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Abstract: We propose the combination of digital quantum simulation and variational quantum

algorithms as an alternative approach to numerical methods for solving quantum control problems.

As a hybrid quantum–classical framework, it provides an efficient simulation of quantum dynamics

compared to classical algorithms, exploiting the previous achievements in digital quantum simulation.

We analyze the trainability and the performance of such algorithms based on our preliminary works.

We show that specific quantum control problems, e.g., finding the switching time for bang-bang

control or the digital quantum annealing schedule, can already be studied in the noisy intermediate-

scale quantum era. We foresee that these algorithms will contribute even more to quantum control of

high precision if the hardware for experimental implementation is developed to the next level.

Keywords: quantum computing; quantum control; quantum simulation; variational quantum circuit;

variational quantum algorithm

1. Introduction

It is rather hard to tell who contributes most to the eureka moment of quantum
computing. Among all researchers who deserve the credit, Richard Feynman pointed out
that computing can be a physical process [1]. His landmark paper suggested a universal
quantum computer for simulating physics and chemistry. The concept was developed in the
following forty years, bringing us to the noisy intermediate-scale quantum (NISQ) era [2,3].
It goes beyond dispute that quantum control plays a vital role in this odyssey by precisely
and efficiently manipulating computational units, usually acknowledged as qubits, in the
quantum realm. In a nutshell, theorists propose control protocols for constructing universal
gate operations on different systems and models, targeting high fidelity, fast operation time,
and robustness against noise. Experimentalists implemented optimal protocols for their
customized systems and achieved quantum advantages in superconducting circuits [4] and
photonic platforms [5].

What about the other way around? In this sense, we formulated the question of
whether one can derive quantum control protocols with quantum computing as an alter-
native approach to classical numerical methods. More specifically, there do exist elegant
methods for exact solutions, e.g., invariant-based inverse engineering and counterdiabatic
driving in the family of shortcuts to adiabaticity (STA) [6–8]. These methods either require a
dynamical invariant or a Hamiltonian diagonalization. It does not discourage the theorists
but gives rise to variational methods in STA, i.e., proposing Ansätze for the Lagrangian
formalism and the engineering on the equations of motion [9]. However, studying nu-
merical methods for quantum control of various systems is still necessary. The reason is
that finding appropriate Ansätze is not that trivial, and other quasi-exact protocols do not
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guarantee a solution of high quality and explicit form for an arbitrary system. Meanwhile,
numerical solutions are more than acceptable in experimental implementations, especially
when most realistic devices send high-precision digital signals to drive the quantum system.
The topic consists of two parts, one as the simulation of quantum dynamics, and the other
as the optimization of the control parameters with classical algorithms. Note that here
the classical simulation of quantum dynamics is replaced by digital quantum simulation
(DQS) [10], which is feasible in universal quantum computers.

With this perspective, we suggest the application of quantum computers as a more
efficient numerical method for studying quantum control problems. We explain our
framework in detail, review quantum algorithms from the view of quantum control, and
outline the further scope of research lines in the rest of this paper.

2. Methodology

The spirit of the proposal is to replace numerical simulation in classical comput-
ers with DQS. In this way, we present the head-to-head comparison between classical
methods for a better understanding. We show the schematic diagram of the whole work-
flow in Figure 1, and address the subroutines that differ from classical approaches in the
following subsections.

 

𝐽ሾ𝒖(𝑡), 𝒙(𝑡), 𝑇ሿ 𝑡 ∈ ሾ0, 𝑇ሿ 𝒖(𝑡) 𝒙(𝑡)𝒙(0)|𝛹⟩ Δ𝑡𝒖(𝑡)𝜃௜𝒙(𝑇)𝒖(𝑡)

Figure 1. The schematic diagram of using a quantum computer to solve a general quantum control

problem numerically. Here, we briefly explain the workflow by starting from the box on the top left.

One usually formulates a quantum control problem by minimizing or maximizing a cost functional

J[u(t), x(t), T] in a continuous operation time interval t ∈ [0, T], where u(t) and x(t) are the controller

and state, respectively. Our protocol encodes the initial state x(0) into a qubit wave function |Ψ〉 ,

which is prepared in a quantum computer. Following the Suzuki-Trotter decomposition, we discretize

the continuous time into time steps of length ∆t, simulating the quantum dynamics with blocks of

quantum circuits, which the controller u(t) is also discretized and mapped into gate parameters θi.

After the digital quantum simulation, we measure the qubits to retrieve the classical final state x(T),

which allows the evaluation of the cost function. A classical optimizer tunes the gate parameters

iteratively until the convergence criteria are satisfied, and outputs the controller u(t) at the end.

2.1. Data Encoding and State Preparation

In the classical simulation of quantum systems, numerical algorithms encode quantum
information in different data structures. For example, one usually uses a linked list to store
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spin configuration in continuous imaginary time for path integral Monte Carlo algorithm
to study the quantum phase transition. The simplest data structure for encoding the
amplitudes of orthonormal bases in Hilbert space is a complex array, being vectorized
for speeding up matrix operations in numerical software by instruction sets. Once the
orthogonal bases are chosen, the state initialization in a classical computer is much easier
than the state preparation in a quantum computer. The difficulties of initializing the
quantum computer from uncoupled ground states of qubits to the target states are different.
The initialization circuit depths are usually shallower for spin-1/2 models because of the
direct mapping to multiple qubits. On the contrary, the circuit complexity significantly
increases if one uses the computational bases as binary codes to store the amplitudes in the
lattice space. Regarding the state preparation, we have to prepare the initial wave function
in quantum computers for DQS once we confirm the encoding strategy. Arbitrary state
preparation is not straightforward in quantum computers. For generality, one can use a
variational quantum eigensolver (VQE) [11] to prepare the input state for DQS. The circuit
structure for state preparation is problem-designed or based on hardware connection.

2.2. Quantum Simulation

The simulation of quantum dynamics becomes an initial value problem that numer-
ically solves a time-dependent Schrödinger equation with given initial conditions. The
continuous time is discretized into time steps, which Suzuki–Trotter decomposition gives
the approximation evolution [12]. One can evaluate the Trotter error with known time
step length and Hamiltonian by the Baker–Campbell–Hausdorff formula. Both classical
simulation and DQS evolve the wave function by a time step. Classical simulation, e.g., the
splitting operator method, performs matrix multiplications on the vectorized array, while
DQS evolves the qubit wave function with quantum gates. Generally, the unitary operation
that evolves the qubit wave functions can be represented by a sequence of quantum gates
in the universal gate set. Note that it should be distinguished from the universal DQS,
or equivalently, the universal quantum computing. Instead of approximating the unitary
operation with the Solovay–Kitaev theorem [13], one needs the analytical representation for
mapping the systematic parameter to the gate parameters. For example, the evolution of
Ising-type ZZ spin interaction for a time step can be implemented by an RZ gate between
two CNOTs, in which the rotation angle is half the product of the dimensionless time
step and the interaction strength. Thus, the quantum circuit for DQS can be treated as a
variational quantum circuit (VQC), in which gate parameters are optimized for calculating
the controllers. The application of VQC for quantum simulation is a concerned topic these
years [14–17]. To clarify the novelty of our proposal, we highlight that our protocol finds
the unknown solution for quantum control problems with VQCs, instead of simulating
desired dynamics with them.

2.3. Measurement and Evaluation of the Quantum Function

Another major difference between classical simulation and DQS is that the readout of
the result of DQS depends on quantum measurement. Quantum information is destroyed
after measurement, requiring repetitive execution of the quantum circuit to estimate the
amplitudes. One can reduce the statistical errors by one over the square root of the sampling
numbers. The optimization of the VQC aims to minimize a loss function, usually as a
fidelity-related cost function in quantum control tasks. The evaluation of the function
values is trivial in classical computers (or classical simulators of quantum circuits) by inner
producing two vectorized arrays. The evaluation becomes more complicated in quantum
computers because of the nature of quantum mechanics. To achieve this goal, one has
to design circuits for measurements on certain bases or perform SWAP tests [18] with
auxiliary qubits.
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2.4. Classical Optimization

Like other variational quantum algorithms (VQAs), one needs a classical optimizer to
minimize the loss function and return the optimal parameters after convergence to retrieve
the controller. One can save quantum resources by using algorithms that do not query too
many values of quantum functions to update parameters, e.g., the simultaneous perturba-
tion stochastic algorithm (SPSA) [19], which estimates the gradient with only two values.
Note that the dimension of the optimized vector equals the Trotter numbers for single-
parameter control and linear growth with the dimension of the controller. Meanwhile, the
dimension can be very high for approximating a smooth controller, and its optimization
can be simplified by reducing it with Fourier methods or other heuristic strategies [20].

3. Examples

3.1. Quantum Approximate Optimization Algorithm

The quantum approximate optimization algorithm (QAOA) [21] is regarded as one
of the most promising algorithms to achieve quantum advantages in the NISQ era. In-
spired by adiabatic quantum computation (AQC) [22], it is a VQA that minimizes the cost
function defined by the energy expectation. The QAOA alternatively evolves the problem
Hamiltonian and the mixing Hamiltonian on the wave function, driving it from the initial
ground state to the final state. The final state encodes the problem’s solution, which is also
close to the ground state of the problem Hamiltonian if the gate parameters are optimized
appropriately. We highlight that QAOA can also be understood as quantum control of the
bang-bang type [23], in which gate parameters are mapped to the evolution time, which is
indeed the sum of optimized parameters

T =

p

∑
i=1

(βi + γi)

Thus, one can study the corresponding time-optimal bang-bang solution or compare
it with other control protocols, e.g., counterdiabatic driving, if the energetic costs are
bounded [24]. We point out that QAOA is related to digital adiabatic quantum computing
(DAQC) since a QAOA circuit that consists of a large number of p blocks can also be
understood as a variational DAQC. To be more specific, one may obtain the schedule of a
digital adiabatic quantum computing

H(ti) = A(ti) ∑
i

σ̂i
x + B(ti)Hp

By
A(ti) = βi/∆t, B(ti) = γi/∆t

where Hp is the problem Hamiltonian and ∆t = T/p is the length of a Trotter step.

3.2. Digital Adiabatic Quantum Computing

The idea of introducing the DAQC paradigm is that it is more flexible to construct
arbitrary interactions than quantum annealing, which is also compatible with quantum
error correction [25]. In this way, optimizing the parameters in QAOA is equivalent to
finding a digitized annealing schedule to minimize the energy excitation, as we explained
in the previous subsection. Moreover, if we consider improving the performance of DAQC
by introducing counterdiabatic driving, we are indeed working on the proposal that finds
an extra control field with a given annealing schedule. In our practice, we introduced STA
to DAQC for the GHZ state preparation in a one-dimensional transverse field ferromagnetic
Ising model [26]. Its diabatic transitions are suppressed by the first-order NC Ansätz of the
ZY + YZ type. We minimized an effective action to obtain the variational coefficients for
the extra control field with counterdiabaticity. These STA-enhanced DAQC algorithms are
applied to study factorization [27] and portfolio optimization [28]. Although these works
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were not motivated to obtain a quantum control by quantum computing, subroutines in
their workflows have already reproduced the proposal we introduce in this perspective.

3.3. Quantum Optimal Control

The quantum harmonic oscillator is the foundation for modeling complex systems and
phenomena. Both kinetic and potential terms are quadratic, which means the corresponding
unitary operators for evolution are diagonal and of quadratic shape if they are represented
in the momentum basis and position basis, respectively. Such operators can be decomposed
into a gate sequence with analytical gate parameters [29]. This property satisfies the
requirement for the DQS in our proposal. Thus, we studied time-optimal atomic cooling to
reveal the connection between the control phase transition and quantum speed limit [30].
Recently, researchers have implemented a similar protocol for controlling the molecular
dynamics with VQCs [31], going beyond the quantum harmonic oscillator, realizing Morse
potential and rotor models for characterizing hydrogen fluoride and dipole–dipole-coupled
carbonyl sulfide, respectively. Numerical experiments also showed that apart from many
VQAs, the gradients of the landscape do not vanish with the increasing number of qubits,
i.e., there is no barren plateau. In this way, one can still guarantee the trainability of the
VQC while reducing the lattice length to improve the simulation accuracy.

4. Discussion and Outlooks

Regarding the trainability of VQCs, we analyze the mechanism for maximally convinc-
ing the audience that there is no barren plateau. As we can see, the VQC in our framework
is highly biased, i.e., the expressibility is very small since it is the Suzuki–Trotter decom-
position of a known Hamiltonian. The sharp priors narrow the search space, make the
VQC specialized for the task, and result in the absence of a barren plateau [32]. Therefore,
increasing the number of qubits for improving the spatial resolution of the DQS or enlarging
the system size for DQS does not affect the trainability of the algorithm.

Another satisfying property of the protocol is its robustness against systematic error
and quantum noises, which are practically crucial in quantum control. In classical numerical
solutions, one usually has to construct a cost function with error sensitivity or other
expressions as penalty terms. We point out that the solution obtained from the VQC in
a real quantum computer is naturally robust, which mitigates the systematic errors and
quantum noises, once the cost function converges under the optimization. The mechanism
of such suppression is similar to SPSA for classical optimization, which approximates the
gradients, mimicking a certain error at the same time. Its analogy to the classical approach
is to introduce errors and noises in the simulation of quantum dynamics, looking for the
convergence of the existence of them and the corresponding robust solution [33].

Even though our protocol shows the preceding advantages, one still has to be aware
of the stability of Suzuki–Trotter decomposition for DQS, which might affect the validity
of the result. For example, the Trotter errors in spin systems with long-range many-body
interactions become abnormal [34]. Even minor variations in the Trotter step size lead
to sharp changes, which are induced by the structural instability of the Floquet operator.
Hence, one should understand the interplay between the properties of the Hamiltonian for
DQS and the Trotterized evolution for the specific problem before training the VQC.

After all the examples and analysis, we now go further toward the current feasibil-
ity and applications from the theoretical side. Technically, the quantum control of any
model with its non-universal DQS proposed can be numerically solved in our framework.
Especially, experts from the community of quantum control have enough goals in spin
models [35] to be conquered, and numerical simulation on a large scale is not that friendly.
Besides the spin models and harmonic oscillators, one can also control the fermionic dy-
namics, which are responsible for exotic phenomena in quantum chemistry and high energy
physics, e.g., the Hubbard model [36] and the SYK model [37], by mapping the fermionic
operator into Pauli operators with the Jordan–Wigner [38] transform and the Bravyi–Kitaev
transformation [39]. Thus, these techniques enable researchers to investigate quantum
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control from synthetic chemistry to quantum gravity. We note that a very recent paper
solves the preparation for a coherent state [40] by exactly following our protocol, which
can be regarded as a timely example.

5. Concluding Remarks

We have introduced the hybrid quantum–classical computing framework for numeri-
cally solving quantum control problems. The quantum circuit for DQS of a Hamiltonian
can be treated as a VQC, if the mappings between the systematic parameters and gate
parameters are analytical. By employing the classical optimizers that do not query the
quantum function value frequently, one can significantly reduce the shots for quantum
measurement before the convergence of the algorithm. Furthermore, the trainability is guar-
anteed because of the non-existence of barren plateaus in such VQCs. We have listed several
applications in the future and the issues that one should be concerned about. We hope
this perspective shows the connection between quantum computing and quantum control,
which is apart from the widely accepted story of better quantum gates and readouts.
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