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Abstract The main goal of this paper is to solve the Fins-
lerian Kiselev black hole and investigate its thermodynamic
characteristics surrounded by dust, radiation, quintessence,
and the cosmological constant. Since these black holes have
multiple horizons, thus we calculate thermodynamic quan-
tities, including area, horizon radius, Bekenstein–Hawking
entropy, Hawking temperature, surface gravity, and Komar
energy products. In addition, we study all universal relations
of these black holes and discuss the role and effect of the
Finslerian Ricci scalar (η) on Finslerian Kiselev black holes
and their stability.

1 Introduction

Recent highly accurate observations have established the
existence of a gravitationally repelling interaction (cosmic
dark energy), which is the cause of the universe’s accelerat-
ing expansion [1]. The equation of state pq = ωqρq , where
pq , ωq , and ρq are the pressure, energy density, and param-
eter of the equation of state, respectively, with ωq , assuming
values in the interval 1 < ωq < 1

3 , is one of the candidates
that should be responsible for this phenomenon. Quintessen-
tial dark energy, or simply quintessence, is the name given
to this type of cosmic dark energy. This type of dark energy
should have certain gravitational effects on black holes (BHs)
in an astrophysical scenario, such as deflecting light from far-
off stars [2], and should be considered in this context. As a
result, to understand the function the quintessence played in
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this situation, it is necessary to solve the Einstein equations
for this source, which Kiselev did in 2002 [3].

The fundamental components of nature, from the perspec-
tive of string theory, are extended one-dimensional objects
rather than point particles. According to this paradigm, it is
crucial to comprehend the gravitational effects caused by a
group of strings. It can be done by resolving the Einstein
equations using a limited source of strings. Letelier [4] pre-
sented a gauge invariant model of a cloud of surface-forming
strings along with this line of investigation. This model is
described by taking a bi-vector connected to the string work-
sheet. With this approach, he was able to solve the Einstein
equations for a cloud of strings that had cylindrical, plane,
and spherical symmetry. In the first scenario, Letelier discov-
ered the Einstein equations solution, which describes a BH
surrounded by a spherically symmetric cloud of strings and
is mathematically similar to the Schwarzschild solution but
has a larger horizon.

Since the universe can theoretically be described based on
fundamental extended objects like one-dimensional strings
rather than particles, it seems natural that this idea would be
extended to take into account the strings cloud that surrounds
BHs and search for quantifiable gravitational effects of these
clouds. On the other hand, the existence of quintessence
in the vicinity of BHs should also have some astrophysical
repercussions, so it must be considered. This topic is among
the most significant investigations related to BHs because
the study of BHs’ thermodynamic properties has revealed
many facets of their physics, especially in a background with
quintessence and (or) a cloud of strings as additional sources
of the gravitational field.

Recently, physics researchers have studied BHs’ dynami-
cal and thermodynamic characteristics in great detail. There
may be an inner (Cauchy) horizon in some BHs in addition
to the outer (event) horizon. Understanding the microscopic
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characteristics of entropies on both the inner and outer hori-
zons would help one better understand BH properties ther-
modynamics. Thermodynamic product formulas have been
researched recently in this area [5–8]. Several physicists have
been intrigued to look into the area and entropy products of
BHs, which have multiple horizons, as well as other thermo-
dynamic products [9–12]. The basic objective of quantum
gravity [13,14] is to comprehend the microscopic details of
the BH’s exterior and interior entropies. The horizon area
product and its mass dependence in larger curvature gravity
models are discussed in Ref. [10]. In Ref. [15], a variety of
thermodynamic products are assessed, and phase transition
is looked at.

We list various reasons why people are interested in study-
ing the entropy relations of several horizons and physics near
other horizons. First, we realized from [16–18] that green
functions are sensitive to the geometry near all BH horizons
in addition to the outermost horizon. As a result, it is rea-
sonable to assume that each horizon’s entropy contributes
to the microscopically controlled characteristics of BH. Sec-
ond, a generic definition of extremity can be derived from the
entropy inequalities of multi-horizons in Einstein–Maxwell
theory [7,8,19–23]. Moreover, they result in the No-Go the-
orem [13] for the likelihood of force balance between two
rotating BHs. At every horizon, this subject makes physics
more appealing. Moreover, the influence of other horizons
is required to sustain the mass’ independence [24–27]. The
equations of Clausius–Clapeyron–Ehrenfest [28,29] provide
a framework for comprehending the thermodynamic idea
of phase transitions. These equations play a crucial role
in categorizing the higher-order types (continuous) or first-
order phase transitions that occur in thermodynamic systems.
Phase transition phenomenon in BHs has never been thor-
oughly investigated, despite its numerous applicability in var-
ious systems [30,31].

A background study of a Finslerian Kiselev black hole
(FK BH) surrounded by the fields and the effect of these addi-
tional sources on the thermodynamic properties and quasi-
normal fluctuations is crucial. In this paper, We want to dis-
cuss the thermodynamic products on the Cauchy horizon and
the event horizon of FK BHs. On the Cauchy horizon and
event horizon, we compute the following quantities: area,
horizon radii, Bekenstein–Hawking entropy, Hawking tem-
perature, surface gravity, Komar energy, irreducible mass,
and specific heat.

2 Finslerian Kiselev black hole

Let F be a Finsler metric on a differentiable manifold M,

has the form F = F(x, y) and that it is a function of (xi , yi )
in T M. The Finslerian geodesic with respect to F is charac-
terized by

d2xυ

dτ 2 + 2Gυ(x, y) = 0, (1)

where the geodesic spray is

Gυ = 1

4
gυω

(
∂2F2

∂xk∂yω
yk − ∂F2

∂xω

)
. (2)

The metric coefficients can be written as follows,

gυω =
∂2

(
F2

2

)
∂yυ∂yω

. (3)

Ricci scalar of Finsler structure can be expressed as,

Ric = Rμ
μ

= 1

F2

(
2
∂Gμ

∂xμ
− yν ∂2Gμ

∂xν∂yμ
+ 2Gν ∂2Gμ

∂yν∂yμ
− ∂Gμ

∂yν

∂Gν

∂yμ

)
,

(4)

where Rμ
μ exclusively relies on the Finsler structure and is

insensitive to connections. The Ricci tensor in Finsler geom-
etry is written in the following form,

Ricυω = ∂2

∂yυ yω

(
1

2
F2Ric

)
. (5)

In this case, the Finsler metric F = F(x, y) is a function of
(xi , yi ) in a standard coordinate system. The angular coor-
dinate was taken into account in the following ansatz as
F̄2(θ, φ, yθ , yφ).

F2 = eν yt yt − eμyr yr − r2 F̄2(θ, φ, yθ , yφ), (6)

where ν = ν(r) and μ = μ(r) are functions of the radial
coordinate only and F̄ does not depend on yt and yr . There-
fore, Finsler metric coefficients can be obtained as follows,

gυω = diag(eν,−eμ,−r2 ḡi j ), (7)

gυω = diag(e−ν,−e−μ,−r−2 ḡi j ), (8)

where ḡi j and its inverse are the components of metric that
derived from F̄ and the index i, j run over angular coordinate
θ, φ. By inserting the Finsler structure (6) into the formula
(2), we have

Gt = 1

2
ν′yt yr ,

Gr = ν′

4
eν−μyt yt + μ′

4
yr yr − r

2
e−μ F̄2,

Gυ = 1

r
yυ yr + Ḡυ, (υ = θ, φ) (9)

where Ḡυ is the geodesic spray coefficient derived by F̄, and
the prime represents the derivative with regard to r. Substi-
tuting the geodesic coefficients (9) in Eq. (4), we have
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RicF2 =
[

1

2

(
ν′′ + (ν′)2

)
eν−μ

− ν′

4
eν−μ

(
μ′ + ν′

)
+ ν′

r
eν−μ

]
yt yt

+
[

− 1

2

(
ν′′ + (ν′)2

)

+ ν′

4

(
μ′ + ν′

)
+ μ′

r
e−μ

]
yr yr

+
[
R̄ic − e−μ + r

2
e−μ

(
μ′ − ν′

)]
F̄2, (10)

and also, in the Finsler structure, the scalar curvature is as
follows,

S = gυωRicυω

=
(

ν′′ + (ν′)2
)
e−μ − ν′

2
e−μ

(
μ′ + ν′

)

+2

r
e−μ

(
ν′ − μ′

)
− 2

r2 R̄ic + 2

r2 e
−μ. (11)

In the context of the Rastall theory of gravity, we are search-
ing for the general non-vacuum spherically symmetric static
uncharged-charged BH solutions in this section. The Rastall
field equations can thus be expressed as,

Gυω + κλgυωS = κTυω, (12)

where λ is the Rastall parameter, which is a measure of
deviance from the fundamental conservation law of general
relativity, κ is the Rastall gravitational coupling constant,
and Gυω = Ricυω − 1

2gυωS. In the limit of λ → 0 and
κ = 8πGN , where GN is the Newton gravitational coupling
constant, these field equations transform into GR field equa-
tions. We derive non-vanishing Rastall tensor components
using this metric,

Hυω = Gυω + κλgυωS. (13)

Let’s start by examining the recent solution for a static, spher-
ically symmetric BH immersed in a field. This field can gen-
erally be made up of dust (d), radiation (r), quintessence (q),
cosmological constant (c), or even any combination of these.
It can also include the electrostatic charge, that non-vanishing

Maxwell tensor components as Ei
j = Q2

κr4 diag(−1,−1, 1, 1).

Therefore, we can consider the non-zero energy-momentum
tensor component as follows

T t
t = T r

r = ρs + Q2

κr4 , (14)

T θ
θ = T φ

φ = −1

2
(1 + 3ωs)ρs − Q2

κr4 . (15)

Here, we utilized the index “s” instead of every field stated
before, and ρs and ωs are the density and equation of state
parameter, respectively. Considering Eqs. (12), (14), and the

symmetry of the problem, we can assume that μ = −ν with-
out loss of generality. Make the substitution as follows:

μ = − ln(F fs(r)).

Therefore,

Gt
t = Gr

r = − 1

r2

(
r F f ′

s (r) + F fs(r) − R̄ic

)
, (16)

Gθ
θ = Gφ

φ = − 1

r2

(
1

2
r2

F f ′′
s (r) + r F f ′

s (r)

)
, (17)

and

S = 1

r2

(
r2

F f ′′
s (r) + 4r F f ′

s (r) + 2F fs(r) − 2R̄ic

)
. (18)

Ht
t = κT t

t , Hr
r = κT r

r , and H θ
θ = κT θ

θ components of
Rastall field equations of the following differential equations
result in

− 1

r2

(
r F f ′

s (r) + F fs(r) − R̄ic

)

+κλ

r2

(
r2

F f ′′
s (r) + 4r F f ′

s (r) + 2F fs(r) − 2R̄ic

)

= κρs + Q2

r4 ,

− 1

r2

(
1

2
r2

F f ′′
s (r) + r F f ′

s (r)

)

+κλ

r2

(
r2

F f ′′
s (r) + 4r F f ′

s (r) + 2F fs(r) − 2R̄ic

)

= −1

2
(1 + 3ωs)κρs − Q2

r4 . (19)

Now, one can derive the following general solution for the
metric function by solving the set of differential equations
(19),

F fs(r) = η − 2M

r
+ Q2

r2 − Ns

r
1+3ωs−6κλ(1+ωs )

1−3κλ(1+ωs )

, (20)

with energy density as

ρs = −3Ws Ns

κr
3(1+ωs )−12κλ(1+ωs )

1−3κλ(1+ωs )

, (21)

where the quantities with F denote the quantities of FKBH,
R̄ic = η = constant, the BH’s mass (M), and the sur-
rounding field structure parameter (Ns), respectively, are two
integration constants and Ws is a geometric constant that is
dependent on the Rastall geometrical constants κ, λ, and ωs

of the BH that surrounds the field, that is:

Ws = − (1 − 4κλ)(κλ(1 + ωs) − ωs)(
1 − 3κλ(1 + ωs)

)2 . (22)

This BH looks like a charged Kiselev-like BH with a deficit
solid angle. Because η = 1 − a2 where a is the deficit solid
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angle parameter. Since the gravitational influence of a cloud
of strings is the same as that caused by a solid deficiency
angle. If η �= 1, this solution also is similar to a BH sur-
rounded by a cloud of strings by comparing with the results
of Refs. [32,33].

Calculations show that η appears only in F fs(r). Ws and
ρs remain unchanged in this case (see more in Table 1), the
results obtained for λ �= 0 are similar to the Riemannian case
in Ref. [34]. Considering this, in this study, we assume that
λ = 0.

2.1 Finslerian Kiselev black hole: ωd = λ = 0

The BH horizons for a FK BH that is surrounded by dust
corresponds to F fd(r) = 0,

Fr± =
Mef f ±

√
M2

e f f − 4ηQ2

2η
, (23)

where Mef f = 2M + Nd . The symbols Fr+ and Fr− stand
for the event and Cauchy horizons, respectively. Only in cir-
cumstances where M2

e f f −4ηQ2 ≥ 0 holds will assumptions

be made. Using Eq. (23), their product obtains the following
form,

Fr+Fr− = Q2

η
, (24)

which is independent of mass. The area of this BH is given
by,

F A± =
∫ 2π

0

∫ π

0

√
gθθgφφdθdφ = 4π Fr

2±

= 4π

η
(Mef f Fr± − Q2), (25)

and their product will be as

F A+F A− = 16π2

η2 Q4, (26)

Thus the area product formula in FKd BH is universal. The
Bekenstein–Hawking entropy is,

F S± = F A±
4

= π

η
(Mef f Fr± − Q2), (27)

thus the entropy product formula is given by,

F S+F S− = π2

η2 Q4, (28)

it is also mass-independent. The entropy product formula
is also universal in FKd BH. The Hawking temperature is
calculated using the method below,

FT± = Fk±
2π

= 1

4π

d f (r)

dr

∣∣∣∣
Fr±

= 1

4π

2ηFr± − Mef f

Fr2±
, (29)

and their product yields,

FT+FT− = η2

16π2

4ηQ2 − M2
e f f

Q4 . (30)

By using Eq. (29), the surface gravity is given by,

Fk± = 2π FT± = 1

2

2ηFr± − Mef f

Fr2±
, (31)

and their product yields,

Fk+Fk− = η2

4

4ηQ2 − M2
e f f

Q4 . (32)

The surface gravity and surface temperature products are not
universal since they depend on mass. The BH’s Komar energy
is described as,

F E± = 2F S±FT± = 2ηFr± − Mef f

2
, (33)

and their product is,

F E+F E− = 4ηQ2 − M2
e f f

4
. (34)

We can observe that energy product is not a universal quan-
tity. The surface area F A± of a non-spinning BH is connected
to its irreducible mass Mirr , which is given by,

FM
2
irr± = F S±

4π
= F A±

16π
, (35)

the product of the irreducible mass at the horizons is,

FMirr+ FMirr− = Q2

4η
, (36)

the above equation is also a universal quantity. The specific
heat for FKd BH is given,

FC± = ∂M

∂FT±
. (37)

Using Eq. (37), we have the following equation,

FC± = π Fr
2±

2ηFr± − Mef f

Mef f − ηFr±
. (38)

Further, we study the following cases: Case I: If FC± >

0, the BH is thermodynamically stable. If we take into
account horizon radii for FKd BH in the range

Mef f
2η

< Fr± <
Mef f

η
, then FC± is positive, and FKd BH is therefore ther-

modynamically stable in the selected range of horizon radii

Fr±.

Case II: If FC± < 0, the BH is thermodynamically unsta-
ble. If we consider horizon radii for FKd BH in the following
range, 0 < Fr± <

Mef f
2η

, Fr± >
Mef f

η
, then FC± is negative.

Thus, in the selected range of Fr±, FKd BH is thermodynam-
ically unstable.
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Table 1 Metric function and energy density versus surrounding fields

ωs F fs(r) Ws ρs

ωd = 0 F fd (r) = η − 2M
r + Q2

r2 − Nd

r
1−6κλ
1−3κλ

Wd = − (1−4κλ)(κλ)

(1−3κλ)2 ρd = 3λ(1−4κλ)Nd
(1−3κλ)2 r− 3−12κλ

1−3κλ

ωr = 1
3 F fr (r) = η − 2M

r + Q2

r2 − Nr
r2 Wr = 1

3 ρr = −Nr
κr4

ωq = − 2
3 F fq (r) = η − 2M

r + Q2

r2 − Nq

r
− 1+2κλ

1−κλ

Wq = − (1−4κλ)(2+κλ)

3(1−κλ)2 ρq = (1−4κλ)(2+κλ)Nq

κ(1−κλ)2 r− 1−4κλ
1−κλ

ωc = −1 F fc(r) = η − 2M
r + Q2

r2 − Nc
r−2 Wc = −(1 − 4κλ) ρc = 3(1−4κλ)Nc

κ

Fig. 1 Specific heat of the FKd
BH
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In this case, stability and instability distance of BH has

been obtained by assuming the Finslerian Ricci scalar is pos-
itive (η > 0).

Case III: If the horizon radius Fr± satisfies the following
formula, then FC± diverges:

Mef f − ηFr± = 0.

Hence, if Fr± = Mef f
η

, FKd BH experiences a second-
order phase transition. Because whenever the specific heat
diverges, BH undergoes a second-order phase transition. Fig-
ure 1 shows that as η decreases, the length of the BH stability
interval increases. But this relation is directly related to the
matter because η = 1 − a2 i.e., the length of the interval
increases with increasing the matter.

Figure 2a and b show the specific heat behavior in contour
and 3-D mode, respectively, and the η range is assumed to
be between −1 and 1.

The specific heat of the BH is given by the following form,

FC± = FT±
∂F S±
∂FT±

. (39)

Using F S± = π Fr2±, we can obtain the specific heat as
follows:

FC± = −F S±
(η − 2)

(
F S±
π

)
+ Q2

(η − 1)
(

F S±
π

)
+ Q2

. (40)

Figure 3 shows a first-order phase transition from unstable
to stable states. It appears as a point at which the specific heat
transitions from negative values to positive ones without dis-
continuity. When the Finslerian Ricci scalar (η) is increased,
the phase transition point is moved to the upper entropies.

2.2 Finslerian Kiselev black hole: ωr = 1
3 , λ = 0

The BH horizons for a FK BH that is surrounded by radiation
corresponds to F fr (r) = 0.

Fr± =
M ±

√
M2 − ηQef f

η
, (41)

where Qef f = Q2 − Nr . We only consider the case where
M2 −ηQef f ≥ 0 holds. Using Eq. (41), their product yields,

Fr+Fr− = Qef f

η
, (42)
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Fig. 2 Specific heat of the FKd
BH with respect to η and Fr±

Fig. 3 Specific heat behavior vs entropy for various values of η

which is independent of mass. It can be seen in Table 2 that
only the products of the area, Bekenstein–Hawking entropy,
and irreducible mass are independent of M and are universal
quantities. Using Eq. (37), one can obtain specific heat as
follows,

FC± = 2π Fr
2±

ηFr± − M

2M − ηFr±
. (43)

Table 2 Area product, Bekenstein–Hawking entropy product, Hawk-
ing temperature product, surface gravity product, Komar energy prod-
uct, irreducible mass product, for FKr BH

F A± F S± FT±
4π
η

(2MFr± − Qef f )
π
η
(2MFr± − Qef f )

ηFr±−M
2π Fr2±

Fk± F E± FMirr±
ηFr±−M

Fr2±
ηFr± − M Fr±

2

F A+F A− F S+F S− FT+FT−
16π2

η2 Q2
e f f

π2

η2 Q
2
e f f

η2

4π2
ηQef f −M2

Q2
e f f

F k+Fk− F E+F E− FMirr+F Mirr−
η2 ηQef f −M2

Q2
e f f

ηQef f − M2 Qef f
4η

Case I: If we take into account horizon radii for FKr BH
in the range M

η
< Fr± < 2M

η
, then FC± is positive, and

FKr BH is therefore thermodynamically stable in the selected
range of horizon radii Fr±.

Case II: If we consider horizon radii for FKr BH in the
following range, 0 < Fr± < M

η
, Fr± > 2M

η
, then FC±

is negative. Thus, in the selected range of Fr±, FKr BH is
thermodynamically unstable.

In this case, stability and instability distance of BH has
been obtained by assuming the Finslerian Ricci scalar is pos-
itive (η > 0).
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Fig. 4 Specific heat of the FKr
BH with respect to η and Fr±

Case III: If the horizon radius Fr± satisfies the following
formula, then FC± diverges:

2M − ηFr± = 0.

Hence, if Fr± = 2M
η

, FKr BH experiences a second-order
phase transition.

Figure 4c shows that as η decreases, the length of the BH
stability interval increases and Fig. 4a and b show the specific
heat behavior in contour and 3-D mode, respectively, and the
η range is assumed to be between −1 and 1.

Similar to Eq. (40), we can get the specific heat in terms
of entropy

FC± = −2F S±
π

M − η
(

F S±
π

) 1
2

2M − η
(

F S±
π

) 1
2

. (44)

Figure 5a shows a first-order phase transition from unsta-
ble to stable states. It appears as a point at which the specific
heat transitions from negative values to positive ones with-
out discontinuity. When the Finslerian Ricci scalar (η) is
increased, the phase transition point is moved to the lower
entropies. And also, Fig. 5b shows that a second-order tran-
sition happens. In this case, also when the Finslerian Ricci
scalar (η) increases, the phase transition point is moved to
the lower entropies.

2.3 Finslerian Kiselev black hole ωq = −2
3 , λ = 0

The BH horizons for a FK BH that is surrounded by
quintessence corresponds to F fq(r) = 0 in which Q2 = 0 is
assumed. We only consider the case where η2 −8MNq ≥ 0,

Fr± =
η ±

√
η2 − 8MNq

2Nq
. (45)

In this case, although the radius of the FKq BH depends on
the Finslerian Ricci scalar (η), their product is independent
of η,

Fr+Fr− = 2M

Nq
. (46)

It can be seen in Table 3 that all the quantities are dependent
on M and are not universal. In comparison with the states of
dust and radiation, we see that the product of area, entropy,
and irreducible mass are independent of the Finslerian Ricci
scalar (η). Using Eq. (37), one can obtain specific heat as
follows,

FC± = π Fr3±
M

(
Nq Fr± − η

2

)
. (47)

Case I: If we take into account horizon radii for FKq BH
in the range Fr± >

η
2Nq

, then FC± is positive, and FKq BH
is therefore thermodynamically stable in the selected range
of horizon radii Fr±.
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Fig. 5 Specific heat of the FKr BH

Table 3 Area product, Bekenstein–Hawking entropy product, Hawk-
ing temperature product, surface gravity product, Komar energy prod-
uct, irreducible mass product, for FKq BH

F A± F S± FT±
4π
Nq

(ηFr± − 2M) π
Nq

(ηFr± − 2M)
2M−Nq Fr2±

4π Fr2±
Fk± F E± F Mirr±
2M−Nq Fr2±

2Fr2±
2M−Nq Fr2±

2
Fr±

2

F A+F A− F S+F S− FT+FT−

64π2M2

N2
q

4π2M2

N2
q

16M2− 2Mη2

Nq

64π2M2 N 2
q

Fk+Fk− F E+F E− F Mirr+FMirr−
16M2− 2Mη2

Nq

16M2 N 2
q 4M2 − Mη2

2Nq

M
2Nq

Case II: If we consider horizon radii for FKq BH in the
following range, 0 < Fr± <

η
2Nq

, then FC± is negative.
Thus, in the selected range of Fr±, FKq BH is thermody-
namically unstable.

In this case, stability and instability distance of BH has
been obtained by assuming the Finslerian Ricci scalar is pos-
itive (η > 0).

Figure 6 shows that this BH only experiences the first-
order phase transition. As η increases, the phase transition
transfers to a higher point.

Figure 7a and b show the specific heat behavior in contour
and 3-D mode, respectively, and the η range is assumed to
be between −1 and 1.

Similar to Eq. (40), one can obtain the specific heat with
respect to entropy,

FC± = −F S±
(

1 − Nq

2πM
FS±

)
. (48)

Fig. 6 Specific heat of the FKq BH

Figure 8 shows the changes in specific heat with respect
to entropy. It can be seen in Fig. 8, similar to Fig. 6, the BH
experiences only the first-order phase change, but it does not
depend on the Finslerian Ricci scalar (η).

2.4 Finslerian Kiselev black hole ωc = −1, λ = 0

The BH horizon for a FK BH that is surrounded by a cos-
mological constant corresponds to F fc(r) = 0. In Ref. [5]

ξ(r) = 1− 2 M∗
r − 1

3�r2 + Q∗2

r2 , comparing ξ(r) and F fc(r),

we find that M∗ = M
η

, Q∗2 = Q2

η
, and �

3 = Nc
η

. Now, we
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Fig. 7 Specific heat of the FKq BH with respect to η and Fr±

Fig. 8 Specific heat of the FKq BH

can easily obtain the horizons of the BH in the following
form, assuming that 3Nc

η
M2

η2 � 1,

Fr± = M

η
±

√
M2

η2 − Q2

η
+ Nc

η

M4

η4 . (49)

By using Eq. (23), their product yields,

Fr+Fr− = 1

η

(
Q2 − M4

η4 Nc

)
, (50)

which is dependent on both mass and η. It can be seen in
Table 4 that all the quantities are dependent on M and are not
universal. The difference between this BH and the Reissner–
Nordström–de Sitter BH is the presence of the Finslerian
Ricci scalar (η), and the effect of η can be observed in all
quantities. Using Eq. (37), one can obtain specific heat as
follows,

FC± =
2π Fr4±

(
Fr± − M

η

)
(

2 M
η Fr± − Fr2± + 6 Nc

η
M4

η4

) (
2 Nc

η
M3

η3 + Fr±
) .

(51)

Case I: If we take into account horizon radii for FKc BH

in the range M
η

< Fr± < M
η

(1±
√

1 + 6 Nc
η

M2

η2 ), then FC± is
positive, and FKc BH is therefore thermodynamically stable
in the selected range of horizon radii Fr±.

Case II: If we consider horizon radii for FKc BH in the fol-

lowing range, 0 < Fr± < M
η

, Fr± > M
η

(1±
√

1 + 6 Nc
η

M2

η2 ),

then FC± is negative. Thus, in the selected range of Fr±, FKc
BH is thermodynamically unstable.

In this case, stability and instability distance of BH has
been obtained by assuming the Finslerian Ricci scalar is pos-
itive (η > 0).
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Table 4 Area product,
Bekenstein–Hawking entropy
product, Hawking temperature
product, surface gravity product,
Komar energy product,
irreducible mass product, for
FKc BH

F A± F S±
4π
η

(2MFr± − Q2 + Nc
M4

η4 ) π
η
(2MFr± − Q2 + Nc

M4

η4 )

F A+F A− F S+F S−
16π2

η2 (Q2 − M4

η4 Nc)
2 π2

η2 (Q2 − M4

η4 Nc)
2

FT± Fk±
Fr2±− M

η Fr±− 2Nc
η

M4

η4

2π Fr3±

Fr2±− M
η Fr±−2 Nc

η
M4

η4

Fr3±
FT+FT− Fk+Fk−
(
Q2
η

− M2

η2 )(Q2+3Nc
M4

η4 )−Nc(
Q2
η

− Nc
η

M4

η4 )

4π2(Q2−Nc
M4

η4 )3

(
Q2
η

− M2

η2 )(Q2+3Nc
M4

η4 )−Nc(
Q2
η

− Nc
η

M4

η4 )

(Q2−Nc
M4

η4 )3

F E± F Mirr±
Fr2±− M

η Fr±−2 Nc
η

M4

η4

Fr±
Fr±

2

F E+F E− F Mirr+FMirr−
(
Q2
η

− M2

η2 )(Q2+3Nc
M4

η4 )−Nc(
Q2
η

− Nc
η

M4

η4 )

(Q2−Nc
M4

η4 )

1
4η

(Q2 − M4

η4 Nc)

Fig. 9 Specific heat of the FKc BH

Case III: If the horizon radius Fr± satisfies the following
formula, then FC± diverges:

2
M

η
Fr± − Fr

2± + 6
Nc

η

M4

η4 = 0, 2
Nc

η

M3

η3 + Fr± = 0.

Hence, if Fr± = M
η

(1±
√

1 + 6 Nc
η

M2

η2 ), FKc BH experiences
a second-order phase transition.

Figure 9a shows the first-order and second-order phase
transitions, and Fig. 9b clearly shows that when the Finsle-
rian Ricci scalar (η) increases, the first-order phase transi-
tion point is shifted to a lower level, and this is also true for
the second-order phase transition. Figure 10a and b show the

specific heat behavior in contour and 3-D mode, respectively,
and the η range is assumed to be between 0 and 1.

3 Conclusion

In the setting of Rastall theory, we find uncharged/charged
FK BHs as a novel class of BH solutions encircled by ideal
fluid. Then, we focus on the unique situations of charged
and uncharged BHs surrounded by common materials like
radiation and dust or rare materials like quintessence and
cosmological constants. Since the gravitational influence of a
cloud of strings is the same as that caused by a solid deficiency
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Fig. 10 Specific heat of the
FKc BH with respect to η and
Fr±
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angle, if η �= 1, this solution is similar to a BH surrounded
by a cloud of strings. In Eq. (20), we can see that the role of
curvature and matter is the same. Instead of adding matter,
the same results can be obtained by changing the geometry,
and Finsler geometry is a suitable option.

The results are shown that the properties of FK BHs for
λ �= 0 are similar to Kiselev BH in the non-Finsler state.
Because η appears only in the function F fs(r) and the val-
ues of Ws and ρs (see more Eqs. (21, 22)) are independent of
η [34]. Therefore, assuming λ = 0, we have investigated the
thermodynamic characteristics of the BH. We have identified
several BH thermodynamic products and got some intrigu-
ing findings. Quantum field theory and gravity are related
through BH thermodynamics. In this regard, evaluating var-
ious thermodynamic products can help researchers better
understand the microscopic properties of the BH’s outer and
inner entropies. The findings aid in the microstructure anal-
ysis of FK BHs, which in turn identifies a method for com-
prehending the basic characteristics of BH gravity and estab-
lishes quantum gravity.
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