a in our metric. We obtain the expression (4.56).

Here we will focus exclusively on the universal contribution of the entan-
glement entropy and we shall neglect the non-universal terms. The half chain
entanglement entropy scales linearly (4.58):

Sγ= 1
2
(L) ≈ chL

6
. (5.29)

However, the defect (γ ≠ 1
2 ) creates a mass and introduces a scale, breaking the

conformal invariance of the system. As a consequence, the previous formulae can
not be applied to compute the EE. Nevertheless, the entanglement entropy should
follow (5.24), with the modifications associated to the change of background.
Indeed, we should modify (5.29) as

Sγ(L) ≈
ceff(τ)hL

6
(5.30)

where τ is given by (5.26). In order to check this, we have obtained the entropy per
site, defined for convenience as

s(h, γ) = lim
L→∞

6S[AL]
L

. (5.31)

The values of s(h, γ) are obtained through a linear fit. Fig. 5.7 (top) shows this
entropy per site as a function of h for several values of γ. For very low values of h,
all curves seem to collapse. Yet, for γ /∈ [0,1], the curve s(h) eventually presents a
maximum and decays to zero. This is a signature that the system will obey the area
law in the strong inhomogeneity limit. The validity of (5.30) can be checked with
the soft continuous lines, which correspond to the theoretical prediction. Indeed,
for low values of h the prediction is very accurate, losing this accuracy for large
inhomogeneity (h ≈ 1.5).

Furthermore, (5.30) suggests that the entropy per site will collapse if we plot
s(h, γ)/h as a function of a measure of the defect intensity, h(γ − 1/2). Indeed, this
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collapse can be seen in the bottom panel of Fig. 5.7, showing the universal curve
for ceff(τ). The high accuracy of this collapse can be checked in the inset, which
shows the same data in logarithmic scale. Moreover, the circles correspond to the
plot of ceff in (5.24) as a function of log(τ), for comparison.

5.3.4 Phase diagram

In Fig. (5.8) we show the relative error between the theoretical prediction and the
numerics

δs(h, γ) = ∣s(h, γ) − hceff∣
s(h, γ) , (5.32)

in the color intensity. The white lines correspond to the theoretical values of the
relative maxima of s(h, γ) as a function of h, following (5.30). Notice that the theo-
retical prediction states that, for all γ, the curve s(h) will present a maximum and
decay to zero afterwards. Thus, weak inhomogeneity regime presents a smooth
crossover into the three phases of the strong inhomogeneity regime described in
the previous section. For large h lattice effects become dominant and the universal
properties predicted by the field theory approach are lost.

5.3.5 Beyond entanglement entropy

Having studied the entanglement entropy, and proceeding analogously to what
we did in the previous chapter, let us study the entanglement Hamiltonian, the
entanglement spectrum (ES), and the contour.

Entanglement Hamiltonian

The entanglement Hamiltonian (see 3.3.1) HA is approximately local for a 1+1D
CFT (Cardy and Tonni 2016; Tonni et al. 2018). Indeed, it can be written as (3.93)

HA ≈∑
i

βA(i) c†
i ci+1, (5.33)

where the βA(i) constitute entanglement couplings and we neglect the terms that
describe long-range interactions since they are expected to be very small. The
estimation of the set of {βA(i)} is obtained by minimizing an error function (3.94)
using standard optimization techniques (Tonni et al. 2018).

The numerical values of {β(i)} for the left half (block AL) of a L = 20 system,
using h = 0.5 and different values of γ are shown in Fig. 5.9. For γ = 1/2 the EH
of the rainbow system presents flat coefficients β(i) everywhere except near the
physical boundary (left extreme) and near the internal boundary (right extreme),
where it follows the Bisognano-Wichmann prediction, that they will decay to
zero linearly, with slope 1. Yet, in presence of a defect we observe an increasing
dimerization of the EH.
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Let us remind the reader that the flat profile for {β(i)} in the rainbow case
accounts for the fact that the rainbow GS for all values of h resembles a thermofield
double (see (4.68) and discussion below) as was shown by Ramírez et al. (2015) and
Tonni et al. (2018)

∣Ψ⟩ ≈∑
n

exp(−βEn/2) ∣n⟩L ⊗ ∣n⟩R , (5.34)

where En and ∣n⟩{L,R} are the energies and eigenstates of the homogeneous free
Hamiltonian on the left/right with open boundaries. Thus, we are led to the
following claim: in presence of a defect, the ground state of Hamiltonian (5.2) is
still approximately a thermofield double, but of a dimerized Hamiltonian, with
dimerization parameter associated to the defect strength γ.

We would like to stress that the cases of γ and 1 − γ are extremely similar, only
interchanging the higher and lower values of the dimerization pattern.

Entanglement Spectrum

We have considered the full entanglement spectrum of the left half block, AL,
for different values of γ. It is obtained in terms of the eigenvalues {νk}Lk=1 of
the block correlator matrix (3.89). As it can be expected, the defect preserves
the particle-hole symmetry. The most salient feature is that the entanglement
spectrum shows a finite gap ∆ε whose width grows with γ, as can be seen in
Fig. 5.10 (top). Let us recall that the entanglement gap, ∆ε ∼ 1/ log(L) for a CFT
system, but for a deformed system such as the rainbow we should consider instead
∆ε ∼ 1/ log(L̃) ∼ 1/L. Indeed, for low h the gap decays linearly with the system
size, as we can see on the bottom panel of Fig. 5.10 for h = 0.015, but it seems to
reach a finite value for h = 0.32.
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Entanglement Contour

With respect to the entanglement contour (see 3.3.3), we use the expression (3.102)
provided by Chen and Vidal (2014). Fig. 5.11 shows the curve of the entanglement
contour for the left block of the rainbow GS using L = 40 and h = 0.5, for different
values of γ, scaled with the entropy density predicted in (5.30). The collapse is
very clear in the bulk region, which presents universal features, and a little bit less
near the boundary, where it does not. Importantly, notice that the entanglement
contour does not present any oscillations related to dimerization, with a constant
entropy per site in the bulk.

5.4 Conclusions

In this chapter we have characterized a lattice model of Dirac fermions on a
negatively curved background in presence of a local defect. The unperturbed
lattice model is the rainbow model that we have introduced in Chapter 4. The
presence of a defect in the center of the chain can induce an entanglement transition
in the strong inhomogeneity limit, characterized by a rainbow phase of linear
scaling of entanglement for intermediate defect strengths, and two dimerized
phases, with alternate dimerizations in similarity with the SSH model. Further
hints of the transition are provided by the ground state energy, the single-body
orbitals, the energy gap (rescaled with the minimum coupling) and two order
parameters: the average dimerization and the rainbow order parameter, which
measures the average occupation of the concentric bonds.
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Bottom: Scaling of the entanglement spectrum gap ∆ε with size 2L for different
values of γ. The upper panel shows the case h = 0.32, and the lower panel h = 0.015.
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Figure 5.11: Entanglement contour of the left half (the left edge is the physical
boundary while the right one is originated by the block) of the rainbow model with
a defect using L = 40 and h = 0.5, scaled with the entropy per site predicted in (5.30),
for different values of γ.

In the weak inhomogeneity limit, the transition gets blurred, and the ground
state always presents linear entanglement, with an entropy per site that can be
effectively described by a geometric deformation of the entanglement entropy of a
homogeneous fermionic chain with a central defect. Analysis of the entanglement
gap and the entanglement Hamiltonian allows us to claim that the system behaves
as a thermofield double, as in the rainbow case, but with a dimerized Hamiltonian
instead of a homogeneous one.

This work opens up several interesting questions related to the presence of ge-
ometric defects on the vacuum structure of a quantum field theory. It is interesting
to ask whether such a deep modification of the entanglement properties can be
found in other cases.
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Appendices

5.A Details of the application of the SDRG

In this appendix we detail the obtainment of the ground states by using the
SDRG. For our purposes, it is convenient to consider the log-couplings (5.7).
Interestingly, the log-couplings SDRG rule (5.8) can be generalized for this type of
models: whenever a bond is established between sites p and q (with p + q even),
the renormalized log-coupling is given by the sum rule (Alba et al. 2019):

t̃[p,q] =
q−p−1

∑
j=0
(−1)jtp+j, (5.A.1)

or, in other words: the renormalized log-coupling can be obtained summing all log-
coupling between the two extremes, with alternating signs. We shall distinguish:

• The rainbow phase: γ ∈ (0,1), see Fig. 5.1 (b). The strongest link (lowest
log-coupling) is the central one. Thus, a valence bond is established on top
(b+−1/2,+1/2) and an effective log-coupling appears between its neighbors, of
magnitude t̃ = 2 − γ < 2. Thus, the central link is again the strongest one,
so we can put a valence-bond on top of it (b−−3/2,+3/2), leading to an effective
log-coupling of magnitude t̃ = 2 + γ < 3. We can see that the procedure
iterates, giving rise to the rainbow state.

∣GS⟩γ∈(0,1) =
L−1

∏
i=0
(bηi−i−1/2,i+1/2)

†
∣0⟩ , ηi = (−1)i. (5.A.2)

• The dimerized phase (I): γ < 0, see Fig. 5.1 (c). The dominant interaction is
again the central one, leading us to establish a valence bond on top. Yet, the
renormalized log-coupling, t̃ = 2 − γ > 2 is not the strongest (lowest value)
at the next SDRG iteration. On the other hand, we are led to establish two
valence bonds on top of the links with log-couplings equal to 2, in any order.
The renormalized central log-coupling after these two bonds have been
established is t̃ = 4 − γ > 4 (see (5.A.1)), so we are led to the same situation,
where the lateral links are always stronger than the central one, leading to a
dimerized state. Yet, the last SDRG step leaves us with the two extreme sites
of the chain, leading to a final bond connecting them. The ground state can
be written as
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∣GS⟩γ<0 = (b−−L+ 1
2
,L− 1

2

)†
L
2
−1

∏
i=−L

2
+1

(b+
2i− 1

2
,2i+ 1

2

)† ∣0⟩ . (5.A.3)

Notice that the last bond is only present for even L, while it is absent for odd
L.

• The dimerized phase (II): γ > 1, see Fig. 5.1 (d). In this case, the dominant
interaction is not the central one, but their neighbors, with t±1 = 1. Hence,
we must establish first these two valence bonds, leading to a renormalized
log-coupling between their extremes of t̃ = 2 + γ > 3 (see (5.A.1)). Thus, we
have the same situation, in which the central link is not the strongest. In this
case, no long-range bond is established at the end of the procedure, and we
obtain

∣GS⟩γ>1 =
L−1
2

∏
i=−L−1

2

(b+
2i− 1

2
,2i+ 1

2

)† ∣0⟩ . (5.A.4)

• The transition points: γ = 1 and γ = 0, see Fig. 5.1 (e) and (f). Let us start with
γ = 1 (Fig. 5.1 (e)). The first SDRG step fails, because the strongest coupling
is not unique. On the other hand, we obtain a triple tie in the three central
links, with t0,±1 = 1. In Appendix 5.B we have developed an extension of the
SDRG for the free-fermion model when a block with 2` sites is integrated
out, yielding the renormalized log-coupling given by the sum rule, (5.A.1).
Thus, the renormalized log-coupling between sites −5/2 and +5/2 is t̃ = 3,
leading to a new triple tie, which propagates further along the chain. For
γ = 0, on the other hand, the strongest link is the central one, thus receiving
a valence bond. But, on the next SDRG step, we can see that the effective
central log-coupling is t̃ = 2, equal to its neighbors in a new triple tie, forcing
us to recourse to the extended SDRG. From that moment on, all SDRG steps
lead to triple ties. The ground states take the form

∣GS⟩γ=0 = (b−−L+ 1
2
,L− 1

2

)†
L
4

∏
i=1
(dηi

2i+ 1
2

)†(b+− 1
2
, 1
2

)† ∣0⟩ , (5.A.5)

∣GS⟩γ=1 =
L
2

∏
i=1
(dηi

2i− 1
2

)† ∣0⟩ , (5.A.6)

where d±k are operators creating two particles on four fermionic sites given
by (5.9).

96



5.B Dasgupta-Ma RG extension for free fermions

In this Appendix we describe a generalization of the Dasgupta-Ma RG for in-
homogeneous free fermionic chains that can be applied to systems that have an
homogeneous subchain of N = 2L sites embedded. The Hamiltonian H0 that
describes this subchain is given by

H0 = −
J

2

N−1

∑
i=1

c†
i ci+1 + c†

i+1ci, (5.B.1)

and its interactions with the nearest neighbours is given by Hlr

Hlr = −Jlc†
l c1 − Jrc†

Ncr + h.c.. (5.B.2)

Assuming that Jl ≪ J and Jl
Jr
≈ 1 the whole system can be study by means of de-

generate perturbation theory. The ground state of H0 is given in the previous Ap-
pendix (see (??)) ∣ψ0⟩ =∏L

m=1 φ̂
†
km
∣0⟩ with energy E0 = ∑Lm=1 εkm = −2∑Lm=1 cos ( mπN+1

).
The first order correction ⟨ψ0; l′, r′∣Hlr∣ψ0; l, r⟩ (where ∣ψi; l, r⟩ = ∣ψi⟩⊗ ∣l⟩⊗ ∣r⟩) van-
ishes. The matrix element Bl,r;l′r′ of the degenerate second order contribution is
given by:

Bl,r;l′r′ =∑
i≠0
∑
l′′r′′

⟨ψ0; l, r∣Hlr∣ψi; l′′, r′′⟩ ⟨ψi; l′′, r′′∣Hlr∣ψ0; l′, r′⟩
E0 −Ei

(5.B.3)

Expanding this product and taking into account that ∑l′′r′′ ∣l′′, r′′⟩ ⟨l′′, r′′∣ = I we
have:

Bl,r;l′r′ = J2
l ( ⟨l, r∣c†

l cl∣l′, r′⟩
N

∑
i=1

⟨ψ0∣c1∣ψi⟩ ⟨ψi∣c†
1∣ψ0⟩ + ⟨ψ0∣c†

1∣ψi⟩ ⟨ψi∣c1∣ψ0⟩
εki

−
N

∑
i=1

⟨ψ0∣c†
1∣ψi⟩ ⟨ψi∣c1∣ψ0⟩

εki
)+

J2
r ( ⟨l, r∣c†

rcr∣l′, r′⟩
N

∑
i=1

⟨ψ0∣cN ∣ψi⟩ ⟨ψi∣c†
N ∣ψ0⟩ + ⟨ψ0∣c†

N ∣ψi⟩ ⟨ψi∣cN ∣ψ0⟩
εki

−
N

∑
i=1

⟨ψ0∣c†
N ∣ψi⟩ ⟨ψi∣cN ∣ψ0⟩

εki
)+

JlJr ( ⟨l, r∣c†
l cr∣l′, r′⟩

N

∑
i=1

⟨ψ0∣c1∣ψi⟩ ⟨ψi∣c†
N ∣ψ0⟩ + ⟨ψ0∣c†

N ∣ψi⟩ ⟨ψi∣c1∣ψ0⟩
εki

+

⟨l, r∣c†
rcl∣l′, r′⟩

N

∑
i=1

⟨ψ0∣cN ∣ψi⟩ ⟨ψi∣c†
1∣ψ0⟩ + ⟨ψ0∣c†

1∣ψi⟩ ⟨ψi∣cN ∣ψ0⟩
εki

) ,

(5.B.4)

Where the non vanishing contributions are given by the excited states whose
particle number differs by one with respect to ∣ψ0⟩:

⟨ψi∣c†
i ∣ψ0⟩ ≠ 0 if ∣ψi⟩ = φ̂ki ∣ψ0⟩ , Ei = E0 − εki , (5.B.5)

⟨ψi∣ci∣ψ0⟩ ≠ 0 if ∣ψi⟩ = φ̂†
ki
∣ψ0⟩ , Ei = E0 + εki . (5.B.6)
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Given that ci = ∑Nm=1Uimφ̂km we reach

Bl,r;l′r′ =J2
l ( ⟨l, r∣c†

l cl∣l′, r′⟩
N

∑
i=1

∣U1m∣2
εkm

+
L

∑
i=1

∣U1m∣2
εkm

)

+ J2
r ( ⟨l, r∣c†

rcr∣l′, r′⟩
N

∑
i=1

∣UNm∣2
εkm

+
L

∑
i=1

∣UNm∣2
εkm

)+

JlJr ( ⟨l, r∣c†
l cr∣l′, r′⟩

N

∑
i=1

U1mU∗mN
εkm

+ ⟨l, r∣c†
rcl∣l′, r′⟩

N

∑
i=1

UNmU∗m1

εkm
) .

(5.B.7)

Now, particularizing for the single-body modes (3.26) we obtain that the renor-
malized Hamiltonian B is (up to an additive constant):

Heff = −
JlJr
J
(c†
l cr + h.c) , (5.B.8)

which is the expression used to renormalize the systems with strength defects
γ = 0 and γ = 1.

5.C Correlation matrices and entanglement entropy

The correlation matrices C for the ground states (5.A.2)-(5.A.6) can be obtained
using (4.A.15)

Cij =
NF

∑
k=1

UikU
∗
jk,

where we consider half filling and φ̂m are the fermionic excitations of each system
(bi,j (5.6) and di (5.9) in our case) and Uik is a unitary matrix.

We shall next describe the correlation matrices as a function of the defect
parameter γ. All the matrices are symmetric Ci,j = Cj,i and present left-right
symmetry Ci,j = CN+1−j,N+1−i. All the computations are done with L even.

• γ < 0:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ci,i = 1
2 , i = 1, . . . , L

C1,N = −1
2 ,

C2i,2i+1 = 1
2 , i = 1, . . . L2 ,

(5.C.1)

• γ = 0:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1,N = −1
2 , CL,L+1 = 1

2

Ci,i = 1
2 , i = 1, . . . , L

Ci,N+1−i = (−1)i 1
2
√

5
, i = 2, . . . , L − 1

C2i,2i+1 = 1√
5
, i = 1, . . . L2 ,

(5.C.2)
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• γ ∈ (0,1):

Ci,j =
1

2
δi,i + (−1)i

1

2
δi,N+1−i, (5.C.3)

• γ = 1:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ci,i = 1
2 , i = 1, . . . , L

Ci,N+1−i = (−1)i 1
2
√

5
, i = 1, . . . , L

C2i−1,2i = 1√
5
, i = 1, . . . L2

(5.C.4)

• γ > 1:

⎧⎪⎪⎨⎪⎪⎩

Ci,i = 1
2 , i = 1, . . . , L

C2i−1,2i = 1
2 , i = 1, . . . L2

(5.C.5)

The correlation matrix of the four sites that are integrated out in the same
step whose ground state is given by (5.9) is

C4 =

⎛
⎜⎜⎜⎜⎜
⎝

1
2

1√
5

0 − 1
2
√

5
1√
5

1
2

1
2
√

5
0

0 1
2
√

5
1
2

1√
5

− 1
2
√

5
0 1√

5
1
2

⎞
⎟⎟⎟⎟⎟
⎠

. (5.C.6)

The most simple non trivial lateral block is

A2 =
⎛
⎝

1
2

1√
5

1√
5

1
2

⎞
⎠
, (5.C.7)

whose eigenvalues are ν1 = 1
10
(2
√

5 + 5) , ν2 = 1
10
(5 − 2

√
5). The value of Sa,

given in (5.15), is obtained applying (3.54). Furthermore Sb, given in (5.16),
is obtained from the central block

B1 =
⎛
⎝

1
2

1
2
√

5
1

2
√

5
1
2

⎞
⎠
, (5.C.8)

whose eigenvalues are ν1 = 1
10
(
√

5 + 5) , ν2 = 1
10
(5 −
√

5). It can be shown that
larger central blocks also have these non trivial eigenvalues and the rest are
0 and 1 which do not contribute to the entanglement entropy .
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5.D Relation to the Dirac equation with δ potential

Consider an inhomogeneous free-fermion chain with a central hopping defect and
bond centered symmetry described by the Hamiltonian:

H(τ) = −τ
2
c†
− 1

2

c 1
2
− 1

2

L− 3
2

∑
m= 1

2

Jm (c†
mcm+1 + c†

−mc−m+1) . (5.D.1)

The single body spectrum is obtained by diagonalizing the hopping matrix. The
eigenvalue equations at the center of the chain are

αφ− 3
2
+ τφ 1

2
= εφ− 1

2
, (5.D.2)

τφ− 1
2
+ αφ 3

2
= εφ 1

2
, (5.D.3)

where ε is the single body energy and φm is the amplitude associated with the
fermionic operator cm and J 1

2
= α. The expansion of the local operators cm in terms

of its right and left moving components around the Fermi points (see (5.18)) leads
to the equations:

τ (ψIIL − iψIIR ) = (−iε + α)ψIL + (ε − iα)ψIR (5.D.4)

τ (ψIL + iψIR) = (iε + α)ψIIL + (ε + iα)ψIIR , (5.D.5)

with

lim
a→0

ψL,R (−
3

2
a) = lim

a→0
ψL,R (−

1

2
a) = ψIL,R, (5.D.6)

lim
a→0

ψL,R (
3

2
a) = lim

a→0
ψL,R (

1

2
a) = ψIIL,R, (5.D.7)

Solving for ψIL in (5.D.4) and putting it into (5.D.5) we have:

ψIR =
1

2ατ
(i(τ 2 − α2 − ε2)ψIIL + (τ 2 − (ε + iα)2)ψIIR ) . (5.D.8)

Inserting this expression into (5.D.4) we arrive at

ψIL =
1

2ατ
((τ 2 + (α + iε)2)ψIIL − i(τ 2 − α2 + ε2)ψIIR ) . (5.D.9)

We can express these two equations as ψI = TψII , where T is a transfer matrix:

(ψ
I
L

ψIR
) = 1

2ατ
( τ

2 + (α + iε)2 −i(τ 2 − α2 + ε2)
i(τ 2 − α2 − ε2) τ 2 − (ε + iα)2 )(

ψIIL
ψIIR
) . (5.D.10)

Furthermore, at half filling we have that ε ÐÐÐ→
L→∞

0 and the transfer matrix
simplifies to:
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T = 1

2ατ
( τ 2 + α2 −i(τ 2 − α2)
i(τ 2 − α2) τ 2 + α2

) . (5.D.11)

Note that this can be also written as:

T = 1

2τ̃
( τ̃ 2 + 1 −i(τ̃ 2 − 1)
i(τ̃ 2 − 1) τ̃ 2 + 1

) , (5.D.12)

where τ̃ = τ
α . Substituting τ = e−hγ and α = e−h2 we have the expression (5.25).
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Chapter 6

Symmetry protected topological
phases and inhomogeneity

In this chapter we show that by folding the rainbow chain around its cen-
ter, the long-range entanglement becomes short-range which can lead to
topological phases protected by symmetries (SPT). The phases are trivial
for bond-centered foldings, and non trivial for site-centered ones. In the
latter case, the folded spin 1/2 chain with U(1) symmetry belongs to the
Su-Schrieffer-Heeger class, while the folded chain with SU(2) symmetry is
in the Haldane phase. Finally, we extend these results to higher spin chains
where we find a correspondence between the symmetry protection of gapped
and gapless phases. Finally, we study the robustness of non trivial topological
phases in the presence of the defect. This chapter contains content published
in Samos Sáenz de Buruaga et al. (2019, 2020).

As we mentioned in Chapter 1, the area of Quantum Matter has emerged,
where Condensed Matter Physics and Quantum Optics find a common ground to
exchange ideas and techniques. Some antecedents of this area can be found in the
80’s in the integer and fractional Quantum Hall effects (Tsui et al. 1982) that paved
the way to the more recent discovery of topological insulators and superconductors
(Bernevig and Hughes 2013), Weyl semimetals (Yan and Felser 2017), etc. The
description of Quantum Matter goes beyond the Landau paradigm in terms of
symmetry breaking and local order parameters. The fundamental concept here
is that of topology which in this context means that the relevant properties of
a physical system are distributed throughout its extent, whose characterization
requires the use of advanced mathematical tools (Wen 1989; Wen 2002; Wen 2017).

Those states with short-range entanglement can be disentangled, i.e. turned
into a product state through local unitary evolution (Chen et al. 2010). Yet, if we
impose that the unitaries must preserve the symmetries of the system, some states
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cannot be transformed into a product state because of constraints imposed by the
symmetry. Thus, the states belong to symmetry protected topological (SPT) phases
(Gu and Wen 2009; Tsui et al. 2015). If the system is closed (in the sense of boundary
conditions), the ground state belonging to an SPT phase does not spontaneously
break the symmetry, and it is not degenerate. On the contrary, if the system is
open, it possesses non-trivial zero modes, that are called edge-states if they are
located at the ends of the chain1. The presence of zero modes makes the ground
state degenerate. The so-called topological invariants, such as the Chern number,
are quantities that do not depend on the boundary and that take different discrete
values for different topological phases. A ground state belonging to an SPT phase
fulfills the so-called bulk-edge correspondence (Bernevig and Neupert 2015). A
non-trivial value of the bulk invariant for the closed system implies the existence
of edge-modes for the open chain.

Interacting bosonic topological insulators and topological superconductors
were classified using group cohomology theory by Chen et al. (2013, 2011) and with
matrix product states and tensor network tools by Schuch et al. (2011). Altland and
Zirnbauer (1997) proposed the so called ten-fold way: a classification framework
of non-interacting topological insulators and superconductors under the presence
of time-reversal and charge conjugation symmetries, and Kitaev (2009) re-derived
it by analyzing the topological invariants with the so-called K-Theory of algebraic
topology. Fidkowski and Kitaev (2011) and Turner et al. (2011) studied the effects
of interactions on the topological classification of free fermions under an entan-
glement perspective. Indeed, the characterization of the entanglement spectrum
has proven to be a good detector of this kind of phases (Cho et al. 2017; Fidkowski
2010; Pollmann et al. 2012, 2010).

Let us consider the antiferromagnetic Heisenberg chain (AFH) of spin 1. As
famously conjectured by Haldane (1983), the spin 1 AFH Hamiltonian has a unique
ground state which does not break the rotational symmetry SO(3), and presents a
gap in the spectrum for periodic chains. This conjecture led Affleck et al. (1988)
to propose a state whose properties are similar to those of Haldane’s state, and
whose many-body wave function is a matrix product state (MPS) (Orús 2014;
Schollwöck 2011). The topological properties of the Haldane and the AKLT states
were characterized by a string order parameter of den Nijs and Rommelse (1989)
or a symmetry dependent string order parameter (Haegeman et al. 2012), and the
existence of effective spins 1/2 at the ends of an open chain. It was realized that the
Haldane phase can be protected by several symmetries like Z2 ×Z2 (Kennedy and
Tasaki 1992), time reversal and inversion symmetry (Gu and Wen 2009; Pollmann
et al. 2012), which guarantee independently the degeneracy of the entanglement
spectrum. More importantly, the concept of symmetry protection turns out to
be the key to understand and classify the phases with short range entanglement
where one can apply the MPS techniques (Chen et al. 2011; Schuch et al. 2011).

1The zero modes can locate at the edges for specific parameter configurations.
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Here we present a new way to generate symmetry protected phases in 1D using
local Hamiltonians that are inhomogeneous and without a gap in the spectrum. At
first glance, one does not expect this possibility to occur because the corresponding
ground states would develop long-range entanglement that violates the area-law
(Hastings 2006; Vitagliano et al. 2010; Wolf et al. 2008). However, we will show
that a rearrangement of the sites transforms the long-range entanglement into
short-range entanglement, where standard methods can be applied to identify
the possible phases (Chen et al. 2013, 2011). We shall consider the rainbow model
presented in Chapter 4 and we will introduce a similar model in order to describe
trivial and non trivial symmetry protected topological (SPT) phases. A byproduct
of our construction is that it suggests a relationship between the SPT phases and
the phases described by conformal field theories (CFT) in terms of global anoma-
lies (Furuya and Oshikawa 2017). The reason is that the former are constructed
from a special deformation of the latter. We shall illustrate this relation with
several examples.

The chapter is organized as follows. In Sec. 6.1, we present two models that we
shall analyze. One of them is the rainbow state that we introduced in Chapter 4,
and the other is slightly different but whose ground state is dramatically different
in the strong inhomogeneity regime. In Sec. 6.2, we shall introduce in the new
model the central defect considered in the previous chapter, and analyze the strong
inhomogeneity regime. In Sec. 6.3, we propose an antiferromagnetic Heisenberg
version of the model, and in Sec. 6.4, we discuss the relation between the gapped
and gapless topological phases.

6.1 Bond and site centered symmetries

Let us start with the rainbow model defined on the closed chain of N = 2L sites

H = −1

2

2L

∑
n=1

Jnc
†
ncn+1 + h.c. (6.1)

where c2L+1 = c1 and the couplings Jn are given by (4.4)

Jn≠L = e−h∣n−L∣, JL = e−
h
2 (6.2)

As we mentioned, these couplings endow the model with an inversion symme-
try around bond (L,L + 1). Hence we shall refer to it as bond-centered symmetry
(bcs) model. Here we shall introduce a variant of the rainbow model discussed in
Chapter 4 by proposing the couplings

Jn≠L,L+1 = e−h(∣n−(L+
1
2
)∣− 1

2
), JL = JL+1 = e−

h
2 , (6.3)

that endow the system with an inversion symmetry around the central site L + 1,
leading to define the site-centered symmetry (scs) model

Jn = J2L−n (bcs), Jn = J2L+1−n (scs) (6.4)
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Figure 6.1: Illustrating our physical model, (6.1) with couplings given in (6.3).
Symmetrical links with respect to the dashed line carry the same couplings. (a)
Bond-centered symmetry (bcs); (b) Site-centered symmetry (scs).

The symmetries of the two types of chains are illustrated in Fig. 6.1. In the
bcs model the highest coupling lies at the center of the chain, that is JL, while
the weakest coupling is J2L = e−hL that connects sites 1 and 2L. In the strong
inhomogeneity limit hL≫ 1, one can set J2L to zero which leads to the rainbow
chain studied in Sec. 4.1. Let us recall that by using the Dasgupta-Ma RG method
(Dasgupta and Ma 1980; Fisher 1995) the ground state of the rainbow chain takes
the form (Ramírez et al. 2014)

∣bcs⟩ h→∞Ð→ (b+1)†(b−2)†(b+3)† . . . (bηLL )† ∣0⟩ , (6.5)

where bm fermions are given by the bonding/anti-bonding fermionic operators
(4.12)

b±n ≡ b±L+1−n,L+n =
1√
2
(cL+1−n ± cL+n), n = 1, . . . , L , (6.6)

are fermion operators on the opposite sides of the chain, that annihilate the Fock
vacuum ∣0⟩ and ηL = (−1)L+1, and they satisfy the usual canonical anticommutation
relations (3.10). As we have seen, the state presents a maximal violation of the
entanglement entropy for the block A = {1,2, . . . , `}:

Sbcs
A = ` log 2, ` ≤ L . (6.7)

Let us consider now chains with site-centered symmetry. In the limit h ≫ 1,
the dominant interaction takes place between sites L,L + 1 and L + 2. Observe that
the SDRG used for the bcs model cannot be used in this case since there are two
equally strong couplings. In this situation one should use first order perturbation
theory to renormalize three spins into one effective spin. See the details on the
Appendix (6.A). Iterating this RG procedure one obtains the ground state,

∣scs⟩ h→∞Ð→ (d+0)†(d−1)†(d+2)†(d−3)† . . . (d+L)† ∣0⟩ , (6.8)

where

f0 ≡ cL+1, fL ≡ c1, f±n ≡ b±L+1−n,L+1+n =
1√
2
(cL+1−n ± cL+1+n),

d±0 =
1√
2
(f0 ± f+1 ), d±L =

1√
2
(fL ± f+L−1), d±n =

1√
2
(f±n + f±n+1) ,

n = 1, . . . , L − 1 ,

(6.9)
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Figure 6.2: Entanglement entropy of lateral blocks belonging to the ground states of
the scs (N = 41) and bcs (N = 40) models with open boundary conditions. Observe
that in order to preserve the scs symmetry, the open chain presents an odd number
of sites. Notice that they differentiate their behaviour in the strong inhomogeneity
regime. The black lines correspond to the theoretical predictions (6.7) and (6.10).
Please refer to Appendix 6.B for details of the derivation of (6.10).

where the operators d±n also satisfy the canonical anticommutation relations (3.10)
The entanglement entropy of the block A is (see Appendix 6.B)

Sscs
A = (` + 1) (2 log 2 − 1), ` ≤ L , (6.10)

which is still linear but not maximal as in (6.7), as it can be seen in Fig. 6.2
The long-range entanglement of the bcs/scs states can be converted into short-

range one using the basis of states generated by the operators b±n and f±n . The b-
operators are the bonding and anti-bonding combinations of the fermions located
at opposite sites in the chain. They become local operators by folding the chain
around the bond (L,L+ 1) that transforms it into a ladder with 2 legs and L rungs,
as we have seen in Sec. 5.2.3. The folding trick has played an important role in
the study of quantum impurity problems (Büsser and Feiguin 2012; Kane and
Fisher 1992; Simon and Affleck 2001). Equation (6.5) shows that the bcs state is the
product of bonding and antibonding states on the rungs. Hence, the entanglement
entropy of the block C = {L+ 1− `, . . . , L+ `} located at the center of the chain, that
corresponds to ` rungs in the ladder, is simply

Sbcs
C = 0, ` = 1, . . . , L − 1 . (6.11)

Turning to the site-centered chains we observe that the f -operators, (6.9),
involve a folding transformation that leaves sites 1 and L+1 untouched. The chain
is now transformed into a ladder with L − 1 rungs and two isolated sites on both
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Figure 6.3: Ground states of the rainbow XX model in the limit h→∞. We use the
folded representation of Fig. 6.1.

edges. The entanglement entropy of block C = {L + 2 − `, . . . , L + `} located at the
center of the chain (see Fig. 6.1), that corresponds to ` rungs in the ladder and one
site, is given by

Sscs
C = log 2, ` = 1, . . . , L − 1 . (6.12)

One can verify the expressions (6.11)) and (6.12) by looking at Fig. 6.3 which
shows that the GS of the bcs rainbow is a charge density wave (CDW), while
that for the scs rainbow is a staggered dimer state, reminiscent of the trivial and
topological phases of the well known SSH model (Su et al. 1979). The origin of
these GS structures can be understood writing the Hamiltonian (6.1) using the
operators (6.6)

Hbcs = −
1

2
(
L−1

∑
n=1

JL−n ((b+n)†b+n+1 + (b−n)†b−n+1 + h.c.)

+ JL((b+1)†b+1 − (b−1)†b−1) + J2L((b+L)†b+L − (b−L)†b−L)),
(6.13)

and (6.9),

Hscs = −
1

2
(
L−2

∑
n=1

JL−n((f+n )†f+n+1 + (f−n )†f−n+1)

+
√

2JL f
†
0f
+
1 +
√

2J1 f
†
Lf
+
L−1 + h.c.).

(6.14)

In the bcs model the chemical potential on the first rung induces, in the strong
inhomogeneity limit, the full occupation of site +1 and the emptying of site −1.
This mechanism gives rise to a CDW state (see details in Appendix 6.D). In the scs
model, the hopping term between the isolated mode f0 and the mode f+1 of the
first rung, induces in the same limit, a hybridization that propagates along the
chain producing a staggered dimer state on the ladder. These ground states are
illustrated in Fig. 6.3. The bcs state is a product state in the basis b±n, so a MPS with
bond dimension χ = 1. On the other hand, the scs state is a product of dimers, with
bond dimension χ = 2 (Appendix 6.E.3). The entanglement spectrum is twofold
degenerate with two equal eigenvalues. We shall next show that the previous
topological features persist for all values of h > 0. Fig. 6.4 shows the entanglement
entropies of the central blocks B = [−x,x] with x = n − L − 1

2 for bcs chain and
x = n − L − 1 for the scs chain. They are independent of x, for sufficiently large
values, so corresponding to an area law for the folded chain. Notice that when
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h≫ 1 the entanglement entropy for the bcs chains goes to zero while that for the
scs chains goes to log 2, in agreement with (6.11) and (6.12). The rainbow chain
has a continuum limit given by a massless Dirac fermion on a curved spacetime as
we have shown in Sec. 4.2. Using CFT techniques one can find the Von Neumann
entropy of the a central block (Rodríguez-Laguna et al. 2017) B = [−x,x] is

SB(x) ≃
1

3
log [4L̃

π
e−hx sin

πx̃

L̃
] +Υ1 <

1

3
log

4

h
+Υ1 (6.15)

where x̃ = (ehx−1)/h (4.46) and Υ1 ≃ 0.49502 is the non-universal constant (3.73)
found by Jin and Korepin (2004). Fig. 6.4 shows that this expression reproduces
the bcs and scs entropies when h is not too large, where the field theory limit
applies. The upper bound in (6.15) is similar to the entanglement entropy of a
massive theory in the scaling limit with 1/h as correlation length
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Figure 6.4: Entanglement entropy of the central block for increasing values of h
shown in descending order, of the bcs and scs chains with L = 51. The continuum
lines are the CFT prediction (6.15).

Another signature of an SPT phase is the degeneracy of the entanglement
spectrum (ES) (Pollmann et al. 2010; Turner et al. 2011). For a free fermion system
the entanglement energies are given by E({np}) = ∑p εpnp + r0, where {np = 0,1}
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Figure 6.5: Single particle entanglement spectrum εp for a scs chain with L = 51 as
a function of h.
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is the set of occupation numbers of the one-body entanglement entropies εp that
are computed from the eigenvalues of the correlation matrix (3.89) ⟨c†

ncm⟩ (Peschel
2003). For scs chains there exists a zero mode, ε0 = 0, for all values of h, that
gives rise to a doubly degeneracy of the entanglement spectrum (see Fig. 6.5).
This degeneracy is protected by the time reversal and particle-hole symmetry of
the Hamiltonian. Hence, this model belongs to the symmetry class AIII for free
fermions, the same as the SSH model (Bernevig and Neupert 2015; Fidkowski and
Kitaev 2011; Su et al. 1979): a perturbation to the Hamiltonian that does not respect
those symmetries will break the entanglement spectrum degeneracy.

6.2 Defect in a symmetry protected topological phase

The value of the central coupling in the systems considered so far is eh/2 yielding
a chain without a central defect, according to what we have seen in Chapter 5,
where we studied the bcs model in presence of a central defect parametrized by γ.
Here we shall consider the natural extension of this model for the scs symmetry
and ask ourselves how the defect affect in this case. We define thus the analogous
scs model

HN(h, γ)scs = −
1

2

N

∑
m=1

Jmc
†
mcm+1 + h.c., (6.16)

where there are two equal central hoppings depending on γ
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Figure 6.6: Single body entanglement spectrum εk of a block B11 of a system
described by the Hamiltonian H46(h,

17
2 )scs as a function of h. Notice the topological

zero mode, which does not depend on h.

Jm =
⎧⎪⎪⎨⎪⎪⎩

e−h(∣m−(L+
1
2
)∣− 1

2
) if m ≠ L,L + 1,

e−hγ if m ∈ {L,L + 1},
(6.17)
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i.e., the log-couplings (5.7) present the pattern {. . . ,3,2,1, γ, γ,1,2,3, . . .}. Since the
topological nature of the state is highlighted after removing the local entanglement
(Chen et al. 2011), it is better to study the system in the strong inhomogeneity
regime. The fermionic excitations are not spread along the whole system as it is
the case in the weak inhomogeneity limit. Hence, we will study the system in
the strong inhomogeneity regime HN(h ≫ 1, γ)scs by means of renormalization
schemes that depend on the value of γ (see details in Appendix 6.C).

Observe that γ ≤ 1 corresponds to the case that we have presented above: the
dominant interaction involves the three central sites, L, L + 1 and L + 2 and we
have to employ the real space first order perturbation theory RG (see Appendix
6.A). On each step, three fermions are truncated into one which participates on the
next step leading to a topological ground state with non removable entanglement
that belongs to the AIII class. The case with γ = 1 differs only on the first step of
the RG where 5 spins (instead of three) are truncated to one.

On the other hand, the case γ > 1 is again different. Starting from HN(h, γ)scs,
the dominant interactions are two non consecutive log-couplings 1 which allows
the use of the Dasgupta-Ma RG (5.4), leading to an effective system whose Hamil-
tonian is HN−4(h,1 + γ)scs. If 1 + γ happens to be the dominant interaction, three
fermions are involved so the Dasgupta-Ma RG is not applicable anymore and the
way of procedure is described in the previous paragraph. On the contrary, if the
log-couplings 2 are the dominant interaction, the Dasgupta-Ma RG can be applied
again leading to a new Hamiltonian HN−8(h,2 + γ)scs. Hence, the same dichotomy
is present in the next step. The procedure iterates and unless γ > L − 1 the RG
flows eventually to a dominant interaction which involves three fermions.

Therefore we see that the GS of the Hamiltonian HN(h, γ > 1)scs is obtained
via the application of two kinds of renormalization group schemes. As a conse-
quence, the ground state of this Hamiltonian has two different phases that coexist:
a dimerized phase around the defect and the AIII phase away from it. This coexis-
tence is well captured by considering the entanglement entropy of central blocks
B` = {L − `,L + 2 + `}, with ` ∈ {0, . . . , (L − 1)}. Since the system is topologically
non-trivial, there is entanglement that cannot be removed (the entanglement en-
tropy in bounded by log 2 for all B`) and for blocks B` with ` < ⌊γ⌋, S(B`) = 3 log 2

due to the fact that there are two fermionic excitations b†
L−2(`−1),L−2(`−1)−1

∣0⟩ and
b†
L+2`,L+2`+1 ∣0⟩ that are not fully contained in the block B`. Furthermore, the dimer-

ized phase appears only in the strong inhomogeneity limit h→∞while the AIII
phase is independent of the inhomogeneity parameter. This fact can be checked
by considering the behaviour of the single body entanglement spectrum εk, see
Fig. 6.6 and (3.89). There is a zero mode ε0 = 0 for all h that gives rise to a double
degeneracy of the many-body entanglement spectrum and it is a signature of the
topological nature of the state. There are also two additional zero modes due to
the presence of the defect but they are not topological, since they depend on the
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Figure 6.7: Entanglement entropy of the system with Hamiltonian H46(15, γ)scs

partitioned with central blocks B` for different values of γ. The entropy is S[B`] =
3 log 2 if ` < ⌊γ⌋ and it is S[B`] = log 2 if ` > ⌊γ⌋. If γ ∈ N, S[B`=γ] takes another value
which is a consequence of the quadruple tie that we have discussed in the text.

6.3 The rainbow antiferromagnetic Heisenberg model

The Hamiltonian is

H =
2L

∑
n=1

Jn Sn ⋅ Sn+1 , (6.18)

where Sn are the spin 1/2 matrices at site n. The couplings Jn are defined in (6.3).
Let us study the phases of this model in the limit h ≫ 1. For the bcs chain, the
analysis is similar to the one of the bcs XX chain. The Dasgupta-Ma RG equation
yields a GS made of spin singlets between sites n and 2L + 1 − n. Folding the
chain maps this state into the product of L rung singlets of the two leg ladder. In
the scs chain, the highest couplings are JL = JL+1, and we start diagonalizing the
Hamiltonian JLSL+1 ⋅ (SL + SL+2). Its GS is obtained by forming a triplet between
spins SL and SL+2, that couples to spin SL+1 yielding an effective spin 1/2, denoted
as S′L+1. First order perturbation theory yields the RG equations SL, SL+2 → 2

3S′L+1.
The next order term in the Hamiltonian is JL−1(SL−1 ⋅ SL + SL+2 ⋅ SL+3) that gets
renormalized into 2

3JL−1S′L+1 ⋅ (SL−1 + SL+3), so we can repeat the same RG step
done above if h≫ 1. Each RG step generates an effective spin 1 that couples to an
effective spin 1/2 from the previous step. Completing the RG procedure yields a
chain with L effective spins 1 and two spins 1/2 at the ends of the folded chain
(see Fig. 6.8). This is the AKLT state (Affleck et al. 1988) of an open chain with L− 1

spins 1’s and two 1/2’s at the ends (6.E.3). The RG method used above is valid for
h≫ 1, but the topological nature of the GS also holds for all positive values of h.
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Figure 6.8: Strong inhomogeneity limit of the GS of the scs Heisenberg model.
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below. These signs display an antiferromagnetic liquid behaviour characteristic of
the Haldane phase.

To verify this statement we show in Fig. 6.9 the string order parameter (den Nijs
and Rommelse 1989; Girvin and Arovas 1989; White and Huse 1993).

g(L) = ⟨Sz1 eiπ∑
L−1
j=2 S

z
j SzL⟩ , (6.19)

where Szj = Szu,j + Szd,j is the spin operator on the jth- rung of the folded chain. For
bcs chains all rungs are considered, while for scs chains sites 1 and L + 1 are left
out. For the bcs chains, ∣g(L)∣ approaches quickly zero as h≫ 1, while for the scs
chains g(L) converges asymptotically towards −4/9 that corresponds to the AKLT
state as was shown by den Nijs and Rommelse (1989). Fig. 6.9-bottom, shows that
the entanglement entropy of the central blocks of the scs model remains constant
for sufficiently large values of h, which is a signature of the area law (recall (6.15)).
The entanglement spectrum is doubly degenerate (see inset of Fig. 6.9 bottom),
that is another feature of the SPT phase, which in this case is protected by the time
reversal symmetry (Pollmann et al. 2012, 2010). Moreover, if we drop the site 2N ,
that is placed in the rightmost position in Fig. 6.8, this has the effect of leaving an
edge spin of the effective spin 1 chain.

6.4 Gapless versus gapped topological phases

The previous results show that a strong inhomogeneous deformation of the critical
spin 1/2 AFH chain, with site centered symmetry, becomes an effective spin 1 chain
in the Haldane phase. Let us now consider Heisenberg chains with higher spin. If
the spin is a half-odd integer, S = 1

2 ,
3
2 , . . . , then the uniform AFH Hamiltonian is

gapless and described by the SU(2)1 Wess-Zumino-Witten (WZW) model (Affleck
and Haldane 1987). Applying a strong inhomogeneous scs deformation generates,
via its folding, an effective AKLT chain with spin 2S = 1,3, . . . . The ground states
of these spin chains possess non-trivial SPT phases (Pollmann et al. 2012). Let us
now replace the AFH Hamiltonian by the Babujian-Takthajan (BT) Hamiltonian
(Babujian 1983, 1982; Takhtajan 1982) of spin S that is integrable and described by
the SU(2)k WZW model with k = 2S. We also expect its strong scs deformation
to map into the AKLT state of spin 2S. Hence, when k is odd, the AFH and BT
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Figure 6.9: Top: Plot of the string order parameter, g(L), for the Heisenberg chains
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(a) (b)

Figure 6.10: A 2D extension of the bcs (a) and scs (b). Compare with Fig. 6.1 in
order to see the straightforward generalization of the folding operation.

models both end up in non-trivial SPT phases. Repeating this process for integer
spin chains gives trivial SPT phases. Indeed, the AFH Hamiltonian for integer
spin is gapped according to Haldane’s conjecture (Haldane 1983). Its strong scs
deformation gives an AKLT state with spin 2S = 2,4, . . . which is a trivial SPT
phase integer (Pollmann et al. 2012). The same is expected to hold for the scs
deformation of the BT model for integer spin. The difference between even and
odd levels of critical spin chains with SU(2)k symmetry reminds the one based
on global anomalies that also lies on the parity of k (Furuya and Oshikawa 2017).
The mechanism of relating apparently different phases via inhomogeneities can be
extended to other model in 1 and 2 dimensions. An example is the spin 1/2 AFH
model on a square lattice. A strong site-centered deformation of the exchange
couplings along the X and Y -axes yields a two dimensional AKLT state with spins
2 in the bulk, spins 1 along the edges and spins 1/2 at the corners.

SPT phases have been also related to boundary CFT (BCFT) (Cho et al. 2017).
There, the cohomological classification of the former phases are relate to certain
conditions placed on boundary states in CFT. It will be very interesting to investi-
gate the relation between this approach and the one we have pursued here that is
also based on CFT but with a different perspective.

6.5 Conclusions

In this chapter we have provided a new mechanism to generate symmetry pro-
tected topological phases in one dimensional spin chains governed by inhomo-
geneous local Hamiltonians. The ground states of these models have long range
entanglement but by folding the chains around their center, it becomes short range.
We illustrate this mechanism with the spin 1/2 XX and antiferromagnetic Heisen-
berg chains whose inhomogeneous deformations, with site-centered symmetry,
yield ground states in the SSH and Haldane phases respectively.

In presence of central defects, as considered in the previous chapter, the ground
state possesses an interesting coexistence of a symmetry-protected topological
phase near the ends and a dimerized region near the center, whose size grows as
the defect intensity goes to zero.
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We expect the folding mechanism to work for other 1D and 2D models. A 2D
extension of the scs and bcs systems (Fig. 6.10) could be built up by joining parallel
scs and bcs chains with engineered couplings in such a way that the RGs obtained
above for the 1D chains are still applicable and the folding operations are the
natural generalization of the 1D case: the folding for the bcs system is performed
along the virtual axis that cross the central bonds (L,L + 1) of each chain while for
the scs system the folding leaves two chains untouched: one formed by the sites 1

and the other by the sites L + 1 of each scs chain. Nevertheless, the richness of the
2D framework offers, in principle, different folding operations that are apparently
inequivalent in terms of the way that the long range entanglement becomes short
range. This poses the question of which different SPT and topological phases can
be constructed by playing this sort of origami game, and whether they could be
realized experimentally for example by applying pressure to real materials, or in
synthetic materials realized in optical lattices (Bloch et al. 2008).
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Appendices

6.A Real space renormalization group for the scs model

While the bcs chain (see (6.1) and (6.3)) is tractable via the strong-disorder renor-
malization group (SDRG), the method is inconclusive for the scs chain. The reason
is that there are two hoppings of equal magnitude exp(−h2). Even if we choose
one of them randomly to put a valence bond on it, the degeneracy will propagate
to the next renormalization step. Thus, we have developed a different approach
via a real space renormalization method à la Wilson, based on the single-particle
character of this problem.

Numerical studies of the GS of the scs rainbow system show that the single-
body modes are localized in the strong-inhomogeneity limit, but on four sites.
Moreover, as the modes increase in energy, their support moves outwards from
the center of the chain. This leads to a natural renormalization scheme which starts
out with the central block, B(1), comprising the three central sites: ●L−1, ●L and
●L+1. The two internal couplings are the same, equal to exp(−h/2), so the effective
Hamiltonian is:

H(1) = −e−h/2
⎛
⎜⎜
⎝

0 1 0

1 0 1

0 1 0

⎞
⎟⎟
⎠
. (6.A.1)

Its spectrum is composed of three values, Ei, with their associated eigenvectors,
∣i(1)⟩ where i ∈ {−,0,+}. Let us select the ground state, E−, which has the form:

∣−(1)⟩ = 1

2
(1,
√

2,1), (6.A.2)

and keep it as the first electronic orbital. Then we proceed to take the zero mode,

∣0(1)⟩ = 1√
2
(1,0,−1), (6.A.3)

and take it to the next RG level, along with the orbitals located on the neighboring
sites to the block: sites ●L−2 and ●L+2. These three single-body orbitals: ∣●L−2⟩, ∣0(1)⟩
and ∣●L+2⟩ constitute block B(2). Let us build the effective Hamiltonian:
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H(2) =
⎛
⎜⎜
⎝

⟨●L−2∣H ∣●L−2⟩ ⟨●L−2∣H ∣0(1)⟩ ⟨●L−2∣H ∣●L+2⟩
⟨0(1)∣H ∣●L−2⟩ ⟨0(1)∣H ∣0(1)⟩ ⟨0(1)∣H ∣●L+2⟩
⟨●L+2∣H ∣●L−2⟩ ⟨●L+2∣H ∣0(1)⟩ ⟨●L+2∣H ∣●L+2⟩

⎞
⎟⎟
⎠

(6.A.4)

The lowest energy eigenstate ∣−(2)⟩ is kept as a new orbital, and there appears
a new zero mode, ∣0(2)⟩ = 1√

2
(1,0,1), which is taken to the next RG level. The

n-th RG step is predicated on a block B(n) which contains the zero mode of the
previous step, ∣0(n−1)⟩ and the next two site-orbitals, ∣●L−n⟩ and ∣●L+n⟩, with effective
Hamiltonian:

H(n) =
⎛
⎜⎜
⎝

⟨●L−n∣H ∣●L−n⟩ ⟨●L−n∣H ∣0(n−1)⟩ ⟨●L−n∣H ∣●L+n⟩
⟨0(n−1)∣H ∣●L−n⟩ ⟨0(n−1)∣H ∣0(n−1)⟩ ⟨0(n−1)∣H ∣●L+n⟩
⟨●L+n∣H ∣●L−n⟩ ⟨●L+n∣H ∣0(n−1)⟩ ⟨●L+n∣H ∣●L+n⟩

⎞
⎟⎟
⎠

n = 1, ..., L − 1

(6.A.5)
The last step of the procedure is different: the new block is built up with the zero
mode of the previous step, but there is only one remaining orbital. Hence, the
effective block is a 2 × 2 matrix:

H(L) = ( ⟨0
(L−1)∣H ∣0(L−1)⟩ ⟨●2L∣H ∣0(L−1)⟩
⟨0(L−1)∣H ∣●2L⟩ ⟨●2l∣H ∣●2L⟩

) . (6.A.6)

H(L) has two different forms depending of nature of last zero mode: if N ≡ 0

(mod 4), ∣0L−1⟩ is symmetric while if N ≡ 2 (mod 4) it is antisymmetric. Hence, the
energy spectrum presents a double degeneracy of E = 0 in th former case, while in
the latter it does not.

This RG procedure allows to obtain corrections in h on the step n by choosing
the eigenvalue E(n)− . As a consequence of the growth from the center along the RG
process, the method can provide corrections to the energy of every single-body
mode in subsequent RG steps. Hence, the single-body operator b1 that appears
in the first RG step receives corrections at every RG step. Let us present the
single-body modes computed in first order in α. Due to the periodic boundary
conditions, the mode b†

L possesses, at first order, the same functional form as as d†
L.

d†
0 =(

1√
2
− e−h

8
√

2
) c†

L + (
1

2
− e

−h

16
)(c†

L−1 + c†
L+1)

+ e
−h

2

√
2

⎛
⎝
L−2

∑
i=1
(e

h(2−L+i)
√

2
)
L−i

(c†
i + c†

2L−i) + 2(e
L−2
2

√
2
)
L

c†
2L

⎞
⎠
,

d†
k =

1

2
(c†
L+1−k + c†

L−k + (−1)k+1(c†
L−1+k + c†

L+k)

+
L−2

∑
l=1
e−

h
2
l(l+1) (c†

L−k−i + (−1)k+1c†
L+k+i)), k = 2,⋯, L − 1,

d†
L =

1

2
(c†

1 − c†
2L−1) +

1√
2
c†

2L,

(6.A.7)
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C = 1

4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 1 0 0 0 0 0 −1 0
√

2

1 2 1 0 0 0 1 0 −1 0

0 1 2 1 0 −1 0 1 0 0

0 0 0 2
√

2 0 −1 0 0 0

0 0 0
√

2 2
√

2 0 0 0 0

0 0 −1 0
√

2 2 1 0 0 0

0 1 0 −1 0 1 2 1 0 0

−1 0 1 0 0 0 1 2 1 0

0 −1 −1 0 0 0 0 1 2
√

2√
2 0 0 0 0 0 0 0

√
2 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(6.B.1)

Figure 6.B.1: Correlation matrix of a L = 5 scs chain in the strong coupling limit
(h→∞) computed via (6.B.1) using the single body modes (6.A.7).

where c†
i is the fermionic creation operator on site i. Notice that, due to particle-

hole symmetry, each of these modes has a negative energy counterpart. It is
important to note that the strong inhomogeneity regime is well captured with the
first order on h (see (6.9)).

6.B Computation of entanglement entropy in the scs
model

In this section we derive expression (6.10) of the entanglement entropy of a block
B with l sites of a scs chain. As we explained in Section 3.2.1 we can compute
the entanglement entropies with the eigenvalues of the block correlation matrices
(CM), Cij

Cij =
NF

∑
k=1

UikU
∗
jk,

where Uik is the unitary matrix that diagonalizes the single-body Hamiltonian (see
Appendix 4.A.2 for more details). Note that the ground state is degenerate for scs
chains with N ≡ 0 (mod 4), since there is a (double) zero mode in the single-body
spectrum. Hence the half-filling is not well defined. In the rest of this section and
on the main text we have restricted ourselves to chains with no degeneracy.

The computation of the entropies of the block B requires the diagonalization of
the corresponding l × l block of the CM. In the h→∞ limit, when the block B does
not include any of the sites 2L,L or L ± 1, the submatrix of the CM is tridiagonal
and translational invariant (see Fig. 6.B.1). The eigenvectors have the following
form:
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∣ϕk⟩ =
l

∑
m=1

φm =
l

∑
m=1

Aeikm +Be−ikm, (6.B.2)

where we have used the same ansatz that we use to diagonalize the homogeneous
open XX Hamiltonian (see Section (3.1.2). The eigenvalues are given by:

λk =
1

2
(1 + cosk) . (6.B.3)

It is straightforward to obtain the dispersion relation imposing the boundary
conditions:

sin(k(l + 1)) = 2mπ → k = 2mπ

N + 1
. (6.B.4)

The von Neumann entropy is given by (3.55)

Sscs(l) = −∑
k

λk logλk + (1 − λk) log (1 − λk) (6.B.5)

This finite sum can be evaluated using the Euler-McLaurin formula, inserting a
finite width in momentum space, ∆k = π

l+1 . We find:

Sscs(l) = −
l + 1

π ∫
π

0
(cos2 (k

2
) log (cos2 (k

2
)) + sin2 (k

2
) log (sin2 (k

2
)))dk

= (l + 1)(2 log 2 − 1). (6.B.6)

The Rényi entropies (3.54) can also be computed:

S2(l) = (l + 1) log (24 − 16
√

2) ,

S3(l) = (l + 1)2 log
4

3
, (6.B.7)

S4(l) = (l + 1) (7 log 2 − log (17 + 8
√

2 + 4
√

26 + 17
√

2)) ,

and these expressions can be seen to match perfectly the numerical data for a scs
rainbow chain with h = 9.2 and L = 21 in Fig. 6.B.2.

6.C Strong inhomogeneity regime of scs model with
a defect

In this Appendix we derive the ground state of the Hamiltonian

HN(h, γ)scs = −
1

2

N

∑
m=1

Jmc
†
mcm+1 + h.c., (6.C.1)
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Figure 6.B.2: Different Rényi entropies for a scs system with L = 21 and h = 9.2

Black lines correspond to the theoretical expressions, (6.B.7).

with

Jm =
⎧⎪⎪⎨⎪⎪⎩

e−h(∣m−(L+
1
2
)∣− 1

2
) if m ≠ L,L + 1,

e−hγ if m ∈ {L,L + 1}
(6.C.2)

We use the RG scheme explained in the main text. Let us recall the definition of a
generic bonding operator (4.12)

b±m,n =
1√
2
(cm ± cn) , (6.C.3)

that we shall use to distinguish three situations:

(1.-) Case γ < 1. The couplings present a double tie at the center, so that the
dominant interaction involves the three central sites, L, L + 1 and L + 2. The
Dasgupta-Ma prescription (5.8) and the sum rule (5.A.1) are not valid in this
situation. We must perform a first order perturbation approach to renormalize
three fermionic sites into an effective site (see Appendix 6.A), leading to a system
with N − 2 sites. The next RG step involves the effective fermion mode created
on the previous one and its two nearest neighbours. Iterating this procedure one
obtains the GS (6.8).

(2.-) Case γ = 1. The system presents a quadruple tie at the center. The five
central sites involved are renormalized into an effective site on a system with N −4

sites. At this point the situation is equivalent to the γ < 1 case and further RG steps
are the same as the ones discussed in the previous item.

(3.-) Case γ > 1. In this situation, the dominant interactions are two non-
consecutive log-couplings 1, which couple respectively the sites L − 1 and L, and
the sites L + 2 and L + 3. Although the sum rule (5.A.1) is not valid, the Dasgupta-
Ma (5.8) can be applied sequentially twice, yielding two fermionic excitations with
the same energy and parity, b+L−1,L and b+L+2,L+3, and leading to a effective system
whose Hamiltonian is HN−4(h,1 + γ)scs. The next decimation step is not univocal:

• If γ ∈ (1,2) the dominant interaction involves the three central sites L − 2,L
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γ ∈ (2, 3)

1 + γ > 3
1 + γ > 3

4 < 2 + γ < 5
4 < 2 + γ < 5

5 4 3 2 1 γ γ 1 2 3 4 5

Figure 6.C.1: RG procedure for a system HN(h, γ)scs with h≫ 1 and γ ∈ (2,3). The
system admits two Dasgupta-Ma RG steps, above links with log-coupling 1, and
after those the renormalized system shows a double tie of lowest log-couplings, with
the two central log-couplings equal to 1 + γ (which must be larger than 3). At this
moment, we apply the same RG procedure than for γ < 1.

and L + 4 of the original chain and the situation is the same as the one
described originally for γ < 1, with the double tie (1.).

• If γ = 2 there is a quadruple tie, same as (2.).

• If γ ∈ (2,3) the dominant interactions are the two links with log-coupling
3, which is similar to the situation described in item (3.). At the end of this
step there are two fermionic excitations more, b+L−3,L−2 and b+L+4,L+5, and the
Hamiltonian of the decimated system is HN−8(h,2 + γ)scs. We show in Fig.
6.C.1 this situation.

Note that unless γ > L − 1 the RG flows towards the double tie situation and, if
γ ∈ N, the decimated system of the γ-th step will present a quadruple tie. Hence,
the GS is:

∣GS⟩γ>1=(g−L)†∏
L−2(1+⌊γ⌋)
k=1 (dηk

k+2⌊γ⌋)
†(g−⌊γ⌋)

†∏⌊γ⌋m=1(b+L−2(m−1),L−2(m−1)−1)
†(b+L+2m,L+2m+1)†∣0⟩, (6.C.4)

where ⌊⌋ is the floor function, ηk = (−1)k+1, χk = (−1)k−⌊γ⌋ and

g±m = 1√
2
(cL+1 ± b+L−2m,L+2(m+1)), (6.C.5)

g±L =
1√
2
(c1 ± b+2,2L) (6.C.6)

d±n =
1√
2
(b±L+1−n,L+1+n + b±L−n,L+2+n), (6.C.7)

6.D The bcs state as a Charge Density Wave

The folding trick described in the main text allows us to transform the inhomoge-
neous 1D bcs chain into a ladder of 2 legs in terms of the bonding and antibonding
states b±n which are defined in (6.6):
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Hbcs = −
1

2
(
L−1

∑
n=1

JL−n ((b+n)†b+n+1 + (b−n)†b−n+1 + h.c.) + JL((b+1)†b+1 − (b−1)†b−1)

+ J2L((b+L)†b+L − (b−L)†b−L)),
(6.D.1)

In this appendix we show that the bcs state can be described by a charge density
wave (CDW), when expressed on terms of these folded operators. In order to
show that, we realize that the above Hamiltonian describes two independent
inhomogeneous fermionic 1D chains with a single site endowed with non-zero
chemical potential on their edges. Since they are independent, we can restrict our
discussion to one of the chains and rewrite it in a more generic form:

H = −µ1b
†
1b1 − µLb†

LbL −
L−1

∑
m=1

Jm (b†
mbm+1 + h.c.) , (6.D.2)

where the Jm are positive numbers. Since we are dealing with an inhomogeneous
system, the strong inhomogeneity regime should be well described by a decimation
procedure, analogous to the SDRG. On each RG step we will only consider two
fermionic modes, corresponding to the highest energy scale, either a hopping or a
chemical potential. Let us consider a block Hamiltonian

HB = −µ1b
†
1b1 − J1 (b†

1b2 + b†
2b1) , (6.D.3)

which is coupled to the rest of the system through its nearest neighbour:

HI = −J2 (b†
2b3 + b†

3b2) . (6.D.4)

The energies ofHB are ε = 1
2(−µ1±

√
µ2

1 + 4J2
1 ). In the regime (∣µ1∣≫ J1) the energies

and their corresponding eigenvectors are

ε1 ≈ −µ1 −
J2

1

µ1

, u ≈ 1
∣µ1∣ (µ1b1 + J1b2) , (6.D.5)

ε2 ≈
J2

1

µ1

, v ≈ 1
∣µ1∣ (−J1b1 + µ1b2) . (6.D.6)

Hence we can rewrite (6.D.3) and (6.D.4) as:

HB = ε1u
†u + ε2v†v, (6.D.7)

HI ≈ −
J2

∣µ1∣
((µ1v

† + J1u
†) b3 + h.c.) . (6.D.8)

Now we are ready to decimate. The original four-dimensional Hilbert space, H is
spanned by the states {∣0⟩ , u† ∣0⟩ , v† ∣0⟩ , v†u† ∣0⟩}. The truncation operation leads to
a new two-dimensional Hilbert space H′ which is spanned by two states {∣0̃⟩ , ∣1̃⟩},
such that ∣1̃⟩ contains one more particle than ∣0̃⟩. Notice that the largest energy
scale in the process is given by ∣µ1∣. Thus, the truncation procedure depends on its
sign:
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• If µ1 > 0 we take ∣0̃⟩ = u† ∣0⟩ and ∣1̃⟩ = v†u† ∣0⟩. The new vacuum is filled

with one fermion on site 1 (u
µ1≫J1Ð→ b1) and the truncated Hamiltonian H(1)B =

HB +HI takes the form:

H
(1)
B =

J2
1

µ1

v†v − J2(v†b3 + d†
3v) + ε1. (6.D.9)

• If µ1 < 0 we choose ∣0̃⟩ = ∣0⟩ and ∣1̃⟩ = v† ∣0⟩. The new vacuum state does not
get any new particle, and

H
(1)
B = −

J2
1

∣µ1∣
v†v − J2(v†b3 + d†

3v), (6.D.10)

Hence in both cases the renormalized Hamiltonian has the same structure than
the original one (6.D.3)

H1
B = −µ(1)v†v − J2(v†b3 + d†

3v), (6.D.11)

where µ(1) = −J
2
1

µ1
. Note that the sign of µ(1) is the opposite of the sign of µ1. Hence,

if ∣µ(1)∣≫ J2 we have the opposite situation of above that we had in the previous
step.

If we iterate this procedure, we find that after r steps the system has L − r sites
and the renormalized block Hamiltonian always takes the form

H(r) = −µ(r)v†v − Jrv†b†
r+1, r = 1 . . . L − 1,

where µ(r) is the new effective chemical potential, whose sign is opposite to
that of µ(r−1). The sign alternation of the effective chemical potentials and the
monotonous decay of the consecutive energy scales, ∣µ(r)∣≫ Jr for all r, imposed
by (6.2) leads to a chain with an alternation on the filling of the sites. We realize
that the Hamiltonian (6.D.1) describes two chains that only differ on the sign of
their effective chemical potentials, and therefore its ground state presents the
structure described in Fig. 6.3.

6.E XXZ Inhomogeneous model

6.E.1 Hamiltonian

In this appendix we develop an alternative renormalization approach based on
the spin formalism which can be extended to the inhomogeneous XXZ model,
described by:

H =
2L

∑
n=1

Jn (S+nS−n+1 + S−nS+n+1 +
∆

2
SznS

z
n+1) ≡

2L

∑
n=1

Jn(Sn ⋅ Sn+1)∆ ≡
2L

∑
n=1

hn, (6.E.1)
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where Jn follow the rule expressed in (6.3). On the regime h ≫ 1 it is natural to
consider only the 3 spins which are coupled with the strongest hopping ampli-
tudes, i.e. n = L − 1, L,L + 1. It can be checked that the GS of this Hamiltonian lies
on the sector of the total spin Stotz = 1

2 , so that it is natural to renormalize the 3 spin
block to an effective spin 1

2 , S
(1)
L .

∣+̃⟩ = 1

N (∣+ + −⟩ − λ ∣+ − +⟩ + ∣− + +⟩), (6.E.2)

∣−̃⟩ = 1

N (− ∣− − +⟩ + λ ∣− + −⟩ − ∣+ − −⟩), (6.E.3)

where

N =
√
λ2 + 2, λ = 1

2
(∆ +

√
∆2 + 8), (6.E.4)

and the GS energy is E0 = −λ2 . In order to determine how the spins SL−1 and SL+1

got renormalized we employ the Wigner-Eckhart theorem:

⟨m̃∣Sai ∣ñ⟩ = ξai ⟨m̃∣S
a(1)
L ∣ñ⟩ , (6.E.5)

which leads to:

ξ±L−1 = ξ±L+1 =
2λ

N 2
, ξ±L = −

2

N 2
, (6.E.6)

ξzL−1 = ξzL+1 =
λ2

N 2
, ξzL =

2 − λ2

N 2
. (6.E.7)

Note that ∑n ξzn = 1 for all λ and that ∑n ξ±n = 4λ−2
N 2 , which is 1 only if the SU(2)

symmetry is present. This only holds when λ = 2, i.e. ∆ = 1.
Hence we see that each step of the renormalization involves three spins: su and

sd at the edges of the block and one central sc which is the outcome of each step
except the first one, which is physical too (see Fig. 6.1 (b)).

6.E.2 Fixed Points and RG flow

The next step of the renormalization procedure involves the spins SL±2. Using
(6.E.7) we notice that the corresponding terms of the Hamiltonian (6.E.1), can be
written in terms of the effective spin of the previous step:

e−h((SL−2 ⋅ SL−1)∆ + (SL+1 ⋅ SL+2)∆) = e−h((SL−2 ⋅ S(1)L )∆′ + (S
(1)
L ⋅ SL+2)∆′), (6.E.8)

where

∆′ = ∆

4
(∆ +

√
8 +∆2). (6.E.9)

Imposing ∆′ =∆, we determine the existence of two fixed points: ∆f = 0 (XX)
and ∆f = 1 (AFH). Furthermore, iterating this equation while replacing ∆→∆ ± ε
with ε ≪ 1 it is straightforward to see that the former is stable (∣∆′∣ < ∣∆∣,∆ < 1)
while the latter is unstable (∆′ ≥∆,∆ ≥ 1), as is depicted on Fig. 6.E.1.
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Figure 6.E.1: RG flow in terms of the anisotropy parameter ∆.

6.E.3 MPS form

As it has been described along the RG procedure, each step only considers three
spins: two physical ones, su, sd placed on the edges of the block, and an effective
spin, sc placed on the center, which arises from the previous step. These three
spins are renormalized into a new effective spin 1

2 , s′c. Hence, (6.E.3) can be written
compactly in the form:

∣s′c⟩ = ∑
su,sc,sd

A
s′c
suscsd ∣suscsd⟩ , (6.E.10)

with
Ass̄ss = Assss̄ =

s

N , Asss̄s = −
sλ

N , s = ±, s̄ = −s. (6.E.11)

We can rewrite this elementary block of the MPS in another more familiar form
where central spins are now indices of the auxiliary space.

A
s′c
suscsd → Asu+sdscs′c

, (6.E.12)

so that

A− = λ

N (
0 0

1 0
) , A+ = λ

N (
0 −1
0 0

) , A0 = 1

N (
1 0

0 −1) . (6.E.13)

If we particularize for the Heisenberg model, we recover (up to an overall con-
stant) the usual matrices that describe the MPS form of the AKLT state (Schollwöck
2011). It is straightforward also to build the basis used in Pollmann et al. (2012,
2010) to prove the degeneracy of the entanglement spectrum due to the presence
of the time reversal symmetry.
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Chapter 7

Ising Rainbow Model in and out of
criticality

We propose the rainbow analogue of the critical Ising chain in a transverse
field. In the strong inhomogeneity limit we apply Fisher’s renormalization
group to show that the ground state is formed by concentric singlets similar
to those of the rainbow state of the XX model. In the weak inhomogeneity
limit we map the model to a massless Majorana fermion living in a hyper-
bolic spacetime, where, using CFT techniques, we derive the entanglement
entropy that is violated linearly. We also study an inhomogeneous non-critical
Ising model that for weak inhomogeneity is mapped to a massive Majorana
fermion, while for strong inhomogeneity regime it exhibits trivial and non-
trivial topological phases and a separation between regions with high and
low entanglement. We also present the entanglement Hamiltonian of the
model. This chapter contains content published in Samos Sáenz de Buruaga
et al. (2021).

The aim of the present chapter is twofold. First, to characterize the emergence
of a rainbow state as a ground state of an inhomogeneous transverse field Ising
(ITF) Hamiltonian, when the couplings and the external fields are allowed to
decay in a certain way, by mapping it to a (1+1)D massless Majorana field on
curved spacetime. Then, we will describe the structure of the model away from
the critical point, showing that it reduces to a massive Majorana field in the same
setup. Moreover, we shall also consider the relation between our model and the
Kitaev chain (Kitaev 2001).

The chapter is organized as follows. In Section 7.1 we introduce an inhomo-
geneous version of the ITF model and describe its entanglement structure. The
strong inhomogeneity regime is discussed by means of RG schemes, and the weak
inhomogeneity regime is characterized via field theory methods. In Section 7.2 we
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propose a variation of the previous model by adding a new parameter that shifts
it away from the critical point, and we describe its entanglement properties in the
strong and weak inhomogeneity regimes.

7.1 The Ising rainbow model

Let us consider an inhomogeneous ITF open spin 1/2 chain with an even number
of sites N = 2L whose Hamiltonian is defined as:

HI = −
L−3/2
∑

m=−L+1/2
Jmσ

z
mσ

z
m+1 −

L−1/2
∑

m=−L+1/2
Γmσ

x
m, (7.1)

Notice that the spins are indexed by half-odd integers for later convenience,
m = −L + 1/2, . . . , L − 1/2. We shall apply a Jordan-Wigner transformation (see
(3.6)) and write (7.1) in terms of Dirac fermions c†

m which satisfy the usual anti-
commutation relations {c†

m, cn} = δmn, and then decompose them in terms of
Majorana fermions

cm =
1

2
(αm + iβm), (7.2)

that satisfy the anti-commutation relations

{αm, αn} = {βm, βn} = 2δmn, {αm, βn} = 0.

In terms of these Majorana fermions (7.1) reads:

H = − i(
L−1/2
∑

m=1/2
Γm (αmβm + α−mβ−m) (7.3)

+
L−3/2
∑

m=1/2
Jm (βmαm+1 + β−(m+1)α−m) + J−1/2β−1/2α1/2),

J3/2J1/2J−1/2J−3/2J−5/2

Γ5/2Γ3/2Γ1/2Γ−1/2Γ−3/2Γ−5/2

J3/2J1/2J−1/2J−3/2J−5/2

Γ5/2Γ3/2Γ1/2Γ−1/2Γ−3/2Γ−5/2

Figure 7.1: Spin (top) and Majorana fermion (bottom) representations of the in-
homogeneous ITF model. The red (blue) points correspond to α (β) Majorana
fermions.

Notice that the same system is described by 2L spins and 4LMajorana fermions.
In Fig. 7.1 we present a schematic representation of the model in terms of spins
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(top) and Majorana fermions (bottom). The transverse field Γm couples two
Majorana fermions with the same index (αm, βm), while the coupling constants Jm
link Majorana fermions with different indices (βm, αm+1). The dashed lines that
encircle the Majorana fermions represent the Dirac fermions cm in (7.2).

Notice that if Jm = Γm = 1 for all m we recover the critical ITF model whose
low-energy behaviour is described by the two dimensional Ising CFT with central
charge c = 1/2. In addition, if Jm = 0 for all m, the ground state becomes a trivial
product state built upon the physical fermions cm. On the contrary, if Γm = 0 for
all m, the Majorana fermions placed at the edges of the Majorana chain, α−L+1/2

and βL−1/2, do not appear in the Hamiltonian, (7.3). Moreover, they correspond to
Majorana zero modes and the GS belongs to the topologically non-trivial phase of
the Kitaev model (Kitaev 2001).

Let us consider both the spin (7.1) and the Majorana fermion (7.3) Hamiltonians
under the following choice of coupling constants Jm and Γm:

Jm =
⎧⎪⎪⎨⎪⎪⎩

e−2h∣m+1/2∣ if m ≠ −1/2,
e−h/2 m = −1/2,

Γm = e−2h∣m∣, (7.4)

where h ≥ 0 is the inhomogeneity parameter. Notice that for h > 0 the intensity of
the couplings decreases from the center towards the edges, with J−1/2 correspond-
ing to the strongest coupling. Also, the system is symmetric under reflections
around the central bond, satisfying J−(m+1) = Jm and Γm = Γ−m. In the remainder of
this section, we shall describe the strong (h≫ 1) and weak (h≪ 1) inhomogeneity
regimes.

7.1.1 Strong inhomogeneity

In the limit h ≫ 1 we can characterize the GS of (7.3) using the strong disorder
renormalization scheme (SDRG) developed by Fisher (1995, 1994) for the ITF. It
was devised for finding the ground states of random ITF chains but, as we have
shown, the SDRG can be applied to non-disordered inhomogeneous systems.
Fisher’s RG proceeds by finding the strongest interaction coupling, either Γ or
J , which gets sequentially decimated. If it corresponds to a magnetic field, Γi,
the i-th spin is integrated out, leaving the system with one spin less and a new
coupling term between the spins i − 1 and i + 1,

J̃i−1σ
z
i−1σ

z
i+1, with J̃i−1 =

Ji−1Ji
Γi

. (7.5)

On the other hand, if the coupling Ji is the strongest interaction at a given RG step,
the spins i and i + 1 get renormalized into a single spin with effective Hamiltonian
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Γ̃iσ
x
i , with Γ̃i =

ΓiΓi+1

Ji
. (7.6)

Notice that renormalizing a J term entangles two neighboring spins, while the
renormalization of a Γ term freezes that spin along the direction of the magnetic
field, and decouples it from the chain.

It can be shown that the fusion rules of Majorana fermions correspond to the
SU(2)k=2 algebra (Bonesteel and Yang 2007; Lahtinen and Pachos 2017; Nayak
et al. 2008), which in turn coincide with those of the quantum-group Uq=i(su(2))
with the relation q = ei2π/(k+2) (Gómez et al. 1996). The non-univocal fusion rule

1

2
×

1

2
= 0 + 1, (7.7)

corresponds to the pairing of two Majorana fermions, for instance αmβm, which
in terms of of Dirac fermions is 2 (c†

mcm − 1/2), see (7.2), and we can attach the
fusion channel 0 (1) to the −1 (+1) eigenvalue. Indeed, notice that (7.7) reminds
the composition of two 1/2 spins. Thus, we may call the less energetic channel a
generalized singlet state (Bonesteel and Yang 2007; Fidkowski et al. 2008), and the
other channel as a generalized triplet (albeit there is no Sz degeneracy). Notice that
while the 1/2 spins obey the SU(2) algebra and the singlet states span the total
Sz = 0 Hilbert space sector, Majorana fermions obey the SU(2)k=2 algebra and the
generalized singlet state spans the Hilbert space sector for the fusion channel 0.

With this parallelism in mind, we can devise an SDRG specially suited for an
inhomogeneous Majorana chain (Devakul et al. 2017; Motrunich et al. 2001), as
it is done in Appendix 7.A. At each RG step, the two Majorana fermions linked
through the strongest coupling (notice that in terms of Majorana fermions the J
and Γ terms are equivalent) are fused into their less energetic channel, forming a
generalized singlet state or bond, and leaving a renormalized coupling between
their closest neighbors. This scheme is completely equivalent to Fisher’s RG,
(7.5) and (7.6). In this case, the SDRG becomes analogous to the Dasgupta-Ma
technique for spin-1/2 XX chains (Dasgupta and Ma 1980), for which it can be
proved that the bonds never cross (Rodríguez-Laguna et al. 2016).

Let us apply this RG scheme to the Majorana Hamiltonian given in (7.3). The
first Majorana pair to be decimated is (β−1/2, α1/2), because J−1/2 is the strongest
coupling. Hence, these two Majorana fermions fuse into a Dirac fermion,

b1/2 =
1

2
(β−1/2 + iα1/2) , (7.8)

which becomes decoupled. Using (7.6) we can find an effective Hamiltonian with
2(N − 1)Majorana fermions, whose new central term Γ̃1/2α−1/2β1/2 is given by

Γ̃1/2 =
Γ−1/2Γ1/2

J−1/2
= e− 3h

2 . (7.9)
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The strongest coupling is now Γ̃1/2. We apply the RG again, and the decimated
Majorana fermions fuse into a Dirac fermion,

d1/2 =
1

2
(α−1/2 + iβ1/2) . (7.10)

The new effective Hamiltonian of 2(N − 2)Majorana fermions has a central term
J̃3/2 which is given by (7.5),

J̃3/2 =
J−3/2J1/2

Γ̃1/2
= e− 5h

2 , (7.11)

which is again the strongest coupling in the chain. Given the symmetry of the
coupling constants, (7.4), all RG steps decimate the central pair of Majorana
fermions, fusing them alternatively into b and d Dirac fermions. Hence, the
ground state, that we shall call the Majorana rainbow state ∣MRS⟩, is annihilated
by the following Dirac operators:

bm ∣MRS⟩ = 0, dm ∣MRS⟩ = 0, m = 1

2
, . . . , L − 1

2
, (7.12)

with

bm =
1

2
(β−m + iαm) , dm =

1

2
(α−m + iβm) . (7.13)

∣MRS⟩ is a concentric generalized singlet state, shown in Fig. 7.2.
It is worth to compare the Majorana rainbow state (7.12) with its Dirac coun-

terpart presented in Chapter 4, which emerges as the GS of the inhomogeneous
XX chain and its fermionic version. As we have shown, this state can be seen as
a singlet state of concentric bonding and antibonding operators (see (4.17)). The
alternation is therefore similar to that of b and d Dirac fermions in (7.13).

Let us compute the entanglement entropy of a subsystem A, with length LA,
for the Majorana RS, (7.12). The entanglement entropy of any partition of a
ground state formed by SU(2) singlet states can be estimated by counting the
number of bonds which cross the partition boundary, and multiplying by log(2).
The procedure is the same when we deal with generalized singlet states. The
entanglement entropy of any subsystem A can be estimated by counting the
number of bonds which cross the partition boundary and multiplying by log d

(Bonesteel and Yang 2007), where d =
√

2 is the quantum dimension of the spin 1/2
representation of the algebra SU(2)2.

Alternatively, the entanglement entropy of a Gaussian state can be obtained
from its covariance matrix (CM), C,

Cab = ⟨[γa, γb]⟩ , (7.14)

where we have arranged the Majorana operators in a vector form

γT = (α−L+1/2, β−L+1/2, . . . , αL−1/2).
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Figure 7.2: Top: schematic representation of the outcome of the RG for a chain of 6
spins. Blue bonds stand for b-type Dirac fermions, while red ones represent d-type
fermions, see (7.13), which can also be considered as generalized singlet states
corresponding to the less energetic fusion channel. Bottom: covariance matrix of the
RS for N = 20 and h = 10. Notice that the non-zero elements are in the anti-diagonal,
as it is dictated by the structure of the b and d fermions.
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In Appendix 4.A.2 we provide a brief derivation of this expression. The structure
of the GS obtained through the decimation procedure shows up in the CM, as we
can see in Fig. 7.2 (b). The entanglement entropy of a subsystem A with size LA
can be computed through the eigenvalues ±λk, k ∈ {1,⋯, LA/2} of the appropriate
restriction CA of the CM (Peschel 2003), through

SA = −
LA

∑
k=1

νk log νk, νk =
1

2
(1 + λk) . (7.15)

We can now compute the entanglement entropy of a lateral block of the system,
A` = {−L + 1/2 ⋅ ⋅ ⋅ −L + 1/2 + 2`}, with ` = 1,⋯, L. Notice that a block with an odd
number of Majorana operators has no physical sense. Thus, A` must contain an
even number of Majorana fermions, which correspond to the physical fermions
(dotted boxes) or the spins (black balls) of Fig. 7.1. We can obtain the entanglement
entropy by counting the number of bonds nb (reds and blues) that A` cuts in Fig.
7.2 and multiply it by log d.

SA = nb log
√

2. (7.16)

Hence, we have that the entanglement entropy of the MRS grows linearly,

S(A`) = 2` log
√

2 = ` log 2, (7.17)

and the maximal entanglement entropy corresponds to the half chain block
S(AL) = L log 2.

7.1.2 Weak inhomogeneity

In this section we shall consider the GS of (7.1) with couplings given by (7.4), in
the low inhomogeneity regime, h≪ 1. The equations of motion associated to the
lattice Hamiltonian in the Heisenberg picture are given by i∂tα±m = [H,α±m] and
i∂tβ±m = [H,β±m]. Using (7.3) we have

∂tαn = −2e−2h∣n∣ (βn − esign(n)hβn−1) ,
∂tβn = 2e−2h∣n∣ (αn − esign(n)hαn+1) . (7.18)

Now, we define the fields

αm =
√
aα(x), βm =

√
aβ(x), (7.19)

where a is the lattice spacing between the Dirac fermions cm, x =ma, which satisfy
the usual anticommutation relations, {α(x), α(x′)} = {β(x), β(x′)} = 2δ(x−x′) and
{α(x), β(x)} = 0. We find the continuum limit of the lattice equations of motion by
plugging these fields into (7.18) and requiring a→ 0 and L→∞with both L = aL
and ĥ = h/a kept constant,
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∂tα(t, x) ≈ −2ae−2ĥ∣x∣ (∂x − sign(x)ĥ)β(t, x)
∂tβ(t, x) ≈ −2ae−2ĥ∣x∣ (∂x − sign(x)ĥ)α(t, x), (7.20)

where we made the approximation esign(x)h ≈ (1+sign(x)h). If h = 0 the equations of
motion (7.20) correspond to the massless Dirac equation i /∂Ψ = (iγ0∂0+ iγ1∂1)Ψ = 0,
where we have introduced the spinor

ΨT = (α(x0, x1), β(x0, x1)), (x0, x1) = (2t, x). (7.21)

Our choice for the γ matrices is γ0 = −σ2, γ1 = iσ3 and γ3 = σ1, where σi, i = 1, 2,
3, are the Pauli matrices. Hereafter, we choose a = 1 that sets the Fermi velocity
vF = 1, so we can simplify ĥ = h, L = L, and rewrite the equations of motion of the
inhomogeneous system, (7.20), as

(−σ2∂0 + e−2h∣x1∣iσ3 (∂1 − sign(x1)h))Ψ = 0 . (7.22)

The previous equation corresponds to the massless Dirac equation in a curved
spacetime whose metric depends on the inhomogeneity h, see Appendix 4.B for
details. The Dirac equation on a generic metric can be written as (4.B.7),

(−σ2∂0 +
i

2
ω01

0 σ3 +
E1

1

E0
0

(iσ3∂1 −
i

2
ω01

1 σ2))Ψ = 0, (7.23)

where ωabµ is the spin connection and Eµ
a is the inverse of the zweibein. Comparing

(7.23) with our equations of motion (7.22), we obtain

E1
1

E0
0

= e−2h∣x1∣, (7.24)

ω01
0 = −2e−2h∣x1∣hsign(x1), (7.25)

ω01
1 = 0. (7.26)

The solution of these equations gives rise to the spacetime metric:

g00 = −e−4h∣x∣, g11 = 1 , (7.27)

whose Euclidean version is

ds2 = e−4h∣x∣dt2 + dx2 = Ω2(x)dzdz, (7.28)

where Ω(x) = e−2h∣x∣ is the Weyl factor and

z = x̃ + it, with x̃ = ∫
x

0

dy

Ω(y) =
sign(x)

2h
(e2h∣x∣ − 1) . (7.29)
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The non-zero Christoffel symbols are

Γ0
01 = −2h sign(x), Γ1

00 = −2h sign(x)e−4h∣x∣, (7.30)

and the non-zero components of the Ricci tensor are

R00 = −e−4h∣x∣ (4hδ(x) − 4h2) , R11 = 4hδ(x) − 4h2. (7.31)

The scalar of curvature R = gµνRµν is

R = 8 (hδ(x) − h2) , (7.32)

where we have used the general result (4.38). Thus, R is singular at the origin and
constant and negative everywhere else, thus allowing for the holographic interpre-
tation of the rainbow state that has been discussed in the literature (MacCormack
et al. 2019). Observe that these are the same expressions that we have obtained in
the study of the continuum limit of the rainbow model in Section 4.2 by replacing
h→ 2h.

Entanglement entropies

20 10 0 10 20
x

0.3

0.4

0.5

0.6
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0.8

S(
x)

h
0.0
0.01
0.05
0.1

Figure 7.3: Entanglement entropy of lateral blocks of the GS of (7.1) with couplings
(7.4) for different values of h and L = 40. The dots represent the numerical values
obtained by exact diagonalization and the lines correspond to the predictions of
(7.33) using (7.B.3).

We have shown that the continuum limit of the lattice model (7.3) corresponds
to a Majorana field in curved spacetime, described by a conformal field theory
with central charge c = 1/2. We can obtain the entanglement entropy of a block
within this state employing the standard procedures (Calabrese and Cardy 2004)
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discussed in Chapter 4: via the Weyl transformation of the correlation function
of twist operators in an n-times replicated worldsheet. Hence, the entanglement
entropy of the lateral blocks considered in the previous section is (see details of
the derivation in Ref. (Rodríguez-Laguna et al. 2017)):

S(x) = 1

12
log(Ω(x)8L̃

π
cos(πx̃

4L̃
)) + c′I(x̃), (7.33)

where the deformed quantities, x̃ and L̃, are computed using (7.29). The non
universal function c′I(x̃) can be found using the relation between the entanglement
entropies of an XX chain of length 2L and an ITF chain of length L (Iglói and Juhász
2008), and is given in (7.B.3) of Appendix 7.B. Fig. 7.3 shows the numerical values
of the entanglement entropy for different values of h, showing the agreement with
(7.33). In the limit hL≫ 1, (7.33) implies for the half chain

S(x = 0) ≈ 1

6
hL, (7.34)

which scales linearly with the system size, thus presenting a smooth crossover
between the weak and the strong inhomogeneity regimes for which the entan-
glement entropy is given by (7.17), i.e. SAL = L log 2. In addition, this value of
the entanglement entropy can be interpreted as that of a thermal state with an
effective temperature h/π (Rodríguez-Laguna et al. 2017).

Entanglement Hamiltonian

Let us now characterize the entanglement Hamiltonian (see Section 3.3.1 associated
to the reduced density matrix of the half chain, that we shall denote HL. In
Appendix 4.A.2 we discuss the standard procedure to obtain the entanglement
Hamiltonian using the covariance matrix CL (Peschel 2003; Peschel and Eisler
2009). The entanglement Hamiltonian describes a local inhomogeneous system
with the weakest couplings near the center, which is the internal boundary between
the block and its environment. Moreover, if the physical system is critical and
infinite, it can be shown that HL is given by (3.81)

HL = 2πL∫
L

0
dx J(x) T00(x), (7.35)

where T00(x) is the Hamiltonian density of the physical system and J(x) is a
weight function1. The Bisognano-Wichmann theorem predicts J(x) ≈ x for a
semi-infinite line, thus being approximately applicable for our case. Moreover,
when the original system is placed on a static metric, the weight function in (7.35)
J(x) should be appropriately deformed following (7.29) (Tonni et al. 2018) as we
discussed in (4.2.2). In our case, we obtain

1Observe that we have relabelled the weight function β(x)→ J(x) in order to avoid possible
confusions with the Majorana fermion field β(x).

136



0.0 0.2 0.4 0.6 0.8 1.0
x/L

0

1

2

3

4

5

J(x
)/L

L=5 h=2.8
L=10 h=1.4
L=20 h=0.7

L=5 h=1.2
L=10 h=0.6
L=20 h=0.3

L=5 h=0.4
L=10 h=0.2
L=20 h=0.1

L=5 h=0.0
L=10 h=0.0
L=20 h=0.0

Figure 7.4: Normalized weight functions J(x)/L determining the entanglement
Hamiltonian for different values of λ = 2hL. Continuous lines correspond to the
theoretical prediction, (7.36). The dotted black straight line corresponds to the
Bisognano-Wichmann prediction for a semi-infinite system.

J(x) = 2L

π

eλ − 1

λ
e−λ

x
L sin(π

2

eλ
x
L − 1

eλ − 1
) , (7.36)

where λ = 2hL. Near the internal boundary, which corresponds to the center of
the chain, the weight function J(x) grows linearly J(x) ≃ 2πx, as predicted by
Bisognano and Wichmann. Far from x̃ = 0, the weight function develops a plateau,
as it can be seen in Fig. 7.4 where J(x) is plotted for different values of λ.

7.2 Out of criticality

Let us consider an inhomogeneous ITF model described by the Hamiltonian (7.1)
or, equivalently, (7.3), with a modification of the coupling constants (7.4) studied
in the previous section,

Jm =
⎧⎪⎪⎨⎪⎪⎩

e−2h∣m+1/2∣+δ if m ≠ −1/2,
e−h/2+δ m = −1/2,

(7.37)

Γm = e−2h∣m∣−δ, (7.38)

where δ ∈ R. Notice that if h = 0 and δ ≪ 1, then Jm = 1 + δ and Γm = 1 − δ, and our
system describes a Majorana chain with alternating couplings, thus showing a
relation to the Kitaev chain and the Su-Schrieffer-Heeger (SSH) model describing
a dimerized chain of Dirac fermions (Heeger et al. 1988; Su et al. 1979). Indeed, the
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alternating term e±δ pushes the system described in Section 7.1 out of criticality, as
we will describe throughout this section.

7.2.1 Strong inhomogeneity

Let us consider the Hamiltonian given in (7.3) in the limit h≫ 1. We can apply the
same SDRG of the previous section, making use of the parameter

κ = δ/h. (7.39)

The RS is obtained when all the RG steps decimate the Majoranas at the center
of the chain, but we will show that other structures may be obtained, depending
on the value of κ. In order to decimate the central pair we need J1/2 to be the
strongest coupling of the chain. In other words, J−1/2 > Γ1/2 which implies that
e−h(1/2−κ) > e−h(1+κ). Hence, we arrive at the condition

1

2
− κ < 1 + κ⇒ κ > −1

4
. (7.40)

Thus, if κ > −1/4 the Majorana fermions β−1/2 and α1/2 fuse into the Dirac fermion
b1/2, defined in (7.8) and, using (7.6), we obtain a renormalized coupling

Γ̃1/2 = e−3h( 1
2
+κ), (7.41)

which will couple α−1/2 and β1/2. These Majorana fermions are decimated at the
second RG step fusing into d1/2, (7.10), if Γ̃1/2 > J1/2, implying that

3(1

2
+ κ) < 2 − κ⇒ κ < 1

8
, (7.42)

and then a new term appears in the effective Hamiltonian of the form J̃3/2β−3/2α3/2,
where J̃3/2 follows from (7.5),

J̃3/2 = e−5h( 1
2
−κ). (7.43)

Summarizing, the first central decimation requires κ > −1/4 while the second
requires κ < 1/8. We can iterate this procedure and find that the bound on κ

associated with exactly n consecutive central decimations is given by

κ > − 1

4n
, if n odd,

κ < 1

4n
, if n even. (7.44)

The state with exactly n central decimations will be called ∣n⟩. With this notation,
the RS corresponds to ∣n = 2L⟩, and satisfies

∣κ∣ < 1

8L
. (7.45)
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(a) (b)

(c) (d)

Figure 7.5: Schematic representation of different ground states of (7.3) obtained
with the SDRG scheme. The trivial (a) and non-trivial (b) local pairings corre-
spond to the states ∣n = 0⟩ and ∣n = 1⟩, the two possible ground states of the Kitaev
chain. Panels (c) and (d) illustrate ground states with coexistence between non-local
rainbow-like and local fermions. The topological type of the local pairing depends
on the parity of n. Hence, we have a trivial pairing (c) ∣n = 4⟩ and a non trivial one
∣n = 3⟩ in (d).

Whenever a central decimation fails, the SDRG must choose the strongest
couplings between two identical links, symmetrically placed with respect to the
center of the chain. That is not a problem for the algorithm, because the links
are not consecutive. More relevantly, from that moment on the RG will always
proceed by dimerizing the chain towards the extremes, except perhaps for a final
long distance bond, depending on the parity of the system, related to the Kitaev
phase (Kitaev 2001).

Thus, we are led to the following physical picture, which is illustrated in Fig.
7.5. In panel (a) we can see the GS for κ < −1/4. No central bonds are created,
and we obtain the state ∣n = 0⟩. Panel (b) shows the GS for κ > 1/8, in which a
single central bond is created. Due to parity reasons, a second bond must appear
between the extremes of the chain, thus leading to the non-trivial Kitaev chain,
which we call the state ∣n = 1⟩. Panel (c) shows the state ∣n = 4⟩ and panel (d) the
state ∣n = 3⟩, which can be obtained within fixed ranges of κ ∈ (−1/12,−1/20) and
κ ∈ (1/24,1/16) respectively, which can be found through (7.44).

This physical picture can be confirmed through the analysis of the covariance
matrices, which are depicted using a color code in Fig. 7.6. Indeed, we can see
the CM for N = 20 spins and h = 10, in the suitable range for ∣n = 4⟩ (left) and
∣n = 5⟩ (right). The central patterns show n = 4 and n = 5 central arcs, respectively.
As predicted, the n = 5 case presents an extra bond between the extremes of the
system, showing that it belongs to the non-trivial Kitaev phase.

Furthermore, we examine the entanglement entropy of lateral blocks, S(A`) in
the top panel of Fig. 7.7, which has been computed from the CM using the same
systems, with N = 10 spins and h = 10. As predicted in our physical picture, the
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Figure 7.6: Covariance matrices of states ∣n = 4⟩ and ∣n = 5⟩ for h = 10 and N = 20.
The short-range single states populate the secondary diagonals while the long-range
singlet states correspond to the antidiagonal.

entanglement entropy for the smallest block begins at 0 or log(2) depending on
the sign of κ, and presents a linear tent-shape at the center, within a block of ⌊n/2⌋
spins and reaching an entanglement entropy n log(2)/2. The topological nature
of the states is clarified in Appendix 7.C, where we present a graphical way to
distinguish the trivial and topological phases by overlaying each state with the
trivial state ∣n = 0⟩ and counting the total number of loops.

We can also consider the energy gap around the Fermi level to capture the
differences between ground states. Defining the energy gap in an inhomogeneous
system presents some challenges, since it should be expressed in units of the
typical energy scale. We can proceed in a similar way to what was done in section
5.2.1 and rescale the energy gap with the lowest coupling of the system, which in
this case becomes ΓL−1/2 ≈ e−2hL. Hence, the scaled gap

∆̂(0) ≡ EN+1 −EN
ΓL−1/2

, (7.46)

becomes constant (∆̂(0) = 2), as it can be seen in Fig.7.7 (b). The states ∣n odd⟩
present a zero mode at the edge, and the system is strictly gapless, ∆̂(0) = 0.
Therefore, it is convenient to consider the second gap, defined as

∆̂(1) ≡ EN −EN−1

JL−1/2
, (7.47)

which can also be seen in Fig. 7.7 (b). If n ≤ (2L−3) there is a short-range Majorana
singlet state and the gap is finite, ∆̂(1) = 2. Yet, both gaps fall to zero for the
rainbow state, ∣n = N⟩.
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Figure 7.7: Top: entanglement entropy of lateral blocks of a chain of N = 10 spins
for different values of κ, using h = 10. For κ = −0.33 and κ = 0.14 we obtain
respectively the ∣n = 0⟩ and ∣n = 1⟩ states, for which the entropy is flat. On the other
extreme, the κ = 0 curve corresponds to the rainbow state, ∣n = 10⟩, which presents
maximal entanglement entropy growth. The intermediate values of κ are chosen
following (7.44) and present different numbers of central bonds. The entanglement
entropy for the half-chain, ` = 5, agrees with (7.16). Bottom: scaled energy gaps
(∆̂(0) for κ < 0 and ∆̂(1) for κ > 0) of the same chain for different values of h. The
vertical gray lines delimit the rainbow state region for this chain size (n > 2(L − 1)).
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7.2.2 Weak inhomogeneity

Proceeding in the same way as in the previous section, we can obtain the equations
of motion from the Hamiltonian (7.3) and describe the continuum limit defining
x = am, a→ 0, h→ 0, with ĥ = h/a and L = La kept constant, in terms of the fields
α(x, t) and β(x, t),

∂tα ≈ −2ae−2ĥ∣x∣(aeδ∂x − (sign(x)heδ + 2 sinh δ))β,

∂tβ ≈ −2ae−2ĥ∣x∣(aeδ∂x − (sign(x)heδ − 2 sinh δ))α, (7.48)

where we will use a = 1 for convenience. These equations can be rewritten in terms
of a spinor field Ψ, (7.21), using the same γ matrices, obtaining

(−σ2∂0 + e−2h∣x1∣(iσ3e
δ∂1 − iσ3sign(x1)heδ + 2i sinh δ))Ψ = 0, (7.49)

And, then, we can compare this equation with that representing the dynamics of a
Dirac field in a curved spacetime.

(−σ2∂0 +
i

2
ω01

0 σ3 +
E1

1

E0
0

(iσ3∂1 −
i

2
ω01

1 σ2) + i
m

E0
0

)Ψ = 0. (7.50)

where ωabµ is again the spin connection and Eµ
a the inverse of the zweibein. From

the above identification we find that:

E0
0 = e2h∣x1∣, E1

1 = eδ

ω01
0 = −2e−2h∣x1∣eδhsign(x1)
ω01

1 = 0,

m = 2 sinh δ, (7.51)

that leads to a (1+1)D metric whose non-zero terms are

g00 = −e−4h∣x∣, g11 = e−2δ. (7.52)

However, g11 ≃ 1 if δ ≪ 1, and thus the associated metric coincides with the one
found in the previous section, see (7.28). Thus, the field theory associated with
the system described by the Hamiltonian (7.3) is described by a massive Majorana
fermion, with m ≈ 2δ, placed in the curved background described by the metric
(7.28).

Entanglement entropies

Let us first consider the case h = 0, i.e. the massive fermion on a flat space. The
entanglement entropy of this system has been obtained previously by evaluating
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the associated two-dimensional classical model via the corner transfer matrix
(CTM) formalism (Davies 1988; Peschel and Eisler 2009). For δ > 0 one obtains

S(δ) = 1

12
(log ( k2

16k′2
) + (1 − k

2

2
) 4I(k)I(k′)

π
) + log 2, (7.53)

while for δ < 0 we get

S(δ) = 1

12
(log ( 4

kk′
) + 1

2
(k2 − k′2) 4I(k)I(k′)

π
) , (7.54)

where I(x) is the complete elliptic integral of the first kind (Abramowitz and
Stegun 1972) and

k = e−2∣δ∣, k′ =
√

1 − k2. (7.55)

Notice that if ∣δ∣≪ 1, k ≈ (1 − ∣δ∣)/(1 + ∣δ∣) which is the value used in Refs. (Eisler
et al. 2020; Peschel and Eisler 2009). Although (7.54) is only exact for the infinite
chain, it is still valid provided that 1/δ ≪ L, i.e. when the cluster decomposition
principle is satisfied. Near the critical point, δ ≪ 1, (7.54) are simplified to

S ≈ c
6

log( 1

1 − k) =
c

6
log ξ, (7.56)

where the quantity inside the logarithm can be interpreted as a correlation length
ξ (Calabrese and Cardy 2004) with the appropriate units of length,

ξ = 1

1 − k ≈
1

2∣δ∣ , (7.57)

which corresponds to the inverse of the mass, m = 2δ, (7.51). To end this brief
summary of the homogeneous non critical case, let us write the entanglement
entropy for the half chain of a finite system as

S(δ,L) = c
6

log
ξE(δ,L)

2
+ b(δ), (7.58)

where ξE(δ,L) shall be called the entangled length, because it plays the role of
an effective correlation length in order to compute the entanglement entropy,
even though its value is upper bounded by the size of the system, N = 2L. If
δ = 0, the system is critical and ξE(0, L) saturates this bound, thus leading to the
logarithmic scaling predicted by CFT. On the other hand, if ∣δ∣ is large enough then
ξE(δ,L)≪ 2L, finite-size effects are not important and the cluster decomposition
principle holds. Thus, the results for the infinite chain can be applied, and the area
law is satisfied. Hence, we see that in this case (7.58) is just a reparametrization of
(7.54).

Moreover, when we introduce inhomogeneity in the system through the param-
eter h, we find that the entanglement entropy can be obtained merely deforming the
entangled length ξE(δ,L) according to the same prescription used before, given in
(7.29), giving rise to the ansatz
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S(L, δ, h) = c
6

log (ξ̃E(δ,L)) + b(δ), (7.59)

where

ξ̃E(h, δ,L) =
1

2h
(ehξE(δ,L) − 1) , (7.60)

is the deformed entangled length, corresponding to the curved spacetime.
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Figure 7.8: Top: Plot of the fits (lines) performed with expression (7.60) of the
numerical results for the half chain entanglement entropy (points) for different
values of δ. Bottom: The dotted red line corresponds to (7.54) and the blue dots to
(7.59), where ξE(δ,L) has been obtained by fitting (7.60) to the numerical half chain
entanglement entropy of a system with L = 100.

We have fitted expression (7.59) to the numerical values for the entanglement
entropy of the half chain for different values of δ and h, using ξE(δ,L) and b(δ)
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as fitting parameters. The agreement between the fits and the numerical results
can be seen in the top panel of Fig. 7.8. Hence, we obtain a single value for the
entangled length for each L and δ, which accounts for the entanglement entropy
under different degrees of inhomogeneity h. In the bottom panel of Fig. 7.9 we
can see the good agreement between the infinite chain prediction, (7.54), and the
output of (7.58) having used the values ξE(δ,L) and b(δ) that were obtained from
the previous fits.

In Fig. 7.9 we present the fitted values ξE(δ,L) for different system sizes. The
system presents universal behavior as long as the correlation length is much
smaller than the system size.
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Figure 7.9: Entanglement correlation length ξE(δ,L) for different chain sizes 2L.
Near the critical point we have ξE ≈ ξ, (7.57).

It is worth to ask whether the weak and strong inhomogeneity regimes match
smoothly. Let us consider the limit h≫ 1 in (7.59),

S(L, δ, h) ≈ c
6
hξE(δ,L). (7.61)

If δ = 0 we have S(L,0, h) ≈ c
3hL, as it was discussed in the previous section. On

the other hand, if δ ≪ 1 but 1/δ ≪ L, ξE(δ,L) = ξ from (7.57). Hence,

S(L, δ, h) ≈ h

12δ
= 1

12κ
, (7.62)

which is a manifestation of the area law given by the interplay between the
inhomogeneity h and the dimerization δ. Thus, we see that the weak and strong
inhomogeneity regimes match.

145



Entanglement Hamiltonian and entanglement spectrum

The reduced density matrix ρA of a half infinite chain can be written in terms of
the generator of the Baxter corner matrix,

ρA = e−HCTM , (7.63)

Since the model is integrable, we can simplify and state that HCTM = εHN , where
HN is a Hermitian operator with integer spectrum. Thus, the entanglement spec-
trum εl, with l = 1 . . . L, is equally spaced and we may focus on the level spacing ε.
For the ITF model we have

ε = πI(k
′)

I(k) , (7.64)

where k and k′ are given by (7.55). The entanglement Hamiltonian of the half
infinite chain can be identified with the generator of the CTM (Eisler et al. 2020).
Thus, in the case of the ITF chain the first neighbor couplings grow linearly from
the internal boundary towards the bulk with a parity oscillation between 1 and k,

H =
∞
∑
l=1
JEH2`−1α`β` + JEH2` β`α`+1, (7.65)

with

JEH2`−1 = I(k′)(2` − 1), JEH2` = I(k′)2`k, δ < 0

JEH2`−1 = I(k′)(2` − 1)k, JEH2` = I(k′)2`, δ > 0 (7.66)

where α` and β` correspond to the lattice Majorana fermions. Fig. 7.10 (a) shows
the nearest neighbor coupling constants of the entanglement Hamiltonian, JEH` ,
slightly modified in order to improve the visualization: for odd values of `, JEH`
has been divided by k in order to remove the parity oscillation, leaving a linear
growth with slope 2I(k′), in similarity to (Eisler et al. 2020). If we switch on the in-
homogeneity, setting h = 0.5, we can observe the same entanglement Hamiltonian
couplings in Fig. 7.10 (b): a linear increase of the couplings with a parity oscillation
between values 1 and k̂(h), which depends on the inhomogeneity. Notice that
k̂(0) = k.

7.3 Conclusions

In this chapter, we have characterized the entanglement properties of an inhomo-
geneous transverse field Ising critical spin-1/2 chain for which both the couplings
and external fields fall exponentially from the center with a rate h, which defines
the rainbow ITF model. It can be analytically solved by mapping into a Majorana
chain, which suggests to treat the couplings and the external fields on an equal
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Figure 7.10: Nearest neighbor couplings of a chain of 2N = 20 Majorana fermions,
JEH` , with a parity compensation: odd values of ` are divided by k. (a) Case h = 0.
We can see that, despite the small size of the chain, we recover the behaviour of
the infinite chain near the boundary for strong dimerizations. Empty symbols
correspond to even couplings while the filled ones are for JEH2`−1/k, see 7.66. (b) In
the case h = 0.5 we observe the same initial behavior for low values of `.

footing. Applying the strong disorder renormalization method we find that the
ground state can be expressed in terms of generalized singlet states which are dis-
played concentrically around the center, similarly to the rainbow state. The weak
inhomogeneity regime can be characterized by taking the continuum limit and
showing that the resulting field theory corresponds to a free massless Majorana
fermion field on a curved spacetime. Thus, we are able to predict the behaviour
of the entanglement entropy deforming appropriately the known CFT results for
Minkowski spacetime, which turns the characteristic logarithmic growth into a
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linear growth with the block size. Moreover, there is a smooth crossover between
both regimes. The nearest neighbor coefficients of the entanglement Hamiltonian
present the standard linear growth as we move away from the internal boundary,
in agreement with the Bisognano-Wichmann theorem, showing that the state can
be interpreted as a thermofield double for large enough inhomogeneity.

Out of criticality, we introduce a parity-dependent term whose strength δ

competes with h, attempting to destroy the linear entanglement. Strong-disorder
renormalization arguments show that for each value of κ ≡ δ/h we obtain a fixed
number of concentric singlets around the center of the chain, also showing that the
trivial and non-trivial Kitaev phases are obtained for positive and negative values
of κ, although with a substantial deformation. The weak inhomogeneity regime
with small δ is described by a massive Majorana field theory placed over the curved
spacetime that we found in the case of the critical model. We have computed the
entanglement entropy by defining an effective correlation length ξE(δ,L) which is
deformed with the metric, see (7.58). Near the entangling point, the entanglement
Hamiltonian presents a linear growth of the couplings with a parity oscillation that
can be accounted for using CTM results for the infinite systems. The amplitude of
the oscillation and the slope depends on the inhomogeneity parameter.

In Chapter 6, we found a connection between the rainbow antiferromagnetic
Heisenberg spin chain with the Haldane phase, and another between the rainbow
XX spin chain and the AIII SPT phases, by means of a folding transformation
around the center of the symmetry of the chain. It could be interesting to extend
this approach to the models considered here and, more generally, to address the
entanglement characterization of inhomogeneous 2D systems. In addition, it could
be relevant to consider an experimental realization of the rainbow state in terms
of a Rydberg atoms chain whose effective Hamiltonian is an inhomogeneous ITF
model with an additional longitudinal field (Schauss 2018). It is possible to extend
Fisher’s RG to this model and find the conditions under which a rainbow is formed.
Also, it could be interesting to consider strongly inhomogeneous anyon models
and study them harnessing their relation with SU(2)k Chern-Simons theories
(Bonesteel and Yang 2007; Nayak et al. 2008).
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Appendices

7.A SDRG for Majorana chains

In this appendix we explain the SDRG scheme applied to an inhomogeneous chain
of Majorana fermions. Let us consider a system of 4 Majorana fermions whose
Hamiltonian is given by:

H = i (giaγiγa + gibγiγb + gabγaγb + gajγaγj + gbjγbγj) , (7.A.1)

with {γm, γn} = 2δmn. Let us assume that gab is larger than the rest so we can use
use perturbation theory to diagonalize (7.A.1).

H0 = igabγaγb, (7.A.2)

HI = i (giaγiγa + gibγiγb − gjaγjγa − gjbγjγb) . (7.A.3)

Defining the Dirac fermion b = 1
2 (γa + iγb), we have thatH0 = 2gab (b†b − 1/2)whose

spectrum is ±∣gab∣ and eigenvectors ∣0⟩ , ∣1⟩ such that b ∣0⟩ = 0. The HI can be written
as:

HI = i{[(gia − igib)γi − (gaj − igbj)γj] b + [(gia + igib)γi − (gaj + igbj)γj] b†} (7.A.4)

Note that we must extend the Hilbert space: ∣0⟩ → ∣0⟩ ⊗ ∣ψ⟩ where ∣ψ⟩ is an
unknown state of the Majorana fermions γi, γj . In the same way ∣1⟩ → ∣1⟩ ⊗ ∣ϕ⟩.
However we shall make an abuse of notation and write γi instead of ⟨ψ∣γi∣ϕ⟩. The
first order corrections are zero so we compute the second order:

∆E0 =
⟨0∣HI ∣1⟩ ⟨1∣HI ∣0⟩

E0 −E1

. (7.A.5)

Using (7.A.4) we find the same corrections for gab > 0 and gab < 0

∆E0 = i(
giagbj
gab

− gibgaj
gab
)γiγj + Ẽ, (7.A.6)

with Ẽ0 = 1/(2∣gab∣) (g2
ia + g2

ib + g2
bj + g2

aj). Thus, an effective Hamiltonian Heff =
igijγiγj emerge with the hopping term given by

gij =
giagbj
gab

− gibgaj
gab

. (7.A.7)
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Particularizing for the ITF spin chain, gib = gaj = 0 and we recover (7.5) and (7.6).
In Ref. Bonesteel and Yang (2007) the authors provide the same result with a
graphical derivation. The matrix elements are computed by counting the loops
obtained by overlaying the (generalized) singlet states. See Appendix 7.C.

7.B Non-universal function of the entanglement en-
tropy

The relation between the entanglement entropies of the XX and ITF models is
given by Iglói and Juhász (2008):

SXX(2x,2L) = 2SITF(x,L). (7.B.1)

We will compute the non-universal part of the entanglement entropy (7.33) with
the above expression. The entanglement entropy of the XX model is computed in
Chapter 4 (see (4.52) particularized for the rainbow model)

SXX(2x,2L) = Scft(2x,2L) +
γ1

2
+ Soscl(2x,2L), (7.B.2)

Scft(2x,2L) =
1

6
log(e−h∣2x∣8(e

h2L − 1)
hπ

cos(π(e
h∣2x∣ − 1)

2(eh2L − 1) ))

Soscl(2x,2L) = (−1)2x+2L (8(eh2L − 1)
hπ

cos(π(e
h∣2x∣ − 1)

2(eh2L − 1) ))
−1

,

and γ1 ≈ 0.4950 + 1/3 log 2 (Jin and Korepin 2004). Hence, by using relation (7.B.1)
we have

c′I(x,L) =
γ1

4
+ 1

6
log 2 + (−1)L (16(e2hL − 1)

hπ
cos(π(e

2h∣x∣ − 1)
4(e2hL − 1) ))

−1

. (7.B.3)

7.C Pictorial representation of the topological phases

The trivial and topological ground states ∣n⟩ of (7.3) can be distinguished graph-
ically. We start by overlapping the GS with the trivial Majorana singlet state
⟨n∣n = 0⟩ and connecting the Majorana fermions (red and blue balls) with their
opposites, leading to the formation of closed loops.

In Fig. 7.C.1 we show the same GS that we presented in Fig. 7.5 overlapping
with ∣n = 0⟩, which we will call ⟨n = 0∣n = 0⟩, that leads to N loops matching with
theN Dirac fermions of kind c, see (7.2). This can be seen in panel (b). On the other
side, the overlapping ⟨n = 1∣n = 0⟩ leads to just one big loop as it can be seen in
panel (c). Thus, the topological phase is characterized by a big loop that encloses
all the Majorana fermions. Considering 1 < n < L − 2 central decimations, the
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(a)

(b) (c)

(d) (e)

Figure 7.C.1: Overlapping of the same states considered in Fig. 7.5. Discussion on
the main text.

overlapping ⟨n = 2m∣n = 0⟩with m = 0,⋯, L− 1 decreases the total number of loops
to N −m while the overlapping ⟨n = 2m − 1∣n = 0⟩ with m = 1,⋯, L − 1 increases
them up to m. For instance, in Fig. 7.C.1 (d)we see the overlapping ⟨n = 4∣n = 0⟩
that leads to 6−2 = 4 bonds. In panel (e) there are 2 loops, because the overlapping
corresponds to ⟨n = 3∣n = 0⟩. Finally, as it can be seen in panel (a), the overlaying
of a rainbow state ∣RS⟩n = 0 leads to N/2 loops. This is another way of unveiling
the criticality of the RS since it corresponds to the intermediate situation.

The loops can also be interpreted in terms of spins and Fisher’s RG (Bonesteel
and Yang 2007). Each loop contains those spins that were hybridized in consecutive
RG steps with dominant J . Hence, the state ∣n = 1⟩ is a superspin while the RS can
be seen as a collection of hybridized pairs of spins. However, notice that they do
not form a SU(2) singlets as it occurs with the Dasgupta-Ma method applied to
antiferromagnetic spin 1/2 chains.
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Chapter 8

Conclusions

This is the final chapter of the thesis. Let us make a brief summary of the conclu-
sions and the work done. The basic principle behind this thesis is the improvement
of the understanding of new phases of matter through the study of quantum en-
tanglement. We have characterized the entanglement in ground states of local
Hamiltonians that describe inhomogeneous quantum chains by means of different
tools such as Rényi entropies and the entanglement Hamiltonian among others.

On the one hand, we have studied the strong inhomogeneity regime h ≫ 1

with the strong Disorder Renormalization Group or with expressly designed real-
space renormalization schemes. On the other hand, we have approached the
weak inhomogeneity regime h ≪ 1 taking an appropriate continuum limit of
the lattice model. Hence, in Chapter 4, we have seen that those models whose
inhomogeneous couplings vary smoothly can be interpreted as a quantum field
theory of a fermion on a curved spacetime. Thus, all the known results for
Minkowski can be used with the proper deformation imposed by the curved
spacetime metric.

The rainbow state violates maximally the area law of the entanglement entropy
in the strong inhomogeneity regime because the ground state is a collection of
concentric Bell pairs. In the weak inhomogeneity regime, the linear growth of the
entanglement entropy is explained by the hyperbolic deformation of the typical
logarithmic behavior associated with a critical model.

In Chapter 5 we have studied the interplay between the inhomogeneity and a
local defect. Thus, we have modified the rainbow model by adding a local central
defect with a tunable intensity.

• In the strong inhomogeneity regime, the presence of the defect modifies
dramatically the entanglement properties of the ground state, giving rise
to two transitions between states that fulfill the area law of entanglement
entropy and states that violate it.

• The weak inhomogeneity regime is described by a conformal field theory in
curved background with a central charge that depends on the defect intensity.
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Thus, the entanglement entropy grows with the system size and we do
not observe the area law behaviour predicted in the strong inhomogeneity
regime.

In Chapter 6 we have considered the relation between symmetry protected
topological (SPT) phases and the inhomogeneity.

• We have found a new mechanism for generating SPT phases in inhomoge-
neous spin chains described by local Hamiltonians. A folding transformation
around the center of the chain converts the long range entanglement into
short range entanglement. Then, we use the degeneracy of the entanglement
spectrum to distinguish between topologically trivial and non trivial phases.

• A strong deformation of the gapless antiferromagnetic Heisenberg spin
s = 1/2 becomes an effective spin s = 1 chain in the Haldane phase by means
of the folding transformation. We propose a generalization of this result
to rational conformal field theories. A local Hamiltonian of spin s is in
correspondence through the folding transformation with a Wess-Zumino-
Witten model with symmetry SU(2)k with level k = 2s. If k is odd, the
physical chain belongs to a non-trivial SPT, whereas if k is even, the chain is
topologically trivial.

In Chapter 7 we have proposed an inhomogeneous transverse field Ising
model whose ground state in the strong inhomogeneity regime is a rainbow state
of Majorana fermions: an state formed by concentric generalized singlet states.
Moreover, the weak inhomogeneity regime is described by a conformal field theory
in curved background with central charge c = 1/2. Furthermore, we have studied
the model outside the critical point, modifying the couplings between Majorana
fermions with a parity dependent term, i.e. dimerizing the chain.

• In the strong inhomogeneity regime, the ground state is formed by gener-
alized singlet states. Its structure is completely fixed by a relation between
the inhomogeneity and the dimerization parameter. It is possible to interpo-
late between the trivial and non-trivial fully dimerized phases of the Kitaev
chain with states having a central rainbow-like zone, i.e. with concentric
generalized singlets. Notice the difference between these states and those
obtained with the tunable central defect in Chapter 5 where the entire chain
is dimerized or is in the rainbow phase as a function of the intensity of the
central defect.

• The weak inhomogeneity regime is described by a massive field theory in
the same curved background: there is a parity dependent term that yields a
mass, and therefore an effective correlation length ξE(δ,L) which must be
deformed accordingly with the metric.

154



Conclusiones

Este es el capitulo final de la tesis. Hagamos un breve resumen de las conclu-
siones y del trabajo realizado. El principio básico detrás de esta tesis es el de la
mejora de la comprensión de nuevas fases de la materia a través del estudio del
entrelazamiento cuántico. Hemos caracterizado el entrelazamiento en estados
fundamentales de Hamiltonianos locales que describen cadenas cuánticas inho-
mogéneas por medio de diferentes herramientas como las entropías de Rényi y el
Hamiltoniano de entrelazamiento entre otras.

Por un lado, hemos estudiado el régimen de inhomogeneidad fuerte h ≫ 1

con el grupo de Renormalizacion de Fuerte Desorden o con esquemas de renor-
malización en espacio real diseñados expresamente. Por otro, hemos abordado el
régimen de inhomogeneidad débil h≪ 1 tomando un límite al contínuo apropiado.
Así, en el Capítulo 4 hemos visto que, aquellos modelos cuyos acoplos inhomogé-
neos varían suavemente, pueden ser interpretados como una teoría cuántica de
campos de un fermión en un espacio-tiempo curvo. Así, todos los resultados
conocidos para Minkowski pueden ser empleados con la pertinente deformación
impuesta por la métrica del espacio-tiempo curvo.

El estado arco-iris viola máximamente la ley del área de la entropía de en-
trelazamiento en el régimen de fuerte inhomogeneidad debido a que el estado
fundamental es una colección de pares de Bell concéntricos. En el régimen de inho-
mogeneidad débil, el crecimiento lineal se explica por la deformación hiperbólica
del típico comportamiento logarítmico asociado a un modelo crítico.

En el Capítulo 5 hemos estudiado la interacción entre la inhomogeneidad y un
defecto local. Así, hemos modificado el modelo arco-iris añadiendo un defecto
central con intensidad variable.

• En el régimen de fuerte inhomogeneidad la presencia del defecto modifica
drásticamente las propiedades de entrelazamiento del estado fundamental,
dando lugar a dos transiciones entre estados que verifican y violan la ley del
área de la entropía de entrelazamiento.

• El régimen de baja inhomogeneidad es descrito por una teoría de campos con-
formes en espacio curvo con una carga central que depende de la intensidad
del defecto. Así, la entropía de entrelazamiento crece volumétricamente y no
se observa la ley del área predicha en el régimen de fuerte inhomogeneidad.
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En el Capítulo 6 hemos estudiado la relación entre las fases topológicas prote-
gidas por simetría (fases SPT) y la inhomogeneidad.

• Hemos encontrado un nuevo mecanismo para generar fases SPT en cade-
nas de espín inhomogéneas gobernadas por Hamiltonianos locales. Una
transformación de plegado en torno al centro de la cadena convierte el
entrelazamiento de largo alcance en entrelazamiento de corto alcance. La
degeneración del espectro de entrelazamiento es usada entonces para difer-
enciar fases topologicamente triviales y no triviales.

• Una deformación fuerte del modelo de Heisenberg antiferromagnético sin
gap de espín s = 1/2 se convierte, mediante el plegado, en una cadena efectiva
de espín s = 1 en la fase de Haldane. Se plantea entonces la generalización
de este resultado a teorías conformes racionales. Un Hamiltoniano local de
espín s en el régimen de alta inhomogeneidad está en correspondencia a
través del plegado con un modelo Wess-Zumino-Witten con simetría SU(2)k
con nivel k = 2s. Si k es impar, la cadena original es una SPT no trivial,
mientras que si k es par, la cadena original es topologicamente trivial.

En el Capítulo 7 hemos propuesto un modelo inhomogéneo de Ising con campo
magnético transverso cuyo estado fundamental en el régimen de fuerte inhomo-
geneidad es un estado arco-iris de fermiones de Majorana: un estado formado por
singletes generalizados dispuestos de forma concéntrica. Asimismo, el régimen de
baja inhomogeneidad es descrito por una teoría de campos conformes en espacio-
tiempo curvo con carga central c = 1/2. Además, hemos investigado el modelo
fuera del punto crítico, modificando los acoplos entre los fermiones de Majorana
con un término dependiente de la paridad, es decir, dimerizando la cadena.

• En el régimen fuerte inhomogeneidad, el estado fundamental está formado
por singletes generalizados. Su estructura está completamente determinada
por una relación entre dimerización e inhomogeneidad. Es posible interpolar
entre las fases completamente dimerizadas triviales y no triviales de la
cadena de Kitaev con estados que tienen un una zona central tipo arco-iris,
i.e. con singletes generalizados concéntricos. Observe la diferencia entre
estos estados y los obtenidos con el defecto central variable en el Capítulo 5
donde toda la cadena es dimerizada o está en fase arco-iris en función de la
intensidad del defecto central.

• El régimen de baja inhomogeneidad viene descrito por una teoría de campos
masiva en el mismo espacio-tiempo que el caso crítico. El término dependi-
ente de la paridad genera una masa, y por tanto una longitud de correlación
efectiva ξE(δ,L) que debe ser deformada adecuadamente con la métrica.
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