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Abstract The main goal of this paper is to solve the Fins-
lerian Kiselev black hole and investigate its thermodynamic
characteristics surrounded by dust, radiation, quintessence,
and the cosmological constant. Since these black holes have
multiple horizons, thus we calculate thermodynamic quan-
tities, including area, horizon radius, Bekenstein—Hawking
entropy, Hawking temperature, surface gravity, and Komar
energy products. In addition, we study all universal relations
of these black holes and discuss the role and effect of the
Finslerian Ricci scalar (1) on Finslerian Kiselev black holes
and their stability.

1 Introduction

Recent highly accurate observations have established the
existence of a gravitationally repelling interaction (cosmic
dark energy), which is the cause of the universe’s accelerat-
ing expansion [1]. The equation of state p; = w, 0,4, Where
Pg» @g, and p, are the pressure, energy density, and param-
eter of the equation of state, respectively, with @, assuming
values in the interval 1 < w,; < %, is one of the candidates
that should be responsible for this phenomenon. Quintessen-
tial dark energy, or simply quintessence, is the name given
to this type of cosmic dark energy. This type of dark energy
should have certain gravitational effects on black holes (BHs)
in an astrophysical scenario, such as deflecting light from far-
off stars [2], and should be considered in this context. As a
result, to understand the function the quintessence played in
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this situation, it is necessary to solve the Einstein equations
for this source, which Kiselev did in 2002 [3].

The fundamental components of nature, from the perspec-
tive of string theory, are extended one-dimensional objects
rather than point particles. According to this paradigm, it is
crucial to comprehend the gravitational effects caused by a
group of strings. It can be done by resolving the Einstein
equations using a limited source of strings. Letelier [4] pre-
sented a gauge invariant model of a cloud of surface-forming
strings along with this line of investigation. This model is
described by taking a bi-vector connected to the string work-
sheet. With this approach, he was able to solve the Einstein
equations for a cloud of strings that had cylindrical, plane,
and spherical symmetry. In the first scenario, Letelier discov-
ered the Einstein equations solution, which describes a BH
surrounded by a spherically symmetric cloud of strings and
is mathematically similar to the Schwarzschild solution but
has a larger horizon.

Since the universe can theoretically be described based on
fundamental extended objects like one-dimensional strings
rather than particles, it seems natural that this idea would be
extended to take into account the strings cloud that surrounds
BHs and search for quantifiable gravitational effects of these
clouds. On the other hand, the existence of quintessence
in the vicinity of BHs should also have some astrophysical
repercussions, so it must be considered. This topic is among
the most significant investigations related to BHs because
the study of BHs’ thermodynamic properties has revealed
many facets of their physics, especially in a background with
quintessence and (or) a cloud of strings as additional sources
of the gravitational field.

Recently, physics researchers have studied BHs’ dynami-
cal and thermodynamic characteristics in great detail. There
may be an inner (Cauchy) horizon in some BHs in addition
to the outer (event) horizon. Understanding the microscopic
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characteristics of entropies on both the inner and outer hori-
zons would help one better understand BH properties ther-
modynamics. Thermodynamic product formulas have been
researched recently in this area [5—8]. Several physicists have
been intrigued to look into the area and entropy products of
BHs, which have multiple horizons, as well as other thermo-
dynamic products [9-12]. The basic objective of quantum
gravity [13,14] is to comprehend the microscopic details of
the BH’s exterior and interior entropies. The horizon area
product and its mass dependence in larger curvature gravity
models are discussed in Ref. [10]. In Ref. [15], a variety of
thermodynamic products are assessed, and phase transition
is looked at.

We list various reasons why people are interested in study-
ing the entropy relations of several horizons and physics near
other horizons. First, we realized from [16-18] that green
functions are sensitive to the geometry near all BH horizons
in addition to the outermost horizon. As a result, it is rea-
sonable to assume that each horizon’s entropy contributes
to the microscopically controlled characteristics of BH. Sec-
ond, a generic definition of extremity can be derived from the
entropy inequalities of multi-horizons in Einstein—-Maxwell
theory [7,8,19-23]. Moreover, they result in the No-Go the-
orem [13] for the likelihood of force balance between two
rotating BHs. At every horizon, this subject makes physics
more appealing. Moreover, the influence of other horizons
is required to sustain the mass’ independence [24-27]. The
equations of Clausius—Clapeyron—-Ehrenfest [28,29] provide
a framework for comprehending the thermodynamic idea
of phase transitions. These equations play a crucial role
in categorizing the higher-order types (continuous) or first-
order phase transitions that occur in thermodynamic systems.
Phase transition phenomenon in BHs has never been thor-
oughly investigated, despite its numerous applicability in var-
ious systems [30,31].

A background study of a Finslerian Kiselev black hole
(FK BH) surrounded by the fields and the effect of these addi-
tional sources on the thermodynamic properties and quasi-
normal fluctuations is crucial. In this paper, We want to dis-
cuss the thermodynamic products on the Cauchy horizon and
the event horizon of FK BHs. On the Cauchy horizon and
event horizon, we compute the following quantities: area,
horizon radii, Bekenstein—Hawking entropy, Hawking tem-
perature, surface gravity, Komar energy, irreducible mass,
and specific heat.

2 Finslerian Kiselev black hole
Let F be a Finsler metric on a differentiable manifold M,
has the form F = F(x, y) and that it is a function of (x’, y’)

in T M. The Finslerian geodesic with respect to F is charac-
terized by
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The metric coefficients can be written as follows,

= . 3
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Ricci scalar of Finsler structure can be expressed as,
Ric = RZ
_ 16, 32GH , ?G* IGH 3GY
T2\ axn Y oxVayH ayvoyH ayv oyt )
4

where R,’f exclusively relies on the Finsler structure and is
insensitive to connections. The Ricci tensor in Finsler geom-
etry is written in the following form,

. P (1o,
RlCUw = W EF Ric). (5)
In this case, the Finsler metric F = F(x, y) is a function of
(x', y') in a standard coordinate system. The angular coor-
dinate was taken into account in the following ansatz as

F20.0.5%.y%).
F2 — el}y[y[ _ epLyryr _ r2F2(9’ ¢’ ye’ y¢)’ (6)

where v = v(r) and u = u(r) are functions of the radial
coordinate only and F does not depend on y’ and y”. There-
fore, Finsler metric coefficients can be obtained as follows,

guo = diag(e", —e", —r’g;)), )
g" =diag(e™" 7", —r2g), ®)

where g;; and its inverse are the components of metric that
derived from F and the index i, Jj run over angular coordinate
0, ¢. By inserting the Finsler structure (6) into the formula
(2), we have

1
Glzzv/ylyr’
v w r -
G = eV Myt _rr__—u,FZ’
4e yy + 4y y 23
1 -
GU:;yUyr-i-GU, (v=20,9) (€))

where GV is the geodesic spray coefficient derived by F, and
the prime represents the derivative with regard to r. Substi-
tuting the geodesic coefficients (9) in Eq. (4), we have
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and also, in the Finsler structure, the scalar curvature is as
follows,

S = g"Ricy,
/
= <v” + (v/)2> e H — %e_” (u/ + \/)
2 2 - 2
+=e MV =) = SRic+ e M. (11)
p 2 2

In the context of the Rastall theory of gravity, we are search-
ing for the general non-vacuum spherically symmetric static
uncharged-charged BH solutions in this section. The Rastall
field equations can thus be expressed as,

Guo + KAguwS = kK Tyw, (12)

where A is the Rastall parameter, which is a measure of
deviance from the fundamental conservation law of general
relativity, « is the Rastall gravitational coupling constant,
and Guw = Ricyw — $8uwS. In the limit of A — 0 and
k = 8m Gy, where Gy is the Newton gravitational coupling
constant, these field equations transform into GR field equa-
tions. We derive non-vanishing Rastall tensor components
using this metric,

Hua) = Gva) + K)\ngS- (13)

Let’s start by examining the recent solution for a static, spher-
ically symmetric BH immersed in a field. This field can gen-
erally be made up of dust (d), radiation (r), quintessence (q),
cosmological constant (c), or even any combination of these.
It can also include the electrostatic charge, that non-vanishing

Maxwell tensor components as E; = KQ—;diag(—l, —1,1,1).

Therefore, we can consider the non-zero energy-momentum
tensor component as follows

2

; 0
Ttt =T =ps+ m, (14)
0 ¢ 1 §
Iy =T, = —5(1 + 3ws)ps — P (15)

Here, we utilized the index “s” instead of every field stated
before, and pg and w; are the density and equation of state
parameter, respectively. Considering Egs. (12), (14), and the

symmetry of the problem, we can assume that 4 = —v with-
out loss of generality. Make the substitution as follows:

w=—1In(g fs(r)).

Therefore,
1 _
Gl =Gl = _r—z(VFfs/(V) +rfs(r) — RiC>, (16)
0 ¢ 1 /1 2 ” /
Gf = G) = = (3 ) +refl)). (17)
and

§= %(fz)Ff!/(r) +Arp f{(r) + 27 f5(r) — zkic). (18)

H! = «T!, H' = «T/, and H] = «T} components of
Rastall field equations of the following differential equations

result in

1 _
_r_2<rFfs/(r) + Ffs(r) — Ric)

KA 2 " / D
+r_2 repfy (r) +4rp fo(r) +2F fs(r) — 2Ric

2
=K,0~+—,
S r4

1 /1
—r—2(§r2Ff§’(r) + rFf;(r>)

KA 2 " ’ _
+r_2(r Ffv (r)+4rng(r)+2Ffv(r)—2Rlc)

2

1
= —5(1 + 3w )kps — (19)

S
Now, one can derive the following general solution for the
metric function by solving the set of differential equations

(19),

oM Q? Ny
FIs) =n——+ = — —5 otz - (20)
r r F I3 +ws)
with energy density as
—3W, N
Ps = T 30Ty 2ei(iws) 2D
Kr 1-3kr(14wys)

where the quantities with r denote the quantities of FKBH,
Ric = n = constant, the BH’s mass (M), and the sur-
rounding field structure parameter (N;), respectively, are two
integration constants and W is a geometric constant that is
dependent on the Rastall geometrical constants «, A, and w;
of the BH that surrounds the field, that is:

(1 =4 X)) (kA1 + wg) — wy)
_ - )
(1 — 3k A1+ a)s)>

This BH looks like a charged Kiselev-like BH with a deficit
solid angle. Because n = 1 — a® where a is the deficit solid

W3=

(22)
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angle parameter. Since the gravitational influence of a cloud
of strings is the same as that caused by a solid deficiency
angle. If n # 1, this solution also is similar to a BH sur-
rounded by a cloud of strings by comparing with the results
of Refs. [32,33].

Calculations show that n appears only in g f(r). W, and
ps remain unchanged in this case (see more in Table 1), the
results obtained for A #% 0 are similar to the Riemannian case
in Ref. [34]. Considering this, in this study, we assume that
A =0.

2.1 Finslerian Kiselev black hole: w; = A =0

The BH horizons for a FK BH that is surrounded by dust
corresponds to g fy(r) =0,

Mesr = Mz — 4102 03

Fr+ = o )

where M,y = 2M + Ng. The symbols gry and gr— stand
for the event and Cauchy horizons, respectively. Only in cir-
cumstances where Mezf T 4n Q2 > 0 holds will assumptions

be made. Using Eq. (23), their product obtains the following
form,

2
FIry+frr— = T, (24)

which is independent of mass. The area of this BH is given
by,

2w pm
FAL = / / /286684pd0dp = 4 prl
0o Jo
4r
= 7(MeffFri - 0%, (25)
and their product will be as

1672
o o4, (26)

FALFA_ =

Thus the area product formula in FKd BH is universal. The
Bekenstein—-Hawking entropy is,

FA:t b
FSt = 4 = ;(MeffFV:i: - 0%, 27
thus the entropy product formula is given by,
7.[2
4
FSypS_ = ?Q , (28)

it is also mass-independent. The entropy product formula
is also universal in FKd BH. The Hawking temperature is
calculated using the method below,

rke 1 df()

Ty = =

1 2npre — Megy
2 4w dr

4 F }"i

. (29)

Fr+
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and their product yields,

2 2
772 4nQ- — Meff 30)
1672 04 '

By using Eq. (29), the surface gravity is given by,

FTypT- =

12npre — Mgy

Fke =2mpTy = - (3D

2 Fr:2|:
and their product yields,
2400 — M},
n eff
kyrk. = ———F—. 32
FkyF ) 0 (32)

The surface gravity and surface temperature products are not
universal since they depend on mass. The BH’s Komar energy
is described as,

2npre — Meysr

FE+ =2pSyrTy = 5 , (33)
and their product is,

4nQ* — My
FEwrE- = ———1 efy (34)

We can observe that energy product is not a universal quan-
tity. The surface area r A 1 of anon-spinning BH is connected
to its irreducible mass M;j,,, which is given by,

the product of the irreducible mass at the horizons is,
02
FMirr, FMirr_ = e (36)

the above equation is also a universal quantity. The specific
heat for FKd BH is given,

Ci = oM (37)
FCt = 0T
Using Eq. (37), we have the following equation,
2 -M
Fcizn”iu_ (38)
My —nrr+

Further, we study the following cases: Case I: If pCy >
0, the BH is thermodynamically stable. If we take into
account horizon radii for FKd BH in the range Mz;];f < fr+ <
@, then pC. is positive, and FKd BH is therefore ther-
modynamically stable in the selected range of horizon radii
FIr+.

Casell: If rC1 < 0, the BH is thermodynamically unsta-
ble. If we consider horizon radii for FKd BH in the following
range, 0 Mess Me/f then pCy i i

86U < Pt < 7,7 FIl'£ > — then rC4 18 negative.
Thus, in the selected range of rr+, FKd BH is thermodynam-
ically unstable.
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Table 1 Metric function and energy density versus surrounding fields
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Fig. 1 Specific heat of the FKd
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In this case, stability and instability distance of BH has Using pS+ = 1 pri, we can obtain the specific heat as
been obtained by assuming the Finslerian Ricci scalar is pos-  follows:
itive (n > 0).
C;Ze III:)If the horizon radius gr4 satisfies the following (n—2) <%> + Q2
FCt=—rSt (40)

formula, then rC4 diverges:
Mefr —nrr+ =0.

Hence, if pr4+ = @, FKd BH experiences a second-
order phase transition. Because whenever the specific heat
diverges, BH undergoes a second-order phase transition. Fig-
ure 1 shows that as 1 decreases, the length of the BH stability
interval increases. But this relation is directly related to the
matter because n = 1 — a? ie., the length of the interval
increases with increasing the matter.

Figure 2a and b show the specific heat behavior in contour
and 3-D mode, respectively, and the 1 range is assumed to
be between —1 and 1.

The specific heat of the BH is given by the following form,

J0FS+
0Ty

FCy =Ty (39)

-1 (2)+ 02

Figure 3 shows a first-order phase transition from unstable
to stable states. It appears as a point at which the specific heat
transitions from negative values to positive ones without dis-
continuity. When the Finslerian Ricci scalar (1) is increased,
the phase transition point is moved to the upper entropies.

2.2 Finslerian Kiselev black hole: w, = %, A=0

The BH horizons for a FK BH that is surrounded by radiation
corresponds to g f-(r) = 0.

M+ \JM? —nQeff

Fr+ = )
n

(41)
where Q.7 = Q> — N,. We only consider the case where
M?*—10, rf = 0holds. Using Eq. (41), their product yields,

Oerr

FryFr— = (42)

@ Springer
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Fig. 2 Specific heat of the FKd (b)
BH with respect to n and gri
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Fig. 3 Specific heat behavior vs entropy for various values of n

which is independent of mass. It can be seen in Table 2 that
only the products of the area, Bekenstein—Hawking entropy,
and irreducible mass are independent of M and are universal
quantities. Using Eq. (37), one can obtain specific heat as
follows,

5 NFr+—M

FC:I: = 271Fr:|:2M ” ri.
—Nr

(43)

@ Springer

Table 2 Area product, Bekenstein-Hawking entropy product, Hawk-
ing temperature product, surface gravity product, Komar energy prod-
uct, irreducible mass product, for FKr BH

FA+ FS+ FTs
-M
47”(2MF& — Qcff) T@Mpre = Qery) ng;iTri
pki FE+ FMirri
nrre—M -M Frs
Fri Nrr+ 3
FAYFA_ FSyFS— FTLrT_
1672 H2 72 2 2 Qe —M?
ey 7 Lerr T
Fkyrpk_ FELFE_ FMirr £ FMirr
off—M? B
7)2 nQ _szﬁff NQers — M2 Q4nff

Case I: If we take into account horizon radii for FKr BH
in the range % < pr4 < ZTM, then rC4 is positive, and
FKr BH is therefore thermodynamically stable in the selected
range of horizon radii pr4.

Case II: If we consider horizon radii for FKr BH in the
following range, 0 < pri < %, Fr4 > %, then pC4
is negative. Thus, in the selected range of pri, FKr BH is
thermodynamically unstable.

In this case, stability and instability distance of BH has
been obtained by assuming the Finslerian Ricci scalar is pos-
itive (n > 0).
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Fig. 4 Specific heat of the FKr «1016 (b)
BH with respect to  and gr4
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Case III: If the horizon radius gr4 satisfies the following
formula, then rCy diverges:

2M — npro4 =0.

Hence, if pro = ZTM, FKr BH experiences a second-order
phase transition.

Figure 4c shows that as n decreases, the length of the BH
stability interval increases and Fig. 4a and b show the specific
heat behavior in contour and 3-D mode, respectively, and the
n range is assumed to be between —1 and 1.

Similar to Eq. (40), we can get the specific heat in terms
of entropy

2
—2psy M—n(5
FCy = ;i (n)]. (44)

2m - (=)

Figure 5a shows a first-order phase transition from unsta-
ble to stable states. It appears as a point at which the specific
heat transitions from negative values to positive ones with-
out discontinuity. When the Finslerian Ricci scalar (n) is
increased, the phase transition point is moved to the lower
entropies. And also, Fig. 5b shows that a second-order tran-
sition happens. In this case, also when the Finslerian Ricci
scalar (1) increases, the phase transition point is moved to
the lower entropies.

2.3 Finslerian Kiselev black hole w; = —Tz’ A=0

The BH horizons for a FK BH that is surrounded by
quintessence corresponds to g f; (r) = 0 in which 02 =0is
assumed. We only consider the case where n2 —8MN, >0,

n+./n*—8MN,

= . 45
Fr+ N, 45)

In this case, although the radius of the FKq BH depends on
the Finslerian Ricci scalar (), their product is independent
of n,
2M

Fr+pr,=N—q. (46)
It can be seen in Table 3 that all the quantities are dependent
on M and are not universal. In comparison with the states of
dust and radiation, we see that the product of area, entropy,
and irreducible mass are independent of the Finslerian Ricci
scalar (). Using Eq. (37), one can obtain specific heat as
follows,

3
TFry n
FCt = i (NqFr:t - 5) . 47

Case I: If we take into account horizon radii for FKq BH
in the range pr4 > ﬁ, then rCy is positive, and FKq BH
is therefore thermodynamically stable in the selected range
of horizon radii pr.

@ Springer
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Fig. 5 Specific heat of the FKr BH

Table 3 Area product, Bekenstein-Hawking entropy product, Hawk-
ing temperature product, surface gravity product, Komar energy prod-
uct, irreducible mass product, for FKq BH

FA+ FS+ FTx
. . 2M—Nypr}
Fpr+ —2M —Fry —2M —
w, (Fre ) N, (NP ) prep)
rks FEL FMirr+
2M—Ngprd 2M—Ngpr} Fra

2pr% 2 e
FALFA_ FS+FS- FTypT-

2 2Mp?

6412 M? 42 M? oM™ — =5, N2

N2 N2 6412 M? q
rkyrk_ FELFE_ FMiry 4 FMiry —

2 2Mnp?
16M7— 2 N2 AP M o

16M? q 2N, 2N,

Case II: If we consider horizon radii for FKq BH in the
following range, 0 < pri+ < ﬁ, then pC4 is negative.
Thus, in the selected range of rri, FKq BH is thermody-
namically unstable.

In this case, stability and instability distance of BH has
been obtained by assuming the Finslerian Ricci scalar is pos-
itive (n > 0).

Figure 6 shows that this BH only experiences the first-
order phase transition. As 1 increases, the phase transition
transfers to a higher point.

Figure 7a and b show the specific heat behavior in contour
and 3-D mode, respectively, and the 1 range is assumed to
be between —1 and 1.

Similar to Eq. (40), one can obtain the specific heat with
respect to entropy,

Cy=—pSi|1 Ny S
FL+ = —FOo+ ZJTMFi.

(48)

@ Springer
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Fig. 6 Specific heat of the FKq BH

Figure 8 shows the changes in specific heat with respect
to entropy. It can be seen in Fig. 8, similar to Fig. 6, the BH
experiences only the first-order phase change, but it does not
depend on the Finslerian Ricci scalar (7).

2.4 Finslerian Kiselev black hole w, = —1, L. =0

The BH horizon for a FK BH that is surrounded by a cos-
mological constant corresponds to r f.(r) = 0. In Ref. [5]

* %2 .
Er) =1- ZTM - %Ar2 + %—2, comparing & (r) and f f,. (),

2
we find that M* = %, Q*2 = QT’ and % = % Now, we
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(a)
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Fig. 7 Specific heat of the FKq BH with respect to n and pry
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Fig. 8 Specific heat of the FKq BH

can easily obtain the horizons of the BH in the following

form, assuming that %A:—; < 1,
M M?2 2 N.M*

o=y MO N M (49)
n n n nn

-0.05

-0.15

0.2

0.15

0.1

0.05

-0.1

By using Eq. (23), their product yields,

1/, M
Fr+Fr—=E 0 —FNc , (50

which is dependent on both mass and 5. It can be seen in
Table 4 that all the quantities are dependent on M and are not
universal. The difference between this BH and the Reissner—
Nordstrom—de Sitter BH is the presence of the Finslerian
Ricci scalar (1), and the effect of n can be observed in all
quantities. Using Eq. (37), one can obtain specific heat as
follows,

M
Zﬂpri (Fri — 7)

M N M* N M3 ’
ZWFri — Fri +6TLF) (27‘F +Fri)

rCy =
(

(51

Case I: If we take into account horizon radii for FKc BH

in the range % < Fre < %(lj:, /14 6%1‘:—;), then pC+ is
positive, and FKc BH is therefore thermodynamically stable
in the selected range of horizon radii gr4.

Case II: If we consider horizon radii for FKc BH in the fol-
Ne M2
n n?
then rCy is negative. Thus, in the selected range of rri, FKc
BH is thermodynamically unstable.
In this case, stability and instability distance of BH has
been obtained by assuming the Finslerian Ricci scalar is pos-

itive (n > 0).

lowingrange,0 < pr4 < %, Fre > %(1:& 14+6

@ Springer
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Table 4 Area product,
Bekenstein—Hawking entropy FAx FS+
product, Hawking temperature 4771(21‘,11,,,i — Q4+ N LQMprs — Q%+ N, My
product, surface gravity product, " g
Komar energy product, FA+FA- FS+FS-
irreducible mass product, for 1672 (g2 M 2 1202 — Ml N )2
FKc BH 7 d 7 K

FTx rk+

F‘ri*%ﬁ'ri*%%ﬁ f‘ri*%ﬁ&*z%%‘

2n ri F ri
FTLFT- rkyFk—

2
n

0 M2 o2 3y, Mt 02 _Ne
(T—UT)(Q +3N<-7[)—Nc(*—7‘7[

)

4r2(Q2 =N M7 )3

FEL

2 M Ne m*
Fri—o Fre—25C 20
Ea N 8
Fr+

FELFE_

0% M2 2 Vs 0% _ Ne m*
(7_?)(Q +3Nc7[)—Nc(T—TL7[

)

(Q2—N. )

0 M 2 M 0% _ Ne m*
(T—UT)(Q +3va7)—Nc(7—TLWT)

T
(Q? =N )3

FMirr+

Fr+

FMirr+FMirr—

4
77(Q% = e No)

3001

2004

100+

Fig. 9 Specific heat of the FKc BH

Case III: If the horizon radius gru satisfies the following
formula, then rC4 diverges:

N. M*

M N, M3
Z—Fri—Fri+6——4 ¢
n non

=0, 2—— +pre =0.
non

Hence, if pr4 = %(lj: /1 + 6% 1;1_22)’ FKc BH experiences

a second-order phase transition.

Figure9a shows the first-order and second-order phase
transitions, and Fig. 9b clearly shows that when the Finsle-
rian Ricci scalar (1) increases, the first-order phase transi-
tion point is shifted to a lower level, and this is also true for
the second-order phase transition. Figure 10a and b show the

@ Springer
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specific heat behavior in contour and 3-D mode, respectively,
and the 5 range is assumed to be between 0 and 1.

3 Conclusion

In the setting of Rastall theory, we find uncharged/charged
FK BHs as a novel class of BH solutions encircled by ideal
fluid. Then, we focus on the unique situations of charged
and uncharged BHs surrounded by common materials like
radiation and dust or rare materials like quintessence and
cosmological constants. Since the gravitational influence of a
cloud of strings is the same as that caused by a solid deficiency



723

Page 11 of 12

(2023) 83:723

Eur. Phys. J. C

g 8 8 g g 8
- o - b ? b §

pringer

NS

0.8

(b)

////,

W
NN
\
\
W
A\
N
N
W
A
7

WA
\

Fig. 10 Specific heat of the
FKc BH with respect to n and

Frt



723  Page 12 of 12

Eur. Phys. J. C (2023) 83:723

angle, if n # 1, this solution is similar to a BH surrounded
by a cloud of strings. In Eq. (20), we can see that the role of
curvature and matter is the same. Instead of adding matter,
the same results can be obtained by changing the geometry,
and Finsler geometry is a suitable option.

The results are shown that the properties of FK BHs for
A # 0 are similar to Kiselev BH in the non-Finsler state.
Because 1 appears only in the function r f;(r) and the val-
ues of Wi and py (see more Egs. (21, 22)) are independent of
n [34]. Therefore, assuming A = 0, we have investigated the
thermodynamic characteristics of the BH. We have identified
several BH thermodynamic products and got some intrigu-
ing findings. Quantum field theory and gravity are related
through BH thermodynamics. In this regard, evaluating var-
ious thermodynamic products can help researchers better
understand the microscopic properties of the BH’s outer and
inner entropies. The findings aid in the microstructure anal-
ysis of FK BHs, which in turn identifies a method for com-
prehending the basic characteristics of BH gravity and estab-
lishes quantum gravity.

Acknowledgements The author Z. Nekouee is very grateful to Depart-
ment of PG Studies and Research in Mathematics, Kuvempu University
for providing the opportunity for a post-doctoral researcher position,
and also like to thank Professor S. K. Narasimhamurthy, the research
supervisor, for his passionate support and constructive criticisms of this
study effort.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: This manuscript
is theoretical, so there is no associated data to be deposited.]

Declarations

Conflict of interest The authors declare no competing interests. The
authors declare that have no known competing financial interests or
personal relationships that could have appeared to influence the work
reported in this paper.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Funded by SCOAP3. SCOAP? supports the goals of the International
Year of Basic Sciences for Sustainable Development.

@ Springer

References

[ O S

10.
11.
12.
13.

14.
15.

16.
17.
18.
19.
20.

21.

22.
23.

24.
25.
26.

217.
28.

29.
30.
31.
32.
33.

34.

. P.A. Ade et al., Astron. Astrophys. 571, Al (2014)

. M. Liu, J. Lu, Y. Gui, Eur. Phys. J. C 59, 107 (2009)

. V.V. Kiselev, Class. Quantum Gravity 20, 1187 (2003)

. PS. Letelier, Phys. Rev. D 20, 1294 (1979)

. S.K. Narasimhamurthy, Z. Nekouee, H.M. Manjunatha, Indian J.

Phys. 97, 279 (2023)

. J. Sadeghi, B. Pourhassan, M. Rostami, Z. Nekouee, Kiselev/CFT

correspondence and black hole thermodynamics. arXiv: hep-
-th/1812.05479

. M. Ansorg, J. Hennig, C. Cederbaum, Gen. Relativ. Gravit. 43,

1205 (2011)

. M. Ansorg, J. Hennig, Phys. Rev. Lett. 102, 221102 (2009)
. M.A. Anacleto, F.A. Brito, E. Passos, Phys. Lett. A 380, 1105

(2016)

A. Castro et al., J. High Energy Phys. 07, 164 (2013)

A. Castro, M.J. Rodriguez, Phys. Rev. D 86, 024008 (2012)

M. Cvetic, H. Lu, C.N. Pope, Phys. Rev. D 88, 044046 (2013)
X.-H. Meng, W. Xu, J. Wang, Int. J. Mod. Phys. A 29, 1450088
(2014)

P. Pradhan, Phys. Lett. B 747, 64 (2015)

B. Majeed, M. Jamil, P. Pradhan, Adv. High Energy Phys. 2015,
124910 (2015)

M. Cvetic, F. Larsen, Phys. Rev. D 56, 4994 (1997)

M. Cvetic, F. Larsen, Nucl. Phys. B 506, 107 (1997)

M. Cvetic, F. Larsen, J. High Energy Phys. 09, 088 (2009)

J. Hennig, M. Ansorg, Ann. Henri Poincare 10, 1075 (2009)

J. Hennig, C. Cederbaum, M. Ansorg, Commun. Math. Phys. 293,
449 (2010)

M. Ansorg, J. Hennig, Class. Quantum Gravity 25, 222001 (2008)
M. Ansorg, H. Pfister, Class. Quantum Gravity 25, 035009 (2008)
J.L. Jaramillo, N. Vasset, M. Ansorg, A numerical study of
Penrose-like inequalities in a family of axially symmetric ini-
tial data. Spanish Relativity Meeting—Encuentros Relativistas
Espa noles, ERE2007: Relativistic Astrophysics and Cosmol-
ogy 30, 257 (2008). https://doi.org/10.1051/eas:0830039. arXiv:
ar-qc/0712.1741

M. Visser, Phys. Rev. D 88, 044014 (2013)

J. Wang, W. Xu, X.-H. Meng, J. High Energy Phys. 01, 031 (2014)
W. Xu, J. Wang, X.-H. Meng, Int. J. Mod. Phys. A 29, 1450172
(2014)

Y.-Q. Du, Y. Tian, Phys. Lett. B 739, 250 (2014)

H.E. Stanley, Introduction to Phase Transitions and Critical Phe-
nomena (Oxford University Press, New York, 1971)

M.W. Zemansky, R.H. Dittman, Heat and Thermodynamics
(McGraw-Hill Companies Inc, Boston, 1997)

Th.M. Nieuwenhuizen, Phys. Rev. Lett. 79, 1317 (1997)

Th.M. Nieuwenhuizen, J. Phys.: Condens. Matter 12, 6543 (2000)
K.K.J. Rodrigue, M. Saleh, B.B. Thomas, K.T. Crepin, Gen. Rel-
ativ. Gravit. 50, 52 (2018)

J.M. Toledo, V.B. Bezerra, Int. J. Mod. Phys. D 28(01), 1950023
(2019)

Y. Heydarzade, F. Darabi, Phys. Lett. B 771, 365 (2017)


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1812.05479
https://doi.org/10.1051/eas:0830039
http://arxiv.org/abs/0712.1741

	Thermodynamic product formulae for Finslerian Kiselev black hole
	Abstract 
	1 Introduction
	2 Finslerian Kiselev black hole
	2.1 Finslerian Kiselev black hole: ωd=λ=0
	2.2 Finslerian Kiselev black hole: ωr=13, λ=0
	2.3 Finslerian Kiselev black hole ωq=-23, λ=0
	2.4 Finslerian Kiselev black hole ωc=-1, λ=0

	3 Conclusion
	Acknowledgements
	References


