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Chapter 1

Introduction

The Standard Model (SM) of particle physics is the present theory describing extremely successfully
the fundamental interactions of Nature (excluding Gravity). It relies on the concept of gauge field
theories and is based on the gauge group SU(3)c ×SU(2)L ×U(1)Y , describing respectively Quantum
Chromodynamics (QCD) and the Electroweak (EW) interactions. In addition to the gauge bosons
associated to these gauge groups, its spectrum contains matter in the form of chiral fermions, splitted
into quarks, which feel the colour interaction, and leptons. These fermions are grouped inside three
generations, or families, which differ only by their masses. The last piece of the SM particle content
is the elusive Higgs boson, which is still to be discovered, and accounts for the breaking of the EW
sector : SU(2)L × U(1)Y → U(1)em.
Up to now, the SM has proved an extremely robust theory from the experimental side and has been
confirmed by many experiments since the 70’s. The accidental global symmetries of the model, such
as Baryon or Lepton numbers, have been verified with high precision and CP violation in the K or
B meson sectors can be entirely explained by the only CP violating phase contained in the unitary
CKM matrix [10], which parametrises the mixing between the different generations of quarks.

In spite of all its successes, ”anomalies” exist that we cannot explain with the only ingredients of
the SM :

• The oldest experimental signature calling for Physics Beyond the SM (BSM) is the value of the
asymmetry between the densities of matter and antimatter in the Universe. The recent value of
the baryon asymmetry as given by the WMAP experiment :

nB

s
= yB ∼ (8.7 ± 0.3) × 10−11

is presently too large to be explained by the SM interactions.

• The SuperKamiokande experiment, designed to measure the lifetime of the proton, has estab-
lished in 1998 an anomaly in atmospheric neutrino generated by collisions of cosmic rays entering
the atmosphere. It has established a disappearance of νµ’s, interpreted as a νµ → ντ conver-
sion [1]. On the other hand, experiments such as SNO [2] or KamLAND [3] have detected an
evidence of νe → νµ,τ in the flux of νe’s produced in the Sun. These experiments lead to an
interpretation in terms of neutrino oscillations, which implies a non zero mass for at least two
neutrinos. This is in direct conflict with the SM, which has been built for accomodating massless
neutrinos. Therefore, neutrinos form an experimentally accessible playground to confront BSM
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8 CHAPTER 1. INTRODUCTION

theories with experiments, which is why we are going to investigate BSM physics mainly from
the neutrino side. Moreover, we will see that the problems of generating neutrino masses con-
sistent with experiments and of providing an explanation to the baryon asymmetry presented
above can be elegantly linked in certain models.

The mass matrix mν of the neutrinos is parametrised by three mass eigenvalues m1,2,3 and a
unitary matrix parametrising the neutrino mixings θij , which is usually called the PMNS matrix
[11], and parametrised in the following way :

UMNS =





c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13



 diag(e−iφ1/2, e−iφ2/2, 1) .

where cij = cos θij , sij = sin θij . δ is called the Dirac phase and φ1,2 the Majorana phases.
The values of the the neutrino sector parameters extracted from atmospheric, solar and reactor
experiments [117] are listed in table 1 below. Oscillation experiments only allow to measure mass
squared differences ∆m2

ij = m2
i −m2

j , therefore we do not have any direct measure of the neutrino

mass scale, although bounds can be inferred from cosmology [52]. We note |∆m2
31| = ∆m2

atm

and ∆m2
sol

= ∆m2
21 according to the origin of their measurements. Therefore, the form of the

neutrino mass spectrum can be quite different, depending on the lightest eigenvalue m1 and

the sign of ∆m2
31. If m1 is much smaller than

√

∆m2
sol

and ∆m2
31 > 0, the spectrum is called

hierarchical and m2 ≃
√

∆m2
sol

≃ 9 × 10−3 eV, m3 ≃
√

∆m2
atm

≃ 0.05 eV. If on the contrary

∆m2
31 < 0, the spectrum is called inverse hierarchical.

Parameter Value (90% CL)

sin2(2θ12) 0.86(+0.03
−0.04)

sin2(2θ23) > 0.92
sin2(2θ13) < 0.19

∆m2
sol

(8.0+0.4
−0.3) × 10−5eV 2

∆m2
atm 1.9 to 3.0×10−3 eV 2

Table 1.1: Experimental bounds for the neutrino masses and mixings [117]

• Other cosmological problems are also unexplained at the moment, such as the evidence for the
presence of non-baryonic Dark Matter in larger quantities than the measured baryonic matter on
galactic scales, or the present acceleration of the Universe known as the Dark Energy problem.

There are also well-known theoretical problems to add to the previous list. For example, the infamous
hierarchy problem indicates that the Higgs boson mass should receive quantum corrections that scale
like the cutoff of any new physics lying above the EW scale. Therefore, if we do note postulate the
existence of new degrees of freedom or symmetries to be discovered an order of magnitude above the
EW scale or so, we have to tune the bare mass of the Higgs boson at each order of the perturbation
expansion. Another question that we would like to elucidate is the origin of the multiplicity of fermion
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generations, as well as the hierarchy apparent in the masses of the different generations. This calls
for a more fundamental theory of flavour, where the Yukawa couplings would be given in terms of a
precise symmetry breaking pattern, for example, instead of being free parameters like in the SM.

The purpose of this thesis is to study, in the neutrino sector, the flavour structures at high energy,
which is a first step towards a comprehension of the underlying flavour theory. The work is divided
into two main parts :

• A well known mechanism to produce small neutrino masses is the seesaw mechanism, which
implies the existence of massive particles whose decays violate lepton number. Therefore this
mechanism can also be used to generate a net baryon number in the early universe and explain
the cosmological observation of the asymmetry between matter and antimatter. However, it
is often non-trivial to fulfil the constraints coming at the same time from neutrino oscillations
and cosmological experiments, at least in frameworks where the couplings can be somehow
constrained, like some Grand Unification models. Therefore we devoted the first part to the study
of a certain class of seesaw mechanism which can be found in the context of SO(10) theories
for example. We introduce a method to extract the mass matrix of the heavy right-handed
neutrinos and explore the phenomenological consequences of this quantity, mainly concerning
the production of a sufficient baryon asymmetry.

• When trying to identify the underlying symmetry governing the mixings between the different
generations, we see that there is a puzzling difference between the quark and the lepton sectors.
However, the quark and lepton parameters have to be compared at the scale of the flavour
symmetry breaking, therefore we have to make them run to the appropriate scale. Thus, it is
worthwhile investigating models where quantum corrections allow an approximate unification of
quark and lepton mixings. This is why the other part of the thesis investigates the running of the
effective neutrino mass operator in models with an extra compact dimension, where quantum
corrections to the neutrino masses and mixings can be potentially large due to the multiplicity
of states.

The manuscript is thus divided into three chapters. The first chapter is an overall introduction
to the tools and concepts that we will manipulate in the other parts, such as the Seesaw Mechanism,
Supersymmetry or Grand Unification. Then we will turn to the study of the Left-Right symmetric
Seesaw formula in SO(10) inspired models and its consequences for baryogenesis through Leptogenesis.
Finally, the last chapter will present the necessary notions of extra-dimensional physics before turning
to the study of the running of the neutrino mass parameters.
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Chapter 2

Seesaw Mechanism and

Supersymmetric Grand Unification

The first part of this thesis is an introduction to the necessary ingredients of physics Beyond the
Standard Model (BSM) that we are going to use extensively when describing our work [37, 90, 120].
The main part of this work focuses on the study of a certain class of seesaw mechanism. The seesaw
mechanism is now more than thirty years old [4] and it is without a doubt the most minimal way to
generate small neutrino masses, at least in its simpler version. The seesaw formula for light neutrino
masses has been widely studied in the literature, particularly the way low energy and high energy
parameters are connected. However, particular features of the seesaw call for an embedding of the
mechanism into more motivated theories. This is why we studied seesaw models from Grand Unified
Theories (GUTs), in their supersymmetric (SUSY) version.

We will begin this small journey through BSM physics with a basic introduction to the different
declinations of the seesaw mechanism.
In order to incorporate them into a coherent GUT picture, we will take some time to explain the basics
of supersymmetric theories. At this stage we will also introduce the formalism of supergraphs, quite
useful for studying quantum corrections in SUSY theories. This tool will be valuable in the last part
of the thesis when we will consider quantum effects in supersymmetric extra-dimensional theories.
Then we will introduce the concept of Grand Unified Theory and more precisely the ones based on
the SO(10) gauge group : we will see that it is a very natural setup to realise the seesaw mechanism,
and in particular the Left-Right symmetric ones we are interested in.
Since our study of the seesaw aims partly at identifying good candidate GUT theories for a successful
generation of the cosmic matter-antimatter asymmetry, we will end this chapter with an overall intro-
duction to the concept of baryogenesis in the early Universe and more specifically to leptogenesis, an
appreciable side effect of any generic seesaw mechanism.

2.1 Seesaw basics

The Standard Model (SM) has been built in such a way that no mass term for the neutrinos is possible
at the renormalisable level. Although this was perfectly consistent with data in the early days of the
SM, it has become clear with the observational evidence for neutrino oscillations that this assumption
can no longer hold.
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12 CHAPTER 2. SEESAW MECHANISM AND SUPERSYMMETRIC GRAND UNIFICATION

One has then several ways to tackle the problem. Forgetting about renormalisability, one finds
that the operator with smaller dimension allowing for neutrino masses is the dimension 5 operator,
coupling the lepton doublets li to the Higgs doublet H :

−1

4

κ′
ij

Λ
lciHljH −→ −1

4

κ′
ij

Λ
v2νc

i νj = −1

2
mijνc

i νj (2.1)

Writing this operator, we made use of the charge conjugation operation : lc = Cl̄T and C is the charge
conjugation operator defined by C = iγ0γ2. If we seek to reproduce neutrino masses of the order of
an eV or less, as pointed out by experimental data, the scale Λ suppressing the coupling should be of
the order 1014 GeV approximately, assuming that κ′ has O(1) entries. The mass term induced in eq.
(2.1) is called a Majorana mass term. It couples the left-handed neutrino to itself with the use the
charge conjugation operator C and the mass eigenstates are their own antiparticle ν = νc.

If we insist on renormalisability, we have to introduce additional particles with which the left-
handed (LH) neutrinos will mix. The natural extension is then to add right-handed neutrinos NR and
couple them to left-handed leptons with usual Yukawa couplings, in a similar way to charged fermions.
This ingredient is by itself sufficient to generate neutrino masses, but we have to deal with a huge
hierarchy in the Yukawa sector : yν ∼ 10−12 ∼ 10−6ye. An SM extended only by a Yukawa coupling
for the neutrinos gives rise to Dirac neutrinos.
An important fact to notice here is that the operator lH = lαǫαβHβ , with εαβ the completely anti-
symmetric Levi-Civita tensor, is gauge invariant. For the coupling NRlH to be invariant NR must
be a singlet. Thus, any singlet under the SM gauge group can couple to leptons and mix with the
neutrinos when the Higgs boson takes a non-zero vacuum expectation value. This gives to neutrinos
the potential to explore physics up to a high energy scale. Indeed if NR is neutral, nothing prevents
us from writing a Majorana mass term for it. The sector giving a mass to neutrinos is then :

−(Yν)ijNRiljH − 1

2
MijNRiN

c
Rj + h.c. (2.2)

After Electroweak (EW) symmetry breaking the mass matrix for neutrinos is :

−1

2

(

νT
L N cT

R

)

(

0 vY T
ν

vYν M

)

C

(

νL

N c
R

)

To illustrate the consequences of this formula, we can first restrict to one generation. Computation
of the eigenvalues in this case is straightforward. If we suppose that M ≫ v, they can be developed
and give approximately :

mν1 ≃ −Y 2
ν

v2

M
and mν2 ≃ M

We clearly see that there is a very massive state, since we supposed M ≫ v, and a state with
mass much lighter than v. The light state is mainly composed of νL and the heavy one of NR, and
the neutrinos are Majorana particles. When talking about the light and heavy mass eigenstates re-
spectively, we will denote them without left-handed or right-handed subscript : ν and N . Supposing
Yν ∼ 1 we find again that M ∼ 1015GeV. By introducing a heavy right-handed neutrino we see that
we can naturally accommodate a very light neutrino. This extension of the SM, generating a small
mass scale with EW and heavy scales only, is called the Seesaw Mechanism.
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Integrating NR below M , we actually find the operator of eq. (2.1). The seesaw is thus a natural reali-
sation of the low energy effective theory previously described, which can be seen through the diagram :

N

l

H

l

H

(2.3)

Let us now quickly generalise to three families by integrating out the heavy modes. The Lagrangian
density and the equations of motion read, for the NRi :

L ⊃ iNRiγ
µ∂µNRi − (Yν)ijNRiljH − 1

2
MijNRiN

c
Rj + h.c. (2.4)

δL
δNRi

= iγµ∂µNRi − (Yν)ijljH − 1

2
MijCN

T
Rj +

1

2
MjiC

T N
T
Rj = 0 (2.5)

Supposing then that NR’s do not propagate (∂µNR = 0), we find :

N
T
R = M−1YνClH (2.6)

and injecting in the previous Lagrangian we obtain the non-renormalisable operator :

L ⊃ 1

2
lT HCY T

ν M−1Yν lH (2.7)

so that after EWSB we get the seesaw formula for the neutrino mass matrix :

mI
ν = −v2Y T

ν M−1Yν (2.8)

and the index I is here to keep track of the type I origin of this contribution to the neutrino mass
matrix.

There are other ways to generate a seesaw for neutrinos. Clearly, we need to couple either lH to
a fermion singlet under U(1)Y or directly ll to a scalar taking a vev. The second alternative can only
be achieved with a triplet of SU(2)L with hypercharge y∆L

= −2yl. As SU(2) does not have complex
representations, the triplet corresponds to the adjoint representation :

∆L =

(

∆+
√

2∆++
√

2∆0 −∆+

)

(2.9)

where we displayed as indices the electromagnetic charges of the three components. Now if 〈∆0〉 =
vL 6= 0, we obtain directly a Majorana mass term for neutrinos :

−1

2
fijl

T
i ∆LǫClj −→ −1

2
(mII

ν )ijν
T
LiCνLj with : mII

ν = vLf (2.10)

The problem is here to generate a vev sufficiently small, vL ∼ 0.1 eV, and introduce a mass term
M2

∆Tr(∆†
L∆L) large enough to decouple ∆L from the low energy physics. The most straightforward

way to do this is to couple ∆L to the Higgs boson. The Higgs potential for ∆L is then :

V∆L
= −µH∆LH − M2

∆Tr(∆†
L∆L)
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When H0 takes a vev v, it generates a tadpole for ∆0. The equations of motion give the expression
for vL :

vL = −µv2

M2
∆

(2.11)

Once again, if the mass of the extra field is large enough, we obtain a small mass scale for neutri-
nos. The seesaw is here applied to the vev of the scalar field but the idea is similar. Thus we call this
mechanism type II seesaw, as opposed to the classical seesaw mechanism, called type I.
We note that a free dimensionful parameter µ has appeared in the Higgs potential. Making the choice
of a small µ could help us lower the mass scale of the triplet. However we will often work in super-
symmetric theories where quartic interaction terms derive from trilinear terms in the superpotential.
Therefore the cases we will consider will impose the constraint µ = M∆.
We note once again that integrating out the heavy triplet will leave us with the same non-renormalisable
operator (2.1).

The last possibility is to couple lH to a fermion triplet of SU(2)L with a zero hypercharge η. This
is called type III seesaw and leads to the same low energy effective theory as the types I and II seesaw.

We see that there are several ways to give masses to neutrinos. If one simply adds to the Lagrangian
a right-handed part to the neutrino field and couples it to νL with the usual Yukawa coupling, one
is led to a Dirac neutrino mass eigenstate, with the biggest entry of the Yukawa matrix Yν of order
10−12. This means that while the six orders of magnitude separating the masses of the electron and
the top quark are regularly populated by many other particles, there would be a sudden gap of equal
magnitude between the electron and the next light fermion. While this is technically possible, it would
further deepen the mystery of the flavour theory governing the structure of the Yukawa couplings.
Therefore, when trying to build a theory with neutrino Yukawa couplings not much smaller than the
electron, we have to admit that the new fields we introduce to generate neutrino masses have to be
extremely massive. The magnitude of these masses will be naturally explained when embedding the
SM into a Grand Unified Theory (GUT) at a high energy scale, the breaking of which will generate
masses of the wanted order of magnitude. Some grand unified theories, such as SO(10), will even
naturally introduce the appropriate field content to perform an efficient seesaw, such as three right-
handed neutrinos or a weak triplet.
Nevertheless, if no additional degree of freedom is introduced with a mass smaller than the seesaw
scale we keep a very large difference between the EW and the scale of new physics. Thus we are left
with a hierarchy problem for the Higgs boson. This can be circumvented by considering theories with
supersymmetry broken at low energy, which is why we devote the following section to supersymmetric
theories and their appealing features.

2.2 Supersymmetry

When one tries to compute the quantum corrections to the squared mass of a scalar boson, it is well
known that corrections scaling quadratically with the cutoff of the theory, as expected by dimensional
analysis. At one loop, for example, such quadratically divergent contributions will come not only from
the scalar self interactions but also from any Yukawa coupling with fermions or from gauge interactions
with vector bosons, as illustrated by the following diagrams :
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(2.12)

which all display behaviours in
∫

d4p/p2 ∝ Λ2. Therefore, any scalar mass in the theory is naturally
pushed to the cutoff scale by quantum effects. Any scalar mass significantly smaller than the cutoff is
thus the result of extreme cancellations between the bare mass or the different quantum corrections.
Therefore, when integrating over the high energy degrees of freedom up to the Planck scale or to
the scale of Grand Unification for example, we need to tune the bare mass of the Higgs boson to an
extremely unnatural level to maintain a Higgs mass of the order of the EW scale. Moreover, quadratic
divergences occur at each order in perturbation theory, therefore the tuning has to be done at each
order of the perturbative development.
The necessary stabilisation of the Higgs mass can be obtained by imposing a symmetry which en-
forces an exact cancellation between any non-logarithmic divergence of the theory. This symmetry
consists in extending the Poincaré group to the super-Poincaré invariance. The theory is then called
supersymmetric (SUSY).

2.2.1 The supersymmetry algebra and its representations

Making a theory supersymmetric amounts to extending the Poincare algebra with generators in the
spinorial representation of SO(1, 3) (SO(1, d − 1) if we consider theories with spacetime dimension
d > 4). As SO(1, 3) is chiral, these generators are Weyl spinors with two degrees of freedom. We
denote them QI

α, where α = 1, 2 is a spinor component and I = 1...N when we have N different
charges of SUSY. As they are fermionic operators, the Q’s are defined by anti-commutation relations :

{QI
α, Q̄β̇J} = 2σµ

αβ̇
δI
JPµ (2.13)

{QI
α, QJ

β} = ǫαβ(U IJ + iV IJ) (2.14)

[

QI
α, Mµν

]

=
1

2
(σµν)

β
αQI

β (2.15)
[

QI
α, Pµ

]

= 0 (2.16)

Intuitively we see that the Q’s can be interpreted as ”square roots” of translations. We can
then formulate the theory such that the Q’s act on the fields as derivatives. SUSY transformation
parameters are spinors, so in order to do this, we have to add fermionic coordinates θ and θ to the
usual space-time coordinates xµ. Usual fields are promoted to superfields F (xµ, θ, θ) [102, 108].
The Q’s transform as spinors under the Lorentz group, they carry a spin charge 1

2 . Therefore, when
acting on a field with definite transformation properties under the Lorentz group, they will transform
it into a field with different spin. More precisely they will relate bosons and fermions.
For 4D model building, only N = 1 SUSY is really interesting, which means that U = V = 0 in the
algebra. However we will have to deal with N = 2 SUSY when exploring extra-dimensional models,
and we will come back to N = 2 representations in the last chapter.

Now, the (θ, θ) coordinates we have introduced are Grassman variables, so for any n > 1, (θα)n = 0.
This means that the Taylor expansion of the superfields in θ and θ has a finite number of terms, namely :
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F (x, θ, θ̄) = f(x) + θφ(x) + θ̄χ̄(x) + θθm(x) + θ̄θn(x)

+θσµθ̄vµ(x) + θθθ̄λ̄(x) + θθ̄θ̄ψ(x) + θθθ̄θ̄d(x) (2.17)

We note by convention θθ = θ2 = θαθα = θαθβǫαβ and θ̄θ̄ = θ̄2 = θ̄α̇θ̄α̇ = θ̄α̇θ̄β̇ǫα̇β̇ . The former
expression is the most general expression for a superfield but it is not yet an irreducible representation,
we can add constraints at the only condition that they are invariant under SUSY transformations.

Chiral superfields

By defining covariant derivatives, a first possible constraint is : DαΦ = 0 or D̄α̇Φ = 0, with D and D̄
covariant derivatives which commute with SUSY transformations. The derivative expressions for the
Q’s that were our primary goal for introducing Grassman space-time coordinates, can be chosen as :

Qα = −i

(

∂

∂θα
− iσµ

αα̇θ̄α̇∂µ

)

(2.18)

Q̄α̇ = −i

(

− ∂

∂θ̄α̇
+ iθασµ

αα̇∂µ

)

(2.19)

Since Dα and D̄α̇ have to anti-commute with Qβ and Q̄β̇ , they can be expressed as :

Dα =
∂

∂θα
+ iσµ

αα̇θ̄α̇∂µ (2.20)

D̄α̇ =
∂

∂θ̄α̇
+ iθασµ

αα̇∂µ (2.21)

We can now apply the additional constraints to reduce the number of components of a superfield
Φ. We will call chiral superfield a superfield Φ defined by :

D̄α̇Φ = 0 (2.22)

while an antichiral superfield Φ̄ obeys the constraint :

DαΦ̄ = 0 (2.23)

Defining new variables yµ = xµ − iθσµθ̄ and ȳµ = xµ + iθσµθ̄ and noting that :

Dαȳµ = D̄α̇yµ = 0, Dαθ̄ = D̄α̇θ = 0 (2.24)

we can guess that a chiral superfield will depend only on y and θ while an antichiral superfield will
depend on ȳ and θ̄. The expansion in component field for Φ(x, θ, θ̄) is :

Φ(y, θ) = ϕ(y) +
√

2θψ(y) + θθF (y) (2.25)

= ϕ(x) +
√

2θψ(x) + θθF (x) − iθσµθ̄∂µϕ(x) +
1√
2
iθθ∂µψ(x)σµθ̄

−1

4
θθθ̄θ̄2ϕ(x) (2.26)
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and similarly for antichiral superfields. A chiral superfield on-shell is therefore composed of two bosonic
degrees of freedom (a complex scalar) and two fermionic degrees of freedom (a Weyl fermion). This
means that for every fermion of the Standard model we have to add a scalar with the same quantum
numbers, that we will call sfermions, where the s stands for scalar. The natural extension of the SM
to a supersymmetric theory, usually called the Minimal Supersymmetric Standard Model (MSSM),
therefore contains squarks and sleptons. The complex auxiliary field F is only present in order to
equate the numbers of bosonic and fermionic d.o.f. off-shell, since an off-shell Weyl fermion has four
real components.

Vector superfields

The other useful constraint we can apply is the one of hermiticity V = V † : we call V a vector
superfield since it will contain a vector boson. This can be seen from its expansion in component
fields :

V (x, θ, θ̄) = C(x) + iθχ(x) − iθ̄χ̄(x) + θσµθ̄Aµ(x)

+
i

2
θθ[M(x) + iN(x)] − i

2
θ̄θ̄[M(x) − iN(x)]

+iθθ

[

λ̄(x) +
i

2
∂µχ(x)σµ

]

θ̄ − iθ̄θ̄θ

[

λ(x) − i

2
σµ∂µχ̄(x)

]

+
1

2
θθθ̄θ̄

[

D(x) − 1

2
2C(x)

]

(2.27)

With a supersymmetric gauge transformation V → V + iΛ − iΛ† we can actually eliminate some
components and one is left, on-shell, with the vector Aµ and the two-component Majorana fermion
λ, while off-shell the real auxiliary field D also remains.This gauge is called the Wess-Zumino gauge
[9], but as we prefer to work with a general superfield formalism and not in a particular choice of
supergauge, we will not explicit the Wess-Zumino gauge any further.

2.2.2 Couplings and non-renormalisation

Now that we have our basic building blocks we can write an action in terms of superfields. This will
be more convenient than manipulating the bosonic and fermionic components as it allows to write all
possible supersymmetric Lagrangians very quickly and in a compact manner. From now on we consider
a gauge theory with chiral superfields in the fundamental representation and a vector superfield in the
adjoint of the gauge group. The first problem to solve is to find a superfield, formed with V = VaT

a,
which contains the appropriate kinetic terms for its components. The good quantities to consider are :

Wα = −1

4
D̄2e−2gV Dαe2gV = −g

2
D̄D̄DαV +

g2

2
D̄D̄[V, DαV ] + O(g3) (2.28)

W̄α̇ = −1

4
D2e−2gV D̄α̇e2gV = −g

2
DDD̄α̇V +

g2

2
DD[V, D̄α̇V ] + O(g3) (2.29)

which are respectively a chiral and an antichiral superfield (g is the gauge coupling). If we want to write
a Lagrangian, starting from superfields, which is invariant under SUSY transformation we must identify
expressions which transform with a total divergence. Performing a general SUSY transformation on
chiral and vector superfields, using the explicit expressions of eq. (2.19) for the SUSY generators, we
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can see that only the θθ component of chiral superfields and the θθθ̄θ̄ component of vector superfields
possess such a property. Therefore, we have to find a way to select the good superfields’ components.
This can be done by hand but in order to work with a full superspace formulation, we define a measure
of integration over Grassman variables. For spinor Grassman components θα :

∫

dθα θβ = δαβ

∫

dθα = 0 (2.30)

and for an integration over the whole space of Grassman coordinates we define the differential element
d2θ = 1

4εαβdθαdθβ which yields :

∫

d2θ θ2 = 1 (2.31)

and we can thus extract easily :

[Φ]θθ =

∫

d2θ Φ, [V ]θθθ̄θ̄ =

∫

d2θd2θ̄ V (2.32)

The kinetic term for the components of Φ is constructed by extracting the θθθ̄θ̄ component of
Φ̄Φ which is a real superfield. For the vector superfield kinetic term we extract the θθ component
of WαWα, which is a chiral superfield. Thus the free Lagrangian density reads (with gauge indices
discarded) :

Lkin =

∫

d2θd2θ̄ Φ̄Φ +

∫

d2θ
Tr

16g2C2(G)
[WαWα] +

∫

d2θ̄
Tr

16g2C2(G)
W̄α̇W̄ α̇ (2.33)

The Yukawa interactions between chiral superfields are constructed by extracting the θθ component
of all possible gauge invariant products of chiral superfields. Dimensional analysis indicates that
the mass dimension of θ is 1/2, so the maximum number of chiral fields we can couple to form a
renormalisable term is three. As for gauge interactions, the gauge transformation parameter, Λ(x) =
Λa(x)T a, it has to be promoted to a superfield. Therefore, to compensate for the gauge transformation
Φ → e−igΛΦ, the kinetic term has to become Φ̄Φ → Φ̄e2gV Φ and the transformation of V is defined
such that e2gV → e−igΛ̄e2gV eigΛ. The total Lagrangian density is thus :

L =

∫

d2θd2θ̄ Φ̄ie
2gV Φi +

∫

d2θ

[

Tr

16g2C2(G)
[WαWα] + W (Φi)

]

+

∫

d2θ̄

[

Tr

16g2C2(G)
W̄α̇W̄ α̇ + W̄ (Φ̄i)

]

(2.34)

The quantity W (Φi) is a chiral superfield formed from products of the elementary superfields Φi of
the theory. From the dimensional analysis mentioned above, the renormalisable part of W is at most
cubic in the superfields :

W (Φi) = mijΦiΦj +
λijk

6
ΦiΦjΦk + ... (2.35)

The dots stand for any non-renormalisable interaction one might want to add. Of course W can only
depend on chiral superfields and not also on antichiral superfields since an arbitrary product of chiral
and antichiral superfields is not chiral. The holomorphicity of the superpotential has far reaching
consequences for supersymmetric theories. First of all, and most obviously, it constrains the couplings
as compared to non SUSY theories. For example, in the SM the Higgs cannot couple holomorphically
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to all the fermions, so when we extend the SM to the MSSM it is clear that we have to add another
Higgs field with an opposite hypercharge. The theory thus contains a Higgs Hu, coupling to the up
quarks and the neutrinos, and Hd, coupling the down quarks and the charged leptons. They both
take a vev and the parameter tanβ = vu/vd parametrises the ratio of these vev’s. In the rest of the
manuscript, when considering a priori non SUSY setups we will denote the Higgs field H. When
considering SUSY theories we will distinguish Hu and Hd.
Another, even more important, consequence is the fact that the superpotential is not renormalised to
any order of perturbation theory [107]. This can be conveniently proven using supergraphs [108] or
holomorphicity [109]. The coupling constants present in the superpotential are thus renormalised only
through wave function renormalisation of the chiral superfields.
In fact, when the spectrum of the theory is completely supersymmetric (all bosonic and fermionic
degrees of freedom are paired), the well known quadratic divergences arising when we renormalise the
mass of a scalar field cancel each other and the theory is free from quadratic divergences. Therefore,
SUSY helps us decorrelate the EW scale from any super heavy scale present in the theory (meaning
at least the Planck scale MP ). This point will be very welcome when we will consider Grand Unified
Theories in the next section of this chapter.

SUSY breaking and R-parity

When supersymmetrised, our SM must be added new particles, namely sleptons and squarks, the
scalar partners of the fermions, and gauginos, the fermionic partners of the gauge bosons. In the rest
of the manuscript, we will denote the chiral superfields of the MSSM by the capital letter corresponding
to the usual notation of the SM. For example, the lepton doublets li become Li. Moreover the SUSY
algebra imposes that the superpartners have the same mass since P 2 commutes with the Q’s, and the
Q’s link component fields with different spins. Therefore, supersymmetry must be broken at a scale
higher than the EW scale. When broken, SUSY allows the reappearance of quadratic divergences
in the mass of the Higgs boson but they will be proportional to the SUSY breaking scale mSUSY .
This is why we expect that the superpartner masses will not be much larger than 1 TeV. However
the main problem is now to break SUSY in a consistent and phenomenologically viable way. With
sfermions this light, and for a generic set of SUSY breaking parameters, clear signals of flavour and
CP violating processes should have been detected, such as very fast proton decay. The first danger
comes from renormalisable (thus unsuppressed) operators allowed in SUSY models that did not have
a counterpart in the SM, such as LHu, or U cU cDc for example. These operators can be killed by
imposing a U(1)R symmetry on the superfields and on the fermionic coordinates θα, which induces
different transformations for the bosonic and fermionic components. As the full U(1) symmetry would
prevent the gauginos to acquire a mass, we have in fact to impose only the discrete R-parity subgroup
of the continuous U(1) transformation and each component field is assigned a parity (−1)B−L+2s. In
addition to forbidding dangerous baryon number violation, it makes the lightest superpartner sta-
ble, providing a natural candidate for the Dark Matter component of the Universe. Even after the
renormalisable operators have been eliminated, a generic set of soft SUSY breaking couplings should
produce some detectable signal of SUSY in CP violation measurements or Lepton Flavour Violation,
clearly above those of the SM. This issue is resolved in certain models of SUSY breaking where the
masses of the sfermions are diagonal and universal at the scale of SUSY breaking and off-diagonal
flavour violating effects are only generated radiatively. Therefore the additional mixings between the
different flavours of quarks or leptons are small enough to suppress any unwanted contribution.

The last important comment we should make concerns the running of the gauge couplings in the
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Standard Model. When taking into account quantum corrections in the SM we can check that gauge
couplings almost unify at a high scale but they clearly do not intersect at the same point. However,
if we include in the loops the supersymmetric partners of the SM particles around 1 TeV, the gauge
couplings all meet inside the experimental error bars at a scale M ∼ 2 × 1016 GeV. This is a good
hint that Grand Unified Theories might have some relevant connection to the real world.

2.2.3 Supergraphs

We will close this section with a quick review of the supergraph formalism, since it will be of great use
in the last chapter. The supergraph formalism consists in working with superfields only, never using
component fields at any point in the computations. This allows to compute diagrams involving the
partners of a same superfield from a single diagram where only the superfield propagate. Hence, as
our chiral and vector superfields are Lorentz scalars, only scalar integrals will appear when evaluating
diagrams.

In order to compute everything in the superfield formalism it is more convenient to work with
integrals over the full superspace z = (x, θ, θ̄). We must also extend functional differentiation to
superfields, so we define Dirac distributions in Grassman spaces :

∫

dθαδ(θα) = 1 (2.36)

so that, by definition, the Dirac distribution corresponds to the Grassman variable itself : δ(θα) = θα.
We then extend δ2(θ) = θ2 and δ4(θ) = θ2θ̄2, thus it comes immediatly that δ(0) = 0. The complete
Lagrangian can be rewritten over the full superspace (although this is not the expression usually used
to derive the Feynman rules) :

L =

∫

d8z

[

Φ†e2gV Φ +
Tr

16g2C2(G)
WαWαδ(θ̄) + W (Φi)δ(θ̄) + h.c.

]

(2.37)

Before deriving the Feynman rules, the first task is to determine the free propagators. For the
chiral superfield there is a small subtlety in the functional derivative. We can see it by deriving the
expression

∫

Φf , where f is any function over the superspace :

δ

δΦ(y, θ)

∫

d8z′Φ(y′, θ′)f(x′, θ′, θ̄′) =

∫

d4yd2θ′d2θ̄δ4(y − y′)δ2(θ − θ′)f(y′ − iθ′σθ̄, θ′, θ̄)

=

∫

d2θ̄f(x, θ, θ̄)

= −1

4
D̄D̄f(x, θ, θ̄) (2.38)

In the last line we made use of the property that integration in superspace is equivalent to differenti-
ation, so that

∫

d2θ̄f = −1
4D̄D̄f and

∫

d2θf = −1
4DDf . For a chiral superfield Φ it is possible, after

some superspace algebra (see [12, 110] for example) to compute the chiral propagators :

〈0|T [Φ̄(z1)Φ(z2)]|0〉 =
−i

2 + m2

D2
1D̄

2
2δ

4(θ1 − θ2)

16
(2.39)

〈0|T [Φ(z1)Φ(z2)]|0〉 =
−im

2 + m2

D̄2
1δ

4(θ1 − θ2)

4
(2.40)
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Going to momentum space, ”super”-Fenynman rules can be written. For this, it is necessary that
the integration be performed over the whole super space d8z, therefore when interactions from the
superpotential are involved we will always convert the D̄2D2

16 of one chiral propagator into integrals
over d2θ and d2θ̄ to complete the superspace integration. Therefore when several internal propagators
of chiral fields will be present, all but one of them will display the D̄2D2

16 factor.

As far as the gauge part is concerned, a gauge fixing term must be added and we choose :

Tr

8ξC2(G)

∫

d8zD2VaD̄
2Va =

1

ξ

∫

d8zVa(P1 + P2)Va (2.41)

Here we use the three projectors :

P1 =
D2D̄2

16
P2 =

D̄2D2

16
PT =

DD̄2D

82
=

D̄D2D̄

82
(2.42)

which verify P 2
i = Pi and P1 + P2 + PT = 1. Finally the quadratic term for V reads :

Sgauge,kin = −
∫

d8z Va

(

PT − 1

ξ
(P1 + P2)

)

Va (2.43)

In the gauge ξ = −1, we end up with propagators for free superfields :

chiral superfield :
p

=
i

p2 − m2
δ4(θ1 − θ2) (2.44)

vector superfield :
p

=
i

2p2
δ4(θ1 − θ2) (2.45)

The Feynman rules then proceed as usual, with integration over d4θ at each vertex, and an application
of the operators −D2/4 and −D̄2/4 on the chiral propagators, with the rule we mentioned previously.
ore details and examples can be found in [12] and particularly [110].

2.3 Grand Unified Theories

If supersymmetry is realised at relatively low energy, we explained that gauge couplings seem to
unify at a scale MGUT ≃ 2 × 1016GeV. If not a coincidence, this is a strong hint for an embed-
ding of the SM into a Grand Unified Theory. The principle of a GUT is that the SM gauge group
SU(3)c×SU(2)L×U(1)Y is the remnant of a simple gauge group (meaning that it is not composed of
several factors with different gauge couplings). All fundamental interactions are thus unified at high
energy, leaving only one elementary force. Other groups are not simple but semi-simple, such as the
Pati-Salam group SU(4)c × SU(2)L × SU(2)R [6]. Still they exhibit several interesting properties.
This idea was proposed more than thirty years ago [7], and continues to generate a lot of activity
today. As GUTs are based on larger groups than the SM one, they have a number of specific features.
To begin with, fermions are grouped inside larger representations which contain at the same time
quarks and leptons. This gives a common origin to all the different representations contained inside
one family of matter. Another general prediction is the quantification of electric charge. If the group
is semi-simple with rank greater than one, i.e. non-Abelian, the eigenvalues of each generators are
quantified and cannot vary continuously, as is the case for U(1) groups for example. Therefore, as
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U(1)Y is a subgroup of this larger non-Abelian group, its eigenvalues are also quantised.

The rank of the SM gauge group is four, so every group aiming to contain it has rank four or
greater. The smallest viable group is SU(5) [7], which has the minimal rank expected. Thus its
breaking to the SM is quite constrained and the minimal version of an SU(5) GUT is quite simple to
explore. In order to incorporate type I seesaw we will in the end consider SO(10) models; however,
as SU(5) ⊂ SO(10) it is still interesting to begin with SU(5). After introducing the simple example
of SU(5) we will develop SO(10) theories, which have a lot more freedom as concerns the breaking
to the SM gauge group. We will see that they are the natural setups to incorporate seesaw neutrino
masses. Finally we will present the generic predictions of the simplest GUTs for fermion masses. As
the gauge group becomes larger, and fermions are grouped together inside larger representations, the
Yukawa couplings become more and more correlated and we may be able to make predictions at the
GUT scale, thereby checking the simplest versions of our models.
In the rest of the manuscript we consider mainly supersymmetric GUTs, except when stated otherwise.
Much of the analysis we will go through can be done all the same in non-SUSY theories. The main
difference, except for the sharp problems of extreme fine-tuning, comes from the fact that we have to
deal with more independent couplings since quartic couplings in the Higgs sector are not related to
cubic and gauge couplings.

2.3.1 A simple example : SU(5)

As explained previously, the smallest simple group embedding of SU(3)c ×SU(2)L ×U(1)Y is SU(5).
It is actually quite simple to see the embedding of the Standard Model into SU(5) representations :
we simply identify the first three indices as colour indices and the other two as SU(2)L indices. Let us
see this on the adjoint representation first. We can write the gauge bosons of SU(5) in the following
way :

A =
∑

a

Aa λa

2
=

1√
2















X1 Y1

Gα
β − 2√

30
Bδα

β X2 Y2

X3 Y3

X1 X2 X3 1√
2
W3 + 3√

30
B W+

Y 1 Y 2 Y 3 W− − 1√
2
W3 + 3√

30
B















(2.46)

We display the gluons as G and the electroweak bosons W and B as usual. The generators are
normalised as Tr(λaλb) = 2δab. We see appearing in the ”off-diagonal” entries the gauge bosons of
SU(5)/SU(3) × SU(2) × U(1). Under SU(3) × SU(2), the 24 dimensional adjoint decomposes as :
24 = (8,1) + (1,3) + (1,1) + (3,2) + (3,2). The complex bosons Xα and Y α are thus grouped into
doublets of SU(2)L. When SU(2)L ×U(1)Y is broken to U(1)em these become vector bosons, triplets
under SU(3)c, with electromagnetic charges -4/3 and -1/3.

Matter

The split we used in SU(5) indices allows us to see directly that the fundamental 5 of SU(5) will contain
a fundamental of SU(2) and a fundamental of SU(3). Thus an anti-fundamental can contain a right-
handed quark and a doublet of leptons. The next smallest representation is the anti-symmetric product
of two 5’s, which is 10-dimensional, and decomposes as : 10 = (5 × 5)a = (3,2) + (3,1) + (1,1) under
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q
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Figure 2.1: proton decay through the tree level exchange of X or Y gauge bosons of SU(5)

SU(3)c × SU(2)L, which is good enough to incorporate the rest of a matter family. Graphically we
have :
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)
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We do not have a complete unification of matter but we traded the five different representations of
a single SM family against only two. Here we see that quarks and leptons derive from the same repre-
sentations and are the same fundamental object. Although satisfying form a theoretical point of view,
because we reduce the multiplicity of representations in our theory, this can run pretty quickly into
practical problems. Indeed, we cannot anymore define conserved global symmetries such as baryon
number or lepton number. A careful analysis shows that only B−L is conserved by SU(5), but L and
B alone are not. This is actually a serious problem for the stability of the proton. The gauge bosons
X and Y couple quarks and leptons and, when integrated out, will generate dimension 6 operators of
the form qqql (see fig.2.1). However, the scale of GUT breaking implied by gauge coupling unification
is heavy enough to kill any danger coming from these operators (for the moment).

In order to break SU(5) to SU(3)c×SU(2)L×U(1)Y and then to SU(3)c×U(1)em, we must embed
the SM Higgses into complete SU(5) representations. According to what we said earlier the smallest
ones are 5 and 5, which contain the necessary weak doublets, along with colour triplets. This is a very
delicate problem since these colour triplet fermions, in the SUSY case, create effective interactions
proportional to 1

MT
QQQL or 1

MT
U cU cDcEc where MT is the triplet mass. These operators induce at

one loop a decay of the proton. As experiments like Super Kamiokande have put severe constraints
on the lifetime of the proton, MT is restricted to a very high energy range. The problem is now to
keep the SU(2)L doublets Hu and Hd light while making the colour triplets heavy enough, which is
known as the infamous Doublet-Triplet splitting.

The breaking

Now another representation is needed to break SU(5) at MGUT ∼ 1016 GeV. As we must not reduce
the rank of the gauge group it must be real, so we use a chiral field in the adjoint representation Σ,
which is the smallest real one. The Higgs sector consists of 5H , 5H and Σ and its superpotential is :

m55H5H +
m24

2
Tr(Σ2) +

λ1

3
Tr(Σ3) + λ25HΣ5H (2.48)
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The minimisation with respect to Σ gives three possible degenerate vacua in the supersymmetric
case : unbroken SU(5), SU(4)×U(1) and SU(3)×SU(2)×U(1). This problem can be circumvented
by extending SUSY to a local symmetry, called supergravity (see Chapter 6 of [14] and references
therein), or by adding more fields to the Higgs sector.
Assuming the appropriate corrections are taken into account, we derive an expression for the vev of
Σ :

〈Σ〉 = V
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
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










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Combined with the mass term for the 5’s we obtain masses m5+2V for the colour triplets and m5−3V
for the doublets. Fine-tuning the second one we can obtain light doublets while keeping heavy triplets.
However, after introducing SUSY to solve our fine-tuning problems with the mass of the Higgs boson,
it is not very satisfactory to reintroduce one at this stage1. A possible outcome is to add more Higgs
representations coupling to 5 and 5 so that globally there are more doublets than triplets in the spec-
trum and we cannot couple all the doublets in the 5H and 5̄H to doublets of other representations
with large masses. One such configuration consists in adding 50 + 50 + 75 to the spectrum. The 75
contains an SU(5) singlet and breaks SU(5) to the SM and we can forget about the 24. In the mean
time, 75 couples to Higgses through 50.75.5̄H and the 50 contains a colour triplet but no weak doublet.

The main phenomenological problem of this theory comes from the colour triplet part of the 5H

and 5H . A good unification of the couplings in fact requires the mass of the colour triplets from the 5
and 5 Higgses to have a mass smaller than MGUT . Including two-loop renormalisation equations and
one-loop threshold effects, the authors of reference [17] find a range :

3.5 × 1014 GeV ≤ MT ≤ 3.6 × 1015 GeV (2.50)

which is in conflict with the bound on the proton decay channel τ(p → K+ν) from Super-Kamiokande,
therefore killing the most minimal SU(5) SUSY-GUT model.

2.3.2 SO(10) and the seesaw

Instead of going to non-minimal SU(5) we can go one step further and consider larger groups. The
next simplest possibility to consider is then S0(10). Developing the theory we will realise that it
contains naturally many stimulating additional features.
An embedding of SU(5) into SO(10) has been presented in the first reference of [40]. The trick is

to consider operators χi with i = 1...N , defined by anti-commutation relations {χi, χ
†
j} = δij . From

these operators we can build two sets of generators, the T i
j , defined by :

T i
j = χ†

iχj (2.51)

and the Γm, m = 1...2N :

Γ2j−1 = −i(χj − χ†
j) Γ2j = χj + χ†

j (2.52)

1Let us stress, however, that contrary to the non-SUSY case, such a tuning would only need to be made once in the
superpotential, and not at each order of the perturbation expansion
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Noting that these two sets satisfy the relations :

[T i
j , T

k
l ] = δk

j T i
l − δi

lT
k
j and : {Γm, Γn} = 2δmn (2.53)

we see that the T i
j satisfy an SU(N) algebra while the Γm obey a Clifford algebra and therefore

generate an SO(2N) algebra with generators Σmn = 1
2i [Γm, Γn]. Thus, we have built an explicit

link between SU(N) and SO(2N) and we could even build the spinor representation of SO(2N) by

application of the χ†
i on a vacuum and see its decomposition under the SU(N) subgroup.

Another way, more visual and direct, is to consider the Dynkin diagrams of these two groups :

SU(5)
(2.54)

SO(10)

(2.55)

Thus if we severe one of SO(10)’s roots we obtain directly SU(5) × U(1).

The vector multiplet has dimension 10(10−1)
2 = 45 and decomposes as : 45 = 24 + 10 + 10 + 1

under SU(5).

Matter representation

We already saw that matter superfields must fall into complex representations of the gauge group.
The smallest complex representation of SO(10) is the spinorial one, which contains 16 independent
degrees of freedom (since SO(10) is chiral). Decomposing it under the SU(5) subgroup leaves :

16 = 10 + 5 + 1

We can thus put all the matter of a single family inside one representation of the gauge group !
This is one of the most elegant features of SO(10). First, from a purely aesthetical point of view it
reduces considerably the number of representations of the fundamental theory. Second, from a more
practical point of view it gives a reason why the SM is free of anomaly at low energy : there is no
more miracle cancellation between quarks and leptons’ contributions, since SO(10) is free of anomaly.

The other feature of the 16 which can have deep consequences is the presence of a singlet of SU(5)
(hence of the SM). This singlet is just the one needed to play the role of the right-handed neutrino
we had to introduce for the type I seesaw mechanism. Moreover the fact that we break the Grand
Unified gauge group at a high scale, giving large masses to every ”non-SM” degree of freedom, gives
us the opportunity to justify the large mass scale needed by a successful seesaw. There are mainly
two ways to do so. First we write the possible contractions of matter fields :

16 × 16 = 10s + 120a + 126s

so we must couple fermion bilinears either directly to these representations or to a product of fields
containing them. The first option leads directly to the 126 since it is the only one containing a SM
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singlet which can take a large vev. The second one is to resort to non-renormalisable couplings like
16i16j16H16H since of course 126 ⊂ 16 × 16. The coupling is then suppressed by a large scale
(which is supposed to be smaller than or equal to the Planck mass), but this can be welcome since we
generally need right-handed neutrino masses significantly smaller than the GUT scale (at least two
orders of magnitude).
A clear disadvantage of the renormalisable solution is the important contribution of the large 126
to the running of the gauge coupling above the GUT scale (all the more since we must add a 126
in order to prevent SUSY breaking at the scale of the 126 vev). With representations larger than
the 54, SO(10) becomes strongly coupled before reaching MP , usually one order of magnitude above
MGUT . Thus, non-renormalisable couplings mildly suppressed by the strong coupling scale can be a
priori present.

The breaking

Now we must find a way to break SO(10) all the way down to the SM. Although this could be achieved
in a quite constrained way for SU(5), we have a lot more freedom for SO(10) because we have multiple
possibilities to lower the rank and several possible intermediate gauge groups before obtaining the SM.

The two main subgroups of maximal rank are SU(5) × U(1)X , as we already mentioned, and
SU(2)L ×SU(2)R ×SU(4)c, the Pati-Salam group which we also mentioned when introducing Grand
Unification. In fact, when embedded into SO(10), the PS group exhibits a parity symmetry between
the left and right SU(2) subgroups, often called D-parity. Under SU(2)R, matter is then unified inside
doublets, grouping the singlet quarks Dc and U c, and the right-handed neutrinos N c with the singlet
electrons Ec. This is a more intuitive way to understand why a RH neutrino is introduced for each
family. One generation is then incorporated inside the representations (2,1,4)+ (1,2,4) which is the
decomposition of the 16 of SO(10) under PS.

Another interesting feature of SO(10) group theory is the incorporation of the B−L symmetry as
a subgroup. It is most easily seen when breaking SU(4)c of PS down to SU(3)c without lowering the
rank. The gauge group is then SU(3)c × SU(2)L × SU(2)R ×U(1)B−L. This explains the presence of
B − L as an accidental global symmetry of the SM and SU(5).
However this is not the most appreciable consequence of gauging B−L. Indeed, if we select a breaking
mechanism such that only fields with an even B −L charge break the gauge group, we will automati-
cally enforce R-parity in the model, which is quite desirable for SUSY phenomenology.

Let us now turn to the Higgs sector and the different breaking schemes. With the notable exception
of the 16, the usual Higgs representations one can encounter in the different models explored so far
are tensorial representations2, thus they are generated by tensor products of the fundamental 10.
We denote with letters {a, b, c, d, ...} tensor indices which run from 1 to 10, and by {m, n, ...} spinor
indices running from 1 to 16. [ab] stands for an antisymmetrisation of the indices while {ab} means
a symmetrisation. Starting from the 10a, we can thus form antisymmetric tensor products with two
(the adjoint 45[ab]), three (the 120[abc]), four (the 210abcd) and five indices (the 126[abcde]). Another
frequently used representation is the symmetric contraction of two 10’s, the 54{ab}.
From all these representations, only the 16 and the 126 are complex. Thus, when including them in the
spectrum one has to include their conjugate representations too, because if a complex representation

2Some models exist that use the 144 but they are few.
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takes a vev, it must be compensated by the vev of the conjugate field, 〈16〉 = 〈16〉 or 〈126〉 = 〈126〉,
in order to preserve D-flatness and prevent SUSY breaking at a high scale. A convenient way to
discuss symmetry breaking and couplings is to list the decomposition of these representations under
SU(5) :

10 = 5 + 5 (2.56)

45 = 1 + 10 + 10 + 24 (2.57)

54 = 15 + 15 + 24 (2.58)

120 = 5 + 5 + 10 + 10 + 45 + 45 (2.59)

210 = 1 + 5 + 5 + 10 + 10 + 24 + 40 + 40 + 75 (2.60)

16 = 1 + 5 + 10 (2.61)

126 = 1 + 5 + 10 + 15 + 45 + 50 (2.62)

From this listing it appears that the representations able to break SO(10) to SU(5)×U(1) are the
45 and 210, while the complex ones 16 and 126 will lower the rank down to SU(5). We can then use
the 24 contained in 45, 54 or 210 to break the remaining SU(5). However, as we need to lower the
rank, a complex representation is always needed at some point.
On the other hand, if we wish to break SO(10) to SU(2)L × SU(2)R × SU(4)c, we will use those
representations containing a singlet under PS, the 54 and the 210.
There are two main chains of SO(10) breaking corresponding to the two maximal subgroups. The
first chain is quite simple :

SO(10) −→
{

SU(5) × U(1)
SU(5)′ × U(1)′

−→ SU(5) −→ SM (2.63)

The SU(5)′ stands for the flipped SU(5) group.
The other chain, using PS = SU(2)L × SU(2)R × SU(4)c, is realised by breaking SO(10) to SO(4)×
SO(6), since SO(4) ∼ SU(2) × SU(2) and SO(6) ∼ SU(4). The rest of the chain is realised by
SU(2)R −→ U(1)R and SU(4)c −→ SU(3)c × U(1)B−L. All the potential steps of the breaking are
summarised in the chain below :

SO(10) −→ PS(×D) −→
{

SU(3)c × SU(2)L × SU(2)R × U(1)B−L

SU(4)c × SU(2)L × U(1)R

−→ SU(3)c × SU(2)L × U(1)R × U(1)B−L −→ SM (2.64)

The chains are displayed here with a maximum number of breaking steps but several steps can be
realised at the same energy. Theoretically, one representation could be enough to break SO(10) to
the SM if it contains a SM singlet, but in practice we need several representations to build a realistic
GUT model. The models which prefer to keep the gauge coupling perturbative up to the Planck scale
use 45’s, 54’s and pairs of 16 + 16.

A recurrent problem in SO(10) model building comes from the constraint of neutrino masses.
A successful seesaw mechanism requires an intermediate scale, thus implying that some states, in
addition to the singlet RH neutrinos, could be lighter than the GUT scale and could contribute to the
running of the gauge couplings. If these sates are not full multiplets of the grand unified group, they
will contribute to the differential running of the couplings, potentially ruining the unification required
in any GUT.
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2.3.3 Fermion masses

Realistic fermion masses are always a delicate problem in GUT model building. Indeed, the first thing
we are tempted to do is to use the minimal number of representations because it seems at the same
time the most aesthetically appealing and the most predictive option.
However, as quarks and leptons are related by the GUT gauge group, their couplings become closely
related, so closely in the simplest models that it becomes unrealistic. First, we will quickly develop
the SU(5) theory as an example and then switch to the more complicated situation of SO(10).

Yukawa correlations in SU(5)

As we saw earlier, the minimal embedding of the Higgs bosons of the MSSM uses a 5 and a 5 of
SU(5). The Yukawa superpotential that we can write is then :

(Y5)ij10i10j5H + (Y5)ij10i5j5H + (Yν)ij5i1j5H + h.c.

Y5 then gives the Yukawa coupling of the up-quarks while Y5 generates those of the down-quarks
and charge leptons. The singlet representations 1i stand for the singlet RH neutrinos Ni so that Yν is
the neutrino Yukawa coupling.
As 5 contains the LH part of charged leptons and RH part of down quarks, in this model we predict
the relation : Me = MT

d . This implies also that charged leptons and down quark masses are equal at
the GUT scale, which is now completely experimentally excluded. More precisely, running the masses
from MZ , at which their central values are [87] :

md = 3.0 MeV ms = 54 MeV mb = 2.87 GeV
me = 0.487 MeV mµ = 103 MeV mτ = 1.75 GeV

(2.65)

to MGUT ∼ 2× 1016 GeV with MSUSY = 1 TeV and tanβ = 10, the value of the masses at MGUT is :

md = 0.94 MeV ms = 17 MeV mb = 0.98 GeV
me = 0.346 MeV mµ = 73.0 MeV mτ = 1.25 GeV

(2.66)

Therefore, strictly speaking, the minimal SUSY SU(5) model must be extended even without
considering proton decay. A possible way out is to introduce a 45 of Higgs [18, 19], which also contains
a doublet of SU(2)L and can couple to the 5̄’s and 10’s of matter. Once decomposed under the SM
gauge group, it will contribute differently to the quark and lepton mass matrices, more precisely we
obtain :

Md = v5Y5̄ + v45Y45 MT
e = v5Y5̄ − 3v45Y45 (2.67)

The factor -3 comes from the following properties of 45 : 45 is a tensor with one fundamental an
two anti-fundamental indices obeying 45a

bc = −45a
cb and

∑

a 45a
ab = 0. Its vev will be along 45a

b5 and
diagonal if we do not want to break SU(3)c, with the constraint over the trace translating into :

〈45〉 = v45
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(2.68)
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Making some assumptions on the Yukawa couplings (namely putting some entries to zero), leads to
the famous Georgi-Jarlskog texture, predicting a factor of 3 between mµ and ms at MGUT . However,
even this relation is now in conflict with experimental data (cf eq. 2.66).

Yukawa correlations in SO(10)

Now we turn to SO(10), trying first to be as minimal as possible. The task is to assign the Higgs
doublets to SO(10) representations. The first important remark to be made is the fact that the 10
contains a 5 and a 5, which is exactly the minimal content compulsory in SU(5) to get the MSSM
at low energy. Thus, it appears that SO(10) can even unify the Higgs sector of the MSSM. However,
doing so restricts us to the only coupling Yij16i16j10, implying immediatly Yu = Yd = Ye = Yν = Y
so that the situation is even worse than in minimal SU(5).
Expanding the Higgs sector to several 10’s will only mildly improve the situation. The generic situa-
tion will then be : Yu = Yν and Ye = Yd. The first relation is not so bothering (but this is not even the
case if we want successful leptogenesis, we will come back to this point later) but the last one leaves
us with the same problem as before.

We have to turn to larger representations to do the work. If we want to keep renormalisability, then
our choice is limited. From the decomposition of the tensor product 16 × 16, the other possibilities
we have, apart from the 10, are the 120 and the 126. Symmetry properties of SO(10) impose that
Y10 and Y126 are symmetric while Y120 is anti-symmetric. In order to check what difference these
operators will make, let us decompose these representations under the PS group :

120 = (3,1,6) + (1,3,6) + (1,1,20) + (2,2,1) + (2,2,15) (2.69)

126 = (3,1,10) + (1,3,10) + (1,1,6) + (2,2,15) (2.70)

From this we infer that 120 can get a vev in the (2,2,1) direction, just like the 10, which means
that it doesn’t improve much the discrimination between Me and Md. The (2,2,15) component is
more interesting, since in order not to break SU(3)c the vev must be in the B − L direction : there
again, there is a factor −3 between the contributions to Me and Md. This was predictable in the
sense that the 126 contains a 45 of SU(5) and the 120 a 45 + 45. In the MSGUT model, the 126
is used in conjunction to a single 10 to generate fermion masses and it appears to fit the data correctly.

For the neutrino sector, we first have to give a large mass to the right-handed neutrinos. The
only possibility at the renormalisable level is through the 126 since it contains a singlet of SU(5).
Alternatively we can see it with the PS decomposition for which the vev is carried by a triplet of
SU(2)R with a B − L charge equal to 2. This allows to give the mass scale of the Ni a more physical
meaning, namely the breaking scale of the B − L symmetry.

If we want to restrict ourselves to small representations, we have to turn to non-renormalisable
interactions. We must then use representations we can contract to obtain 10, 120 or 126. One such
example is 10 × 45, which contains a 120 and a 10. We will develop later the use of this operator to
obtain realistic masses for the model we will consider.
Turning to neutrino masses, we will only obtain a heavy majorana mass if we introduce a 16H and
couple it through :

1

Λ
YNR16H16H16i16j (2.71)
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The 16H has to take a vev in the 1 direction of SU(5). The suppression factor 〈116〉2/Λ immediatly
gives intermediate masses for Ni.

2.4 Leptogenesis

Now that we have introduced a natural setup for the seesaw mechanism, we shall turn to one of
its most appealing consequences. As we already mentioned, one of the very interesting features of
the seesaw mechanism is the generation of a baryon asymmetry through lepton asymmetries in the
early universe, thereby explaining the present evidence for an asymmetry in the matter-antimatter
distributions [8].
We will begin this section with a review of the baryon asymmetry, its experimental evidence and its
generation in the early Universe. Explaining why a correct baryon asymmetry cannot be reproduced
by the SM alone will motivate the consideration of the heavy right-handed neutrinos as the source of
the cosmic matter-antimatter asymmetry in the present Universe, which is the principle of leptogenesis.

2.4.1 Baryon asymmetry

The measured baryon asymmetry of the universe is one of the few concrete evidences for new physics
beyond the Standard Model of particle physics, so that predicting a correct asymmetry is a precious
test for BSM physics. Before explaining why the SM fails to reproduce the correct baryon asymmetry,
let us recall some basic facts.
When trying to deal with matter density in the primordial universe we must work in a non-trivial
background, defined by the Friedmann-Robertson-Walker metric :

ds2 = dt2 − a2(t)d~x2 (2.72)

Evolution of the scale factor a(t) is given by the (0,0) component of the Einstein equation :

Rµν − 1

2
gµνR = 8πGTµν (2.73)

Defining ρ the energy density of the universe and k the curvature constant, equal to +1, -1 or 0
depending if our universe is positively, negatively curved or flat, the equation for a reduces to the
Friedmann equation :

H2 +
k

a2
=

8πG

3
ρ with : H =

ȧ

a
(2.74)

H is called the Hubble parameter. As a(t) evolves with time the universe expands, so that the baryon
and antibaryon number densities nb and nb̄ do not keep constant during the evolution of the universe.
When keeping track of a specific region we see that its volume scales like a3, so nB scales like a−3 and
it will be more convenient to define the comoving number density :

yB =
nB

ns
=

nb − nb̄

ns
(2.75)

ns is the entropy density of the universe and is related to the temperature by the formula :

ns =
2π2

45
gs∗T

3 (2.76)
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and scales also like a−3. This allows to define a baryon asymmetry yB which scales as a constant. The
factor gs∗ can be safely replaced, through most of the history of the universe, by g∗ which counts the
effective number of relativistic degrees of freedom :

g∗ =
∑

X=boson

gX +
7

8

∑

X=fermion

gX (2.77)

gX being the number of d.o.f. associated with the particle X. Note that the density of photons
nγ = 2 ζ(3)

π2 T 3 is proportional to ns. This is why we could also work with the quantity :

ηB =
nB

nγ
≃ 7.04 yB (2.78)

The value of yB consistent with the primordial abundance of light elements is [52] :

yB ∼ (8.7 ± 0.3) × 10−11 (2.79)

Now, supposing we start with yB = 03, baryon and antibaryons are in equilibrium with the plasma
until the annihilation rate Γann ≃ nb〈σAv〉 becomes smaller than the Hubble rate H, at Td ≃ 20 MeV.
At this temperature, the baryon number density freezes out at the value [76] :

nb

ns
≃ nb̄

ns
∼

(

mp

Td

)3/2

e
−mp

Td ∼ 10−18 (2.80)

which is is far from what is expected. Supposing that the asymmetry comes from statistical fluctua-
tions in baryon and antibaryon distributions does not help any more.

The necessary conditions for a successful matter-antimatter asymmetry have actually been stated
by Sakharov [77] already a long time ago (see also [76] for more detailed considerations), and they are
three :

• Baryon number violation :
Starting with an initial baryon asymmetry nB 6= 0 would seem quite ad hoc. Moreover, any
period of inflation would have diluted away the initial condition, leaving only a negligible nB.
Therefore, we prefer to start from a baryon symmetric state (nB = 0), so it is obviously necessary
to have baryon number violating interactions. However, one has to be very careful when dealing
with brayon violating interactions since they may mediate proton decay, in which case they
would be highly constrained by the experimental lower bound on the proton lifetime τp ≥ 1033

years.

• C and CP violation :
Since we want to distinguish between matter and antimatter it is also intuitive that charge
conjugation C must not be a good symmetry of our theory. Moreover, CP , the product of
charge conjugation and parity, must also be broken, otherwise the sum over phase space of any
rate is zero. C is maximally violated in the SM and CP is violated through the complex CKM
phase in the quark sector.

• Departure from equilibrium :
If a species is placed at chemical equilibrium, its chemical potential will be zero since it is for this

3as suggested by inflationary scenarii
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state that the entropy is maximal. The only hope to generate a CP asymmetry is to consider
an out of equilibrium phenomenon. We can achieve out of equilibrium either with a first order
transition, such as the one which could happen in the EW sector, or if a massive particle decays
with CP and B violating interactions and slowly enough for its distribution to depart from the
equilibrium value.

Let us develop the latter condition a little further. In the case of a massive particle X interacting with
the primordial plasma, it will start to decay when the plasma cools down below its mass T ≤ MX

4. If
its coupling to lighter particles in the plasma is not small enough, meaning that its decay width ΓX

is larger than the Hubble rate, ΓX > H, X will decay much more rapidly than the typical time of
expansion and will adjust its population to the equilibrium value. On the contrary, if ΓX < H, X will
not decay fast enough and will become overabundant. At the time of their decay, X particles will thus
be out of equilibrium. Supposing that baryon-number violating scatterings mediated by X are highly
inefficient and we are in the case ΓX ≪ H, X will decay completely out of equilibrium and its density
will not be exponentially suppressed nX = nX̄ ∼ nγ . Then, if each decay produces, on average, an
asymmetry ε, the baryon number density is nB ∼ εnX ∼ εnγ , and since ns ∼ g∗nγ :

yB =
nB

ns
∼ εnγ

g∗nγ
∼ ε

g∗
(2.81)

Conversely, with very efficient inverse decays and X-mediated scatterings, the whole asymmetry
is washed out as soon as it is created.

A full study of the dynamics and a precise quantitative prediction imposes to solve the Boltzmann
Equations of the system. An introduction to Boltzmann Equations is provided in appendix A.

2.4.2 Sphalerons and electroweak phase transition

When looking at the Sakharov conditions, we see that the SM has the necessary qualitative features
to generate a B asymmetry without the need for new physics, the third condition being fulfilled only
if the Electroweak phase transition is strongly first order.
But let us see first how B-violation appears in the SM. Although perturbatively it may seem that B
is accidentally conserved because all interactions in the Lagrangian are B-conserving. However, B is
only conserved classically but not quantum mechanically. Transforming the fermions with a general
phase factor ψ′(x) = eiaθ(x)ψ(x), we get extra contributions to the action, the usual one coming
from the Lagrangian itself and another one coming from the measure in the generating functional
DψDψ. Requiring the action to be invariant then implies the non conservation of the baryonic current
Jµ

B = 1
3

∑

i q̄iγ
µqi for a = 1/3 :

∂µJµ
B = i

Nf

32π2

(

−g2
2F

aµν
L F̃ a

Lµν + g2
1F

µν
Y F̃Y µν

)

(2.82)

with Fµν
L and Fµν

Y the field strength of SU(2)L and U(1)Y respectively. The Hodge dual is defined as
F̃µν = 1

2ǫµνρσFρσ. When considering lepton number we find similarly :

∂µJµ
L = ∂µJµ

B (2.83)

4This discussion, similarly to the one led in appendix A, is inspired by the GUT baryogenesis mechanism, where X

stands for the X and Y gauge bosons of SU(5), see section 2.3.1. This mechanism is highly disfavoured in inflationary
scenarii since inflation dilutes any asymmetry created before the inflation period.
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so that the only conserved global symmetry is B − L. The next feature of the SM to be noticed is
the non-trivial topology of the non-abelian group SU(2)L. It implies the existence of an infinite set of
degenerate pure gauge backgrounds, which cannot be deformed continuously into one another. They
are separated by an energy barrier which is roughly 10 TeV in magnitude. Performing a transition
from one vacuum to one of its neighbours will involve a variation in B and L :

∆B = ∆L = NF (2.84)

which means that one quark per colour and one lepton of each generation will be created, forming an
effective 12 particle interaction.
The field configuration which interpolates between two vacua is a static and unstable solution of the
equations of motion [79]. It is called a sphaleron. At zero temperature it can be shown that the
probability to tunnel from one vacuum to the other is proportional to exp(−4π/αW )∼ 10−150 [78].
However, when the temperature reaches the EW scale, sphalerons activate and badly violates B and
L. Actually, any asymmetry created in the B+L direction is completely washed-out as B+L is driven
to zero. The hope is then to have a strong first order EW transition in order to put the sphaleron
processes out of equilibrium. Defining as Tc the critical temperature at which the second vacuum
v 6= 0 becomes energetically favoured and bubbles of the true vacuum begin to grow, we reach indeed
out of equilibrium if :

v(Tc)

Tc
≥ 1 (2.85)

Unfortunately, it requires the Higgs mass to be way too small, mH < 80 GeV from precise computations
in the SM [80].
Therefore the experimental result (2.79) undoubtedly calls for new physics. For example, it can be
implemented in SUSY theories for which there is more room for a first order EW phase transition
[81]. Another nice explanation, which we will develop below, comes out naturally from the seesaw
mechanism.

2.4.3 Basics of Leptogenesis

Up to now we have claimed several times that the creation of an efficient matter-antimatter asymmetry
is potentially a welcome by-product of the seesaw mechanism. It is now time to explain the principle of
leptogenesis and its main features, before digging into the analysis of our benchmark model described
in section 3.1.3.

Leptogenesis has been introduced by Fukugita and Yanagida [8] when they realised that when RH
neutrinos are heavy enough they can play the role of the particle X mentioned above. As they have a
Majorana mass term their mass eigenstates are Majorana particles, meaning that they are their own
antiparticle Ni = N c

i . Thus they can decay into leptons and antileptons. Since their Yukawa couplings
are a priori complex they violate CP and the decay will differentiate between leptons and antileptons.
The initial situation is this one : after inflation, the inflaton decays and reheats the Universe up to
some temperature TRH . As far as RH neutrinos are concerned there are two possibilities. Either
they are created directly through inflaton decay and their initial value is then highly model depen-
dent. Or TRH is sufficiently large to allow their creation through the interactions of the thermal
plasma. The latter is obviously more interesting since the physics is independent from the exact na-
ture of the inflaton and we can study the predictions of leptogenesis in a more model independent way.
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In this introduction we will focus on the traditional ”one flavour approximation” approach where
lepton flavours are assumed to be indistinguishable and the RH neutrino N1 decays into one flavour
l1.

Type I leptogenesis

Let us start with TRH > M1. If TRH > M2,3, the decays of N2,3 will generate an asymmetry similarly to
N1, and the same could be said of any particle heavier than N1 with CP and L-violating interactions.
However at the time of their decay N1 is still in equilibrium, so if N1 couples not too weakly to the
plasma, its interactions will washout any lepton asymmetry created at T > M1. Of course, this is only
the case if there is some hierarchy between N1 and the other particles5. From now on we will focus
on the simple case of hierarchical RH neutrinos. This is anyway the case in most of the spectra that
we will consider in the next chapter, so they are the spectra on which we will focus in practice.
The coupling of N1 to matter was written in eq. (2.2) for the Standard Model. At tree level the
amplitude of the decays into l and l are complex conjugate so that Γ(N1 → lH) and Γ(N1 → l̄H̄) are
equal and no CP asymmetry is generated. The asymmetry is thus generated by the interference of
tree level :

N1

li

H

(2.86)

and of the one loop vertex and self-energy corrections :

H

Nk

lj

N1

li

H

lj

H

Nk

N1

li

H

(2.87)

The CP asymmetry ε1, is defined by :

ε1 =
Γ(N1 → lH) − Γ(N1 → l̄H̄)

Γ(N1 → lH) + Γ(N1 → l̄H̄)
(2.88)

and at one loop, computation of the previous diagrams gives :

εI
1 =

1

8π

∑

j 6=1 Im[(YνY
†
ν )21j ]

(YνY
†
ν )11

f(xj) (2.89)

and we defined the ratios xj = M2
j /M2

1 . In the limit of hierarchical RH neutrinos : xj ≫ 1 and we
can use the approximate form for the loop function fSM in the SM :

5This not even completely true, however, as has been stated in [58]; we will come back to this point later.
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fSM (xj) =
√

xj

[

2 − xj

1 − xj
+ (1 + xj)Ln

(

1 +
1

xj

)]

−→ fSM (xj ≫ 1) ≃ − 3

2
√

xj
(2.90)

and the expression for ε1 becomes :

εI
1 ≃ 3

16π

Im[(Yνm
∗
νY

T
ν )11]

(YνY
†
ν )11

M1

v2
(2.91)

When considering a SUSY theory, the diagrams (2.86) and (2.87) are promoted to superdiagrams.
In components, this amounts to consider the decays of the RH neutrinos and their associated RH
sneutrinos to leptons plus Higgs and sleptons plus Higgsinos. The form (2.89) of εI

1 is the same but
the loop function is modified, and we give it below, displaying once again its approximate value in the
limit xj ≫ 1 :

fSUSY (xj) =
√

xj

[

2

1 − xj
− Ln

(

1 +
1

xj

)]

−→ fSUSY (xj ≫ 1) ≃ − 3
√

xj
(2.92)

and the approximate form for ε1 is now :

εI
1 ≃ 3

8π

Im[(Yνm
∗
νY

T
ν )11]

(YνY
†
ν )11

M1

v2
u

(2.93)

which is only twice the asymmetry of the Standard Model.
This formula has been widely studied and general statements can be made. For example it can
be shown that no successful leptogenesis can be achieved if the R-matrix introduced earlier is real,
which means that the low energy CP violating phases cannot be linked to the observation of matter-
antimatter asymmetry in the Universe.

Type II leptogenesis

When the SU(2)L triplet ∆L of the type II seesaw mechanism is present, and it is much heavier than
N1, the asymmetry is still created by the lightest particle N1, but there is a new loop contributing to
the decays of N1 [49, 50, 51] :

lj

H

∆LN1

li

H

(2.94)

This diagrams interferes with the tree level decay and adds a contribution to the total CP-asymmetry :

εII
1 = − 3

8π
M1v

2

∑

ij Im[Y1iY1j(m
II
ν )∗ij ]

(Y Y †)11
g(y) (2.95)

With mII
ν = vLf and the parameter y stands for the ratio M2

∆L
/M2

1 . Once again the form of εII
1 is

the same with only a change in the loop functions, that are given by :
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gSM (y) = y

[

−1 + y Ln

(

1 +
1

y

)]

−→ gSM (y ≫ 1) ≃ −1

2
(2.96)

gSUSY (y) = y Ln

(

1 +
1

y

)

−→ gSUSY (y ≫ 1) ≃ −1 (2.97)

The case the most interesting for us is indeed the one where y ≫ 1, as we will see in the next
chapter. In that case, the limit of large y will again lead to an approximate form for εII

1 very similar
to the one for εI

1 :

εII
1 = (2×)

3

16π

∑

ij Y1iY1j(m
II
ν )∗ij

(Y Y †)11

M1

v2
(u)

(2.98)

where the factor of two is applied for the supersymmetric case and ignored in the SM. Summing the
two contributions εI

1 and εII
1 , we obtain the total CP asymmetry :

ε1 = εI
1 + εII

1 = (2×)
3

16π

∑

ij Y1iY1j(mν)
∗
ij

(Y Y †)11

M1

v2
(u)

(2.99)

where once again a factor of two is to be applied in the SUSY case.

The baryon asymmetry is finally expressed as :

yB = −1.48 × 10−3η ε1 (2.100)

η . 1 being the washout which has to be determined with the Boltzmann equations. As it has
been shown [25, 26], this parameter can reach values of about 0.1 or greater on a significant part of
the parameter space, so that ε1 must be strictly greater than 10−7 and, more realistically, we can
reasonably hope to reach the experimental value (2.79) for yB, for ε1 about 10−6.

2.4.4 Boltzmann equations

Usually leptogenesis happens in the range of moderate washout, therefore a numerical value for yB must
be extracted by the resolution of the Boltzmann equations. An introduction to Boltzmann equations is
provided in appendix A in a simple case. The processes entering the game for leptogenesis are decays
and inverse decays of N1 : N1 → lH and lH → N1, ∆L = 1 scatterings, for example : qtc → N1l
or Nq → l tc mediated by Higgs particles, and ∆L = 2 scatterings : lH → l̄H̄ mediated by N1, or
ll → H̄H̄ mediated by ∆L in the type II mechanism. These processes are drawn in figure 2.2. Usually,
if M1 . 1014 GeV, ∆L = 2 processes are neglected. In the inverse regime of very large M1, these
processes tend to wash out the lepton asymmetry exponentially.

Using, as in the appendix A, ∆N1 = YN1 − Y eq
N1

and the thermally averaged rates γD, γ∆L=1 and
γ∆L=2, the equation for the lepton asymmetry and the N1 number densities are :

∆′
N1

= − z

sH(M1)
(γD + γ∆L=1)

∆N1

Y eq
N1

− (Y eq
N1

)′ (2.101)

Y ′
L =

z

sH(M1)

[

∆N1

Y eq
N1

ε1γD − YL

Y eq
L

(γD + γ∆L=1 + γ∆L=2)

]

(2.102)
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Figure 2.2: The diagrams of the different processes entering the Boltzmann equations of the lepton
asymmetry. The four upper diagrams are ∆L = 1 processes whereas the last three diagrams represent
∆L = 2 processes.
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An approximate form of these equations can be written which yields solutions in good accordance
with numerical resolutions [26, 27, 56]. Using the modified Bessel functions of the second kind K1 and
K2 we first approximate γD and Y eq

N1
:

γD ≃ sY eq
N1

K1(z)

K2(z)
ΓN1 , Y eq

N1
≃ 1

4g∗
z2K2(z) (2.103)

and we make use of the parameter κ1, characterising the out of equilibrium condition for N1 and
defined by :

κ1 =
ΓN1

H(T = M1)
=

m̃1

m∗
(2.104)

and the parameters m̃1 and m∗ are expressed as :

m̃1 =
(Y Y †)11v2

M1
, m∗ =

16π5/2√g∗

3
√

5

v2

MP
≃ 1.08 × 10−3 eV (2.105)

Using these definitions yields for the asymmetry :

∆′
N1

= −zκ1
K1(z)

K2(z)
f1(z)∆N1 − (Y eq

N1
)′ (2.106)

Y ′
L = ε1κ1z

K1(z)

K2(z)
∆N1 −

1

2
z3κ1f2(z)YL (2.107)

The functions f1 and f2 have the following approximations [27] : f1,2(z) ≃ 1 for z ≫ 1 and f1,2(z) ∝
m2

t /(v2
uz2) for z . 1. From this form of the Boltzmann equations an approximate solution can be

found in the strong and weak washout regimes. In the strong washout regime, where κ1 ≫ 1, the
lepton asymmetry will be damped and its final expression is :

YL ≃ 0.3 × ε1

g∗

(

0.55 × 10−3eV

m̃1

)1.16

(2.108)

In the other case of weak washout, κ1 ≪ 1, the final asymmetry will depend on whether the N1

density YN1 started at its equilibrium value or with a zero abundance. The first case may appear if N1

has interactions with heavy particles, such as massive gauge bosons from a broken gauge symmetry,
which will bring it to equilibrium. It can also happen that the inflaton, whose decay reheats the
Universe, couples directly and mainly to N1, in which case N1 can even dominate the energy density
of the Universe. Obviously this possibility would be quite favourable for leptogenesis since a very large
population of N1 would contribute to the lepton asymmetry. Finally, the case with N1 starting from
a zero abundance is quite realistic when the particles (other than leptons and Higgses) interacting
with N1 have masses bigger than the reheating temperature, but it is less likely to create a sufficient
asymmetry than the previous ones. Indeed, in order for YN1 to reach its equilibrium value before
T < M1 when the particle decays, the Yukawa couplings Yν of N1 have to be large enough, otherwise
the N1 population is not numerous enough to generate a reasonable CP asymmetry. However, raising
the Yukawa couplings will enhance κ1 and lead to the regions of strong washout. Therefore, in this
case, there is always a tension between large and small values of κ1.
Since a non-thermal production of N1 through inflaton decays is quite model dependent we will
forget about it in the following, and suppose that YN1 starts with an equilibrium or zero value. The
approximate results can be summarised as follows. In the weak washout regime :
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• For an equilibrium initial abundance, there is no washout, so η ≃ 1, and

YL ≃ 0.3 × ε1

g∗
(2.109)

so that any situation with m̃1 . 10−3 eV (κ1 . 1) is favourable.

• For a zero initial abundance, YL is proportional to κ1 :

YL ≃ 0.3 × ε1

g∗

(

m̃1

3.3 × 10−3 eV

)

(2.110)

In this case the optimised situation is the one for κ1 ∼ 1, where η ∼ 0.1.

m̃1 is equivalent to κ1 by definition and we will use either one indifferently when discussing the
washout in the analysis of the next chapter.
Finally, the lepton asymmetry thus created will be reprocessed by the sphaleron interactions, which
violate L and B. Since they conserve B − L, we can express the B − L asymmetry just after the
leptogenesis era as YB−L = −YL. The asymmetry is then redistributed at low temperature when all
Yukawa interactions are in equilibrium. The asymmetry is thus distributed by the Yukawas Ye, Yd and
Yu, and the sphalerons, which are effective qqql interactions. Imposing that the plasma be electrically
neutral yields a fifth condition and we list the five equations that the effective chemical potentials µi

of the different species are bound to obey :

0 = µe + µl + µH (2.111)

0 = µd + µq + µH (2.112)

0 = µu + µq − µH (2.113)

0 = 3µq + µl (2.114)

0 = Ng(µq − 2µu + µd − µl + µe) − 2NHµH (2.115)

Ng is the number of matter generations and NH the number of Higgs doublets. Thus, it is straight-
forward to replace µq and µl, for example, by :

YB = Ng(2µq − µu − µd) , and : YL = Ng(2µl − µe) (2.116)

and express YB and YL as a function of YB−L :

YB =
8Ng + 4NH

22Ng + 13nH
YB−L , YL = − 14Ng + 9NH

22Ng + 13NH
YB−L (2.117)

where nH is the number of light Higgs doublets.

2.4.5 Gravitino constraints

In supersymmetric models where SUSY is promoted to a local symmetry, a spin 3/2 particle, called
the gravitino ψ, is introduced to play the role of the graviton superpartner. When SUSY is broken it
takes a mass m3/2 which can be as small as a few eV or as large as 100 TeV depending on the models.
As every other particle, it is produced after inflation when the Universe is reheated by the inflaton,
and it actually puts stringent constraints on the reheating temperature TRH [83, 84, 85].

Let us consider SUSY theories with conserved R-parity. Two cases are then possible :
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• The gravitino is not the LSP. One of the superpartners is thus stable and the gravitini will decay
into the LSP at some point. Two main constraints then arise. The first one comes from the risk
of increasing the density of the LSP above the Dark Matter measure from WMAP [52]. The
gravitino is produced by the thermal bath at the TRH as well as from inflaton decay. The latter
is again model dependent and is often neglected. ψ is thus produced mainly by gluinos g̃ and a
numerical fit [85] gives for its number density (at the 10% level) :

Y3/2 ≃ 2 × 10−12 TRH

1010 GeV
(2.118)

This translates to the LSP since every ψ will produce one LSP eventually. The non-thermal
contribution to add to the relic density of the LSP is :

∆Ω ≃ 0.13 × mLSP

100 GeV

TRH

1010 GeV
(2.119)

and we can translate the constraint : ∆Ω < ΩDM . 0.31 to TRH :

TRH . 2.4 × 1010 GeV
100 GeV

mLSP
(2.120)

Therefore the constraint on TRH is roughly TRH . 2 × 1010 GeV.
The other constraint that is very dangerous comes the lifetime of the gravitino. As it interacts
gravitationally, its width is given by : Γ3/2 ∼ m3

3/2/M
2
P . Thus, as m3/2 can hardly display a

large hierarchy with the other superpartner masses, the lifetime of ψ is :

τ3/2 = Γ−1
3/2 ∼ M2

P

m3
3/2

∼ 1 sec

(

100 TeV

m3/2

)3

(2.121)

and for m3/2 . 100 TeV ψ risks to disturb the predictions of BBN. The results are of course
dependent of the spectrum of the superpartners, but the numerical study of [85] for several
spectra suggests that a mass m3/2 & 10 TeV should be taken if we need a reheating temperature
TRH ∼ 109 GeV.

• The gravitino is the LSP. The previous constraints are still to be taken into account in a slightly
different form. In this case, it is the density of the gravitino itself that one has to consider, and
impose that it does not overclose the Universe [84] :

Ω3/2 =
ρ3/2

ρc
= m3/2Y3/2(T )nrad(T )ρ−1

c

≃ 0.50

(

TRH

1010 GeV

) (

100 GeV

m3/2

)

( mg̃

1 TeV

)2
(2.122)

with ρc the critical energy density. Imposing Ω3/2 < 1 yields constraints on m3/2, for example
for m3/2 = 50 GeV we need TRH . 3 × 1010 GeV.
As for the BBN constraint, it is now translated to the NLSP (Next to Lightest SUSY Parti-
cle), since it couples gravitationally to the LSP ψ and has therefore a quite long lifetime [84] :
τ = 48πm2

3/2M
2
P /mNLSP . The constraints are still model dependent, but it is found generically
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that TRH should be less than a few 109 GeV.

Successful leptogenesis itself imposes a lower bound on TRH since M1 must be large enough and
N1’s must be sufficiently produced by the thermal plasma. The latest bounds in the framework of
flavour leptogenesis are roughly TRH & 2 × 109 GeV which explains the well known tension existing
in supersymmetric leptogenesis scenarii.

On the other hand, absolute bounds have been derived for ε1 in the type I seesaw model [23], in
the limit of infinitely hierarchical RH neutrinos :

|εI
1| ≤ εmax

1 =
3

8π

M1(mmax − mmin)

v2
≃ 2 × 10−7

(

M1

109GeV

) (

mmax − mmin

0.05 eV

)

(2.123)

with mmax the maximum eigenvalue of the light neutrino mass matrix mν and mmin the smallest one.
For a hierarchical spectrum, this formula imposes a constraint on M1, for example M1 ≥ 2.4 × 109

GeV if we want to have any chance of solving the problem of the baryon asymmetry. This creates
a tension between the gravitino constraint and the need for a successful supersymmetric leptogene-
sis scenario, as N1 must be created by the thermal plasma, imposing TRH & M1, but there is still
some room available in the parameter space. Let us stress again, however, that this is true strictly
with infinitely hierarchical RH neutrino masses. If they are only mildly hierarchical, for example
M2/M1 ∼ M3/M2 ∼ 100, these constraints can be somehow relaxed [24].

For completeness we mention that the bound on ε1 in the type I+II has the form [50, 51] :

|ε1| ≤ εmax
1 =

3

8π

M1mmax

v2
≃ 2 × 10−7

(

M1

109GeV

)

( mmax

0.05 eV

)

(2.124)

which is similar to the bound (2.123), with the change mmax − mmin → mmax. This is an important
change since ε1 does not decrease anymore when the neutrino spectrum becomes quasi-degenerate.
Thus, the possibility of successful leptogenesis with quasi-degenerate neutrinos is still viable in this
framework.
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Chapter 3

Left-Right Symmetric Seesaw and

Leptogenesis

Now that we have introduced enough notions of GUTs and leptogenesis, we can go deeper into the
study of the seesaw formula. A study of the seesaw formula is of great phenomenological interest since
the presence of massive RH neutrinos can lead to different kinds of signatures that are forbidden or
suppressed in the SM. In the previous chapter we developed the example of leptogenesis, which is a
true signal unexplained in the SM and is therefore extremely interesting for BSM physics, but the
fact that RH neutrinos violate lepton flavours leads to flavour violating processes in the lepton sector.
Moreover they can participate in Electric Dipole Moments that are very suppressed in the SM. Thus,
the knowledge of their mass matrix MR is really a valuable information.
The formula for type I seesaw as given by equation (2.8), however, does not allow one to extract the
RH neutrino mass matrix, even supposing that we know completely the light neutrino mass matrix.
A convenient parametrisation was introduced by Casas and Ibarra [20]. Going to the basis where the

RH neutrino mass matrix is diagonal M = M̂ , they show that the matrix R =
√

M̂−1YνU
√

m̂−1
ν is

complex orthogonal and contains all the high-energy parameters, unmeasurable in low energy neutrino
oscillations. However if GUT relations allow us to determine Yν at MGUT it will be straightforward
to extract M .
From the type I formula, it is clear that the structure of Yν has a primordial importance on the
spectrum of light neutrinos, since it appears ”squared”. Hence, should Yν be as hierarchical as Yu, as
it often comes out in SO(10), the hierarchy in M should be twice that of Yu in order to keep a light
neutrino spectrum with a mild hierarchy 1. Since the hierarchy in Yu is roughly λ8, λ4, 1, the one in M
will be so large that the lightest eigenstate N1 will have a mass roughly equal to 105 GeV. Such a small
mass (compared to MGUT ) is not in principle a problem since N1 will not affect the running of the
gauge couplings between its mass and the GUT scale. However, as was described in the last chapter,
such a low scale of M1 is quite problematic if we want to rely on the mechanism of leptogenesis for
the generation of the baryon asymmetry of the universe. Indeed, due to the huge hierarchy in the RH
neutrino sector, the Davidson-Ibarra bound is here very well verified, so that M1 is three orders of
magnitude too small to generate the needed amount of CP -asymmetry. This means that generally, in
SO(10) models with type I only, leptogenesis will be quite difficult, except for particular situations of
quasi-degeneracy between N1 and N2, in which we can rely on resonant leptogenesis [55, 30].

Although not as extensively studied in the literature as the type I, the pure type II seesaw has also

1Let us recall that in the case of normal hierarchy, there is a maximum factor of five between m2 and m3.
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received some attention. It proves quite convenient since, judging from formula (2.10), we can extract
immediatly the high energy coupling fij from the low energy data. However in SO(10), RH neutrinos
are always present and in order to consider pure type II we have to neglect the type I contribution.
More generally in GUT models we can have both type I and type II at the same time, with no par-
ticular reason to neglect one with respect to the other. The situation with both seesaws contributing
equally to the neutrino mass matrix had not received much attention until recently [35].

In this part we propose to investigate models with a Left-Right symmetry where type I and II are
both present and comparable in magnitude. We will introduce a method to extract the RH neutrino
mass matrix in order to study its phenomenological consequences, mainly Lepton Flavour Violation
and leptogenesis. The benchmark model we will assume is an SO(10) model and we will first make
simplifying assumptions to study the qualitative features of the results before adding the necessary
corrections that lead to precise quantitative conclusions.

3.1 Left-Right symmetric seesaw mechanism

3.1.1 Seesaw Duality

Our aim is thus to study the seesaw formula :

mν = vLfL − v2
u

vR
Y T

ν f−1
R Yν (3.1)

vL and vR are vevs of SU(2)L and SU(2)R triplets ∆L and ∆R, and vu is a vev of an SU(2)L×SU(2)R

bidoublet Φ. If fL and fR are not related there is no better chance to extract M = vRfR. However if
a Left-Right symmetry between the two SU(2) sectors is imposed, the Lagrangian is invariant under
the interchange :

l ↔
(

N c

ec

)

Φ ↔ ΦT ∆L ↔ ∆R (3.2)

Therefore, the equality fL = fR = f will hold. Moreover, the Yukawa couplings are restricted to a
symmetric form, Y T

i = Yi for i = u, d, e, ν. This restricts the seesaw equation to :

mν = vLf − v2
u

vR
Yνf

−1Yν (3.3)

which is somewhat more tractable : indeed, making the necessary assumptions about the unknown
parameters of mν and an explicit form for Yν , only f is left as an unknown matrix variable and the
equation now reduces to a matricial second degree equation. This equation has been studied first
by Akhmedov and Frigerio in [35] and then in greater detail in [36]. They have found the following
interesting property of equ. (3.3). If f is a solution of the equation for given mν and Yν , then :

f̂ =
mν

vL
− f (3.4)

is also a solution. They called the transformation f → f̂ a Seesaw Duality. At this point, solving for
f from the seesaw formula amounts to solving the equation :

xF (fij − mij) = yiyjmij (3.5)
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where F = detf , m = mν/vL, x = vLvR/v2 and we switched to the basis where Yν is diagonal with
eigenvalues yi. This is clearly a system of six coupled quartic equations for the fij . However the
authors of ref. [35] found a way to linearise it with respect to the components of f .
They first note that :

yiyjFij = −xF̂fij + yiyj(Tij − Mij) with







Fij = 1
2ǫiklǫjmnfkmfln

Mij = 1
2ǫiklǫjmnmkmmln

Tij = ǫiklǫjmnfkmmln

(3.6)

Moreover taking the determinant of the duality equation (3.4) xf̂ = −Yνf
−1Yν , one obtains :

x3FF̂ = −det2(Yν) = −y2
1y

2
2y

2
3 (3.7)

The trick is finally to perform the rescaling :

f = λ1/3f ′ m = λ1/3m′ y = λ1/3y′ (3.8)

and fix the value of λ by F ′ = 1, which yields F̂ ′ = −(y′1y
′
2y

′
3)

2/x3. The system obtained for f ′ :

(x3 − (y′1y
′
2y

′
3)

2)f ′
ij − x3m′

ij = x2y′iy
′
j(T

′
ij − M ′

ij) (3.9)

is now linear. All the non-linearity is contained in λ which is the solution of an 8th order equation,
yielding generically eight solutions.

The conclusion is that we have now eight potentially different solutions for the heavy neutrino
mass matrix M = vRf , where only one is possible for the pure type I or type II seesaw.

3.1.2 Reconstruction procedure

The duality relation (3.4) links together the eight solutions for f into four couples. However we can
generalise it and see in a straightforward manner how all the solutions are linked together. This is
the basis of the work of ref. [37] and in this section we develop a method to solve for the matrix f ,
alternative to the one presented above.

We are going to manipulate only equation (3.3), in which all matrices are symmetric. It allows us

to decompose Yν as Yν = Y
1/2
ν (Y

1/2
ν )T . We see clearly that Y

1/2
ν is defined only for a symmetric Yν

and can be defined as Y
1/2
ν = UT

ν Ŷν where Uν is the unitary matrix that diagonalises Yν . Of course

we see that Y
1/2
ν is not unambiguously defined, since multiplying Y

1/2
ν by an orthogonal matrix on

the right yields the same Yν . This is however not physically relevant, as these manipulations will only
be a mathematical way to extract the matrix f . Defining then :

Z = Y −1/2mν(Y
−1/2
ν )T X = Y −1/2

ν f(Y −1/2
ν )T (3.10)

we can write eq. (3.3) in the simple form :

Z = αX − βX−1 (3.11)

using the notation α = vL and β = v2/vR. We assume that we are in the basis where charged leptons
are mass eigenstates and that Yν is known in this basis, as is possible in SO(10) GUTs. Z is given by
the low energy parameters, once we assume a definite value for the yet unknown low energy neutrino
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parameters. Solving for f then amounts to solve for X.
Now we can use quite effectively the properties of Z and X. As they are symmetric, it is possible, in
the general case, to diagonalise them with a complex orthogonal transformation :

Z = OT
ZDiag(z1, z2, z3)OZ OT

ZOZ = Id3 (3.12)

At this point one has to be careful, since a complex orthogonal transformation is not necessarily
well defined. In some cases, at least one eigenvector can be non-normalisable since the orthogonal
norm ~u2 is not a norm for complex vectors ~u. This means that a non-zero eigenvector of Z can be
such that ~u.~u = 0 and we cannot define the matrix OZ . However all eigenvectors are normalisable
when the eigenvalues are note degenerate which is the relevant case for us.

Let us note here that if we use unitary transformations to diagonalise these matrices : Z = UT
Z ẐUZ ,

X = UT
XX̂UX and X−1 = U †

XX̂−1U∗
X , X and X−1 cannot be diagonalised at the same time with real

positive eigenvalues. Only using orthogonal matrices can we manage to factorise the diagonalising
matrices of X and X−1 in the right-hand side.

Moreover, from eq. (3.11), we see that X is diagonal when Z is. Thus X is also diagonalised by
OZ :

X = OT
ZDiag(x1, x2, x3)OZ (3.13)

Multiplying by OZ each side of eq. (3.11), the equation transposes to the eigenvalues :

zi = αxi − βx−1
i (3.14)

From this equation we see that we have two solutions for each of the xi’s :

xi =
zi ± sign(Re(zi))

√

z2
i + 4αβ

2α
(3.15)

We defined xi with the factor sign(Re(zi)) so that we have a good control on the limits αβ ≫ z2
i and

αβ ≪ z2
i . In the case of three generations, we have two possibilities for each eigenvalue which means

23 = 8 solutions for X.
Now that we know X we can extract f :

f = Y 1/2
ν X(Y 1/2

ν )T (3.16)

and the right-handed neutrino masses and mixings can be extracted by physically diagonalising f :

f = Uf f̂UT
f U †

fUf = I3 (3.17)

The unitary matrix Uf then relates the basis where Yν is symmetric and the one where M is diag-
onal. In the latter basis, where the RH neutrinos are mass eigenstates, the neutrino Yukawa couplings
become Y = U †

fYν .

This procedure of reconstruction is quite adapted to a numerical analysis. Furthermore it is also
fit for analytic studies. Let us start by studying the limits of eq. (3.15), which will allow us to identify
some known limits.
The different solutions are labeled by (+, +, +) for (x+

1 , x+
2 , x+

3 ) and so on. In the limit 4αβ ≪ |zi|2 :
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x+
i ≃ zi

α
x−

i ≃ − β

zi
(3.18)

for which we see the use of definition (3.15). In the opposite limit |zi|2 ≪ 4αβ :

x±
i ≃ ±sign(Re(zi))

√

β

α
(3.19)

Now, for some solutions, it is possible to interpret the result as a particular dominance of type I
or type II seesaw. More precisely, defining the zi’s such that |z1| < |z2| < |z3|, in the range of vevs
such that 4αβ ≪ |z1|2, the limit (3.18) holds for all zi’s and the (+, +, +) and (−,−,−) solutions give
approximately X(+,+,+) ≃ Z/α and X(−,−,−) ≃ −βZ−1. In this limit, f is then given by :

f (+,+,+) ≃ mν

vL
(3.20)

f (−,−,−) ≃ − v2

vR
Yνm

−1
ν Yν (3.21)

thus in this limit f (+,+,+) corresponds to the pure type I and f (−,−,−) to the pure type II. This will
allow us to test our results. For the other solutions the situation is not so clear and both types of
seesaw contribute to some or all of the entries of mν .
The other interesting limit is the one where |z3|2 ≪ 4αβ. For the two solutions ±(ǫ1, ǫ2, ǫ3), where

ǫi = sign(Re(zi)), we get X ≃ ±
√

β
α Id and :

f±(ǫ1,ǫ2,ǫ3) ≃
√

β

α
Yν (3.22)

This is expected since when α and/or β becomes much larger than the neutrino mass scale, there
must be some kind of cancellation between the two contributions. This is realised only when f aligns
on Yν . More generally, for any solution and provided the hierarchy in Yν is large enough, we still have

fi ≃
√

β
α in the large αβ regime.

The duality of ref. [35] is now generalised to the eigenvalues of the matrix X. It takes the form :

xi → x̃i =
zi

α
− xi (3.23)

and exchanges x+
i and x−

i . This defines three Z2 transformations which allow us to link any of the

eight solutions, while the seesaw duality f → f̂ = mν/vL − f exchanges all three eigenvalues at the
same time, therefore linking the eight solutions into four pairs.
In ref. [36], the authors make a more extensive study of the solutions for cases different from those
here analysed. For example, the Left-Right symmetry in SO(10) implies the equality fL = fR, but
if we consider simply LR theories with a gauge group containing SU(2)L × SU(2)R it is possible to
define another kind of LR parity. Denoting again the bidoublet of SU(2)L × SU(2)R containing the
Higgs fields as Φ and the SU(2)L/R triplets as ∆L/R, this parity is characterised by an invariance
under the transformation :

l ↔
(

N̄ c

ēc

)

Φ ↔ Φ̄ ∆L ↔ ∆̄R (3.24)
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With this definition, the couplings are related by fL = f∗
R so that the seesaw formula is now :

mν = vLf − v2

vR
Y T

ν (f∗)−1Yν (3.25)

In this case, a ”duality” relation can be defined in the same way as in eq. (3.4) in the cases where
Yν is hermitian or anti-hermitian. The number of solutions is also found to be eight except in the
latter case where Yν can be such that there is no solution.
The other case studied is the one for which Yν is purely anti-symmetric, which can happen in certain
Left-Right theories such as SO(10). In this case the three generation case reduces to a two generation
case where a simple analysis shows the existence of two solutions.
In the more general case with a version of the Left-Right symmetry not strong enough to constrain the
symmetry properties of Yν , it is not possible to give any general result on the number of solutions for
f . Such a situation could be realised in SO(10) models, for example, where there are both symmetric
and anti-symmetric contributions to the Yukawa couplings, coming from the couplings of the 16’s of
matter to a 10 or ¯126 on the one hand and to a 120 on the other hand.

3.1.3 Spectrum and mixings in a simple SO(10) model

Now that we have introduced a method to deal with the Left-Right symmetric seesaw mechanism,
we are going to develop the example of SO(10) theories and investigate the phenomenological con-
sequences of the extracted RH neutrino spectrum. Of course we will restrict to the class of models
where a type I+II seesaw is at work, which is expected under some specific conditions on the Higgs
sector.
First of all we will put the two Higgs superfields in two ten’s 10u and 10d. Then we have to couple
the leptons in the 16’s to triplets of SU(2)L and SU(2)R so we add a 1262. The last condition is
to induce a vev vL ∝ v2/vR which is accomplished through the addition of a 54 since 54 contains a
bitriplet under SU(2)L × SU(2)R. The superpotential contains thus :

W ⊃ (Yu)ij16i16j10u + (Yd)ij16i16j10d + fij16i16j126 + λ54126
2

+ κ10u10u54 (3.26)

plus the terms that are needed to break SO(10) and those involving the 126 (it is almost sure that a
45 will be needed in order to break SO(10) correctly for example). In the following we will assume
that SO(10) is broken as needed and we will be only interested in the matter sector. Therefore the
B − L breaking scale vR will be chosen as a free parameter, in the range 1012 and 1017 GeV when
possible, since it has been that SU(2)R can be broken a few orders of magnitude below MGUT without
disturbing gauge coupling unification too much [43].
The matrix f will be reconstructed at the seesaw scale, when the RH neutrinos begin to decouple.
In the following analysis we will neglect the fact that Yν is taken at the GUT scale while fL and fR

should run appropriately from MGUT to the masses M∆L
and Mi. We assume everything to be taken

at a common ”seesaw scale”. Using GUT boundary conditions, we use the fact that Me = Md to
rotate the 16i’s in the basis where the charged leptons and down quarks are diagonal. In this basis
we use the other relation Yν = Yu to write :

Yν = UT
q Diag(yu, yc, yt)Uq with : Uq = PuVCKMPd (3.27)

mν = U∗
l Diag(m1, m2, m3)U

†
l with : Ul = PeUPMNSPν (3.28)

2We remind that the conservation of D-flatness imposes to add a 126.
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m1,2,3 are light neutrino masses. Pu, Pd and Pe are high energy diagonal matrix phases which can be
reabsorbed at low energy but must be taken into account for high energy processes, when quarks and
leptons can not be rephased independently. Pν contains the usual Majorana phases of the neutrino
mass matrix. These four matrices contain 3 phases each, from which two global phases can be removed.
In total it amounts to 10 independent phases, which can play a role for leptogenesis, for example.
Let us briefly comment on the scale of the vev vL. Under SU(2)L×SU(2)R×U(1)B−L the 126 contains
the two triplets ∆L = (3,1)+2 and ∆R = (1,3)−2 while 54 contains the bi-triplet ∆̃ = (3,3)0 and the
10’s contain the bi-doublets Φ = (2,2)0. When decomposed under this symmetry the superpotential
(3.26) contains for these fields :

W ⊃ 1

2
fijlilj∆L + κ ΦuΦu∆̃ + λ ∆L∆̃∆R (3.29)

so that minimisation under ∆̃ will transmit the vev of ϕu to ∆L : 〈∆0
L〉 = vL ≃ κλv2

uvR/M2
∆L

. As a
consequence, if M∆L

≫ vR the type II contribution will be highly suppressed with respect to the type
I. For vR ≪ MGUT this a non-trivial constraint since it is usually much easier to give a GUT scale
mass to the Higgs multiplets, therefore it may require some tuning in the potential of any specific
model. Consequently the ratio β/α can be bigger or smaller than one but unless otherwise specified
we will take it to be 1.

The last thing to do is to fix the low energy parameters. In order to be predictive we must assume
some specific values for those parameters of mν that are still unknown. As far as mass differences and
mixing angles are concerned, we rely on the best fit values of [44]. The main characteristic of this fit is
the value of θ13, sin2 θ13 ≃ 0.009, not so far from the experimental bound. Unless explicitly stated we
consider a normal hierarchy. The renormalisation is taken into account by normalising the neutrinos
with a factor 1.2 and the up-quarks with a factor 0.65. The CP phases are left as free parameters.

Now we can use our method and present the spectra as functions of vR. They are displayed in
fig. 3.1. In these plots, we have already taken into account two constraints. First of all we have
cut the regions where the biggest eigenvalue of f , f3, becomes larger than 1. In SO(10) models
with representations as large the 126, the theory becomes strongly coupled before the Planck scale,
typically one order of magnitude higher than MGUT : Λ ∼ 10MGUT ∼ 2 × 1017 GeV. If we want to
keep f3 under perturbative control up to Λ, then f3 < 1 is a wise choice. The immediate consequence
of this is a cut of the upper range of vR for most solutions, with the notable exception of (−,−,−).
For the other solutions we are roughly limited to vR < 3 × 1014 to 3 × 1015 GeV. However this is
dependent on the value of h = β/α.
The second constraint aims at avoiding any tuning in the seesaw formula. It is indeed possible that
the type I and type II are much bigger than mν , at least in some entries of the mass matrix, while
their difference is in the good range. In practice we will measure the fine-tuning in the (33) entry of
mν and the type I contribution. We want to avoid a 10% fine-tuning, so we want to highlight the
region of the parameter space where the (33) entry of the two contributions are larger than ten times
the (33) entry of mν and cancel each other sufficiently. The fine-tuned region is therefore the one for
which :

(mII
ν )33 = vLf33 > 10(mν)33 (3.30)

and the factor of 10 signals a 10% fine-tuning. We will consider that this region is not favoured but
we will present later a reason why we still consider it as relevant anyway.



50 CHAPTER 3. LEFT-RIGHT SYMMETRIC SEESAW AND LEPTOGENESIS
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Figure 3.1: Right-handed neutrino masses as a function of vR for each of the 8 solutions (+, +, +)
to (−,−,−) in the reference case of a hierarchical light neutrino mass spectrum with m1 = 10−3 eV,
β = α and no CP violation beyond the CKM phase (δ = ϕu

i = ϕd
i = ϕν

i = ϕe
i = 0). The range of

variation of vR is restricted by the requirement that f3 ≤ 1. Dotted lines indicate a fine-tuning greater
than 10% in the (3, 3) entry of the light neutrino mass matrix.
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Figure 3.2: Right-handed neutrino mixing angles as a function of vR for each of the 8 solutions (+, +, +)
to (−,−,−) in the reference case of a hierarchical light neutrino mass spectrum with m1 = 10−3 eV,
β = α and no CP violation beyond the CKM phase (δ = ϕu

i = ϕd
i = ϕν

i = ϕe
i = 0). The red [dark

grey] curve corresponds to |(Uf )12|, the green [light grey] curve to |(Uf )13|, and the blue [black] curve
to |(Uf )23|.
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Analysing the figures, we immediatly see that a type I-like spectrum appears for (−,−,−) in the
large vR region, with a RH spectrum M1 : M2 : M3 ∝ m2

u : m2
c : m2

t , in order to compensate for
the hierarchy in the Yukawa coupling. Examining (+, +, +) we see also that Ni end up with a mild
hierarchy M1 : M2 : M3 ∝ m1 : m2 : m3 for large vR, compatible with a type II dominance for which
f ∝ mν . This confirms our prediction (3.21).
The appearance of a plateau for the masses associated with an xi = x−

i is understood through the ap-
proximate form of x−

i at large vR, x−
i ≃ β/zi, which implies that vRx−

i ≃ v2
u/zi is a constant. Whether

we reach this plateau for M1 and its final value separate the spectra in three different classes3. Solu-
tions (+, +, +) and (−, +, +) are characterised by a constant rising of M1, which attains easily values
greater than 1010 GeV, especially in the region with no fine-tuning. The second class is formed by
(+,−, +) and (−,−, +), with an M1 approximately constant with a value between 109 and 1010 GeV
and an N1 − N2 degeneracy in the small vR region. Finally, the remaining four solutions, (+, +,−),
(+,−,−), (−, +,−) and (−,−,−) exhibit a constant and very small M1 ∼ 105GeV.

Turning to the mixing angles of M we can comment on fig. 3.2, where we plot the absolute value of
(Uf )12, (Uf )13 and (Uf )23. We recognise immediatly, there again, the dominance of type I in (+, +, +)
since the mixings tend to the PMNS values, as well as the type I dominance in (−,−,−) with CKM-
like mixings. In the small vR region an alignment on the CKM matrix is clearly visible for these two
solutions, which is expected, but it holds also for the other cases. The discontinuities that can be
noticed are due to the level crossings. The angles are generically quite large, at least for vR large
enough, except for (+,−,−) and (+, +, +) where they are quasi-constant and CKM-like.
More can be understood analytically for the behaviour of the masses and mixings and we refer the
interested reader to section 3.2 and appendix B of [37].

As for the influence of h = β/α 6= 1, we found that changing its value will globally shift the
curves along the vR axis and change the value of vR at which f3 becomes non-perturbative. Therefore,
varying h does not change the form of the results and we can fix it once and for all, for example to h = 1.

Up to now all plots are obtained with all CP-violating phases put to zero, except for the CKM
one. Varying the phases will not change drastically the form of the curves but only introduces small
deformations. This is only interesting for the level crossings since it can lift the degeneracy (thereby
smoothing the mixing angles). The different phases are labeled in this way :

Pi =







eiϕi
1 0 0

0 eiϕi
2 0

0 0 eiϕi
3






(3.31)

with the index i = e, u, d, ν. In fig. 3.3, we display the splitting between M1 and M2 for the (+,−, +)
with maximal phases ϕu

2 or ϕd
2 = π

4 . The importance of the complex phases will appear later when
considering leptogenesis.

Let us come back to low energy parameter that serve as inputs for our reconstruction procedure.
In pure type I, it has been shown that the RH neutrino mass matrix can be very sensitive to these
parameters [30], for example abrupt level crossings can be obtained. An exhaustive study of their
influence could be interesting but is not the aim of our primary work. Still, we show the impact of

3This is actually the most relevant criterium for leptogenesis.
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Figure 3.3: Effect of high-energy phases on the right-handed neutrino masses. The input parameters
are the same as in Fig. 3.1, except ϕu

2 = π/4 (left panel), ϕd
1 = π/4 (right panel).

the hierarchy by plotting the solutions (+, +, +) and (−, +, +) in the case of inverted hierarchy 3.4.
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Figure 3.4: Effect of the light neutrino mass hierarchy on the right-handed neutrino masses. The input
parameters are the same as in Fig. 3.1, except that the light neutrino mass hierarchy is inverted, with
m3 = 10−3 eV and opposite CP parities for m1 and m2.

To conclude this section, we mention the paper [38] where a study similar to this one is led. The
tuning in mν is studied with a more sophisticated criterium. Furthermore the stability of the solutions
under small perturbations of f is investigated. All these informations can be encoded into a single
parameter Q and it is shown that the four solutions (±,±,−) are highly unstable, which is due to the
large hierarchy required between the eigenvalues. On the contrary, (+, +, +) is found to be the most
stable.
It is worth noting that taking into account the analysis of stability as performed in [38], the four
(±,±,−) solutions imply a tuning between the matrix elements of f , since the hierarchy between the
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matrix elements is smaller than the one present in the spectra, and unfortunately, this is true especially
for large values of vR where typeI-typeII tuning is absent. Even if present at high energies in f for
some reason, below vR, the LR symmetry is broken and f splits into fL and fR which run differently.
Therefore, it may be that the structure of mν will not be conserved when quantum corrections are
included in the analysis.

E6 and a solution to the fine-tuning problem in mν

As was explained previously, fine-tuning can appear between the type I and type II contributions.
This tuning requires in fact an alignment f ∝ Yν . Although completely unnatural in SO(10), this
alignment can find an explanation if these couplings are related by a symmetry, broken at energies
above MGUT . Such a way out can be found by realising that the particle content of our SO(10) model
can be incorporated in a simple E6 model. The smaller representation containing the 16 of SO(10) is
the fundamental representation 27, which decomposes under SO(10) as :

27 = 16 + 10 + 1 (3.32)

The salient feature of E6 is the presence of extra matter fields that we introduce to fill the twenty-
seven dimensional representations. However, these extra representations are vector-like and can be
given large masses when E6 is broken. For example, coupling bilinears of 27’s of matter to a 27H of
Higgs and giving a vev to the 1H will yield a large mass to the 10’s and 1’s of matter.
The only other possibility for bilinears of 27 is to couple to 351, which has anti-symmetric gauge
indices, or 351′ with symmetric gauge indices. Under SO(10), the 351′ decomposes as :

351′ = 1 + 10 + 16 + 54 + 126 + 144 (3.33)

Thus, including 10u, 54 and 126 in a 351′ of E6 and the 10d in a 27H, we will have a common origin
for f and Yν as follows :

fij27i27j351′ → fij16i16j10u + fij16i16j126 (3.34)

The same conclusion follows for the couplings κ and λ :

κ351′351′351′ → κ (10u10u54 + 12612654) (3.35)

and the small difference between the couplings is then induced by the running between the breaking
scales of E6 and vR.

3.2 Phenomenological Consequences

In the previous section we introduced a method of extraction for the RH neutrino mass matrix and
used it to study a simple class of SO(10) models. Simple criteria as perturbative couplings and the
absence of fine-tuning can already constrain non-trivially the eight solutions.
Now that we have our set of matrices MR we can investigate their phenomenological consequences.
The possibility of a baryon asymmetry coming from the RH neutrino sector as described in section
2.4 is a very appreciable thing. This is why we will focus mainly on the task of obtaining a successful
lepton asymmetry in the second subsection, but first we will begin with an analysis of Lepton Flavour
Violating processes generated by the couplings f and Yν .
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Figure 3.5: Two diagrams potentially creating flavour violating decay processes of the form lj → liγ.

3.2.1 Lepton Flavour Violation

An important consequence of lepton number violating interactions in supersymmetric theories is the
creation of lepton flavour violating decays from renormalisation group effects. In fact, already at
tree level, important contributions to lepton number violation come from the soft SUSY breaking
parameters :

L ⊃ (m2
L)ij l̃

†
Lil̃Lj + (m2

e)ij ẽ
∗
RiẽRj + (m2

ν)ij ν̃
∗
Riν̃Rj + Al

ijH1ẽ
∗
Ri l̃Lj + Aν

ijH2ν̃
∗
Ri l̃Lj (3.36)

If the mass matrices are not diagonal, then the slepton mass eigenstates can couple to different
flavours of leptons and the diagrams fig. 3.5 show how to generate flavour violating decays such as
µ → eγ or τ → µγ.

This is a generic problem for SUSY theories with scalar masses less than a TeV (which is manda-
tory for solving the hierarchy problem). However several popular mechanisms of SUSY breaking such
as Gauge mediation or the spontaneous breaking of local SUSY in mSUGRA generate universal scalar
masses at a high scale and the soft scalar masses are all diagonal. For the applications of interest in
this thesis we restrict to minimal Supergravity setups where scalar soft masses are proportional to
the identity matrix with a factor m2

0 and trilinear Ai couplings are proportional to the corresponding
Yukawa coupling Yi with a factor am0.

It has been noted for a long time [21] that the Yukawa couplings and Majorana mass of RH
neutrinos in supersymmetric seesaw models induce non-zero entries in the slepton mass matrix m2

L

through renormalisation effects between the scale where slepton soft masses are universal, which we
call MU , and the masses of the heavy neutrinos, under which they decouple. The change in the entries
of m2

L from the running is approximated by (in the basis where the RH neutrino mass matrix M is
diagonal) :

(∆m2
L)ij ≃ − 1

16π2

(

6m2
0

[

Y †
ν Ln

(

MU

M

)

Yν

]

ij

+ 2

[

A†
ν Ln

(

MU

M

)

Aν

]

ij

)

(3.37)

≃ −(3 + 2a)m2
0

8π2

[

Y †
ν Ln

(

MU

M

)

Yν

]

ij

(3.38)

Starting from diagonal matrices at MU , the off-diagonal entries can thus be expressed through
the small parameters δLL

ij = (m2
L)ij/m̄2

L with m̄2
L the average left slepton mass. In this context, the

off-diagonal elements of the slepton mass matrix are known, up to a few SUSY breaking coefficients
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ẽL ẽL
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Figure 3.6: Diagrams contributing to the wave function renormalisation of the left-handed sleptons
ẽL. The upper ones correspond to triplet induced corrections while the lower one corresponds to
right-handed neutrino corrections.

and several analysis have been performed to study their impact on lepton flavour violating rates
[21, 69, 70]. The branching ratios of interest are functions of δLL

ij :

BR(lj → liγ)

BR(lj → liν̄iνj)
≃ 10−5 M4

W

m̄4
L

tan2 β|δLL
ij |2Fsusy (3.39)

Fsusy is a function of SUSY breaking parameters, estimated to be O(1). We can factorise the depen-
dence in the SUSY breaking parameters and translate the limits on BR(lj → liγ) to the parameters :

Cij =

[

Y †
ν Ln

(

MU

M

)

Yν

]

ij

(3.40)

If there is also a type II contribution to the neutrino mass mII
ν = vLf , there are more contributions

to the sleptons wave function renormalisation, with weak triplets running in the loops [68]. The
diagrams involving ∆L and the RH neutrinos Ni are recapitulated in fig. 3.6. The coefficients Cij are
consequently modified to :

Cij =

[

Y †
ν Ln

(

MU

M

)

Yν

]

ij

+ 3
[

ff †
]

ij
Ln

(

MU

M∆L

)

(3.41)

Upper limits have been experimentally established on LFV ratios [71, 72] : BR(µ → eγ) <
1.2 × 10−11 and BR(τ → µγ) < 6.8 × 10−8, and they have been translated to C12 and C23 in [73, 74].
Of course, since the branching ratios scale with tan2 β|Cij |2, limits are enhanced for large tanβ. For
the case of interest tan β = 10, we get |C12| . 0.1 and |C23| . 10.
The results for the Left-Right symmetric models presented in the previous section are displayed in the
fig. 3.7. The curves have two main behaviours, so that we plot only C12 and C23 for the cases (+, +, +)
and (−,−,−). In some cases the signatures are above the experimental limits at large vR but they are
not much more restrictive than the perturbativity constraint. However they are only indicative since
they depend on the spectrum of the superpartners. Still they are significantly larger than in the pure
type I seesaw model and any experimental improvement will clearly reduce the parameter space.
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Figure 3.7: Coefficients C12 (blue/dark grey) and C23 (green/ light grey) for the usual set of parameters
(m1 = 0.001 eV and β = α) with no CP phases except δCKM and for the cases (+, +, +) (left panel)
and (−,−,−) (right panel). The horizontal red and light blue lines represent the experimental limits.

3.2.2 Leptogenesis in the LR symmetric seesaw

Let us turn to the more interesting constraint of leptogenesis, since it is a non-trivial one to fulfil.
As already stressed it would be quite appealing to get at the same time small neutrino masses and
a realistic baryon asymmetry from the seesaw mechanism and we will use leptogenesis to distinguish
among the eight solutions. Referring to the introductory section 2.4 on leptogenesis, it is clear that
the bound 2.124 becomes extremely deadly, which is precisely why we splitted the different solutions
in the left panel of fig. 3.8 from the value reached by M1. This led us to classify the spectra into three
classes which will have roughly the same behaviour as far as leptogenesis is concerned. Consequently
we will display the curves for ε1 only for the solutions (+, +, +), (−,−,−) and (+,−, +).
Starting with the solutions with M1 ∼ 105 GeV, we see without surprise in fig.3.8 that we fail to
reach the lower bound on ε1 by several orders of magnitude. Although this figure is plot without any
complex phase except for δCKM , the situation does not improve much better when playing with the
free phases and the asymmetry stays in the range [10−14, 10−11]. This is reminiscent of the pure type
I situation where the RH neutrino spectrum has to be extremely hierarchical to compensate for the
up-quark hierarchy (see the large vR limit of case (−,−,−) in fig. 3.1). Indeed, it is well-known that
type I seesaw in SO(10) with a simple link between Yu and Yν cannot yield a good lepton asymmetry
through the decays of N1.

In fig. 3.8 we plot the two contributions εI
1 (in thin black) and εII

1 (thin red or light grey) of eq.
(2.93) and (2.98). As they are the same function of mI

ν and mII
ν in the hierarchical limit, whenever

cancellations occur in mν between the two types, it occurs also for leptogenesis. Here, this is graphi-
cally seen in a straightforward way since the two thin curves become of the same order of magnitude
and even superpose for small vR while the total asymmetry is one or two orders of magnitude below.

The other extreme class of solutions is the one of (+, +, +), where M1 grows to quite large values
M1 ≥ 1010 GeV with a maximum of 1013 GeV. It is not a surprise that ε1 reaches the desired value of
10−6 without any problem, even without any phase but δCKM (see fig. 3.8).
However these cases are not so interesting for several reasons. The first one simply has to do with
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Figure 3.8: CP asymmetry ε1 as a function of vR for the solution (−,−,−) (left panel) and (+, +, +)
(right panel) in the case of a hierarchical light neutrino mass spectrum with m1 = 10−3 eV, β = α, and
no CP violation beyond the CKM phase. The thin lines correspond to the contribution of right-handed
neutrinos (red [grey] curve) and of the heavy triplet (black curve).

the gravitino constraints explained in section (2.4.5). Should the reheating temperature be larger
than 1010 GeV or even smaller [53], the decays of gravitini would have disturbed BBN processes and
this is not affordable. A clear way out of this problem is to invoke an inflaton decaying directly into
RH neutrinos but as we stressed earlier, this leads to very model dependent predictions. Moreover,
turning on phases (as would be expected for a random point in parameter space) will lift the curve
towards upper values and we would risk an asymmetry that is only of the good order of magnitude in
the fine-tuned region. Finally, we know that the large vR region of (+, +, +) is the pure type II limit,
therefore this situation is not new to this study.

Last come the cases of highest relevance. In fig. 3.9 are plot the asymmetries for different choices
of phases for (+,−, +). As M1 seems to lie around the lower bound for successful leptogenesis, we
expect to find configurations where the bound (2.124) is saturated. Although this is not the case on
the whole range of vR, there is often a peak at vR ∼ 1012−13 GeV, due indirectly to the level crossing
between M1 and M2 (but not to the divergence of the loop function of εI : this is apparent from the
peak of εII , since εII has no pole at M1 = M2). As these cases are mixed ones which do not appear
in type I or II limits, they are very interesting and open new possibilities for successful leptogenesis
in SO(10) theories.

The analysis that was made in [37] is only based on these results for the lepton asymmetries.
However, at some point we need to compare to the experimental value for yB, and this is only done
with the knowledge of η, known a priori by solving the Boltzmann equations. With help from the
approximations of section 2.4 we can however get an idea of the expected outcome by plotting m̃1 over
the appropriate range of vR. Unfortunately, the link between the up quarks and the neutrino Yukawa
sectors lead to neutrino Yukawas close to one, and one can hardly hope to achieve small m̃1. For
example on fig. 3.10, they are displayed for the same choice of phases as in fig. 3.9. These examples
illustrate the fact that m̃1 will generally be confined between 10−2 and 10−1 eV, in other words in the
strong washout regime.
This last remark is valid for every solution and in particular forces to go to large vR for (+, +, +)
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Figure 3.9: Same as fig. 3.8 but for the solution (+,−, +), with ϕu
2 = π/4 (left panel) and ϕν

2 = π/4
(right panel).

where M1 is particularly large.

One thing to be noticed is the strong dependence of M1 on mc, since for a hierarchical spectrum
we can see that M1 ∝ m2

c(MGUT ) (see appendix B of [37]). Therefore the value of the renormalisation
factor applied to mc plays an important role in the case (+,−, +) where leptogenesis can be marginally
allowed.

Although the results for certain solutions seemed appealing, this makes the success of leptogenesis
in the considered framework somewhat difficult. However we remind that several approximations have
been made so far, and one has to consider the necessary corrections since they can be relevant to either
increase the CP asymmetry or decrease the washout factor. In the next two sections we consider the
effects of lepton flavours on leptogenesis as well as the necessary corrections to the relation Me = Md,
which will not be negligible as we will see.

3.3 Flavour Effects in Leptogenesis

3.3.1 Equilibrium of charged lepton couplings

Leptogenesis, as every process occurring in the early Universe, demands a lot of attention if one wants
to make a proper study, with as less approximations as possible. Indeed, many refinements have been
introduced over the years, such as the influence of spectator processes [28, 29] or thermal correc-
tions [26]. However, not until recently have lepton flavours been taken into account [61, 64]. When
analysing leptogenesis in [37] we made implicitly the ”one flavour approximation”, which pretends
that charged lepton Yukawa couplings are irrelevant. Thus, leptons are indistinguishable and only

the flavour l1 =
∑

i(Yν)1ili/
√

∑

j |(Yν)1j |2 with i = e, µ, τ interacts with N1 and will wash away the

asymmetry through inverse decays with the Higgs and ∆L = 1, 2 scatterings. It is true that ye, yµ

and yτ are irrelevant for the calculation of ε1 but this is not necessarily the case when considering
the dynamical part of the process, in other words the washout. In this case, things will depend on
the Yukawa couplings being in equilibrium or not. If charged Yukawas are out of equilibrium, any l1’s
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Figure 3.10: Washout parameter m̃1 with the same parameters and phases as in fig. 3.9. The fine-tuned
region is not displayed here.

created by the decays of N1’s will propagate coherently until the next interaction with N1. However
if at least one is in equilibrium, say the τ , then at the moment of leptogenesis it will induce faster
processes than the neutrino Yukawa couplings (which are out of equilibrium) and between two inter-
actions with N1, l1 will be projected on the τ direction and the orthogonal ones.

To determine the temperatures at which ye, yµ and yτ come into equilibrium we follow ref. [88]
where the inverse decay width for eRiēLi → Hd at finite temperature T is found to be :

ΓID =
m0(T )I(T )

12πζ(3)T

m2
0(T )h2

i

T
≃ (ln2)2

24πζ(3)

m2
0(T )h2

i

T
≃ 5.3 × 10−3 m2

0(T )h2
i

T
(3.42)

where I is a function of T defined in [88], and m0(T ) is the Higgs thermal mass [89] :

m2
0(T ) =

2m2
W + m2

Z + 2m2
t + m2

H/2

4v2
(T 2 − T 2

0 ) (3.43)

T0 being the temperature where sphalerons drop out of equilibrium. Hence the criterium used for
determining the dynamics of charged Yukawas is :

Γe,µ,τ ∼ 5 × 10−3y2
e,µ,τT ≫ H(T ) (3.44)

and when translated at the time of leptogenesis T ∼ M1 it transforms into :

M1 . 1012 GeV = Tτ for yτ (3.45)

M1 . 109 GeV = Tµ for yµ (3.46)

M1 . 105 GeV = Te for ye (3.47)

In the MSSM the Yukawa couplings depend on tanβ and the previous bounds are rescaled4 by a factor
(1 + tan2 β), e.g. for yτ : M1 . 1014GeV for moderate tanβ ≃ 10.

4This suggests that leptogenesis, in supersymmetric theories, always takes place in the regime where yτ is in equilib-
rium.
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When M1 is greater than Tτ , no charged lepton coupling is in equilibrium and flavour is indistinguish-
able, justifying the one flavour approximation. When Tµ < M1 < Tτ , the τ is distinguished and the

decay direction of N1 is split into ~l1.τ and ~l1 −~l1.τ . This is equivalent to a two flavour case. Finally,
for M1 < Tµ, all flavours are distinguished since τ and µ define e by orthogonality.

3.3.2 Flavoured Boltzmann Equations

Now that we have some mean to characterise the different flavours, we must ”open up” the CP
asymmetries :

[εI
1]αβ =

1

16π

∑

j Im
[

Y1α(Y Y †)1jY
∗
jβ − Y ∗

1β(Y ∗Y T )1jYjα

]

(Y Y †)11
f

(

M2
j

M2
1

)

(3.48)

and this takes again a simpler form in the hierarchical RH neutrino limit :

[εI
1]αβ =

3

32π

M1

v2

∑

γ Im
[

Y1αY1γ(m∗
ν)γβ − Y ∗

1βY ∗
1γ(mν)γα

]

(Y Y †)11
(3.49)

All the factors become matrices in flavour space [61]. The Boltzmann equations are thus written
as matrix equations :

d

dz
[YL] =

z

sH(M1)

(

[γD]
∆N1

Y eq
N1

[εI
1] −

1

4Y eq
L

{

[γD], [YL]
}

)

− i
[

[Λ], [YL]
]

(3.50)

and γD is generalised as :

γαβ
D = γD

(Yν)1α(Yν)
∗
1β

(YνY
†
ν )11

with : γD =
∑

α

γαα
D (3.51)

Λ is a diagonal matrix consisting of the complex thermal masses of the different flavours. More
precisely :

Λαα =
ωαα − iΓαα

H(T ) |T=M1

, with : ωαα ≃ y2
α

16
T Γαα ≃ 5 × 10−3y2

αT (3.52)

From eq. (3.50) we can justify the result of the previous section by noting that the imaginary part
of [Λ] will damp completely the off-diagonal entries and kill any correlation between the different
flavours for Γαα ≫ H(M1). In the opposite limit the last term of the equation becomes negligible and
we can forget about flavours. Therefore, any quantum correlation can be forgotten when the charged
leptons Yukawa couplings are completely in or out of equilibrium, and the matrices are approximately
diagonal (see [67] for a detailed study of quantum correlations in flavour leptogenesis).

In the approximation where flavours are neglected, eq. (3.50) is amputed of its last term. Tracing
the equation, and defining εI

1 =
∑

α[εI
1]

αα :

∑

α

dY αα
L

dz
=

z

sH(M1)

(

∆N1

Y eq
N1

εI
1γD −

∑

α

γαα
D

Y αα
L

Y eq
L

)

(3.53)

So, if the equation is invariant under rotations in flavour space we can place ourselves in a basis
where only the last element of the [YL] and [γD] matrices is non-zero, [γD] = Diag(0, 0, γD) and
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[YL] = Diag(0, 0, YL). Therefore Tr{[YL], [γD]} = 2γDYL = 2Tr[YL]Tr[γD].
On the contrary, when flavours are taken into account (and we are in a range of temperature where
they are relevant), we cannot rotate indifferently the flavour basis since the equation is diagonal only
in the basis where charged lepton are mass eigenstates, and Tr([YL][γD]) 6= Tr([YL])Tr([γD]). Thus,
as soon as yτ comes into equilibrium, the situation is clearly different from the one in the one flavour
approximation.
Thus, let us write the flavoured BE’s for the lepton asymmetry [62], taking into account the decays,
inverse decays and ∆L = 1 processes (including for CP violation) :

dY αα
L

dz
=

z

sH(M1)

[(

YN1

Y eq
N1

− 1

)

[εI
1]

αα(γD + γ∆L=1) −
Y αα

L

Y eq
L

(γαα
D + γαα

∆L=1)

]

(3.54)

Introducing flavour washout parameters as before, καα
1 = κ1|(Yν)1α|2/

∑

β |(Yν)1β |2 = m̃1α/3 × 10−3

eV, with κ1 =
∑

α καα
1 , we can write the BE’s in a simplified, approximate form :

(Y αα
L )′ = (εI

1)
αακ1z

K1(z)

K2(z)
f1(z)∆N1 −

1

2
z3K1(z)f2(z)κααY αα

L (3.55)

∆′
N1

= −zκ1
K1(z)

K2(z)
f1(z)∆N1 − (Y eq

N1
)′ (3.56)

This equation shows that the asymmetry created in a specific flavour α is washed-out with a
strength that will depend on m̃1α and not only on m̃1. In the case where all flavours are weakly or
strongly washed out, the final baryon asymmetry may not change much compared to the one flavour
case. Approximate solutions can then be found that are similar to previous studies in the one flavour
case but they are valid independently for each flavour5. The interesting situation is the one where
some flavours are strongly washed-out (καα

1 ≫ 1) while others are weakly washed-out (κββ
1 . 1). In

this situation the asymmetries are approximated by :

Y αα
L ≃ 0.3

[εI
1]

αα

g∗

(

0.55 × 10−3eV

m̃α
1

)1.16

(3.57)

Y ββ
L ≃ 0.4

[εI
1]

ββ

g∗

(

m̃β
1

3.3 × 10−3eV

)

(3.58)

and Y ββ
L is indeed less suppressed for an optimised m̃β

1 while naively κ1 ≫ 1 and the total asym-
metry ε1 would be considered as strongly washed-out. This opens a window for new configurations
where leptogenesis can be successful when taking into account flavour while it was considered hopeless
in the one flavour approximation : it just needs one flavour weakly washed-out, m̃β

1 ∼ 10−3, while its

associated CP asymmetry is reasonably large εββ
1 ≥ 10−6.

Coming back to ε1 itself, one can infer an interesting bound on the asymmetry. While in the
flavourless case the bound (2.123) had been derived for the total asymmetry, a new one has been
determined with flavours for the type I seesaw [62] :

|εαα
1 | ≤ 3M1mmax

8πv2

√

καα
1

κ1
(3.59)

5In [62], one should be careful when comparing the washout factors obtained for democraticly weak washout and the
one flavour formula 2.110 we displayed earlier, since we hadn’t included CP violation in the ∆L = 1 scatterings.
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We see immediatly that the asymmetry increases this time with the neutrino mass scale and we can
hope to find a successful value for yB with larger neutrino masses compared to the traditional approach
(see [63] for a numerical study). Nonetheless, we have now a proportionality to the square root of the
branching ratio of N1 to that flavour, which will limit the value of εαα

1 for weakly washed-out flavours.
Another interesting remark is that even for a real matrix R in the Casas-Ibarra parametrisation, a
non-zero asymmetry is possible, contradicting the prediction of the one flavour case [64, 62]. The case
with a real matrix R is in fact equivalent to a model for the RH sector is CP -conserving. This can
be easily seen in the basis where the charged leptons Yukawa coupling and the RH Majorana mass
matrix are diagonal, since in that basis it is clear that the RH unitary rotation that diagonalises YνY

†
ν

is real when R is real. Thus, there is still a way for models where CP violation arises only from the
LH neutrino sector to achieve successful leptogenesis, i.e. only with the Majorana phases of mν .

The analysis carried for the type I case which we have reviewed above has also been extended for
the type I+II case in [66]. One opens the asymmetry for εII

1 :

(εII
1 )αα =

3

8π

M1

v2

Im[(Yνm
II∗
ν )1αYν1α]

(YνY
†
ν )11

g(y) (3.60)

and the bound (3.59) is modified to :

|εαα
1 | ≤ 3

8π

M1

v2
mmax (3.61)

and the dependence on the Kαα
1 /K1 factor is eliminated. This gives more freedom since it is argued in

[66] that this dependence prevents one from optimising the washout by lowering m̃αα
1 since it decreases

εαα
1 automatically.

In the following we will only consider cases when the quantum correlations in the matrices can be
ignored and we will avoid repeating the flavour indices : εαα

1 → εα
1 .

We can already point out the potential interest of flavour for the cases displayed in the fig. 3.9 by
plotting the εα

1 together with the m̃α
1 (fig. 3.11). There is clearly a hierarchy between the different

flavours but usually εe
1 < εµ

1 < ετ
1 while at the same time m̃e

1 < m̃µ
1 < m̃τ

1 and obviously this does
not go in the right direction. Nevertheless we can potentially play with the inputs to enhance the
asymmetry in one flavour α while lowering the m̃α

1 associated.

3.3.3 Contribution of N2

Hierarchical Ni

Another assumption that was made earlier, when introducing leptogenesis, was to neglect the con-
tribution of heavier particles decaying before N1, such as N2,3 and ∆L for type I+II, since their
contribution to the asymmetry should be washed-out by N1. This statement has been argued to fail
when N1 is in the weak washout regime [65], which is actually the case for GUT models where Yν is
related to Yu [58]. The reasoning is also based on the difference between the different lepton flavours,
and goes as follows. For models with hierarchical Yν , the hierarchy in MR is usually twice as big in
order to compensate in the seesaw formula and obtain a mildly hierarchical mν . Under these condi-
tions, as we actually stressed in section 3.1.3, M1 is generally too light to realise a correct value of
the lepton asymmetry. Indeed, in the model that we developed, the ”type I-like” solutions exhibit an
M1 ∼ 105GeV. Nevertheless, since Yν is highly hierarchical, the coupling of N1 to the thermal plasma
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Figure 3.11: The different εα
1 for the (+,−, +) case with ϕν

2 = π/4 (left panel) and the corresponding
m̃α

1 (right panel). The red curves (grey) correspond to the e flavour, the green ones (light grey) to the
µ and the blue ones (dark grey) to the τ .

is actually quite weak and it is not obvious, starting from a null population of N1, that any asymmetry
in e, µ and τ will be erased completely. Moreover, the CP asymmetry εα

2 will be enhanced compared
to εα

1 . The expression for εα
2 can be written just as for εα

1 , eq. (3.48). When expanded, εα
2 reads :

εα
2 =

1

8π(Y Y †)22





3

2

M2

M3

∑

β

Im(Y2αY ∗
3αY2βY ∗

3β) +
M2

M1

∑

β

Im(Y2αY ∗
1αY2βY ∗

1β)



 (3.62)

Due to the hierarchy in Yν and MR, and therefore in Y , the first term will dominate, and for the τ
flavour, it leads to the bound :

ετ
2 ≤ 3 × 10−6 M2

1010 GeV
(3.63)

For M2 & 1010 GeV we can hope to achieve a sizeable asymmetry if N1 does not wash-out too much
in the τ direction.

Flavour considerations lead us to consider more general reasons why we can even hope to conserve
an asymmetry from the decays of N2 for a more general Yν [59]. The important thing for εα

2 not to
be completely washed-out is that M1 be larger than the temperature at which the muon comes into
equilibrium. If M1 > Tµ, at most one direction is imposed in flavour space, and we define a flavour
basis (la, lb, lc). Now let us investigate the different possibilities :

• M1 > Tτ : the τ is not in equilibrium and no direction is preferred. We can choose la = l1, the
direction in which N1 decays, while lb and lc complete the orthogonal basis, with lb chosen to
realise 〈lb|l2〉 = 0. Therefore the projection of l2 onto lc is orthogonal to l1 and ε2 will be partly
protected from N1 washout processes and contribute to the CP asymmetry at low energy.
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• Tτ > M1 > Tµ : here the τ direction is distinguished, la = lτ , and lc is chosen to be orthogonal
to l1. In a generic situation l2 will have a non-zero projection on lc which should survive washout
along l1 and lτ .

• On the contrary, when M1 < Tµ all flavours are distinguished and the charged lepton Yukawa
couplings will link the N1 and N2 decay directions, erasing generically εα

2 .

In short, the key argument for a survival of ε2 is the possibility to have a freedom in flavour space,
which implies that l1 and l2 cannot be linked sufficiently by the Yukawa interactions to reprocess all
the components of εαα

2 . This result is quite interesting but but is more relevant to non-SUSY cases,
since in SUSY with tanβ ≥ 10, Tµ & 1011 GeV and the reheating temperature can hardly be so large.
Thus N1 cannot be produced if M1 > Tµ. However, placing ourselves in the non-SUSY and looking
back at fig. 3.1, we have several solutions with M1 > 109 GeV and these remarks could bear some
relevance.

Degenerate Ni [55]

When analysing carefully the loop function of the CP -asymmetry of eq. (2.90) or (2.92), we see that
these expressions are singular when xi → 1, i.e. when the Ni become degenerate. This divergence
comes from the self-energy correction, computed from the diagram :

lj

H

Nk

Ni

li

H

Therefore, when there is a complete degeneracy between some or all of the Ni, the Nk running
inside the self-energy diagram will be on-shell and its propagator will diverge. This is simply due
to the fact that we considered RH neutrinos as stable particles and did not take into account their
decay widths Γi. When taking into account the finite decay widths, the resonant contribution to the
CP -asymmetry of the decaying neutrino Ni becomes :

εI
Ni

=
Im(Y Y †)2ij

(Y Y †)ii(Y Y †)jj

(M2
i − M2

j )MiΓj

(M2
i − M2

j )2 + M2
i Γ2

j

(3.64)

with j the index of the RH neutrino which is degenerate with Ni
6. The other contributions (vertex

corrections and self-energy corrections with non-degenerate RH neutrinos) are the same as before. It
is clear that once the finite decay widths are taken into account there is no more divergence in the
expression for εCP . On the contrary, we see that when Ni → Nj the expression (3.64) goes to zero.
The main feature of this new expression is the potential resonant behaviour for Mi ≃ Mj , allowing
for enhanced CP -asymmetries. This is evident when one compares the second term of eq. (3.64) in
the following two cases for the masses :

6We will not consider here the case with all three RH neutrino quasi-degenerate
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Mj ≫ Mi →
(M2

i − M2
j )MiΓj

(M2
i − M2

j )2 + M2
i Γ2

j

≃ −(Y Y †)jj

8π

Mi

Mj
(3.65)

|Mj − Mi| ≃
Γj

2
→

(M2
i − M2

j )MiΓj

(M2
i − M2

j )2 + M2
i Γ2

j

≃ 1

2
(3.66)

where it is apparent that we can gain several orders of magnitude in the CP -asymmetry if Ni and Nj

are quasi-degenerate.

However interesting this possibility may be, however, it does not concern the models of interest
in this manuscript. Such an enhancement is only realised for degeneracies 10−5 − 10−6 which is quite
unnatural except for specific models of flavour, moreover we will not be able to probe the parameter
space with a sufficient precision to display points with such a small degeneracy. However the resonant
formulae can modify the results of the final baryon asymmetry by an O(1) factor when there is a level
crossing between N1 and N2 and we will have to use them for a precise quantitative study. Let us
remark that only for N1 and N2 will we have to use these formulae since N3 is usually too big to play
any role in the lepton asymmetry in the cases we are interested in. The same remark is also valid
for the decay of the SU(2)L triplet ∆L. For reasonable values of the reheating temperature, these
particles can simply not be produced by the thermal plasma.

3.4 A Model with Realistic Fermion Masses

As it has been pointed out in the last section, taking into account heavier neutrinos and including
the effects of lepton flavours in the decays of the RH neutrinos can already modify importantly the
results for leptogenesis. These effects are taken into account in [120], where we studied leptogenesis
in the same SO(10) framework previously described in section 3.1.3 and paper [37], but in a more
quantitative way. In this paper are also taken into account the necessary corrections to the charged
leptons and down quark mass matrices in order to depart from the relation (assumed so far) Me = Md.
To achieve this task we must couple the 16’s of matter to representations with vev’s in weak doublet
directions, coupling with a different Clebsch-Gordan factor to the leptons and down quarks. Basing
ourselves on the discussions of section 2.3.3, we will consider symmetric and anti-symmetric corrections
respectively and see that the latter can provide sizeable modifications for the CP asymmetries and
washout factors.

3.4.1 Symmetric corrections

Restricting to the strict particle content of the model, it is already possible to modify the fermion
mass relations, thanks to the 126. We remind that 126 ⊃ (2,2,15), and we suppose that it couples
to appropriate representations to get a weak scale vev in this direction. For example, this is achieved
through a coupling to a 210 as in the MSGUT model. The vev’s of the two weak doublets are denoted
v126
u and v126

d , and those of the 10’s are denoted v10
u and v10

d . The mass matrices now read, after EW
symmetry breaking :
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Md = v10
d Y 10

d + v126
d f (3.67)

Me = v10
d Y 10

d − 3v126
d f (3.68)

Mu = v10
u Y 10

u + v126
u f (3.69)

MD = v10
u Y 10

u − 3v126
u f (3.70)

Subtracting the equations the relations between the matrices are changed to :

MD = Mu − 4v126
u f (3.71)

Me = Md − 4v126
d f (3.72)

This is the most minimal way to modify the masses since we do not introduce any new coupling.
The seesaw relation as a function of f and Mu is changed to :

mν = vLf − 1

vR
MDf−1MD (3.73)

= vL − 1

vR

(

Mu − 4v126
u f

)

f−1
(

Mu − 4v126
u f

)

(3.74)

=

(

vL − 16
(v126

u )2

vR

)

f + 8
v126
u

vR
Mu − Mu

1

vRf
Mu (3.75)

In order to use our reconstruction procedure we put the equation under the form :

mν − 8
v126
u

vR
Mu =

(

vL − 16
(v126

u )2

vR

)

f − Mu
1

vRf
Mu −→ Z = αX − βX−1 (3.76)

where the quantities Z, X, α and β are redefined to be :

Z = M−1/2
u mν(M

−1/2
u )T − 8

v126
u

vR
(3.77)

X = vuM−1/2
u f(M−1/2

u )T (3.78)

α =
vL

vu
+ 16

(v126
u )2

vuvR
(3.79)

β =
vu

vR
(3.80)

The fact that Me and Md are not equal anymore is parametrised by a unitary matrix Um operating
the transitions between the basis in which Me and Md are diagonal. We are going to work in the
physical basis for neutrinos, which is the charged leptons mass eigenstate basis Me = M̂e. In this basis
the matrix for down quarks decomposes as Md = UT

mM̂dUm, and the matrix Um is a function of three
real angles θm

ij , for which we note cos θm
ij = cm

ij and sin θm
ij = sm

ij , and six imaginary phases δm, ϕm
g and

ϕm
i , i = 1...4 :
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Um = eiϕm
g





eiϕm
1 0 0

0 eiϕm
2 0

0 0 1









cm
12 −sm

12 0
sm
12 cm

12 0
0 0 1









cm
13 0 −sm

13e
iδm

0 1 0
sm
13e

−iδm
0 cm

13





×





1 0 0
0 cm

23 −sm
23

0 sm
23 cm

23









eiϕm
3 0 0

0 eiϕm
4 0

0 0 1



 (3.81)

Um enters the definition of the matrices Z and X :

Z = M̂−1/2
u U∗

q U∗
mmνU

†
mU †

q M̂−1/2
u (3.82)

X = M̂u
−1/2

U∗
q U∗

mfU †
mU †

q M̂−1/2
u (3.83)

The corrections being symmetric, they are completely adapted to our reconstruction procedure.
However, eqs. (3.76) and (3.72) are matrix coupled equations, which are quite hard to solve, even
numerically. Therefore we will not pursue this path any further.

3.4.2 Anti-symmetric corrections

In order to simplify, compared to the situation considered above, we suppose that the 126 does not
take any EW vev and thus f does not contribute to the fermion masses. As we did not include a 120 in
the spectrum, the only other way to modify fermion masses is through non-renormalisable couplings.
We did not specify completely the Higgs sector of the models under study to keep the analysis general
enough. However, at least one adjoint 45 is used in most cases so we will suppose it present for the
following analysis. Contracting the 45 with the 10’s, it is possible to create an effective 120 :

10 × 45 = 10 + 120 + 320 (3.84)

It should also be noted that this non-renormalisable operator contains a 10. If the vev is only directed
along the 10, it will contribute equally to Me and Md so we have to give a vev in the 120 direction
absolutely. From the decomposition of the product under the Pati-Salam group SU(2)L × SU(2)R ×
SU(4)c :

10 × 45 = [(2,2,1) + (1,1,6)] × [(3,1,1) + (1,3,1) + (1,1,15) + (2,2,6)] (3.85)

the 45 can create vev’s in the 10 and 120 weak doublets directions if its components take the following
vev’s : 〈(1,3,1)〉 = T3R and 〈(1,1,15)〉 = B − L , which couple to the bidoublets in the 10’s. It is
possible to give a vev along the two directions at the same time or introduce two 45’s, each having a
vev in one of the two directions.
We have a model with two 10’s, 10u and 10d each with a vev in one of its doublets. If the 45’s
couple with both 10’s, not only Md and Me will be corrected but also MD and Mu will receive
anti-symmetric contributions, which invalidates the reconstruction procedure using orthogonal diago-
nalisations. Therefore we will focus on a model where the non-renormalisable operators created by the
couplings of 45’s and 10u can be supposed negligible. The couplings that are added to the Lagrangian
are thus :
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Y 1s
ij

Λ
(10d × 451)|1016i16j +

Y 1a
ij

Λ
(10d × 451)|12016i16j +

Y 2s
ij

Λ
(10d × 452)|1016i16j

+
Y 2a

ij

Λ
(10d × 452)|12016i16j (3.86)

We note the different vev’s of 10d and the 45i’s as follows : 〈(2,2,1)|10d
〉 = vd, 〈(1,3,1)|451

〉 = V3

and 〈(1,1,15)|452
〉 = V15. V3 and V15 break SU(2)R and B − L so they have GUT scale values.

vd is the only EW breaking scale in the down quark and charged lepton sector. As for Λ, it is the
scale at which the effective non-renormalisable operators are generated. The largest value that Λ can
take in 4d GUTs is the Planck scale MP ∼ 1019 GeV. However, since SO(10) theories with large
representations such as 126 + 126 become strongly coupled at a scale around 10 × MGUT , Λ can be
quite smaller than the Planck scale. Once the gauge symmetry is broken, the masses read :

Md = vd

(

Y 10
d − V3

Λ
Y 1s − V3

Λ
Y 1a +

V15

Λ
Y 2a

)

(3.87)

Me = vd

(

Y 10
d − V3

Λ
Y 1s − V3

Λ
Y 1a − 3

V15

Λ
Y 2a

)

(3.88)

The coupling Y 1s is symmetric and can be absorbed in a redefinition of Y 10
d → Yd and we forget

about it in the following. The anti-symmetric couplings form an effective Y a
d and Y a

e . The most
practical basis to study the mass matrices is the one where the symmetric contribution is diagonal
Yd = Ŷd, which can be done in an SO(10) symmetric way. As the anti-symmetric parts are changed
to Y a

e,d → UT Y a
e,dU , they stay anti-symmetric so that Me and Md differ through their off-diagonal

entries :

Md =





y1 ε1 ε2

−ε1 y2 ε3

−ε2 −ε3 y3



 Me =





y1 −x1ε1 −x2ε2

x1ε1 y2 −x3ε3

x2ε2 x3ε3 y3



 (3.89)

yi are real, while the εi and xi are complex parameters. This parametrisation is the most general one
for several 45’s, while it simplifies if one couples only one 45 containing the two necessary vev’s since
the anti-symmetric part of Me and Md is proportional to the same coupling, Y 1a = Y 2a. Replacing
in eq. (3.88), one finds that x1 = x2 = x3 = x. We can simplify a bit more by assuming that V3 = 0
since the real difference between quarks and leptons is introduced with V15, which implies that x is
fixed at the value x = 3.

Let us keep the most general corrections to express the eigenvalues and analyse them. We will do
so by exploiting the expressions of M †

xMx with x = e, d and their characteristic polynomials :

det
(

M †
dMd − λId

)

= −λ3 + bxλ2 − cxλ + dx = 0 (3.90)

since b, c and d can be expressed with the masses md,s,b and me,µ,τ :
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bd = m2
b + m2

s + m2
d ≃ m2

b (3.91)

be = m2
τ + m2

µ + m2
e ≃ m2

τ (3.92)

cd = m2
bm

2
s + m2

bm
2
d + m2

sm
2
d ≃ m2

bm
2
s (3.93)

ce = m2
τm

2
µ + m2

τm
2
e + m2

µm2
e ≃ m2

τm
2
µ (3.94)

dd = m2
bm

2
sm

2
d (3.95)

de = m2
τm

2
µm2

e (3.96)

We will not display the full expressions for bx, cx and dx but we will make the assumption that
since Md,e are hierarchical we can take the limit y3 ≫ y2 ≫ y1 and |ε3| ≫ |ε2| ≫ |ε1|. We can then
approximate :

m2
b ≃ (vd)

2(y2
3 + 2|ε3|2) (3.97)

m2
τ ≃ (vd)

2(y2
3 + 2|x3|2|ε3|2) (3.98)

mbms ≃ (vd)
2|y2

3 + ε2
3| (3.99)

mτmµ ≃ (vd)
2|y2

3 + x2
3ε

2
3| (3.100)

From these expressions we will see quite easily that it is very hard to fit at the same time mb and
mµ. This is the result of the difference at low tanβ ∼ 10 of mb and mτ at the GUT scale. We remind
that in this case mb(MGUT ) ≃ 0.98 GeV while mτ (MGUT ) ≃ 1.25 GeV if we place all super partner
masses at 1 TeV, thus m2

τ −m2
b is not much smaller that m2

τ . Roughly, we need (|x3|2 − 1)|ε3|2 ≃ 0.3
GeV2 to fit correctly mb and mτ , while this would give too large a value for mµ through the last
equation. Even giving up any hierarchy in the parameters will not help much since the expressions
are quite symmetric in the matrix elements, so any element large enough to fit mb,τ would give a large
contribution to mµ.
As charged lepton masses are known with a very good accuracy, we want to fit them quite accurately.
A numerical fit will give generally mb & 1.16 GeV, again for tanβ = 10. The case of the Standard
Model is even worse since in this case mτ (MGUT ) ≃ 1.70 GeV while mb(MGUT ) ≃ 1.05 GeV and the
difference between the two masses is significantly larger. No values mb < 1.65 GeV can be numerically
obtained.

As far as md,e are concerned there is no particular problem, so that any mass can be fitted correctly
except for mb. As the reasoning was made in the case of general corrections with several 45’s, it is
clear that the problem remains the same in the simpler cases with only one 45. Actually it has been
checked numerically that the success of the fit does not change between the simple case of a factor −3
in the off-diagonal terms or of several different factors −xi.
Since the error on mb is not large enough to accommodate the fit, one should invoke something else in
order to be fully consistent. In the supersymmetric case these additional contributions can take the
form of supersymmetric threshold corrections, as explained below.

3.4.3 SUSY threshold corrections

In SUSY, down quarks couple only to one of the two Higgs doublets at tree level, namely Hd. However
this is not the case of their scalar partners, the down squarks. Since the superpotential contains :
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W ⊃ µHuHd + YdQDcHd (3.101)

the scalar potential will contain itself :

V ⊃ ∂W

∂Hd

∂W ∗

∂H∗
d

+ h.c. ⊃ Ybµq̃Lb̃∗RH∗
u (3.102)

This coupling will generate an effective coupling between the down quarks, once SUSY breaking terms
are taken into account, through the finite diagrams [82] :

g̃

b̃L b̃R

bL bR

H0∗
u

t̃R

H̃u H̃d

t̃L

bL bR

H0∗
u

(3.103)

computed in the mass insertion approximation and that we displayed for the b quark, for which the
involved corrections are going to be the most important (since it is mb that raises a problem in our
fit). Below the SUSY scale, the Standard Model Lagrangian therefore contains the interaction terms :

L ⊃ ybb̄LbRH0
d + ǫbybb̄LbRH0∗

u + h.c. (3.104)

where ǫb is computed from the diagrams drawn in fig. 3.103 :

ǫb =
2α3

3π

µM3

m2
b̃R

f(M2
3 , m2

b̃L
, m2

b̃R
) +

y2
t

16π2

µAt

mb̃R

f(µ2, m2
t̃L
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) (3.105)

and the loop function f is expressed as :
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(3.106)

Since 2α3/(3π) and y2
t /(16π2) are about a percent, ǫb is estimated generally around 2%. When

the EW symmetry is broken, the b mass is :

mb = ybvd + ybǫbvu = yb(1 + ǫb tan β)vd (3.107)

We see that even if ǫb should induce a correction to mb of the order of a few percent, it is enhanced
by tanβ. Thus, for large tanβ, mb receives corrections as large as 50% or more. As we consider
theories with tanβ ≃ 10 the corrections can reach up to 20%. The quantity which runs above the
SUSY scale is ybvd, and we need to enhance it since at the GUT scale mb < mτ , so ǫb should be
negative. Allowing the correction to be 20%, we reach a value mb(MGUT ) ≃ 1.08 GeV which is still
not enough. Playing with the errors on α3 and mt and going to larger tanβ we can enhance it a little
further.
Finally we can take into account the corrections to mτ :
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ǫτ tan β ≃ α2

8π

M2µ

M2
SUSY

tan β (3.108)

which is a few percent. Combining all this it will be possible to reconcile the fit in the preceding section
with the data, supposing that the positive contribution coming from the neutrino Yukawa couplings
in the running will not enhance mτ (MGUT ) too much.

3.5 Application to the Left-Right symmetric seesaw

Now that we have introduced all the different effects and corrections that have to be taken into account,
it is time to display the final results for the different solutions of our Left-Right symmetric seesaw
equation.

3.5.1 Inclusion of flavours

Let us first present the computations of yB for the case where we take into account flavour effects and
the decays of N2, and integrate the BE’s numerically but leave untouched the wrong SO(10) mass
relation Me = Md. We concentrate here on the four different cases (+, +, +), (+,−, +), (+, +,−) and
(−,−,−), as we estimate that these cases are representative enough of the different behaviours of the
spectra with respect to M1 and M2. Once again we display the observables as functions of the B −L
breaking scale vR.
We fixed the reheating temperature TRH = 1011 GeV but we will comment on the variation of the
results when TRH is lowered to 1010 GeV. The initial conditions for the Ni are usually chosen to be
dynamical since it is the more natural in our setup, given the range of our reheating temperatures.
The benchmark case is taken as follows : θ12 and θ23 are taken as in [37] but θ13 is taken to be 0 and
we will show the effect of a non-zero θ13 later. The spectrum is hierarchical with m1 = 10−3 eV and we
will also show the influence of bigger m1 in the following. Finally, the parameter h = v2

u/vLvR is taken
to be 0.1 for practical reasons of numerical integration but a change in h amounts to a translation of
the curves as functions of vR and we refer to the comments in [37].

The curves of yB for different choices of phases are shown in fig. 3.12. We displayed at the same
time the results with flavour effects and the corresponding ones in the one flavour approximation, in
order to estimate how valuable flavour effects are indeed in the success of leptogenesis in this context.
We see that despite the encouraging values of ε1 we had found in [37], the case (+,−, +) is clearly not
able to reach the WMAP bound on yB. This is also the conclusion for the (−,−,−) case, for which we
could still have some hopes since N2 was in the good range to generate a sufficient asymmetry. The
(+, +,−) case, however, is more encouraging, as we see that for specific choices of phases it is possible
to reach the experimental bound. As for the last case (+, +, +), it manages to give the correct value
of yB without any difficulty if vR is not too big.

The striking difference between the one flavour approximation and the full flavour result in the
cases (−,−,−) and (+, +,−) can be understood following the reasoning of [58, 60]. This is due to the
fact that in these cases, N1 is well separated from N2 and creates very little CP -asymmetry compared
to N2. Therefore in these cases N1 washes out exponentially any asymmetry created by N2, down
to its own level of CP violation, since we are in the case of a strong total washout (κ1 & 10). The
equation for the one flavour approximation, when the CP -asymmetry created from N1 is negligible
compared to the asymmetry generated previously, reduces to :
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Figure 3.12: Baryon asymmetry yB as a function of vR for the solutions (+, +, +), (−,−,−), (+,−, +)
and (+, +,−) with a hierarchical light neutrino mass spectrum with m1 = 10−3 eV, β = α. The four
cases are the reference case with no CP violation beyond δCKM (black), ϕu

2 = π/4 (red), ϕν
2 = π/4

(blue) and ϕd
2 = π/4 (green). Left panel : flavour case; right panel : one flavour approximation. The

dotted line is the WMAP measure.
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Y ′
B−L(z) ≃ −κ1f(z)YB−L(z) ⇒ Y fin

B−L ≃ Y ini
B−L exp (−3π/8 × κ1) (3.109)

with f a function of z going to 0 for z → 0 and ∞, which means that if κ1 & 10, N1 erases all the
existing asymmetry down to its own level of production. However, in the full flavour regime, the
equation for the ∆α = B − Lα are :

Y ′
∆α(z) ≃ −κ1αW1(z)

∑

β

AαβY∆β(z) ⇒ Y fin
∆α ≃ Y ini

∆α × e−
3π
8

Aαακ1α (3.110)

therefore it is visible that if one of the κ1,α . 1, this flavour is not completely washed out by N1. For
the (−,−,−) case, for example, the values of the different washout parameters at vR ≃ 1014 GeV are
roughly :

κ1e ≃ 3, κ1µ ≃ 10, κ1τ ≃ 1 (3.111)

The evolution of YB−L in the one flavour approximation and of the Y∆α in the flavour regime as
functions of z for a fixed value of vR are displayed in fig. 3.13 for (−,−,−). In this plot we clearly see
the first creation of CP -asymmetry due to the decay of N2, and its further modification due to N1

at z ∼ 1. We note that if the matrix A was considered diagonal, the flavour µ for example should be
washed away just as in the one flavour case. However, the smaller but non-zero off-diagonal elements
of A, as they exhibit an opposite sign compared to their diagonal counterparts, will contribute to
enhance the asymmetries. Thus, the term in Aµτ , for example, will help stabilising the µ asymmetry
well above its expected value in the case where we neglect the small entries of the matrix A.
The cases (−,−,−) and (+, +,−) cases are therefore striking illustrations of the importance of flavour
effects as described in [58].
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Figure 3.13: Evolution with z = M1/T of YB−L in the one flavour approximation (black) compared
to the one of the different flavours Y∆e (red), Y∆µ (green) and Y∆τ (blue) in the full flavour regime.
This result of numerical integration of the Botlzmann Equations was obtained for vR = 1013 GeV in
the (−,−,−) case and φu

2 = π/4.
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3.5.2 Mass corrections

Now that we checked the role of flavour corrections to the final asymmetry we include the last correc-
tion due to the matrix Um described in section 3.4 and parametrised in eq. (3.81). When fitting the
fermion masses, there are basically two possibilities : either matrices Me and Md with hierarchical
entries, y1 ≪ y2 ≪ y3 and |ε1| ≪ |ε2| ≪ |ε3|, in accordance with the flavour hierarchy in the quark
and lepton masses, or solutions with |ε1| ∼ |ε2|, implying a large 1− 2 mixing in Um : θm

12 ∼ 1, which
might be a little less motivated at first sight but gives interesting results for certain cases. These
different patterns of Um come from the fact that there are more parameters than observables to fit,
therefore we have some freedom in the fit to accommodate quark and lepton masses. In particular we
have the freedom to choose the parameter ε1 as we please up to about 0.01 GeV.

In fig. 3.14 we show for our four benchmark solutions the results with two different types of matrix
Um, to be compared with fig. 3.12. What is remarkable is the large enhancement of the Um’s with large
1-2 mixing (in blue) with respect to the more hierarchical structure (red) in some cases. This is partly
because a large θm

12 enhances the mass of the RH neutrino relevant to leptogenesis (for example M1 in
the (+,−, +) case). The curves displayed are the most favourable ones we could obtain, although we
did not try to scan or optimise the parameters intensively. Therefore we conclude that with our choice
of benchmark inputs, (−,−,−) is definitely not viable. However, we will see that when relaxing the
constraint of Yν = Yu, even mildly, this failure can be circumvented.
The other three solutions, on the contrary, are found to be viable. This is no real surprise for (+, +, +)
which was already working before taking into account any corrections, but this is more than welcome
for (+,−, +), all the more since it almost reaches the WMAP constraint at large vR up to a factor
of 2 (and we will see that an order one variation of the Yukawa couplings can enhance yB sufficiently
to fill this gap). The other good surprise comes from (+, +,−) which manages to reach the WMAP
bound thanks to its increasing M2, just before dratiscally decreasing due to M2 becoming larger than
the reheating temperature. An appreciable fact is the success of leptogenesis even with small θm

12 for
this solution, which are the cases with less tuning in Md and Me.

A comment here is in order about the Um configurations with large 1-2 mixing : checking the effect
of Um on the Lepton Flavour Violating rates µ → eγ and τ → µγ, one can see that the former is greatly
enhanced, and can reach the experimental bound for a generic superpartner spectrum, requiring in
general heavy superpartners above the TeV. The red curves, nevertheless, lead to reasonable signals
of LFV, unfortunately they do not yield a correct yB for (+,−, +).

3.5.3 Dependence on the different parameters

Dependence on the reheating temperature

Our last task to complete this study of leptogenesis is now to vary some of the parameters kept
fixed up to now. The first parameter to relax is the reheating temperature, because of the gravitino
problem. Indeed, we have until now supposed that TRH = 1011 GeV, which is clearly at odds with
gravitino bounds. A more realistic temperature, potentially compatible with leptogenesis, would be
TRH = 1010 GeV. In fig. 3.15 we plot the same curves as in 3.14 but with this lower reheating scale.
The conclusion is now a little less optimistic for (+, +,−) which is incapable of fulfilling the WMAP
constraint. Even (+, +, +) starts having difficulties since it needs M1 ∼ 1010 GeV for a successful
baryon asymmetry. Nevertheless, the interesting (+,−, +) solution survives and once again even for
large vR, a region that, we remind, is better simultaneously for one step gauge coupling unification
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Figure 3.14: Baryon asymmetry yB as a function of vR for the solutions (+, +, +), (+,−, +), (+, +,−)
and (−,−,−) with a hierarchical light neutrino mass spectrum, m1 = 10−3 eV and β = α, at TRH =
1011 GeV. We display cases with a ”natural” Um (red) with θm

12 ∼ θm
23 ∼ 0.3 and θm

13 ∼ 0.1, and a more
”adjusted” one (blue) with θm

12 ∼ 1, θm
13 ∼ θm

23 ∼ 0.2 and non-zero phases.

and for avoidance of any tuning between the type I and II seesaw contributions to mν .

Dependence on the light neutrino mass parameters

We have also chosen fixed θ13 = 0 and m1 = 10−3 eV with a normal hierarchy. The influence of θ13,
when varying between 0 and its upper bound, can be rather important on the case (+,−, +) and above
all on (−,−,−) which can be decreased by several orders of magnitude (see fig. 3.16). The preferred
value to maximise yB is the extreme value θ13 = 0, with the notable exception of (+,−, +) at large
vR, favouring a larger θ13. This is why we chose θ13 for our benchmark set of input parameters.
The influence of a change in m1 is felt mainly for m1 & 10−3 eV and is also non-negligible because of
the important impact of m1 on the masses of the RH neutrinos. The generic effect of increasing m1 is
indeed to enhance the masses of a ”+ branch” while decreasing those of a ”- branch” when it reaches
its plateau. Therefore M1 in (+,−, +) and M2 in (−,−,−) will decrease when m1 is taken larger
than our benchmark value and the asymmetry will go down, while the Mi will increase for (+, +, +)
so that yB will reach the same maximum but it will do so at smaller vR (since M1 crosses the value
of TRH for smaller vR). These characteristic features can be seen on fig. 3.17, while the dramatic fall
of yB at m1 ∼ 10−3 in some cases is due to some flavours going from the weak to the strong washout
regime (therefore preventing the possibility of N2 leptogenesis for (−,−,−), for example).
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Figure 3.15: Same as fig. 3.14 but with TRH = 1010 GeV.

Dependence on the neutrino Yukawa coupling

Finally, a crucial input that we used to restrict the parameter space is the alignement between the
up quark Yukawa coupling and the neutrino Yukawa coupling. Moreover, we stuck to the relation
Yu = Yν even when considering corrections to the mass matrices Me and Md. However, as was shown
in appendix B of [37], some masses of the RH neutrinos in cases with ”- branches” can be proportionnal
to the square of an eigenvalue of Yν when the plateau is reached at large vR. For example, in the case
(+,−, +) we have that M1 ∝ y2

2 while also M2 ∝ y2
2 for (−,−,−). Therefore, a deviation of order one

of the relation y2 = yc could easily enhance or decrease the mass of the corresponding RH neutrinos
by a factor of ten because of the square dependence. This fact is displayed in fig. 3.18 where yB is
displayed for several values of y2 between 0.1yc and 10yc. We perturbed only the eigenvalues and up
to a factor of ten only, since in SO(10) theories every contribution to Yν contributes also to Yu with an
order one CG coefficient, so that the eigenvalues of Mu and the Dirac mass of the neutrinos MD should
not differ by more than an O(1) factor7. From fig. 3.18 we can see two very interesting things. First,
the case (−,−,−) is now able to reach the experimental value thanks to the enhancement provided
to M2. However, let us stress that these curves were obtained for a reheating temperature of 1011

GeV, while for TRH = 1010 GeV it is not really possible to improve the conclusion we made earlier
since M2 ∼ 1010 GeV already for y2 = yc. Therefore, decreasing y2 with respect to yc will decrease

7To reach this conclusion, we suppose that VCKM mainly comes from Md, which is legitimate since it is less hierarchical
than Mu. This implies that there is no tuning in Mu leading to unnaturally small mu
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Figure 3.16: Different curves of yB for various values of θ13 between 0 and 13◦, for the cases (+,−, +)
(upper left), (+, +,−) (upper right) and (−,−,−). The benchmark value of 0◦ corresponds to the
black curve and the red curve corresponds to the maximal value 13◦. These curves are plotted with a
Um 6= I3.

the CP asymmetry and increasing it will make M2 > TRH yielding a Boltzmann suppressed baryon
asymmetry. The second thing we should remark is that perturbing the Yukawa matrix can improve
yB in the (+,−, +) case with a Um matrix containing only small mixing angles (θm

12 < 0.3), which is
very appreciable since it creates no tension with µ → eγ and no tuning in the mass matrices Me and
Md to obtain small first generation masses. Moreover, even if we only show the plot for a large TRH ,
we checked that this conclusion holds even with TRH = 1010 GeV.

The non-SUSY case

Finally, because of the tension with the gravitino constraint, we should mention that the results of
non-SUSY leptogenesis are usually comparable to that of the SUSY case. Nevertheless, the comparison
stops when it comes to the mass corrections since the large difference between mτ and mb at MGUT

prevents one from using the kind of anti-symmetric corrections that we used here. One should then
use symmetric corrections, with more free parameters and therefore less predictive in a sense.
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Figure 3.17: Different curves of yB for various values of m1 between 0.1 eV and 10−5 eV, for the cases
(+, +, +) (left) and (−,−,−) (right). The benchmark value of 10−3 eV is the black curve in each plot
and the red curve corresponds to the quasi-degenerate case 0.1 eV. These curves are plotted with a
Um 6= I3.

3.6 Conclusion

The seesaw mechanism is a most widely used mechanism to generate neutrino masses in BSM models
and is often used in its pure type I or type II version, since the type I+II situation seems a priori
less predictive. Exploring from another point of view the pioneering work of [35], we proposed a
method to investigate efficiently the phenomenology of certain Left-Right symmetric models of seesaw
mechanism where couplings of type I and type II are linked. Extracting the mass matrix of the heavy
RH neutrinos, one can then investigate the phenomenological consequences, for example concerning
Lepton Flavour Violation and leptogenesis. This is what we started to do in [37] in a class of SO(10)
models where the neutrino Yukawa coupling is symmetric. The multiplicity of solutions available for
the RH spectrum due to the structure of type I+II seesaw provides several interesting ”mixed” cases
where neither type of seesaw completely dominates over the other. Some of these cases feature a
lightest or next to lightest RH neutrino with a mass in the good range to potentially create a sufficient
baryon asymmetry complying with the WMAP constraint.
A more detailed study of leptogenesis in the relevant cases has been performed in [120], where we
performed a numerical computation of the baryon asymmetry from the Boltzmann Equations, taking
into account the full flavour regime. We showed that the flavour regime is extremely relevant to some
cases where leptogenesis can be realised thanks to the decays of N2 (if TRH is favourable enough),
whose asymmetry can only be mildly washed out by N1 because of one flavour being mildly or weakly
washed-out. Moreover, we perfected the SO(10) setup presented in [37] by correcting the mass matrices
in order to get realistic fermion masses. These corrections introduce further rotations in the flavour
sector which lead to considerable enhancements of the final baryon asymmetry. Thanks to these
corrections it was shown that an acceptable baryon asymmetry can be obtained for several solutions,
even with a reheating temperature of 1010 GeV. With such a low reheating temperature, the pure
type I seesaw in SO(10), which we find as a limit of one of our solutions, exhibits serious difficulties
for leptogenesis, justifying the interest of such type I+II setups.
Even if some solutions were found successful, we remind once again that a reheating temperature of
1010 GeV is clearly an upper limit on what is allowed by gravitino constraints in generic models of
supersymmetry. However we also mention that some interesting ways out of the graivitino problem
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Figure 3.18: Different curves of yB for various values of y2 between 0.1yc (yellow) and 10yc (red) for
the cases (+,−, +) (left) and (−,−,−) (right). The relation y2 = yc used so far is displayed in black
curve the red curve correspond to the quasi-degenerate case 0.1 eV. These curves are plotted with a
Um 6= I3 with θm

12 ≃ 1 for (−,−,−) and θm
12 ≃ 0.17 for (+,−, +).

have been proposed, which would allow easily for TRH ∼ 1011GeV (see for example the ref. of [86]
for mechanisms using either late entropy production due to a long lived particle or a small R-parity
breaking). Therefore our choice of reheating temperatures can be embeded in realistic models of
SUSY.
Finally, it should be interesting and instructive to construct a more concrete model of SO(10) GUT
realising this Left-Right symmetric seesaw mechanism, while at the same time yielding viable fermion
masses, GUT breaking and doublet-triplet splitting. Complying with all the constraints a realistic
GUT has to fulfill could certainly help testing further the viability of the new solutions exhibited
for the RH neutrino mass matrix, as well as clarify the distinctive features of SO(10) models with
Left-Right symmetric seesaw.



Chapter 4

Neutrino Masses in 5D Models

4.1 Introduction

The addition of extra spatial dimensions to our usual 4D spacetime is a fascinating subject, not quite
recent in fundamental physics. As discussed quite often in introductions to extra-dimensional theories,
this idea was first proposed by Kaluza in 1921 and later investigated by Klein [95]. The original idea
was to derive the electromagnetic force from the geometry of spacetime and therefore to unify General
Relativity with the electromagnetic interaction. This was done by adding a fifth dimension, compact
and small so that it would not be noticed in low energy experiments. As this extra-dimension is
distinguished from the four usual ones, Lorentz invariance is broken and the metric tensor splits into
irreducible representations of the 4D Poincare group. The part gµν with indices µ, ν = 0...3 becomes
the new four-dimensional metric and its fluctuations stand for the usual spin 2 graviton. The degrees
of freedom from the fifth column, however, do not form a spin 2 representation but a Lorentz vector,
Aµ = gµ5, and a scalar φ = g55 which actually parametrises the size of the fifth dimension through
the value of its vev 〈φ〉 ∼ R−1 with R the radius of the compact dimension.
However, at this time, this extra-dimension was thought to be an artificial way to perform calcu-
lations, with no real physical content. Indeed, after the works of Kaluza and Klein, this idea has
been abandoned for decades before it was revived by high energy theoretical physicists. There is
even a setup in which their introduction was required for the theory to be fully consistent, namely
superstring theories, which call for the existence of at least six extra dimensions. The presence of
these extra dimensions are required for a simple argument which goes as follows. In string theory the
fundamental objects are not point particle but small one-dimensional objects, in other words strings,
which evolve in spacetime along a two dimensional worldsheet. Their trajectory is therefore described
by the coordinates Xµ(σ, τ) with τ the time parameter of the string. The spectrum of excitations
of the string is obtained by quantifying the Xµ’s as bosonic fields living in a two dimensional space,
and the string interactions in loop expansion is described by two dimensional surfaces. An important
symmetry of this two-dimensional field theory is the conformal symmetry, which allows to classify the
loop diagrams by their topological properties alone. The main problem arising when the Xµ’s are
quantified is that each Xµ contributes to the the anomaly breaking the conformal invariance and their
number is fixed when one imposes the conservation of conformal symmetry at the quantum level1.
Among the different theories attempting to quantise the gravitational interaction, string theory is the

1This is not completely true, models called ”Non-critical string theories” exist where no extra spatial dimension is
used to get rid of the conformal anomaly, but due to our lack of knowledge of these models, and to the fact that their
phenomenology is not nearly as developed as the one of critical string theory, we will leave them aside in this manuscript.
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more advanced and consistent one for the moment, so this is, for example, a strong motivation for
exploring models with additional spacetime dimensions.
Therefore the idea of extra dimensions is somehow motivated by UV completions of the SM, and it
has begun to develop more than a decade ago, without trying to build and investigate completely
realistic string models (which is in itself a highly non-trivial task !) but from a field theoretical point
of view. Models with extra dimensions quite diverse in size, number and shape2 have been explored
and provide frameworks with a very rich phenomenology.

In this part we will present a study of the neutrino sector in a 5D SUSY theory, where the
extra-dimensional setup provides large quantum corrections to the Yukawa couplings. These quantum
corrections can modify consequently the structure of the neutrino mass operator at high energy, and
are thus potentially interesting to explore new flavour symmetries realised at a high scale and open
more perspectives on flavour physics. To complete this study, we will need to introduce the Kaluza-
Klein reduction of higher dimensional theories and the concept of orbifold compactification, which are
basic tools needed for any analysis of extra-dimensional theories. We will use them first for a quick
survey of interesting ideas that came up from higher-dimensional model building. Next we will present
the basic facts one has to deal with when considering higher-dimensional supersymmetry. At last, we
will present the way extra-dimensional (and therefore non-renormalisable) theories are treated when
we want to compute quantum corrections to the Lagrangian parameters. Once we have surveyed all
the necessary ingredients we will discuss the running of the neutrino effective mass operator and the
differences between MSSM predictions in 4D and 5D for the neutrino mixing angles.

4.2 Extra dimensions

When one wants to introduce additional spacetime dimensions, the first question one has to address
is : how is it that these dimensions were never seen ? If extra dimensions are to be introduced to
extend the SM, they must not disturb the latter at low energy. Clearly we cannot switch brutally to
5D Minkowski spacetime, for example. The easier way out is the one of Kaluza : it is sufficient to
consider that these dimensions have a finite length and that they are smaller than the precision of our
experiments.

4.2.1 Compactification

Let us be a little more precise. We will consider a general situation where we add δ extra dimensions,
and the spacetime is d = 4+ δ dimensional. However, quite often through this chapter we will restrict
to δ = 1 for reasons of simplicity, and because our work was limited to a δ = 1 model. When indices
run over the d-dimensional spacetime we will denote them with upper case latin indices (M, N ,...),
while when we restrict to the usual 4D spacetime we will use greek lower case greek indices (µ, ν,...),
and lower case latin indices (m, n,...) are reserved for indices running on the δ compact dimensions.
We split the spacetime coordinates as : xM = (xµ, ym).
Now, call M the a priori non-compact manifold representing the δ dimensions. We can choose a
discrete group G acting freely on M with operators ζg : M → M for g ∈ G, which means that ζg has
no fixed point in M except when g is the identity element of G. We can then construct a quotient
manifold C = M/G obtained from M by identifying all the points related by a G transformation :

2Which is still consistent in string theory since the size and shape of the extra dimensions is not fixed by any known
mechanism for the moment.
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~y ≡ ζg(~y) (4.1)

A consistent compactification will impose that the physics is the same on every point identified
by this equivalence relation (equivalence classes are also called orbits), therefore, denoting the fields
collectively as φ, the following equality must hold for any g :

L[φ(x, y)] = L[φ(x, ζg(y))] (4.2)

This condition will be verified if and only if the fields transform as :

φ(x, ζg(y)) = Tgφ(x, y) (4.3)

with Tg a transformation of any global symmetry of the Lagrangian. For a general Tg, this com-
pactification is called Scherk-Schwarz compactification. For any Tg 6= Id some of the fields will be
multivalued on C.

Kaluza-Klein reduction

We specialise now to the simple case of a scalar field Φ propagating in δ flat extra dimensions, so
M = R

δ, G = Z and C = T δ (T δ is the δ-dimensional torus). The identification is made as :

yi ≡ ζ~n(yi) = yi + 2πniRi (4.4)

The Ri’s are the radii of the extra dimensions. Values of yi are then constrained to the fundamental
domain ] − πRi, πRi]. Taking the transformation Tn from eq. (4.3) to be the identity for our scalar
field : Φ(x, ζ~n(y)) = Φ(x, y), the problem for the wave function of Φ is similar to the problem of a
particle in a box with periodic boundary conditions in Quantum Mechanics so the momentum along
yi will be quantised. Periodicity of Φ along M allows us to decompose its wave function in Fourier
series :

Φ(x, y) =
1

∏

i

√
2πRi

∑

~n

ϕ(~n)(x) exp

(

i
∑

i

niyi

Ri

)

(4.5)

In order to interpret the theory from a 4D point of view, the strategy will be to integrate the
action over the δ extra dimensions. The Lagrangian density is :

Ld = ∂MΦ∂MΦ∗ − m2
0|Φ|2 + V (Φ) (4.6)

Introducing the expression (4.5) for Φ and performing the integration yields the 4D Lagrangian den-
sity :

L4 =

∫

C
Ld = (∂µϕ(~n))∗∂µϕ(~n) −

∑

~n

(

m2
0 +

∑

i

n2
i

R2
i

)

|ϕ(~n)|2 + V (ϕ(~n)) (4.7)

The 4D effective theory is therefore the theory of an (a priori) infinite tower of states ϕ(~n) with
masses m2

~n = m2
0 +

∑

n2
i /R2

i . If we further restrict to the case of a single extra dimension compacti-
fied on a circle S1 with radius R we obtain a tower of states ϕ(n) with square masses separated by a
constant factor 1/R2. This is a particular feature of flat extra-dimensional theories.
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Now if we probe physical phenomena with an energy µ >
√

m2
0 + 1/R2 we will be able to give to our

particle enough energy to develop a non-zero momentum along the extra dimension. This will appear
in the experiment as an excitation of the well known low energy particle with the same quantum
numbers. This reduction of the higher-dimensional theory is called a Kaluza-Klein reduction and the
infinite tower of resonances as a Kaluza-Klein tower. Since no such tower has been seen in any exper-
iment, it is sufficient to say that the largest radius R is still larger than a few hundred GeV to comply
with experimental constraints. The massive states with n > 0 will decouple and we can truncate the
tower to keep only the zero mode, which leaves the usual 4D scalar theory at low energy.

Gauge fields and fermions

When dealing with gauge or fermionic fields, the procedure will be roughly the same but a clear
problem appears at once. Let us start with the gauge fields. As they are promoted to d-dimensional
gauge fields they contain additional degrees of freedom A5...Ad. Let us stick there again to the case of
δ = 1. When expanding in Fourier series and integrating the Lagrangian, the Fµ5F

µ5 term will create

a mass term for the modes A
(n)
µ with n 6= 0, and a kinetic mixing between A

(n)
µ and ∂µA

(n)
5 . In fact,

the A
(n)
5 components with n 6= 0 will serve as would-be Goldstone bosons for the massive vectors A

(n)
µ

and be absorbed as longitudinal components. However the zero mode A
(0)
5 stays massless, therefore it

is present in the spectrum even for energies µ < R−1 where it plays the role of a real scalar field. For

several extra dimensions only one combination of the massive A
(~n)
m will be absorbed by the massive

4D vectors but the conclusion is the same.
Now switching to fermions we encounter a similar problem : any Lorentz group with d ≥ 5 has larger
spinorial representations than SO(1, 3). Let us specialise to d = 5 since the discussion for fermions
is quite δ-dependant3. In 5D, we cannot define a chiral projector such as the four-dimensional γ5

since it is now part of the 5D Clifford algebra ΓM = (γµ, iγ5). This is a well known property of
odd-dimensional Special Orthogonal groups. Moreover, there is no possible definition of a Majorana
condition that would reduce the number of degrees of freedom. Therefore the 5D spinors are 2[5/2] = 4
dimensional and when reduced to 4D split into a left-handed and a right-handed field. Both of them
having a zero-mode, they can be joined into a Dirac field for each mode of the tower, including the
lightest one.
Of course, the SM is constructed with chiral fermions and there is no massless scalar in the adjoint
representation of a gauge group, so we have to find a way around this obstacle. The solution takes
the form of an orbifold compactification or of a braneworld model.

4.2.2 Orbifold

Once we have compactified our extra dimensions on a compact manifold C, we can actually impose
additional symmetries on the theory. Let us suppose that H is a discrete group with operators ζh

acting on C, ζh : G → G, with h ∈ H and they act non freely. In much the same way as before, this
will identify points in the fundamental region and further reduce it :

y ≡ ζh(y) (4.8)

φ(x, ζh(y)) = Zhφ(x, y) (4.9)

3In addition to the obvious dependence on the size of Lorentz group, the number of d.o.f. of a fermion depends on
whether a chirality projector and/or a Majorana condition can be defined
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Since H acts non freely, some points will be fixed points of the transformation ζh and become singular
points on the manifold. This will break the translational invariance which was still present up to now
(and was encoded in the fact that the interactions of the theory were conserving the KK number at
each vertex, which is reminiscent of momentum conservation since pi = ni/Ri). More importantly, it
will project the fields on some specific subsets of eigenfunctions of the kinetic operator and will help
us solve our chirality problem.

Let us apply this to our 5D model compactified on C = S1. We choose as a discrete group H = Z2

and obtain the orbifold S1/Z2 which identifies y ≡ −y. It possesses two fixed points, y = 0 and
y = πR and reduces the fundamental domain to the segment [0, πR[. Applying twice the orbifold
transformation : Φ(x, y) = Z2Φ(x, y) so Z’s only eigenvalues are ±1. Coming back to our scalar field,
we have two possibilities for the action of Z :

Φ(x,−y) = Φ(x, y) or : Φ(x,−y) = −Φ(x, y) (4.10)

To investigate the consequences of these two choices, it is more convenient to develop Φ on the sin
and cos functions since they have a definite parity. This is expressed as :

ZΦ = +1 =⇒ Φ(x, y) =
1√
πR

[

ϕ(0)(x) +
√

2
∑

n>0

ϕ(n)(x) cos
( n

R

)

]

(4.11)

ZΦ = −1 =⇒ Φ(x, y) =

√

2

πR

∑

n>0

ϕ(n)(x) sin
( n

R

)

(4.12)

Now going to gauge fields, the important thing to remark is that once we have chosen a parity
for the components Aµ, then A5 necessarily has the opposite one since it behaves like y. Choosing
ZAµ = +1, from eq. (4.11) we will keep a massless zero-mode for the four-dimensional gauge field

while A5 has no massless component and its massive components are eaten by the massive A
(n)
µ .

The analysis is similar for the fermions. The kinetic part of the Lagrangian is :

Lkin ⊃ Ψ̄iΓM∂MΨ − mΨ̄Ψ (4.13)

Since ∂y → −∂y the term Ψ̄iΓ5Ψ = −Ψ̄γ5Ψ must be odd. Therefore fermion fields transform as :

Ψ(x,−y) = ±γ5Ψ(x, y) (4.14)

and the two chiralities will have opposite parities. Therefore when decoupling the massive states at
low energy, only one chirality is left and we can recover the SM particle content. The 4D effective
Lagrangian for our extra-dimensional fermion reads :

L = ψ̄
(0)
L iγµ∂µψ

(0)
L +

∑

n>0

[

ψ̄
(n)
L iγµ∂µψ

(n)
L + ψ̄

(n)
R iγµ∂µψ

(n)
R +

( n

R
ψ̄

(n)
L ψ

(n)
R + h.c.

)]

(4.15)

which is clearly the Lagrangian of a Dirac fermion ψ(n) = ψ
(n)
L + ψ

(n)
R for the massive excitations and

of a Weyl fermion for the zero mode. We note that the 5D mass term has disappeared since it is odd
under the orbifold action.
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This analysis can be straightforwardly generalised to theories with a larger number of extra di-
mensions. For a two-torus T 2 for example, there is a larger choice of possibilities for the discrete
transformation group H, assuming that the two radii are equal, R1 = R2 = R. Imposing that the
torus lattice on which we compactify be transformed to itself through orbifold operations, we are left
with the following list : Z2, Z3, Z4 and Z6.
As pointed out earlier, the translational invariance along the XD’s is now broken, so there is no more
conservation of KK number in each interaction term. However, a residual KK parity remains and each
KK mode is assigned a parity (−1)n (

∏

i(−1)ni for δ > 1). Therefore, it is not sufficient to reach an
energy µ = R−1 to produce the first excited states of a KK theory, we would have to go to µ = 2/R
in order to produce either two states with n = 1 or a state with n = 2.

4.2.3 Branes and field localisation

The other way around a non-chiral low energy effective field theory is to localise the fermions on a
three-dimensional subspace of the d-dimensional bulk. In string inspired models this can be done
through the introduction of higher dimensional objects called branes. Branes are solitonic objects
which fill some subspace of the d-dimensional bulk. Of course, those that are relevant for model
building are those branes with three spatial dimension (or more). This will be relevant to us in the
following since we will have to localise some fields on a three-dimensional space, therefore we will take
some time to describe the possibilities for localising fermions in field and in string theories.

Field theory mechanism

A mechanism known as Split fermions has been proposed in [119] (and reviewed in the second reference
of [96]) to split the right and left components of 5D fermions. It relies on the particular profile of a
boson Φ along the fifth dimension. Introducing this boson with a coupling λ to our fermion Ψ :

L = Ψ̄(iΓM∂M − m + λΦ(y))Ψ (4.16)

Now let us take a closer look at the massless zero-mode Ψ(0) which should obey : ıγµ∂µΨ = 0.
The eigenvalue equation for the two chiralities is therefore :

[±∂y − m + λΦ(y)]Ψ
(0)
L,R = 0 (4.17)

which we can formally solve :

Ψ
(0)
L,R ∝ exp

[

∓
∫ y

0
(λΦ(y′) − m)dy′

]

(4.18)

Now, choosing carefully the shape of Φ along y, there is a way to get rid of Ψ
(0)
R making its wave

function non-normalisable, and to localise Ψ
(0)
L in a particular region. This can be achieved with a

linear profile Φ(y) ∼ 2µ2y (at least on a sufficient domain). The wave function for the LH zero mode
is then :

Ψ
(0)
L ∝ exp

[

−
(

µy +
m

2µ

)2
]

(4.19)

and it is peaked around y = m/(2µ2). In the case of several fermions, they will be localised around
different points according to their mass term and couplings to Φ. The other beneficial feature of
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this model is to explain naturally the hierarchy in the Yukawa sector, due to the exponentially small
intersections of the zero mode wave functions.

D-Branes

A more popular mechanism for field localisations is the use of D-branes. These objects have been found
to arise naturally in string theory when studying the strong coupling regime [99]. They are the natural
extensions of strings to two or more dimensions. An interesting fact is that open strings, instead of
evolving freely in ten dimensions, can have their ends attached to these solitonic objects (the ends of
the string obey Dirichlet boundary conditions). The low energy degrees of freedom described by these
strings are seen as fields living in a reduced spacetime dimensionality. Thus, a fermion described by
an open string attached to a three-dimensional brane is a spinorial representation of SO(1, 3) and is
naturally chiral. As solitonic objects, branes can also exist in field theory and have been studied in the
context of Supergravity. They have been extensively used to build two of the main extra-dimensional
setups that we will briefly describe in the following as an illustration to what XD models can help us
solve or bring interesting perspectives on.
A last thing to describe concerning the localisation of states in string theory is the concept of a twisted
state. We saw that open strings can be constrained to move on higher-dimensional objects, but this
possibility is clearly forbidden to any closed string state. However, when a closed string leaves in
an orbifold, with singular fixed points, and it surrounds one of the fixed points, it cannot cross the
singularity and is compelled to stay localised around the fixed point. Concretely, it cannot have
KK excitations, and its low energy degrees of freedom are seen as living on the fixed point, just as
open strings would live on a brane. Therefore, every string theory can accommodate localised states,
justifying that we localise our fields freely when building an extra-dimensional model (see for example
section 7 of [97]).

4.2.4 New possibilities from extra dimensions

In order to conclude this short introduction to extra dimensions, we will outline some of the appealing
possibilities that have been proposed to answer some of the main problems of BSM physics. The two
classical examples developed usually are devoted to solving the hierarchy problem between the EW
scale and the Planck scale.

Large extra dimensions

The model of Arkani-Hamed, Dimopoulos and Dvali (ADD) [124] consists in using the possibility
offered by branes to localise the SM fields on a three-dimensional subspace. If the fields with which
we probe the physics do not directly feel the extra-dimensions, we can greatly relax the experimental
constraint R−1 & few GeV evoked so far. The only sector which is bound to propagate in the whole
bulk of extra dimensions (for obvious reasons) is the gravitational one. If gravitons propagate in the
bulk they have KK excitations and additional massive gravitons will mediate gravity interactions.
Gravity is thus strengthened between massive bodies, and the Newton law is extended by a tower of
Yukawa interactions. Tests of the gravitational laws at microscopic scales is quite arduous due to the
weakness of gravity as compared to other forces and Newton’s law has been probed down to about
0.1 mm. This opens a possibility for models with dimensions much larger than previously believed.
Now, let M∗ be the fundamental scale of gravity. Using the fact that for flat extra dimensions, the
Ricci scalar verifies R(d) = R(4), dimensional reduction of the action gives :
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S = −Md−2
∗

∫

ddx

√

g(d)R(d) = −Md−2
∗ Vδ

∫

d4x

√

g(4)R(4) (4.20)

Thus, the 4D Planck scale is given by M2
P = M2+δ

∗ Vδ. If the volume of the extra dimensions is
extremely large compared to the 4D Planck scale, M∗ can be significantly reduced compared to MP .
Taking δ and the radii Ri sufficiently large we can go down to M∗ ∼ a few TeV. The hierarchy between
the EW scale and the fundamental scale of quantum gravity does not exist anymore.

There is also a way to explain geometrically the origin of small neutrino masses, using the property
stressed earlier that the contraction of lepton doublets with the Higgs field is gauge invariant and can
couple to any gauge singlet of the theory. If the SM is restricted to a 3-brane, this might not be the case
for gauge singlet fermions ψ. We can then write a coupling ỹlHψ. The coupling ỹ is dimensionful : if it
is generated by gravitational interactions, it can be suppressed by a power of M∗. When dimensionally

reducing the action, the effective 4D coupling is suppressed by a certain power of M∗ × V
1/δ
δ and the

smallness of the neutrinos is explained by the suppression of a large volume.

Curved or flat ?

Another extremely popular model is the one of Randall and Sundrum (RS) [125]. It relies on the
fact that unlike the three large space dimensions that we know, extra dimensions can have a more
complicated geometry. The original RS model is a 5D model based on a slice of AdS5 bounded by two
branes, with the SM field content restricted to one of these branes. The metric along y is not chosen
flat but warped :

ds2 = e−2k|y|dxµdxνηµν − dy2 (4.21)

Reducing the 5D action to the effective 4D action will make the exponential factor appear ex-
plicitely. Canonically redefining the Higgs field will also redefine its vev :

v = e−kLṽ (4.22)

where ṽ is the 5D Higgs vev which is expected to be of the order of the fundamental Planck scale M∗,
L is the size of the extra dimension and k−1 is the Anti de Sitter radius. A value kL ∼ 30 is sufficient
to explain the 16 orders of magnitude between the EW and the Planck scales.

As the model we are going to investigate considers only a flat XD we will not describe the RS
models in any great details. However there is one more interesting possibility worth mentioning. If
one relaxes the constraint to put all SM fields on a brane but leave only the Higgs field to extremely
localised, it appears that the fermions zero modes have peaked profiles along y, therefore we can
explain the Yukawa hierarchies in the same way as for the Split fermion scenario outlined above.

Gauge symmetry breaking and geometrical origin

Eventually, geometrical features of XDs can be used to break gauge symmetries, instead of resorting
to tachyonic mass terms. The process is actually simple. Instead of using only the orbifold symmetry
to project out the zero mode of the extra components of the gauge fields, we can add another Z

′
2

parity that will act as y → πR − y (in the case of the S1/Z2 model described earlier). Then, we can
choose some of the gauge components Aa

M to be odd under this additional parity. Those that are odd
under the two parities (for example the X and Y bosons in the 24 of SU(5), see eq. (2.46)) will not
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possess any zero mode, including for the 4D vector part Aa
µ. Under the scale R−1, only a part of the

gauge bosons will remain in the spectrum and the gauge group is broken [126].

A last point with highly appealing aesthetical features is the geometrical possible origin of gauge
symmetries. This was the original motivation of the model of Kaluza and Klein introduced at the
beginning of this section and logically reappeared in heterotic string models [127]. Heterotic models
start from closed strings with bosonic left movers and supersymmetric right movers, which is techni-
cally possible since the left and right propagating excitations on a closed string are independent of
each other. However, bosonic strings have to propagate in 26 dimensions while supersymmetric ones
only need 10 spacetime dimensions. This problem is resolved by considering the 16 extra spatial coor-
dinates of the bosonic string as ”internal” degrees of freedom, compactified on a sixteen-dimensional
torus. In the case that the 16 dimensions are orthogonal, and T 16 = (S1)16, we would obtain, by
dimensional reduction of the graviton, sixteen U(1) gauge bosons. However, an internal symmetry of
string theory, namely modular invariance, leaves only the possibility to compactify on the root lattice
of the Lie groups E8 ×E8 or SO(32). Analysing the massless spectrum of the string, we can see that
the low energy spin 1 fields obtained from dimensional reduction form an adjoint representation of
these gauge groups, which are more than large enough to (potentially) recover the SM at low energy.
In this setup, the origin of non-abelian gauge groups can be traced back to the isometries of spacetime.

4.3 Supersymmetry in 5 dimensions

4.3.1 N = 1 SUSY in 5D as N = 2 SUSY in 4D

Following [103, 104, 105], we will now give an account of SUSY theories in 5D. Compared to the usual
4D theories, extra-dimensional SUSY theories have very distinctive features, due to the property of
spinor representations of the higher dimensional Lorentz group. We have already seen in the previous
section that there is an immediate problem, when compactifying from 5D to 4D for example, to be left
with chiral fermions, since chirality cannot be defined in 5D. The problem here will of course reappear
under the form of extended SUSY. It is seen when one tries to write a SUSY generator, which has to
transform as a 5D spinor, meaning that it has four complex components, that is, eight supercharges,
while the MSSM consists of four supercharges. It means that when we compactify on a circle, we are
left with another SUSY generator and from the 4D point of view, one is left with an extended N = 2
SUSY algebra and the generator are QI

α and Q̄I
α̇ with I = {1, 2}.

Now, we can act on any field of a given spin with both types of SUSY generator, so that the SUSY
transformations link even more fields than in the N = 1 case that we developed up to now. Therefore,
the multiplets will contain more components fields, twice as much as in N = 1 actually, since the
fermionic d.o.f. are doubled. We will not write the theory in terms of a pure N = 2 superspace since
this requires an additional tool, the Harmonic Superspace. However, following the literature already
mentioned, we will decompose the N = 2 multiplets into N = 1, which is convenient since we will
have to break N = 2 to N = 1, for N = 2 is a non-chiral theory, with fermion components being
Dirac.
A particularity of N = 2 SUSY (with no central charge U or V ) is the presence of a symmetry
under an SU(2) transformation on the supercharges Q1 and Q2. This is the extension of the U(1)
R-symmetry of N = 1. It implies that the particle content has to behave as representations of this
SU(2)R symmetry. We will see later that it has important consequences on the possible interactions
of the theory.
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4.3.2 N = 2 representations

Let us explain a little more the content of the basic N = 2 representations and the embedding of our
well-known chiral and vector multiplets.

Vector multiplet

In order to build our gauge theory we start with the extension of vector multiplets. A vector boson AM

in 5D contains three d.o.f. on-shell and four off-shell. Moreover, their fermionic partners λ contain four
d.o.f. on-shell and eight off-shell. In order to complete the multiplet we must add a real scalar Σ and
three real auxiliary scalars Xa, a = 1...3, all of them in the adjoint representation of the gauge group.
To display explicitely the behaviour of the components under the SU(2)R it proves more convenient
to write the gaugino λ as two symplectic Majorana spinors λi. They form a fundamental doublet of
SU(2)R and are linked by :

λi = εijCλ̄T
j (4.23)

with C the usual 4D charge conjugation operator. The vector and real scalar bosons AM and Σ are
singlets under the R-symmetry, while the auxiliary fields form a triplet. The action for the gauge
multiplet is written as :

L =
Tr

C2(G)

[

−1

2
F 2

MN − (DMΣ)2 − λ̄iΓ
MDMλi + (Xa)2 + λ̄i[Σ, λi]

]

(4.24)

and the SUSY transformation for the components is [104] :

δξA
M = iξ̄iΓ

Mλi (4.25)

δξΣ = iξ̄iλ
i (4.26)

δξλ
i =

(

ΓMNFMN + ΓMDMΣ
)

ξi + i(Xaσa)i
jξ

j (4.27)

δξX
a = ξ̄i(σ

a)i
jΓ

MDMλj + i[Σ, ξ̄i(σ
a)i

jλ
j ] (4.28)

These equations allow to identify fields that transform collectively as a 4D vector superfield, namely
(Aµ, λL, X3 − D5Σ) = V . The link between the symplectic and the Weyl decomposition of λ is given
as :

λ1 =

(

λL

λ̄R

)

λ2 =

(

λR

−λ̄L

)

(4.29)

The remaining fields transform as a chiral superfield χ = (Σ+ iA5,−i
√

2λR, X1 + iX2). The scalar
field Σ participates at the same time to the auxiliary part of the N = 1 vector multiplet and to the
scalar part of the chiral multiplet. Under supergauge transformations, χ will transform as :

χ → e−igΛ(∂y + χ)eigΛ (4.30)

We have thus split the N = 2 vector multiplet into an N = 1 vector multiplet and a chiral
multiplet.
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Hypermultiplet

Let us now switch to the hypermultiplet, that is, the natural extension of chiral and antichiral mul-
tiplets. It is built from a Dirac spinor ψ, and consists, as above, of four d.o.f. on-shell and eight
off-shell. Therefore we must add two complex scalars ϕi to form an on-shell multiplet and two other
auxiliary complex scalars F i to close the multiplet off-shell. The Lagrangian is written as :

L = −(DMϕi)
†(DMϕi) − iψ̄ΓMDMψ + F †

i F i − ψ̄Σψ + ϕ†
i (σ

aXa)i
jϕ

j

+ϕ†
iΣ

2ϕi + (i
√

2ψ̄λiεijϕ
j + h.c.) (4.31)

The two scalar fields ϕi, as well as the auxiliary fields, transform as doublets of the SU(2)R. As
for the spinor itself, it is a singlet. The SUSY transformations from which we will form the N = 1
supermultiplets are :

δξϕ
i = −

√
2εij ξ̄jψ (4.32)

δξψ = i
√

2ΓMDMϕiεijξ
j −

√
2Σϕiǫijξ

j +
√

2Fiξ
i (4.33)

δξFi = i
√

2ξ̄iΓ
MDMψ +

√
2ξ̄iΣψ − 2iξ̄iλ

jεjkϕj (4.34)

Therefore the grouping is done in two chiral superfields, Φ = (ϕ1, ψL, F1 + D5ϕ
2 − Σϕ2) and Φc =

(ϕ†
2, ψR,−F †

2 − D5ϕ
†
1 − ϕ†

1Σ). Φ and Φc have opposite quantum numbers.

We can write the full Lagrangian in superfield notation and in a 5D invariant way, introducing
∇5 = ∂y + χ :

L =

∫

d8z

{

Tr

2C2(G)

[

WαWα δ2(θ̄) + h.c.) + (e−2gV ∇5e
2gV )2

]

+Φ̄e2gV Φ + Φce−2gV Φ̄c + (Φc∇5Φ δ2(θ̄) + h.c.)

}

(4.35)

When extending the MSSM to 5d, we see that we have to increase the field content. For every
vector multiplet that we have in the MSSM we will include an adjoint chiral multiplet. For every
chiral multiplet present we have to add another chiral multiplet in the conjugate representation of the
gauge group.
The last expression (4.35) is useful to guess the consistency condition of the orbifold projection that
we will perform to break the N = 2 SUSY to N = 1. Obviously, as χ contains A5, it will transform
with an opposite parity compared to V . The same situation arises for the chiral multiplets since they
couple with a covariant derivative along the fifth coordinate. Therefore, the orbifold action will project
out the zero modes of χ and Φc, for example.

4.3.3 R-symmetry and the Yukawa problem

The previous 5D Lagrangians have been written for one hypermultiplet charged under some gauge
symmetry. However, when extending the particle content it is most easily seen that Yukawa inter-
actions between several hypermultiplets cannot be written in a fully SUSY invariant way. This is
a direct consequence of the SU(2)R symmetry of the theory. As we displayed earlier, the different
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components of a supermultiplet carry different SU(2)R spins. For the chiral multiplets descending
from a hypermultiplet, for example, the scalars form a doublet ϕi while the fermions are singlets.
Now, the terms that we have to recover at low energy are the Yukawa interactions of the form ψψϕi

which is obviously not SU(2)R invariant. The conclusion is that a naive N = 2 theory describes the
gauge interaction of a vector multiplet with itself and matter hypermultiplets and is a non-chiral theory.

To circumvent this problem we will have to use the possibilities provided by the compactification
tools that were developed earlier. The chirality of the theory at low energy is of course recovered by
the use of an orbifold projection. Moreover we will have two possibilities for chiral superfields : either
localising all of them on a three-dimensional brane, or letting some of them propagating in the bulk
of the extra dimensions while localising their Yukawa interactions on a three-brane, where the SUSY
algebra is no longer compelled to display an extended form. It means that we will introduce a term
of the form4 :

∫

d8zdyδ(y)
λ̃ijk

6
ΦiΦjΦk (4.36)

This localised term will have important consequences on the calculability of the theory, depending on
whether the fields themselves are localised or not.

4.4 Quantum corrections in flat extra-dimensional models

It is now time to come to the very interesting opportunity of flat extra-dimensional models to have
an accelerated running compared to renormalisable four-dimensional models. This is why we analyse
higher-dimensional theories as Effective Field Theories and recall the usual interpretation of renor-
malisation in this context [97].

4.4.1 Non-renormalisability of extra-dimensional field theories

The first serious problem that appears when treating higher-dimensional theories quantum mechani-
cally comes from the new dimensionality of their couplings. This stems from the fact that the fields
themselves are assigned a different mass dimension. For a theory in a general d-dimensional spacetime,
we impose that the action S =

∫

ddx∂Mϕ†∂Mϕ or S =
∫

ddxψ̄iΓM∂Mψ has mass dimension zero, so
the bosonic and fermionic fields inherit a mass dimension :

[ϕ] =
d − 2

2
[ψ] =

d − 1

2
(4.37)

and the dimension increases with the number of extra dimensions. Therefore, the gauge and Yukawa
couplings, dimensionless in 4D, acquire a negative mass dimension to compensate for the fields. Since
they both couple two fermions to a boson, their mass dimension is :

[g̃] = [Ỹi] =
4 − d

2
= −δ

2
(4.38)

From the point of view of the renormalisation procedure, this is theoretically a problem since it
renders the theory non-renormalisable, hence at every order in perturbation theory, new counterterms
must be added to compensate for the divergences. However, as commonly accepted nowadays, this is

4We display the couplings of higher dimensional theories with a tilde since they do not have the same dimensionality
than their 4D counterparts, as we will explain right away.
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Figure 4.1: The integration of the heavy N field leads to a point-like non-renormalisable interaction

only a problem if we implicitly suppose that our theory is a valid description of the physical world up
to arbitrary energies. Most probably, it is valid up to some energy scale where new ingredients come
into the game. This is actually what must be done for the Standard Model, since we have little doubt
that the gravitational interaction must be quantised somehow. Therefore the effects of gravity should
be taken into account in a rigorous treatment, just as those of an elusive Grand Unified Theory or any
extension of the SM with new degrees of freedom appearing above the EW scale. In practice, though,
the physics ruling at very high energy or very small distance does not affect too much what happens
at low energies and we can use safely a simpler, more appropriate theory that mimics the physics of
the more fundamental one in a limited range of energy. This is an effective description of the relevant
physics, which is why we name this description an effective field theory.

The remnants of the fundamental theory, present at the high scale, say the Planck scale MP , are
captured by ”non-renormalisable” operators, that is to say couplings suppressed by powers of the high
scale. These couplings arise from the integration performed over the massive or energetic modes of the
theory, which amounts to average over regions of space that are too small to be probed accurately with
a given precision. One example of this integration was performed in section 2.1 where the massive RH
neutrinos are taken as non-propagating for a momentum scale k ≪ MR and their integration generates
a non-renormalisable, dimension five, operator. Actually, the small distance over which N propagates
is neglected and the Higgs and leptons are assumed to interact at a single point in spacetime, as
displayed in fig. 4.1.

The operators created in this manner form rigorously a whole tower of interactions with higher
and higher dimensionality. However, when going to low energies, due to the negative dimensionality of
their coupling constants, their importance will decrease and they will become negligible except possi-
bly for the leading order. On the contrary, when increasing the energy, they will become preponderant.
This is characteristic of non-renormalisable theories : extrapolating towards very high energy regions,
the couplings become uncontrollable unless there is a fixed point in the UV5. In fact, the theory stops
being valid at the scale where the heavy d.o.f. are integrated out and when these are reintegrated
into the spectrum the theory becomes renormalisable again (momentaneously). Under the scale of
integration, as we always work with a finite precision, we do not have to rely on an infinite set of
observables to fix the free parameters of the theory since we work at a finite order in perturbation
theory.
This procedure is actually quite well adapted to renormalisation schemes independent of the particle
masses, such as Minimal Subtraction schemes, for which we only extract the divergent part of the
diagrams to redefine the Lagrangians parameters. With these procedures, every particle adds its con-
tribution to the beta functions independently of its mass, so in general we have to decouple it by hand
for momenta lower than its own mass scale.

5For example, hints of the existence of a fixed point for General Relativity have been claimed, see [123].
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Integrating out the heavy modes in this way, the physical cutoff is easy to identify, it is the mass
scale of the lightest heavy mode under which we define our EFT. Moreover, in 4D renormalisable
theories, the results of the running will not depend too much on the way the heavy states are decoupled
and the high and low energy theories are matched, since the couplings display a slow logarithmic
evolution in the energy. For higher-dimensional theories, though, the problem of decoupling the heavy
modes will not prove so straightforward.

4.4.2 Chain of EFTs and power law running

When interpreted from the 4D point of view, extra-dimensional theories are thus composed of towers
of fields with masses almost equally spaced. When computing observables and dealing with renor-
malisation, there is a quite natural way to deal with quantum corrections and the non-renormalisable
features of the theory [97]. Usually we use an MS scheme and keep only the divergent part of the
loops. Doing so, as already stressed, we decouple by hand particles with masses larger than the energy
scale of the process we are interested in. Therefore we can suppose that every KK excitation with
a mass greater than the running energy µ is completely decoupled. In this approach, at any given
energy, there is only a finite number of modes running in the loops. Roughly, the theory looks just
like our old 4D renormalisable theory to which we add a certain finite number of copies of the low
energy spectrum.
Thus, it amounts to building a chain of 4D effective theories, for which the particle content is finite.
Every time we cross an energy threshold µ = n/R we add the excitations with a mass mn ≃ n/R. For
example, working at an energy µ, let us define N such that N/R ≤ µ < (N +1)/R, that is N = E[µR],
E[x] being the integer part of x. As a simplifying assumption, we consider interactions for which the
momentum conservation along the fifth dimension is not violated and KK number is conserved. Thus,
we have to include loops of the form (thick lines represent any superfield propagator) :

(n)

(n)

(0) (0)

(4.39)

Decoupling the massive states and denoting β0 the contribution of the zero mode to the beta function,
the whole beta function is given by :

β =
∑

n<µR

β0 = E[µR]β0 ≃ µR × β0 (4.40)

The last approximation can be made when µ ≫ R−1 and allows to have a smooth beta function.
Thus, where the zero mode beta function evolves logarithmically with µ, here it will evolve linearly.
Extending straightforwardly to δ > 1 extra dimensions with a common radius R, we consider only
particles with masses :

m~n =

√

∑

i

n2
i

R2
< µ (4.41)
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Thus, in the continuous approximation, the number of particles participating in the total beta function
is the volume of the sphere with radius µR in δ dimensions, and :

β ≃ β0
2πδ/2

Γ(δ/2)δ
(µR)δ (4.42)

This behaviour of the beta functions and, consequently, of the gauge couplings is called a power
law evolution.

Proper time regularisation

The method of adding naively the individual contributions of the KK excitations, nevertheless, is not
the most convenient, particularly when several sums enter the game, with maybe different radii Ri,
and because it uses implicitly a hard cutoff along the fifth component of the impulsion while using
another type of regularisation along the four non-compactified components pµ, for example dimensional
regularisation. A method that was also introduced in [97] uses a proper time regularisation. This is
more convenient, since it uses a global cutoff and does not separate the compactified dimensions from
the others. The procedure uses the following identity :

1

A2
=

∫ ∞

0
dt t e−At (4.43)

for a positive A. The parameter t stands for what we call the proper time. Let us consider a typical
contribution from KK excitations to the wave function renormalisation of a zero mode, as displayed
in (4.39) :

I =
∑

n∈Z

∫

d4k

(2π)4
i

k2 − m2
n

i

(p + k)2 − m2
n

= −i
∑

n∈Z

∫

2π2k3dk

(2π)4

∫ 1

0
dx

1

[k2 + x(1 − x)p2 + m2
n]2

=
−i

16π2

∑

n∈Z

∫

dx

∫

dk k3

∫

dt te−t[k2+x(1−x)p2+m2
n] (4.44)

In the first line we switched to Euclidean spacetime in order to use the proper time identity. Next we
integrate over k, using :

∫ ∞

0
dk k3e−tk2

=
1

t2
(4.45)

and introduce the Jacobi function :

θ3(τ) =
∑

n∈Z

eiπn2τ (4.46)

for Im(τ > 0). With the use of (4.45) and (4.46), the expression for I becomes :

I =
−i

16π2

∫

dt

t

∫

dx e−x(1−x)p2tθ3

(

it

πR2

)

(4.47)

Although we have not displayed the boundaries of the integral over the proper time, we have to
regularise it since it is divergent. t having a mass dimension -2, its lower bound represents a UV cutoff
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while its upper bound is an IR cutoff. For the IR cutoff we choose ξ = rR2 while for the UV cutoff
we take ε = rΛ−2 where Λ is a priori arbitrary since it is a formal cutoff. The parameter r is left free
for the moment and will be chosen so as to identify Λ with the physical cutoff very soon. Choosing to
regularise at this point amounts in fact to put implicitly a factor exp(−m2

n/Λ2) in the propagator of
each KK excitation and to decouple their contribution to the total beta function exponentially instead
of using a brutal step function :

β =
∑

n

β0e
−m2

n/Λ2
(4.48)

The computation of I is finally achieved with the use of the modular identity for the Jacobi
function : θ3(−1/τ) =

√
−iτθ3(τ), and the approximation θ3(τ) ∼ 1 for Im(τ) ≫ 1 (and we put the

external states on-shell p2 = 0) :

I =
−i

16π2

∫ rR2

rΛ−2

dt

t
R

√

π

t
= −i

R

8π2

√

π

r

(

Λ − 1

R

)

(4.49)

When using this regularisation, a power law in the cutoff Λ appears. In order to identify Λ with the
physical cutoff, namely the running energy µ, as before, the authors of [97] made the choice r = π/4
for δ = 1 and find the same result as for the case where heavy excitations are decoupled at their mass
scale by hand.

The crucial point with power law running is that the exact result depends on the way the massive
states are actually decoupled. This issue is discussed in [121] and it is argued that in order to make
really precise predictions, it is mandatory to know the UV completion of the theory. Therefore, as we
run towards higher energies without supposing any particular fundamental theory, we must admit that
our results can only predict a general behaviour but they should not be trusted if one needs precise
numerical statements. Still, we can argue that the exponential damping of the massive KK states is
well motivated in some stringy setups [122].
Another very important remark is that the use of an explicit cutoff breaks Lorentz invariance. However,
proper time computations give the correct power law behaviour of the beta functions, as shown in
[118] where a gauge invariant regularisation of 5D abelian theories is performed using a global cutoff.
Therefore we can safely trust our computations.

Now that we have defined a way to treat extra-dimensional models quantum mechanically, we have
to wonder up to which scale we are allowed to run. This is of course not defined if we refuse to consider
the embedding of the theory into a particular fundamental setup. However these theories are generally
computable on a limited range since some couplings (in particular the coupling of the abelian U(1)Y )
become non-perturbative quite quickly. Another, more compelling, scale for the natural cutoff appears
in SUSY models, as pointed out in [97] : it is the scale of gauge coupling unification, which is much
lowered compared to 4D SUSY models because of the accelerated running. This is the criterium we
will adopt to define the cutoff Λ, and we will stop the running at this scale.

4.5 A concrete MSSM model

The power law running of flat extra-dimensional models presents some interesting possibilities for
flavour physics. Indeed, when one wants to build a theory a flavour explaining the patterns of the
Yukawa sector, one needs the masses and mixings at high energy, where the flavour symmetry should
be broken. If the running is accelerated, there might some chance to uncover new possible flavour
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structures. Naively, it could even seem trivial that with a power law running the fast evolution will
lead to new patterns but we remind that our cutoff is defined by gauge coupling unification, which
happens very quickly after the extra dimensions ”open up”, roughly one order of magnitude above R−1

in the case of one extra dimension. We will focus on the running of the neutrino mass operator (2.1)
in a 5D SUSY model compactified on S1/Z2 [90], while the Yukawa beta functions for non SUSY 5D
models have been computed in [100]. After introducing the supersymmetric 4D results, we will discuss
the consequences of the localisation of the matter fields and display the most interesting possibilities
for the mixing angles of the neutrinos at the cutoff scale, all the time comparing with the 4D MSSM
results.
The numerical results obtained in this section have been obtained using the REAP package for Math-
ematica, developed by the authors of [112] and modified to suit our own needs.

4.5.1 4D results

The renormalisation of the neutrino mass dimension five operator of eq. (2.1) has been studied in [93]
and revisited in [94], along with the RG equations in the MSSM which have been extended to two
loops in [111]. As a reference we recall the 4D results for the beta functions of the Yukawa sector.
Starting from a superpotential :

W =
1

6

NΦ
∑

i,j,k=1

λijkΦiΦjΦk − 1

4
κfgLfHuLgHu (4.50)

with NΦ is the number of chiral fields, and λijk regroups all the renormalisable Yukawa couplings.
Using non-renormalisation theorems, we only need to compute the wave function counterterms in
dimensional regularisation, with d = 4 − ε :

δZij = − 1

(4π)2
2

ε





1

2

NΦ
∑

k,l=1

λ∗
iklλjkl − 2

Ng
∑

n=1

g2
nC2(R

i
n)δij



 (4.51)

The coefficient C2(R) is defined as usual by :

C2(R)δrs =
∑

a

(T aT a)rs (4.52)

where T a are the generator in the representation R. Using this general form. Applying the result to
the different superfields yields the one loop beta functions :

βYd
=

1

(4π)2
Y d

[

3Y †
d Yd + Y †

u Yu + 3Tr(Y †
d Yd) + Tr(Y †

e Ye) −
7

15
g2
1 − 3g2

2 − 16

3
g2
3

]

(4.53)

βYu =
1

(4π)2
Yu

[

Y †
d Yd + 3Y †

u Yu + 3Tr(Y †
u Yu) − 13

15
g2
1 − 3g2

2 − 16

3
g2
3

]

(4.54)

βYe =
1

(4π)2
Ye

[

3Y †
e Ye + 3Tr(Y †

d Yd) + Tr(Y †
e Ye) −

9

5
g2
1 − 3g2

2

]

(4.55)

βκ = XT κ + κX + ακ (4.56)

We kept a compact form for βκ since it will have the same form in 5 models with only a change in the
coefficients X and α. In the MSSM they are :
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X =
1

(4π)2
Y †

e Ye α =
1

(4π)2

[

−6

5
g2
1 − 6g2

2 + 6Tr(Y †
u Yu)

]

(4.57)

Exploiting these results, the paper of ref. [94] determines the maximal variations of the neutrino
mass parameters as a function of the MSSM free parameters. tan β and m1 were shown to have an
important impact on θ12, for example, which is allowed, in the case of large tanβ, to approximately
vanish at high energy. The two other mixing angles θ13 and θ23, on the contrary, are not allowed
such freedom, and are bound by θ23 > 25◦ and θ13 < 15◦. Analytical approximations have also been
derived for the RG equations of the neutrino masses and mixings. The derivations will be the same
for 5D models, therefore we display them as a function of the general coefficients C and α :

ṁi =
1

(4π)2
[α + Cyτxi]mi (4.58)

θ̇12 = − Cy2
τ

32π2
sin(2θ12)s

2
23

|m1e
iφ1 + m2e

iφ2 |2
∆m2

sol

+ O(θ13) (4.59)

θ̇13 =
Cy2

τ

32π2
sin(2θ12) sin(2θ23)

m3

∆m2
atm(1 + ζ)

(4.60)

×[m1 cos(φ1 − δ) − (1 + ζ)m2 cos(φ2 − δ) − ζm3 cos δ] + O(θ13) (4.61)

θ̇23 = − Cy2
τ

32π2
sin(2θ23)

1

∆m2
atm

[

c2
12|m2e

iφ2 + m3|2 + s2
12

|m1e
iφ1 + m3|2
1 + ζ

]

+ O(θ13) (4.62)

The coefficients xi depend on the mass eigenstate and is an O(1) quantity that we can write as
xi = {2s2

12s
2
23 + O(θ13), 2c2

12s
2
23 + O(θ13), 2c2

13c
2
23}. The parameter ζ stands for ζ = ∆m2

sol/∆m2
atm.

These expressions help understand the importance of tanβ on the evolution of the mixing angles, as
they are proportional to yτ , as well as the influence of the neutrino mass scale m1.

4.5.2 Localisation and model building

We wish to extend these results to 5D models where the Yukawa sector exhibits a power law run-
ning. This imposes to have some fields of the Yukawa sector to be allowed to propagate in the fifth
dimension. We also choose to put the gauge fields in the bulk of the fifth dimension which creates a
power law for the gauge couplings and furnishes the physical cutoff where we stop the running in the
numerical analysis.

Since we are supersymmetric, every superfield propagating in the bulk is attributed an N = 2
partner superfield, as outlined in section 4.3.2. For every vector field V we add an adjoint chiral
superfield χ and for every chiral superfield Φ propagating in the bulk we add another chiral superfield
Φc. Recovering the MSSM at low energy imposes to eliminate half of the zero modes and we choose
a compactification on S1/Z2. Under the orbifold action, the superfields V and Φ are assumed to be
even while of course their partners χ and Φc are odd. The field expansions are thus :
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V (x, y) =
1√
πR



V (0)(x) +
√

2
∑

n≥1

V (n)(x) cos
(ny

R

)



 (4.63)

χ(x, y) =

√

2

πR

∑

n≥1

χ(n)(x) sin
(ny

R

)

(4.64)

Φ(x, y) =
1√
πR



Φ(0)(x) +
√

2
∑

n≥1

Φ(n)(x) cos
(ny

R

)



 (4.65)

Φc(x, y) =

√

2

πR

∑

n≥1

Φc(n) sin
(ny

R

)

(4.66)

Once we have chosen the symmetries and the compactification space, we must decide of the locali-
sation of the different fields. The most simple configuration consists in putting every field in the bulk
and we will logically investigate this possibility. We will see quickly, however, that this setup is not
the most promising since the power law is very strong. Therefore we will turn, in a second time, to
the case where all matter fields are confined to a brane while the Higgs fields stay in the bulk.
As the coupling constants in 5D are dimensionful, we denote them with a tilde and reserve the usual
notation for the 4D effective couplings. The KK reduction of the different actions and the relations
between 5D and 4D couplings can be found in appendix B.
For numerical computations, we suppose that the N = 1 SUSY partners of the SM fields have a
common mass of 1 TeV.

4.5.3 Model with matter in the bulk

beta functions

The full action for the gauge part Sg is written without the ghost part since we are not interested in
computing the gauge beta functions (we refer to [97, 105] for this problem). Moreover, as we restrict
our computations to one loop corrections it is sufficient to truncate the expansion of the gauge factors
exp(2g̃V ) at first order in g̃. The part of the action coupling the matter and Higgs part to the gauge
fields V and χ is denoted Smatter while Sbrane contains the Yukawa couplings located on the brane at
y = 0.
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Sgauge =
Tr

C2(G)

∫

d8zdy

{

−V 2(PT − 1

ξ
(P1 + P2))V − V ∂2

5V − ξ

2
χ̄

∂2
5

2
χ +

1

2
χ̄χ

+
g̃

4
(D̄2DαV )[V, DαV ] + g̃ (∂5V [V, χ + χ̄] − (χ + χ̄)[V, χ + χ̄])

+ O(g2) + ghosts

}

(4.67)

Smatter =

∫

d8zdy
{

Φ̄iΦi + Φc
i Φ̄

c
i + Φc

i∂5Φiδ(θ̄) − Φ̄i∂5Φ
c
iδ(θ)

+g̃(2Φ̄iV Φi − 2Φc
iV Φ̄c

i + Φc
iχΦiδ(θ̄) + Φ̄iχ̄Φ̄c

iδ(θ))
}

(4.68)

Sbrane =

∫

d8zdyδ(y)

{(

1

6
λ̃ijkΦiΦjΦk +

1

4
κ̃ijLiHuLjHu

)

δ(θ̄) + h.c.

}

(4.69)

The Feynman rules we are interested in for a one loop computation are also displayed in appendix
B, as well as the different one loop diagrams and their computation. The final result for the wave
function of chiral superfields is :

δZij =
1

(4π)2



8µR

Ng
∑

n=1

g2
nC2(R

(i)
n )δij − 2π(µR)2

NΦ
∑

k,l=1

λ∗
iklλjkl



 (4.70)

which is obtained by keeping only the divergent contribution in µ of the diagrams. The expressions
for the beta functions of the Yukawa couplings are given under a general form by :

βYd
= −1

2
µ

∂

∂µ
(δZT

DcYd + YdδZQ + YdδZHd
) (4.71)

βYu = −1

2
µ

∂

∂µ
(δZT

UcYu + YuδZQ + YuδZHu) (4.72)

βYd
= −1

2
µ

∂

∂µ
(δZT

EcYe + YeδZL + YeδZHd
) (4.73)

βκ = −1

2
µ

∂

∂µ
(2κδZHu + δZT

L κ + κδZL) (4.74)

and when applying the expressions for the δZ, the explicit result for the beta functions is :
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βYd
=

1

(4π)2

[

Yd

(

3Tr(Y †
d Yd) + Tr(Y †

e Ye) + 3Y †
d Yd + Y †

u Yu

)

4π(µR)2

−Yd

(

14

15
g2
1 + 6g2

2 +
32

3
g2
3

)

µR

]

(4.75)

βYu =
1

(4π)2

[

Yu

(

3Tr(Y †
u Yu) + 3Y †

u Yu + Y †
d Yd

)

4π(µR)2

−Yu

(

26

15
g2
1 + 6g2

2 +
32

3
g2
3

)

µR

]

(4.76)

βYe =
1

(4π)2

[

Ye(3Tr(Y †
d Yd) + Tr(Y †

e Ye) + 3Y †
e Ye)4π(µR)2

−Ye

(

18

5
g2
1 + 6g2

2

)

µR

]

(4.77)

As for βκ, it is given by :

βκ =
1

(4π)2

[((

−12

5
g2
1 − 12g2

2

)

µR + 24πTr(Y †
u .Yu)(µR)2

)

κ

+4π(µR)2
(

[

Y T
e Y ∗

e

]

κ + κ
[

Y †
e Ye

])

]

(4.78)

Numerical results

The most important feature of these RGEs is the presence of quadratic terms in µR coming from the
double KK sums in the loops induced by the localised interactions of the superpotential. This comes
indeed from the localised character of these interactions and the non-conservation of the momentum
along the fifth dimension. When µ becomes larger than R−1 and the fields start to feel the presence of
the extra dimensions, the new power law equations superseed the 4D SUSY RGEs and the quadratic
part will rapidly become dominant over the linear part. As it is a Yukawa contribution, therefore a
positive one, the Yukawa couplings will start to increase very quickly and will become divergent long
before any unification of the gauge couplings. Varying the compactification radius R, we observe that
yt diverges at µR ∼ 2 − 36. The approximations that we made to compute the beta functions with
the proper time method, on the other hand, are supposed to be good approximations when µR ≫ 1,
which is clearly not the case. This is why we performed new numerical simulations by adding the
modes explicitely at every threshold µ = nR−1, instead of using a continuous beta function. This
approach leads to a divergence of the top Yukawa coupling at µR ∼ 4 − 5, which is not so different
from the approximate result. The behaviour of yt in this approach is shown in fig. 4.5.3. While it was
noted in [97] that the gauge couplings could become non-perturbative before unification, when every
matter family propagates in the bulk and for R−1 . 1010 GeV, the situation is in fact even worse
when taking into account the Yukawa sector since yt diverges before gauge coupling unification for
R−1 & 2.1014 GeV.

Since calculability is clearly limited in this setup we will not investigate in detail the evolution of
the neutrino parameters and switch to the second setup where matter is localised on a brane.

6This was already stressed in [106].
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Figure 4.2: Evolution of the top Yukawa coupling with the energy for a choice of R−1 = 1010 GeV
and every matter superfield in the bulk. A clear divergence of yt occurs after only a few thresholds

4.5.4 Model with matter on the brane

beta functions

When localising the matter fields on the brane the 5D form of the different parts of the action do not
change, except for Smatter which is affected a δ(y) for the coupling of the gauge sector to quark and
lepton superfields. Once again we refer to appendix B for KK reduction of the action and computation
of the wave function renormalisation. The final result for the matter superfields is :

δZij =
1

(4π)2



16

Ng
∑

n=1

g2
nC2(R

(i)
n )δij − 4

NΦ
∑

k,l=1

λ∗
iklλjkl



µR (4.79)

while for the Higgs superfields it is :

δZHi
=

1

(4π)2







8

Ng
∑

n=1

g2
nC2(R

(i)
n )δij



 µR −





NΦ
∑

k,l=1

λ∗
iklλjkl



 Ln(µR)



 (4.80)

The beta functions will not display any quadratic behaviour with the energy since now the only
KK excitations that circulate in the chiral loops are those of the Higgses so there is no more double
sum arising in the computations. Thus we plug the wave function renormalisation factors into the
formulae for the beta function and get :
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βYd
=

1

(4π)2

[

Yd

(

3Tr(Y †
d Yd) + Tr(Y †

e Ye)
)

+Yd

(

−19

15
g2
1 − 9g2

2 − 64

3
g2
3 + 12Y †

d Yd + 4Y †
u Yu

)

µR

]

(4.81)

βYu =
1

(4π)2

[

3YuTr(Y †
u Yu)

+Yu

(

−43

15
g2
1 − 9g2

2 − 64

3
g2
3 + 12Y †

u Yu + 4Y †
d Yd

)

µR

]

(4.82)

βYe =
1

(4π)2

[

Ye(3Tr(Y †
d Yd) + Tr(Y †

e Ye))

+Ye

(

−33

5
g2
1 − 9g2

2 + 12Y †
e Ye

)

µR

]

(4.83)

while βκ has the same form as in (4.56) with different coefficients :

α =

(

−18

5
g2
1 − 18g2

2

)

µR + 6Tr(Y †
u Yu) and : C = 4µR (4.84)

Numerical results

From the numerical point of view this model is a lot more comfortable since the Yukawa couplings
evolve in the opposite direction compared to the democratical case where every field lives in the bulk.
This is due to the fact that the term linear in µR in the Yukawas of charged fermions is dominated
by the negative gauge part. Thus, as the order of magnitude of the gauge couplings does not change
before unification, and the Yukawa couplings keep on diminishing, they will become more and more
perturbative and the divergence of the couplings is not a problem anymore. This is also true for the
gauge couplings which will unify perturbatively for any value of R−1.

In practice we will investigate the region of parameter space where the effects are the largest,
which will give a (rough) upper bound on the size of the effects. This is why we fix R−1 to a relatively
small value R−1 = 10 TeV, for which the cutoff is Λ ≃ 40R−1, leaving a sizeable energy range with
a power law running, and allowing the use of the proper time calculations. We also choose large
tan β = 50 and m1 = 0.1 eV with a normal hierarchy, except when stated otherwise. These values
are acceptable regarding the experimental constraints on the SUSY and neutrino parameters and will
lead to interesting results.

The first characteristic of the model is the strong universal diminution of the masses that can be
seen in fig. 4.3. The suppression factor of the masses at the cutoff depends on the input value of
R−1, but for R−1 = 1 TeV they decrease by a factor of 5. The universal behaviour is very generic and
almost independent of m1 or tanβ. It can be easily understood from the RGEs (4.58), replacing the
coefficients α and C by the expressions of eq. (4.84), which yields :

ṁi =
1

(4π)2

[

−
(

18

5
g2
1 + 18g2

2

)

+ 6Tr(Y †
u Yu) + 4µRy2

τxi

]

mi (4.85)

As the Yukawa yτ is driven to zero with a power law behaviour, the Cy2
τ and Tr(Y †

u Yu) ≃ y2
t

coefficients becomes quickly negligible compared to the gauge contribution of α. Therefore, the RGE
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Figure 4.3: Running of the three masses for the values R−1 = 104 GeV, m1 = 0.1 eV, tanβ = 50,
θ13 = 0 and all phases vanish at MZ .

for the mass mi is governed by the universal gauge part, so that every mass eigenvalue behaves in the
same way.

The most interesting results, nevertheless, concern the mixing angles θij . One interesting possi-
bility, for example, would be to obtain a CKM-like behaviour for the PMNS matrix, explaining the
striking difference between the quark and leptonic mixings at low energy simply by the running of the
Yukawa coupling. We display first in fig. 4.4 the influence of tanβ on the mixing angle θ12 and show
that it can be lowered down to 1 degree or smaller. However this is also the case in 4D (see [94]) and
is not new to our 5D model.

102 103 104 105
Μ HGeVL

15

30

Θ12

Figure 4.4: Running of θ12 for values of tanβ = {10, 30, 50}, from top to bottom. The other parameters
are R−1 = 10 TeV, m1 = 0.1 eV, θ13 = 0 and no CP phases at MZ .

For the two other mixing angles, we performed a scan over random values of m1, tanβ, the Ma-
jorana and Dirac CP phases, and values of the mixing angles inside the experimental error bars as
given by [117]. The scans have been performed for inverted and normal hierarchy and for the 4D an
5D MSSM simultaneously. We plotted the values at the cutoff in the plane (θij , tan β) and noted that
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there is no significant difference between 4D and 5D for m1 . 0.01 eV. The results for θ23 with a
normal hierarchy are displayed in fig. 4.5 while those for θ13 with an inverted hierarchy are displayed
in fig. 4.6. From these plots it is clear that new possibilities open up for patterns with all three mixing
angles either as small as θCKM

12 or larger than 30 degrees.
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Figure 4.5: Comparison of θ23 at the cut-off scale as a function of tanβ in our 5D model and in 4D
MSSM for random phases and 0.01 < m1 < 0.1 eV with normal hierarchy. The cutoff for the 4D
MSSM is chosen at the unification scale, MGUT ≃ 2.1016 GeV. For smaller values of m1 the spread is
reduced.
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Figure 4.6: Same as Fig. 4.5 for θ13 and with an inverse hierarchy.

To illustrate these results in more precise cases, we plot in the left panel of fig. 4.5.4 the three
mixing angles in a normal hierarchical case where θ23 goes to quite small values at the cutoff scale
along with the two other mixing angles, mimicking the situation in the quark sector. On the contrary,
the right panel of fig. 4.5.4 shows a case with inverted hierarchy for which θ13 starts from a large
value at the cutoff scale and runs down to a value smaller than one degree at low energy. We should
mention that previous attempts have been made in 4D in [116], to obtain small angles in the lepton
sector in order to mimic the CKM mixings. However, we succeed to display such configurations with
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reasonable values of the neutrino parameters while 4D models such as in [116] have to reach large
neutrino mass scales 0.1 eV< m1 < 0.6 eV, leading to tensions with recent cosmological bounds [52].
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Figure 4.7: Running of the three mixing angles in two cases leading to small θ23 (left panel) or large
θ13 (right panel) at high energy.

4.5.5 Conclusion

We have chosen to study a 5D MSSM model compactified on an orbifold S1/Z2, because of its inter-
esting large quantum corrections to the different coupling constants, a phenomenon known as power
law running. Despite the smaller cutoff imposed by the theory due to early gauge coupling unification,
the quantum corrections to the effective neutrino mass operator are found to be more important than
in 4D in some part of the parameter space.
The predictivity of the model was shown to depend greatly on the localisation of the matter fields.
When every field is allowed to propagate in the bulk, the quadratic dependence of the beta functions
on the energy drives the top Yukawa to the non-perturbative regime too quickly for the model to be
calculable. This is a direct consequence of the localisation of the Yukawa couplings, which is itself
imposed by the N = 2 supersymmetry of the 4D effective theory.
When accepting to restrict the matter superfields to the brane at y = 0 the Yukawa couplings are
asymptotically safe and we have extracted predictions for the PMNS angles. Scanning over the param-
eter space we have displayed regions where it is possible to drive the two large mixing angles to values
smaller than 10 degrees, allowing for a CKM-like pattern in the lepton sector, or to drive θ13 to values
greater than 30 degrees at the cutoff scale, explaining its unobservably small value from pure running
effects. These patterns should be interesting for further investigation of new flavour symmetries for
example.
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Conclusion

There are several experimental and theoretical problems that lead us to explore physics beyond the
Standard Model, and we have presented some of them earlier. A very intriguing one is the search for
a flavour theory, explaining in a natural way the patterns of the different Yukawa couplings and the
striking difference of the neutrino sector compared to the other ones. Ideas have been proposed to
provide answers to some of the flavour puzzles, such as broken flavour symmetries which derive the
patterns of Yukawa couplings in terms of an expansion in a small parameter, or string models that
predict a net generation number of three as a topological feature of their compactification space.
However, building a theory of flavours requires a precise knowledge of the Yukawa couplings at high
energy. This has been the first focus of the work presented here, and which divides itself into the study
of two different classes of models. The first part of the work was devoted to the study of the seesaw
formula in Left-Right symmetric models. The particular singlet nature of the right-handed part of the
neutrinos leads to a neutrino mass matrix quite unlike those of quarks and charged leptons, thereby
providing a first hint as to why neutrinos should have such different spectrum and mixings. Moreover,
when adding the contribution of a weak triplet to the neutrino mass matrix, known as type II seesaw,
the formula complicates further. This is why we provided a method to reconstruct the right-handed
neutrino masses at high energy, under the only assumption of a Left-Right symmetry, limiting the
number of free couplings. Using this method, it is then seen that several solutions appear for the RH
mass spectrum and mixings, quite unlike the cases of pure type I or type II seesaw, and it allows to
get additional information on the structure of the Yukawa sector at high energy. Focusing on a certain
class of SO(10) models, known to lead to unsuccessful leptogenesis in the case of pure type I seesaw, we
studied the consequences of our different solutions for leptogenesis. In addition to several ”type I-like”
cases, we found that some solutions could lead to interesting predictions. In a second work, we pushed
the analysis of leptogenesis to a more detailed and quantitative level, considering the importance of
flavours as well as the necessary corrections to fermion masses, and solving the Boltzmann equations
numerically. When taking into account all these corrections, some solutions were still found to yield
a sufficient baryon asymmetry, even with a reasonable reheating temperature and a large value of the
B − L breaking scale. Interestingly enough, these solutions are of the ”mixed” type, meaning that
they are solutions for which neither types of seesaw dominates every entry of the light neutrino mass
matrix, and thus does not correspond to the cases of pure type I or pure type II mechanism.
In the other part of our work, we decided to study the running of neutrino masses in an extra-
dimensional model, where quantum corrections are known to lead to a power law running of the
couplings. Computing the one loop beta functions for several localisation of the matter fields along
the fifth dimension, we displayed the potentially dangerous consequences for Yukawa couplings since
they can diverge quite early. When matter fields are restricted to four dimensions, however, an
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interesting region in the parameter space has been found where the predictions for the mixing angles
are significantly different from the four dimensional MSSM. The possibility exists to lower all the
mixing angles to small CKM-like values at the cutoff scale, or even to a large θ13 similar to the two
others. This could prove an interesting playground for new flavour symmetries, for example.



Appendix A

Boltzmann Equations

The evolution of particle densities in the early Universe is governed by the Boltzmann Equations. Here
we will provide a short introduction to these equations by deriving them in simple example. More
detailed applications concerning leptogenesis can be found in [26, 27] for example.
Let us consider here a bosonic particle X which will stand for the massive gauge bosons of a GUT
for example. We will follow a derivation similar to the one in [76], and we refer to this reference for a
more detailed analysis.

Usually the particle X is super-massive and exists in the early Universe with a thermal distribution.
When the Universe cools down at a temperature T < MX , the X particles start decaying into leptons
and baryons. If the decay rates X → ql and X̄ → q̄l̄ are different, and all the other criteria for
successful baryogenesis as described in section2.4.1 are fulfilled, we can hope to generate a net baryon
asymmetry. If the X’s are completely in equilibrium, ΓX ≫ H(T = MX), the asymmetry is completely
washed-out. On the contrary, if ΓX ≪ H(T = MX), then we just have to compute the asymmetry
generated in each decay to derive immediately the final baryon asymmetry.
However, if we are not in of these two extreme situations or if we want to be more quantitatively
precise, we have to solve for the particle densities during the history of the Universe. Those equations
that allow us to do so are the Boltzmann equations. They are formulated primarily for the phase
space distribution fX(xµ, pµ) :

L[fX ] = C[fX ] (A.1)

L is the time evolution operator and is called the Liouville operator. C is the collision operator, taking
into account the production and annihilation of the species through its interactions with the plasma.
For a generic background, L is expressed as :

L = pµ ∂

∂µ
− Γµ

νρp
νpρ ∂

∂pµ
(A.2)

In a Universe obeying the FRW evolution, isotropy implies fX = fX(E, t) and the above equation
is :

L[fX ] = E
∂fX

∂t
− ȧ

a
|~p|2 ∂fX

∂E
(A.3)

What we are going to manipulate are the particles’ number densities defined by :
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nX(t) =
gX

(2π)3

∫

d3pfX(E, t) (A.4)

gX measures the number of degrees of freedom for the particle X. Integrating the Boltzmann equation
yields the following equation for nX :

dnX

dt
+ 3HnX =

gX

(2π)3

∫

C[f ]
d3p

E
(A.5)

and the collision term can be expressed through the scattering amplitude for the process (considered
to be the unique one for the moment) X + ... → i + ... :

gX

(2π)3

∫

C[f ]
d3pX

EX
= −

∫

dΠX ...dΠi... × (2π)4δ4(pX + ... − pi − ...) (A.6)

×
[

|M|2X+...→i+... × fX ...(1 ± fi)... − |M|2i+...→X+... × fi...(1 ± fX)...
]

(A.7)

the + signs apply to bosons and the − ones to fermions. The symbol dΠX stands for :

dΠX =
gX

(2π)3
d3p

2E
(A.8)

As already pointed out, it is more interesting to work with a quantity that does not scale with a
certain power of a, therefore we introduced the entropy density of the Universe s and built the number
density :

YX =
nX

s
(A.9)

As s ∝ a3, straightforwardly ṅX + 3HnX = sẎX . The cosmic time is related to the temperature of
the thermal bath by the relation :

t =
1

2H(T )
= 0.301g

−1/2
∗

MP

T 2
(A.10)

Now the better variable to study the dynamics is the quantity z = m/T with m a characteristic mass
scale, usually the mass of the particle we are tracking, so that here z = mX/T . In this parametrisation
t = z2/(2H(m)) and d/dt = H(mX)/z × d/dz. The usual convention is to denote derivatives with
respect to t with a dot, while derivatives with respect to z are denoted with a prime.

Armed with these general expressions we will turn to a more specific example. Let us suppose
that the interactions of X with baryonic matter happens through the processes X → bb and X → b̄b̄
and their inverse processes. b is a particle with a baryon charge qb. For simplicity, still following
[76], we suppose that the particles obey Mawxell-Boltzmann statistics, meaning that a species i has
a distribution fi ≃ exp[−(E − µi)/T ]. CPT symmetry will enforce the equalities : |M(X → bb)| =
|M(b̄b̄ → X)| and |M(X → b̄b̄)| = |M(bb → X)|. Since the baryon asymmetry will come from the
small difference between |M(X → bb)| and |M(X → b̄b̄)|, we introduce the two parameters ε and
M0 :

ε = |M(X → bb)|2 − |M(X → b̄b̄)|2 (A.11)

|M0|2 = |M(X → bb)|2 + |M(X → b̄b̄)|2 (A.12)
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What we want is the final baryon density nB = qbnb − qbnb̄ or more precisely YB = nB/s. Its
evolution will be linked to the evolution of YX , so we will derive the system of coupled Boltzmann
equations. As we use the Maxwell-Boltzmann distribution and we are interested in processes involving
particles with an energy E & mX at a temperature T . mX we can approximate 1 ± fi ≃ 1 in eq.
(A.7). Applying this equation to the case at hand leads to :

ṅX + 3HnX =

∫

dΠXdΠ1dΠ2(2π)4δ(px − p1 − p2)

×
[

−fx(EX)(|M(X → bb)|2 + |M(X → b̄b̄)|2)
+fb̄(p1)fb̄(p2)|M(b̄b̄ → X)|2 + fb(p1)fb(p2)|M(bb → X)|2

]

(A.13)

sẎX ≃
∫

dΠXdΠ1dΠ2(2π)4δ(px − p1 − p2) ×
[

−fX(pX) + feq
X (pX)

]

|M0|2 (A.14)

sH(mX)

z
Y ′

X = −ΓX(nX − neq
X ) = −ΓXs(YX − Y eq

X ) (A.15)

In the second line we neglected terms in ε so that each amplitude squared reduces to |M0|2. Moreover,
we neglected terms in µb/T = −µb̄/T : the distributions for b and b̄ become f1,2 = exp(−E1,2/T ) and
the Dirac function allows to write fb(E1)fb(E2) = exp(−(E1 + E2)/T ) = exp(−EX/T ) = feq

X , and
similarly for fb̄fb̄, since complete equilibrium is characterised by µb = µb̄ = µX = 0.
The factor ΓX in the last line stands for the thermally averaged decay rate of X. In order to study
the equations in terms of the more physical quantity :

KX =
ΓX(z = 1)

H(mX)
(A.16)

which parametrises the out-of-equilibrium condition, we also introduce γD = ΓX(z)/ΓX(z = 1) and
∆X = YX − Y eq

X , and the Boltzmann equation becomes :

∆′
X = −(Y eq

X )′ − zγDK∆X (A.17)

There remain to write the equation the baryon density YB = nB/s = qb(nb −nb̄)/s. The processes
changing the density of b, for example, are of course decays of X and inverse decays bb → X but also
the 2 ↔ 2 scatterings bb → b̄b̄ and b̄b̄ → bb mediated by X. Of course those processes the intermediate
X state is on-shell have already been counted in decays and inverse decays, therefore we will only take
the off-shell part of the amplitude which we denote with a prime M′(bb → b̄b̄). Thus the Boltzmann
equation writes :

ṅb + 3Hnb =

∫

dΠXdΠ1dΠ2(2π)4δ4(px − p1 − p2)

×
[

−2|M(bb → X)|2fb(E1)fb(E2) + |M(x → bb)|2fX(EX)
]

+2

∫

dΠ1dΠ2dΠ3dΠ4(2π)4δ4(p1 + p2 − p3 − p4)

×
[

−fb(p1)fb(p2)|M′(bb → b̄b̄)|2 + fb(p3)fb(p4)|M′(b̄b̄ → bb)|2
]

(A.18)

and a similar equation exists for nb̄. By choosing an appropriate normalisation for baryon charges we
fix qb = 1/2. Defining the thermally averaged 2 ↔ 2 cross section :
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〈σ|v|〉 =

∫

dΠ1dΠ2dΠ3dΠ4(2π)4δ4(p3 + p4 − p1 − p2) × fb(p1)fb(p2)|M′(bb → b̄b̄)|2 1

n2
γ

(A.19)

we are able to write the evolution equation for YB in the compact form :

zs

H(mX)
Y ′

B = εΓX(nX − neq
X ) − nBΓX

neq
X

nγ
− 2nBnb〈σ|v|〉 (A.20)

and it is straightforward to express everything in terms of ∆X and YB :

Y ′
B = εzKXγD∆X − zKXγBYB (A.21)

and in order to be as compact as possible we made use of the definition :

γB =
g∗Y

eq
X γD + 2nγ〈σ|v|〉

ΓX(z = 1)
(A.22)

Formal solutions of eqs. (A.17) and (A.21) can expressed by integrating the equations :

∆X(z) = ∆i
X exp

[

−
∫ z

zi

z′KXγD(z′)dz′
]

−
∫ z

zi

(Y eq
X )′(z′) exp

[∫ z

z′
z”KXγD(z”)dz”

]

dz′(A.23)

YB(z) = Y i
B exp

[

−
∫ z

zi

z′KXγB(z′)dz′
]

+εKX

∫ z

zi

z′∆X(z′)γD(z′) exp

[

−
∫ z

z′
z”KXγB(z”)dz”

]

dz′ (A.24)

with ∆i
X = ∆X(zi) and Y i

B = YB(zi) the initial conditions for the X and baryon asymmetry densi-
ties. These equations can then be solved for different regimes of approximation, for example the weak
washout regime (KX ≪ 1) or the strong washout regime (KX ≫ 1).

Applications of these principles are used in section 2.4 to derive the corresponding equations for
the lepton asymmetry in the leptogenesis scenario.



Appendix B

One Loop Computations in 5D Models

This appendix contains the computational details needed to derive the one loop results of chapter 4.
It will begin with the presentation of the KK reduced action for the two models analysed as well as the
relevant propagator and Feynman rules. In a second time we will compute the different KK sums that
will appear when considering the different one loop diagrams. Finally, we will present the diagrams
participating in the running of the Yukawa couplings and compute them to extract the formula used
in section 4.5 for the wave function renormalisation of the chiral superfields.

B.0.6 Actions

Let us write again the actions displayed in eq. (4.67), (4.68) and (4.69) of section 4.5 :

Sgauge =
Tr

C2(G)

∫

d8zdy

{

V 2

(

PT − 1

ξ
(P1 + P2)

)

V + V ∂2
yV +

ξ

2
χ̄

∂2
y

2
χ +

1

2
χ̄χ

+
g̃

4
(D̄2DαV )[V, DαV ] + g̃ (∂5V [V, χ + χ̄] − (χ + χ̄)[V, χ + χ̄])

+ O(g2) + ghosts

}

Smatter =

∫

d8zdy
{

Φ̄iΦi + Φc
i Φ̄

c
i + Φc

i∂yΦiδ(θ̄) − Φ̄i∂yΦ
c
iδ(θ)

+g̃(2Φ̄iV Φi − 2Φc
iV Φ̄c

i + Φc
iχΦiδ(θ̄) + Φ̄iχ̄Φ̄c

iδ(θ))
}

Sbrane =

∫

d8zdyδ(y)

{(

1

6
λ̃ijkΦiΦjΦk +

1

4
κ̃ijLiHuLjHu

)

δ(θ̄) + h.c.

}

We recall that Sgauge is the action of the pure gauge, Smatter the one which couples the gauge
sector the hypermultiplets and Sbrane the action for the Yukawa couplings. Using the KK expansions
(4.63) to (4.64), the 4D effective actions are obtained :
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Sgauge =

∫

d8z







V (0)
a 2

(

PT − 1

ξ
(P1 + P2)

)

V (0)
a +

∑

n≥1

V (n)
a 2

(

PT − 1

ξ
(P1 + P2)

)

V (n)
a

−
∑

n≥1

n2

R2
V (n)

a V (n)
a +

ξ

2

∑

n≥1

n2

R2
χ̄(n)

a

1

2
χ(n)

a +
1

2

∑

n≥1

χ̄(n)
a χ(n)

a







(B.1)

Smatter =

∫

d8z







Φ̄(0)Φ(0) +
∑

n≥1

(Φ̄(n)Φ(n) + Φc(n)Φ̄c(n)) −
∑

n≥1

n

R
(Φc(n)Φ(n)δ(θ̄) + Φ̄(n)Φ̄c(n)δ(θ))

+g



2Φ̄(0)V (0)Φ(0) + 2
∑

n≥1

(Φ̄(0)V (n)Φ(n) + Φ̄(n)V (0)Φ(n) + Φ̄(n)V (n)Φ(0))

−2
∑

n≥1

Φc(n)V (0)Φ̄c(n) +
∑

n≥1

(Φc(n)χ(n)Φ(0)δ(θ̄) + Φ̄(0)χ̄(n)Φ̄c(n)δ(θ))





+g





√
2

∑

m,n≥1

Φ̄(m)V (n)(Φ(m+n) + Φ(|m−n|)) +
√

2
∑

m,n≥1

Φc(m)(V (m+n) − V (|m−n|))Φ̄c(n)

− 1√
2

∑

m,n≥1

(

Φc(m)χ(n)(Φ(m+n) − Φ(|m−n|))δ(θ̄) + Φ̄(m)χ̄(n)(Φ̄c(m+n) − Φ̄c(|m−n|))δ(θ)
)











(B.2)

Sbrane =

∫

d8z







λijk

6



Φ
(0)
i Φ

(0)
j Φ

(0)
k + 3

√
2

∑

n≥1

Φ
(n)
i Φ

(0)
j Φ

(0)
k + 6

∑

m,n≥1

Φ
(0)
i Φ

(m)
j Φ

(n)
k

+2
√

2
∑

m,n,p≥1

Φ
(m)
i Φ

(n)
j Φ

(p)
k



 δ(θ̄) + h.c.

+
κij

4



L
(0)
i H(0)

u L
(0)
j H(0)

u + 2
√

2
∑

n≥1

(L
(n)
i H(0)

u L
(0)
j H(0)

u + L
(0)
i H(n)

u L
(0)
j H(0)

u )

+4
∑

m,n≥1

(L
(m)
i H(n)

u L
(0)
j H(0)

u + L
(m)
i H(0)

u L
(0)
j H(n)

u )

+4
√

2
∑

m,n,p≥1

(L
(0)
i H(m)

u L
(n)
j H(p)

u + L
(m)
i H(0)

u L
(n)
j H(p)

u )

+4
∑

m,n,p,q≥1

L
(m)
i H(n)

u L
(p)
j H(q)

u



 δ(θ̄) + h.c.







(B.3)

The gauge parameter is chosen as ξ = −1 and we defined the 4D effective couplings from the
higher-dimensional ones by :

g =
g̃√
πR

, λ =
λ̃

(πR)3/2
, κ =

κ̃

(πR)2
(B.4)



115

The propagators are extracted from the quadratic part of the action :

p
Φ̄

(c)(n)
i (−p, θ) Φ

(c)(m)
j (p, θ′) =

i

p2 − n2

R2 + iǫ
δijδmnδ4(θ − θ′)

Φ̄
(n)
i (−p, θ) Φ̄

c(m)
j (p, θ′)

p
=

−i n
R

p2(p2 − n2

R2 ) + iǫ
δijδmn

D̄2(p)

4
δ4(θ − θ′)

Φ
c(n)
i (−p, θ) Φ

(m)
j (p, θ′)

p
=

D2(p)

4

−i n
R

p2(p2 − n2

R2 ) + iǫ
δijδmnδ4(θ − θ′)

p
V

(n)
a (−p, θ) V

(m)
b (p, θ′) =

−i

2
(

p2 − n2

R2 + iǫ
)δabδmnδ4(θ − θ′)

p
χ̄

(n)
a (−p, θ) χ

(m)
b (p, θ′) =

−2i

p2 − n2

R2 + iǫ
δabδmnδ4(θ − θ′)

while the Feynman rules relevant for renormalising the wave function of chiral superfields at one loop
are :

V (0)

Φ(0)

Φ̄(0,n)

2igT a χ̄(n)

Φ̄c(n)

Φ̄(0)

igT a

Φ̄
(0)
i

Φ̄
(0)
j

Φ̄
(0)
k

i
6λijk Φ̄

(n)
i

Φ̄
(0)
j

Φ̄
(0)
k

i√
2
λijk Φ̄

(m)
i

Φ̄
(n)
j

Φ̄
(0)
k

iλijk

The same can be done for the model with matter superfields living on the brane. The pure gauge
action and the part of Smatter concerning the Higgs fields are untouched, while the couplings of the
quark and lepton superfields change as follows :
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Smatter =

∫

d8zdyδ(y)
{

Φ̄iΦi + 2g̃Φ̄iV Φi

}

=

∫

d8z







Φ̄iΦi + 2gΦ̄iV
(0)Φi + 2

√
2g

∑

n≥1

Φ̄iV
(n)Φi







(B.5)

Sbrane =

∫

d8zdyδ(y)

{

ỸeE
cLHd + ỸdD

cQHd + ỸuU cQHu +
1

4
κ̃LHuLHu + h.c.

}

=

∫

d8z

{

YeE
cLH

(0)
d + YdD

cQH
(0)
d + YuU cQH(0)

u +
1

4
κLH(0)

u LH(0)
u

+
∑

n≥1

√
2

(

YeE
cLH

(n)
d + YdD

cQH
(n)
d + YuU cQH(n)

u +
1

2
κLH(n)

u LH(n)
u

)

+
∑

m,n≥1

1

2
κLH(m)

u LH(n)
u + h.c.







(B.6)

The 4D coupling constants are now defined as :

Yi =
Ỹi√
πR

κ =
κ̃

πR
(B.7)

The Feynman rules can be computed in the same way as before but we could not write the Yukawa
part in a manner as compact as before so we will not explicitely display the rules.

B.0.7 Useful KK sums

We will suspend the computation of wave function renormalisation factors for the moment and compute
the different sums over KK states that will be encountered in the following. We will not keep ”finite”
terms which do not diverge with the cutoff since we are only interested in the running of the Yukawa
couplings. Different types of infinite sums can arise when computing one loop diagrams, depending
on whether KK number is conserved or whether every field running in the loop has KK excitation.

KK tower with KK number conservation

The interactions involving two modes which propagate in the bulk conserves the KK number at each
vertex1. The corresponding diagram is of the form :

(n)

(n)

(0) (0)

(B.8)

1This is a remnant of momentum conservation along x5, even though translational symmetry is broken because of
the orbifold compactification
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This diagram was already displayed and computed as an example in section 4.4.2 and we will
follow here the same path for this appendix to be self-consistent. The total contribution to the self
energy is :

I1 =
∑

n≥1

∫

d4k

(2π)4
1

k2 − n2

R2

1

(p + k)2 − n2

R2

(B.9)

We recall the definition and approximation of the θ3 modular function that we use to compute
these sums :

θ3(τ) =
∑

n∈Z

eiπn2τ θ3

(

it

πR2

)

≃ R

√

π

t
(B.10)

and the approximation holds for t ≫ R2 and is derived using the modular approximation θ3(−1/τ) =√
−iτθ3(τ). Using these properties, the integral I1 becomes :

I1 ≃ i

(4π)2

∫ ξ

ε

dt

t

[

1

2
θ3

(

it

πR2

)

− 1

2

]

≃ i

(4π)2

∫ ξ

ε

dt

t

(

1

2

√

πR2

t
− 1

2

)

≃ i

(4π)2
(

2µR − Ln(µR)
)

(B.11)

In the last line we have chosen the IR and UV cutoffs as ξ = π
4 R2 and ε = π

4 µ−2 to be consistent with
the decoupling method discussed in section 4.4.2.

KK tower with one excited state

The diagrams involved here are the following ones :

(n)

(0)

(0) (0)

(B.12)

and their expression reads :
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I2 =
∑

n≥1

∫

d4k

(2π)4
1

k2 − n2

R2

1

(k + p)2

≃ i

(4π)2

∫

dt

t
e−

xn2

R2 t

≃ i

(4π)2

∫

dt

t

1

2

[

θ3

(

itx

πR2

)

− 1

]

≃ i

(4π)2
(4µR − Ln(µR)) (B.13)

Double KK tower

The last kind of diagram appearing only for localised interactions and involving two excited states
running in the loop is :

(n)

(m)

(0) (0)

(B.14)

These diagrams are only relevant for the model with all matter fields living in the bulk, and it is
computed as :

I3 =
∑

m,n≥1

∫

d4k

(2π)4
1

k2 − m2

R2

1

(k + p)2 − n2

R2

≃ i

(4π)2

∫

dt

t
e
−

„

xn2

R2 +
(1−x)m2

R2

«

t

≃ i

(4π)2

∫

dt

t

1

4

[

θ3

(

itx

πR2

)

− 1

] [

θ3

(

it(1 − x)

πR2

)

− 1

]

≃ πµ2R2 − 4µR +
1

2
Ln(µR) (B.15)

No KK tower in the loop

For completeness, and because we excluded loops with only zero modes in the computations above,
we display the usual for a loop where only zero modes run. This will be useful, because the orbifold
projection leads to Feynman rules for the zero modes which differ from those for massive KK states
by factors of

√
2, due to the different normalisation of the fundamental and excited modes in the KK

decomposition.
Thus, with only one zero mode, the integrals are of the form :
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I4 =

∫

d4k

(2π)4
1

k2

1

(k + p)2

≃ i

(4π)2

∫

dt

t
≃ 2i

(4π)2
Ln(µR) (B.16)

B.0.8 Wave function renormalisation

We now possess all the necessary tools, and proceed to compute the wave function counter terms
which are necessary to obtain the Yukawa beta functions.

Matter in the bulk

The five types of diagrams involved in the self-energy computation are listed below :

(n)

(n)

(1) : i j1 2

(n)

(n)

(2) : i j1 2

(0)

(0)

(3) : i j1 2

(0)

(n)

(4) : i j1 2

(m)

(n)

(5) : i j1 2

We will compute the first diagram in detail, using the formalism of supergraphs developed in
section 2.2.3 and the integral In of the previous section :

−iδZ
(1)
ij = −4g2(T aT a)rsδij

∑

n≥0

∫

d4k

(2π)4
d4θ1d

4θ2
−iδ4(θ1 − θ2)

2(k2 − n2

R2 )

× 1

16
D̄2

1D
2
2

iδ4(θ1 − θ2)

(k + p)2 − n2

R2

Φ
r(0)
i (−p, θ1)Φ̄

s(0)
j (p, θ2)

= −i2g2C2(R)δrs
ij (I1 + I4)

∫

d4θ1Φ
r(0)
i (−p, θ1)Φ̄

s(0)
j (p, θ1)

= −i
2g2C2(R)δrs

ij

16π2
(2µR + log(µR))

∫

d4θ1φ
r(0)
i (−p, θ1)φ̄

s(0)
j (p, θ1)

The indices (r, s) are gauge indices. We displayed the integration factor over the theta coordinate for
the first diagram but we will omit it in the other computations. The computation of the the remaining
diagrams follows exactly the same lines and we present only the results :

−iδZ
(2)
ij = i

−2g2C2(R)δrs
ij

16π2 (2µR − log(µR)) −iδZ
(3)
ij = i

λiklλ
∗

jkl
δrs

16π2 log(µR)

−iδZ
(4)
ij = i

2λiklλ
∗

jkl
δrs

16π2 (4µR − log(µR)) −iδZ
(5)
ij = i

λiklλ
∗

jkl
δrs

16π2

(

2π(µR)2 − 8µR + log(µR)
)
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The final result is obtained by addition of the five contributions and we note that every subdomi-
nant divergence disappears :

δZ5D
Φ =

1

(4π)2







−8

Ng
∑

n=1

g2
nC2(R

(i)
n )δij



 µR +



2π

NΦ
∑

k,l=1

λ∗
iklλjkl



 µ2R2



 (B.17)

This result is finally applied to the chiral superfields :

δZHu = − 1

(4π)2

[

12πTr(Y †
u Yu)µ2R2 −

(

6

5
g2
1 + 6g2

2

)

µR

]

(B.18)

δZHd
= − 1

(4π)2

[

4π[3Tr(Y †
d Yd) + Tr(Y †

e Ye)]µ
2R2 −

(

6

5
g2
1 + 6g2

2

)

µR

]

(B.19)

δZL = − 1

(4π)2

[

4π(Y †
e Ye)µ

2R2 −
(

6

5
g2
1 + 6g2

2

)

µR

]

(B.20)

δZEC = − 1

(4π)2

[

8π(Y ∗
e Y T

e )µ2R2 −
(

24

5
g2
1

)

µR

]

(B.21)

δZDc = − 1

(4π)2

[

8π(Y ∗
d Y T

d )µ2R2 −
(

8

15
g2
1 +

32

3
g2
3

)

µR

]

(B.22)

δZQ = − 1

(4π)2

[

4π(Y †
u Yu + Y †

d Yd)µ
2R2 −

(

2

15
g2
1 + 6g2

2 +
32

3
g2
3

)

µR

]

(B.23)

δZUc = − 1

(4π)2

[

8π(Y ∗
u Y T

u )µ2R2 −
(

32

15
g2
1 +

32

3
g2
3

)

µR

]

(B.24)

Using these results we compute the beta functions given in eq. (4.77) and (4.78).

Matter on the brane

In this case the diagrams will be different since for example the lepton and quark superfields do not
couple to χ since the latter has a zero wave function at y = 0 on the brane. The diagrams are four :

(0)

(1) : i j1 2

(n)

(2) : i j1 2

(0)

(3) : i j1 2

(n)

(4) : i j1 2

Their computation yields :

−iδZ
(1)
ij = i

−4g2C2(R)δrs
ij

16π2 log(µR) −iδZ
(2)
ij = i

−8g2C2(R)δrs
ij

16π2 (4µR − log(µR))

−iδZ
(3)
ij = i

λiklλ
∗

jkl

16π2 log(µR) −iδZ
(4)
ij = i

λiklλ
∗

jkl

16π2 (4µR − log(µR))
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the sum of which gives for the matter superfields :

δZΦ
ij = − 1

(4π)2
[

−16µRg2C2(R)δij + 4µRλiklλ
∗
jkl

]

(B.25)

The Higgs superfields are renormalised differently. The gauge part is the same as for the previous
model, the only change reside in the Yukawa sector :

δZH = − 1

(4π)2

[

−8µRg2C2(R) + 2 log(µR)Tr(YiY
†
i )

]

(B.26)

Applying this to the different superfields :

δZHu = − 1

(4π)2

[

6Tr(Y †
u Yu) log ΛR −

(

6

5
g2
1 + 6g2

2

)

ΛR

]

(B.27)

δZHd
= − 1

(4π)2

[

[6Tr(Y †
d Yd) + 2Tr(Y †

e Ye)] log ΛR −
(

6

5
g2
1 + 6g2

2

)

ΛR

]

(B.28)

δZL = − 1

(4π)2

[

8(Y †
e Ye) −

12

5
g2
1 − 12g2

2

]

ΛR (B.29)

δZEC = − 1

(4π)2

[

16(Y ∗
e Y T

e ) − 48

5
g2
1

]

ΛR (B.30)

δZDc = − 1

(4π)2

[

16(Y ∗
d Y T

d ) − 16

15
g2
1 − 64

3
g2
3

]

ΛR (B.31)

δZQ = − 1

(4π)2

[

8(Y †
u Yu + Y †

d Yd) −
4

15
g2
1 − 12g2

2 − 64

3
g2
3

]

ΛR (B.32)

δZUc = − 1

(4π)2

[

16(Y ∗
u Y T

u ) − 64

15
g2
1 − 64

3
g2
3

]

ΛR (B.33)

From these, it is straightforward to compute the expressions of eq. (4.83) and (4.84).
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R.N. Mohapatra and G. Senjanović, Neutrino Mass And Spontaneous Parity Nonconservation
Phys. Rev. Lett. 44 (1980) 912.

[5] M. Magg, C. Wetterich, Phys. Lett. B94 (1980) 61;
G. Lazarides, Q. Shafi, C. Wetterich, Nucl. Phys. B181 (1981) 287.

[6] J. Pati and A. Salam, ”Lepton Number as the Fourth Color”, Phys. Rev. D10: 275-289, 1974,
Erratum ibid. D11: 703-703, 1975.

[7] H. Georgi and S. L. Glashow; ”Unity of All Elementary-Particle Forces”, Phys. Rev. Lett. 32
(1974) 438.

[8] M. Fukugita and Y. Yanagida, ”Baryogenesis Without Grand Unification”, Phys. Lett. B 174
(1986) 45.

[9] J. Wess and B. Zumino, ”Supergauge Transformations in Four Dimensions”, Nucl. Phys. B 70,
39-50 (1974).

[10] N. Cabibbo, ”Unitary Symmetry and Leptonic Decays”, Phys. Rev. Lett. 10, 531 (1963).
M. Kobayashi and T. Maskawa, ”CP Violation In The Renormalizable Theory Of Weak Inter-
action”, Prog. Theor. Phys. 49, 652 (1973).

123



124 BIBLIOGRAPHY

[11] Z. Maki, M. Nakagawa and S. Sakata, ”Remarks on the unified model of elementary particles”,
Prog. Theor. Phys. 28 (1962) 870.

[12] J. Wess and J. Bagger; ”Supersymmetry and Supergravity”, Princeton University Press, 1992.

[13] P. C. West, ”Introduction to supersymmetry and supergravity”, World Scientific 1990.

[14] D. Bailin and A. Love; ”Supersymmetric Gauge Field Theory and String Theory”, Institute of
Physics, 1994.

[15] P. Binetruy, ”Supersymmetry : Theory, Experiment and Cosmology”, Oxford Graduate Texts,
2006.

[16] J.-P. Derendinger, ”Globally Supersymmetric Theories in Four and Two Dimensions”, in: Pro-
ceedings of the Hellenic School of Particle Physics, Corfu, Greece, edited by G. Zoupanos and
N. Tracas, (World Scientific, Singapore, 1990).
http://www.unine.ch/phys/hepth/Derend/derend-frame.html

[17] H. Murayama and A. Pierce, ”Not even decoupling can save the minimal supersymmetric SU(5)”,
Phys. Rev. D65:055009, 2002, [arXiv:hep-ph/0108104]

[18] P. Frampton, S. Nandi and J. Scanio, Phys. Lett. 85B, 255 (1979).

[19] H. Georgi and C. Jarlskog, Phys. Lett. 86B, 297 (1979).

[20] A. Casas and A. Ibarra, ”Oscillating neutrinos and µ → e, γ”, Nucl. Phys. B 618 (2001) 171,
hep-ph/0103065.

[21] F. Borzumati and A. Masiero, ”Large Muon And Electron Number Violations In Supergravity
Theories”, Phys. Rev. Lett. 57 (1986) 961.

[22] R. Barbieri, L. J. Hall and A. Strumia, ”Violations of lepton flavor and CP in supersymmetric
unified theories”, Nucl. Phys. B 445 (1995) 219 [arXiv:hep-ph/9501334].

[23] S. Davidson and A. Ibarra, ”A lower bound on the right-handed neutrino mass from leptogenesis”,
Phys. Lett. B 535 (2002) 25 [arXiv:hep-ph/0202239].

[24] T. Hambye, Y. Lin, A. Notari, M. Papucci and A. Strumia, ”Constraints on neutrino masses
from leptogenesis models”, Nucl. Phys. B 695:169-191, 2004, [arXiv:hep-ph/0312203].

[25] W. Buchmuller, P. Di Bari and M. Plumacher, ”Cosmic microwave background,
matter-antimatter asymmetry and neutrino masses”, Nucl. Phys. B 643 (2002) 367
[arXiv:hep-ph/0205349].

[26] G. F. Giudice, A. Notari, M. Raidal, A. Riotto and A. Strumia, ”Towards a complete
theory of thermal leptogenesis in the SM and MSSM”, Nucl. Phys. B 685 (2004) 89
[arXiv:hep-ph/0310123].
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