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Abstract

This thesis discusses perturbative and non-perturbative aspects of type II superstring the-

ories in AdS5 ×S5 and AdS4 ×CP3 backgrounds relevant for the AdS/CFT correspondence.

We present different approaches to compute observables in the context of the duality and we

test the quantum properties of these two superstring actions. Our methods of investigation

span from the traditional perturbative techniques for the worldsheet sigma-model at large

string tension, consisting in expanding around minimal-area surfaces, to the development

of a novel non-perturbative analysis, based upon numerical methods borrowed from lattice

field theory.

We review the construction of the supercoset sigma-model for strings propagating in the

AdS5 × S5 background. When applied to the AdS4 × CP3 case, this procedure returns an

action that cannot consistently describe the general quantum dynamics of the superstring.

This can be attained instead by an alternative formulation based on the double dimensional

reduction of the supercoset action for a supermembrane moving in AdS4 × S7.

We then discuss a general and manifestly covariant formalism for the quantization of string

solutions in AdS5 × S5 in semiclassical approximation, by expanding the relevant sigma-

model around surfaces of least area associated to BPS and non-BPS observables amenable

to a dual description within the gauge/gravity duality. The novelty of our construction is

to express the bosonic and fermionic semiclassical fluctuation operators in terms of intrinsic

and extrinsic invariants of the background geometry for given arbitrary classical configura-

tion.

We proceed with two examples in the more general class of quantum small fluctuations,

governed by non-trivial matrix-valued differential operators and so far explored only in

simplifying limits. Our results stem from the exact solution of the spectral problem for a

generalization of the Lamé differential equation, which falls under a special class of fourth-

order operators with coefficients being doubly periodic in a complex variable. Our exact

semiclassical analysis applies to two-spin folded closed strings: the (J1, J2)-string in the

SU(2) sector in the limit described by a quantum Landau-Lifshitz model and the bosonic

sector of the (S,J)-string rotating in AdS5 and S5. In both situations, we write the one-loop

contribution to the string energy in an analytically closed integral expression that involves

non-trivial nested combinations of Jacobi elliptic functions.

Similar techniques allow to address the strong-coupling behaviour of 1/4-BPS latitude Wil-

son loops in planar SU(N) N = 4 supersymmetric Yang-Mills (SYM) theory. These op-

erators are holographically mapped to fundamental strings in AdS5 × S5. To compute the

first correction to their classical values, we apply a corollary of the Gel’fand-Yaglom method

for the functional determinants to the matrix-valued operators of the relevant semiclassical

fluctuations. To avoid ambiguities due to the absolute normalization of the string partition



function, we consider the ratio between the generic latitude and the maximal 1/2-BPS cir-

cular loop. Our regularization procedure reproduces the next-to-leading order predicted by

supersymmetric localization in the dual gauge theory, up to a certain remainder function

that we comment upon and that was later confirmed in a different setup by other authors.

We also study the AdS light-cone gauge-fixed string action in AdS4 ×CP3 expanded around

the null cusp background, which is dual to a light-like Wilson cusp in the planar N = 6

Chern-Simons-matter (ABJM) theory. The fluctuation Lagrangian has constant coefficients,

thus it allows to extend the computation of the free energy associated to such string solution

up to two loops, from which we derive the null cusp anomalous dimension f(λ) of the dual

ABJM theory at strong coupling to the same loop order. The comparison between this

perturbative result for f(λ) and its integrability prediction results in the computation of

the non-trivial ABJM interpolating function h(λ), which plays the role of effective coupling

in all integrability-based calculations in the AdS4/CFT3 duality. The perturbative result

is in agreement with the strong-coupling expansion of an all-loop conjectured expression of

h(λ).
The last part of the thesis is devoted to a novel and genuinely field-theoretical way to inves-

tigate the AdS5 × S5 superstring at finite coupling, relying on lattice field theory methods.

Deeply inspired by a previous study of Roiban and McKeown, we discretize the AdS5 × S5

superstring theory in the AdS light-cone gauge and perform lattice simulations employing

a Rational Hybrid Monte Carlo algorithm. We measure the string action, from which we

extract the null cusp anomalous dimension of planar N = 4 SYM as derived from AdS/CFT,

as well as the mass of the two AdS excitations transverse to the relevant null cusp classical

solution. For both observables we find good agreement in the perturbative regime of the

sigma-model at large ’t Hooft coupling. For small coupling, the expectation value of the ac-

tion exhibits a deviation compatible with the presence of quadratic divergences. After their

non-perturbative subtraction, the continuum limit can be taken, and suggests a qualitative

agreement with the non-perturbative expectation from AdS/CFT. For small coupling we

also detect a phase in the fermionic determinant that leads to a sign problem not treatable

via standard reweighting. We explain its origin and also suggest an alternative fermionic

linearization.



Zusammenfassung

In dieser Arbeit werden perturbative und nicht-perturbative Aspekte der Typ-IIB Superstring-

Theorie in AdS5 ×S5 und AdS4 ×CP3 Hintergründen besprochen, welche für die AdS/CFT

Korrespondenz von Bedeutung sind. Wir präsentieren verschiedene Herangehensweisen, Ob-

servablen im Kontext der Dualität zu berechnen, und testen die Quanteneigenschaften dieser

beiden Superstring-Wirkungen. Die Methoden unserer Untersuchungen reichen von tradi-

tionellen perturbativen Techniken für das Weltflächen Sigma-Modell bei großer Stringspan-

nung, welche in einer Entwicklung um Minimalflächen-Lösungen bestehen, bis zu der Ent-

wicklung einer neuen, nicht-perturbativen Technik, welche auf numerischen Methoden aus

der Gitterfeldtheorie basiert.

Wir besprechen die Konstruktion des Super-Coset Sigma-Modells für Strings, die imAdS5 × S5

Hintergrund propagieren. In der Anwendung auf den Fall des Hintergrunds AdS4 × CP3

liefert diese Vorgehensweise eine Wirkung, welche die allgemeine Quantendynamik des Su-

perstrings nicht konsistent beschreiben kann. Eine solche Wirkung lässt sich aus einer

alternativen Formulierung ableiten, welche auf der doppelten dimensionalen Reduktion der

Super-Coset Wirkung einer sich in AdS4 × S7 bewegenden Supermembran basiert.

Daraufhin besprechen wir einen allgemeinen und manifest kovarianten Formalismus für

die Quantisierung von String-Lösungen in AdS5 × S5 in einer semiklassischen Näherung.

Dieser besteht in einer Entwicklung des relevanten Sigma-Modells um Flächen mit mi-

nimalem Flächeninhalt, welche mit BPS- und nicht-BPS-Observablen in Verbindung ste-

hen, die einer dualen Beschreibung innerhalb der Eich-/Gravitations-Dualität zugänglich

sind. Die Neuheit unserer Konstruktion besteht darin, die bosonischen und fermionischen

Fluktuations-Operatoren für eine gegebene, beliebige klassische Konfiguration durch intrin-

sische und extrinsische Invarianten der Hintergrund-Geometrie auszudrücken.

Wir fahren mit zwei Beispielen in der allgemeineren Klasse kleiner Quantenfluktuationen

fort, die durch nicht-triviale matrixwertige Differentialoperatoren bestimmt werden, und

bisher nur in vereinfachenden Grenzwerten untersucht wurden. Unsere Ergebnisse stammen

von der exakten Lösung des Spektral-Problems für eine Verallgemeinerung der Lamé’schen

Differentialgleichung, die in eine spezielle Klasse von Operatoren vierter Ordnung fällt,

deren Koeffizienten doppelt periodisch in einer komplexen Variablen sind. Unsere exakte

semiklassische Analyse lässt sich auf Zwei-Spin gefaltete, geschlossene Strings anwenden:

Den (J1, J2)-String im SU(2)-Sektor in dem durch einen Quanten-Landau-Lifschitz Modell

beschriebenen Grenzfall und den bosonischen Sektor des (S,J)-Strings, welcher in AdS5

und S5 rotiert. In beiden Fällen schreiben wir den Beitrag in der Einschleifen-Ordnung zur

Energie des Strings in einem analytisch geschlossenen Integralausdruck, der nicht-triviale,

verschachtelte Kombinationen von Jacobi’schen elliptischen Funktionen beinhaltet.

Ähnliche Techniken erlauben die Betrachtung von 1/4-BPS Breitengrad-Wilson-Schleifen



in planarer SU(N) N = 4 supersymmetrischer Yang-Mills (SYM) Theorie bei starker Kop-

plung. Diese Operatoren werden holographisch auf fundamentale Strings in AdS5 × S5

abgebildet. Um die erste Korrektur zu ihrem klassischen Wert zu erhalten, verwenden wir

ein Korollar der Gel’fand-Yaglom-Methode für die Funktionaldeterminanten der matrixw-

ertigen Operatoren, die zu den relevanten semiklassischen Fluktuationen gehören. Zur Ver-

meidung von Ambiguitäten aufgrund der absoluten Normierung der String-Zustandssumme

betrachten wir das Verhältnis zwischen der allgemeinen Breitengrad- und der maximalen,

1/2 BPS-artigen kreisförmigen Schleife. Unsere Regularisierungsvorschrift reproduziert die

mithilfe der Methode supersymmetrischer Lokalisierung in der dualen Eichtheorie erhaltene

Vorhersage für die nächstführende Ordnung bis auf eine überbleibende Funktion, deren Be-

deutung wir kommentieren und deren Wert später in einer anderen Situation von anderen

Autoren bestätigt wurde.

Wir untersuchen weiterhin die AdS-Lichtkegel eichfixierte String-Wirkung in AdS4 × CP3

in einer Entwicklung um den Hintergrund einer lichtartigen Spitze, welche dual zu einer

lichtartigen Wilson-Schleife mit einer Spitze in der planaren N = 6 Chern-Simons-Materie

(ABJM) Theorie ist. Die Fluktuations-Langrangefunktion hat konstante Koeffizienten, so-

dass es möglich ist, die Berechnung der freien Energie einer solchen String-Lösung auf das

Zwei-Schleifen-Niveau auszudehnen, wovon ausgehend wir die anomale Dimension f(λ)
der lichtartigen Spitze in der dualen ABJM Theorie bei starker Kopplung zu ebendieser

Schleifen-Ordnung herleiten. Der Vergleich zwischen diesem perturbativen Ergebnis für

f(λ) und der aus der Integrabilität hergeleiteten Vorhersage liefert die Berechnung der nicht-

trivialen ABJM Interpolationsfunktion h(λ), welche die Rolle einer effektiven Kopplung in

allen integrabilitätsbasierten Rechnungen innerhalb der AdS4/CFT3 Dualität spielt. Das

perturbative Ergebnis stimmt mit der Entwicklung einer Hypothese über die Form von h(λ)
zu allen Ordnungen überein.

Der letzte Teil dieser Arbeit widmet sich einer neuen und genuin feldtheoretischen Möglichkeit,

den Superstring in AdS5×S5 bei endlicher Kopplung zu untersuchen, indem man Methoden

der Gitterfeldtheorie verwendet. Zutiefst inspiriert durch eine vorherige Untersuchung von

Roiban und McKeown, diskretisieren wir die Superstring Theorie in AdS5 ×S5 in der AdS-

Lichtkegel-Eichung und führen Gittersimulationen durch, für die wir einen Hybrid-Rational-

Monte-Carlo Algorithmus verwenden. Wir messen die String-Wirkung, aus der wir mithilfe

der AdS/CFT Korrespondenz die anomale Dimension für lichtartige Spitzen in N = 4 SYM

extrahieren, sowie die Massen der beiden AdS-Anregungen, die transversal zu der rele-

vanten klassischen Lösung für eine lichtartige Spitze sind. Für beide Observablen finden

wir eine gute Übereinstimmung innerhalb des perturbativen Bereichs des Sigma-Modells

bei großer ’t Hooft-Kopplungskonstante. Für einen kleinen Wert der Kopplungskonstanten

beobachten wir eine Abweichung des Erwartungswerts der Wirkung, der mit dem Auftreten

quadratischer Divergenzen verträglich ist. Nach ihrer perturbativen Subtraktion kann der

Kontinuumslimes genommen werden, und suggeriert eine qualitative Übereinstimmung mit



der Erwartung für den nicht-perturbativen Bereich der AdS/CFT Korrespondenz. Für

kleine Kopplungskonstanten finden wir weiterhin einen Phasenfaktor in der fermionischen

Determinante, der zu einem Vorzeichenproblem führt, das nicht mit dem als “reweighting”

bekannten Standardverfahren behandelt werden kann. Wir erklären die Herkunft dieses

Phasenfaktors und schlagen zusätzlich eine alternative fermionische Linearisierung vor.
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Chapter 1

Introduction

Modern theoretical physics has been written in the language of two major scientific paradigms:

theory of general relativity and quantum field theory.

The Einstein’s theory of gravitation provides an elegant geometric interpretation of gravita-

tional attraction as a dynamical effect of the curvature of space and time, seen as interwoven

in a single four-dimensional “fabric” called spacetime, determined by the distribution of en-

ergy and momentum carried by the matter and radiation filling the universe. Over the last

century a number of physical phenomena has been derived from this principle and found

consistent with experimental data at the current level of accuracy [10]. The first direct

detections of gravitational waves, travelling as “ripples” of spacetime, has been confirmed

recently by the LIGO and Virgo collaborations [11, 12]. Despite these successes, general rel-

ativity still defies all efforts to reconcile them with a microscopical description at a quantum

level.

On a parallel route, non-gravitational forces have been incorporated into a theoretical frame-

work where special relativity fits together with quantum mechanics and the concept of field

quanta supersedes the classical idea of single particles. Quantum field theory (QFT) has

evolved to start new trends in condensed matter physics, leading to the study of critical

phenomena in connection with phase transitions using the renormalization group flow [13],

with the benefit of providing a new viewpoint on renormalization in particle physics [14–

16] ([17] for a review). The same symbiosis has developed in connection to special QFTs

with spacetime conformal invariance, following earlier studies in two-dimensional critical

systems [18].

The original focus of QFT arose within the first attempts to quantize gauge theories. The

formulation of quantum theory of electrodynamics (QED) served as model for the develop-

ment of quantum chromodynamics (QCD), which unravelled the puzzle behind the growing

1
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list of hadrons discovered in the late 1960s in terms of the strong interaction among con-

stituents particles called quark and gluons. Subsequent efforts to describe weak interactions

as the exchange of heavy bosons culminated in the foundation of the best theoretical tool

to investigate nature at short distances as we know it today, the Standard Model of elemen-

tary particle physics. Free of quantum anomalies and arguably theoretically self-consistent,

it describes the dynamics of matter particles as the exchange of the force carriers of a

non-abelian (Yang-Mills) theory with local (gauge) symmetry group SU(3)×SU(2)×U(1)
partially broken by the Higgs mechanism [19–21]. One of its greatest successes is the in-

terpretation of the mysterious Feynman-Björken scaling as an effect of asymptotic freedom

in non-abelian gauge theories [22], when quarks behave as non-interacting constituents in

deep inelastic scattering. Since then, theoretical predictions have shown agreement with the

experimental data with spectacular precision [23]. The process of experimental validation

continues and recently led to the discovery of the last elusive particle, the Higgs boson, at

the Large Hadron Collider [24, 25]. That being said, the Standard Model cannot be the last

word on physical reality. The next future will likely shed light on many known inadequacies

and unanswered questions, for instance the hierarchy problem of the fundamental forces,

the phenomenon of neutrinos oscillations and cosmic observations hinting at the existence

of dark matter and dark energy.

Most of the predictive power of the Standard Model is due to perturbative approximations

around the free theory by means of Feynman diagrams. However, the hope of resumming

loop expansions vanishes as soon as one realizes that they are typically asymptotic expan-

sions with zero radius of convergence. Moreover, perturbation theory breaks down when

applied to inherently strongly-coupled quantum phenomena, e.g. solitons and bound states.

Of course, there are direct attempts to quantitatively understand the mechanism of quark

confinement and arrive at reasonable approximations for the hadronic spectra, but they are

the product of numerical simulations of effective theories, which may obscure a microscopic

description in terms of the elementary constituents.

An alternative step consists in engineering a “toy model” that abandons the immediate ambi-

tion to describe the real world. The first step is to reduce the complexity of the problem and

exploit enlarged number of symmetries to make non-trivial analytical statements. Secondly,

the simplified model can be enriched with more features in order to transfer some of its prop-

erties back to the original system to some degree. This strategy has proven to be extremely

useful in countless occasions throughout the history of science. For instance, it happened

at the dawn of quantum mechanics when the development of the Hartree-Fock method (e.g.

in [26]) to calculate wavefunctions for multi-electron atoms and small molecules was guided

by earlier semi-empirical methods based on the exact Schrödinger solution for the hydrogen

atom.
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In order to gain a better theoretical understanding of QCD physics and to develop new

computational tools in QFT in general, theoretical physicists have looked for the “most

symmetric” interacting gauge theory in four dimensions. This role is arguably played by

N = 4 supersymmetric Yang-Mills (SYM) theory [27]: it describes a Minkowskian universe

containing scalars and fermions interacting via non-abelian gluons. It possesses the max-

imal amount of N = 4 supercharges to be renormalizable in four dimensions, which fully

constrains the precise form of the interactions, and it does not display any parameter other

than the coupling constant and the gauge group 1. In addition to supersymmetry, the model

exhibits exact conformal symmetry at the quantum level and it is conjectured to have an

“electric-magnetic” Montonen-Olive SL(2,Z) duality [29–31], one of the earliest instances

of S-duality. Of course, we cannot expect to draw heavily on this analogy, as it is clear from

the fact that N = 4 SYM has massless mass spectrum and no running coupling constant

[32–35] – meaning neither a characteristic scale nor asymptotic freedom – leaving aside

the fact that supersymmetry is not a feature of the Standard Model. However, there exist

quantitative features of N = 4 SYM found to survive in QCD, for instance in the confor-

mal dimension of local gauge-invariant operators 2 and in the derivation of tree-level QCD

scattering amplitudes from N = 4 SYM [39]. In the remainder of the chapter we will show

that there are also other reasons that make N = 4 SYM a theoretical laboratory worth to

be studied in its own right.

1.1 The AdS5/CFT4 and AdS4/CFT3 correspondences

One of the major breakthroughs of the recent years is the Anti-de Sitter/Conformal Field

Theory (AdS/CFT) correspondence [40–42] 3. The conjecture asserts the exact equivalence

between a pair of models. On one side, there is a QFT with conformal spacetime symmetry

in d dimensions. On the other one, we have a superstring theory where strings move in the

target-space AdSd+1 ×M9−d including an anti de-Sitter space, a (d + 1)-dimensional mani-

fold with constant negative curvature, and a compact manifold M9−d in 9 − d dimensions.

The d-dimensional boundary of the background is a conformally-flat space on which the

CFT is formulated. Note that the dimensions of the two factors (AdS and M) add up to

yield a string theory with fermions in ten dimensions, which is the critical dimension to
1In principle, one can also consider the instanton angle θ which combines with the YM coupling constant

into a complex coupling τ = θ
2π

+ 4πi
g2
YM

. Through the AdS/CFT correspondence (section 1.1), the angle θ
equals the expectation value of the axion field in the spectrum of the dual Type IIB superstring, e.g. [28].

2Twist-two (Wilson) operators play an important role in deep inelastic scattering in QCD as much as
in N = 4. Their anomalous dimension for large spin is governed by the so-called scaling function of the
theory in question, see section 7.1. The maximal transcendentality principle conjectured in [36] states that
the N = 4 SYM scaling function has uniform degree of transcendentality 2l − 2 at loop order l and can be
extracted from the QCD expression by removing the terms that are not of maximal transcendentality. A
brief account of the subject and references are in [37, 38].

3Among the many reviews on the topic we suggest [28, 43–47] and the excellent textbook [48].
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ensure the cancellation of conformal anomaly on the worldsheet. In this context the term

“equivalence” is a synonym of one-to-one correspondence between aspects of the two models

(e.g. global symmetries, operator observables, states, correlation functions). The claim

that the dynamics of the string degrees of freedom can be encoded in a lower-dimensional

(non-gravity) theory at its boundary suggests to see it as a realisation of holographic duality.

Since we will encounter CFTs that are gauge theories in this thesis (summarized in (1.1)

and (1.5) below), we often refer to the correspondence also as gauge/gravity duality.

The first example [40] at the spotlight since 1997 – later named AdS5/CFT4 correspon-

dence – relates

N = 4 super Yang-Mills in flat space R1,3

with Yang-Mills coupling constant gYM and gauge group SU(N)

and (1.1)

type IIB superstring theory with string tension T and coupling constant gs
on AdS5 × S5 with curvature radii RAdS5 = RS5 ≡ R
and N units of Ramond-Ramond five-form flux through S5 .

Here, T is an overall factor in the string action and gs is the genus-counting variable in

the perturbative expansion over topologies of string theory. The AdS/CFT dictionary re-

lates the gauge/string parameters through the dimensionless ’t Hooft coupling λ

λ = g2
YMN , λ = 4π2 T 2 = 4πNgs =

R4

α′2
. (1.2)

The constant α
′

is the square of the string characteristic length and historically the slope

parameter in the linear relationship between energy/angular momentum of rotating rela-

tivistic bosonic strings in flat space. The motivation behind the correspondence (1.1) arose

from the investigation of a stack of N parallel Dirichlet branes (D3-branes), 3d objects

sweeping out a (1+3)-dimensional volume, separated by a distance d and embedded in type

IIB string theory in R1,9. D-branes can be viewed in two equivalent ways, fundamentally

linked to the open/closed string duality, where N = 4 SYM theory and type IIB supergrav-

ity in AdS5 × S5 emerge as two (arguably equivalent) low-energy descriptions of the same

physics in Maldacena limit for α
′

, d→ 0 while holding α
′/d fixed. Relaxing the supergravity

limit α
′ → 0, the claim [40] is that the two models in (1.1) continue to be dual for any values

of the parameters.

An immediate “check” of the duality is the fact that the two models in (1.1) have the same

global symmetry group PSU(2,2∣4), namely the super-Poincaré and conformal invariance

of N = 4 SYM and the superisometry group of the string theory in AdS5×S5. On operative

level, one establishes the equivalence of the superstring partition function, subject to sources
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φ for string vertex operators with boundary value φ0, and the partition function in the CFT

side with sources φ0 for local operators

Zstring [φ∣∂(AdS5)
= φ0] = ZCFT[φ0] . (1.3)

The strongest version of the conjecture puts no restriction on the parameter space, but

it is hard to check its validity if we do not work in certain simplifying limits to enable

a perturbative approach. A unique parameter (λ) turns out to be a useful choice when

considering the ’t Hooft limit [49]

gYM → 0 , N →∞ , λ = constant . (1.4)

The Yang-Mills theory becomes a free non-abelian theory (gYM → 0) for infinitely-many

“colors” (N → ∞) where the class of planar graphs is dominant in the diagrammatical

expansions. In the partner model, the joining and splitting of strings is suppressed (gs → 0)

and only lowest-genus surfaces survive. For small λ the string is subject to large quantum

mechanical fluctuations (T → 0) on a highly-curved AdS5 × S5 (R ≪
√
α′), conversely

for large λ the string behaves semiclassically (T → ∞) in a flat-space limit (R ≫
√
α′).

For the latter interpretation we recall that T is an overall factor of the string action and

thus can be assimilated to a sort of inverse Planck constant. Conventional perturbative

calculations on the gauge theory side are possible to a certain extent if we impose that λ

is small (weak coupling), while semiclassical methods can probe the string corrections to

the classical supergravity theory (α
′ = 0) when we adjust λ to be large (strong coupling).

This observation enables to make precise statements about a strongly-coupled regime of

a gauge theory, typically lacking systematic quantitative tools previous to the AdS/CFT

correspondence, as long as it admits a higher-dimensional string theory.

The seminal paper by Maldacena [40] sparked a quest for other realizations of AdS/CFT du-

ality. Following earlier works [50, 51], Aharony, Bergman, Jafferis and Maldacena (ABJM)

[52] ([53] for a review) established the equivalence between a theory of M2-branes in eleven

dimensions and a certain three-dimensional gauge theory. The two parameters k and N

(defined below) allow for a somewhat richer structure than the AdS5/CFT4 system. In this

thesis we will limit ourselves to consider the duality between
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N = 6 super Chern-Simons theory with matter in flat space R1,2

with integer Chern-Simons levels k and −k
and gauge group SU(N)k × SU(N)−k

and (1.5)

type IIA superstring theory with string tension T and coupling constant gs
on AdS4 ×CP3 with curvature radii 2RAdS4 = RCP3 ≡ R
and N units of Ramond-Ramond four-form flux through AdS4

and k units of Ramond-Ramond two-form flux through CP1 ⊂ CP3 ,

provided the identifications through the ’t Hooft coupling λ 4

λ = N
k
, λ =

R6
AdS4

32π2k2`6P
. (1.6)

The duality (1.5) holds only in the analogue [52] of the ’t Hooft limit (1.4)

N, k →∞ , λ = constant . (1.7)

On the gauge-theory side, the ABJM theory is a supersymmetric extension of pure Chern-

Simons theory, which is a broad subject with applications to 3d gravity theory [54] and knot

theory [55]. The addition of N = 6 supercharges 5 renders ABJM a non-topological theory,

but still retaining conformal invariance. The global symmetry group of the ABJM theory

and the dual string theory is the orthosymplectic supergroup OSp(6∣4).

The original “dictionary” proposal [52] for the string tension in terms of the ’t Hooft coupling

λ reads

T = R2

2πα′
= 2

√
2λ , gs ∝

N1/4

k5/4
. (1.8)

As suggested in [57] and later quantified in [58], the relation between T and λ receives

quantum corrections. The geometry of the background (and also the flux, in the ABJ

theory [59], generalization of the ABJM theory with gauge group U(N) × U(M)) induces

higher-order corrections to the radius of curvature in the Type IIA description, which reads

in the planar limit (1.7) of interest in this thesis

T = R2

2πα′
= 2

√
2(λ − 1

24
) . (1.9)

4We will make clear the distinction between the ’t Hooft parameter λYM of N = 4 SYM and the one
λABJM of ABJM when necessary, namely in chapter 6.

5Supersymmetry is enhanced to N = 8 at Chern-Simons level is k = 1,2 [52, 56]. We can disregard this
exception since we will be working in planar limit.
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The anomalous radius shift by − 1
24 in (1.9) is important at strong coupling, because it affects

the corrections to the energy and anomalous dimensions of giant magnons and spinning

strings starting from worldsheet two-loop order O(λ−1/2). It will also turn out to be crucial

in chapter 6 to translate the string tension T into the gauge coupling λ.

Another instance of holography is the AdS3/CFT2 correspondence between superstring

theories on backgrounds involving the AdS3 space and two-dimensional superconformal field

theories. The supersymmetric backgrounds of interest, especially because of their integrable

properties, are the AdS3 ×S3 ×S3 ×S1 and AdS3 ×S3 ×T 4 supergravity backgrounds which

preserve 16 real supercharges. However, in light of the work done in the next chapters, we

will be mostly concerned with the other two dualities spelt out above, referring the reader

to [60] and references therein for an account of the subject.

1.2 Integrable systems in AdS/CFT

Since its discovery, the AdS/CFT correspondence prompted a new interest in N = 4 SYM

and offered a (strong-coupling) perspective to study this gauge theory. Ideally, the aim of

solving a QFT means to express arbitrary n-point correlation functions of any combination

of fields in terms of elementary functions or integral/differential equations involving the

parameters of the model. When this happens, it signals the presence of an infinite number

of conserved charges and the theory in question is called classically integrable, and quantum

integrable if the property persists at the quantum level 6. It is clear that this requirement

is extraordinary difficult to satisfy, save for a few exceptions typically relegated to two-

dimensional models. A less trivial occurrence, the first in four dimensions, emerges in

high-energy QCD scattering [65–67].

Evidence of integrable structures in planar N = 4 SYM later emerged in relation to single-

trace operators (the only relevant ones at N → ∞) and certain spin-chain models 7. Since

the theory is conformal, the dynamical information is contained in the two- and three-

point functions of local gauge-invariant operators 8. Conformal symmetry fixes their two-

point correlators in terms of their eigenstates under the action of the dilatation operator

D ∈ psu(2,2∣4), namely the spectra of scaling dimensions of all operators.

The breakthrough of [69] was realizing that single-trace operators in the flavour sector

SO(6) (i.e. traces of a product of any of the scalars of N = 4 SYM) are mapped to states

of a periodic spin-chain and the (one-loop) dilatation operator to the Hamiltonian of the

spin-chain system. The spectrum of scaling dimensions at weak-coupling one-loop order was
6We suggest [61, 62] for an extensive discussion of integrable systems and also [63, 64] for a focus on

AdS/CFT.
7A transparent and concise introduction to the subject is in [68–70].
8Higher-point functions decompose into these elementary constituents [18].
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set equivalent to the diagonalization problem of the auxiliary SO(6) spin-chain Hamiltonian

which, since it was known to be integrable, could be solved exactly using Bethe ansatz tech-

niques [71–74]. Dropping the restriction to scalar operators, integrability was established

for all operators at the one-loop order [75] in terms of an integrable PSU(2,2∣4) super

spin-chain, later diagonalized in [76]. A further development concerned the generalization

of the Hamiltonian method to two and three loops [77].

This program was pushed further to reveal classical integrability on the string theory side of

AdS/CFT by explicitly rewriting the equations of motion of the non-linear sigma model on

AdS5×S5 background [78] into a zero-curvature condition for a Lax pair operator [79]. Fol-

lowing the same approach the analogous set of non-local conserved charges was constructed

in [80] in the pure-spinor formulation of the AdS5×S5 action [81–83] and the same Lax pair

was found in [84] 9.

With integrability becoming a solid fact at both weak and strong coupling, the focus shifted

to speculate about this property holding true at all loops. In [91] a direct relationship

between Bethe equations and classical string integrability was reinforced using the language

of algebraic curves, interpreted as a sort of continuum version of Bethe equations. On

the assumption of exact quantum integrability of the AdS5/CFT4 system, a set of Bethe

equations valid at all loop-order was formulated [92] for all long local operators [93]. These

results were complemented by the study of the so-called dressing factor [94–97] 10 and

collectively referred to as all-loop asymptotic Bethe ansatz (ABA), as their validity is limited

to asymptotically long chains in the auxiliary picture. In principle this enabled to solve the

spectral problem for the anomalous dimension of all long single-trace operators in planar

N = 4 SYM.

The understanding of the conjectured integrability has steadily advanced towards the inclu-

sion of finite-size effects (wrapping effects) [99–102]. This ambitious program included the

development of an infinite set of coupled integral equations called Thermodynamic Bethe

ansatz (TBA) [100, 103–108] (also in [109, 110]) which are solvable in some cases for scat-

tering amplitudes [111] and cusped Wilson lines [112–114]. This served as a basis for the

so-called Y-system [105] (an infinite set of non-linear functional equations) and its successor

FiNLIE (acronym for ‘’finite system of non-linear integral equations”). The state-of-the-

art in elegance and computational efficiency in solving the spectral problem seems to be

achieved in the form of a set of Riemann-Hilbert equations that defines the quantum spec-

tral curve (QSC) approach (or Pµ-system) [115, 116], where the so-called Q functions are
9The integrability of the string in the AdS5 × S5 background has been mostly studied in the supercoset

description [78] (e.g. in [85]) than in the pure spinor version. Some integrable properties in the former
formalism will be discussed to some extent in sections 2.1.1, 2.1.2 and 2.1.3, while we refer the reader to a
non-exhaustive selection of relevant references in the latter formalism in [86, 87] and in the reviews [88, 89].
Arguments that support the quantum integrability of the pure-spinor action were given in [90].

10This is a function undetermined by the symmetries of the theory, but constrained by physical require-
ments such as crossing symmetry and unitarity, see [98] for a short review.
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a sort of quantum generalization of pseudo-momenta in the algebraic curve construction.

The potential of this machinery extends beyond the original scope of computing spectrum

of anomalous dimensions, e.g. in the high-precision and non-perturbative numerical com-

putation of the generalized cusp anomalous dimension of a cusped Wilson line [117, 118].

Almost all relevant statements that have been made about integrability for the planar

AdS5/CFT4 system have been reworked almost in parallel for the lower-dimensional cor-

respondence AdS4/CFT3 in the planar limit, see [119] for a comprehensive overview. The

investigation started perturbatively at planar two-loop order for scalar operators by con-

structing the corresponding integrable spin-chain Hamiltonian [120, 121]. The extension to

all operators (at two-loop order) was derived in [122, 123]. One of the most distinguishing

differences between the integrable structure of ABJM and the one of N = 4 is the fact

that the transition from weak to strong coupling is more intricate due to the presence of

the non-trivial (ABJM) interpolating function h(λ), introduced and analysed in chapter

6. This function plays the crucial role of a “dressed” coupling constant that absorbs the

dependence on the ’t Hooft coupling λ in all integrability-based computations, e.g. in the

set of ABA equations for the complete spectrum of all long single-trace operators proposed

in [124]. At strong coupling, the classical spectral curved was constructed in [125] and inte-

grability was demonstrated for the supercoset action at classical level [126] 11. Echoing the

developments in N = 4 SYM, the Y-system was proposed in [105] along with the analogue

one for AdS5/CFT4 system. The infinite set of nonlinear integral TBA equations encoding

the anomalous dimensions spectrum was derived in [127, 128]. The QSC formalism was set

up in [129] and used to put forward a conjecture for the exact form of h(λ) in the ABJM

model [130] 12 and in its generalization, the ABJ model, in [131].

The concept of integrability has been rephrased in several contexts and its facets detected

in a wide range of observables. Another realization is Yangian symmetry [132], a sort of

enhancement of the Lie algebra symmetry psu(2,2∣4) of the theory, which benefited from

the previous discovery of the duality [133] mapping scattering amplitudes of n gluons to

polygonal Wilson loops with n light-like segments, see [134] for later developments. This

duality was proposed at strong coupling and later noticed in perturbative computations at

weak coupling [135] (also [136]) where it inspired the discovery of a hidden dual superconfor-

mal symmetry [137]. Soon after, the latter and the conventional conformal symmetry were

shown to combine into the Yangian symmetry [138]. This symmetry has been seen in color-

ordered scattering amplitudes at tree level [138] and in loop quantum corrections [139–141],

the dilaton operator [142] and supersymmetric extensions of Wilson loops [143, 144].

A further area rich of developments is the study of the dual polygonal light-like Wilson

loops at any coupling through a pentagon-block decomposition in the form of an OPE-like
11More references on the subject are below (2.35) in section 2.2.
12We will test the strong-coupling expansion of the interpolating function in chapter 6.
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expansion [145–149] which can be determined again on the basis of integrability arguments.

An integrability-based framework to compute structure constants of higher-point correlation

functions was recently established in [150].

1.3 Quantization of strings in AdS/CFT

In the previous section we have seen that integrability offers a wide range of techniques to

make quantitative predictions about the spectral problem and other observables in many

AdS/CFT systems by means of analytical and high-accuracy numerical methods. All these

statements are based on the conjectured all-loop integrability of the model. Without this

assumption, a restricted class of supersymmetry-protected observables can be still computed

at finite coupling and beyond the planar limit via supersymmetric localization techniques

[151], which are however only defined on the field theory side. Leaving aside the ambition of

proving the assumptions of integrability from first principles, the natural question arising is

whether one can check their predictions against perturbative results and non-perturbative

ones obtained with different methods. Field theory computations maintain a crucial role

in detecting the precise pattern of such functions of coupling and charges, as well as in

checking the proposed all-loop formalisms. This viewpoint shifts the attention from exact

methods to the development of computational tools, in principle flexible enough to work in

different frameworks when neither integrability nor localization is available.

We shall pursue this goal in the AdS/CFT systems (1.1) and (1.5) considered in the re-

spective ’t Hooft limit (1.4) and (1.7) of their parameter spaces, exclusively working on

the string theory side. Put in simple words, strings are objects spatially extended in one

dimension, at variance with point-like particles of ordinary QFTs, and are embedded in a

higher-dimensional ambient manifold (target-space), for us the ten-dimensional AdS5 × S5

or AdS4 × CP3. Note that quantum mechanical consistency guarantees the absence of con-

formal anomaly when the dimensionality of the spacetime is 10. Strings sweep out a (1+1)-

dimensional surface Σ (worldsheet) in their time evolution. Since all computations are in a

limit where N is put to infinity, scattering of two or more strings does not occur and world-

sheets are genus-0 surfaces (i.e. without “holes” and “handles”). All observables depend

on the single tunable parameter T (or equivalently λ) of the model under investigation.

The fields of a string theory consist of the bosonic embedding coordinates of Σ into the

target-space and their fermionic supersymmetric partners. From the worldsheet viewpoint,

they are bosonic (collectively denoted by X) and fermionic fields (Ψ) propagating in the

two-dimensional curved manifold Σ.

From now on we shall focus on the prototypical duality (1.1), as the following statements

hold for (1.5) after the necessary changes having been made. Since the string theory in
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AdS5 × S5 includes a Ramond-Ramond five-form flux, the Neveu-Schwarz-Ramond (NSR)

formalism [152, 153] is not applicable in a straightforward way. As we will see in chapter

2, the AdS5 × S5 is 10d supersymmetric background of type IIB supergravity [154]. The

Green-Schwarz (GS) approach [155, 156] seems to be adequate when the RR fields are not

vanishing and would endow the string action with invariance under supersymmetry (man-

ifestly realized as a target-space symmetry) and κ-symmetry (a local fermionic symmetry

that ensures the correct number of physical fermionic degrees of freedom), but it is not very

practical for finding the explicit form of the action in terms of the coordinate fields. For

AdS5×S5 the superstring action is formulated [78] as a sigma-model on a supercoset target-

space. This is an highly-interacting two-dimensional field theory for which a first-principle

quantization is a hard theoretical problem.

The quantization is more straightforward if one picks a suitable string vacuum (whose

properties and/or quantum numbers depend on the particular string observable to study),

fixes the gauge symmetries (2d diffeomorphisms and κ-symmetry) and expands the degrees

of freedom of the superstring in terms of fluctuation fields around such vacuum. As in

ordinary quantum field theory, the fundamental object is the string partition function

Zstring = ∫ DgDXDΨ e−SIIB[g,X,Ψ] . (1.10)

We work with SIIB being the sigma-model action of [78], where one has to integrate over the

2d metric gij and fix the diffeomorphism-Weyl invariance of the action with the Faddeev-

Popov procedure 13. The fluctuation string action is written in terms of the fluctuations

δX = X − Xcl and δΨ = Ψ around the non-trivial vacuum (Xcl,Ψ = 0), where Xcl is the

chosen classical solution of the string equations of motion and fermions are set to zero on

a classical configuration. The expansion of the action (1.10) delivers an infinite tower of

complicated-looking interaction vertices organized in increasing inverse powers of T . Note

that we have not made any assumption on the (small or finite) value of the coupling constant

T−1 up to this point.

One can proceed with perturbation theory for large string tension T ∼
√
λ≫ 1, which indeed

corresponds to the nearly-free regime of the sigma-model at small T−1. To access the non-

perturbative regime of the full quantum superstring, one can resort to techniques of lattice

field theory and evaluate numerically the string observable of interest. One main objective

of this thesis will be to present evidence that this route is indeed viable and that the data

collected so far (chapter 7) is consistent with the expectations based on the integrability of

the AdS5/CFT4 system.
13 One should also remember that a rigorous definition takes into account some factors associated with

conformal Killing vectors and/or Teichmüller moduli. We defer the discussion to [157, 158] and the textbooks
[159, 160].
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Before addressing this important methodological distinction, we recall a few facts about the

properties of classical backgrounds Xcl.

Solutions that are translationally invariant in the time and space coordinates (τ, σ) of the

worldsheet, namely with constant derivatives of the backgroundXcl, are called homogeneous.

In this case the effective action Γ ≡ − logZstring is an extensive quantity – proportional to

the area of the classical worldsheet – and the semiclassical analysis is highly simplified since

the action turns out to have constant coefficients. Then the kinetic/mass-operator deter-

minants entering the one-loop partition function are expressed in terms of characteristic

frequencies which are relatively simple to calculate. We will see that computation of quan-

tum corrections can be pushed to higher-loop order by standard diagrammatic methods. In

this context, generalized unitarity techniques are a promising way to reproduce loop-level

worldsheet amplitudes in terms of lower-loop ones [161–163]. Instances of such homogeneous

cases are the rational rigid string solutions in [164–168]. Other cases can still fall under this

category if it is possible to redefine coordinates and fields to make the coefficients in the

fluctuation action constant, as in chapters 6 and 7, as well as in [169].

Next-to-simplest cases are inhomogeneous solutions, namely non-trivial solutions of the

string sigma-model that are not translationally invariant in either the τ - or σ-direction.

Beyond the leading order, direct computations are generally difficult and one-loop correc-

tions are already a daunting task that requires the diagonalization of many 2d matrix-valued

differential operators using functional methods based on the notion of spectral zeta-function.

The rigid spinning string elliptic solutions rotating with spin S in AdS5 and momentum J

in S5 [170, 171] (and chapter 4) are well-known examples of inhomogeneous backgrounds.

Another non-negligible difficulty to face is the appearance of non-trivial special elliptic func-

tions in the fluctuation spectrum (and thus in the propagator) in [172–175] which depend on

the worldsheet coordinates. However, there are non-homogeneous cases that become homo-

geneous in certain limits, as for the example above in the limit S/
√
λ≫ 1 with J/(

√
λ logS)

fixed [176, 177].
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Figure 1.1: Sketchy depiction of two distinctive classes of string configurations that will
be of interest in the next chapters: an open string protruding in the bulk of the AdS space
and ending on the path of a supersymmetric Wilson loop operator at the AdS boundary
(left panel, from [178]) and a closed string that is folded upon itself and rotating in a
subregion of the AdS5 × S5 space (right panel, from [170]).

The classical backgrounds studied the next chapters 4-7 assume a special relevance in the

AdS/CFT correspondence since they will be dual to two types of gauge-theory observables.

One class of observables comprises gauge-invariant, non-local observables called Wilson

loops. In ordinary (conformal or not) gauge theories they are obtained [179] from the

holonomy of the gauge connection around a closed spacetime path and carry information

on the potential between static quarks. In N = 4 SYM “quarks” are modelled by infinitely

massive W-bosons arising from a Higgs mechanism and Wilson loops admit a supersymmet-

ric extension (Maldacena-Wilson loops) locally invariant under half of the supercharges 14.

The AdS/CFT formulation of the duality between Wilson loops and open strings [183, 184]

states that the expectation value of a supersymmetric Wilson loop W[C] defined along a

contour C ⊂ R4 equals the string partition function Zstring[C] where the string embedding

ends on C
⟨W[C]⟩ = Zstring[C] ≡ ∫ DgDXDΨ e−SIIB[g,X,Ψ] . (1.11)

The reader can consult the review papers [185, 186] for a (not latest though) collection of

related works.

The second example comprises local gauge-invariant operators made of traces of fully-

contracted products of fields of N = 4 SYM. The AdS/CFT correspondence conjectures

a relation between their conformal dimension and the energy of rotating string states in

AdS5×S5 with the same quantum numbers. Since the Cartan subalgebra of su(2,2)×su(4) ⊂
psu(2,2∣4) has six commuting generators, an operator is labeled by a sextuplet of charges:

14See section 5.1. Subsequent steps were made to construct further generalization called super Maldacena-
Wilson loops [180]. The field theoretical description is explored in [144, 181] while the complementary view
at strong coupling in [182].
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the scaling dimension ∆ under spacetime dilatations, the two spins Si (i = 1,2) of the

Lorentz group and the Ji (i = 1,2,3) associated to the three commuting R-symmetry gen-

erators. In AdS/CFT the symmetry group SU(2,2)×SU(4) is identified with the isometry

group of AdS5×S5 and the six charges above correspond to the energy E conjugated to the

AdS global time t, the AdS5 spins Si and the S5 angular momenta Ji of the string.

Not all parameters are independent due to the Virasoro conditions and for the rigid (for

which the shape of the string does not change in time) closed spinning strings we are in-

terested in we can express the worldsheet energy E = E(S1, S2, J1, J2, J3) as a function of

the given remaining charges. Computing the expectation value of the energy, including its

quantum corrections in the coupling constant (the string tension T ), is conveniently done

by taking a “thermodynamical” approach to connect the semiclassical computation of the

energy to the perturbative evaluation of the worldsheet effective action Γ = − logZstring ex-

panded around the relevant classical configuration. This relation was elucidated in [187, 188]

and synthetically reexplained in the review [189].

1.4 Perturbation theory for sigma-models

The perturbative approach to string quantization has proven to be an extremely useful tool

for investigating the structure of the AdS/CFT correspondence [189, 190]. As a matter

of fact, the first attempt in this direction was the determination of the strong-coupling

correction [191] to the quark-antiquark potential of [183], although obstructed by an issue

of UV divergences. The study of semiclassical partition functions was systematically set

up in [192] and it has played an important role for spinning string states [164–168, 170–

172, 193], worldsheet S-matrices [161–163, 194, 195], scattering amplitudes [134] and Wilson

loops [173–175, 196–199].

In semiclassical quantization, observables are computed in worldsheet-loop series in T−1, as

we will do in chapters 3-6. In the example of (1.10), this means that we can truncate the

fluctuation action at quadratic (aiming at a one-loop result in chapters 4-5), at quartic (in

the two-loop example of chapter 6) or higher order in δX and δΨ, depending on the accuracy

sought in the final result, and evaluate the path-integral in saddle-point approximation. The

effective action takes into account semiclassical corrections around the background solution

as

Γ ≡ − logZstring = Γ(0) + Γ(1) + Γ(2) + . . . . (1.12)

A covariant formalism for the one-loop semiclassical quantization of the action will be the

topic of chapter 3. The supercoset action is not a necessary starting point because the com-

plete (Nambu-Goto and Polyakov) bosonic action was well-known before and the covariant

derivative in the Green-Schwarz action at quadratic order in fermions has already appeared



Chapter 1. Introduction 15

in the Killing spinor equation of type IIB supergravity. The action at quadratic level is a

free model for 8 physical bosons (yi) and 16 κ-symmetry fixed fermionic degrees of freedom

(encapsulated in a new spinor that we call Ψ again)

SIIB[X,Ψ] = SIIB[X =Xcl,Ψ = 0] + ∫ dτdσ
√
h (yi(OB)ijy

j + 2Ψ̄OFΨ) + . . . (1.13)

and the one-loop approximation of the path-integral (1.10) can be put into the form (1.12) 15

Γ(0) = SIIB [X =Xcl,Ψ = 0] , Γ(1) = −1

2
log

DetOF
DetOB

. (1.14)

When the background solution is homogeneous, the one-loop effective action can be formally

expressed as a summation (integral) over the discrete (continuous) eigenvalues – usually

called characteristic frequencies – the operators OB and OF . The matching of the bosonic

and fermionic degrees of freedom and a sum-rule for their masses (dictated by the geom-

etry of the worldsheet and the target-space supersymmetry of the Green-Schwarz action)

guarantee that the result is eventually finite. In the next section 1.4.1 we explain how one

has to proceed to quantify the one-loop correction around inhomogeneous solutions. Then,

in section 1.4.2 we will make some comments on higher-loop corrections Γ(`) with ` ≥ 2

in homogeneous backgrounds, which consist of vacuum Feynman diagrams computable via

standard diagrammatical techniques.

1.4.1 Two-dimensional fluctuation operators

A fully two-dimensional definition of (the finite and divergent part of) a determinant can

be achieved with the notion of heat kernel propagator [200–205] of a r × r matrix operator

O defined on the classical worldsheet with Riemannian metric hij . This object contains all

spectral information on the operator (eigenvalues and eigenfunctions) [206–208] and it is

defined as the unique solution KO (τ, σ; τ ′, σ′; t) of the heat equation, namely the evolution-

ary Schrödinger-type equation for the “Hamiltonian” O evolving in the “Wick-rotated time”

t > 0

(∂t +O(τ, σ))KO (τ, σ; τ ′, σ′; t) = 0 , (1.15)

supplemented by an initial normalization à la Dirac delta (Ir is the r × r identity matrix)

lim
t→0+

KO (τ, σ; τ ′, σ′; t) = δ(τ − τ
′) δ(σ − σ′)√
h

Ir . (1.16)

15The net contribution comes only from the kinetic operators OB and OF because we suppose that the
determinant of the diffeomorphism ghosts cancels the one of the “unphysical” (longitudinal) bosons, see
comments below (3.46) and (3.98), and we also ignore the caveats in footnote 13.
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A vast literature has covered the Laplace [209, 210] and the (square of the) Dirac opera-

tor [211, 212] for Euclidean manifolds without boundary – flat spaces Rd, spheres Sd and

hyperboloids Hd 16 and products thereof – and with boundary, e.g. [213].

The asymptotics of the traced heat kernel for small t is known for all Laplace and Dirac

operators. In section 3.5.2 it will be used to estimate the infinite part of the functional

determinants in (1.14). The cancellation of the logarithmic divergences proportional to

the worldsheet Ricci curvature in the one-loop effective action was clarified in [192] via a

careful account of the Seeley-DeWitt coefficients of the operators, which exactly compensate

the divergences arising in the measure factors of the string path-integral. The counting of

anomalies in the GS string goes essentially as adding together the central charges of all the

fields for the theory in flat space.

Since UV divergences are associated with conformal anomalies, the same mechanism can be

seen as an explicit verification of the conformal invariance of the type IIB string theory on

AdS5 × S5 background at one loop, which was actually argued to hold true to all order in

the T −1 expansion [78].

If we look instead for extracting the regularized part of the determinants in (1.14) via zeta-

function regularization [206, 208, 214], knowing only the small-time behaviour does not

suffice. In this case the spectral information that we need is carried by the heat kernel as a

function of t, but finding a solution of the heat equation is practically impossible for most

of the worldsheet geometries of interests. Some notable exceptions are represented by the

spectral problems for the string worldsheets in AdS5 dual to the straight line and circular

Wilson loop [215, 216].

In the examples considered in chapters 4 and 5, the geometric properties of the classical

surface deliver fluctuation operators that are translationally invariant in one variable 17,

which we call τ in what follows. The same coordinate does not appear in the 2d induced

metric because the associated vector field ∂τ generates an isometry of the classical surface.

To proceed, let us call φ the (scalar or spinor) field acted upon by the one-loop operator O
in the free action ∫ dτdσ φ†Oφ. Without loss in generality, let us suppose that the isometry

acts on the worldsheet points as a U(1) rotation with τ ∈ [0,2π) 18, so we can decompose

the field into discrete Fourier modes

φ(τ, σ) = ∑
ω

φ(ω, σ) e
iωτ

√
2π

. (1.17)

16The three spaces listed here are maximally symmetric because their metrics possess the maximal number
d(d + 1)/2 of Killing vectors in d dimensions.

17We are referring to (4.11) and (4.27) for the two examples of spinning strings studied in this thesis,
(5.38) and (5.53) for the worldsheet dual to a 1/4-BPS latitude Wilson loop.

18This geometrically manifests as an axial symmetry of the minimal surface (5.25) in Figure 5.3.
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The frequencies ω are integer or half-integer according to the periodicity or anti-periodicity

of the field. In the case of non-compact symmetry, acting like as a translation along the

τ -direction 19, the frequency label turns into a continuous variable τ ∈ R and the Fourier

integral takes the place of the Fourier series

φ(τ, σ) = ∫
+∞

−∞

dω φ(ω, σ) e
iωτ

√
2π

. (1.18)

Plugging formula (1.17) or (1.18) into the Lagrangian, one effectively replaces ∂τ → i ω

in the operator O(τ, σ) → O(ω,σ). This trick eventually allows to trade the 2d spectral

problem for O(τ, σ) with infinitely-many 1d spectral problems for the Fourier-transformed

differential operator O(ω,σ). Our strategy can be summarized in two steps.

• At fixed Fourier mode ω, the evaluation of the determinant Detω(O(ω,σ)) is a one-

variable eigenvalue problem on a certain line segment σ ∈ [a, b], which we solve using

the Gel’fand-Yaglom method [217], a technique based on zeta-function regularization

for one-dimensional operators 20. More precisely, we shall refer to an extension of

the theorem elaborated by Forman in [221, 222] that encompasses also the case of

odd-order (e.g. Dirac-like) differential operators O. The theorem outputs the value

of the ratio between two determinants in terms of solutions of an homogeneous ordi-

nary differential equation, so it requires some preliminary work to pair bosonic and

fermionic fluctuation determinants. It is worth mentioning that both the Gel’fand-

Yaglom method and its corollaries do not naturally cope with infinite or semi-infinite

intervals and with operators having singular coefficients for some σ ∈ [a, b]. One usu-

ally needs some regulators on σ to deal with such situations in AdS/CFT applications,

only then to prescribe an appropriate regularization scheme to eliminate or subtract

them from the final result.

• The full 2d determinant is given by the sum over all discrete frequencies ω

logDet(O(τ, σ)) = (∫
2π

0

dτ

2π
)∑
ω

logDetω(O(ω,σ)) = ∑
ω

logDetω(O(ω,σ)) (1.19)

or by an integral if ω is continuous

logDet(O(τ, σ)) = (∫
+∞

−∞

dτ

2π
)∫

+∞

−∞

dω logDetω(O(ω,σ)) . (1.20)

19For the spinning strings of chapter 4, this is the invariance of the string surface under shifts of the AdS
global time t, see text above (4.1) and formula (4.22).

20This is of course just one possible way. One can still solve exactly the determinant using the phase-
shift method, see [218–220] for a derivation and applications. The method is a generalization of the WKB
estimate of the asymptotics of the phase-shift at large eigenvalue. We are grateful to Xinyi Chen-Lin and
Daniel Medina Rincón for long discussions about this point.
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The infinite prefactor in the latter case is often neglected since it drops once bosonic

and fermionic contributions are plugged into (1.14).

In the following we shall make a notational distinction between the algebraic deter-

minant det and the functional determinant Det, involving the determinant on the

matrix indices as well as on the 2d space with coordinates (τ, σ). We also intro-

duced the functional determinant Detω over σ at a given Fourier mode ω. The issue

of how to define an unambiguous infinite product (1.19) is addressed in the case of

rotationally-invariant operators in [223] 21 and goes case by case in the main text.

We conclude the section with the observation that, while the algorithm described above is

highly versatile and easy to implement either analytically or numerically, it does not treat

the worldsheet directions on equal footing. On general grounds, an optimal algorithm for

fluctuation determinants should preserve the classical symmetries (e.g. diffeomorphisms of

the classical worldsheet and target-space supersymmetry of the Green-Schwarz action) at

any steps of the regularization procedure. The Gel’fand-Yaglom theorem, paired up with

cutoff regularization on σ and followed by the summation over the angular modes, breaks

the invariance under 2d reparametrization (τ, σ) → (τ ′(τ, σ), σ′(τ, σ)) at least.

The heat kernel method does not suffer from this issue, but in the context of one-loop

spectral problems its current level of development is limited to a very selected class of

background solutions [192, 215, 216]. A fully two-dimensional method, based upon heat

kernel techniques, is being developed in [9] (see also chapter 8) when the worldsheet metric

is a “small” deformation of the maximally symmetric hyperbolic space H2.

1.4.2 String effective action beyond the next-to-leading order

The accuracy of the semiclassical approximation improves by including higher interaction

vertices in the fluctuation Lagrangian in (1.10). Computations can be technically involved

due to the large number of fields – 8 bosonic and 16 fermionic real off-shell degrees of

freedom after gauge-fixing – and the lack of manifest two-dimensional Lorentz invariance,

broken by the curved background Xcl, in the interactions terms.

Consistency at quantum level requires the theory to be finite. Perturbative calculations are

crucial to directly address the non-trivial problem of divergences cancellation in a field theory

that is expected to be finite, although it is not manifestly power-counting renormalizable

beyond the one-loop level (see comments in [177, 224] and also [177, 188, 225, 226]). In

fact, as soon as one expands around a particular vacuum and picks a proper gauge-fixing,

the derivatives of the curved background generate a Green-Schwarz kinetic term ∂XclΨ̄∂Ψ

and fermionic interactions that contain derivatives. While all fields are dimensionless and
21We thank Amit Dekel for informing us about this reference.
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no dimensionful parameter appears in the action, derivatives of the background act as a

dimensional scale that turns the fermion mass dimension from 0 to the canonical 1/2 in

two dimensions, therefore leading to non-renormalizable interactions and to the potential

appearance of power-like and logarithmic divergences.

Loop computations with related tests of finiteness of the model may be a thorny issue. A

particularly convenient choice to fix the diffeomorphism invariance and κ-symmetry of the

coset action is the AdS light-cone gauge throughly discussed in [227, 228] and summarized in

our sections 2.1.3 and 7.2.1. The resulting action has a relatively simple structure – where

fermions are only quadratic and quartic – that was efficiently used, for instance, in [225]

to compute the string effective action up to two-loops in the null cusp background. This is

a homogeneous solution lying only in AdS that can be viewed as the light-like limit of the

space-like cusp solution of [229].

The AdS light-cone gauge turns out to be perfectly applicable to the AdS4×CP3 Lagrangian

of [230, 231] in section 2.2. A side objective of chapter 6 is to begin the investigation of

this quantum action, expanded about the AdS4 ×CP3 counterpart of the null cusp solution

above. Similarly to the AdS5 ×S5 case, here the AdS light-cone approach to the evaluation

of the two-loop effective action turns out to be extremely efficient. Simplifications occur due

to bosonic propagators being only diagonal, which reduces the number of Feynman graphs

to be considered 22.

As a preparation for the two-loop study in chapter 6 following what was done in [225], let

us emphasise that various non-covariant integrals with components of the loop momenta

in the numerators originate from the combinations of vertices and propagators. This natu-

rally bring us to the problem of handling potentially-divergent loop integrations. As for the

AdS5 × S5 coset action, the action is it not renormalizable by power-counting and naively

it seems to lead to potential divergences. In principle, the expected finiteness of the theory

implies that all their divergences cancel against a careful account of the contributions from

the path-integral measure and κ-symmetry ghosts (see [177]). However, one typically does

not attempt an exact evaluation of the terms crucial for the complete divergence cancella-

tion. Alternatively, the use of dimensional regularization 23 allows to automatically set all

power-like divergences to zero. In doing so, we are effectively discarding these divergences

in loop integrals, but we can non-trivially check the absence of logarithmically-divergent

integrals in the final result.

A strong indication of consistency – in which the finite parts and the divergence cancellation

are some of the ingredients – comes from the comparison with the integrability predictions
22In the first two-loop calculation of [232] the conformal gauge was used, in which propagators are non-

diagonal, implying the evaluation of a larger number of two-loop diagrams.
23In regularizing our integrals all manipulations of tensor structures in the Feynman integrands are how-

ever carried out strictly in two dimensions.
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of Bethe ansatz [124] in the ABJM theory. We also flash that the AdS4 × CP3 action of

[230, 231] in AdS light-cone gauge gauge offers an efficient setting for computing the dis-

persion relation of worldsheet excitations on the same cusp background [233], which were

found to essentially agree with the predictions from the Bethe ansatz of [234].

1.5 Lattice field theory for the AdS5 × S5 string sigma-model

In the last sections we saw that the AdS5 × S5 sigma-model is a non-trivial interacting

theory which we do not know how to define rigorously without relying on perturbative

expansions. The aim of this section is to set the ground for chapter 7, where we will see

that lattice methods provide a concrete mean to non-perturbatively define the theory and

evaluate observables on the two-dimensional (Wick-rotated) Euclidean worldsheet from the

gravity side of AdS/CFT.

In general, the study of lattice models has a long and well-established tradition in QCD and

condensed matter systems [235–237]. Such non-perturbative investigations are formulated

in discrete rather than continuous spacetime. They provide a mathematically well-defined

regularization of the theory of interest by introducing a momentum UV cutoff of order

a−1, where a is the spacing between lattice sites in the spacetime grid. The central idea

is to construct a discrete form of the action and the operators, which formally reduce to

corresponding continuum counterparts when the regulator is removed. By working on a

discrete spacetime, path-integrals defining observables become finite multi-dimensional in-

tegrals which can be evaluated through stochastic simulation techniques such as the Monte

Carlo method. The aim is to eventually recover the values of the observables in the contin-

uum model on finer and finer lattices, through an appropriate prescription on the continuum

limit a→ 0 and the other technical parameters of the simulations.

The first finite-coupling calculation in the AdS5 ×S5 superstring sigma-model using purely

(lattice) field theory methods was pioneered in [238] with the measurement of the universal

scaling function 24 f(λ), one of the most important observables in the AdS5/CFT4 duality.

It governs the (the renormalization of) a light-like cusped Wilson loop in N = 4 SYM, while

from the holographic viewpoint it is captured by the path-integral of an open string ending

on two intersecting null lines at the AdS boundary. The convenient ground to set up such

lattice investigation was the same of the two-loop perturbative analysis of [225] mentioned

in section 1.4.1, i.e. the AdS light-cone gauge-fixed action of [227, 228] with no fermionic

interactions of order higher than four and expanded around the null cusp background.

The crucial difference is the fact that now all interactions must be kept in the fluctuation
24In literature scaling function and cusp anomalous dimension are essentially synonyms, as we will explain

in section 7.1.
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Lagrangian to be discretized. The numerical results of [238] for the scaling function were

found in agreement with its exact integrability prediction from the Beisert-Eden-Staudacher

(BES) equation [239] within reasonable numerical accuracy.

Our work in chapter 7 takes a deep inspiration from the route opened up by [238]. We will

scrutinize the way one should extract the scaling function from the expectation value of the

action, as well as inaugurate the study of the dispersion relations of worldsheet fields starting

from the measurement of the physical mass of one bosonic field. We will also elucidate and

enlarge the discussion related to many aspects related to the numerical simulations.

The investigation here and in [238] is not a non-perturbative definition of the worldsheet

string model à la Wilson lattice-QCD. In this case, one should work with a Lagrangian which

is invariant under the local symmetries of the model (bosonic diffeomorphisms and fermionic

κ-symmetry), whereas we will make use of the action in the AdS light-cone gauge which fixes

them all. However, there is a number of reasons that makes this model interesting for lattice

investigations, potentially beyond the community interested in numerical holography [240].

• If the aim is a test of holography and integrability, it is computationally cheaper to

simulate a two-dimensional model, rather than a four-dimensional one (N = 4 SYM).

Additionally, all fields are assigned to sites, since no gauge degrees of freedom are

present and only (commuting and anti-commuting) scalar fields appear in the string

action.

• Although we deal with superstrings, there is no subtlety involved with supersymmetry

on the lattice because in the Green-Schwarz formulation of the action supersymmetry

is manifest only in the target-space, and also because κ-symmetry is gauge-fixed.

• At the same time, this is a computational playground interesting on its own, allow-

ing in principle for explicit investigations/improvements of algorithms. In fact, we

work with a highly non-trivial two-dimensional model for which relevant observables

have not only, through AdS/CFT, an explicit analytic strong coupling expansion but

also, through AdS/CFT and the assumption of integrability, an explicit numerical

prediction at all couplings.

• In principle, the scope of numerical simulations is not limited to partition functions.

An interesting program was outlined in section 2.2 of [238]. The goal is to provide a

concrete mean to extract anomalous dimensions of local gauge-invariant operators in

N = 4 SYM from the numerical evaluation of worldsheet two-point functions of the

dual integrated vertex operators [241, 242]. Significant work is necessary to investigate

this direction in the next future.
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On a different note, we conclude by mentioning – albeit not as much as it would deserve –

that recent years have also witnessed rapid progress in constructing lattice discretizations of

supersymmetric gauge theories [240, 243, 244], in particular of the N = 4 SYM theory [245–

249]. Large-scale calculations [250] have studied the static “interquark” potential [251, 252]

and the anomalous scaling dimension of the Konishi operator [253] (see also [240]).

Alternative numerical, non-lattice approaches include the study of N = 4 SYM on R×S3 as

plane-wave (BMN) matrix model [254–260].

1.6 Plan of the thesis

Chapter 2 gives a short introduction to the construction of superstring theory in AdS5 ×S5

and discusses the advantages and the limits of the supercoset formalism in AdS4 ×CP3.

In chapter 3, which is largely based on [3], we present a pedagogical discussion about the

general structure of the quadratic fluctuation Lagrangian around arbitrary classical config-

urations in AdS5 × S5, expressing the relevant differential operators in terms of geometric

invariants of the background geometry.

Chapter 4 is based on [2] and exploits the analytical solution to the spectral problem of a

type of fourth-order differential operators. This finds application in the exact evaluation of

the semiclassical contributions to the one-loop energy of a class of two-spin spinning strings

in AdS5 × S5.

In chapter 5 we illustrate the perturbative computation in [4] aimed at the strong-coupling

correction to the expectation value of a family of supersymmetric Wilson loops in N = 4

SYM. We comment on the unexpected discrepancy between our result and the all-loop

prediction from supersymmetric localization.

Chapter 6 presents the derivation in [1] of the cusp anomalous dimension of the ABJM

theory up to two loops at strong coupling, which provides support to a recent conjecture

for the exact form of the interpolating function h(λ) in this theory.

Chapter 7 shows recent developments [5, 6] in the construction of consistent lattice dis-

cretizations of the two-dimensional AdS5 × S5 string sigma-model in AdS light-cone gauge.

We discuss the numerical results for the observables studied so far, test them against semi-

classical and integrability predictions and comment upon the difficulties encountered in our

approach.

In chapter 8 we summarize our results and conclude with an outlook on interesting directions

for further research, in particular based on [8, 9, 261].
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Several appendices supplement the main text with important methodological and technical

details. For this reason, we encourage the reader to consult them in parallel with the reading

of the main text.

The structure of the individual chapters is outlined in their introductions. Sometimes the

presentation has required to slightly deviate from the notation of the original references,

but we will clearly point it out when confusion may arise.





Chapter 2

Superstring actions in AdS5 × S
5 and

AdS4 × CP
3 spaces

Following the earlier construction of the covariant action for supersymmetric particles [262],

the Green-Schwarz (GS) superstring action in flat space was proposed in [155] and inter-

preted as a coset sigma-model of Wess-Zumino type by M. Henneaux and L. Mezincescu in

[263]. The action displays a local fermionic symmetry, called κ-symmetry, which generalizes

the one exhibited by massive and massless superparticles [264, 265]. Superstrings of the

type IIB can be formulated on a generic supergravity background with preservation of this

gauge invariance [266].

Along the lines of the approach in [263], R.R. Metsaev and A.A. Tseytlin constructed the

covariant κ-symmetric action for type IIB superstring on AdS5 × S5 in [78, 227]. Given its

central relevance in the main instance (1.1) of AdS/CFT, we devote section 2.1 to review

the sigma-model based on the supercoset PSU(2,2∣4)
SO(1,4)×SO(5) .

The importance of constructing superstring theory for the lower-dimensional duality (1.5)

prompted the formulation of the OSp(4∣6)
SO(1,3)×U(3) supercoset action on the AdS4 ×CP3 back-

ground [126, 267]. However, some subtleties related to the κ-symmetry transformations of

this sigma-model will lead us in section 2.2 to consider the alternative formulation of the

action proposed by D.V. Uvarov [230, 231].

2.1 Supercoset construction of the string action in AdS5 × S5

This AdS5 × S5 background is a maximally supersymmetric solution [154] of the type IIB

supergravity equations of motion in ten-dimensions, together with the flat Minkowski space

R1,9 and the “plane-wave” background [268]. The presence of the self-dual Ramond-Ramond

25
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(RR) five-form flux supporting this “vacuum” geometry precludes the use of the Neveu-

Schwarz-Ramond (NSR) approach [152, 153] to construct the action. The Green-Schwarz

formalism [155, 156] has proven to be a viable method when the RR fields are not vanishing,

with the additional advantage of realizing supersymmetry manifestly in the ten-dimensional

ambient space. For any type II supergravity background, the formal expression of the

superstring action exists [266], but it is practically hopeless to find the exact expression of

the superfields. For this reason, it remains unknown for the AdS5 ×S5 space and one is led

to devise an alternative approach to write the complete action on this space.

A more advantageous route to the superstring action in the AdS5×S5 background is tailored

to the peculiar structure of the superisometry group PSU(2,2∣4), namely the supersym-

metric extension of the SU(2,2) × SU(4) group which is locally isomorphic to the bosonic

isometries SO(2,4) × SO(6) of this product manifold.

The generalization to the curved AdS5 × S5 background has been developed in [78, 227],

prompted by the then-recent conjecture of the AdS/CFT correspondence [40], and it is also

conceptually very close to the construction of the GS action for strings moving in R1,9 [263].

Taking inspiration from the flat-space counterpart, the superstring action can be formulated

as a type of Wess-Zumino-Witten (WZW) non-linear sigma-model in two-dimensions with

the supercoset PSU(2,2∣4)/(SO(1,4)×SO(5)) as target space. We recall that the bosonic

reduction of this coset is precisely a representation of the AdS5 × S5 space, as the quotient

of SO(2,4) × SO(6) ⊂ PSU(2,2∣4) over SO(1,4) × SO(5), where the 10 bosonic degrees

of freedom of the superstring propagate. The additional 32 fermionic degrees of freedom,

which would parametrize the two Majorana-Weyl fermions of 10d type IIB supergravity, are

provided by the corresponding anticommuting generators of PSU(2,2∣4).

The next section reviews the basic facts [85] about sigma-model actions on general coset

spaces, which will provide a natural way to include the couplings to the background RR

fields for the AdS5 × S5 case in question. This is also a general strategy for constructing

sigma-models in other integrable AdS/CFT systems, e.g. AdS4 ×CP3, AdS3 × S3 × T 4 and

AdS3 × S3 × S3 × S1, but they will not be covered in what follows.

2.1.1 String sigma-model for coset spaces and κ-symmetry

The construction of the Lagrangian makes use of a general description valid for any ho-

mogeneous manifold expressed as coset space G/H, where G is the isometry group of the

Killing vectors on such manifold and H is the stabilizer subgroup. The resulting sigma-

model is based on the action of the supercoset G̃/H, where G̃ is the supergroup embedding

G as its even part. We denote the (super)algebras associated to G,H and G̃ by g,h and

g̃ respectively. In most of the relevant examples of AdS backgrounds, we restrict to a Lie
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superalgebra g̃ admitting an order-four automorphism, which is a linear map Ω ∶ g̃→ g̃ with

Ω([a, b]) = [Ω(a),Ω(b)] , a, b ∈ g̃ , Ω4 = id (2.1)

that decomposes g̃ into a direct sum of four graded subspaces

g̃ = g̃(0) ⊕ g̃(1) ⊕ g̃(2) ⊕ g̃(3) , (2.2)

where each of them is an eigenspace of Ω

Ω(g̃(k)) = ikg̃(k) . (2.3)

The grading is compatible with the supercommutator [g̃(k), g̃(m)] ⊂ g̃(k+m mod 4). Note that

g̃(0) is a subalgebra and the set of stationary points of Ω. In addition to the Z2-grading

implicit in the definition of superalgebra g – for which g̃(0), g̃(2) are even and g̃(1), g̃(3) are

odd subspaces – the automorphism endows g with the structure of a Z4-graded algebra

[269].

The description of the superstring action is given in terms of a coset representative g(τ, σ) ∈
G̃ defined on 2d worldsheet, spanned by the τ and σ coordinates. We such g to build the

g̃-valued one-form current

A ≡ −g−1dg = −(g−1∂τg)dτ − (g−1∂σg)dσ (2.4)

and split it as A = A(0)+A(1)+A(2)+A(3) according to the Z4-decomposition. By construc-

tion the current is flat, namely it has vanishing two-form curvature F ≡ dA −A ∧A = 0. The

current exhibits other important properties:

• it is invariant under the left group action g → hg of a constant h ∈ G̃,

• under the local right action g → gh with h(τ, σ) ∈ H, it undergoes the “gauge” trans-

formation A→ h−1Ah − h−1dh, which in components splits into

A(0) → h−1A(0)h − h−1dh , A(k) → h−1A(k)h , k = 1,2,3 . (2.5)

Having fixed the coset representatives g, the supercoset sigma-model action with target

superspace G̃/H is given by

S = −T
2
∫ dτdσL , L = √−ggαβstr (A(2)

α A
(2)
β ) + κ εαβstr (A(1)

α A
(3)
β ) , (2.6)

where the dimensionless quantity T is the string tension, α,β = 0,1 are the worldsheet

indices, gαβ is the worldsheet metric with g ≡ det gαβ , the antisymmetric symbol εαβ is
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defined by ε01 = 1 and we dropped the wedge operator between the one-forms. The La-

grangian density is built by means of the supertrace operator (str) acting on a suitable

matrix representation of the Z4-components of the current A(k) in the algebra g̃.

• The first term in L is the usual kinetic term of a sigma-model. In addition to the

proper quadratic kinetic term, it also contains interactions, hence (2.6) has to be

regarded as a non-linear sigma-model.

• The second addend is a Wess-Zumino (WZ) type term. Although not directly visible

in this form, it can be written indeed as the integral of a closed three-form over a 3d

space M3 with the 2d worldsheet Σ = ∂M3 as boundary:

1

2
∫

Σ
str(A(1)A(3)) = ∫

M3

str(A(2)A(3)A(3) −A(2)A(1)A(1)) . (2.7)

The value of the real coefficient κ can be fixed by the requirement that the action

possesses the (κ-symmetry which we discuss below.

Physical motivations for the proposal (2.6) come from the special case when fermionic

supermatrix elements of A are set to zero: one can show that S reduces to the standard

Polaykov action for bosonic strings in the background G/H. It is also important to observe

that the action, although it depends on g ∈ G̃, it only explicitly depends on the equivalence

class of coset elements in G̃/H. This is a consequence of the supertrace in (2.6) being

insensible to the similarity transformations (2.5) of the components A(k) with k = 1,2,3.

Different parametrizations of the coset element lead to equivalent Lagrangians that differ in

the explicit dependence on the coset degrees of freedom. This observation will motivate a

preferred coset parametrization, accompanied by an appropriate gauge-fixing of the bosonic

and fermionic symmetries, to drastically simplify the sigma model.

The group of global symmetry of L, acting on the coset space by multiplication from the

left, is G̃. In fact, given a coset representative g ∈ G̃, the action of a constant element g′ ∈ G̃
is the map

g(τ, σ) → g
′

g(τ, σ) ≡ g′′(τ, σ)h(τ, σ) , (2.8)

where the image of g is rewritten as the right action of a suitable local element h ∈ H on

the new coset representative g
′′

. Then the global G̃-invariance of the Lagrangian L is a

consequence of the local H-symmetry of the action that gauges away h(τ, σ).

As already anticipated, the symmetry group of the action can be enhanced to include

κ-symmetry, a local fermionic symmetry first discovered for massive and massless super-

symmetric particles [264, 265] and then found in the GS superstring in flat space [155]. It

plays a crucial role for the consistency of the supercoset model, ensuring that there is the



Chapter 2. Superstring actions in AdS5 × S5 and AdS4 ×CP3 spaces 29

correct number of physical fermionic degrees of freedom. It is realized as a certain right

local action of g
′(τ, σ) ≡ exp ε(τ, σ) ∈ G̃, with parameter ε ∈ g̃, on the coset element

g(τ, σ) → g(τ, σ)g′(τ, σ) ≡ g′′(τ, σ)h(τ, σ) , (2.9)

where we needed a compensating element h(τ, σ) ∈H as done in (2.8) and g
′′

is a new coset

element. The fundamental difference with the case of global symmetry analyzed above is the

fact that invariance of the action under (2.9) is guaranteed only for some parametrizations

of the infinitesimal fermionic parameter ε ≡ ε(1) + ε(3) ∈ g̃. Given the variations of the four

components of the current, one can prove that the infinitesimal variation of the Lagrangian

amounts to

δεL = δε(
√−ggαβ)str (A(2)

α A
(2)
β ) − 4str (Pαβ+ [A(1)

β ,A(2)
α ] ε(1) + Pαβ− [A(3)

β ,A(2)
α ] ε(3)) ,

(2.10)

where the two projector operators are

Pαβ± =
√−ggαβ ± κ εαβ

2
. (2.11)

Finding those ε that make the variation vanish needs an ansatz appropriate to the particular

supercoset under investigation. Here we just want to point out that a necessary requirement

for the invariance under κ-symmetry of the supercoset sigma-model for AdS5 × S5 is that

the projectors (2.11) are orthogonal to each other gβγP
αβ
+ P γδ− = 0, which is true only if the

real parameter in the WZ term is either κ = 1 or κ = −1.

Another crucial question for the consistency of the model is to understand the number of

independent parameters of ε, which equals the numbers of fermionic degrees of freedom

that can be gauged away by a κ-symmetry transformation. One can show that it is always

possible to reduce the 32 real degrees of freedom in the coset element by a factor of one

half. Therefore the gauge-fixed coset model involves 16 real physical fermions, which indeed

coincides with the number of fermionic degrees of freedom in the κ-symmetry gauge-fixed

GS action in ten dimensions.

2.1.2 Classical integrability of the supercoset model

Classical integrability is a bonus symmetry 1 in all supercoset sigma-models with Z4-grading.

This property 2 is equivalent to the statement that the Euler-Lagrange equations of motion
1This does not obviously mean that integrability is not spoiled by quantum effects [270, 271].
2Most of the discussion here is tailored to section 2.1.1. A primer on classical and quantum field theories

with emphasis on modern AdS/CFT applications can be found in [63].
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following from (2.6) can be cast into the zero-curvature condition

dL +L ∧L = 0 (2.12)

for the one-parameter family of Lax connection (or Lax pair) one-forms L(τ, σ, z), functions
of the fields of the theory and spanned by the spectral parameter z ∈ C. It is worth appre-

ciating that (2.12) is a strong condition on the classical dynamics of the model because it

has to be satisfied for any value of z. There is, however, a certain level of arbitrariness in

constructing L, as reflected by the observation that that gauge transformations

L → h−1Lh − h−1 dh (2.13)

leaves the vanishing of the “field strength” built out of L unaffected. Both the local param-

eter h and the Lax connection are generically square matrices taking values in the some

non-abelian algebra.

The existence of a Lax connection is sufficient condition to write the integrals of motion of

the action. One can construct the monodromy matrix

T (z) ≡ P exp(∫
2π

0
dσLσ(τ, σ, z)) (2.14)

as the path-ordered exponential of L parallel-transported along a closed path encircling the

spacelike direction of the worldsheet cylinder, where for definiteness we assumed that all the

quantities are periodic in σ ∈ [0,2π). The flatness condition (2.12) guarantees that (2.14)

does not depend on the timeslice at fixed τ of such loop. In other words, the monodromy

matrix encapsulates the time-independent information of the model. Practically, the Taylor

expansion of T in the continuous spectral parameter delivers the infinite number of local

conserved charges.

The Lax pair formulation of integrability at our disposal is very convenient, but it requires

some effort to be set up for the supercoset sigma models with Z4-grading, as pedagogically

shown in [85]. One can start with an ansatz for the Lax connection in terms of the compo-

nents A(k) of the one-form current (2.4) and constrain it by imposing the flatness condition

(2.12). At the end the string equations of motion lead to the zero-curvature condition for

Lα = A(0)
α + 1

2
(z2 + 1

z2
)A(2)

α − 1

2κ
(z2 − 1

z2
)γαβεβγA(2)

γ + zA(1)
α + 1

z
A(3)
α . (2.15)

An intriguing byproduct of integrability is that the zero-curvature condition for the Lax

connection (2.15) implies κ = ±1 in (2.6). This is exactly the same condition that is found

by imposing the κ-symmetry invariance of the sigma-model.
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2.1.3 The AdS5 × S5 string action in the AdS light-cone gauge

The formulation of a supercoset non-linear sigma-model on the curved AdS5×S5 background

space is a special case of (2.6). We recall that the bosonic part of the supercoset where the

string moves

AdS5 × S5 = SO(2,4)
SO(1,4) ×

SO(6)
SO(5) . (2.16)

is the quotient between the isometry group G = SO(2,4) × SO(6) and isotropy group H =
SO(1,4) × SO(5) of AdS5 × S5. The group G is enlarged to G̃ = PSU(2,2∣4) to endow the

model with fermionic degrees of freedom.

The action constructed in [78] is the unique generalization of the flat-space GS action [263]

that meets the following conditions:

• the bosonic reduction of the action is the usual Polyakov action in AdS5 × S5,

• it is invariant under global PSU(2,2∣4) transformations and (local) κ-symmetry,

• it reduces to the type IIB GS action in flat space (after an appropriate rescaling of

fermionic variables) in the limit of infinite AdS5 and S5 radius.

The form of the action (2.6) is convenient to make the symmetries of the model apparent,

but it is not amenable to direct sigma-model computations. The explicit expansion in terms

of the bosonic and fermionic degrees of freedom is generally highly non-linear and dependent

on the particular embedding of the coset element g into PSU(2,2∣4) written in terms of a

set of generators of the superalgebra psu(2,2∣4).

Secondly, substantial simplifications occur when κ-symmetry is gauge-fixed. This is achieved

in the flat-space GS action by selecting a light-cone gauge [155, 272] for which the action

becomes at most quadratic in fermions. At variance with flat space, two possible ways of

imposing the light-cone gauge in AdS5×S5 are available, depending on the choice of a light-

cone direction in the background geometry: we can pick either a null geodesic wrapping a

great circle of S5 or one lying entirely in AdS5. The former is equivalent to expand near the

pp-wave geometry [170, 171, 273–279] and it is related to the ferromagnetic vacuum of the

spin-chain picture for local operators in N = 4 SYM. However, it is also known to lead to

a complicated non-polynomial form of the action that is not suitable for direct calculations

in sigma-model perturbation theory. On the other hand, the latter option was considered

in [227] and is known to produce a gauge-fixed form of the action with at most quartic

powers of the physical fermions. Since our eventual aim in the following chapters will be

to quantize the theory perturbatively around some particular vacua, in this section we will

proceed with the form of the AdS light-cone gauge that selects a massless geodesic entirely

in AdS5.
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The AdS light-cone gauge is conveniently described in the Poincaré patch of AdS5 (see (3.5)

below), where the radial AdS coordinate is z = eφ and we define the light-cone directions x±

running in the AdS boundary and their transversal complex coordinates x, x̄:

x± ≡ x
3 ± x0

√
2

, x = x
1 + ix2

√
2

, (2.17)

x̄ = x
1 − ix2

√
2

, xa = (x+, x−, x, x̄) , a = 1,2,3,4 ,

The appropriate light-cone basis of psu(2,2∣4) 3 corresponds to a set of generators that

respect the splitting of its even part into so(2,4) ⊕ so(6). If we identity so(2,4) with the

superconformal algebra in four dimensions, then this algebra comprises the momenta P a,

the angular momenta Jab, the conformal boosts Kµ and the dilatation generator D, with

the indices a, b = +,−, x, x̄ being in the light-cone frame notation of (2.17). In addition to

this, we need to include the so(6) ∼ su(4) rotations J ij (i, j = 1, . . .4). The odd part of

the superalgebra is spanned by 32 generators spinors {Q±i,Q±

i , S
±i, S±i } labeled by upper

(lower) index i = 1, . . .4 transforming in the (anti-)fundamental of the SU(4) R-symmetry.

The super-Poincaré Q’s and superconformal S’s account for the 32 Killing spinors preserved

by the (maximally supersymmetric) supergravity background of AdS5 × S5.

A natural choice for the coset representative is given by 4

g = exaPa+θ⋅Q eη⋅S eyijJji eφD , (2.18)

in terms of linear combinations yij = i
2y

A′(γA′)ij of the S5 coordinates yA′

involving the

SO(5) Dirac matrices γA′ (A′ = 1, . . .5), in addition to the combinations θ ⋅Q ≡ θ− iQ+

i +
θ−i Q

+ i+θ+i Q− i+θ+ iQ−

i and η ⋅S ≡ η− iS+i +η−i S+ i+η+i S− i+η+ iS−i . The 16 θ- and 16 η-variables

are the Grassmann-odd partners of the 10 bosonic coordinates x±, x, x̄, φ, yAA′ and all the

supercoordinates are in correspondence with a generator of the superalgebra. Raising and

lowering SU(4) indices in the supercharges correspond to take the operation of complex

conjugation.

We impose the κ-symmetry light-cone gauge by setting to zero the half of the fermions that

have positive charges under the generator J+−, namely

θ+i = θ+ i = η+i = η+ i = 0 . (2.19)
3Commutation relation of the psu(2,2∣4) superalgebra and further details of derivation of the action are

given in the seminal paper [227].
4This form of the expression defining g goes under the name of Killing parametrization of the superspace

spanned by the supercoodinates (x,φ, y, θ, η). The action can be equivalently put in the Wess-Zumino
parametrization discussed in (2.33) below.
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The non-vanishing fermions θ−i , θ
− i , η−i , η

− i (we drop the minus label from now on) are

the 16 physical degrees for freedom and their number matches the fermionic content of a

gauge-fixed GS action in ten dimensions. The induced coordinate parametrization of the

one-form current (2.18) can be read off by projecting the psu(2,2∣4)-invariant current A on

the light-cone basis 5:

A = g−1dg ≡ AaPPa +AaKKa +ADD + 1

2
AabJab +AijJ j i +A−i

Q Q
+

i +A−

Q iQ
+i

+A+i
Q Q

−

i +A+

Q iQ
−i +A−i

S S
+

i +A−

S iS
+i +A+i

S S
−

i +A+

S iS
−i , (2.20)

where the non-vanishing Cartan one-forms are

A+

P = eφdx+ , A−

P = eφ(dx− − i

2
θ̃id̃θi −

i

2
θ̃id̃θi) ,

AxP = eφdx , Ax̄P = eφdx̄ , AD = dφ ,

A−

K = e−φ[1

4
(η̃2)2dx+ + i

2
η̃id̃ηi +

i

2
η̃id̃ηi] ,

Aij = (dUU−1)ij + i(η̃iη̃j −
1

4
η̃2δij)dx+ , (2.21)

A−i
Q = eφ/2(d̃θi + iη̃idx) , A−

Qi = eφ/2(d̃θi − iη̃idx̄) ,

A+i
Q = −ieφ/2η̃idx+ , A+

Qi = ieφ/2η̃idx+ ,

A−i
S = e−φ/2(d̃ηi + i

2
η̃2η̃idx+) , A−

Si = e−φ/2(d̃ηi −
i

2
η̃2η̃idx

+) .

We introduced the shorthand η̃2 ≡ η̃iη̃i, the fermions

θ̃i ≡ U ijθj , θ̃i ≡ θj(U−1)j i , (2.22)

d̃θi ≡ U ijdθj , d̃θi ≡ dθj(U−1)j i , (2.23)

and similar ones for η, all obtained through the local unitary matrix

U ≡ cos
∣y∣
2
+ iγA′

nA′

sin
∣y∣
2
, ∣y∣ ≡

√
yA′yA′ , nA′ ≡ y

A′

∣y∣ . (2.24)

After a field-dependent rescaling ηi →
√

2eφηi , ηi →
√

2eφηi to have fermions of homogeneous

conformal dimension and the sign flip xa → −xa to change the sign of the kinetic term, one
5We changed the sign of the current compared to (2.4).
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eventually reaches a form of the Lagrangian (2.6) that reads

S = T ∫ dτdσL , (2.25)

L = √−ggµν[e2φ(∂µx+∂νx− + ∂µx∂ν x̄) +
1

2
∂µφ∂νφ +

1

2
GAB(y)Dµy

ADνy
B]

+ i

2

√−ggµνe2φ∂µx
+[θi∂νθi + θi∂νθi + ηi∂νηi + ηi∂νηi + ie2φ∂νx

+(η2)2] (2.26)

− {εµνe2φ∂µx
+ηi [C ′

ij cos ∣y∣ + i(C ′γA
′)ijnA

′

sin ∣y∣] (∂νθj − i
√

2eφηj∂νx) + h.c.} .

A few explanations of the objects in the Lagrangian follow in order. The S5 metric has a

factorized form in terms of the vielbien

GAB = eA′

A
eA′

B
, eA′

A
= sin ∣y∣

∣y∣ (δA′

A
− nAnA′) + nAnA′

, (2.27)

and we made a distinction between curved A,B, . . . and flat indices A′,B′, . . ., both with

range from 1 to 5, while µ, ν = 0,1 denote the worldsheet indices. C ′ is the constant charge

conjugation matrix of the SO(5) Dirac matrix algebra generated by γA′

. The differential

Dµy
A is defined by

Dµy
A = ∂µyA − 2iηi(V A)ijηje2φ∂µx

+ , (2.28)

where (V A)ij are the components of the su(4)-valued Killing vectors of S5

(V A)ij∂yA = 1

4
(γA′B′)ij[yA′

∂yB′ − yB′

∂yA′ ]

+ i

2
(γA′)ij[∣y∣ cot ∣y∣(δA′

A − nA′

nA) + nA′

nA]∂yA , (2.29)

with δA′
A being the Kronecker delta symbol and yA = δAA′yA′

, nA = δAA′nA′

, nA = nA.

In (2.26) the kinetic term is proportional to the Weyl-invariant combination
√−ggµν , while

the Wess-Zumino term contains the antisymmetric symbol ε with ε01 = 1. The formula

shows also that in the light-cone κ-symmetry gauge-fixed action, together with the choice of

supercoodinates implicit in the supercoset parametrization (2.18), no fermionic interactions

with powers higher than four appear, as the action is quadratic in one half of them (θ) and

quartic in the other one (η) .

The gauge-fixed action can be expressed in a related form, in which the matrix (2.24) can

be either incorporated in the definition of a covariant derivative for fermions (Wess-Zumino

parametrization) or eliminated through a change of coordinates in S5 that manifestly realizes

the SO(6) symmetry of its coordinates. We proceed to present only the latter strategy, as

it will lead to the from of the action needed in chapter 7.
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The Lagrangian can be put into a manifestly SU(4)-invariant form by combining the yA′

and the radial coordinate φ into an SO(6) vector zM (M = 1, . . .6)

zA′ = e−φ sin ∣y∣ nA′

, z6 = e−φ cos ∣y∣ , z ≡
√
zMzM = e−φ , (2.30)

in terms of which the metric appears in the “4+6 parametrization”

ds2
AdS5×S5 =

dxadxa + dzMdzM
z2

. (2.31)

If we start again with (2.26) and use the identifications (γA′)ij = i(ρA′)ilρ6
lj and C ′

ij = ρ6
ij

with the ρ-matrices in (F.2), we arrive to the final form of the AdS light-cone gauge-fixed

action

S = T ∫ dτdσL (2.32)

L = √−ggµνz−2[∂µx+∂νx− + ∂µx∂ν x̄ +
1

2
(∂µzM + iηi(ρMN)ijzNηjz−2∂µx

+) (2.33)

× (∂νzM + iηi(ρMP )ijzP ηjz−2∂νx
+)] + i

2

√−ggµνz−2∂µx
+[θi∂νθi + θi∂νθi + ηi∂νηi

+ ηi∂νηi + iz−2∂νx
+(η2)2] − [εµνz−3∂µx

+ηiρMij z
M(∂νθj − i

√
2z−1ηj∂νx) + h.c.] .

2.2 The AdS4 ×CP
3 string action in the AdS light-cone gauge

The AdS4 × CP3 space is another prominent example of AdS background in the context

of integrable systems in the gauge/gravity duality. The background, supported by with

RR four-form flux through AdS4 and a RR two-form flux through a CP1 ⊂ CP3, arises as

a ten-dimensional solution of the IIA supergravity equations. The crucial difference with

AdS5×S5 is the absence of maximal supersymmetry, since AdS4×CP3 preserves only 24 out

of 32 supersymmetries [280]. The Green-Schwarz approach to find the superstring action

suffers from an obstruction: although the formal expression of the GS action is known for

any type IIA supergravity background, it is was explicitly written up to quartic terms only

[281], so the complete form remains unknown for the AdS4 ×CP3 space.

The supercoset approach outlined in section 2.1.1 provides a pragmatic strategy that was

pursued in [126, 267]. In fact, AdS4 ×CP3 is an homogeneous space

AdS4 ×CP3 = SO(2,3)
SO(1,3) ×

SO(6)
U(3) (2.34)

written as the quotient of G = USp(2,3) × SO(6), locally isomorphic to SO(2,3) × SO(6)
and H = SO(1,3) × U(3). Together with the observation that G is the bosonic subgroup

of the orthosymplectic group G̃ = OSp(4∣6), the coset structure of the space (2.34) hinted
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at the formulation of a sigma-model on the supercoset OSp(4∣6)/(SO(1,3) × U(3)). The

construction of the sigma-model parallels the case of the AdS5 × S5 superstring in many

aspects. It is again possible to define a Z4-grading of osp(4∣6) to decompose the zero-

curvature current one-form (2.4) and plug its components into (2.6) after an appropriate

choice of the coset representative g. The supercoset straightforwardly inherits the classical

integrability – as a mean to write the superstring equations of motion in a flat Lax connection

(2.12) – found in [79] for the case of AdS5 ×S5. The standard kinetic term is supplemented

with a Wess-Zumino term so that it was possible to establish κ-symmetry transformations

similar to the usual one in AdS5 × S5 [78].

On the other hand, there is a problem that did not exist in the other case since here the

background is not maximally supersymmetric. The superspace consists of 24 fermionic

directions in correspondence with an equal number of supercharges preserved by the back-

ground space. The other 8 fermionic coordinates, required to match the total number of

32 degrees of freedom of the GS string, were argued to be gauged away by half of the 16

parameters of κ-symmetry. In [126, 282] the supercoset sigma-model was interpreted as

equivalent to a partially κ-symmetry gauge-fixed GS action in relation to these missing 8

coordinates associated to the odd osp(4∣6)-generators broken by the background.

For this interpretation to be correct, for a generic configuration where the string motion oc-

curs in both AdS4 and CP3 the supercoset enjoys a (residual) κ-symmetry of rank 8, namely

capable of eliminating precisely 8 of the 24 fermionic degrees of freedom in the supercoset

to yield a totally κ-symmetry gauge-fixed action with only 16 physical fermionic degrees of

freedom.

This consideration is not true for a string embedded purely in the AdS4 sector 6 of the

background, in which case the rank of the (residual) κ-symmetry is enhanced to 12 and the

supercoset action with κ-symmetry totally gauge-fixed would have only 12 fermionic degrees

of freedom [126, 282]. The supercoset formulation is not equivalent to the GS action for

these “singular” configurations: the implicit κ-symmetry gauge choice puts the 8 broken

fermions to zero in the supercoset action, and this turns out to be incompatible in some

string configurations.

The null cusp classical string studied in chapter 6 is an example of these singular back-

grounds, being embedded only in the AdS4 part, and cannot be properly described by the

correct number of physical fermions within the supercoset formalism. In other words, the

trouble of the semiclassically quantization of this string would be a sudden change in the

number of fermionic degrees of freedom (from 12 to 8) as soon as the classical solution is

perturbed in CP3. Since the work in of chapter 6 will be the only instance of strings in the
6The same situation occurs when a string forms a worldsheet instanton in CP3 [283].
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AdS4 × CP3 geometry, we will rather concentrate 7 on an alternative non-coset form of the

AdS4 ×CP3 action – developed by D.V. Uvarov in [230, 231] – that is capable of capturing

the dynamics of all bosonic string configurations.

The starting point is the supersymmetric membrane action [286] based on the supercoset

OSp(4∣8)/ (SO(1,3) × SO(7)) in the maximally supersymmetric background AdS4 × S7.

The string action is eventually obtained performing a double dimensional reduction to

AdS4 × CP3 and choosing a κ-symmetry light-cone gauge for which both light-like direc-

tions lie in AdS4. The result is an action that is a close counterpart of the sigma-model

action for type IIB superstrings in the AdS5 × S5 background [227, 228].

In the construction of [230, 231], the space AdS4 × S7 is seen as the bosonic coset

AdS4 × S7 = SO(2,3)
SO(1,3) ×

SO(8)
SO(7) (2.35)

which admits the supersymmetric extension OSp(4∣8)/ (SO(1,3) × SO(7)). The latter in-

cludes 32 fermionic coordinates (called θ and η) associated to the each of the (respectively

super-Poincaré and superconformal) Grassmann-odd generators in the algebra osp(4∣8). An
analogue of the AdS κ-symmetry light-cone gauge sets to zero half of the fermionic coor-

dinates, where the “half” corresponds to those 16 fermionic generators carrying negative

charge under the SO(1,1) generator M+− from the Lorentz group of the 3d boundary of

AdS4.

The output is an action including physical fermions up to the fourth power 8 that is able to

capture the string dynamics in any submanifold of AdS4×CP3. As for classical integrability,

the standard Lax pair construction of [79, 126] does not clearly carry over to this non-

coset model. The zero-curvature Lax pair was built for any string configuration in the full

AdS4 ×CP3 superspace up to quadratic order in the fermionic degrees of freedom [287] 9.

Here we will be mostly interested in presenting the final gauge-fixed string action. The

starting point is the metric of AdS4 ×CP3

ds2
AdS4×CP3 = R2

CP3 (
1

4
ds2
AdS4

+ ds2
CP3) , (2.36)

where we factored out the CP3 radius RCP3 , which can be then set to 1 for simplicity. The

factor of (1/2)2 accounts for the relative size of the radius of CP3 being twice the one of
7 Let us mention that an alternative κ-symmetry gauge-fixing was considered in [284], based on the

the complete AdS4 × CP3 superspace with 32 fermionic directions [282] that allows to cover regions of the
space that are not reachable by the supercoset sigma model of [126, 267]. A different (“superconformal”)
realization of the κ-symmetry gauge-fixing was presented in [285].

8This is a feature shared with the κ-symmetry light-cone gauge-fixed action in AdS5 × S5 action (2.26).
9In [288] is was shown that the string is classically integrable up to quadratic order in fermions before

fixing κ-symmetry, for the full AdS4×CP3 and other AdS backgrounds relevant in the AdS/CFT correspon-
dence.
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AdS4. We parametrize AdS4 in Poincaré patch

ds2
AdS4

= dw
2 + dx+dx− + dx1dx1

w2
, x± ≡ x2 ± x0 , (2.37)

where w ≡ e2ϕ is the radial coordinate in AdS4 and we pick two light-cone directions x±

in the three-dimensional boundary of AdS4. For the moment we do not specify the CP3

coordinates zM (M = 1, . . .6):

ds2
CP3 = gMN dz

MdzN . (2.38)

In addition to the embedding coordinates of AdS4 × CP3, the model has 16 physical com-

plex fermions: the 3+3 ηa and θa (and their 3+3 conjugates η̄a and θ̄a) transform in the

fundamental (anti-fundamental) representation of SU(3) (a = 1,2,3) and stem from those

24 supersymmetries of type IIA supergravity unbroken by the AdS4 × CP3 background,

while the broken 8 supersymmetries bring the remaining 1+1 fermions η4, θ4 and their 1+1

conjugates η4, θ4.

The κ-symmetry light-cone gauge-fixed Lagrangian [230, 231] reads

S =T
2
∫ dτ dσL ,

L =gij[e
−4ϕ

4
(∂ix+∂jx− + ∂ix1∂jx

1) + ∂iϕ∂jϕ + gMN∂iz
M∂jz

N

+ e−4ϕ (∂ix+$j + ∂ix+∂jzMhM + e−4ϕB∂ix
+∂jx

+) ] (2.39)

− 2 εije−4ϕ (ωi∂jx+ + e−2ϕC∂ix
1∂jx

+ + ∂ix+∂jzM`M) .

Some brief explanations of the objects present in the Lagrangian are in order. The string

tension T was discussed around (1.9) and gij (i, j = 0,1) is the usual auxiliary metric field in

the Polyakov part of the action. The action exhibits highly non-linear bosonic interactions

with fermionic fields in the coefficients

$i =i (∂iθaθ̄a − θa∂iθ̄a + ∂iθ4θ̄
4 − θ4∂iθ̄

4 + ∂iηaη̄a − ηa∂iη̄a + ∂iη4η̄
4 − η4∂iη̄

4) , (2.40)

ωi =η̂a∂̂iθ̄a + ∂̂iθa ˆ̄ηa + 1

2
(∂iθ4η̄

4 − ∂iη4θ̄
4 + η4∂iθ̄

4 − θ4∂iη̄
4) , (2.41)

B =8 [(η̂a ˆ̄ηa)2 + εabc ˆ̄ηa ˆ̄ηb ˆ̄ηcη̄4 + εabcη̂aη̂bη̂cη4 + 2η4η̄
4 (η̂a ˆ̄ηa − θ4θ̄

4)] , (2.42)

C =2 η̂a ˆ̄ηa + θ4θ̄
4 + η4η̄

4 , (2.43)

hM =2 [Ωa
M εabc ˆ̄η

b ˆ̄ηc −ΩaM ε
abcη̂bη̂c + 2 (ΩaM ˆ̄ηaη̄4 −Ωa

M η̂aη4) + 2 (θ4θ̄
4 + η4η̄

4) Ω̃ a
a M ] ,

(2.44)

`M =2 i [ΩaM ˆ̄ηaθ̄4 +Ωa
M η̂aθ4 + (θ4η̄

4 − η4θ̄
4) Ω̃ a

a M ] . (2.45)
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At variance with [230, 231], we operated a field-dependent rescaling of the fermionic fields

θa →
√

2 θa θ4 →
√

2 e−ϕθ4 ηa →
√

2 e−2ϕηa η4 →
√

2 e−ϕη4 (2.46)

and similarly for their complex conjugates, inspired by the analogue one below (2.24) for

AdS5 × S5. The ηa and θa appear in fully contracted combinations in (2.40)-(2.45). The

manifest symmetry of the action is therefore only the SU(3) subgroup of the SU(4) global

symmetry of CP3 = SU(4)/U(3) that rotates the unbroken fermions into themselves 10.

The Ωa
M and ΩaM are the complex vielbein of CP3 which satisfy ds2

CP3 ≡ Ωa
MΩaN dz

M dzN ,

namely the components of the Cartan one-forms of SU(4)/U(3), Ωa = Ωa
M dzM and Ωa =

ΩaM dzM . In the Uvarov’s supercoset construction [230], Ω̃ a
a is related to a one-form

corresponding to the reduction direction coordinate in S7 and its explicit expression can be

found below in terms of the CP3 coordinates. The Ωa
M and Ω̃ a

a appear in [230] in a “dressed”

supercoset representative for OSp(4∣6)/(SO(1,3) ×U(3))) where the dressing incorporates

the information on the broken supersymmetries and the U(1) fiber direction.

Hatted variables in the Lagrangian are related to unhatted ones through a local rotation

depending on the CP3 coordinates

η̂a ≡ T b
a ηb + Tab η̄b , ˆ̄ηa ≡ T ab η̄b + T ab ηb (2.47)

and similarly for the θ fermions, in the same spirit of the unitary in U matrices (2.24) above.

We can now parametrize CP3 with with complex variables za (and their conjugates z̄a)

transforming in the fundamental (anti-fundamental) of the symmetry group SU(3) [289].

Then (2.38) can be expanded as

ds2
CP3 = gab dza dzb + gab dz̄a dz̄b + 2 g b

a dza dz̄b , (2.48)

with coefficients 11

gab =
1

4∣z∣4
(∣z∣2 − sin2 ∣z∣ + sin4 ∣z∣) z̄a z̄b ,

gab = 1

4∣z∣4
(∣z∣2 − sin2 ∣z∣ + sin4 ∣z∣) za zb , (2.49)

g b
a = sin2 ∣z∣

2∣z∣2 δba +
1

4∣z∣4
(∣z∣2 − sin2 ∣z∣ − sin4 ∣z∣) z̄a zb ,

10The broken symmetry will remain visible, for instance, at the level of semiclassical fluctuations around
the light-like cusp in section 6.2.

11They are related to the conventional Fubini-Study metric of CP3, see [231].
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where ∣z∣2 ≡ za z̄a for short. We read off the one-forms

Ωa = Ωa
,b dz

b +Ωa,b dz̄b , Ωa = Ωa,b dz
b +Ω ,b

a dz̄b , Ω̃ a
a = Ω̃ a

a ,b dz
b + Ω̃ a,b

a dz̄b ,

(2.50)

from the vielbein of this metric

Ωa = dz̄a
sin ∣z∣
∣z∣ + z̄a

sin ∣z∣(1 − cos ∣z∣)
2∣z∣3 (dzcz̄c − zcdz̄c) + z̄a (

1

∣z∣ −
sin ∣z∣
∣z∣2 )d∣z∣ , (2.51)

Ωa = dza sin ∣z∣
∣z∣ + za sin ∣z∣(1 − cos ∣z∣)

2∣z∣3 (zcdz̄c − dzcz̄c) + za (
1

∣z∣ −
sin ∣z∣
∣z∣2 )d∣z∣ (2.52)

and

Ω̃ a
a = i sin2 ∣z∣

∣z∣2 (dza z̄a − za dz̄a) . (2.53)

The matrices (2.47) can be usefully incapsulated into a 6 × 6 unitary matrix Tâb̂ [289]

Tâ
b̂ ≡

⎛
⎝
T b
a Tab

T ab T ab

⎞
⎠
=
⎛
⎜
⎝

δba cos ∣z∣ + z̄a zb 1−cos ∣z∣
∣z∣2

i εacb z
c sin ∣z∣

∣z∣

−i εacb z̄c sin ∣z∣
∣z∣ δab cos ∣z∣ + za z̄b 1−cos ∣z∣

∣z∣2

⎞
⎟
⎠
. (2.54)

In section 6.1 we will be interested in Wick-rotating the gauge-fixed Lagrangian (2.39) to

Euclidean AdS4 and perform a diagrammatical computation at two loops. One of the main

motivations behind this analysis will be also to put the action in this gauge to a stringent

test at the quantum level, where the CP3 geometry indirectly manifests in more complicated

structures (2.40)-(2.45) compared to the compact form of the AdS5 × S5 supercoset action

(2.33). Let us also remark that the action (2.39) can be rewritten in a more compact form

that resembles the Wess-Zumino type parametrization of [227, 228] by the introduction of

a covariant derivative for the terms quadratic in fermions 12.

12This was first illustrated in appendix A of [1] and reported with further details in [290].



Chapter 3

Geometric properties of

semiclassically quantized strings

The geometric properties of string worldsheets embedded in a higher-dimensional space-

time, and of linearized perturbations above them, have been object of various studies since

the seminal observation on the relevance of quantizing string models [291]. In the framework

of the AdS/CFT correspondence, a particularly important setting where these analyses

have been performed is the non-linear sigma-model on the curved AdS5 × S5. The aim of

the chapter is to provide a minimal, practical manual applicable to any classical solution

of the string sigma-model, generalizing previous analyses [192, 292] 1 that were focussing

on the bosonic sector. The formulas that we present require only the knowledge of the

generic properties of the classical configuration and basic information about the spacetime

background, and they output the bosonic and fermionic operators for fluctuations over it.

The chapter is modelled upon [3] as well as on appendix B in [295], albeit using the index

conventions in appendix D of this thesis. The objective shall be to write the fluctuation

Lagrangian in terms of intrinsic and extrinsic geometric invariants of the classical worldsheet

in AdS5 × S5 space (section 3.1). In section 3.2 we begin by reviewing the statement that

a classical string configuration is a surface of minimal area. In section 3.3 we treat the

bosonic sector with the expansion of the Polyakov action in Riemann normal coordinates

and discuss the appropriate gauge-fixing, while in section 3.4 we show how to reduce the

quadratic Green-Schwarz action for the 10d type IIB Majorana-Weyl fermions to the action

for two-dimensional spinors.

While we cannot regularize the determinants of the differential operators entering the free

action for an arbitrary classical solution – this will be done in the specific examples of
1See also [293, 294] and references therein, where this analysis has been exploited for the description of

QCD strings or stability effects for membrane solutions.
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chapters 4-6 – in section 3.5 we extract only their divergent parts. With this we will review

the mechanism responsible for the cancellation of the one-loop conformal anomaly in the

AdS5 × S5 action (see comments in section 1.4.1).

The novelty in this chapter is the treatment of the fermionic operator (due to complications

related to the flux term) and the general expressions for bosonic and fermionic masses (as

in all cases previously analyzed simplifications occurred due to the “flatness” of the normal

bundle associated to the classical surface).

Although our main focus is AdS5 × S5, almost all statements are independent on the di-

mensionality d and the specific spacetime (provided that M = 1, . . . d and similarly for other

target-space indices in appendix D), so in principle it is directly generalizable to other impor-

tant AdS/CFT backgrounds (AdS4×CP3, AdS3×S3×M4, AdS3×S2×M5, AdS2×S2×M6,

with M4 = T 4, S3 × S1 and M5 = S3 × T 2) by exploiting some general properties shared

by their geometries (see the “separability” condition for the 10d Riemann tensor in (3.51)

below).

3.1 Geometry of the AdS5 × S5 space

The AdS5 ×S5 space is a direct product of the five dimensional anti-de Sitter space and the

five-dimensional sphere. The AdS space is the isometric embedding −X2
0 +∑4

i=1X
2
i −X2

5 =
−R2 into the flat space R2,4 with metric ds2

R2,4 = −dX2
0 +∑4

i=1 dX
2
i − dX2

5 . By construction,

AdS5 is an homogeneous space with isometry group SO(2,4). On the other hand, the

sphere S5 is the homogeneous space ∑6
i=1 Y

2
i = R2 with SO(6) symmetry and embedded

in Euclidean R6 with ds2
R6 = ∑6

i=1 dY
2
i . Here, we were careful to keep the same radius of

curvature R in the two subspaces as in (1.1). For simplicity, we set it equal to one from

now on.

The parametrization of AdS5 × S5 in global coordinates

X1 + iX2 = sinhρ cos θ eiφ1 , X3 + iX4 = sinhρ sin θ eiφ2 ,

X5 + iX0 = coshρ eit , Y5 + iY6 = cosγ eiϕ3 , (3.1)

Y1 + iY2 = sinγ cosψ eiϕ1 , Y3 + iY4 = sinγ sinψeiϕ1

gives the explicit expression for its metric ds2
AdS5×S5 = ds2

AdS5 + ds2
S5

ds2
AdS5

= − cosh2 ρ dt2 + dρ2 + sinh2 ρ (dθ2 + cos2 θ dφ2
1 + sin2 θ dφ2

2) , (3.2)

ds2
S5 = dγ2 + cos2 γ dϕ2

3 + sin2 γ (dψ2 + cos2ψ dϕ2
1 + sin2ψ dϕ2

2) . (3.3)
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Above, θ, φ1 and φ2 parametrize a three-sphere, ρ > 0 is the radial coordinate stretching

from the AdS center ρ = 0 all the way to the boundary with geometry S1 × S3 located at

spatial infinity ρ = ∞. The periodicity of the global time is restricted to t ∈ [0,2π), but in

AdS/CFT applications it is usually decompactified to consider the universal cover of AdS5

with t ∈ R, by removing the identification t ∼ t+2π, in order to avoid closed time-like curves

and to make contact with the time coordinate of the boundary gauge theory 2.

Figure 3.1: Sketch of the universal cover of the AdS5 space, wrapping the hyperboloid
an infinite number of times, and the sphere S5 [190].

In addition to the global parametrization (3.2), the AdS part can be written in different

forms that will turn out to be useful later in this thesis. The analysis of strings surfaces

ending on the AdS boundary, e.g. in chapter 5, is conveniently done in the Poincaré patch

X0 =
x0

z
= coshρ sin t , Xi =

xi
z
= ni sinhρ , i = 1,2,3,

X4 =
−1 + z2 − x2

0 +∑3
1=1 x

2
i

2z
= n4 sinhρ ,

4

∑
i=1

n2
i = 1 , (3.4)

X5 =
1 + z2 − x2

0 +∑3
1=1 x

2
i

2z
= coshρ cos t ,

which brings the conformally-flat metric

ds2
AdS5

= −dx2
0 +∑3

m=1 dx
2
m + dz2

z2
. (3.5)

The x’s coordinates are identified with the Cartesian coordinates of the four-dimensional

boundary of AdS located at z = 0. In chapter 7 we make yet use of another form of the full

AdS5 ×S5 metric by combining the five angles (3.3) and the coordinate z into the sextuplet
2The AdS/CFT correspondence prescribes a conformal compactification of AdS5 × S5 and the dual R1,3

space, as explained in the review [43]. We thank Hagen Münkler for pointing out to us the reference [296]
where such construction for Rp,q is rigorously spelt out.
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zM (M = 1, . . .6)

ds2
AdS5×S5 =

−dx2
0 +∑3

m=1 dx
2
m +∑6

M=1 dz
MdzM

z2
, z2 =

6

∑
M=1

z2
M . (3.6)

in which ∑6
M=1 dz

MdzM ≡ dz2 + z2ds2
S5 .

3.2 The minimal-surface equations

We start by recalling some basic facts about classical string theory. Fermions are always

zero at classical level and the bosonic string action can be either in the Nambu-Goto or

Polyakov form. First we shall deal with classical backgrounds which extremize the former

action functional (here defined after dropping the overall string tension T )

SNG = ∫ dτdσ
√
h , (3.7)

where hij ≡ GMN∂iX
M∂jX

N is the induced metric, namely the pull-back of the target

space metric GMN on the 2d worldsheet Σ spanned by the pair of coordinates (τ, σ). It is

important to stress that here h is the absolute value of the determinant of hij .

As explained in section 1.4, in semiclassical approximation we are interested in finding the

surface of minimal area XM which solves the Euler-Lagrangian equations

◻hXM + hij ΓMNP ∂iX
N∂jX

P = 0 , (3.8)

here written in terms of the covariant Laplacian on worldsheet scalars ◻h = 1
√

h
∂i(

√
hhij ∂j)

and the Christoffel connection ΓMNP of the target-space metric GMN . The covariant Lapla-

cian is expanded in terms of hij and its Christoffel connection Λijk to yield

hij(∂i∂jXM −Λkij∂kX
M + ΓMNP∂iX

N∂jX
P ) ≡ hijKM

ij = 0 , (3.9)

where the second fundamental form (or extrinsic curvature) KM
ij of the worldsheet in the

embedding space has been introduced. One can see that the equations of motion (3.9) state

that the all the “curvatures” KM vanish 3

KM ≡ hijKM
ij = 0 . (3.10)

3Note that the “shape” of a minimal surface is deeply influenced by the signature of the 10d GMN and
2d metric hij . This also implies that a rigorous mathematical treatment of the differential equations (3.10)
– e.g. existence and uniqueness theorems of its solutions – is substantially different in a Riemannian or
pseudo-Riemannian ambient space. We acknowledge an elucidating discussion with Thomas Klose about
this point.
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By construction the extrinsic curvature is orthogonal to the two vectors tMi ≡ ∂iXM tangent

to the worldsheet

GMN t
M
i K

N
jk = 0. (3.11)

Physically this means that only 8 of the 10 equations in (3.10) are independent and they

govern the 8 transverse degrees of freedom. The 2 longitudinal ones are gauge degrees of free-

dom associated to the 2d diffeomorphism invariance (τ, σ) → (τ ′, σ′) = (τ ′(τ, σ), σ′(τ, σ))
of (3.8) (and of its equivalent formulation (3.12) below).

We arrive at the same equations of motion by starting from the Polyakov form of the string

sigma-model (omitting now a factor of T2 )

SP = ∫ dτdσ
√
ggijGMN∂iX

M∂jX
N (3.12)

where the gij is an independent two-dimensional metric field and g is the absolute value of

its determinant. In this case the dynamical equations for the embedding coordinates XM

acquire an extra term

◻g XM + gijΓMNP∂iXN∂jX
P = gijKM

ij + gij(Λkij − Γ̃kij)∂kXM = 0, (3.13)

where ◻g denotes the covariant scalar Laplacian and Γ̃ijk the Christoffel symbol of the auxil-

iary metric gij , whereas Λijk is still the one of the induced metric. The (algebraic) equations

of motion δSP
δgij

= 0 for the auxiliary metric gij (Virasoro constraints) set it proportional to

the induced one

gij = eϕhij . (3.14)

The local factor ϕ is not uniquely fixed because the combination √
ggij in the Polyakov

action is invariant under Weyl transformations (φ = φ(τ, σ) is an arbitrary scalar function)

XM →XM , gij → eφgij . (3.15)

The last addend in (3.13) vanishes due to (3.14) and the equations of motion again reduce

to (3.10).

The problem of finding a surface of least area stretched across a given closed contour is as

old as the calculus of variations [297]. The equations (3.10) are typically too complicated

to allow for a direct solution. One can instead begin with an ansatz for XM – using certain

unknown functions of (τ, σ) and, possibly, some adjustable parameters – that respect the

expected symmetries of the solution. Out of this infinite family of surfaces, the one of least

extension optimises the action functional. The advantage of this method lies in the ability

of decomposing the 2d variational problem into a set of ordinary differential equations for

the auxiliary functions, which can be then solved separately. A rather non-trivial example
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of this strategy was pursued for finding the worldsheet dual to a non-BPS cusped Wilson

loop in appendix C.2 of [298].

Another ingenious way to construct new open string solutions from known ones stems from

conformal invariance. In the following argument the S5 subspace does not play any role,

so in the metric (3.5) we indicate a minimal surface by XM(τ, σ) = (xµ(τ, σ), z(τ, σ)) for

short and its boundary XM(τ,0) = (xµ(τ,0),0) with µ = 0, . . .3. Suppose we are interested

in the solution of the variational problem for X ′M(τ, σ) = (x′µ(τ, σ), z′(τ, σ)) with a given

boundary shape X ′M(τ,0) = (x′µ(τ,0),0) being the image of XM(τ,0) under an inversion

at the unit circle xµ(τ,0) → x′µ(τ,0) = xµ(τ,0)
xµ(τ,0)xµ(τ,0)

. Conformal mappings of R4 can be

promoted to isometries in the bulk of AdS5

xµ → xµ

xµxµ + z2
, z → z

xµxµ + z2
. (3.16)

Therefore, we can easily construct the new surface X ′M as the image of the minimal one

XM through this map which, being an AdS isometry, guarantees that X ′M is of least area

as well. The argument was employed, for instance, for the worldsheet dual to a Wilson loop

made of two circular arcs [299].

3.3 Bosonic fluctuations

In this section we shall discuss the semiclassical expansion of the bosonic action around a

classical background by truncating it at quadratic order in the bosonic fluctuations. The

starting point can be either the Polyakov form with the independent metric gij or the

Nambu-Goto form as they yield equivalent expressions for the one-loop partition function.

However, we prefer the Polyakov formulation because the definition of the path-integral

measure and the cancellation of the one-loop conformal anomaly are better understood in

this form [192].

After reviewing previous analysis [192, 292] based on background field method for non-linear

sigma-models and the virtues of the expansion in geodesic normal coordinates [300], we

will write the relevant contributions in terms of intrinsic and extrinsic geometric invariants

of the classical solution.

3.3.1 The bosonic Lagrangian

We will discuss the bosonic sector starting from (3.12) for the fields X̃M

SP = ∫ dτdσ
√
ggij∂iX̃

M∂jX̃
NGMN(X̃) , (3.17)
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while keeping the notation XM for the solution of the equations of motion (3.10). A well-

known subtlety of the expansion of a non-linear sigma-model around a classical background

XM [300] is that writing it as a power series in terms of fluctuations δXM = X̃M −XM does

not lead to a manifestly covariant expression for the series coefficients. As a matter of fact,

the difference δXM does not transform simply under reparametrization. The easiest way to

obtain a manifestly covariant form for the coefficients is to take advantage of the Riemann

normal coordinates of the embedding space, i.e. expressing δXm as a power series in the

spacetime vectors that are tangent to the geodesic connecting Xm with Xm + δXm [300].

One considers a geodesic line XM(t) with t parametrizing the arc length such that

XM(0) =XM , XM(1) = X̃M ≡XM + δXM . (3.18)

Solving then the geodesic equation for XM(t)

ẌM(t) + ΓMNP Ẋ
N(t)ẊP (t) = 0 (3.19)

in terms of the tangent vector ζM ≡ ẊM(0) to the geodesic in t = 0, one finds

XM(t) =XM + tζM − 1

2
t2ΓMNP ζ

NζP +O(t3) , (3.20)

Setting t = 1, this means 4

δXM = X̃M −XM = ζM − 1

2
ΓMNP ζ

NζP +O(ζ3) . (3.21)

where ΓMNP ≡ ΓMNP (XM) is evaluated on the classical surface. The difference δXM is now

the desired local power series in the vector ζM , which can then be conveniently used as a

fundamental variable. Plugging this expression into (3.17), we find the fluctuation action

(see [292] for example)

S = S(0)
B (X)+∫ dτdσ

√
ggij (∇iζM∇jζNGMN −RRMSNζ

RζS∂iX
M∂jX

N)+O(ζ3). (3.22)

Here, ∇iζM ≡ ∂iζ
M + ΓMNP ∂iX

N ζp is the pullback of the covariant derivative onto the

classical surface. In the quadratic truncation of the Polyakov action above, the term S
(0)
B (X)

denotes the classical action, while the integral describes the quadratic fluctuations and it

will be denoted with S
(2)
B = ∫ dτdσL

(2)
B in the following. In order to have a canonically

normalized kinetic term it is convenient to introduce a set of vielbein EAM and its inverse

EMA for the target metric as shown in appendix D. In terms of the redefined fluctuations

4If we reintroduce the string tension T /2 in the Polyakov action, then we need to rescale δXM →
√

2
T
δXM

and the effective expansion parameter
√

2
T
ζM is small in semiclassical approximation T →∞.
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fields

ξA = EAMζM , (3.23)

the quadratic fluctuation Lagrangian becomes [192, 292]

L(2)
B = √

g (gijDiξ
ADjξA −MA,Bξ

AξB ) , (3.24)

where the mass matrix [192, 292]

MAB = RAC,BDtaCtDa (3.25)

is defined through two vectors (D.4) tangent to the worldsheet and the covariant derivative

in the tangent-frame indices now reads

Diξ
A = ∂iXA +ΩA

BMξ
B∂iX

M , (3.26)

with the spin-connection ΩA
BM replaced by the usual Christoffel symbols. To better un-

derstand the geometrical structure of the Lagrangian (3.24), we introduce 8 orthonormal

vector fields NA
a orthogonal to the worldsheet satisfying (D.5) and project the field ζA onto

directions tangent (xã) and orthogonal (yi) to the surface

ξA ≡ xãtAã + yīNA
ī . (3.27)

It is known from the general theory of submanifolds [301] that this decomposition carries

over to the covariant derivatives

tãADiξ
A = Dixã −K ã

AiN
A
j̃
yj̃ , N

i
ADjξ

A = Djyi + xãN i
AK

A
ãj . (3.28)

Here, Di is the covariant derivative on the worldsheet and it acts differently on xã and yi

Dixã ≡ ∂ixã + ωãb̃ ix
b̃ , Diyi ≡ ∂iyi −Aikiyk, (3.29)

since xã lives in the tangent bundle of the worldsheet, while yi is a section of the normal

bundle. The field Aijk is a two-component gauge connection (k = 1,2) taking values in the

SO(8) normal bundle (i, j = 2, . . .9) induced by the classical solution:

Aijk ≡ NB
j DkN

i
B = NB

j (∂kN i
B −N

i
C ΩC

Bk). (3.30)

As usual the action of Di on tensors with indices in both bundles is obtained combining

the two actions in (3.29). The tensor Ka
Aj = EAmeaiKM

ij in (3.28) is the extrinsic curvature

(3.9) of the embedding expressed in a mixed basis.
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In the following we will make use of the Gauss-Codazzi equation

RACBDt
A
ã t
C
c̃ t
B
b̃
tD
d̃
=(2)Rãc̃b̃d̃ + ηABK

A
c̃b̃
KB
d̃ã
− ηABKA

c̃d̃
KB
b̃ã
, (3.31)

an integrability condition relating the worldsheet curvature (2)Rãc̃b̃d̃ to the extrinsic and

background geometry as characterized by the extrinsic curvature KA
ãb̃

and the space-time

Riemann tensor RACBD. Another useful constraint on the covariant derivative of the ex-

trinsic curvature is provided by the Codazzi-Mainardi equation

DjKi
kl −DkKi

jl = RMNRSt
M
j t

N
k t

S
l N

Ri , Ki
jk ≡KA

jkN
i
A . (3.32)

Taking into account (3.31), (3.32) and the equations of motion (3.10) for the background,

the quadratic Lagrangian (3.24) finally appears to be

L(2)
B = √

g[(gijDixãDjxã −(2)Rãb̃x
ãxb̃) + gijDiyiDjyi−

− 2hij(DixaKi,ajy
i −DiyixãKi,ãj) − 2mãix

ãyi −mijy
iyj] .

(3.33)

Above, the matrices appearing in the mass terms are given by

mãi = −gkj∇kKi,aj and mij = RAC,BDtcCtDc NA
i N

B
j − gklgmnKi,kmKj,jn. (3.34)

So far we have treated the independent metric gij as a non-dynamical field. We should

recall that in the Polyakov formulation it actually fluctuates

g̃ij = gij + `g
ij

(3.35)

around a classical background gij (3.14). In particular this means that all the gij appearing

in the previous analysis must be replaced with g̃ij . The quadratic part of the Polyakov

action involving its fluctuations `g
ij

reads

Sg = ∫ dτdσLg , (3.36)

Lg = eϕ
√
h [ 1

4 (hlihkj + hljhki − hijhkl )`g
ij
`g
kl
− (Dixj +Djxi − hijDĩxĩ − 2yiK

iij )`g
ij
],

where xi = eiãx
ã. To deal with the quadratic fluctuation Lagrangians (3.33) and (3.36),

we have different possibilities (see [3] for a more exhaustive list of gauge fixings). In the

conformal gauge for the metric fluctuations

`g
ij
= eϕhijδϕ (3.37)
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the action Sg vanishes while the ghost action [159, 160] associated to the gauge-fixing (3.37)

is

Sghost = ∫ dτdσLghost , Lghost =
1√
2
bij (Dicj +Djci − hijDkck) . (3.38)

The parameter c and the symmetric traceless tensor bij are Grassmann-odd ghost fields. The

full ghost contribution is encoded into a functional determinant, obtained by integrating

over c and bij . Concretely, the computation of the ghost determinant means here to solve

the following eigenvalue problem in the background geometry (n labels eigenvalues and

eigenvectors)
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1√
2
(Dic(n)j +Djc(n)i − hijDkck(n)) = λnb(n)ij

−
√

2Dibij
(n)

= λncν(n).
(3.39)

The system of equations leads to the eigenvalue equation for the ghost operator

− (◻hδij +Rij)c
j
(n)

= λ2
nc
i
(n) (3.40)

and the value of its determinant

△ghost =∏
n

λn = Det1/2(− ◻h δij −R
j
i) . (3.41)

We can now decouple the longitudinal fluctuation xã from the transverse ones yi. We start

from the action (3.33), and derive the equations of motion for the fluctuation parallel to the

worldsheet:

◻h xĩ +Rĩj̃x
j̃ = Dj̃Bj̃ĩ , Bĩj̃ = 2yiK

i

ĩj̃
, (3.42)

where we introduced the traceless tensor Bĩj̃ . This equation can be equivalently written as

follows

(P1)ĩj̃ ≡ Dj̃xĩ +Dĩxj̃ − hĩj̃Dk̃x
k̃ = B∥

ĩj̃
(3.43)

where we have introduced a local projector P1 mapping vectors to traceless symmetric

tensors. We can conveniently decompose the traceless symmetric tensor

Bĩj̃ = B
∥

ĩj̃
+B⊥

ĩj̃
, B

∥

ĩj̃
∈ range(P1) , B⊥

ĩj̃
∈ range(P1)⊥ = Ker(P †

1 ) . (3.44)

If we are only interested in worldsheet with the topology of the sphere or the disc, then

B⊥
ĩj̃
= 0 and Bĩj̃ = B

∥

ĩj̃
5. Considering now a solution x̄ĩ of (3.43) and performing the shift

xĩ → x̄ĩ + xĩ in the path-integral, all mixed terms xy in (3.33) disappear and we are left

therefore with the quadratic Lagrangian

L(2)
B ≡ L(2)

long + L
(2)
transv (3.45)

5This corresponds to the absence of non-trivial Beltrami differentials at genus 0.
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where

L(2)
long =

√
h (hijDixãDjxã −(2)Rãb̃x

ãxb̃) (3.46)

and

L(2)
transv =

√
h(hijDiyiDjyi −M(B)

ij yiyj) , (3.47)

M(B)

ij = RAC,BDtcCtDc NA
i N

B
j +Ki,ijK

ij
j .

After the above redefinition, the operator controlling the fluctuations xã parallel to the

worldsheet in (3.46) coincides with the one for ghosts in (3.41), but we remark that this

does not mean in general that the corresponding determinants will simply cancel. For

instance in the case of open strings different boundary conditions should be imposed for

the two determinants. Moreover the treatment of the ghost operator requires additional

care since it might contain zero modes associated to the Killing vectors of the worldsheet

metric hij .

Another option to get rid of the longitudinal fluctuations is to choose the static gauge by

setting xĩ = 0. Then (3.33) reduces to a Lagrangian for the transverse fluctuations only, with

a mass matrix given not by Mij but by mij . However, we must recall that the transverse

fluctuations are still coupled to the metric fluctuations (see equation (3.36)):

Lg = eϕ
√
h ( 1

2 h
lihkj¯̀g

ij
¯̀g
kl
+ 2yiK

iij¯̀g
ij
) . (3.48)

If we again eliminate the metric fluctuation ¯̀g
ij
through its equation of motion, we get back

to the mass matrix M(B)

ij and to L(2)
transv in (3.47).

We also remark that starting from the Nambu-Goto action, where no dynamical worldsheet

metric is present, in the static gauge xĩ = 0 we would directly obtain L(2)
transv.

In view of the analysis above, we will focus our attention on transverse fluctuations and

closely examine the structure of their Lagrangian (3.47). These modes are in general coupled

between themselves and we can distinguish two different sources of coupling: the SO(8)
gauge connection Aijk induced on the normal bundle and the mass matrix M(B)

ij .

3.3.2 The normal bundle

Let us begin with the geometric structure of the normal bundle. The normal-bundle curva-

ture

F ijkl ≡ ∂kAijl − ∂lAijk +AikkAkjl −AiklAkjk (3.49)
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can be easily evaluated in terms of the Riemann curvature of the target space and of the

extrinsic curvature through the Ricci equation

F ijkl = −RABCDtAk tBl DiCND
j − hmn(Ki

mkKjn −Ki
mlKj,mk). (3.50)

If we make the choice of AdS5 × S5 explicit, we see that the contribution of the Riemann

tensor in this background to the curvature of the normal bundle

RABCD = −(P̂AC P̂BD − P̂ADP̂BC) + (P̄AC P̄BD − P̄ADP̄BC) (3.51)

vanishes identically as in flat space. We called P̂AB the projector onto AdS5 and P̄AB the

one onto S5, with P̂AB+P̄AB = ηAB. We remain with the expression for the normal curvature

F ijij = (hklεmnKi
kmKjln)εij ≡

√
hεijF i

j , (3.52)

which holds also in flat space. The normal bundle is flat when F ijij = 0. In that case, we can

always choose the 8 normal vectors in (D.5) so that Aijk = 0 and the covariant derivative

acting on the transverse fluctuations (3.29) reduces to the standard partial derivative. This

occurs, for instance, when the minimal surface is confined in a three-dimensional subspace

of the target space: the extrinsic curvature is in fact not vanishing just in one normal

direction [192, 302–307].

For a generic worldsheet, which solves the equations of motion in the AdS5 × S5 back-

ground, the extrinsic curvarture defines, at most, two independent vector fields normal to

the worldsheet 6. In fact the matrix F i
j can be always put in the form

F i
j = (kihj − kjhi), (3.53)

where (hi ⋅ tã) = (ki ⋅ tã) = 0 and we can choose (k ⋅ h) = 0 without loss of generality. Here

and in the following, we make use of the inner product over flat 10d indices

(V ⋅W ) ≡ ηAB V AWB . (3.54)

3.3.3 Mass matrix and sum rules

The next step is to examine more closely the mass matrix (3.47) for the transverse bosonic

degrees of freedom. Since we have not used the properties of AdS5 × S5 yet, in a generic
6This follows from the fact that we have just two independent components of the extrinsic curvature

(e.g. KM
11 and KM

12 ). Alternatively, we can argue this result, in a covariant way, from the following matrix
relation F4 = 1

2
tr(F2)F2 satisfied by F .
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ambient space it has the form

M(B)

ij = RAC,BDtãCtDã NA
i N

B
j +Ki,ijK

ij
j . (3.55)

There are few general properties of M(B)

ij that can be easily read from (3.55), since the

embedding equations for a sub-manifold do not provide a direct constraint on the contraction

RAC,BDt
ãCtDã N

A
i N

B
j . However, the trace tr(M(B)) admits a quite simple and compact

expression in terms of geometric quantities. If we use the completeness relation (D.5) and

the Gauss equation (3.31) we can rewrite the trace of (3.55) as follows

tr(M(B)) = RMN t
cM tNc −RAM,BN t

cM tNc t
A
d t
dB + tr(K2) = RAB tãAtBã −(2)R , (3.56)

where we used the traced of the square of the extrinsic curvature

tr(K2) = hijhklηABKA
kjK

B
li , (3.57)

the trace of the Ricci tensor RMN and the two-dimensional (intrinsic) scalar curvature (2)R

of the two-dimensional curvature.

We now explicitly use the geometric properties of AdS5 × S5 background, referring the

reader to [3] for a detailed derivation. We shall use hats and bars over vectors to denote

their projection on AdS5 and S5 respectively

V̂ A = P̂ABV B , V̄ A = P̄ABV B. (3.58)

The complete mass matrix is given by

M(B)

ij = −m2
AdS5

(N̂i ⋅ N̂j) −m2
S5 (N̄i ⋅ N̄j) +KiijK

ij
i ,

m2
AdS5

≡ hãb̃(t̂ã ⋅ t̂b̃) = −
1

2
((2)R + tr(K2)) + 1 , (3.59)

m2
S5

≡ −hãb̃(t̄ã ⋅ t̄b̃) = −
1

2
((2)R + tr(K2) ) − 1

and the trace of the mass matrix tr(M(B)) simplifies to

tr(M(B)) = 3 (2)R + 4 tr(K2) . (3.60)

The structure of the mass matrix (3.59) can be further constrained assuming particular

properties of the classical background. The simplest geometrical configuration is when the

minimal surface is confined in one of the two spaces: AdS5 if t̄ã = 0 or S5 if t̂ã = 0. Let us

focus on the first possibility, as the second one can be discussed in complete analogy.
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If the classical worldsheet lies entirely in AdS5, then the mass matrix reduces to

M(B)

ij = − 2(N̂i ⋅ N̂j) +KiklK
kl
j , (3.61)

where we have used that m2
S5 = 0 and m2

AdS5
= 2. The extrinsic curvature Kikl is different

from zero only for orthogonal directions lying in AdS5. Therefore we have 5 massless scalar

(mi = mS5 = 0 with i = 1, . . .5), one for each direction of S5. We can always choose a sixth

direction (lying in AdS5) orthogonal to the worldsheet and to the two normal directions

defined by Kikl. The mass m6 of this sixth scalar is m2
6 = −2.

Finally, we have to select the last two orthogonal directions (i = 8,9) and we choose the

only two orthonormal eigenvectors of KiklK
kl
j with non vanishing eigenvalues. They always

exist if the normal bundle is not flat. Then the two masses are given by

m2
7 = λ1 − 2 , m2

8 = λ2 − 2. (3.62)

Here λ1 and λ2 are the two non-vanishing eigenvalues of KiklK
kl
j and they are determined

in terms of the geometric quantity of the surface through the relations:

λ1 + λ2 = tr(K2) = −(2)R − 2 , λ1λ2 =
1

2
[(tr(K2))2 − tr(K4)] = 1

2
tr(F2), (3.63)

where tr(K4) ≡ K
i
jkK

jk
j K

j
mnK

mn
i . If the normal bundle is flat, F i

j = 0 and one of the

two eigenvalues vanishes, e.g. λ1 = 0. Then the two masses collapse to the known result

[174, 192]

m2
7 = −2 , m2

8 = −(2)R − 4. (3.64)

Let us turn our attention to the general case where the worldsheet extends both in AdS5 and

S5 spaces and the mass matrix has the general form (3.59). The first step is to choose two of

the fluctuations (i = 8,9) along the two orthogonal directions (h and k in (3.53)) with non-

vanishing extrinsic curvature. These two directions are defined up to a rotation in the (h, k)-
plane. We fix this freedom by choosing h and k to be the only two orthonormal eigenvectors

of KiklK
kl
j with non vanishing eigenvalues. Then the only non vanishing component of the

field strength in the normal bundle is F8
9.

The bosonic masses can be analysed in details if the field strength F8
9 is essentially abelian,

namely if the only component of the connection different from zero is given by A8
9. In this

case one can show that the Codazzi-Mainardi equation (3.32) implies

(t̄ã ⋅Ni) = (t̂ã ⋅Ni) = 0 for i ≠ 8,9. (3.65)
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We find that the remaining six normal directions are orthogonal both to t̄ã and to t̂ã, imply-

ing that some of these vectors completely lie in AdS5, while the others in S5. Generically

we expect to find three of them in AdS5 and three in S5 (a different partition of the six

vectors between the two subspaces may occur when some of t̂ã or of t̄ã vanishes). Because

of the orthogonality relations (3.65), the mass matrix M(B) takes the form 7

M(B)

ij =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−m2
AdS5

0 0 0 0 0 0 0

0 −m2
AdS5

0 0 0 0 0 0

0 0 −m2
AdS5

0 0 0 0 0

0 0 0 −m2
S5 0 0 0 0

0 0 0 0 −m2
S5 0 0 0

0 0 0 0 0 −m2
S5 0 0

0 0 0 0 0 0 m88 m89

0 0 0 0 0 0 m89 m99

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(3.66)

with m2
AdS5

and m2
S5 given in (3.59). With the help of the trace condition (3.56)

m88 +m99 = tr(K2) , (3.67)

the matrix subblock for the directions 8 and 9 can be cast into to the form

⎛
⎝
m88 m89

m98 m99

⎞
⎠
=
⎛
⎝
−m2

AdS5
+ 2(N̄8 ⋅ N̄9) + λ1 2(N̄8 ⋅ N̄9)

2(N̄8 ⋅ N̄9) m2
AdS5

− 2(N̄8 ⋅ N̄8) + λ2

⎞
⎠

(3.68)

where λ1 and λ2 again obey (3.63).

In the general case, when F8
9 is not generated by only taking A8

9 different from zero, the

structure of the mass matrix may become more intricate. However we can always choose

at least two orthogonal directions, one in S5 and one in AdS5, which are orthogonal to the

minimal surface and to the extrinsic curvature. The masses of these two fluctuations are

then given by (3.59).

3.4 Fermionic fluctuations

The full covariant Green-Schwarz string action in AdS5 × S5 has a complicated non-linear

structure [78, 308], but to analyze the relevant fermionic contributions it is sufficient to
7The matrix elements are labelled by i, j = 2, . . .9 in our index conventions.
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consider only its quadratic part

S
(2)
F = ∫ dτdσL(2)

F , L(2)
F = i (

√
hhij δIJ − εijsIJ) Ψ̄I ρiD

JK
j ΨK . (3.69)

Above, ΨI (I = 1,2) are two ten-dimensional Majorana-Weyl spinors with the same chirality,

sIJ = diag(1,−1), ρi are the worldsheet projections of the ten-dimensional Dirac matrices

ρi = EAM ∂iX
M ΓA (3.70)

and DJK
i is the two-dimensional pullback ∂iX

M DJK
M of the ten-dimensional covariant

derivative, sum of an ordinary spinor covariant derivative and an additional “Pauli-like” cou-

pling to the Ramond-Ramond flux background,DJK
M =DM δJK− 1

8⋅5!FM1...M5ΓM1...M5ΓM εJK .

The pullback of DJK
M

DJK
i =DJK

i +FJK
i (3.71)

can be written as the sum of a “kinetic” part

DJK
i = δJK (∂i +Ωi) , Ωi =

1

4
∂iX

MΩAB
M ΓAB = 1

4
ΩAB
i ΓAB (3.72)

and of a flux term FJK
i

8

FJK
i = − i

2
εJKΓ⋆ρi , Γ⋆ = iΓ01234 . (3.75)

This splitting suggests to define (3.69) as the sum of

L(2)
kin = i (

√
hhij δIJ − εijsIJ) Ψ̄I ρiD

JK
j ΨK (3.76)

L(2)
flux = i (

√
hhij δIJ − εijsIJ) Ψ̄I ρiFJK

j ΨK . (3.77)

Looking for a general formalism for fluctuations, there is a natural choice for the κ-symmetry

gauge-fixing that is viable in type IIB string action, where both Majorana-Weyl fermions
8 An alternative form for the flux [78] is

FJKi = − i
2
εJK ρ̃i , ρ̃i = ΓAt̂

A
i + iΓAt̄Ai (3.73)

with which the corresponding part of the gauge-fixed Lagrangian reads

L(2)flux = −ε
ij Ψ̄ρi ρ̃j Ψ . (3.74)

Its equivalence with (3.75) and (3.86) below is manifest in the 5+5 basis of [78], see also discussion in [192].
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in the Green-Schwarz action have the same chirality, namely 9

Ψ1 = Ψ2 ≡ Ψ . (3.78)

This choice has the advantage of having a trivial gauge-fixing determinant [192]. Since

s11 = −s22 = 1, in the kinetic part of the fermionic action only the term proportional to

hij will survive after the κ-symmetry gauge-fixing, while in the flux part only the term

proportional to εij .

3.4.1 The kinetic term

Let us first focus on the “kinetic” part of the action (3.76) containing the ordinary spinor

covariant derivative

L(2)
kin = 2i

√
hhij Ψ̄ΓA eAi (∂j +Ωj)Ψ . (3.79)

We begin with the observation that the Dirac algebra is decomposed in two subsets: the

components along the worldsheet and those orthogonal to the worldsheet, which in the

ten-dimensional case means

ρã = tAãΓA , ρi = NAiΓ
A . (3.80)

As used earlier in [302–306, 309, 310] and made explicit in this context in [192], since a

two-dimensional Clifford algebra holds by construction for the {ρi, ρj} = 2hij , it is always

possible to find a local SO(1,9) rotation S that transforms ρi into two-dimensional Dirac

matrices contracted with zweibein

ρã = SΓaS−1eaã , ρi = SΓaS−1eai , (3.81)

where

Γ1 = i σ2 ⊗ I16 , Γ2 = σ1 ⊗ I16 , Γa = σ3 ⊗Σa , a = 3, . . .10 , (3.82)

σa are Pauli matrices (a = 1,2,3) and Σa are 16×16 Dirac matrices in 8 Euclidean dimensions.

Defining now

Θ = S−1Ψ and Ω̂i = S−1ΩiS + S−1∂iS , (3.83)
9A widely used alternative to (3.78) is the light-cone gauge-fixing Γ+ΨI = 0, where the light-cone might

lie entirely in S5 [227, 228] or being shared between AdS5 and S5 [276] (and [85] for further references
therein). One of the obvious advantages of the “covariant” gauge-fixing (3.78) is preservation of global
bosonic symmetries of the action. A more general choice is Ψ1 = kΨ2 ≡ kΨ where k is a real parameter
whose dependence is expected to cancel in the effective action, see discussion in [177]. Yet another κ-
symmetry gauge-fixing, albeit equivalent to (3.78) [192], has been used for studying stringy fluctuations in
AdS5 × S5 in [191].
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one ends up with the following rotated expression

L(2)
kin = 2i

√
hhij Θ̄ΓA eAi (∂j + Ω̂j)Θ. (3.84)

We remark here that the present analysis is only valid at classical level: the local rotation

produces quantum mechanically a non-trivial Jacobian in the path-integral measure [192],

whose contribution is crucial to recover the correct structure of the divergent terms in section

3.5. A tedious computation brings the fermion kinetic part of the rotated Lagrangian in the

form

L(2)
kin =2i

√
hhij Θ̄ ΓA eAi (∂j + 1

4ΓABω
AB
j − 1

4A
ij

j Γij )Θ . (3.85)

Namely, in the rotated basis (3.81)-(3.82) the Green-Schwarz kinetic operator (3.76) results

in a standard two-dimensional Dirac fermion action on a curved two-dimensional background

with geometry defined by the induced metric [192]. The spinor covariant derivative can be

written as a 2d ordinary spinor covariant derivative plus one additional term that consists in

the normal bundle gauge connection (3.30), with respect to which the 16 two-dimensional

spinors making up the 32-component Majorana-Weyl spinor Θ transform in the spinor

representation of SO(8). This interacting term vanishes (i.e. a set of normal vectors exists

such that A
ij

k = 0) when the field-strength associated to the normal connection vanishes,

see discussion below (3.52). As mentioned there, this is always the case, for example, for

embeddings of the string worldsheet in AdS3, where indeed the normal direction is just one

and the normal bundle is then trivial. For a more general embedding extending in both

AdS5 ×S5 subspaces, the presence or not of this interaction term has to be checked case by

case 10.

3.4.2 The flux term

We now analyze the flux term (3.77), which after the κ-symmetry gauge-fixing (3.78) reads

L(2)
flux = −ε

ij Ψ̄ρi Γ∗ρj Ψ , Γ∗ = iΓ01234 . (3.86)

In order to understand the geometrical meaning of the terms in (3.86), we again decompose

the gamma matrices as in (3.81)-(3.82) and rotate the spinor as in (3.83). Defining the

antisymmetric product of the Dirac matrices projected onto the worldsheet as

ρ3 ≡
1

2
√
h
εijρij , ρij = − 1√

h
εij ρ3 , (3.87)

10We will encounter an example of string background with non-flat connection in (5.29), see the induced
fermionic Lagrangian in (5.53) and comments below. This was first noticed in (5.35) of [3].
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one can rearrange the flux term in the following way

L(2)
flux = Θ̄ Γ̃∗[

√
hσ3 (m2

AdS5
+m2

S5) + 2 εijeAj ΓAB ∇kKBk
i ]Θ , B = 8,9 , (3.88)

in terms of the bosonic masses (3.59), σ3 = S−1ρ3 S, and Γ̃∗ = S−1Γ∗S. In general, the

rotation of Γ∗ is written as

Γ̃∗ = iε̂ABCDE(t̂ãAΓã + N̂ i
AΓi +N r

AΓr)...(t̂ẽEΓẽ + N̂
j

EΓj +N s
EΓs) . (3.89)

Here the hat in ε̂ABCDE is to signal that A,B,C,D,E take values 0,1, . . .4, as clear from

(3.86). We also split i, j = 2 , . . .7 and r, s = 8,9. A clever choice among the basis vectors,

made possible by the string motion, drastically simplifies the expression for Γ̂∗.

3.4.3 Mass matrix and sum rule

In analogy to the bosonic mass rule (3.60), now we derive the one for the fermion “mass

matrix”. The total fermionic action is the sum of (3.79) and (3.86)

L(2)
kin + L

(2)
flux ≡ 2

√
hΨ̄OFΨ . (3.90)

For the self-adjoint Dirac operator OF we can define the “mass matrix” M(F ) by posing

OF ≡ iρiDi −M(F ) , M(F ) = 1

2
√
h
εijρiΓ∗ρj . (3.91)

When ρi commutes with M(F ) the invariant tr (ρiM(F )ρiM(F )) in (3.108) reduces to the

more familiar tr ((M (F ))2), analysed in [192] or in [174] for example. However, for a gen-

eral string solution, like the classical configuration in section 5.4, the two matrices do not

commute, leading to the sum rule explained below. Notice that, due to the ciclicity of the

trace, we are computing the relevant trace before performing any local SO(1,9) rotations,

which turns out a convenient strategy in this case. Let us begin with splitting the trace in

threes summands

tr (ρiM(F )ρiM(F )) = tr(h
ij

4h
εklεmnρiρkΓ∗ρlρjρmΓ∗ρn) (3.92)

= tr(h
ij

4h
εklεmnρiρkΓ∗ (hljρm + hjmρl − hlmρj)Γ∗ρn)

≡ I1 + I2 + I3
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and compute the three terms above separately:

I1 ≡
hij

4h
εklεmnhljtr (ρiρkΓ∗ρmΓ∗ρn) = −

1

2
(m2

AdS5
+m2

S5) tr (ρ2
3) , (3.93)

I2 =
hij

4h
εklεnmhjntr (ρiρkΓ∗ρlΓ∗ρm) = −1

2
(m2

AdS5
+m2

S5) tr(I) , (3.94)

I3 = −
hij

4h
εklεnmhlntr (ρiρkΓ∗ρjΓ∗ρm) = −1

4
(m2

AdS5
+m2

S5) tr(I − ρ2
3) . (3.95)

Recalling that ρ3 = 1

2
√

h
εijρij squares to the identity matrix, we obtain the fermionic ana-

logue of (3.60)

tr (ρiM(F )ρiM(F )) = −(m2
AdS5

+m2
S5) tr(I) = ((2)R + tr(K2)) tr(I) (3.96)

by means of the expressions (3.59).

3.5 Quantum divergences

Combining the gauge-fixed Lagrangians (3.47) and (3.90), we arrive at the expressions

L(2)
transv ≡

√
hyi(OB)ijy

j , L(2)
kin + L

(2)
flux ≡ 2

√
hΨ̄OFΨ . (3.97)

We stripped off a factor
√
h in the definition of the 2d operators O’s to make their eigenspec-

tra independent of the parametrization of the worldsheet. In a semiclassical approximation

of the path-integral, the leading quantum corrections to a classical solution are given by the

ratio of determinants

Zstring ≈ e−S
(0)
B Z(1) , Z(1) ≡ Det1/2OF

Det1/2OB
. (3.98)

In the formula the ghost determinant of (3.41) in the numerator cancels against the one

for the longitudinal modes (3.46) in the denominator, implicitly assuming that they are

evaluated under the same boundary conditions (see comments below (3.46)).

3.5.1 Regularization of the classical action

A first trouble with (3.98) is that the exponential would lead to a divergent result when the

string stretches to the AdS boundary. In fact, the minimal surface has an infinite extension

due to the near-boundary behaviour (z → 0) of the AdS metric (3.4). The blow-up of the

metric can be screened by a translation of the string boundary slightly into the bulk of the

AdS space: if we cut off the part of the string submanifold with radial Poincaré coordinate
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z smaller than a regulator ε, the classical action behaves as

S
(0)
B = `

ε
+ o (ε−1) (3.99)

where the coefficient of the pole is the length of the worldsheet boundary.

Different ways to regularize the classical area have been proposed: a Legendre transform

[178, 311] or a subtraction of the “boundary part” of the Euler characteristic of the surface

[192]. They all result into a sort of “minimal subtraction scheme” that removes only the 1/ε
pole [183] and defines the regularized area to be plugged into (3.98) as the finite term in the

expansion (3.99)

S
(0)
B → lim

ε→0
(S(0)

B − `
ε
) . (3.100)

The classical area (3.99) needs further renomalization when the loop at the AdS boundary

has cusp points. A subleading term proportional to log ε appears in (3.99) and it is not cured

by the subtraction rule (3.100). In fact, in the holographic interpretation (1.11) logarithmic

divergences correspond to physical UV divergences of the dual Wilson loop [178].

3.5.2 One-loop divergences

The definition of determinant of differential operators is not unique in the literature. In

appendix B we illustrated techniques based on zeta-function regularization [312, 313] widely

used in many area of mathematical physics [314]. Although convenient to extract the renor-

malized value of (3.98), this regularization would only capture the logarithmic divergence

of the determinant 11.

In the spirit of the seminal paper [192], we prefer a better way to estimate the divergences

of a determinant. The scheme that we shall use here is known as proper-time cutoff (PTC)

regularization [315] because it restricts the “time” t in (1.15) at some small parameter Λ−2,

where Λ is a large mass scale. In fact, the infinite part of the determinant of a 2d operator

O – which we assume free of zero modes and negative eigenvalues – arises only from the

small-t region of integration in

(logDetO)PTC, Λ ≡ −∫
∞

Λ−2

dt

t
KO (t) (3.101)

= −a0Λ2 − 2a1Λ − a2 log(Λ2) +O(Λ0) .
11This corresponds to the a2 coefficient in (3.101), compare in [208] the zeta-function regularization (5.51)

with the proper-time cutoff scheme (5.74).
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and can be estimated from the first Seeley-DeWitt (SDW) coefficients ai, namely the ex-

pansion coefficients of the functional trace of the heat kernel in (1.15) for small t

KO (t) ≡ ∫ dτdσ
√
h trKO (τ, σ; τ, σ; t) t→0+=

∞

∑
k=0

t(k−2)/2 ak . (3.102)

This is the complete structure of divergences for a second-order operator O on a two-

dimensional manifold, here the worldsheet Σ. A method of evaluating the heat trace asymp-

totics was proposed by DeWitt [202] and generalized by Gilkey [316]. Here we will borrow

the SDW coefficients from chapter 4 of [317].

To estimate the divergences of the one-loop corrections to the partition function (3.103), we

begin by rewriting (3.98)

Zstring ≈ Z(1) e−S
(0)
B , Z(1) = Det1/4O2

F

Det1/2OB
. (3.103)

in terms of the square of the Dirac operator, which is a second-order operator admitting a

well-defined heat kernel. We then expand the bosonic and fermionic heat traces

(logZ(1))
PTC, Λ

= −∫
∞

Λ−2

dt

t
(1

4
K
O

2
F
(t) − 1

2
KOB (t)) (3.104)

= −(1

4
a
(F )

0 − 1

2
a
(B)

0 )Λ2 − 2(1

4
a
(F )

1 − 1

2
a
(B)

1 )Λ

− (1

4
a
(F )

2 − 1

2
a
(B)

2 ) log(Λ2) +O(Λ0) ,

where the subscript “B” refers to the Laplace-type operator OB and “F” to the Dirac-type

operator squared O2
F . For simplicity we study only the closed string case. Odd-numbered

SDW coefficients a2n+1 vanish on boundaryless manifolds, hence the linear divergences in

(3.101) are set to zero, and we will neglect boundary integrals over ∂Σ in the even-numbered

ones a2n.

The quadratic divergence is proportional to the worldsheet area

a
(B)

0 = 8( 1

4π
∫ dτdσ

√
h) , (3.105)

a
(F )

0 = 16( 1

4π
∫ dτdσ

√
h) (3.106)

and trivially cancels in (3.104) because of the 8 bosonic fluctuations and the 16 fermionic

degrees of freedom of the 10d Majorana-Weyl spinor Ψ distributed in the eight 2d spinors

(see beginning of section 3.4.1).
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The counting of logarithmic divergences is lengthier because they depend on the trace of

the mass matrices 12

a
(B)

2 = 1

4π
∫ dτdσ

√
h tr(1

6
(2)R I8 +MB) , (3.107)

a
(F )

2 = 1

4π
∫ dτdσ

√
h tr(− 1

12
(2)R I16 +

1

2
ρiM(F )ρiM(F )) , (3.108)

with the mass matrices given in (3.59) and (3.91). We have also used the fact that OF is

represented by 16 × 16 matrices instead of the initial 32 × 32 Dirac matrices, since it acts

upon a Weyl spinor Ψ with definite 10d chirality. The Majorana condition on Ψ has been

already taken into account in the power of 1/2 of the fermionic determinant in (3.98).

Armed with (3.96) we can compare the bosonic and fermionic contribution to the total

logarithmic divergences in (3.104) by computing explicitly a(B)

2 − 1
2a

(F )

2 . The part depending

on the traced mass matrices is

tr(MB −
1

4
ρiM(F )ρiM(F )) = − (2)R , (3.109)

while the remaining one is instead more subtle [192]. The naive use of the fermionic SDW

coefficient would lead to

8 × (1

6
(2)R) − 16

2
× (− 1

12
(2)R) = 2 (2)R, (3.110)

that combined with (3.109) would not produce the expected coefficient 3(2)R [192]:

a
(B)

2 − 1

2
a
(F )

2 = 1

4π
∫ dτdσ

√
h(−(2)R + 2 (2)R) = 1

4π
∫ dτdσ

√
h (2)R . (3.111)

The reason of the apparent disagreement is well known in 10d flat space and curved space

[192, 304–306, 309, 310] and it is due to a difference between the fermionic kinetic term

of the initial Green-Schwarz fermions (3.76) and the one of the decomposed standard 2d

Dirac fermions (3.85). In fact, the local SO(1,9) rotation S that transforms ρi into two-

dimensional Dirac matrices contracted with zweibein gives rise to a non-trivial Jacobian in

the path-integral measure, that contributes additionally to the logarithmic divergence. The

effect is to change the coefficient of the relevant two-dimensional Dirac fermions by a factor

4. In our case it amounts to modify the fermionic contribution to (3.110) by a factor 4 and

therefore

8 × (1

6
(2)R) − 4 × 16

2
× (− 1

12
(2)R) = 4 (2)R, (3.112)

12At variance with the notation in [3], from a
(F )
2 we stripped off a minus sign and the factor of 1/2 of the

Majorana condition. We also included the integration in the SDW coefficients as it is common in literature.
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recovering, in combination with (3.109), the result of [192]

a
(B)

2 − 1

2
a
(F )

2 = 1

4π
∫ dτdσ

√
h(−(2)R + 4 (2)R) = 1

4π
∫ dτdσ

√
h (3 (2)R) . (3.113)

This is the contribution of the fluctuation determinants on a closed string to the one-loop

conformal anomaly. The divergence is proportional to the surface integral of the scalar

curvature, which equals 3χ, where χ is the Euler number of the boundaryless surface. In

the open-string case, all the factors of (2)R are completed by appropriate boundary terms

[157, 158, 318] to produce again a divergence proportional to the Euler number. In the

argument of [192] for the cancellation of the total one-loop anomaly, it is argued that some

factors in the path-integral measure – associated with conformal Killing vectors and/or

Teichmüller moduli – would have the net effect of cancelling this divergence.



Chapter 4

“Exact” semiclassical quantization of

folded spinning strings

In the last chapter we determined the structure of the differential operators governing the

semiclassical excitations around an arbitrary classical solution of the AdS5×S5 sigma-model.

While the expressions for the masses of the worldsheet fields arise from the solution and

the background in a relatively plain way, the one-loop partition function (3.98) is a formal

expression subordinated to the evaluation of functional determinants, which is a task in

general non-trivial. For the class of inhomogeneous solutions defined in section 1.3, the

complicated dependence of the differential operators on the worldsheet coordinates renders

the inversion of such operators (hence the free Feynman propagators) very complicated

and higher-loop calculations of Feynman diagrams around such non-trivial vacua virtually

impossible. Among the large class of inhomogeneous configurations, only a restricted set of

operators admits a spectral problem solvable in closed form.

This applies to certain solitonic solutions of the string sigma-model, in which folded string

solutions with more than one spin, or of single-spin solutions [170, 171] in conformal gauge

where bosonic fluctuations couple via the Virasoro constraints, the evaluation of the classical

energy requires the diagonalization of non-trivial matrix-valued differential operators of the

second order whose coefficients have a complicated coordinate-dependence. The same is

true, for instance, for fluctuations over open string solutions dual to cusped Wilson loops

that have an expectation value depending on the cusp angle and an internal R-symmetry

angle [174, 175]. In general, the solution of the eigenspectrum is simplified once one or more

of the parameters of the solution is set to zero (in the cases above) or a limit on them is

taken in order to make the solution homogeneous (e.g. [171] as the first of many examples).

65
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The main perspective of this chapter is to enrich the class of problems that can be solved

analytically [173–175, 319] with the exact solution of a fourth-order linear differential equa-

tions with doubly periodic coefficients that emerges as a natural generalization of the Lamé

differential equation. Our analysis (appendix C) applies to two non-trivial solitonic config-

urations of the AdS5 × S5 string sigma-model.

The first example is the folded string positioned at the center of AdS5 and rotating in S5

with two large angular momenta (J1, J2) in the limit where it becomes a solution of the

Landau-Lifshitz (LL) effective action of [320] (see also detailed review in [321, 322]). These

string states are dual to the simplest non-trivial set of single-trace operators of N = 4 SYM,

i.e. the SU(2) flavour sector of operators tr(XJ1ZJ2) composed of only two of the three

complex scalars of N = 4 SYM and carrying two independent R-charges J1 and J2. The

interest in these operators has roots in the discovery of [69] (see also section 1.2) that the

one-loop anomalous dimension of operators in the larger SO(6) sector follows from solving

the spectrum of an integrable SO(6) spin-chain. A deeper understanding of how gauge and

string theory picture are intertwined is possible in the SU(2) sector. Here at weak-coupling

one-loop level the dilatation operator takes the form of the Hamiltonian of the ferromagnetic

Heisenberg model [71] after one identifies the Z’s and X’s scalars with the orientations “up”

and “down” of the chain states 1. The anomalous dimension of these operators follows from

the diagonalization of the spin-chain integrable Hamiltonian with Bethe ansatz techniques

in the thermodynamic limit of large number of spins J ≡ J1 + J2 ≫ 1 [69, 323, 324] and

agrees with the energy correction [325, 326] of a rotating string with the same quantum

numbers in AdS5 × S5.

The identification between gauge-theory operators and string states was made more com-

plete in [320] and further clarified and developed in [321, 327, 328]. Here it was shown that

that the same effective LL action describes both the spin-chain and the string action in

limit of J ≫ 1 (large number of sites and fast rotating strings) with λ̃ ≡ λ/J2 fixed. The

approximation singles out low-energy modes comprising spins that tend to precess over large

distances (long-wave limit) and are well approximated by semiclassical coherent states, i.e.

superpositions of Bethe ansatz eigenstates with approximately the same energy. The same

limit in string theory is equivalent to a semiclassical expansion in the “inverse string tension”

J−1 followed by an expansion of the classical action in small λ̃. A brief derivation of the LL

effective action on the string theory side is in section 4.1.1.

The agreement between the effective actions from the discrete Heisenberg Hamiltonian and

the Polyakov action, as seen order by order in small λ̃, implies the matching of scaling

dimensions and energies in the limit stated above. Calculations for the spectrum of the LL

model linearized around the folded SU(2) string solution have been made in [329] using

operator methods via perturbative evaluation (in the parameter J2/J = J2/(J1 + J2)) of
1See also [45, 68] for transparent and concise introductions to the subject.



Chapter 4. “Exact” semiclassical quantization of folded spinning strings 67

characteristic frequencies, with a sum over them cured via zeta-function regularization.

In section 4.2.1 we will apply the tools developed by us in appendix C to evaluate the exact

one-loop effective action over the same solution, regularized by referring the determinants

to the limit J2 = 0, which ensures the expected vanishing of the partition function, and

proceeding with a zeta-function-inspired regularization of the path-integral. Indeed, as any

effective theory, the LL model does not lead naturally to a well-defined quantum theory.

From the string viewpoint, it lacks fermionic degrees of freedom and it only includes the

bosonic fluctuations that are “outside” the given SU(2) sector, therefore it must be equipped

with an appropriate regularization to ensure UV finiteness for the energy. The “semiclas-

sically exact” analysis explained below provides an efficient and elegant tool to find in one

step the needed spectral information. The result obtained in [329] using perturbation theory

up to the n-th order means here an n-th order Taylor expansion.

The second example that we consider is the folded spinning string with non-vanishing AdS3

spin and S1 orbital momentum studied in [171], dual to the scalar sector of operators

tr(DS
+
ZJ) made of an arbitrary number J of complex scalars and S of light-cone derivatives

D+. This configuration (section 4.1.2) interpolates between the one-spin case S = 0 of the

Berenstein-Maldacena-Nastase (BMN) vacuum [275] and the one at J = 0 of the Gubser-

Klebanov-Polyakov (GKP) string [170].

The arbitrary two-spin configuration is a stationary soliton problem for which the classical

equations of motion consist in a one-dimensional sinh-Gordon equation. The case of non-

zero S does not correspond to the BMN operator with protected conformal dimension and

the string energy is shifted from its classical value by a non-trivial function of the quantum

numbers S and J . The problem of computing the one-loop quantum corrections in the

string sigma-model was addressed in [171]. The formal expression of the energy in terms of

determinants of the fluctuations operators with elliptic-function potentials was computed

explicitly only in some regimes of the S and J parameters when the solution simplifies

drastically. In a static gauge where fluctuations along the worldsheet directions are set to

zero, fluctuations turn out to be governed by differential operators of Lamé type [172]. In

this paper, they were solved exactly in an integral expression for an arbitrary value of the

spin S in the non-boosted string J = 0.

In section 4.2.2 we will see that the same techniques of appendix C allow to solve the mixed-

modes bosonic sector of fluctuations of the two-spin string. However, this mixing has its

supersymmetric counterpart in a non-trivial fermionic mass matrix (as noticed already in

appendix D of [175]). The differential equations governing the fermionic spectrum do not

unfortunately satisfy the conditions which allowed us to diagonalize the bosonic system,

thus preventing a solution to the full quantum problem.

However, the tools in appendix C still allow an analytic proof of equivalence between the full

(including fermions) exact one-loop partition function for the one-spin (J = 0) folded string
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in conformal and static gauge 2, which is a non-trivial statement verified only numerically

in [172].

4.1 Fluctuation spectrum for the folded strings

We summarize the main relations for the Landau-Lifshitz sigma-model in section 4.1.1 and

for the classical string with non-vanishing AdS3-spin S and S1-momentum J in section 4.1.2.

We shall conventionally refer to the former with the subscript “LL” and to the latter with

“folded”. We consider the bosonic fluctuations over these two classical string configurations

and present the coupled systems of fluctuations that we will able to diagonalize in section

4.2, using the tools presented in appendix C.

4.1.1 Landau-Lifshitz effective action for the (J1, J2)-string

The starting point is the LL effective action for the SU(2) sector [320, 328], which is

obtained considering a string state whose motion with two large spins is restricted to the S3

part of S5. The collective “fast” coordinate β associated to the total angular momentum is

gauged away and only transverse “slow” coordinates remain to describe the low-energy string

motion. This is practically implemented by parametrizing the three-sphere coordinates as

X1 + iX2 = U1e
iβ, X3 + iX4 = U2e

iβ , UaU
⋆

a = 1, fixing the gauge t = τ , pβ = const = J , and
rescaling the t coordinate via λ̃ = λ/J2, which plays the role of an effective parameter. To

first order in the λ̃ expansion [329] one gets

SLL = J ∫ dτ ∫
2π

0

dσ

2π
L , L = −iU⋆

a ∂τUa −
λ̃

2
∣DσUa∣2 +O(λ̃2) , (4.1)

DUa = dUa − iCUa , DU⋆

a = dU⋆

a + iCU⋆

a , C = −iU⋆

a dUa .

We will consider a two-spin folded closed string positioned at the center of AdS, at fixed

angle in S5 and rotating along two orthogonal planes within a S3 ⊂ S5 with arbitrary

frequencies w1 ,w2. The non-vanishing part of the background metric in Rt × S3 (t is the

time direction of AdS5)

ds2 = −dt2 + dψ2 + cos2ψ dϕ2
1 + sin2ψ dϕ2

2 , (4.2)
2Even in the single-spin case, bosonic fluctuations are still coupled in conformal gauge, while fermionic

ones are decoupled.
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where one parametrizes the S5 metric in terms of three complex coordinates Xa [328]

ds2 = −dt2 + dXadX
⋆

a , XaX
⋆

a = 1 , Xa = eiβUa , a = 1,2,3 , (4.3)

U1 = cosψ eiϕ , U2 = sinψ e−iϕ , ϕ = ϕ1 − ϕ2

2
, β = ϕ1 + ϕ2

2
. (4.4)

Hence, the initial Lagrangian (4.1) becomes [329]

L = cos 2ψ ϕ̇ − λ̃
2
(ψ′2 + sin2 2ψϕ′

2) . (4.5)

The equations of motion take the form of a one-dimensional sine-Gordon equation

ψ′′ + 2w sin 2ψ = 0 , ϕ = −w t , w = w2 −w1

2
> 0 , w = w

λ̃
, (4.6)

ψ′
2 = 2w (cos 2ψ − cos 2ψ0) ,

whose solution is 2π-periodic in σ and written in terms of Jacobi elliptic functions [329]

sinψcl(σ) = k sn(Cσ, k2), cosψcl(σ) = dn(Cσ, k2), k2 = sin2ψ0 , (4.7)

√
w = 1

π
K(k2), C = 2

π
K(k2) = 2

√
w ,

E(k2)
K(k2) = 1 − J2

J
, 0 ≤ k < 1 .

Figure 4.1: Relation (4.7) between the auxiliary variable k2 and the ratio of string angular
momenta J2/J = J2/(J1 + J2). The limiting cases k = 0 and k = 1 correspond to a string
rotating only in one plane (J2 = 0 and J1 = 0 respectively).

The two non-zero spins are the integrals of motion

J1 ≡ w1

√
λ∫

2π

0

dσ

2π
cos2ψ , J2 ≡ w2

√
λ∫

2π

0

dσ

2π
sin2ψ ,

J1

w1
+ J2

w2
=
√
λ . (4.8)

The next step is expanding the Lagrangian (4.5) around the classical solution (4.7) in the

large semiclassical parameter J . Noticing that the total momentum plays the role of an
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effective Planck constant in (4.1), we define

ϕ = ϕcl +
1√
J
δϕ , ψ = ψcl +

1√
J
δψ , (4.9)

together with the field redefinitions

f1 = − sin(2ψcl)δϕ , f2 = δψ . (4.10)

The result is a fluctuation Lagrangian [164, 324, 328] that can be usefully written as [329]

LLL = 2 f2 ḟ1 −
λ̃

2
[ f ′21 + f ′22 − V1(σ) f2

1 − V2(σ) f2
2 ] . (4.11)

In the formula above the potentials are given by

V1(σ) = 4w [1 + 4k2 − 6k2 sn2(Cσ, k2)] , V2(σ) = 4w [1 − 2k2 sn2(Cσ, k2)] . (4.12)

The time-independence of the potentials allows to Fourier-transform ∂τ → i ω, after which

the fluctuation equations following from (4.11) form a non-trivial matrix eigenvalue problem

for the characteristic frequencies ω 3

−f ′′2 (σ) − V2(σ)f2 = iωf1 , (4.13)

f ′′1 (σ) + V1(σ)f1 = iωf2. (4.14)

This system can be solved perturbatively in the elliptic modulus k2 (or equivalently in

the momenta ratio J2/J), as it was done in [329]. The main result of our analysis is the

analytically exact diagonalization of this non-trivial spectral problem. To this end, we start

by decoupling (4.13)-(4.14) into two fourth-order equations

f ′′′′2 + [V1(σ) + V2(σ)] f ′′2 + 2V ′

2(σ)f ′2 + [V ′′

2 (σ) + V1(σ)V2(σ)] f2 = 4ω2f2, (4.15)

f ′′′′1 + [V1(σ) + V2(σ)] f ′′1 + 2V ′

1(σ)f ′1 + [V ′′

1 (σ) + V1(σ)V2(σ)] f1 = 4ω2f1. (4.16)

We can rewrite the first equation of the system (4.13)-(4.14) as the equation for f ≡ f2
4

O(4) f(x) = 0 , O(4) = ∂4
x +2 (1+2k2 −4k2 sn2(x))∂2

x −8k2 sn(x) cn(x)dn(x)∂x +1−Ω2 ,

(4.17)

with

x ≡ Cσ = 2
√

wσ, Ω = ω

2w
≡ ω π

2

2 K2
. (4.18)

3As in [329], the time has been rescaled by λ̃, which we will restore in the final expressions.
4We omit the dependence of the Jacobi functions on the modulus k2 in the following.
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Although for the one-spin solution ν = 0 the fourth-order order equation factorizes into two

second-order order operators, for the general case this seems not possible. The system of

equation is written now as a fourth-order differential equation (4.17) with doubly periodic

elliptic coefficient functions 5 with period 2L = 4K (following from the 2π-periodicity of

the closed string) and only one regular singular pole, in Fuchsian classification. A first

(incomplete) attempt to study this kind of equations was done by Mittag-Leffler in [330],

and to our knowledge not much else is known in literature. In appendix C we will present

a systematic study of the eigenvalue problem associated to this equation, showing that the

corresponding determinant can be computed analytically.

Before doing that, we show that this class of operators is of more general interest, as it

appears governing the (at least, bosonic) spectrum of fluctuations above the folded string

with two angular momenta (S,J) [171], and thus it can likely be of help for the study of

a large variety of problems involving a coupled system of fluctuations over elliptic string

solutions 6.

4.1.2 Bosonic action for the (S,J)-string

In this section we review the semiclassical analysis about the classical closed string solution

studied in [171]. The string ansatz in AdS5 × S5, equipped with metric

ds2 = − cosh2 ρdt2 + dρ2 + sinh2 ρdΩ3 ,+dψ2
1 + cos2ψ1(dψ2

2 + cos2ψ2dΩ
′

3) , (4.19)

dΩ3 = dβ2
1 + cos2 β1(dβ2

2 + cos2 β2dβ
2
3) , β3 ≡ φ , (4.20)

dΩ
′

3 = dψ2
3 + cos2ψ3(dψ2

4 + cos2ψ4dψ
2
5) , ψ5 ≡ ϕ , (4.21)

reads for a state rotating with spin S in AdS5 and angular momentum J in S5 7

t = κτ , φ = w̄ τ , ϕ = ν τ , κ, w̄, ν = constant , (4.22)

ρ = ρ(σ) = ρ(σ + 2π) , βu = 0 , (u = 1,2) , ψs = 0 , (s = 1,2,3,4) . (4.23)

The equations of motion and the Virasoro constraints impose the one-dimensional sinh-

Gordon equation for the radial function ρ(σ), which is solved in terms of the Jacobi sine,

ρ′2 = κ2 cosh2 ρ − w̄2 sinh2 ρ − ν2 , k2 = κ2 − ν2

w̄2 − ν2
, (4.24)

ρ′2(σ) = (κ2 − ν2) sn2(
√
w̄2 − ν2 σ + K(k2) ∣k2) . (4.25)

5See appendix A for the relevant terminology.
6This observation is based on the already noticed similarity between the fluctuation spectra over the

minimal surfaces corresponding to space-like Wilson loops of [174] and the one of [171, 172].
7Compared to [171, 172], we use different conventions to label parameters in the classical solution.
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For notational convenience we will leave again the elliptic modulus k2 implicit in what

follows. Notice that when ν = 0, the string rotates only in the AdS subspace and corresponds

to the case studied in [170]. If instead we set w̄ = 0 and ν = κ, it shrinks to a point rotating

in S5 [275]. The conserved charges are the energy E and the two momenta S,J associated

to the invariance of the background metric under t, φ,ϕ-translations respectively

E ≡
√
λκ∫

2π

0

dσ

2π
cosh2 ρ(σ) , S ≡

√
λw̄∫

2π

0

dσ

2π
sinh2 ρ(σ) , (4.26)

J ≡
√
λν ∫

2π

0

dσ

2π
, E = κ + κ

w̄
S .

The quadratic fluctuations over the folded string solution (4.22)-(4.25) are described in

conformal gauge by the following Lagrangian [171]

Lfolded
B = −∂at̃∂at̃ − µ2

t t̃
2 + ∂aφ̃∂aφ̃ + µ2

φφ̃
2 + ∂aρ̃∂aρ̃ + µ2

ρρ̃
2

+4 ρ̃(κ sinhρ ∂0t̃ − w̄ coshρ ∂0φ̃) (4.27)

+∂aβ̃u∂aβ̃u + µ2
ββ̃

2
u + ∂aϕ̃πaϕ̃ + ∂aψ̃sπaψ̃s + ν2 ψ̃2

s .

Here tilded fields are fluctuations over the background (4.22)-(4.23). The fluctuations are

non-trivially coupled both in their bosonic sector [171] and in the fermionic one [175],

regardless of the gauge choice. In addition to this, their masses are non-constant

µ2
t = 2ρ′2 − κ2 + ν2, µ2

φ = 2ρ′2 − w̄2 + ν2, (4.28)

µ2
ρ = 2ρ′2 − w̄2 − κ2 + 2ν2, µ2

β = 2ρ′2 + ν2

and depend non-trivially on the classical field ρ satisfying the equation of motion (4.24).

The β̃u fields, transverse to the motion of the classical solution and decoupled from the

other but with non-trivial mass, give a contribution to the one-loop partition function that

has been evaluated exactly in [172]. The remaining three AdS3 fields (t, ρ, φ) and the ϕ

field in S5 are non-trivially coupled through the Virasoro constraints. Their equations of

motion read

(∂2
τ − ∂2

σ) t̃ + µ2
t t̃ + 2κ sinhρ∂τ ρ̃ = 0 , (4.29)

(∂2
τ − ∂2

σ) ρ̃ + µ2
ρ ρ̃ + 2 (κ sinhρ∂τ t̃ − w̄ coshρ∂τ φ̃) = 0 , (4.30)

(∂2
τ − ∂2

σ) φ̃ + µ2
φ φ̃ + 2 w̄ coshρ∂τ ρ̃ = 0 , (4.31)

(∂2
τ − ∂2

σ) ϕ̃ = 0 . (4.32)
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From the conformal gauge conditions (Virasoro constraints) it follows

−κ cosh2 ρ∂τ t̃ + (w̄2 − κ2) sinhρ coshρ ρ̃ + ν ∂τ ϕ̃ + ρ′ ∂σ ρ̃ + w̄ sinh2 ρ∂τ φ̃ = 0 , (4.33)

−κ cosh2 ρ∂σ t̃ + w̄ sinh2 ρ∂σφ̃ + ν ∂σϕ̃ + ρ′ ∂τ ρ̃ = 0 . (4.34)

Since the ρ-background does not depend on τ and since the above equations are linear we

may consider to pass to the Fourier space, i.e. replacing t̃ → ei ω τ t̃ and φ → ei ω τ φ̃. Then

we can solve the Virasoro constraints for t̃ and φ̃ and substituting in (4.29)-(4.31) we get

only one non-trivial equation 8

(∂2
σ + ω2) 1

ρ′
O(4)ρ̃ = 0 (4.35)

with the definitions

O(4) = 1

ρ′
(∂2
σ + ω2 − V (σ))ρ′2 (∂2

σ + ω2) 1

ρ′
− 4ν2 ω2 , (4.36)

V (σ) = 2ρ′2 + 2
(κ2 − ν2)(w̄2 − ν2)

ρ′2
. (4.37)

Changing to Euclidean signature (ω2 → −ω2) and introducing the new variables

x =
√
w̄2 − ν2σ, Ω̄2 = ω2

w̄2 − ν2
, (4.38)

the operator takes the canonical form

O(4) = ∂4
x + 2[−Ω̄2 + k2 + 1 − 4k2sn2(x)]∂2

x − 8k2sn(x)cn(x)dn(x)∂x (4.39)

+ [(Ω̄2 + 1 + k2)2 − 4k2] + 4ν2Ω̄2

w̄2 − ν2
.

The operator is very similar to the one (4.17) emerging in the LL quantum model, displaying

however a significative difference as it cannot be seen as a “traditional” eigenvalue problem,

as Ω̄ does not only appear in the constant term but also in the coefficient of the second-order

derivative.

On a parallel note, we remark that a similar analysis can be done for the fermionic fluc-

tuation Lagrangian. However, the eigenvalue equation for (the square of) the Dirac-like

operator is a fourth-order differential equation whose coefficients are not meromorphic el-

liptic functions, and we are not currently able to solve it with the tools in appendix C.
8This structure was already understood by the authors of [172].
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4.2 Bosonic one-loop partition functions

We are now ready to use the analysis performed in appendix C for the computation of

determinants of the fluctuation operators in section 4.1.

4.2.1 One-loop energy for the (J1, J2)-string

The fourth-order differential operator in (4.17), governing the fluctuations of the LL quan-

tum model (4.11) is easily seen to be of the type (C.17) once the following identifications

are performed

α0 = 2(1 + 2k2), α1 = −8, β0 = β1 = 0 ,

β2 = −4 , γ0 = 1 − ω2

4w2
, γ1 = γ2 = γ3 = 0 . (4.40)

Using the n = 1 consistency equations (C.34), one finds (here α ≡ ᾱ)

λ = ±k
√

sn2(α) − 1 , (4.41)

and the relation between Ω and α is

Ω2
∓
(α) = 4k2cn2(α) [ik sn(α) ∓ dn(α)]2 . (4.42)

It seems advantageous to consider α ∈ C as the independent parameter and therefore Ω as

a doubly periodic function of α as in (4.42). There exist four values of α, which correspond

to one value of Ω. As far as the physical spectrum is concerned, we look for all complex

values of α that correspond to a real Ω2.

The analysis in appendix B.1 of [2] was devoted to this study and it is here summarized

in appendix C.5. In Figure 4.2 the lines where Ω2(α) is real are plotted in the complex

α-plane. The “physical” four linear independent solutions of the fourth-order differential

operator (4.15)-(4.16) live on these lines, and they correspond to the different colours in the

fundamental domain shown in Figure 4.3.

To exemplify the procedure, let us focus on a choice of string momenta (J1, J2) such that

0 < k < 1/
√

2 through the last formula in (4.7). The other case 1/
√

2 < k < 1 can be discussed

analogously.

For a given Ω2 ∈ R the four independent solutions read

fi(x,Ω, k) =
H(x + αi)

Θ(x) e−x[Z(αi)−ikcn(αi)], i = 1, . . .4 , (4.43)
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Figure4.2: Inthecomplexα-planeonecanplotthelineswhereΩ2(α)isreal. The
“physical”fourlinearindependentsolutionliveontheselines. Thegreendotsrepresent
placeswhereΩ2=0,redforΩ2=4k2k′2,blueforΩ2=1andblackforpoles. Wechose
k=0.4.

wheretheαihavetobechosenaccordingtotherangeofΩaccordingtothelistinappendix

C.5.

Thequasi-momentapiareobtainedfromtheperiodicityoffi(x+2K)=e
2Kipifi(x)

pi(Ω,k)=iZ(αi,k)+kcn(αi,k)−
π

2K
. (4.44)

Byconstruction9,onlytwoofthequasi-momentaareindependent,whichwewillcallp1

andp2.TheexactdiscriminantoftheLandau-Lifshitzmodeldefinedby(4.11)-(4.16),using

(C.16)with2L=4K,readsthen

∆LL(Ω,k) = 16sin
2(2Kp1(Ω,k))sin

2(2Kp2(Ω,k)). (4.45)

Wecanalsoimmediatelyrecoverthecharacteristicfrequenciesoftheproblem,foundin[329]

usingoperatormethodsuptosecond-orderperturbationtheory,bysimplylookingatthe

zeroesofthediscriminant(4.45),wherethequasimomentaarebuiltwiththeαiinthe

branchΩ2>0andareTaylor-expandedaroundk=0.Itisenoughtolooktothefactorin

9Seediscussionaround(C.11)-(C.12).
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4 2 2 4

4

2

2

4

Figure4.3:Inthefundamentaldomainthefourindependentsolutionsofthefourth-order
differentialoperator(4.17)aremarkedwithdifferentcolors. Walkingonsuchaclosedpath,
Ω2runsfrom−∞to+∞. Wechosek=0.4.

(4.45)involvingp1,whoseexpansionre-expressedintermsoftheωis

p1 =
√
2ω+1−

ω

2
√
2ω+1

k2+
(−10ω4−11ω3+6ω+2)

32ω2(2ω+1)3/2
k4

+
(−22ω7−39ω6−19ω5+2ω4+10ω3+16ω2+10ω+2)

64ω4(2ω+1)5/2
k6+O(k8). (4.46)

Insertingitinto(4.45)andrequiringthevanishingoftheexpressionorderbyorderinsmall

k2,onefindsthe(squared)frequenciestobe

ω2=
1

4
(n2−1)2+

1

4
(1−n2)k2+

(3n4−2n2+15)

64(1−n2)
k4−
(n8+n6+7n4+27n2+28)

128(n2−1)3
k6+O(k8),

(4.47)

wherewedonotreporthigherorders,althoughitwouldbestraightforwardtocalculate

them.Thefirstthreeordersoftheexpansionabovecoincidewiththeonesof[329].

Theone-loopcorrectiontotheSU(2)LLstringenergycanbeofcourseobtainedpertur-

bativelyviaaregularizedsumoverthefrequenciesgivenabove[329]orequivalentlyinour

approachfromtheEuclideanLLpartitionfunctionZLL.Inthelattercase,theone-loop

shifttotheenergyistheone-loopworldsheeteffectiveactionΓ(1)dividedbythetotaltime

intervalT

E(1)=
Γ(1)

T
=−
logZLL
T

=−
1

T
log(Det−1/2OLL), T=∫

∞

−∞
dτ, (4.48)
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which using (4.45) can be explicitly written as 10

Γ(1) = − logZLL = T
2
∫

∞

−∞

dΩ

2π
log [16 sin2 (2Kp1(Ω, k)) sin2 (2Kp2(Ω, k))] . (4.49)

Above, the Euclidean setting requires the quasi-momenta pi to be built out of the αi in the

branch Ω2 < 0 (C.35).

The integral (4.49) is divergent, which is not surprising because of absence in the LL action

of fermionic and some bosonic modes which are crucial for UV finiteness, and one has to

consider a suitable regularization. A meaningful choice is to refer the functional determi-

nant to the k = 0 case, corresponding to the configuration (J1 = 0, J2). Indeed this limit, as

discussed in [329], represent a nearly point-like string and the correction to the ground-state

energy should vanish. Hence, we consider instead the well-behaved integral expression

Γ(1)
reg =

T
2
∫

∞

−∞

dΩ

2π
log

⎡⎢⎢⎢⎣

sin2 (2Kp1(Ω, k)) sin2 (2Kp2(Ω, k))
sin2 (π p1(Ω,0)) sin2 (π p2(Ω,0))

⎤⎥⎥⎥⎦
(4.50)

where in the denominator the quasi-momenta pi(Ω,0) are computed at k = 0. The regular-

ized expression can be computed numerically for a given k, i.e. for arbitrary (J1, J2). In

order to analytically perform the above integral over Ω, we can resort to the short-string ex-

pansion k → 0. The starting point is the expression of the quasi-momentum function (4.44),

evaluated on the four functions αi given in (C.35) (which differ from the ones considered in

(4.46) because now for the Euclidean partition function we need the physical branch Ω2 < 0)

p1 = −i
√
−1 − i

√
Ω2 +

(2 − i
√

Ω2)
√

1 + i
√

Ω2

8Ω2
k4 +O (k6) , (4.51)

p2 = +i
√
−1 + i

√
Ω2 +

(2 + i
√

Ω2)
√

1 − i
√

Ω2

8Ω2
k4 +O (k6) (4.52)

and then we integrate over Ω the corresponding expressions computed order by order in k2

to get

Γ(1)
reg =

∞

∑
i=0

Γ
(1)
i,regk

2i . (4.53)

Each term in the series must be further regularized, which is of course expected as only cer-

tain bosonic degrees of freedom and no fermionic ones participate in the effective LL action.

One can use two different ways of regularizing (one inspired by zeta-function regularization
10It is convenient to use the rescaled frequency Ω (4.18) as integration variable.
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and one with standard cutoff in appendix B.4 of [2])

E(1) = Γ
(1)
reg

T = 1

4
k2 + 1

16
(1 − π

2

3
)k4 +O(k6) , (4.54)

which reproduces the expression for the k2-expansion of the one-loop energy in [329]. It

is interesting to notice that this result follows smoothly by our standard regularization of

the LL string effective action, while in [329] it is implied by a zeta-function regularization

supplemented by a general prescription for the vacuum energy in terms of characteristic

frequencies of a mixed system of oscillators [331].

From the last relation in (4.7), the short string limit k2 → 0 reads in terms of the physical

parameter J2/J as

J2

J
= k

2

2
+ k

4

16
+O(k5) , k2 = 2J2

J
− 1

2
(J2

J
)

2

, (4.55)

and the expression for the energy becomes

E(1) = λ̃
2
(J2

J
+ (1

4
− π

2

6
)(J2

J
)

2

) +O ((J2

J
)

3

) , (4.56)

where we restored the λ̃ dependence. The first three terms in the formula above are in

agreement with [329].

4.2.2 One-loop energy for the (S,J)-string

The fourth-order differential operator in (4.39) 11 is again of the type (C.17) with the

identification

α0 = 2(Ω̄2 + k2 + 1), α1 = −8, β0 = β1 = 0, β2 = −4

γ0 = [(−Ω̄2 + 1 + k2)2 − 4k2] − 4ν2Ω̄2

w̄2 − ν2
, γ1 = γ2 = γ3 = 0 , (4.57)

where Ω̄ is defined in (4.38). Using the consistency equations (C.34) one finds (here ᾱ ≡ α)

λ = ±
√
k2sn2(α) − Ω̄2 , (4.58)

where the relation between Ω̄ and α is

8k4sn4(α)−4(1+k2+Ω̄2)k2sn2(α)±8k2sn(α)cn(α)dn(α)
√
k2sn2(α) − Ω̄2− 4ν2Ω̄2

w̄2−ν2 = 0 . (4.59)

11In this section we are working in Minkowski signature, so that (4.57) is obtained from (C.17) by ana-
lytically continuing the frequencies.
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Again,weareinterestedinallvaluesofthecomplexparameterαthatcorrespondtoreal

valuesofΩ̄2

4 2 2 4
ReΑ

4

2

2

4

ImΑ

,seeappendixC.6hereandappendixC.2in[2]. The“physical”fourlinear

independentsolutionsof(4.39)liveonthestraightandellipse-likelinesinFigure4.4.

Figure4.4: Theplacesinthefundamentaldomainofthecomplexαwherethefour
linearindependentsolutions(4.60)-(4.61)(markedwithdifferentcolours)forthefourth-
orderdifferentialoperator(4.39)live.Herewesetk=3,w=6,ν=2.5.

ForagivenrealvalueofΩ̄2thelinearindependentsolutionsofthefourth-orderdifferential

equation(4.39)are

f1,2(x,̄Ω) =
H(x±α1)

Θ(x)
e∓x[Z(α1)+λ(α1)], (4.60)

f3,4(x,̄Ω) =
H(x±α2)

Θ(x)
e∓x[Z(α2)+λ(α2)], (4.61)

wheretheαiasfunctionsofΩ̄havetobechosenaccordingtothelistinappendixC.6.

Usingtheirexplicitexpressionsofthefunctionsaboveinfi(x+2K)=e
2Kipifi(x),thequasi-

momentaarethenobtainedas

pn(̄Ω)=±i[Z(αn)+
ksn(αn)

(κ2−ν2)sn2(αn)+ν2
(κ̄w±

√
κ2−ν2

√
w̄2−ν2cn(αn)dn(αn))]+

π

2K
.

(4.62)

Thediscriminantisagaingivenby

∆ν(Ω,k)=16sin
2(Lp1)sin

2(Lp2), (4.63)

with2L=4K.

Asafirstcheckofthecorrectnessoftheprocedure,onecantakethelong-stringlimitk→1,

w̄2→κ2andlookatthezeroesof(4.63)choosingthepositive-frequencyrange(C.50)and
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(C.52) for the αi in (4.62). In appendix C.1 of [2] we obtain the characteristic frequencies

ωn =
√
n2 + 2κ2 ± 2

√
κ4 + n2ν2, (4.64)

which is the same result as found in [176].

Since we are missing the fermionic counterpart of (4.63), we cannot proceed with the exact

evaluation of the full one-loop partition function on the folded two-spin solution. However,

we observe that a nice consequence of our procedure is the possibility of making a non-trivial,

analytical statement on the equivalence of partition functions in conformal and static gauge

in the single-spin case ν = 0. While here the fermionic determinant can be given exactly for

all values of the spin [172], it is only the bosonic partition function in static gauge – where

fluctuations are naturally decoupled – which has been written down in an analytically exact

closed form, and reads [172]

logZbos
static gauge = −T

2
∫

∞

−∞

dω

2π
log (DetOφDet2OβDet5O0) (4.65)

where

DetOφ = 4 sinh2[2K̃Z(αφ∣k̃2)] , DetOβ = 4 sinh2 [2KZ(αβ ∣k2)] , DetO0 = 4 sinh2(πω) (4.66)

and

sn(αφ ∣k̃2) = 1

k̃

√
1 + (πω

2K̃
)

2

, sn(αβ ∣k2) = 1

k

√
1 + k2 + (πω

2K
)

2

, (4.67)

with k̃2 = 4k/(1 + k)2 and K̃ = K(k̃2).
The analysis in section 4.1.2 shows that, in conformal gauge, the spectral problem associated

to the mixed-mode, 3 × 3 matrix differential operator corresponding to (4.29)-(4.31) can be

evaluated, see (4.35), via the product of a free determinant times the determinant of the

fourth order differential operator (4.39), and thus

logZbos
conformal gauge = −

T
2
∫

∞

−∞

dω

2π
log (DetOν=0 Det2Oβ Det4O0) , (4.68)

where in the counting of massless operators we already have taken into account the two

conformal gauge massless ghosts [192], and

DetOν=0 = 16 sinh2 [2K(Z(α∣k2) + 1 + cn(α∣k2)dn(α∣k2)
sn(α∣k2) )] sinh2(2KΩ̄) , (4.69)

with (switching to Euclidean signature)

sn2(α∣k2) = −4Ω̄2

(1 + k2 − Ω̄2)2 − 4k2
. (4.70)
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One can see that the second factor in (4.69) corresponds to the same massless boson

mode of (4.66) (recalling (4.38) and that for ν = 0 it is w̄ = 2K
π ), while for the first fac-

tor one should use the transformation (C.53) for the Jacobi zeta function which, writing

α̃ = α/(1 + k̃′) + iK′/(1 + k̃′), leads to the identity

2K [Z(α∣k2) + 1 + cn(α∣k2)dn(α∣k2)
sn(α∣k2) ] = 2K̃Z(α̃∣k̃2) + iπ . (4.71)

This establishes analytically the equivalence of static and conformal gauge bosonic deter-

minants (4.65)-(4.68).





Chapter 5

Towards precision holography for

latitude Wilson loops

In recent years a new wealth of exact results has become available for path-integrals in

supersymmetric QFTs on curved manifolds by means of supersymmetric localization. It was

inaugurated by N. Nekrasov for 4d N = 2 gauge theories in the Omega background [332]

and, in particular, by V. Pestun for N = 2 SYM on S4 [151]. The mathematical principles

behind localization in supersymmetric theories [333–336] are a powerful synthesis of previous

equivariant localisation theorems for ordinary integrals that have a symmetry with fixed

points [337]. Localization relies on supersymmetry to show that a path-integral invariant

under a fermionic charge receives contributions only from the set of fixed points (localization

locus) of the action of that symmetry group [338–341]. The power of this method is to

produce all-loop expectation values of (local or non-local) operators by reducing (localizing)

the original infinite-dimensional integral to a less-dimensional one, often a matrix integral

that is amenable to an evaluation in terms of elementary functions. In that, it offers a way to

extract physical information on a QFT in a manner that is independent from the possible

integrable properties of the theory. The reader can consult [342, 343] for a collection of

reviews to scratch the surface of the vast literature on the subject.

Operators preserving a fraction of the (global 1) supersymmetry of the theory – commonly

referred to as Bogomol’nyi-Prasad-Sommerfield (BPS) operators – are computable within

this framework. As in the seminal paper [151], some of the most studied cases are super-

symmetric Wilson loops in N = 4 SYM. In sections 5.1 and 5.2 we collect some background

material for the interested reader. In particular, we want to highlight section 5.2.1, where

we recall that localization predicts the vacuum expectation value of the 1/2-BPS circular

Wilson loop for all values of the coupling. Here we also review the (unsuccessful) efforts in
1See below (5.2) for Wilson loops.

83



Chapter 5. Towards precision holography for latitude Wilson loops 84

trying to match the strong-coupling expansion of this field theory result using sigma-model

perturbation theory. In sections 5.4-5.8 we revisit this delicate issue by turning to the study

of the 1/4-BPS Wilson loops of section 5.2.2, which comprise the circular loop as a lim-

iting case. Our driving motivation is that, as we explain at length in section 5.3, we can

strengthen our stringy computational tools by carefully considering such discrepancies in a

setting where we are supported by exact results from the gauge theory side of AdS/CFT.

5.1 Review of supersymmetric Wilson loops in N = 4 SYM

In section 1.3 we have already introduced supersymmetric Maldacena-Wilson loop operators

in N = 4 SYM 2

W [C] ≡ 1

dimR trRP exp [∫ (iAµ (x (τ)) ẋµ (τ) + ∣ẋ (τ)∣ θI (τ)φI(x(τ)))dτ] . (5.1)

They are defined by a generalized holonomy that contains couplings to the scalar fields

φI (I = 1, . . .6), in addition to the gauge connection Aµ (µ = 1, . . .4), while preserving

gauge invariance of the operator (5.1) and reparametrization invariance of the closed path

{xµ(τ)} ≡ C ⊂ R4. All fields are in a representationR of the gauge group SU(N). The scalar
couplings {θI (τ)} ⊂ R6 draw a path, not necessarily closed or related to the C, on a five-

sphere ∑6
I=1 (θI (τ))

2 = 1. The inclusion of the scalars improves the ultraviolet properties

of the operators when compared to the purely bosonic ones: for any smooth and non-self-

intersecting C their expectation values are divergence-free and invariant under non-singular

conformal transformations. Finally, the dimension of the gauge-group representation dimR
ensures that the operator has unit-normalized expectation value in the free theory (gYM = 0,

or λ = 0 in the planar limit).

The constraint on θI guarantees the existence of 16 out of 32 supercharges in the 4d N = 4

superconformal algebra that locally preserve the Wilson loop (here {Γµ,ΓI+4} are SO(10)
Dirac matrices)

δε(τ)W = 0 ⇐⇒ (iΓµẋµ (τ) + ∣ẋ (τ)∣ θI (τ)ΓI+4) ε (τ) = 0 . (5.2)

They are called locally 1/2-BPS Wilson loops because in (5.2) we can find 16 distinct

fermionic transformations δε(τ) generated by Majorana-Weyl spinors ε (τ) depending on the

loop point. However, only rigid supersymmetry is a symmetry of the action. One typically

seeks some restrictions on xµ(τ) and θI(τ) to make the solution ε (τ) = ε unique along the

loop. This is the case of globally BPS Wilson loops. Such operators are classified according
2Here we consider the spacetime in Euclidean signature, for which the path-ordered exponential is not a

pure complex phase and there is no unitarity bound ⟨W⟩ ≤ 1, see comments in [178].
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to the fraction of global supercharges leaving them invariant: they are (globally) 1/2-BPS

when they preserve 16 supercharges, and similarly for other fractions 3.

A systematic classification of Wilson loops locally preserving at least one fermionic charge

was made in [344, 345]. A certain number of those operators have been known earlier and

fall under two classes: Zarembo loops and Drukker-Giombi-Ricci-Trancanelli (DGRT) loops,

according to the relationship between xµ (τ) and θI (τ). They are both globally 1/16-BPS

at least: the former type for any spacetime contour in R4, whereas the latter one only when

C lies entirely in S3 ⊂ R4.

• The Zarembo loops [346] eliminate the dependence of ε(τ) in (5.2) on the loop pa-

rameter τ by means of a constant 4 × 6 “projection” matrix M I
µ that assigns every

tangent vector in R4 to a point in the coupling space S5 ⊂ R6

θI (τ) =M I
µ

ẋµ (τ)
∣ẋ (τ)∣ ,

6

∑
I=1

M I
µM

I
ν = δµν . (5.3)

This choice reduces (5.2) to a τ -independent constraint (iΓµ +M I
µΓI+4) ε = 0 and

makes the operator invariant only under super-Poincaré generators. One can also

prove a correlation between the amount of unbroken supersymmetries and the dimen-

sionality of the linear subspace of R4 where the loop is embedded into.

Hyperplane of lowest Supercharges
Amount of SUSY of W

dimension embedding C unbroken by W
R4 2 1/16 BPS

R3 4 1/8 BPS

R2 8 1/4 BPS

R2 16 1/2 BPS

(5.4)

The only 1/2-BPS case is the straight Wilson line xµ (τ) = (τ,0,0,0) passing through

a point at infinity and coupling to the same scalar. As it preserves all the 16 Poincaré

supercharges, supersymmetry-based arguments guarantee that its expectation value

is coupling-independent and it equals to one 4. Non-renormalization theorems were

also proven for the more general 1/8-BPS case using superspace formalism [347, 348]

and topological arguments [347–350].
3By this counting over the full set of 16 super-Poincaré Q’s and 16 superconformal S’s generators, an

operator that breaks all the Q’s while preserving at least one S is still called supersymmetric.
4In gauge theory this is equivalent to the statement that gauge and scalar propagators coincide in

Feynman gauge and cancel order by order in perturbation theory. At strong coupling, it is easy to check
that the dual classical worldsheet has zero regularized area [192, 196] (see (3.100) in this thesis), but the
vanishing of the subleading corrections is less transparent. The one-loop order is is rather subtle because
one needs an ad hoc prescription to subtract divergences [196, 215].
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• A richer variety of results is found for the Drukker-Giombi-Ricci-Trancanelli Wilson

loops [298, 351]. The construction of the scalar couplings (i = 1,2,3 and I, J = 1, . . .6)

∣ẋ(τ)∣ θi (τ) =
1

2
σRi (τ)M i

I , θi+3 (τ) = 0 ,
6

∑
I=1

M i
IM

j
I = δij . (5.5)

is valid for any loop on a three-sphere ∑4
i=1 x

2
µ = 1 and based on the interpretation of

the “effective” gauge connection in the exponent of (5.1) as a non-trivial topological

twist of N = 4 SYM. We can represent the SU(2) right-invariant one-forms σRi on

such S3 as

σRi (τ) = 2εijk x
j (τ) ẋk (τ) − xi(τ)ẋ4(τ) + x4(τ)ẋi(τ) (5.6)

where εijk is the totally antisymmetric symbol with ε123 = 1 and the sphere radius is

set equal to one thanks to conformal symmetry.

The choice (5.5)-(5.6) endows the operators with two global supercharges, a combina-

tion of both Poincaré and conformal supersymmetries. When the loop lies on a great

sphere S2 ⊂ S3, extra relations between loop variables xµ (τ) and their derivatives

enhance supersymmetry to eight unbroken supercharges (1/8 BPS). We will see below

that DGRT loops on a two-sphere show peculiar localization properties that allow for

the exact evaluation of their expectation values.

5.2 Localization of DGRT Wilson loops on S2

We shall focus on the subset of DGRT Wilson loops in the fundamental representation of

SU(N) along non-intersecting closed curves C on S2 = {xµ ∶ ∑3
i=1 x

2
i = 1 , x4 = 0}. The

holonomy of the generalized connection in the Wilson loop operator (5.5) with (5.5)-(5.6)

W [C] = 1

N
trP exp [∫ (iAi (x (τ)) ẋi(τ) +mi (τ)φi(x(τ)))dτ] (5.7)

has a triplet of couplings mi (τ) = εijkx
j (τ) ẋk (τ) that draws a curve on a “dual” two-

sphere, as explained in caption of Figure 5.1. They are engineered to preserve the same four

supercharges independently of the contour.

Perturbative computations [298, 351, 352] suggested that the expectation values and their

quantum correlators are reproduced exactly by analogous observables in 2d bosonic Yang-

Mills (YM2) on S2, in the sector where instantonic contributions of the 2d gauge field are

excluded [353]. The proposal was extended in [354] to all correlators of 1/8-BPS DGRT

loops and chiral primary operators (CPOs) of the form

OJ (x) ≡ tr (xi φi (x) + iφ4 (x))J , xi ∈ S2 , i = 1,2,3 . (5.8)
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Figure 5.1: Spacetime path of a DGRT Wilson loop on a two-sphere. The position vector
x⃗ = (x1, x2, x3) stems from the origin of R3 = {xµ ∶ x4 = 0} and sweeps the loop C (red
line). The local couplings to the three scalars can be suggestively rewritten in a geometric
fashion as the vector m⃗ = x⃗ × ˙⃗x tangent to the sphere and orthogonal to C. Picture taken
from [112].

They are 1/2-BPS operators carrying J charge units under a U (1) subgroup of the SU(4)
R-symmetry group. By construction they are position-dependent combinations of scalar

fields that render the n-point functions ⟨OJ1 (x1) . . .OJn (xn)⟩ independent of the insertion

points, tree-level exact and globally supersymmetric with four supercharges on S2 [355].

When also Wilson loops are present, mixed correlators are no longer protected from radiative

corrections, but retain two supercharges [354, 356] which allow to set up the machinery of

supersymmetric localization. The authors of [354] supported the conjecture that mixed

correlation functions

⟨WR1 (C1)WR2 (C2) . . .OJ1 (x1)OJ2 (x2) . . . ⟩ , C1,C2, ... ⊂ S2 , x1, x2, ... ∈ S2 (5.9)

exactly equal the expectation value

⟨W̃R1 (C1) W̃R2 (C2) . . . tr (i ∗ 2d F̃ (x1))
J1 tr (i ∗ 2d F̃ (x2))

J2
. . . ⟩

0-instanton
(5.10)

in ordinary bosonic Yang-Mills on S2 with coupling constant g̃2
YM = −g2

YM/(2π), where only
perturbative contributions around the trivial vacuum Ãµ̃ = 0 with µ̃ = 1,2 (up to gauge

transformations) are included. Under this map, DGRT loops are replaced by their bosonic

counterparts in YM2, while the CPOs by integer powers of the 2d Hodge star on S2 of the

YM2 field strength. The statement holds at any value of the coupling and does not assume

the planar limit in (5.9).

Bosonic YM on arbitrary 2d Riemann surfaces can be exactly solved using localization

methods [357]. The computation of (5.10) in the zero-instanton sector 5 is eventually
5It can be computed with the matrix integral technology in [358] and references therein.
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captured by a Gaussian Hermitian multi-matrix model [354]

1

Z̃
∫ [dX1] [dX2] . . . [dY1] [dY2] . . . trR1e

X1trR2e
X2 . . . trY J1

1 trY J2
2 . . . e−Smm[X,Y ]

with Z̃ ≡ ∫ [dX1] [dX2] . . . [dY1] [dY2] . . . e−Smm[X,Y ] . (5.11)

The action Smm is a quadratic form (hence the name Gaussian) in the self-adjoint matrices

X’s and Y ’s with coefficients depending only on the topology (the relative positions of the

local operators with respect to the loops) and geometry (the areas singled out by the loops

on the spherical surface) of the system. In particular, the matrix model is insensitive to the

absolute positions of the loops, so the expectation values (5.9) and (5.10) do not depend on

the insertion points x1, x2, . . . .

What is surprising about the localization result (5.9) is that the quantum average of an

arbitrary number of local and non-local operators in a non-trivial field theory in four di-

mensions is captured by a zero-dimensional integral (5.11). This is more impressive from

the viewpoint of diagrammatical methods, in which even low-order results for (5.9) arise

from non-trivial rearrangements of finite parts and divergence cross-cancellations – e.g. up

to three loops in [359] – especially when the geometric configuration of the loops and oper-

ators on S2 lacks some symmetry – e.g. a Wilson loop placed on a great circle of S2 and a

CPO displaced from the symmetry axis [360].

The conjecture above has been thoroughly scrutinized at weak/strong coupling in a number

of special cases [354, 361–367] 6, extended to ’t Hooft loop operators [368] and instrumental

in deriving an all-loop expression for a non-BPS quantity called Bremsstrahlung function

[369, 370] beautifully tested against its integrability prediction [114, 371]. The rich in-

terplay between localization and AdS/CFT holography, covering some of these results, is

contextualized in the review [372].

Of particular interest for the rest of the chapter is the restriction to a subsector of Wilson

loop operators (5.7) which is amenable to a direct evaluation of their Gaussian matrix model

for any gYM and N .

5.2.1 1/2-BPS circular Wilson loop

The most symmetric configuration in 5.7 is a geodesic line along a great circle of S2 [178,

298, 373]

Wcircle =
1

N
trP exp [∫ (iAµxµ(τ) + φ3)dτ] , xµ(τ) = (cos τ, sin τ, 0, 0) . (5.12)

6However there exists a claim of disagreement in the subleading order of correlators of latitude loops at
strong coupling [366].
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The operator preserves the bosonic group SL(2,R) × SU(2) × SO(5) of the PSU(2,2∣4)
symmetry of N = 4 SYM. Together with the 16 supercharges of the loop, it forms the

orthosymplectic group OSp(4∗∣4). This is the same symmetry of the Wilson line below

(5.4), but the explicit embedding inside PSU(2,2∣4) is different (see [298]) and the operator

has non-trivial expectation value

⟨Wcircle⟩ =
1

Z̃
∫ [dM] tr (eM) e

−
2

g2
YM

trM2

with Z̃ = ∫ [dM] e
−

2

g2
YM

trM2

(5.13)

= 1

N
L1
N−1 (−

g2
YM

4
) e

g2YM
8 (5.14)

= 2√
λ
I1 (

√
λ) + λ

48N2
I2 (

√
λ) + λ2

1280N4
I4 (

√
λ) +O (N−6) . (5.15)

The matrix integral from (5.11) evaluates to a generalized Laguerre polynomial Lmn which

in the ’t Hooft limit reduces to a power series in N−2 with coefficients being modified Bessel

functions Iα of the first kind 7.

The matrix model (5.13) was first argued from a two-loop analysis at λ ≪ 1 in the planar

limit [374], which showed that interacting Feynman diagrams do not contribute up to this

order in Feynman gauge. Postulating that a similar mechanism carries over to any loop

order, the matrix integral arises because the combined gauge/scalar propagator between

two points on the circle is constant and interacting diagrams sum to zero. Summing over all

constant ladder diagrams 8 is a combinatorics problem that leads to the zero-dimensional

integral (5.13).

Postulating that all interacting diagrams vanish, an elegant argument [375] supported (5.13)

at finite N using the observation that an “anomalous” conformal map transforms the trivial

straight Wilson line (below (5.4)) into a circle. A subtle change in their global properties

when one loop point is taken to infinity is responsible for the non-trivial expectation value

of the circular loop.

A rigorous derivation of (5.13) was shown in [151] by reformulating N = 4 SYM on a four-

sphere in such a way that the path-integral localizes on a simple Gaussian matrix model.

The circular Wilson loop can be conformally mapped to S4 and computed as an observable

in the matrix model, leading to the expected result (5.13).

The matrix model of the circular loop is consistent with the AdS/CFT prediction as re-

produced by string theory, namely the leading behaviour at large λ and N [374] and the

behaviour at leading λ and all N−1-corrections from D3-branes [376, 377] and D5-branes

[378, 379].

The subleading correction in λ at large N was studied via a semiclassical string calculation:

the one-loop contribution, encoding fluctuations above the classical solution (schematically,
7A derivation and other practical expansions are in [374, 375].
8These are diagrams that “stretch” across the circular loop without carrying interaction vertices.
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in the form of (3.98)), was formally written down in [192], explicitly evaluated in [196] (see

also [380]) using the Gel’fand-Yaglom method (appendix B), reconsidered in [381] with a

different choice of boundary conditions and reproduced again in [215] with the heat kernel

method (see also section 1.4.1). The semiclassical result obtained from the string sigma-

model (“sm”) [196, 215]

log⟨Wcircle⟩sm =
√
λ − 3

4
logλ + log c + 1

2
log

1

2π
+O(λ−1/2) (5.16)

was determined up to an unknown contribution of ghost zero modes (the constant c, see

comments below) originating from the one-loop effective action contribution and an un-

known, overall numerical factor in the measure of the partition function.

However, no agreement was found with the analogue subleading correction in the strong

coupling expansion for λ≫ 1 and N = ∞ from localization (“loc”) (5.15)

log⟨Wcircle⟩loc = log 2
√

λ
I1(

√
λ) =

√
λ − 3

4
logλ + 1

2
log

2

π
+O(λ−1/2) , (5.17)

The term proportional to logλ in (5.17) is argued to originate from the SL(2,R) ghost

zero modes on the disc [375]. The discrepancy between (5.16) and (5.17) occurs in the

λ-independent part.

The situation becomes even worse when considering a loop (5.12) winding k-times around

itself [196, 216], where also the functional dependence on k is failed by the one-loop string

computation. Different group representations of the circular Wilson loops were also con-

sidered: for the k-symmetric and k-antisymmetric representations, whose gravitational de-

scription is given in terms of D3- and D5-branes respectively, the first stringy correction

[382] does not match the localization result. Interestingly, the Bremsstrahlung function

of N = 4 SYM derived from localization arguments (see end of section 5.2 is instead cor-

rectly reproduced [174] through a one-loop computation around the classical cusp solution

[178, 298].

5.2.2 1/4-BPS latitude Wilson loops

The family of circles of constant radius on S2 [298] (also [383]) can be parametrized by

Wlatitude =
1

N
trP exp [∫ (iAµẋµ(τ) +mi (τ)φi)dτ] (5.18)

with, as in Figure (5.2),

xµ(τ) = (sinφ0 cos τ, sinφ0 sin τ, cosφ0, 0) , (5.19)

mi (τ) = sinφ0 (− cosφ0 cos τ, − cosφ0 sin τ, sinφ0) .



Chapter 5. Towards precision holography for latitude Wilson loops 91

When the loop xµ(τ) coincides with the great circle (φ0 = π
2 ), the operator couples to a

constant direction in the R-symmetry space and one recovers the half-supersymmetric circle

in the last section. A generic loop preserves a SU(2) × U(1) × SU(2) bosonic subgroup of

PSU(2,2∣4) and 8 supercharges, which can be organized to form a SU(2∣2) supergroup

[298].

Figure 5.2: DGRT latitude Wilson loop in the original parametrization (5.19). In the left
panel, the spacetime path runs along a parallel of S2 (hence the name latitude), located
at angular distance φ0 from the north pole. The loop lies on a spherical surface, here
embedded in flat space with Cartesian coordinates x1, x2, x3. In the right panel, the path
in the scalar-coupling space m1,m2,m3 is induced by the spatial loop xi (τ) through the
supersymmetric couplings (5.5)-(5.6). Courtesy of [298].

Circular loops with coupling along latitudes of an S2 in R-symmetry space [384]

xµ(τ) = (cos τ, sin τ, 0, 0) , (5.20)

mi (τ) = (sin θ0 cos τ, sin θ0 sin τ, cos θ0)

are still 1/4 BPS and conformally equivalent – upon a dilatation and a translation along

the x3-axis – to the operator defined by (5.19) with θ0 ≡ π
2 − φ0. We will refer (somewhat

improperly) to the operators (5.18) with (5.20) as latitude Wilson loops from now on. The

circular limit is then recovered for θ0 = 0.

Strong evidences [384], later substantially 9 proved using supersymmetric localization [356],

relate these operators to the matrix model of the circular loop (5.13)-(5.15) by a rescaling

of the YM coupling gYM → gYM cos θ0 (and λ→ λ cos2 θ0 in planar limit).
9 The proof is not completed at the same level of rigour of [151] for the circle: one still needs to compute

the one-loop determinants around the localization locus and effectively prove that the Wilson loops localizes
in YM2 on S2.
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5.3 Semiclassical strings for latitude Wilson loops

In section 5.2.1 we have seen that the matching between localization (5.17) and sigma-

model perturbation theory (5.16) is a thorny issue beyond the supergravity approximation.

In order to gain further intuition, we re-examine this issue addressing the problem of how

to possibly eliminate the ambiguity related to the partition function measure (the constant

c in (5.16)). A similar direction was pursued in parallel in [385], which we will comment on

in section 5.7.

To this end, we consider the string dual to a latitude Wilson loop (5.18), parameterized

by the angle θ0 in (5.20). According to (1.11), the expectation value of a latitude loop

should equate the partition function for the AdS5 × S5 superstring. Therefore, at large λ

and infinite N we evaluate the corresponding string one-loop path-integral, analogously to

what was done in [196, 216] only for the circular loop at θ0 = 0. We finally calculate the

ratio between the partition functions corresponding to latitude loop and a circular one.

Our underlying assumption, suggested in [196], is that the measure is actually independent

on the geometry of the worldsheet associated to the Wilson loop 10, and therefore in such

ratio measure-related ambiguities should simply cancel. It appears non-trivial to actually

prove a background independence of the measure, whose diffeomorphism-invariant definition

includes in fact explicitly the worldsheet fields (e.g. the discussion in [177]). This working

hypothesis seems however a reasonable one, especially in light of the absence of zero mode

in the classical solutions here considered 11 and of similar ratios between pairs of string

partition functions – “antiparallel-lines” Wilson loop with straight line [173] and cusped

Wilson loop with straight line [174] – where a perfect agreement exists between sigma-

model perturbation theory and localization/integrability results (see end of section 5.2).

The ratio of interest follows from the expectation value of the circular loop ⟨W(λ, θ0 = 0)⟩ ≡
⟨Wcircle⟩ (5.17) and the one of the latitude loop ⟨W(λ, θ0)⟩ ≡ ⟨Wlatitude⟩ = ⟨Wcircle⟩∣λ→λ cos2 θ0

(see text below (5.20))

⟨W (λ, θ0)⟩
⟨W (λ,0)⟩ ∣

loc

= e
√

λ(cos θ0−1) [cos−3/2 θ0 +O(λ−1/2)] +O (e−
√

λ) , (5.21)

where in the large-λ expansion only the dominant exponential contribution is kept. In

terms of string effective action Γ(λ, θ0) ≡ − logZ(λ, θ0) = − log⟨W(λ, θ0)⟩, this leads to the
10 About the topological contribution of the measure, its relevance in canceling the divergences occurring

in evaluating quantum corrections to the string partition function has been first discussed in [192] after the
observations of [191, 386]. We use this general argument below, see discussion around (5.79).

11In presence of zero modes of the classical solution, a possible dependence of the path-integral measure
on the classical solution comes from the integration over collective coordinates associated to them, see
arguments in [346].
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prediction

log
⟨W (λ, θ0)⟩
⟨W (λ,0)⟩ ∣

loc

= [Γ(θ0 = 0) − Γ(θ0)]loc =
√
λ (cos θ0 − 1) − 3

2
log cos θ0 +O(λ−1/2) ,

(5.22)

where the leading term comes from the regularized minimal-area surface of the strings dual

to these Wilson loops (section 5.4), while the semiclassical fluctuations in the string sigma-

model account for the subleading correction (sections 5.5 and 5.6). For the latter point,

we follow the strategy method followed by [196] – namely splitting the 2d determinants

into an infinite product of 1d determinants solved with the Gel’fand-Yaglom method (see

section 1.4.1) – but our case is substantially more complicated due to the non-diagonal

matrix structure of the fermionic-fluctuation operator for arbitrary θ0, preventing us from

factorizing the value of the fermionic determinants into a product of two contributions. The

summation of the 1d Gel’fand-Yaglom determinants is quite difficult, due to the appearance

of some Lerch-type functions, and we were not able to obtain a direct analytic result. We

resort therefore to a numerical approach.

We anticipate that our analysis shows that the disagreement between sigma-model and

localization results (5.22) is not washed out yet. Within a certain numerically accuracy, we

claim that the discovered θ0-dependent discrepancy is very well quantified as

log
⟨W (λ, θ0)⟩
⟨W (λ,0)⟩ ∣

sm

=
√
λ (cos θ0 − 1) − 3

2
log cos θ0 + log cos

θ0

2
+O(λ−1/2) , (5.23)

suggesting that the discrepancy from (5.22) should be log cos θ02 . We will comment on this

result at length in sections 5.7 and 5.8.

5.4 Classical solution

The classical string surface dual to latitude loops was first presented in [383] and discussed

in details in [298, 384, 385]. Here it is rederived using a strategy described at the end of

section 3.2. In AdS5 × S5 equipped with coordinates (cf. (3.2)-(3.3))

ds2
AdS5×S5 = − cosh2 ρdt2 + dρ2 + sinh2 ρ (dχ2 + cos2 χdψ2 + sin2 χdϕ2

1)

+dθ2 + sin2 θdφ2 + cos2 θ (dϑ2
1 + sin2 ϑ1 (dϑ2

2 + sin2 ϑ2dϕ
2
2)) (5.24)
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one makes the following ansatz for the classical configuration

t = 0, ρ = ρ(σ), χ = 0, ψ = τ, ϕ1 = 0,

θ = θ(σ), φ = τ, ϑ1 = 0, ϑ2 = 0, ϕ2 = 0 , (5.25)

τ ∈ [0,2π) , σ ∈ [0,∞) .

The ansatz (5.25) is for a surface in H3 × S2 ⊂ AdS5 × S5 that does not propagate in time

– neither the 3d hyperbolic space H3 nor the two-sphere S2 have a timelike direction – but

sweeps out a Euclidean surface embedded in a Lorentzian target space. If we demand that

ρ(0) = ∞ and θ(0) = θ0 at the worldsheet boundary (σ = 0), then the ansatz parametrizes a

open string 12 that ends on a unit circle at the AdS5 boundary and on a latitude located at

polar angle θ0 on S2 ⊂ S5. When we impose the string equations of motion, the functions

ρ(σ) and θ(σ) reads

sinhρ(σ) = 1

sinhσ
, coshρ(σ) = 1

tanhσ
,

sin θ(σ) = 1

cosh (σ0 ± σ)
, cos θ(σ) = tanh (σ0 ± σ) .

(5.26)

We defined the convenient angular parameter σ0 ∈ [0,∞)

tanhσ0 ≡ cos θ0 (5.27)

to sets the position of the latitude at angular position θ0 ∈ [0, π2 ]. Here the angular coordi-

nate θ of S5 spans the interval [−π2 ,
π
2 ]. The double sign in (5.26) accounts for the existence

of two solutions, effectively doubling the range of θ0: the stable (unstable) configuration –

with the upper (lower) sign in (5.26) – is the one that minimizes (maximizes) the action

functional and wraps the north pole θ = 0 (south pole θ = π) of S5.

The dual gauge-theory operator is a one-parameter class of 1/4-BPS Wilson loops that

interpolates between two notable cases. The 1/2-BPS circular case (section 5.2.1) falls un-

der this family when the latitude in S2 shrinks to a point for θ0 = 0, which implies θ(σ) = 0

and σ0 = +∞ from (5.26)-(5.27). In this case the string propagates only in the H3 subspace

of the AdS space. The other case is the circular 1/4-BPS Zarembo Wilson loop (in Table

(5.4)) when the worldsheet extends over a maximal circle of S2 for θ0 = π
2 and σ0 = 0 [346] 13.

For the semiclassical analysis we prefer to work with the stereographic coordinates 14 υm

12There exist other solutions with more wrapping in S5, but they are not supersymmetric [384].
13 See also [387] for an analysis of the contribution to the string partition function due to (broken) zero

modes of the solution in [346].
14The reason is that the initial angular coordinates (5.24) in the background (5.25) would not yield a

bosonic quadratic Lagrangian in the standard form for the kinetic terms of the eight physical fields.
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(m = 1,2,3) of S3 ⊂ AdS5 and wn (n = 1, . . .5) of S5

ds2
AdS5×S5 = − cosh2 ρdt2 + dρ2 + sinh2 ρ

dυmdυm

(1 + υ2

4 )2
+ dwndwn

(1 + w2

4 )2
, (5.28)

υ2 =
3

∑
m=1

υmυm , w2 =
5

∑
n=1

wnwn ,

where the classical solution reads

t = 0, ρ = ρ(σ), υ1 = 2 sin τ, υ2 = 2 cos τ, υ3 = 0 ,

w1 = w2 = 0, w3 = 2 cos θ(σ), w4 = 2 sin θ(σ) sin τ, w5 = 2 sin θ(σ) cos τ .
(5.29)

Alternatively, we could translate the solution into the AdS Poincaré patch (3.4)

ds2
AdS5×S5 =

−dx2
0 + dx2

1 + dx2
2 + dx2

3 + dz2

z2
+ dwndwn

(1 + w2

4 )2
, (5.30)

with

x1 = sinρ(σ) cos τ, x2 = sinρ(σ) sin τ, x0 = x3 = 0, z = cosh θ(σ) ,

w1 = w2 = 0, w3 = 2 cos θ(σ), w4 = 2 sinh θ(σ) sin τ, w5 = 2 sinh θ(σ) cos τ .

(5.31)

In section 5.2.2 we recalled that the gauge-theory operator is invariant under a SU(2∣2)
subgroup of the superconformal group PSU(2,2∣4) of N = 4 SYM. The bosonic symmetries

SU(2) × U(1) × SU(2) ⊂ SU(2∣2) have a geometric interpretation as the symmetry group

SO(3) × SO(2) × SO(3) of the classical surface. It is easy to see the action of the three

factors by expressing the solution into the embedding coordinates (after (3.4) and some

index reshuffling)

X0 = coshρ(σ) , X1 = sinhρ(σ) cos τ , X2 = sinhρ(σ) sin τ , X3 =X4 =X5 = 0 ,

Y1 = sinh θ(σ) cos τ , Y2 = sinh θ(σ) sin τ , Y3 = cosh θ(σ) , Y4 = Y5 = Y6 = 0 .

(5.32)

The action of SO(3) × SO(3) rotates the linear subspaces (X3,X4,X5) and (Y4, Y5, Y6)
where the string motion does not occur, while the SO(2) is a translation in τ that rotates

the planes (X1,X2) and (Y1, Y2) simultaneously.
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Figure 5.3: Stable classical solution dual to the latitude loops (5.31) with upper sign in
(5.26). Lines of constant τ and σ are meridians and latitudes on the geodesic dome inside
H3 and on S2. The worldsheet (orange) is diffeomorphic to a disk, ends on a unit circle
and a latitude with θ0 ∈ [0, π

2
] (both green in the two subspaces) and reaches the north

pole (w3,w4,w5) = (1,0,0) of the two-sphere. Selecting the lower sign in (5.26) produces
an unstable solution covering the shaded region of the sphere up between the latitude
and the south pole (w3,w4,w5) = (−1,0,0). The axial symmetry around z and w3 is a
manifestation of the SO(2) symmetry discussed in the text.

The induced metric on the worldsheet Σ and its Ricci curvature depend on the latitude

angle θ0 through the conformal factor Ω(σ)2 ≡ sinh2 ρ(σ) + sin2 θ(σ) (σi = (τ, σ))

ds2
Σ = hijdσidσj = Ω2(σ) (dτ2 + dσ2) , (2)R = −2∂2

σ log Ω(σ)
Ω2(σ) . (5.33)

From the bosonic action (3.7)

SB = T ∫ dτdσ
√
h ≡ ∫ dτdσLB , (5.34)

the leading contribution to the string partition function comes from the regularized on-shell

action

S
(0)
B (θ0) =

√
λ

2π
∫

2π

0
dτ ∫

∞

ε0
dσ Ω(σ)2 =

√
λ(∓ cos θ0 +

1

ε
+O(ε)) . (5.35)

Following [196] we have chosen to distinguish the cutoff ε0 in the worldsheet coordinate from

the cutoff ε = tanh ε0 in the Poincaré radial coordinate z (5.30). The pole in the IR cutoff

ε in (5.36) keeps track of the boundary singularity of the AdS metric and it is proportional

to the circumference of the boundary circle. The standard regularization scheme (section

(3.5.1)) consists in subtracting a term

S
(0)
B (θ0) −

√
λχb(θ0) → S

(0)
B (θ0) −

√
λχb(θ0) = ∓

√
λ cos θ0 , (5.36)
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which is proportional to the boundary part of the Euler number

χb(θ0) =
1

2π
∫

2π

0
dτ

√
h∣σ=ε0 κg =

1

ε
+O(ε) , (5.37)

namely the line integral of the geodesic curvature κg of the boundary at σ = ε0. The

upper-sign solution dominates the string path-integral and is responsible for the leading

exponential behaviour in (5.21) and so, in the following, we will restrict to the upper sign

in (5.26).

5.5 One-loop fluctuation determinants

We focus on the semiclassical expansion of the string partition function around the stable

classical solution (5.29) (taking upper signs in (5.26)) and the determinants of the differential

operators describing the semiclassical fluctuations around it as in (3.98).

In section 1.4.1 we illustrated the standard methods to quantify the fluctuation determi-

nants. They can be easily computed on the classical surface at θ0 = 0 with the heat kernel

method [192, 215] since the worldsheet reduces to the H2 geometry which is maximally

symmetric (the three isometries form the bosonic subgroup SL(2,R) of the full symmetry

group of OSp(4∗∣4) mentioned in section 5.2.1). The lack of readily available heat kernel

expressions in the general case θ0 ≠ 0 motivates to look for a different way.

The heat kernel method seems to be feasible in a perturbative approach θ0 ∼ 0 when the

worldsheet geometry is nearly H2. This way of proceeding is currently scrutinized in [9]

and outlined in chapter 8. Here we exploit instead the only SO(2) isometry generated by

time translations ∂τ , separate the 2d determinants into infinitely-many 1d spectral problems

(section 1.4.1) and proceed with the Gel’fand-Yaglom method (appendix B).

We will see that our worldsheet operators are singular in σ ∈ [0,∞) as their principal

symbols diverge at σ = 0. Also, the interval is non-compact, making the spectra continuous

and more difficult to deal with. We consequently introduce an IR cutoff at σ = ε0 (related

to the ε = tanh ε0 cutoff in z) and one at large values of σ = R [196]. While the former is

necessary in order to tame the near-boundary singularity, the latter has to be regarded as

a mere regularization artifact descending from a small fictitious boundary on the top of the

surfaces in H3 and S2 (Figure 5.3). Indeed it will disappear in the one-loop effective action.
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5.5.1 Bosonic sector

The bosonic fluctuation Lagrangian was assembled in section 5.2 of [3] using the equations

for embedded manifolds reported in this thesis in section 3.3:

L(2)
B ≡ Ω2(σ) yT OB (θ0) y , (5.38)

where the differential operatorOB (θ0) is an 8×8 matrix acting upon the vector of fluctuation

fields orthogonal to the worldsheet y ≡ (y1 , . . . y8). In components it reads

OB (θ0) = diag(O1, O1, O1, O2, O2, O2, O3+, O3−) (θ0) , (5.39)

where, going to Fourier space (∂τ → iω),

O1 ≡ 1

Ω2(σ) [−∂2
σ + ω2 + 2

sinh2 σ
] (5.40)

O2 (θ0) ≡ 1

Ω2(σ) [−∂2
σ + ω2 − 2

cosh2 (σ + σ0)
] (5.41)

O3± (θ0) = 1

Ω2(σ)
[−∂2

σ + ω2 − 2 + 3 tanh2 (2σ + σ0) ∓ 2ω tanh (2σ + σ0)] . (5.42)

In what follows we assume that we rescale away the conformal factor
√
h = Ω2(σ) (as in

the analogous computations of [173, 174, 196]) which will not affect the final determinant

ratio (5.72) (see discussions in appendix A of [192] and in [173, 174, 196]) and is actually

instrumental for the analysis in appendices B.3 and B.4.

The operator O1 does not depend on θ0, and indeed it also appears among the circular

Wilson loop fluctuation operators [196]. While its contribution formally cancels in the ratio

(5.22), we report it below along with the others for completeness. Both O2 (θ0) and O3± (θ0)
become massless operators in the circular Wilson loop limit, which is clear for the latter

upon an integer shift in ω 15, irrelevant for the determinant at given frequency, as long as

we do not take products over frequencies into consideration. Thus, in this limit one recovers

the mass spectrum of the circle (three bosons with mass squared 2 and five massless bosons)

and the bosonic partition function of [196].

The eight physical bosonic fields contribute to the one-loop partition function as

DetOB (θ0) = Det3O1 Det3O2 (θ0) DetO3+ (θ0)DetO3− (θ0) . (5.43)

15In the language of [3], this shift corresponds to a different choice of orthonormal vectors that are
orthogonal to the string surface.
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To reconstruct the complete bosonic contribution after going to Fourier space, we formally

rewrite (5.43) as the infinite product over all the determinants taken at fixed ω

DetωOB (θ0) = Det3ωO1 Det3ωO2 (θ0) DetωO3+ (θ0) DetωO3− (θ0) , . (5.44)

The evaluation of one-dimensional spectral problems is outlined in appendix B.4. The

fields satisfy Dirichlet boundary conditions at the endpoints of the compactified interval

σ ∈ [ε0,R]. Then we take the limit of the value of the regularized determinants for R →∞
at fixed ω and ε0. As evident from the expressions below, the limit on the physical IR cutoff

(ε in z or equivalently ε0 in σ) would drastically change the ω-dependence at this stage and

thus would spoil the product over the frequencies. It is a crucial, a posteriori, observation

that it is only keeping ε0 finite while sending R to infinity that one precisely reproduces the

expected large-ω (UV) divergences [3, 192]. This comes at the price of more complicated

results for the bosonic (and especially fermionic) determinants. Afterwards we will remove

the IR divergence in the one-loop effective action by referring the latitude to the circular

solution.

The solutions of the differential equations governing the different determinants are singular

for small subset of frequencies. We shall treat apart these special values when reporting

the solutions. The solutions of the initial value problems associated to the operators O1 in

(5.40), O2(θ0) in (B.23)-(B.24) and O3+ (θ0) in (5.42) yield the determinants

DetωO1 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

e∣ω∣(R−ε0)
(∣ω∣+coth ε0)
2∣ω∣(∣ω∣+1) ω ≠ 0

R coth ε0 ω = 0
(5.45)

DetωO2(θ0) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

e∣ω∣(R−ε0)
(∣ω∣+tanh(σ0+ε0))

2∣ω∣(∣ω∣+1) ω ≠ 0

R tanh(σ0 + ε0) ω = 0
(5.46)

DetωO3+(θ0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

eR(ω−1)−σ0−(ω+1)ε0(ω+(ω+1)e2σ0+4ε0−1)

2(ω2−1)
√

1+e2σ0+4ε0
ω ≥ 2

Reσ0+2ε0
√

1+e2σ0+4ε0
ω = 1

e−R(ω−1)+σ0+(ω+1)ε0

2(1−ω)
√

1+e2σ0+4ε0
ω ≤ 0

(5.47)
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and in view of the relation O3− (θ0) = O3+ (θ0) ∣ω→−ω, which follows from (5.42), we can

easily deduce

DetωO3−(θ0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

eR(ω+1)+σ0+(−ω+1)ε0

2(1+ω)
√

1+e2σ0+4ε0
ω ≥ 0

Reσ0+2ε0
√

1+e2σ0+4ε0
ω = −1

e−R(ω+1)−σ0−(−ω+1)ε0(−ω+(−ω+1)e2σ0+4ε0−1)

2(ω2−1)
√

1+e2σ0+4ε0
ω ≤ −2 .

(5.48)

Notice that a shift of ω → ω−1 in DetωO3+(θ0) and ω → ω+1 in DetωO3−(θ0) gives back the

symmetry around ω = 0 in the distribution of power-like and exponential large-R divergences

which characterizes the other determinants (5.45) and (5.46). Such a shift – also useful for

the circular Wilson loop limit as discussed below (5.44) – does not affect the determinant,

and we will perform it in section 5.6.

It is easy to take the limit σ0 → ∞ of the bosonic and fermionic determinants to directly

obtain the solutions of the spectral problem for the circular loop case θ0 = 0. The result

for DetωO1 in (5.45) stays obviously the same, while the limits of (5.46), (5.47), (5.48) and

(5.65)-(5.70) become

DetωO2(θ0 = 0) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

e∣ω∣(R−ε0)

2∣ω∣ ω ≠ 0

R ω = 0
(5.49)

DetωO3+(θ0 = 0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

e(R−ε0)(ω−1)

2(ω−1) ω ≥ 2

R ω = 1

e−(R−ε0)(ω−1)

2(1−ω) ω ≤ 0

(5.50)

DetωO3−(θ0 = 0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

e(R−ε0)(ω+1)

2(1+ω) ω ≥ 0

R ω = −1

− e−(R−ε0)(ω+1)

2(ω+1) ω ≤ −2 .

(5.51)

5.5.2 Fermionic sector

The fluctuation analysis in the fermionic sector can be easily carried out here with section

3.4 and the SO(10) Dirac algebra in appendix D.1. We refer to section 5.2 of [3] for details.
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After gauge-fixing κ-symmetry (3.78), the Lagrangian 16 becomes

L(2)
F = 2iΩ2(σ) Ψ̄OF (θ0) Ψ (5.52)

with

OF (θ0) = i

Ω(σ) (Γ4∂τ + Γ3∂σ − a34(σ)Γ3 + a56(σ)Γ456)

+ 1

Ω(σ)2
(sinh2 ρ(σ)Γ012 + sin2 θ(σ)Γ0123456) , (5.53)

a34(σ) = −
1

2

d

dσ
log Ω(σ) , a56(σ) =

1

4

d

dσ
log

coshρ(σ) + cos θ(σ)
coshρ(σ) − cos θ(σ) .

In the θ0 → 0 limit (hence θ(σ) → 0), one gets

OF (θ0 = 0) = i sinhσΓ4∂τ + i sinhσΓ3∂σ −
i

2
coshσΓ3 +

i

2
sinhσΓ456 + Γ012 , (5.54)

which coincides with the operator found in the circular Wilson loop analysis of [196] (see

(5.17) therein), once we go back to Minkowski signature and reabsorb the connection-related

Γ456-term via the τ -dependent rotation Ψ → exp (− τ2 Γ56)Ψ. In Fourier space this results

in a shift of the integer fermionic frequencies ω by one half, turning periodic fermions into

anti-periodic ones. In the general case (5.53) we cannot eliminate all the connection-related

terms −a34(σ)Γ3 + a56(σ)Γ456, since the associated normal bundle (3.30) is not flat in the

sense explained below (3.52). Performing anyway the above τ -rotation at the level of (5.53)

has the merit of simplifying the circular limit making a direct connection with known results.

This is how we will proceed: for now, we continue with the analysis of the fermionic operator

in the form (5.53) without performing any rotation. Then, in section 5.6, we shall take into

account the effect of this rotation by relabelling the fermionic Fourier modes in terms of a

suitable choice of half-integers.

The analysis of the fermionic operator (5.53) drastically simplifies by means of the projectors

P±

12 ≡
I32 ± iΓ12

2
, P±

56 ≡
I32 ± iΓ56

2
and P±

89 ≡
I32 ± iΓ89

2
, (5.55)

which commute with the operator itself and leaves invariant the spinor constraint (D.7) and

the gauge fixing (3.78). The fermionic operator and the 10d spinor are projected onto 8

16In the free Lagrangian L(2)F the spinor field Ψ couples only to the classical background (5.25), which
lies in the timeslice t = 0 and has Euclidean signature (5.33). This may cause some issues with the fact
that the Green-Schwarz action and the Majorana condition are only defined for a worldsheet of Lorentzian
signature. Notice that the analytic continuation of the AdS time t does not affect the signature of the
classical solution. Here we simply think of doing the expansion for imaginary worldsheet time τ and only
at the end Wick-rotate back to Euclidean signature (5.25).
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orthogonal subspaces labeled by the triplet {p12, p56, p89 = −1,1}

OF (θ0) = ⊕
p12,p56,p89=−1,1

Op12,p56,p89

F (θ0) , (5.56)

Ψ = ⊗
p12,p56,p89=−1,1

Ψp12,p56,p89 , (5.57)

where each 2 × 2 operator

Op12,p56,p89

F (θ0) ≡ i

Ω(σ) (Γ4∂τ + Γ3∂σ − a34(σ)Γ3 − ip56a56(σ)Γ4) (5.58)

+ 1

Ω2(σ)
(−ip12 sinh2 ρ(σ)Γ0 − p12p56 sin2 θ(σ)Γ034)

acts on the eigenstates Ψp12,p56,p89 of {P±

12,P±

56,P±

89} with eigenvalues {1±p12

2 , 1±p56

2 , 1±p89

2 }.
Notice that the operator defined in (5.58) does not depend on the label p89. The spectral

problem reduces to the computation of eight 2d functional determinants 17 (cf. (1.19))

DetOF (θ0) = ∏
p12,p56,p89=±1

DetOp12,p56,p89

F (θ0)

= ∏
ω∈Z

Detω[(O1,1,1
F (ω))2]2Detω[(O1,1,1

F (−ω))2]2 . (5.59)

The second line follows from a deeper look at the properties of Op12,p56,p89

F (appendix C.1

[4]). In Fourier space we have

O1,1,1
F (θ0) ≡ [ i

Ω(σ)
( − iωσ2 + σ1∂σ − a34(σ)σ1 + ia56(σ)σ2) (5.60)

+ 1

Ω2(σ)
( sinh2 ρ(σ)σ3 − sin2 θ(σ)I2)] ⊗M ≡ Õ1,1,1

F ⊗M ,

where M = σ2 ⊗ I4 ⊗ σ1. For simplicity of notation, from now on we will denote with

O1,1,1
F (θ0) the first factor in the definition above. In a similar spirit to the analysis of the

bosonic sector, we start to find the solutions of the homogeneous problem

O1,1,1
F (θ0) f̄(σ) = 0 , f̄(σ) ≡ (f1(σ), f2(σ))T . (5.61)

Decoupling the system of equations

(− sin2 θ(σ) + sinh2 ρ(σ)) f1(σ) + iΩ(σ) (∂σ − ω − a34(σ) + a56(σ)) f2(σ) = 0 , (5.62)

(− sin2 θ(σ) − sinh2 ρ(σ)) f2(σ) + iΩ(σ) (∂σ + ω − a34(σ) − a56(σ)) f1(σ) = 0 , (5.63)

17A non-trivial matrix structure is also encountered in the fermionic sector of the circular Wilson loop [196],
but the absence of a background geometry in S5 leads to a simpler gamma structure. It comprises only three
gamma combinations (Γ0,Γ4,Γ04), whose algebra allows their identification with the three Pauli matrices
without the need of labelling the subspaces.
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we arrive at a Schrödinger-type equation

f
′′

1 (σ) − ( 1

2 sinh2 σ
− 1

2 cosh2 (σ + σ0)
+ ( 1

2 tanhσ
+ tanh(σ + σ0)

2
− ω)

2
) f1(σ) = 0 (5.64)

for a fictitious particle on a semi-infinite line and subject to a supersymmetric potential 18

V (σ) = −W ′(σ) +W 2(σ) derived from the prepotential W (σ) = 1
2 tanhσ +

tanh(σ+σ0)

2 − ω.
Traces of supersymmetry are not surprising, as they represent a vestige of the supercharges

unbroken by the classical background.

As for the bosonic case, we do not report the solutions of the equations above and we

proceed to the evaluation of the determinants using the results of appendix B.3, namely

using Dirichlet boundary conditions for the square of the first-order differential operator.

Having in mind the solutions above and how they enter in (B.9) and (B.17), it is clear

that already the integrand in (B.22) is significantly complicated. A simplification occurs

by recalling that our final goal is taking the R → ∞ limit of all determinants and combine

them in the ratio of bosonic and fermionic contributions. As stated above in the bosonic

analysis and shown explicitly below, for the correct large ω divergences to be reproduced,

it is crucial to send R →∞ while keeping ε0 finite.

The determinant of the operator O1,1,1
F for modes ω ≠ {−1,0,1} reads for large R

Detω≥2[(O1,1,1
F )2] = a0 e

2ω(R−ε0)

ω2 (1 + ω)2(ω − 1) [a1 Φ (e−2ε0 ,1, ω) + a2 Φ(−e−2(σ0+ε0),1, ω) + a3]

Detω≤−2[(O1,1,1
F )2] = b0 e

−2ω(R−ε0)

ω (1 − ω)2
[b1 Φ (e−2ε0 ,1,−ω) + b2 Φ(−e−2(σ0+ε0),1,−ω) + b3] (5.65)

where Φ(z, s, a) is the Lerch transcendent (5.76) defined below. For integers values of ω, it

can be written in terms of elementary functions, but its expression becomes more and more

unhandy as the value of ω increases. The coefficients ai are

a0 = e−R−
3σ0

2
sinh ε0 (tanhσ0 + 1) cosh (σ0 + ε0)

8
√

2 cosh (σ0 + 2ε0)
a1 = 4 sechσ0(tanhσ0 + ω)2 (5.66)

a2 = 4[2 (1 − ω2)ω2 coshσ0 − 2 (1 − ω2)ω sinhσ0 + sechσ0 (sech2σ0 + ω2 − 1)]

a3 = tanh2 σ0 (coth ε0 + 1) cschε0 sech (σ0 + ε0) [eσ0 (coshσ0 − 2 sinhσ0 − sinh(2ε0 − σ0))

+ cosh(2σ0 + 2ε0))] + 2ω [ − ω2 cosh2 σ0 cschε0 sech(σ0 + ε0)

+ coshσ0(2ω2 + ω + 3ω2 cschε0 cosh(σ0 + 2ε0) sech(σ0 + ε0) + ω coth2 ε0 + 2 coth ε0 − 2)

+ 2 (3ω cosh ε0 sech(σ0 + ε0) − sinhσ0 (ω − 2ω coth ε0 − csch2ε0) − sechσ0(coth ε0 + 1))]

18The same property is showed by (5.26) in [196].
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while the bi read

b0 = eR−
σ0
2 sech2σ0

sinh ε0 (tanhσ0 + 1) cosh (σ0 + ε0)
8
√

2 cosh(σ0 + 2ε0)
b1 = −2

b2 = −2 [ω(ω cosh(2σ0) + sinh(2σ0)) + ω2 − 1 ]

b3 = − cosh2 σ0 [4ω tanh(σ0 + ε0) − 2ω coth ε0 + csch2ε0 ] − ω

− cosh(2σ0)(ω + 1) − sinh(2σ0) + cosh(ε0 − σ0)sech (σ0 + ε0) .

(5.67)

The determinants of the lower modes have to be computed separately:

Detω=1[(O1,1,1
F )2]=ReR e

−
σ0
2 (tanhσ0 + 1) sinh ε0 cosh(σ0 + ε0)
(e2σ0 + 1)3

√
2 cosh(σ0 + 2ε0)

[ − 2e4σ0( log
e2ε0 − 1

e2(σ0+ε0) + 1
+

+ 2σ0) +
(e2σ0 + 1)(e6σ0+4ε0 + (e2ε0 + 1)e4σ0+2ε0 + e2σ0(−5e2ε0 + 3e4ε0 + 3) + (e2ε0 − 1)2)

(e2ε0 − 1)2(e2(σ0+ε0) + 1)
]

(5.68)

Detω=0[(O1,1,1
F )2]=ReR e

−
σ0
2 (tanhσ0 + 1) sinh ε0 cosh(σ0 + ε0)
(e2σ0 + 1)2

√
2 cosh(σ0 + 2ε0)

[ − 2e2σ0( log
e2ε0 − 1

e2(σ0+ε0) + 1
+

+ 2σ0) +
(e2σ0 + 1) (−e2σ0 + 3e2(σ0+ε0) + e4(σ0+ε0) − e2ε0 + e4ε0 + 1)

(e2ε0 − 1)2 (e2(σ0+ε0) + 1)
] (5.69)

Detω=−1[(O1,1,1
F )2]=e3R e

−
σ0
2 (tanhσ0 + 1) sinh ε0 cosh(σ0 + ε0)
8 (e2σ0 + 1)2

√
2 cosh(σ0 + 2ε0)

[ − 2e2σ0( log
e2ε0 − 1

e2(σ0+ε0) + 1
+

+ 2σ0) +
(e2σ0 + 1) (e4σ0 (2e2ε0 − 1) + e2σ0 (7e2ε0 − 2e4ε0 − 3) + e2ε0)

(e2ε0 − 1)2 (e2(σ0+ε0) + 1)
] . (5.70)

The expressions above considerably simplify in the circular loop limit σ0 → 0:

Detω[ (O1,1,1
F (θ0 = 0))2 ] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e(R−ε0)(2ω−1)
(ω(e2ε0−1)+1)

4(ω−1)ω2 (e2ε0−1)
ω ≥ 2

ReR+ε0

2(e2ε0−1)
ω = 0,1

e3(R−ε0) (2e2ε0−1)
16(e2ε0−1)

ω = −1

e−(R−ε0)(2ω−1)
((ω−1)e2ε0−ω)

4(ω−1)2ω (e2ε0−1)
ω ≤ −2 .

(5.71)

5.6 One-loop partition functions

We now combine together the determinants evaluated in the previous sections and present

the one-loop partition functions for the open strings dual to the latitude (θ0 ≠ 0) and the

circular loop (θ0 = 0). We begin with the explanation of the summation procedure over the

Fourier frequencies and eventually calculate the ratio of partition functions.
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In the bosonic sector – as discussed around (5.43) and (5.48) – we pose ω = `+1 in DetωO3+

together with ω = ` − 1 in DetωO3−. This relabeling of the frequences provides in (5.47)

and (5.48) a distribution of the R-divergences that is centered around ` = 0 (i.e. with a

divergence ∼ R for ` = 0 and ∼ e∣`∣R for ` ≠ 0) in the same way (in ω) as for the other

bosonic determinants (5.45) and (5.46). This will turn out to be useful while discussing the

cancellation of R-dependence.

In the case of fermionic determinants, as motivated by the discussion below (5.54), we

will consider (5.65)-(5.70) relabelled using half-integer Fourier modes. In fact, once pro-

jected onto the subspace labelled by (p12, p56, p89), the spinor Ψ is an eigenstate of Γ56

with eigenvalue −ip56 and is a periodic function along τ . The rotation Ψ → exp (− τ2 Γ56)Ψ

turns the boundary conditions into anti-periodic and causes a shift of the Fourier modes by

ω → ω + p56

2 . This means that we will consider (5.65)-(5.70) evaluated for ω = s+ 1
2 and now

labeled by the half-integer frequency s.

Recalling also the value of the action (5.36), we write the formal expression of the one-loop

string action as in (3.103)

Z(θ0) = e
√

λ cos θ0
∏s∈Z+1/2 [Dets(O1,1,1

F )2 Det−s(O1,1,1
F )2 ]4/2

∏`∈Z [Det`O1(θ0)]
3/2 [Det`O2(θ0)]

3/2 [Det`O3+ (θ0) ]
1/2[Det`O3−(θ0)]

1/2
.

(5.72)

To proceed, we rewrite (5.72) as the (still unregularized) sum in the one-loop part Γ(1)(θ0)
of the effective action Γ(θ0)

Γ(θ0) ≡ − logZ(θ0) ≡ −
√
λ cos θ0 + Γ(1)(θ0) , (5.73)

Γ(1)(θ0) ≡ ∑
`∈Z

ΩB
` (θ0) − ∑

s∈Z+1/2

ΩF
s (θ0) ,

where the bosonic and fermionic contributions are weighted by the multiplicities of the

fluctuation scalars and spinors

ΩB
` (θ0) = 3

2
log [Det`O1(θ0)] +

3

2
log [Det`O2(θ0)] +

1

2
log [Det`O3+] +

1

2
log[Det`O3−] ,

ΩF
s (θ0) = 4

2
log [Dets(O1,1,1

F )2] + 4

2
log [Det−s(O1,1,1

F )2 ] . (5.74)

Equation (5.73) has the same form with effectively antiperiodic fermions encountered in [196,

388].
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Introducing the small exponential regulator µ, we proceed with the “supersymmetric regu-

larization” of the one-loop effective action illustrated in [166, 388]

Γ(1)(θ0) = ∑
`∈Z

e−µ∣`∣
⎡⎢⎢⎢⎢⎢⎣
ΩB
` (θ0) −

ΩF
`+ 1

2

(θ0) +ΩF
`− 1

2

(θ0)

2

⎤⎥⎥⎥⎥⎥⎦
+µ

2
ΩF

1
2

(θ0) +
µ

2
∑
`≥1

e−µ` (ΩF
`+ 1

2

(θ0) −ΩF
`− 1

2

(θ0)) . (5.75)

In the first sum (where the divergence in ` is the same as the one in ω in the original sum)

one can remove µ by sending µ→ 0, and use a cutoff regularization in the summation index

∣`∣ ≤ Λ.

Importantly, the non-physical regulator R disappears in (5.75). While in [196] 19 the R-

dependence drops out in each summand, here it occurs as a subtle effect of the regularization

scheme, and comes in the form of a cross-cancellation between the first and the second

line once the sums have been carried out. The difference in the R-divergence cancellation

mechanism is a consequence of the different arrangement of fermionic frequencies in our

regularization scheme (5.75). In the circular case (θ0 = 0) this cancellation can be seen

analytically, as in (5.81)-(5.6.1) below. The same can be then inferred for the general

latitude case, since in the normalized one-loop effective action Γ(1)(θ0) − Γ(1)(θ0 = 0) one

observes (see below) that the R-dependence drops out in each summand.

A non-trivial consistency check of (5.75) is to confirm that in the large-` limit the expected

UV divergences [3, 192]) are reproduced. Importantly, for this to happen one cannot take

the limit ε0 → 0 in the determinants above before considering `≫ 1, which is the reason why

we kept dealing with the complicated expressions for fermionic determinants above. Using

for the Lerch transcendent in (5.65)

Φ(z, s, a) ≡
∞

∑
n=0

zn

(n + a)s (5.76)

the asymptotic behavior for ∣a∣ ≫ 1 [389] (i.e. ∣`∣ ≫ 1 in (5.65))

Φ(z, s, a) ∼ sgn(a)(s(s + 1)z (z + 1)a−s−2

2(1 − z)3
− s z a

−s−1

(1 − z)2
+ a−s

1 − z) , (5.77)

19In this reference a regularization slightly different from [166, 388] was adopted.
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one finds that the leading Λ-divergence is logarithmic and proportional to the volume part

of the Euler number 20

Γ(1)(θ0) = −χv(θ0) ∑
1≪∣`∣≤Λ

1

2∣`∣ +O(Λ0) = −χv(θ0) log Λ +O(Λ0) , Λ→∞ (5.78)

where

χv(θ0) =
1

4π
∫

2π

0
dτ ∫

∞

ε0
dσ

√
h (2)R = 1 − 1

ε
+O(ε) , (5.79)

and we notice that this limit is independent from σ0 (θ0). This divergence should be

cancelled via completion of the Euler number with its boundary contribution (5.37) and

inclusion of the (opposite sign) measure contribution, as discussed in section 3.5.2 and

[192, 196]. Having this argument in mind, we will proceed to remove (5.78) by hand in

Γ(1)(θ0) and in Γ(1)(θ0= 0).

5.6.1 The circular loop

The UV-regulated partition function in the circular Wilson loop limit reads

Γ
(1)
UV-reg(θ0= 0) = ∑

∣`∣≤Λ

⎡⎢⎢⎢⎢⎢⎣
ΩB
` (0) −

ΩF
`+ 1

2

(0) +ΩF
`− 1

2

(0)

2

⎤⎥⎥⎥⎥⎥⎦
+ χv(0) log Λ

+µ
2

ΩF
1
2

(0) + µ
2
∑
`≥1

e−µ` (ΩF
`+ 1

2

(0) −ΩF
`− 1

2

(0)) . (5.80)

The first line is now convergent and its total contribution evaluates for Λ→∞ to

∑
∣`∣≤Λ

⎡⎢⎢⎢⎢⎢⎣
ΩB
` (0) −

ΩF
`+ 1

2

(0) +ΩF
`− 1

2

(0)

2

⎤⎥⎥⎥⎥⎥⎦
+ χv(0) log Λ = −2R + log

16 Γ (3
2 +

1
2ε
)4

(1 − ε)√εΓ (2 + 1
ε
)3

, (5.81)

where Γ is the Euler gamma function. The R-dependence in (5.81) cancels against the

O(µ0) contribution stemming from the regularization-induced sum in the second line of

(5.80)

µ

2
∑
`≥1

e−µ` (ΩF
`+ 1

2

(0) −ΩF
`− 1

2

(0)) = 2R − 2 arctanh ε .

Summing the two lines above in the limit ε→ 0, the result is precisely as in [196]

Γ
(1)
UV-reg(θ0= 0) = 1

ε
(log

ε

4
+ 1) + 1

2
log(2π) , (5.82)

20This is expected from an analysis of the Seeley-DeWitt coefficients in (3.104), with logarithmic diver-
gencies given by (3.111) instead of (3.113) because in (5.78) we are not including the effect of the non-trivial
Jacobian explained below (3.111).
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despite the different frequency arrangement we commented on. We have checked that the

same result is obtained employing zeta-function regularization in the sum over `. The same

finite part was found in [215] via heat kernel methods. The log ε/ε-divergence appearing in

(5.82) will be cancelled in the ratio (5.22). In [196] this subtraction was done by considering

the ratio between the circular and the straight line Wilson loop.

5.6.2 Ratio between latitude and circular loop

We now illustrate the evaluation of the ratio (5.22)

log
Z (λ, θ0)
Z (λ,0) =

√
λ(cos θ0 − 1) + Γ

(1)
UV-reg(θ0= 0) − Γ

(1)
UV-reg(θ0) (5.83)

where Γ
(1)
UV-reg(θ0= 0) is the effective action (5.80) and Γ

(1)
UV-reg(θ0) is regularized analogously.

The complicated fermionic determinants (5.65)-(5.67) make an analytical treatment highly

non-trivial, and we proceed numerically in Mathematica.

First, we spell out (5.83) as

Γ
(1)
UV-reg(0) − Γ

(1)
UV-reg(θ0) =

2

∑
`=−2

[ΩB
` (0) −ΩB

` (θ0) −
ΩF
`+ 1

2

(0)+ΩF
`− 1

2

(0)

2 +
ΩF
`+ 1

2

(θ0)+ΩF
`− 1

2

(θ0)

2 ]

+
Λ

∑
`=3

2[ΩB
` (0) −ΩB

` (θ0) −
ΩF
`+ 1

2

(0)+ΩF
`− 1

2

(0)

2 +
ΩF
`+ 1

2

(θ0)+ΩF
`− 1

2

(θ0)

2 ]

− (χv(θ0) − χv(0)) log Λ + µ
2
[ΩF

1
2

(0) −ΩF
1
2

(θ0) ] (5.84)

+ µ

2
∑
`≥1

e−µ` [ΩF
`+ 1

2

(0) −ΩF
`− 1

2

(0) −ΩF
`+ 1

2

(θ0) +ΩF
`− 1

2

(θ0)]

where we separated the lower modes ∣`∣ ≤ 2 from the sum in the second line 21, and in the

latter we have used parity ` → −`. The sum multiplied by the small cutoff µ is zero in the

limit µ → 0 22. The sum with large cutoff Λ can be then numerically evaluated using the

Euler-Maclaurin formula

n

∑
`=m+1

f (`) = ∫
n

m
f (`)d` + f (n) − f (m)

2
+

p

∑
k=1

B2k

(2k)! [f
(2k−1) (n) − f (2k−1) (m)]

−∫
n

m
f (2p) (`) B2p ({`})

(2p)! d` , p ≥ 1 , (5.85)

in which Bn(x) is the n-th Bernoulli polynomial, Bn ≡ Bn(0) is the n-th Bernoulli number,

{`} is the integer part of `, f(`) is the summand in the second line of (5.84), so m = 2,
21This is convenient because of the different form for the special modes (5.68)-(5.70) together with the

relabeling discussed above.
22This can be proved analytically since the summand behaves as µe−µ``−2 for large `. Removing the

cutoff makes the sum vanish.
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n = Λ. After some manipulations to improve the rate of convergence of the integrals, we

safely remove Λ→∞ in order to arrive to normalized effective action

∆Γ(θ0)sm ≡ [Γ(1)
UV-reg(0) − Γ

(1)
UV-reg(θ0)]

sm

=
2

∑
`=−2

⎡⎢⎢⎢⎢⎢⎣
ΩB
` (0) −ΩB

` (θ0) −
ΩF
`+ 1

2

(0) +ΩF
`− 1

2

(0)

2
+

ΩF
`+ 1

2

(θ0) +ΩF
`− 1

2

(θ0)

2

⎤⎥⎥⎥⎥⎥⎦

+∫
∞

2
[f (`) − χv(θ0) − χv(0)

`
]d` − (χv(θ0) − χv(0)) log 2 (5.86)

−f (2)
2

−
3

∑
k=1

B2k

(2k)!f
(2k−1) (2) − 1

6!
∫

∞

2
f (6) (`) B6 ({`})d` .

In order to gain numerical stability for large `, above we have set p = 3, we have cast the

Lerch transcendents inside ΩF
s (θ0) (see (5.65)) into hypergeometric functions

Φ(z,1, a) = 2F1(1, a;a + 1; z)
a

, ∣z∣ < 1 ∧ z ≠ 0 , (5.87)

and we have approximated the derivatives f (k)(`) by finite-difference operators

f (k)(`) → ∆`−k
k

∑
i=0

(−1)i(k
i
)f (` + (k2 − i)∆`) , ∆`≪ 1 . (5.88)

At this stage, the expression (5.86) is only a function of the latitude parameter σ0 (or

the polar angle θ0 in (5.27)) and of two parameters – the IR cutoff ε0 and the derivative

discretization ∆`, both small compared to a given σ0. We have tuned them in order to

confidently extract four decimal digits.

In figure 5.4 (left panel) we compare the regularized one-loop effective action obtained from

the perturbation theory of the string sigma-model (5.86) to the gauge theory prediction

from (5.21)

∆Γ(θ0)loc ≡ [Γ(1)
UV-reg(0) − Γ

(1)
UV-reg(θ0)]

loc
= −3

2
log tanhσ0 = −

3

2
log cos θ0 (5.89)

for different values of σ0. Data points cover almost entirely the finite-angle region between

the Zarembo Wilson loop (σ0 = 0, θ0 = π
2 ) and the circular Wilson loop (σ0 = ∞, θ0 = 0).

The vanishing of the normalized effective action in the large-σ0 region is a trivial check of

the normalization. As soon as the opposite limit σ0 = 0 is approached, the difference (5.86)

bends up “following” the localization curve (5.89) but also significantly deviates from it, and

the measured discrepancy is incompatible with our error estimation.

Numerics is however accurate enough to quantify the gap between the two plots on a wide

range. Figure 5.4 (right panel) shows that, surprisingly, such gap perfectly overlaps a very
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Figure 5.4: Comparison between string sigma-model perturbation theory and the pre-
diction of supersymmetric localization for the ratio between latitude and circular Wilson
loops. In the left panel, we plot the comparison between ∆Γ(θ0)sm in (5.86) (orange dots)
and ∆Γ(θ0)loc in (5.89) (blue line). We set ε0 = 10−7, ∆` = 10−9. In the right panel, we
fit the difference (red dots) between the two curves in the left panel and compare it with
the test function − 1

2
log(1 + e−2σ0) (black line). The interval of σ0 covers approximately

0.8○ ≤ θ0 ≤ 89.4○.

simple function of σ0 within the sought accuracy

∆Γ(θ0)sm −∆Γ(θ0)loc ≈ −
1

2
log(1 + e−2σ0) = log cos θ02 . (5.90)

We notice at this point that the same simple result above can be obtained taking in (5.84)

the limit of ε → 0 before performing the sums. As one can check, in this limit UV and

IR divergences cancel in the ratio 23, the special functions in the fermionic determinants

disappear and, because in general summands drastically simplify, one can proceed analyti-

cally getting the same result calculated in terms of numerics. We remark however that such

inversion of the order of sum and limit on the IR cutoff cannot be a priori justified, as it

would improperly relate the Λ cutoff with a 1/ε cutoff (e.g. forcing ` to be smaller than

1/ε).

As emphasized above, in this limit the effective actions for the latitude and circular case

separately do not reproduce the expected UV divergences. Therefore, the fact that in this

limit the summands in the difference (5.84) show a special property of convergence and lead

to the exact result is a priori highly not obvious, rendering the numerical analysis carried

out in this section a rather necessary step. On a related note, the simplicity of the result

(5.89) and the possibility of getting an analytical result for the maximal circle θ0 = 0 suggest
23This is also due to the volume part of the Euler number χv(θ0) being independent of σ0 up to ε

corrections, see (5.79).
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that the summation (5.75) could have been performed analytically also in the latitude case

θ0 ≠ 0, but we have not investigated this direction.

5.7 Comparison with recent developments

The final result (5.23) is inconsistent with the gauge-theory analysis (5.21), insinuating that

something subtle is missing in our procedure. Before commenting upon the possible origin

of our discrepancy, we want to mention that the same finite remnant was found in [385]

soon after our paper [4]. Although conceptually similar to ours, the work of [385] has some

technical differences that are interesting to highlight.

• Role of group theory in the fluctuation spectrum. It is possible to show that a different

choice of the tangent and normal vectors used to define the bosonic fluctuations (3.27)

and the local fermionic rotation S (3.80)-(3.81) can induce a shift in the Fourier

frequencies ω. In the analysis of section 5.6 this was crucial to arrange the angular

modes ω → (`, s) so that the first sum in (5.75) could be regularized with a symmetric

cutoff ∣`∣ ≤ Λ and the unphysical R-divergences eventually canceled.

The same procedure can also find a theoretical explanation (section 4.3 of [385])

that takes into account the symmetry group SU(2∣2) of the dual latitude Wilson

loop. Indeed, the string fluctuation fields fit into multiplets of this supergroup 24

and supersymmetry arguments suggest to sum over multiplets labeled by the U(1)-
charge q 25. The origin of the shifts is tracked back to the change of index q → E and

the observation that the frequency – called E in [385] – does not coincide with the

quantum number q for some fields. Note that the argument specifically addresses how

to organize the sum over modes, but not how to compute the summands, namely the

1d determinants at fixed frequency.

• Evaluation of fermionic determinants. In [385] the 1d fluctuation determinants are

still evaluated with the Gel’fand-Yaglom method. The spectral problem is solved for

the first-order fermionic operator using the theorem (B.8), opposed to the second-order

one that results from squaring it using the corollary in appendix B.3. This alternative

route, also proposed in the conclusions of [4], is tied to a new choice of boundary

conditions 26 for the Dirac-like first-order operator. As a by product, it simplifies

the expressions for the 1d fermionic determinants from the Lerch transcendent for the

squared operator to hyperbolic functions for the not-squared one.
24The SU(2∣2) quantum numbers of the fields are summarized in (4.26) of [385]. For vanishing θ0 it was

known that they fill representations of the symmetry group OSp(4∗∣4) of the half-supersymmetric circular
Wilson loop in Table 1 of [390].

25We are referring to formulas (4.27) and (4.28) in [385].
26See equation (5.50) in [385].
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• Ratio of determinants. In section 5.6.2 we effectively evaluated the ratio between

contributions of one bosonic φB and one fermionic field φF

Det1/4ω (O2
φF

(θ0))
Detω(OφB(θ0))

(5.91)

on the same classical solution at given θ0, eventually leading us to perform the sum over

ω only numerically. The strength of our approach is twofold. Firstly, we checked that

our regularization scheme cancels the unphysical R-divergences and reproduces the

expected UV logarithmic divergence in Λ. Secondly, we can extract the expectation

value of one single latitude loop by multiplying the value of the circular loop(5.82)

and the ratio latitude/circle (5.23).

This situation is in contrast with the choice operated by [385], which considers instead

the ratio between modes for the same (bosonic φB or fermionic φF ) field

Detω(OφB(θ0))
Detω(OφB(0))

and
Det1/2ω (OφF (θ0))
Det1/2ω (OφF (0))

(5.92)

on different classical solutions. Together with the choice of working with the first-order

fermionic operator, this strategy allows for an analytical evaluation of the one-loop

correction. This led the authors of [385] (section 6.3 and 7 therein) to the intriguing

observation that the expected result (5.89) seems to be captured by a finite number

of Fourier modes (after removing the IR cutoff ε0 → 0)

[Γ(1)(0) − Γ(1)(θ0)]
conjecture

= −3

2
log( Detω=0O2(θ0)

Detω=0O2(θ0 = 0)) = −3

2
log cos θ0 , (5.93)

namely those bosonic modes (5.46) and (5.49) with vanishing angular frequency ω and

charged under the second SU(2) factor in the symmetry group SU(2)×U(1)×SU(2) ⊂
SU(2∣2) preserved by the latitude Wilson loop operator.

It is possible that this conjecture will be either confirmed or adjusted once the one-

loop semiclassical analysis done for the latitude will be extended [261] to other DGRT

Wilson loops or some mixed correlators of the form (5.9).

5.8 Unresolved subtleties in sigma-model perturbation theory

Both the setups of [4, 385] for the evaluation of the one-loop determinants (summing over 1d

determinants evaluated with the Gel’fand-Yaglom approach and a fictitious boundary) do

not reach the agreement with the localization result. One reasonable expectation is that the

disagreement should be cured by a change of the world-sheet computational setup, tailored
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so to naturally lend itself to a regularization scheme equivalent to the one (implicitly)

assumed by the localization calculation 27. In principle, a number of reasons could explain

the observed discrepancy, which we summarize as follows.

• Path-integral measure ambiguities. The expectation that considering the ratio of string

partition functions dual to Wilson loops with the same worldsheet topology should

cancel measure-related ambiguities is founded on the assumption that the partition

function measure is actually not depending on the particular classical solution consid-

ered. Although motivated in light of literature examples similar in spirit (see section

5.3), this remains an assumption, and it is not possible to exclude a priori a geometric

interpretation for the observed discrepancy.

• Fermionic boundary conditions. One possibility is a choice of boundary conditions for

the fermionic spectral problem different from the standard ones here adopted for the

squared fermionic operator. The quest for an alternative choice is likely to be tied to

a search of supersymmetry-preserving boundary conditions on the lines of [391].

• Two-dimensional spectral methods. Ideally, one should evaluate determinants in a

diffeomorphism-preserving regularization scheme that treats the worldsheet coordi-

nates τ and σ on equal footing, unlike the standard procedure employed here and

explained in section 1.4.1. An important step in this direction can be achieved either

indirectly on the lines of [223, 392] – where one accounts for the splitting τ and σ

while summing over the angular frequencies – or with heat kernel techniques – a fully

2d approach currently under investigation in [9] and explained in chapter 8.

27This resembles the quest for an “integrability-preserving” regularization scheme, different from the most
natural one suggested by worldsheet field theory considerations, in the worldsheet calculations of light-like
cusps in N = 4 SYM [225] and ABJM theory [57].





Chapter 6

Light-like cusp anomaly and the

interpolating function in ABJM

A powerful attribute that the planar AdS4/CFT3 system (1.5) shares with the higher-

dimensional AdS5/CFT4 duality (1.1) in the planar limit is its conjectured integrability [119,

120, 124, 129]. However, the explicit realization of the integrable structure is non-trivial,

due to significative peculiarities of the former case.

The first significative difference is the absence of maximal supersymmetry of the AdS4 ×CP3

background, which complicates the construction of the corresponding superstring action.

In particular, in section 2.2 we saw that there is an issue that prevents the OSp(4∣6)
SO(1,3)×U(3)

supercoset action from consistently describing the motion of the superstring occurring only

in the AdS4 subspace. Moreover, the comparison of string-theory calculations with weak-

coupling results is complicated by the correction [58] to the string tension (1.9) which plays

a role starting from two loops in sigma-model perturbation theory.

Another difference is that the interpolation between weak and strong coupling is much more

intricate in this case. In section 1.2 we recalled that the integrability structures of N = 4

SYM and ABJM are described in terms of spin-chains that represent single-trace operators in

these theories. The form of the dispersion relation of the fundamental excitations (magnons)

of the spin-chain is constrained in either dualities. In N = 4 SYM the energy of a single

magnon [393]

εYM(p) =
√

1 + 4h2(λYM) sin2 p

2
(6.1)

is fixed up to an undetermined factor h(λYM) called (N = 4 SYM) interpolating function

and depending only on the ’t Hooft parameter. Its explicit form turns out to be trivial at

all orders, h(λYM) =
√

λYM

4π , as shown in [112, 114, 369] 1 by computing the Bremsstrahlung

1See also discussions in [394–396].
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function via an extrapolation on results of supersymmetric localization and via integrability.

A similar constraint holds in the ABJM theory

εABJM(p) =
√

1

4
+ 4h2(λABJM) sin2 p

2
(6.2)

with the crucial difference now that the (ABJM) interpolating function h(λABJM) appears

to be not protected from quantum corrections:

h2(λABJM) = λ2
ABJM − 2π3

3 λ4
ABJM +O(λ6

ABJM) λABJM ≪ 1 ,

h(λABJM) =
√

λABJM

2 − log 2
2π +O(λ−1/2

ABJM) λABJM ≫ 1 .

(6.3)

The first few orders of the weak-coupling expansion were computed in [120, 397–399] and

in [400–402]. The leading [397, 398] and subleading behaviour [57, 403, 404] were also

computed at strong coupling.

The ABJM interpolating function plays the role of the effective coupling constant of inte-

grability in the AdS3/CFT4 system because many other quantities like the S-matrix, the

Bethe ansatz, the universal scaling function are related to those of the AdS5/CFT4 system

by appropriately replacing
√

λYM

4π → h(λABJM). For this reason, the predictive power of the

(conjectured) integrability of ABJM theory deeply relies on the knowledge of the non-trivial

relation between h(λABJM) and the gauge-theory coupling λABJM. A conjecture for the ex-

act expression of the interpolating function was put forward [130] in the form of an implicit

equation for it

λABJM = sinh (2πh(λABJM))
2π

3F2 (
1

2
,
1

2
,
1

2
; 1,

3

2
;− sinh2 (2πh(λABJM))) (6.4)

by comparing two all-order calculations in ABJM theory: an integrability-based result ex-

pressed in terms of the effective coupling h(λ) (the “slope function” [405] derived via integra-

bility as exact solution of a quantum spectral curve [129]) and a supersymmetric localization

prediction (a 1/6-BPS Wilson loop in ABJM theory, studied in [406–408]). The expansion

at weak/strong coupling of (6.4)

h(λABJM) = λABJM − π
2

3
λ3

ABJM + 5π4

12
λ5

ABJM − 893π6

1260
λ7

ABJM +O(λ9
ABJM) λABJM ≪ 1 ,

(6.5)

h(λABJM) =
√

1

2
(λABJM − 1

24
) − log 2

2π
+O (e−2π

√

2λABJM) λABJM ≫ 1 .

reproduces the known coefficients (6.3) above. As already noticed in [130], a rigorous justi-

fication of (6.4) would require the comparison between the localization results of [407, 408]
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and the ABJM Bremsstrahlung function [409–412], similarly to the strategy adapted for

h(λYM) of N = 4 SYM explained above.

The main aim of this chapter is to extended the computation of (6.3) to two loops at strong

coupling in order to give further support to the all-loop proposal for h(λ). The strong-

coupling behaviour of the interpolating function can computed in sigma-model perturbation

theory by means of the (universal) scaling function fABJM(λABJM) of the ABJM theory 2.

Our strategy will be to compute the ABJM scaling function in sigma-model perturbation

theory – as a function of the string tension T (hence λABJM via (1.9)) – and then compare

with its integrability prediction from asymptotic Bethe ansatz [124] – naturally depending

on the “integrability” coupling h(λABJM) - as we explain below.

The evaluation of the first two strong-coupling corrections to the ABJM cusp anomalous

dimension will lead to

fABJM(λABJM) =
√

2λABJM − 5 log 2

2π
− ( K

4π2
+ 1

24
) 1√

2λABJM

+O(λ−1
ABJM) . (6.6)

This can be seen by plugging the coefficients (6.31) and (6.56) into (6.23) below. An impor-

tant ingredient in the calculation is the correction to the effective string tension (1.9) [58]

which must be considered for the first time at this order in sigma-model perturbation theory.

The integrability prediction for the same observable fABJM(λABJM) derives from the formal

equivalence of the Beisert-Eden-Staudacher (BES) equation [239] for the N = 4 case and

the ABJM case

fABJM(λABJM) = 1

2
fYM(λYM) ∣√

λYM
4π

→h(λYM)

, (6.7)

which implies

fABJM(λABJM) = 2h(λABJM) − 3 log 2

2π
− K

8π2

1

h(λABJM) +⋯ , (6.8)

where fYM(λYM) is the scaling function of N = 4 SYM and K ≈ 0.916 is the Catalan

constant.

All this leads to the main result of the chapter: the comparison between (6.6) and (6.8)

yields our result for the strong-coupling expansion of the interpolating function up to two-

loop order

h(λABJM) =
√

λABJM

2 − log 2
2π − 1

48
√

2λABJM
+O(λ−1

ABJM) λABJM ≫ 1 (6.9)

2The scaling function is identified with twice the null cusp anomalous dimension, governing the UV
divergences of a light-like Wilson cusp. This is explained at length in the particular case of N = 4 SYM in
section 7.1 in the next chapter.
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which extends the one-loop result in the second line of (6.3) and that agrees with the

prediction of the interpolating function (6.5) above, once expanded for large λYM.

We also recall that the leading order h(λABJM) ≈
√
λABJM/2 can be already extracted from

the leading coefficient of (6.6) given in [52] by using the formula (6.8). We also note that the

first subleading correction − log 2/(2π) to h(λABJM), on which some debate existed [413], can

be analogously computed from the scaling function at one loop [57, 175, 403, 404, 414–422]

in sigma-model perturbation theory as the energy of closed spinning strings in the large-spin

limit or similar means. An interesting observation that only descends from our two-loop

computation (6.9) is the fact that the two-loop correction to h(λABJM) is exclusively due

to the “anomalous” correction −1/24 in (1.9).

On a different note, our result (6.6) is very similar to the expression of the N = 4 SYM

scaling function, which will be reported in (7.6) (with g =
√
λYM/(4π) defined in (7.3)):

fYM(λYM) =
√
λYM

π
− 3 log 2

π
− K

π
√
λYM

+O(λ−1
YM) . (6.10)

To ease the comparison, it looks convenient to define the shifted coupling λ̃ABJM ≡ λABJM− 1
24

and rewrite (6.6) in terms of it as

fABJM (λ̃ABJM) =
√

2λ̃ABJM − 5 log 2

2π
− K

4π2
√

2λ̃ABJM

+O(λ̃−1
ABJM) , (6.11)

where the change in the transcendentality pattern is due to the corresponding difference in

the effective string tensions.

To arrive to the result (6.6) we will use perturbation theory using the open-string approach

followed by [229, 423], namely expanding the string partition function for the Euclidean

surface ending on a null cusp at the boundary of AdS4, as also done in the AdS5 × S5

setting in [225].

As the classical string lies solely in AdS4 and higher-order fermions are needed, we must

first face the problem, mentioned in section 2.2, of using the correct superstring action.

Notice that no issues would be encountered in the action to use at one loop level. There,

only the quadratic part of the fermionic Lagrangian is necessary, with a structure which is

well-known in terms of the type IIA covariant derivative restricted by the background RR

fluxes 3. Here instead we will work with the string action (2.39) derived in [230, 231] from the

11d membrane action based on the supercoset OSp(4∣8)/ (SO(1,3) × SO(7)), performing
3Alternatively, one could still use the coset action of [126, 267] – which is not suitable when strings move

confined in AdS [126, 282] – starting with a classical solution spinning both in AdS4 with spin S and in CP3

with spin J , and taking on the resulting expression for the one-loop energy a smooth J → 0 limit [415].
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double dimensional reduction and choosing a κ-symmetry light-cone gauge for which both

light-like directions lie in AdS4.

In general, the mutual consistency of several ingredients – our direct perturbative string

calculation, the corrected dictionary of [58], the prediction (6.7)-(6.8) from the Bethe

Ansatz [124] and the conjecture of [130] for the interpolating function h(λABJM) – provides

highly non-trivial evidence in support of the proposal (6.4) for the interpolating function

h(λABJM) of ABJM theory, and furnishes an indirect check of the quantum integrability of

the AdS4 ×CP3 superstring theory in this κ-symmetry light-cone gauge.

6.1 The null cusp vacuum and fluctuation Lagrangian

In this section we begin with the κ-symmetry gauge-fixed Lagrangian (2.39) discussed at

length in section 2.2 and – as discussed in [227] and used in [188, 225, 226] – fix bosonic

local symmetry with a “modified” conformal gauge

γij = diag (−e4ϕ, e−4ϕ) (6.12)

in combination with the standard light-cone gauge

x+ = p+ τ , p+ = constant . (6.13)

Above, we used the fact that AdS4 × CP3 is equipped by the metric given in (2.36), (2.37)

and (2.48).

We shall consider the Wick-rotated action SE formally obtained through the analytic con-

tinuations τ → −i τ, p+ → ip+. Having conveniently set the light-cone momentum to p+ = 1,

the equations of motion (and the Virasoro constraints) admit an open string solution (null

cusp background)

x+ = τ , x− = − 1

2σ
, x1 = 0 , (6.14)

w ≡ e2ϕ =
√
−2x+x− =

√
τ

σ
, za = z̄a = 0 , a = 1,2,3 , τ, σ > 0 .

that is bounded at w = 0 by two light-like lines meeting at a cusp point. The AdS part of the

worldsheet is a minimal-area surface extending in a Euclidean AdS3 subspace (x+, x−,w) of

AdS4, and therefore it coincides 4 with the null cusp background in AdS5 of [225, 229] and

later considered in chapter 7.
4To see this, compare the expressions for (x+, x−,w) in (6.14) with the ones for (x+, x−, z) in (7.12), where

the latter is shown in Figure 7.2.
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In the AdS/CFT dictionary of [183, 184], our aim is to evaluate the expectation value of

the cusped Wilson loop in the 3d boundary of AdS4 as the string path-integral

⟨Wcusp⟩ = Zstring ≡ ∫ DxDwDzDθDη e−SE . (6.15)

The semiclassical computation of the partition function relies on expanding SE around

(6.14). An important property of this classical solution is that, taking inspiration from

[225], there exists a parametrization of fluctuations 5

x1 = 2 ,
√

τ
σ x̃

1 w =
√

τ
σ , w̃ ≡

√
τ
σ e

2ϕ̃ (6.16)

za = z̃a , z̄a = ˜̄za , a = 1,2,3 ,

η = 1
√
σ
η̃ , θ = 1

√
σ
θ̃

and a redefinition of the worldsheet coordinates t = log τ and s = logσ such that the coeffi-

cients of the fluctuation Lagrangian become constant. The resulting Lagrangian

SE = T
2
∫ dt dsLE , LE ≡ L(0)

B + LB + LF 2 + LF 4 , (6.17)

splits into its classical value L(0)
B = 1

8 on the null cusp vacuum (6.14), the bosonic Lagrangian

LB and the part quadratic LF 2 and quartic LF 4 in fermions

LB = (∂tx̃1 + 1

2
x̃1)

2

+ e−8ϕ̃ (∂sx̃1 − 1

2
x̃1)

2

+ e4ϕ̃ (∂tϕ)2 + e−4ϕ̃ (∂sϕ)2 +

+ 1

16
(e4ϕ̃ + e−4ϕ̃) + e4ϕ̃ g̃MN ∂tz̃

M ∂tz̃
N + e−4ϕ̃ g̃MN ∂sz̃

M ∂sz̃
N , (6.18)

LF 2 = i[∂tθ̃a ˜̄θa − θ̃a∂t ˜̄θa + ∂tθ̃4
˜̄θ4 − θ̃4∂t

˜̄θ4 + ∂tη̃a ˜̄ηa − η̃a∂t ˜̄ηa + ∂tη̃4 ˜̄η4 − η̃4∂t ˜̄η
4]+

+ 2ie−4ϕ̃[η̂a (∂̂sθ̄a −
1

2
ˆ̄θa) + (∂̂sθa −

1

2
θ̂a) ˆ̄ηa + 1

2
(∂sθ4η̄

4 − ∂sη4θ̄
4 + η4∂sθ̄

4−

−θ4∂sη̄
4) ] + ∂tz̃M h̃M + 4 i e−6ϕ̃C̃ (∂sx̃1 − 1

2
x̃1) − 2ie−4ϕ̃ ∂sz̃

M ˜̀
M , (6.19)

LF 4 = e−8ϕ̃ B̃ . (6.20)

In the expressions above, B̃, C̃, h̃M and ˜̀
M are understood as the quantities B, C, hM and

`M in (2.40)-(2.45) where we understood that each field was replaced by the corresponding

tilded fluctuation.

Since the Lagrangian has constant coefficients and is thus translationally invariant, the

(infinite) world-sheet volume factor V factorizes. The scaling function is then defined via

the string partition function as [225]

Γ ≡ − logZ = 1

2
fABJM(λABJM)V = Γ(0)+Γ(1)+Γ(2)+⋯ , V = 1

4
V2 ≡

1

4
∫

∞

−∞

dt∫
∞

−∞

ds (6.21)

5We introduce the factor 2 in the field x1 to normalize the kinetic term of x̃1, cf. (7.14).
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where Γ(0) = T
16V2 coincides with the value of the action on the background, while Γ(1) and

Γ(2) are the one- and two-loop correction. For the ratio V /V2 we use the same convention

as in [225] 6. From (6.21) we explicitly define fABJM(λABJM) in terms of the free energy Γ

fABJM(λABJM) = 8

V2
Γ . (6.22)

We are now ready to compute the free energy perturbatively in inverse powers of the ef-

fective string tension g ≡ T
2 . From this we will extract the corresponding strong-coupling

perturbative expansion for the scaling function

fABJM(g) = g (1 + a1

g
+ a2

g2
+ . . .) , g = T

2
, (6.23)

where we have factorized the classical result from Γ(0) [52] and the string tension T is related

to the ABJM ’t Hooft coupling via (1.9).

6.2 Cusp anomaly at one loop

We start considering one-loop quantum corrections to the free energy Γ(1) which are derived

expanding the fluctuation Lagrangian (6.17) to second order in the fields. The spectrum of

the free bosonic part of the Lagrangian

L(2)
B = (∂tx̃1)2 + (∂sx̃1)2 + 1

2
(x̃1)2 + (∂tϕ̃)2 + (∂sϕ̃)2 + ϕ̃2 + ∣∂tz̃a∣2 + ∣∂sz̃a∣2 (6.24)

consists of six real massless scalars (in the complex fluctuations z̃a and ¯̃za of the CP3

directions), one real scalar x̃1 with mass m2 = 1/2 and one real scalar ϕ̃ with mass m2 = 1.

This spectrum can be viewed as a simple truncation (in the sense of one less transverse

degree of freedom in the AdS space) of the bosonic one in the AdS5 × S5 case [225].

If we accommodate the physical fermions in the sixteen-component vector

ψ ≡ (θ̃a, θ̃4,
˜̄θa, ˜̄θ4, η̃a, η̃4, ˜̄η

a, ˜̄η4)
T
, (6.25)

the kinetic operator, defined as

L(2)
F ≡ iψT KFψ , (6.26)

6This is related to coordinate transformations and field redefinitions occurring between the GKP
string [170], whose energy is given in terms of fYM(λYM), and the null cusp solution in the Poincaré
patch used here, see discussion in [226].



Chapter 6. Light-like cusp anomaly and the interpolating function in ABJM 122

is the off-diagonal matrix-valued differential operator

KF =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 −I3 ∂t 0 0 0 −I3 (∂s + 1
2) 0

0 0 0 −∂t 0 0 0 −∂s
−I3 ∂t 0 0 0 I3 (∂s + 1

2) 0 0 0

0 −∂t 0 0 0 ∂s 0 0

0 0 I3 (∂s − 1
2) 0 0 0 −I3 ∂t 0

0 0 0 ∂s 0 0 0 −∂t
I3 (−∂s + 1

2) 0 0 0 −I3 ∂t 0 0 0

0 −∂s 0 0 0 −∂t 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (6.27)

The determinant of the operator above can be readily computed in momentum space by

replacing ∂µ → i pµ (µ = 0,1)

DetKF = (p2)2 (p2 + 1

4
)

6

. (6.28)

This shows that the spectrum of fermionic excitations contains six degrees of freedom with

mass m2 = 1/4 and two with m2 = 0. Interestingly, the massless eigenstates are a linear

combination of the η4- and θ4-fermions only, namely those fermionic directions correspond-

ing to the broken supercharges of the AdS4 ×CP3 background. This is in contrast with the

case of the maximally symmetric AdS5 × S5 where all the fermions are equally massive, as

already noticed in AdS4 × CP3 when studying fluctuations over classical string solutions in

AdS4 [57, 175, 403, 404].

Combining bosonic and fermionic contributions, the one-loop free energy is computed as

Γ(1) ≡ − logZ(1) ≡ − log
Det1/2KF

Det6/2(−∂2
t − ∂2

s)Det1/2(−∂2
t − ∂2

s + 1
2)Det1/2(−∂2

t − ∂2
s + 1)

. (6.29)

Although the techniques for functional determinants in appendix B are still applicable, here

the computation is straightforward because the homogeneity of the classical background

allows to Fourier-transform both time and space direction. Indeed, for this situation the

eigenvalues of the bosonic operators (free-wave operators in flat space) are well-known and,

combined with (6.28), they yield

Γ(1) = V2

2
∫

d2p

(2π)2
log

⎡⎢⎢⎢⎢⎣

(p2)6 (p2 + 1
2
) (p2 + 1)

(p2)2 (p2 + 1
4
)6

⎤⎥⎥⎥⎥⎦
= −5 log 2

16π
V2 . (6.30)

The integral is convergent because of the matching of the number of degrees of freedom and

the values of their masses. The one-loop correction to the scaling function reads, according
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to (6.22),

a1 = −
5 log 2

2π
(6.31)

and agrees with previous results [57, 403, 404].

6.3 Cusp anomaly at two loops

We proceed to extend the perturbative computation of the scaling function to two-loop

order, following the lines of [225]. This amounts to compute the connected vacuum diagrams

in the null cusp background (6.14) built out of the propagators and interaction vertices in

appendix E.1. The various contributions combine in the two-loop part of the free energy

Γ(2) = ⟨Sint⟩ −
1

2
⟨S2

int⟩c , (6.32)

where Sint = T ∫ dtdsLint is the interacting part of the action at cubic and quartic order,

namely Lint is sum of the vertices (E.3)-(E.18). The subscript “c” indicates that only

connected diagrams are included. Following the conventions of appendix E.1, we drop

tildes in the fluctuation fields. We also omit the string tension T and the volume V2 in the

intermediate steps and reinstate them at the end of the calculation.

6.3.1 Bosonic sector

We first start with the purely bosonic sector, which contains one real boson of squared mass

1, one real boson of squared mass 1
2 and three complex massless bosons, as seen in section

6.2. At two-loop level the cubic and quartic interactions among these fields give rise to the

topologies in Figure 6.1.

Figure 6.1: Two-loop connected topologies: sunset, double bubble and the non-one-
particle-irreducible double tadpole.

An important feature of the AdS light-cone gauge is that the Lagrangian has diagonal

bosonic propagators (E.1), which introduces considerable simplifications in the perturba-

tive computation. To evaluate the momenta integrals, we have to manipulate the tensor

structures, involving components of the loop momenta, in the numerators and rewrite them
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in terms of scalar integrals. The reduction formulas in appendix E.2 allow to rewrite every

integral as linear combinations of

I (m2) ≡ ∫
d2p

(2π)2

1

p2 +m2
, (6.33)

which is UV logarithmically divergent and potentially IR singular for vanishing mass, and

I (m2
1,m

2
2,m

2
3) ≡ ∫

d2pd2q d2r

(2π)4

δ(2)(p + q + r)
(p2 +m2

1)(q2 +m2
2)(r2 +m2

3)
, (6.34)

which is finite for non-zero masses and suffers from IR infrared singularities otherwise. In

our computation we expect all UV divergences to cancel and therefore no divergent integral

to appear in the final result. Nonetheless, performing reduction of potentially divergent

tensor integrals to scalar ones still implies the choice of a regularization scheme. In our

case we use the one adopted in [177, 187, 225]. This prescription consists of performing

all manipulations in the numerators in d = 2, which has the advantage of simpler tensor

integral reductions. In this process we set power UV-divergent massless tadpoles to zero,

as in dimensional regularization

∫
d2p

(2π)2
(p2)n = 0 , n ≥ 0 . (6.35)

We do not need to choose a regularization prescription for the remaining logarithmically

divergent integrals because we will verify that they drop out in the final result.

As an example of a typical contribution, let us have a closer look at the sunset diagram

coming from the first vertex in (E.3). Wick contractions and scalar reductions yield the

following expression

− 1

2
⟨V 2
ϕx1x1⟩ = −∫

d2pd2q d2r

(2π)4

(1 + 4q2
1) (1 + 4r2

1) δ(2)(p + q + r)
(p2 + 1)(q2 + 1

2)(r2 + 1
2)

= 1

2
I (1, 1

2 ,
1
2
) . (6.36)

Such ratio of masses in the integral I (1, 1
2 ,

1
2
) was already appeared in [225] and is a par-

ticular case of the general class

I (2m2,m2,m2) = K

8π2m2
(6.37)

with K being the Catalan constant.

The contribution of the sunset diagram involving the second vertex in (E.3) is proportional

to I(1)2, whereas the contribution of the third vertex vanishes

− 1

2
⟨V 2
ϕ3⟩ = 2 I(1)2 − 1

2
⟨V 2
ϕ∣z∣2⟩ = 0 . (6.38)
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The final contribution of the bosonic sunset diagrams is

Γ
(2)
bos. sunset =

1

2
I (1, 1

2 ,
1
2
) + 2 I(1)2 . (6.39)

The first two vertices in (E.3) can also be contracted to generate non-1PI graphs, namely

double tadpoles. However the resulting diagrams turn out to vanish individually.

Next we consider bosonic double bubble diagrams. The relevant quartic vertices are

Vϕ2x1x1 = 16ϕ2 [(∂s − 1
2)x

1]2
, (6.40)

Vϕ4 = 4ϕ2 [(∂tϕ)2 + (∂sϕ)2 + 1

6
ϕ2] , (6.41)

Vϕ2∣z∣2 = 4ϕ2 [∣∂tz∣2 + ∣∂sz∣2] , (6.42)

Vz4 = 1

6
[(z̄a∂tza)2 + (z̄a∂sza)2 + (za∂tz̄a)2 + (za∂sz̄a)2

−∣z∣2 (∣∂tz∣2 + ∣∂sz∣2) − ∣z̄a∂tza∣2 − ∣z̄a∂sza∣2] . (6.43)

Despite the lengthy expressions of the vertices, the only non-vanishing contribution comes

from Vϕ4 and gives

Γ
(2)
bos. bubble = −2 I(1)2 (6.44)

and cancels the divergent part of (6.39). As a result, the bosonic sector turns out to be free

of divergences without the need of fermonic contributions, which was already observed in

the AdS5 × S5 case [225].

6.3.2 Fermionic sector

In this section we include the diagrams arising from interactions involving fermions. The

main difference between the AdS4×CP3 spectrum in section 6.2 and the one of AdS5×S5 [225]

lies in the fermionic sector: both theories have eight fermionic degrees of freedom, but in

AdS4 × CP3 they are split into six massive and two massless excitations, which interact

non-trivially among themselves.

We begin with the diagrams involving at least one massless fermion. The relevant cubic

vertices are (ψ denotes collectively the fermions η and θ)

Vzηaη4 = −2∂tz
aηaη4 + h.c. , Vzηaθ4 = 2∂sz

aηaθ4 − h.c. ,

Vϕη4θ̄4 = −2 iϕ (θ̄4∂sη4 − ∂sθ̄4η4) − h.c. , Vx1ψ̄4ψ4
= −2 i (η̄4η4 + θ̄4θ4)(∂s − 1

2)x
1 . (6.45)

The quartic interactions are either not suitable for constructing a double tadpole diagram

or they produce vanishing integrals. These include vector massless tadpoles, which vanish
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by parity, and tensor massless tadpoles, which have power UV divergences and are set to

zero. For completeness we list them in appendix E.1.

Focussing on the Feynman graphs which can be constructed from cubic interaction we also

note that the only double tadpole diagrams that can be produced using (E.6) involve tensor

massless tadpole integrals and therefore vanish. In the sector with massless fermions we

are therefore left with the sunset diagrams, which, thanks to the diagonal structure of the

bosonic propagators, turn out to be only five

Γ
(2)
ψ4

= −1

2
⟨Vzηaη4Vzηaη4 + Vzηaθ4Vzηaθ4 + 2Vzηaη4Vzηaθ4 + Vϕη4θ̄4Vϕη4θ̄4 + Vx1ψ̄4ψ4

Vx1ψ̄4ψ4
⟩ .

(6.46)

The explicit computation of the individual contributions shows that they are all vanishing.

As an example we consider

− 1

2
⟨Vϕη4θ̄4Vϕη4θ̄4⟩ = 4∫

d2pd2q d2r

(2π)4

(p1 − q1)2(p0q0 − p1q1) δ(2)(p + q + r)
p2q2(r2 + 1) = 0 (6.47)

and similar cancellations happen for the other diagrams. Therefore we conclude that Γ
(2)
ψ4

= 0

and that massless fermions are effectively decoupled at two loops.

We then move to consider massive fermions, starting from their cubic coupling to bosons

Vzηη = −εabc∂tz̄aηbηc + h.c. , Vzηθ = −2 εabcz̄aηb(∂s − 1
2)θc − h.c. ,

Vϕηθ = −4 iϕηa(∂s − 1
2)θ̄

a − h.c. , Vx1ηη = −4 i η̄aηa(∂s − 1
2)x

1 . (6.48)

Precisely as in the massless case, this generates five possible sunset diagrams. None of them

is vanishing. We present the details of a particularly relevant example, i.e. the one involving

the vertex Vx1ηη. This gives

−1

2
⟨Vx1ηηVx1ηη⟩ = 24∫

d2pd2q d2r

(2π)4

(p2
1 + 1

4) q0 r0 δ
(2)(p + q + r)

(p2 + 1
2)(q2 + 1

4)(r2 + 1
4)

= −3

8
I (1

2 ,
1
4 ,

1
4
) + 3

4
I (1

4
)2
.

(6.49)

We note the appearance of another integral in the class (6.37). The coefficient in front of

this integral depends on the degrees of freedom of the theory and is thoroughly discussed

in section 6.3.3. The partial results of the remaining sunset diagrams are

− 1

2
⟨(Vzηη + Vzηθ)(Vzηη + Vzηθ)⟩ = 3 I (1

4
)2 − 6 I (1

4
) I(0) ,

− 1

2
⟨VϕηθVϕηθ⟩1PI = 6 I (1

4
) I(1) + 3

4
I (1

4
)2
. (6.50)
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The latter vertices can be contracted also in a non-1PI manner

− 1

2
⟨VϕηθVϕηθ⟩non-1PI = −

1

2
Gϕϕ(0) × 26 × 32 × ∫

d2p

(2π)2

p2
1 + 1

4

p2 + 1
4

= −9

2
I (1

4
)2 (6.51)

where the factor in front of the integrals comes from the expression of the vertex and from

counting the degrees of freedoms that can run in the loops. As in [225], the divergent

contribution proportional to I (1
4
)2 cancels exactly those coming from (6.49) and (6.50).

The total cubic fermionic part reads

Γ
(2)
ferm. cubic = −

3

8
I (1

2 ,
1
4 ,

1
4
) + 6 I (1

4
) I(1) − 6 I (1

4
) I(0) . (6.52)

Finally we consider the fermionic double bubble diagrams. These involve the fermionic quar-

tic vertices. However, most of the vertices appearing in the Lagrangian cannot contribute to

the partition function either because the bosonic propagators are diagonal or because they

would produce vanishing integrals. We present the whole list of quartic vertices in appendix

E.1 and we spell out here only the relevant ones for our computation

Vϕ2ηθ = 8 iϕ2 ηa(∂s − 1
2)θ̄

a − h.c. Vzzηθ = −2 i [∣z∣2ηa(∂s − 1
2)θ̄

a − z̄bzaηa(∂s − 1
2)θ̄

b] − h.c. .

(6.53)

Although we can build a diagram with Vη4 , fermion propagators carry one component of

the loop momentum in the numerator and produce vector tadpole integrals, which vanish

by parity. We conclude that the contribution from fermionic double bubble graphs is

Γ
(2)
ferm. bubbles = −6 I (1

4
) I(1) + 6 I (1

4
) I(0) . (6.54)

Summing all the partial results and reinstating the dependence on the string tension and

the volume, we obtain

Γ(2) = V2

T
[1

2
I (1, 1

2 ,
1
2
) − 3

8
I (1

2 ,
1
4 ,

1
4
)] = −1

4

V2

T
I (1, 1

2 ,
1
2
) = − K

16π2

V2

T
(6.55)

where T is defined in (1.9). Finally we can plug this expression into equation (6.22) and read

out the second order of the strong coupling expansion (6.23) of the ABJM cusp anomalous

dimension

a2 = −
K

4π2
. (6.56)

6.3.3 Comparison with the AdS5 × S5 scaling function at two loops

In this section we point out similarities and differences between the calculation we performed

and its AdS5×S5 analogue [225]. The starting points, i.e. the Lagrangians in AdS light-cone
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gauge, look rather different. Yet the final results of the two-loop computations are strikingly

similar. More precisely, when written in terms of the string tension, the two expressions

have exactly the same structure up to the numerical coefficients in front of the integrals.

Indeed the AdS5 computation gives

Γ
(2)
AdS5

= V2

T
[1

4
I (1, 1

2 ,
1
2
) − 1

4
I (1

2 ,
1
4 ,

1
4
)] , (6.57)

which looks very similar in structure to (6.55). Furthermore, using (6.37), both combinations

sum up to

Γ(2) = −V2

T

1

4
I (1, 1

2 ,
1
2
) (6.58)

and only the different relation between the string tension and the ’t Hooft couplings distin-

guishes the final results. It is easy to trace the origin of the integrals and their coefficients

back in the vertices of the Lagrangian and to understand their meaning. In particular in

both computations only the sunset diagrams involving the interactions Vϕxx and Vxψψ (with

massive fermions) seem to effectively contribute. All other terms are also important, but

just serve to cancel divergences. Hence we can now focus on the relevant interactions and

point out the differences between the AdS5 and the AdS4 cases.

We start from the bosonic sectors. The two theories differ for the number of scalar degrees

of freedom with given masses. Focussing on massive fluctuations, after gauge-fixing we have

one scalar with m2 = 1 associated to the radial coordinate of AdSd+1 and (d−2) real scalars

with m2 = 1
2 . In the metric we chose for the AdS4 × CP3 background, the size of the AdS4

part is rescaled by a factor of r2 = 4. We have compensated this, parametrizing the radial

coordinate as w = erϕ and introducing a factor r in the fluctuation of x1, so as to have the

same normalization for their kinetic terms as in AdS5 × S5. This causes some factors r to

appear in interaction vertices in our Lagrangian. Apart from this, the relevant interaction

vertices are exactly the same. Then, the number of x fields (d − 2) and this factor r deter-

mine the coefficient of the integral I (1, 1
2 ,

1
2
) appearing in equations (6.55) and (6.57).

Turning to fermions, the first striking difference between the AdS5 and AdS4 cases is the

presence of massless ones. As pointed out at the beginning of section 6.3.2 their contribution

is effectively vanishing at two loops (though they do contribute at first order). Focussing on

massive fermions, the relevant cubic interactions giving rise to I (1
2 ,

1
4 ,

1
4
) look again similar

in the AdS4 and AdS5 cases. The difference is given once more by the ratio of the radii r

(through the normalization of ϕ and x coordinates) and the number nf of massive fermions

in the spectrum (nf = 8 for AdS5 × S5 and nf = 6 for AdS4 ×CP3).
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The final results (6.55) and (6.57) can be re-expressed in the general form

Γ
(2)
(AdSd+1)

= V2

T

(d − 2)r2

8
[I (1, 1

2 ,
1
2
) − nf

8
I (1

2 ,
1
4 ,

1
4
)]

= V2

T

(d − 2)r2

8
(1 − nf

4
) I (1, 1

2 ,
1
2
) , d = 3,4 , (6.59)

where the cases at hand are d = 4, nf = 8, r = 1 for N = 4 SYM and d = 3, nf = 6, r = 2 for

ABJM.





Chapter 7

AdS5 × S
5 superstring on the lattice

In the last chapters we investigated the AdS5 × S5 superstring form the perspective of

perturbation theory at large ’t Hooft coupling. Here we want to present a natural, genuinely

field-theoretical route to study the finite-coupling region by discretizing the two-dimensional

sigma-model and proceed with numerical methods for the lattice field theory so defined.

In section 1.5 we recalled that lattice discretizations of the two-dimensional theory of the

AdS5 × S5 sigma-model was inaugurated in [238] with the study of the universal scaling

function f(λ) associated to a Maldacena-Wilson loop with path on two light-like semi-

infinite lines intersecting at a cusp point. In the dual string theory this quantity is measured

by the path-integral of an open string moving in AdS5 × S5 and bounded by the null cusp

at the AdS boundary, which is where N = 4 SYM lives:

⟨Wcusp⟩ = Z = ∫ DδXDδΨ e−Scusp[Xcl+δX, δΨ] ≡ e−Γ(λ) = e−
1
4
f(λ)

2
V2 , V2 ≡ ∫

∞

−∞

dt∫
∞

−∞

ds .

(7.1)

As explained in full details in section 1.3, to write this expression one has to consider the

classical solution Xcl = Xcl(t, s) of the string equations of motion describing the world sur-

face of an open string ending on a null cusp, where (t, s) is a pair of convenient coordinates

spanning the classical worldsheet. The classical solutionXcl is the null cusp background [225]

and it is related to the Gubser-Klebanov-Polyakov (GKP) string vacuum [170]. The latter is

of crucial importance in AdS/CFT, as holographic dual to several fundamental observables

in the gauge theory [424], which can be studied exploiting the underlying integrability of

this AdS/CFT system, e.g. in [145, 146, 425–427]. The action Scusp [X + δX, δΨ] is the

AdS5 × S5 supercoset action (2.33) expanded in the fluctuation fields around this vacuum

and it is reported below in (7.15) in terms of the bosonic and fermionic degrees of freedom

remaining after gauge-fixing.

In (7.1) the scaling function is proportional to the free energy Γ ≡ − logZ. The (infinite)

worldsheet volume V2 simply factorizes out, since the fluctuation Lagrangian has constant
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coefficients, the normalization factor 1/4 follows from the conventions of [225] and an ad-

ditional 1/2 takes into account that f(λ) equals twice the so-called universal (or null)

cusp anomalous dimension associated to the UV divergency of a light-like Wilson cusp,

anticipating what we will review in the next section.

Bethe ansatz techniques based on the assumed quantum integrability of N = 4 SYM allow

to write the Beisert-Eden-Staudacher (BES) integral equation [239] to compute the scaling

function numerically 1 at finite λ or in a perturbative series at weak/strong coupling. The

starting point of our investigations is still (7.1), although the principles of our analysis differ

from [238]. We measure the vacuum expectation value of the fluctuation Lagrangian defined

as above

⟨Scusp⟩ ≡ ∫
DδXDδΨ S e−S

∫ DδXDδΨ e−S
= −g d lnZ

dg
= g V2

8
f ′(g) (7.2)

and we want to obtain information on the derivative of the scaling function. We shall use

g ≡ T
2
=

√
λ

4π
(7.3)

as new coupling constant on the lattice. Note that the large-g (or large-λ) region is referred

to as strong-coupling regime in the context of AdS/CFT. However, the sigma-model is

weakly-coupled because it admits a perturbation theory in powers of 1/g.

Even though our research is still in its infancy, our work has readdressed the study of the

derivative of the scaling function and extended the previous analysis of [238] to measure the

mass of two bosonic AdS fluctuation fields, corresponding to the transverse directions to

the null cusp classical solution. These two observables and the AdS light-cone gauge-fixed

action in the continuum are reviewed in sections 7.1 and 7.2.

The field content of the worldsheet theory in (7.2) contains anti-commuting scalars, also

referred to as fermions for short. Certain difficulties arise when they are treated by means of

lattice field theory. Following [238], we need to introduce a set of auxiliary fields to linearize

four-point fermionic interactions and then perform a Gaussian integration of the quadratic

ones, as shown in section 7.3. In this way fermions can be integrated out and the resulting

determinant becomes part of the definition of a purely bosonic path-integral. Secondly, we

need to eliminate unphysical states that naturally arise in the lattice discretization of the

fermionic operator. We consider two possible discretizations breaking different subgroups

of the global symmetry for the sigma-model: the SO(6)-preserving discretization in section

7.4 for the simulations in the chapter and the SO(6)-breaking one in appendix F.6. So far

our results seem not to be sensitive to the discretization adopted.
1We thank Dmytro Volin for sharing a Mathematica script providing the numerical solution.
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Lattice simulations are performed employing a Rational Hybrid Monte Carlo algorithm

similar to the one of [238]. The prescription given in section 7.5 to approach the contin-

uum limit demands physical masses to be kept constant, which in the case of finite mass

renormalization requires no tuning of the “bare” mass parameter of the theory (here, the

light-cone momentum p+). The study of the correlator and physical mass of the bosonic

fields supports this hypothesis.

We reached a good agreement for both the bosonic mass (section 7.6.1) and the scaling

function (section 7.6.2) at large ’t Hooft coupling, namely the perturbative regime around

the null cusp vacuum of the sigma-model. On the other hand, for smaller values of g, the

expectation value of the action, unlike the bosonic correlator, exhibits a deviation compatible

with the presence of quadratic divergences of order a−2 when the lattice spacing a → 0. It

is certainly possible that our way to take the continuum limit might be subject to a change

once all field two-point functions are investigated in the future, although such divergences

are expected in lattice regularization. Indeed in the continuum perturbation theory, power-

divergences arise in [225] as well as in chapter 6, but dimensional regularization sets them

equal to zero. The problem of renormalization in presence of power-like divergences is

generally a non-trivial issue. Here, they will be non-perturbative subtracted before taking

the continuum limit.

In section 7.6.3 we discuss the presence of a complex phase in the determinant of the

fermionic operator, resulting from the chosen fermionic linearization, that leads at small g

to a sign problem not treatable via the standard reweighting method. Additional future

work to cure this problem is outlined in section 7.7.

We have tried to keep the chapter focused on presenting our results, but the interested

reader can also benefit from a basic introduction to lattice methods in appendix F.

7.1 The cusp anomaly of N = 4 SYM and the light-like limit

The cusp anomaly was originally introduced [428] as the coefficient of the logarithmic di-

vergence in the expectation value of a Wilson loop whose path makes a sudden turn by a

Euclidean angle φ (Figure 7.1, left panel). Analogously, in planar N = 4 SYM we define

Γ(λ,φ) as the coefficient of the divergence of a cusped Wilson loop 2 defined by a generalized

connection that couples to a fixed combination of scalar fields:

Wcusp =
1

N
trP exp [∫ (iAµẋµ + ∣ẋ∣nIφI)dτ] , ⟨Wcusp⟩ ∼ e−Γ(λ,φ) ln ε

L , (7.4)

2The presence of the cusp makes the operator only locally supersymmetric as defined around (5.2).
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where nI is any constant unit vector (I = 1, . . .6) and the cutoffs L and ε screen respectively

the IR divergence arising from the loop points at infinity and the UV divergence close to

the singular point. One can also analytically continue φ = iϕ, so that now ϕ is a boost angle

in Lorentzian signature in R1,3. The cusp anomaly 3 is an ubiquitous quantity related to a

wide range of physical observables, as summarized below.

• It governs the IR divergences of scattering amplitudes and form factors, where ϕ is

the angle between a pair of external momenta, as in a supersymmetric generalization

of QCD [429, 430].

• Four-point massive scattering amplitudes on the Coulomb branch [431] are also gov-

erned by the same function [432]. In the Regge limit t≫m2, s the planar amplitude,

normalized by its tree-level value, scales as log ( A

Atree−level
) ∼ Γ(λ,φ) log t.

• The Bremsstrahlung function [369] measures the first deviation of a Wilson cusp expec-

tation value from the BPS-protected straight Wilson line Γ(λ,φ) = −B(λ)φ2 +O(φ4)
(see end of section 5.2 and equation (5.17) for references). In [369, 370] the same

function appears also in the power radiated by a slow-moving quark, in the two-point

function of the displacement operator evaluated on the Wilson line and in the stress

tensor expectation value in the presence of a Wilson line.

• After conformally mapping R4 to R × S3, the cusp anomaly gives the static potential

between a quark and an anti-quark separated by an angle δ = π − φ on the spatial

three-sphere (Figure 7.1, right panel). The cusp anomaly coincides with the Coulomb

potential in flat space when Γ(λ,φ) ∼ V (λ)
δ for small distances δ → 0.

Figure 7.1: Two situations where the angle-dependent cusp anomaly Γ(λ,φ) appears in
N = 4 SYM: a Wilson line with a singular point (left panel, [369]) and a quark-antiquark
pair sitting on a three-sphere and extended along the time direction (right panel, [433]).

The observable that will be of central importance in this chapter is the universal scaling

function f(λ), defined as twice the coefficient Γ(λ) [434–436] that multiplies the linear
3Let us also mention that a further generalization Γ(λ,φ, θ) of the cusp anomaly includes an “angle” θ

in the coupling to the scalars [178].
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divergence Γ(λ,φ = iϕ) ∼ ϕΓ(λ) in the light-like (or null) limit ϕ→∞. Due to its relevance,

we typically omit “universal” or “light-like” and understand, also here in the chapter, that

we always refer to the angle-independent f(λ). Another interesting occurrence is in the

conformal dimension ∆(λ) of twist-two operators for large spin S [424, 436, 437]

O = tr(ZDS
+
Z) , ∆(λ) = S + f(λ) logS +O(logS/S) for S ≫ 1 . (7.5)

On the string theory side these operators are represented by fast rotating closed strings

with energy corrections dictated by the scaling function f(λ). Support to this identification

arrived from the open-string picture in [229] (also [438]), where the observation that f(λ)
is related to a null cusp Wilson loop [436, 437] suggested to extract f(λ) from the clas-

sical worldsheet bounded by two light-like segments using the AdS/CFT correspondence

(1.11). The equivalence of the scaling function computed in the open/closed approaches

was argued to extend to all-loop orders by relating the corresponding open/closed minimal

surfaces through a conformal transformation and an analytic continuation [423]. Semiclas-

sical analysis around these two string vacua allowed to compute the scaling function up to

two loops at strong coupling [170, 171, 176, 177, 187, 225, 232, 423]

f(g) = 4 g − 3 log 2

π
− K

4π2 g
+O(g−2) (7.6)

with K ≈ 0.916 being the Catalan constant. These first few orders are also reproduced by

the BES equation.

7.2 The continuum action and its symmetries

7.2.1 The action in the AdS light-cone gauge

In this section we briefly cover the main steps leading from the κ-symmetry gauge-fixed

action (2.33) to the fully gauge-fixed one (7.15) following [225]. The AdS5 ×S5 background

metric (3.6), setting the radii of AdS5 and S5 to unity, can be put into the form

ds2 = z−2 (dxm dxm + dzM dzM) = z−2(dxm dxm + dz2) + duMduM ,

xmxm = x+x− + x∗x , x± = x3 ± x0 , x = x1 + ix2 , (7.7)

zM = z uM , uM uM = 1 , z =
√
zMzM .

Above, x± are the light-cone directions, built out of two of the four coordinates xm (m =
1, . . .4) parametrizing the four-dimensional boundary of AdS5. The radial coordinate z is

the modulus of zM (M = 1 . . .6).
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The AdS light-cone gauge [227, 228] is defined by fixing the local symmetries of the su-

perstring action, bosonic diffeomorphisms and κ-symmetry, via a sort of “non-conformal”

gauge 4

√−ggij = diag(−z2, z−2) , x+ = p+τ , (7.8)

and a more standard light-cone gauge on the two Majorana-Weyl fermions (I = 1,2) of the

type IIB superstring action

Γ+θI = 0 . (7.9)

The resulting action – entering the path-integral with weight eiS – is given by

S = g∫ dτdσ L

L = ẋ∗ẋ + (żM + ip+z−2zNηiρ
MNi

jη
j)2 + ip+(θiθ̇i + ηiη̇i + θiθ̇i + ηiη̇i) +

−(p+)2z−2(ηiηi)2 − z−4(x′∗x′ + z′Mz′M)

−2[ p+z−3ηiρMij z
M(θ′j − iz−1ηjx′) + p+z−3ηi(ρ†

M)ijzM(θ′j + iz−1ηjx′∗)] (7.10)

≡ ẋ∗ẋ + (żM + ip+z−2zNηiρ
MNi

jη
j)2 + ip+(θiθ̇i + ηiη̇i − h.c.) − (p+)2z−2(ηiηi)2

−z−4(x′∗x′ + z′Mz′M) − 2[ p+z−3ηiρMij z
M(θ′j − iz−1ηjx′) + h.c.] .

The six 4 × 4 matrices ρM are collected in appendix F.1. The fields θi, ηi (i = 1,2,3,4) are

4+4 complex Grassmann-odd variables for which θi = (θi)†, ηi = (ηi)†. They transform in

the fundamental representation of the SU(4) R-symmetry, which can be seen as a flavour

symmetry, and do not carry (Lorentz) spinor indices. Note that the AdS light-cone gauge

delivers an action that is at most quartic in these anti-commuting variables. Note also

that we often name them fermions referring to the fact that they are degrees of freedom

descending from the type IIB Majorana-Weyl spinors in ten dimensions.

Wick-rotating τ → −iτ, p+ → ip+, and setting the light-cone momentum p+ = 1 as standard

in literature, one gets a factor e−SE in the path-integral with

SE = g∫ dτdσ LE

LE = ẋ∗ẋ + (żM + i z−2zNηi(ρMN)ijηj)
2 + i(θiθ̇i + ηiη̇i − h.c.) − z−2 (η2)2

+z−4(x′∗x′ + z′Mz′M) + 2i[z−3zMηiρMij(θ
′j − i z−1ηjx

′) + h.c.] . (7.11)

4As in the standard conformal gauge, the choice x+ = p+τ is allowed by residual diffeomorphisms after
the choice for the auxiliary metric gij .
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The null cusp background [225]

x+ = τ , x− = − 1

2σ
, x = x∗ = 0 , z =

√
−2x+x− =

√
τ

σ
, τ, σ > 0 , (7.12)

is the classical solution of (7.11) that describes a Euclidean open string surface ending at

z = 0 on the path

(x+, x−) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(0,−u) for u ≤ 0

(u,0) for u ≥ 0
, x = x∗ = 0 (7.13)

that supports the Wilson cusp in N = 4 SYM. We can then choose a field parametrization

x =
√
τ

σ
x̃ , zM =

√
τ

σ
z̃M , z =

√
zMzM , θ = 1√

σ
θ̃ , η = 1√

σ
η̃ (7.14)

and absorb powers of the worldsheet coordinates by posing t = log τ and s = logσ. Dropping

tildes over the fields for simplicity, we arrive to the Euclidean gauge-fixed Lagrangian Lcusp

with constant coefficients

Scusp = g∫ dt dsLcusp

Lcusp = ∣∂tx + 1
2x∣

2 + 1

z4
∣∂sx −1

2x∣
2 + (∂tzM + 1

2
zM + i

z2
zNηi (ρMN)i

j
ηj)

2

+ 1

z4
(∂szM − 1

2z
M)2 + i (θi∂tθi + ηi∂tηi + θi∂tθi + ηi∂tηi) − 1

z2 (ηiηi)
2 (7.15)

+ 2i

z3
zMηi (ρM)

ij
(∂sθj −

1

2
θj −i

z
ηj (∂sx −

1

2
x))

+2i

z3
zMηi(ρ†

M)ij (∂sθj −
1

2
θj +

i

z
ηj (∂sx −

1

2
x)

∗

).

We remark that it has been obtained through the redefinitions (7.14) without operating

any truncation of high-order interactions – as we would do in semiclassical approximation

at g ≫ 1 – so it constitutes a valid starting point for the exploration of non-perturbative

physics of the string sigma-model and of the dual Wilson loop.
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Figure 7.2: The projection of the string vacuum (7.12) into AdS3. The open string has
support on the light-cone directions x± at z = 0, where the Wilson loop is located. The
mesh grid is made of the same lines of constant t and s that draw the discrete grid in
Figure F.1.

7.2.2 The mass spectrum

This string vacuum (7.12) is SO(6)-degenerate because any rotation of the six-dimensional

vector zM leaves the norm of the vector unchanged. The fluctuation spectrum of the solution

can be easily found if we break the symmetry of the vacuum by fixing a direction in the

zM -space, e.g. the unit vector uM = (0, 0, 0, 0, 0, 1), and use it to define new fluctuation

fields that vanish on the vacuum (φ̃ = ya = 0)

z̃M = eφ̃ũM , z̃ = eφ̃ , (7.16)

ũa = ya

1 + 1
4y

2
, ũ6 =

1 − 1
4y

2

1 + 1
4y

2
, y2 ≡

5

∑
a=1

(ya)2 , a = 1, ...,5 .

The classical value g
2V2 of the action on the vacuum gives the leading term 4 g in (7.6)

through (7.1). If we truncate the Lagrangian at quadratic order in the fluctuations fields

and drop tildes again, we have

L(2) = (∂tφ)2 + (∂sφ)2 + φ2 + ∣∂tx∣2 + ∣∂sx∣2 +
1

2
∣x∣2 + (∂tya)2 + (∂sya)2

+ 2i (θi∂tθi + ηi∂tηi) + 2i ηi(ρ6)ij(∂sθj − θj) + 2i ηi(ρ†
6)
ij(∂sθj − θj) (7.17)

= (∂tφ)2 + (∂sφ)2 + φ2 + ∣∂tx∣2 + ∣∂sx∣2 +
1

2
∣x∣2 + (∂tya)2 + (∂sya)2 + ψT KF ψ , (7.18)
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where we called ψ ≡ (θi, θi, ηi, ηi)T and the 16 × 16 free fermionic operator reads

KF =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 iI4∂t −i(∂s + 1
2)ρ

6 0

iI4∂t 0 0 −i(∂s + 1
2)ρ

†
6

i(∂s − 1
2)ρ

6 0 0 iI4∂t

0 i(∂s − 1
2)ρ

†
6 iI4∂t 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

. (7.19)

It is easy to see that the bosonic excitation spectrum consists of one field (φ) with m2 = 1,

two fields (x,x∗) with m2 = 1
2 and five fields (ya) with m2 = 0 [225]. Going to Fourier space

(∂µ → ipµ with µ = 0,1 = t, s) and adding the fermionic determinant DetKF = (p2
0+p2

1+ 1
4)

8
,

the one-loop free energy Γ(1) = − logZ(1) evaluates to

Γ(1) = V2

2
∫

dp0dp1

(2π)2
log [

(p2
0 + p2

1 + 1)(p2
0 + p2

1 + 1
2)

2(p2
0 + p2

1)5

(p2
0 + p2

1 + 1
4)8

] = −3 log 2

8π
V2 (7.20)

and it is in agreement with the one-loop constant term −3 log 2
π in (7.6).

The mass spectrum extracted from (7.17) is renormalized at finite g. The all-loop prediction

was obtained via asymptotic Bethe ansatz [439] and later confirmed by semiclassical string

theory around the folded closed string in AdS5 in the large spin limit [440]. Notice that the

mass spectrum in light-cone gauge coincides with the one in conformal gauge up to a factor

of 4 [440].

The corrections to the mass of the bosonic field x [440] read

m2
x(g) =

m2

2
(1 − 1

8 g
+O(g−2)) . (7.21)

The expression (7.21) (and also the O(g−1) coefficient in (7.6)) are results obtained in a

dimensional regularization scheme in which power divergent contributions are set to zero.

In section 7.6.1 we will compute the lattice correlators of the fields x,x∗ so to study whether

our discretization changes the renormalization pattern above.

In (7.21) and in what follows, we already make explicit the presence of a massive parameter

m since it will be crucial to keep track of dimensionful quantities, in principle subject to

renormalization, in the perspective of lattice field theory. We will also use the dimensionless

combination M = am with the lattice spacing a. The parameter m and the (dimensionless)

g are the only “bare” parameters characterizing the model in the continuum.
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7.2.3 Global symmetries of the action

Two important global symmetries are explicitly realized in the gauge-fixed action (7.15).

• The first one is the SU(4) ∼ SO(6) symmetry originating from the isometries of S5,

which is unaffected by the gauge-fixing. Under this symmetry the fields zM change in

the 6 representation (vector representation), the fermions {ηi, θi} and {ηi, θi} trans-

form in the 4 and 4̄ (fundamental and anti-fundamental) respectively and the fields

x and x∗ are neutral.

• The second global symmetry is a U(1) ∼ SO(2) arising from the rotational symmetry

in the two AdS5 directions orthogonal to AdS3 (i.e. transverse to the classical solu-

tion). Therefore, contrary to the previous case, the fields x and x∗ are charged (with

charges 1 and −1 respectively) while the zM are neutral. The invariance of the action

simply requires the fermions ηi and θi to have charge 1
2 and consequently ηi and θi

acquire charge −1
2 .

An optimal discretization should preserve the full global symmetry of the continuum model.

In section 7.4 we will see that this is not possible in the case of the SO(2) symmetry.

7.3 Linearization of the anti-commuting scalars interactions

While the bosonic part of (7.15) can be easily discretized and simulated, the Lagrangian

(7.15) is not in a suitable form to be simulated on a calculator because we have to take

into account the Fermi statistics of the θ- and η-fields. Grassmann-odd fields can be either

ignored (quenched approximation) 5 or formally integrated out. In the latter case, the

fermionic contribution becomes part – via exponentiation in terms of pseudo-fermions in

(7.29) below – of the Boltzmann weight of each configuration in the statistical ensemble.

In the case of interactions at most quartic in fermions as in (7.15), this is possible via the

introduction of a certain number of auxiliary fields. One can introduce 7 real auxiliary fields

[238], one scalar φ and a SO(6) vector φM , with the Hubbard-Stratonovich transformation

[441, 442]

exp{ − g∫ dtds[ − 1
z2 (ηiηi)

2 + ( i
z2 zNηiρ

MNi
jη
j)

2
]} (7.22)

∝ ∫ DφDφM exp{ − g∫ dtds [1
2φ

2 +
√

2
z φη

2 + 1
2(φM)2 − i

√

2
z2 φ

M ( i
z2 zNηiρ

MNi
jη
j)]} .

5This strategy is not promising in this context because fermionic contributions are expected to be of the
same order of magnitude of the bosonic ones.
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In the second line we have written the Lagrangian for the auxiliary field φM in a manner to

emphasize that it has an imaginary part: it is easy to show that the bilinear form in round

brackets is hermitian

(i ηiρMNi
jη
j)

†
= iηj ρMNj

i η
i (7.23)

with the properties of the ρ-matrices and the flipping formulas in appendix F.1. Since φM

takes real values, its Yukawa term above sets a phase problem a priori 6, the only question

being whether the phase is treatable via standard reweighting. In section 7.6.3 we will

see that this method is not possible for small values of g, suggesting that an alternative

linearization should be found to explore the full nonperturbative region, see [8] and chapter

8.

Figure 7.3: The Hubbard-Stratonovich transformation “splits” quartic fermionic interac-
tions (left) into Yukawa vertices with two fermionic lines (right).

After the transformation (7.22), the Lagrangian (7.15) reads

L = ∣∂tx +
m

2
x∣

2

+ 1

z4
∣∂sx −

m

2
x∣

2

+ (∂tzM + m
2
zM)

2

+ 1

z4
(∂szM − m

2
zM)

2

+ 1

2
φ2 + 1

2
(φM)2 + ψTOFψ , (7.24)

with the 16-component vector ψ ≡ (θi, θi, ηi, ηi)T acted upon by the fermionic operator

OF =

⎛
⎜⎜⎜⎜⎜
⎝

0 iI4∂t −iρM(∂s+
m
2
)
zM

z3
0

iI4∂t 0 0 −iρ†M(∂s+
m
2
)
zM

z3

i z
M

z3
ρM(∂s−

m
2
) 0 2 z

M

z4
ρM(∂sx−m

x
2
) iI4∂t−AT

0 i z
M

z3
ρ†M(∂s−

m
2
) iI4∂t+A −2 z

M

z4
ρ†M(∂sx∗−m

x
2
∗
)

⎞
⎟⎟⎟⎟⎟
⎠

A = 1√
2z2

φMρ
MNzN − 1√

2z
I4φ + i

zN
z2
ρMN ∂tz

M . (7.25)

It is convenient to separate the bosonic LB and the fermionic part LF = ψTOFψ of the

Lagrangian L = LB + LF to write the path-integral

Z = ∫ DxDx∗ DzM DφDφMDψ e−S , S = g∫ dt dsL ≡ SB + SF . (7.26)

6The second term in the first line of (7.22) is the square of an hermitian object and comes in the
exponent in second line as a “repulsive” potential. This has the final effect of an imaginary part in the

auxiliary Lagrangian, precisely as the i b x in e−
b2

4a ∝ ∫ dxe−ax
2
+ibx with b ∈ R.
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We dropped the label “cusp” in passing from (7.15) to the equivalent formulation (7.24)

only to signal that we enlarged the field content using the integral identity (7.22). The

integration measure in (7.26) involves only the field ψ but not its complex conjugate 7, thus

formally integrating fermions out generates a Pfaffian PfOF

∫ Dψ e− ∫ dtdsψ
TOFψ = PfOF ≡ [Det (OF O†

F )]
1
4
. (7.27)

It is important to note that PfOF must be real and nonnegative in order to enter the

Boltzmann weight and later be interpreted as a probability in Monte Carlo simulations

(appendix F.4). Therefore one proceeds to replace it with a determinant in the second

equality, where we do not keep track of potential phases or anomalies. We will comment

further on this point in section 7.6.3.

At this stage we have reduced the path-integral (7.26) as in [238] to the form

Z = ∫ DxDx∗ DzM DφDφM [Det (OF O†
F )]

1
4
e−SB . (7.28)

Formula (7.28) is our final form of the action in the remnant of the chapter, but we anticipate

that a consistent lattice discretization of fermions will replace OF (7.25) with the operator

ÔF (7.40)-(7.41) below, as it will be justified in section 7.4. Secondly, still taking this

remark into account, we want to emphasise that the numerical implementation works with

the form

Z = ∫ DxDx∗ DzM DφDφM Dζk Dζ†
k e−SB−Sζ , Sζ ≡ ∫ dtds ζ†(OFO†

F )
−

1
4 ζ . (7.29)

Here as in [238], we brought the fermionic determinant to the exponent with an additional

functional integration over the commuting complex scalars ζ = (ζk) with k = 1, . . .16, which

we name pseudo-fermions to stick to the lattice QCD terminology. Further details on the

actual simulation of (7.29) are in appendix F.4.

7.4 Discretization and lattice perturbation theory

In order to investigate the lattice model corresponding to (7.24), we proceed with the

discretization of the 2d spacetime and the action as described at length in appendix F.2.

While this works well for the bosonic sector, a naive lattice formulation of fermions is

known to suffer from the fermion doubling problem, which consists in the appearance of
7The vector ψ in (7.24) collects the 8+8 complex θi and ηi in a formally “redundant” way which includes

also their complex conjugates. Making real and imaginary parts of θ, η explicit, it is easy to see that the
fermionic contribution coming from the 16 × 16 operator OF coincides then to the one of 16 real anti-
commuting degrees of freedom.
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spurious states (doublers) in the spectrum of fermionic two-point functions. As clear from

appendix F.3, this is a consequence of the standard Dirac operator being of the first order,

therefore it comes as no surprise that it also affects the θ- and η-scalars with first-order

kinetic operator spelt out in (7.30) below. To remove those lattice artifacts we will follow

the Wilson approach: the fermionic Lagrangian is deformed by the addition of an operator

that shifts the doublers mass by a term of order 1/a, so that in the continuum limit they

will become infinitely heavy and decouple from the theory.

7.4.1 Wilson-like term for free fermions

For simplicity we work in the continuum model (section 7.2.1) and we denote with uM a

particular unit vector defining the vacuum around which we expand the operator (7.25)

perturbatively, for instance the vector uM = (0,0,0,0,0,1) as above (7.16). The matrix-

valued differential operator (7.25) incapsulates the free Lagrangian of θ- and η-fermions and

their Yukawa interactions with physical and auxiliary bosons. The free part in Fourier space

KF =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 −p0I4 (p1 − im2 )ρMuM 0

−p0I4 0 0 (p1 − im2 )ρ†
Mu

M

−(p1 + i m2 )ρMuM 0 0 −p0I4

0 −(p1 + i m2 )ρ†
Mu

M −p0I4 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

,

(7.30)

has determinant

DetKF = (p2
0 + p2

1 +
m2

4
)

8
. (7.31)

Fermionic propagators are proportional to the relevant entries of the inverse of the fermionic

kinetic operator (7.30). It is immediate to realize that the naive discretization (see formula

(F.23))

pµ → p̊µ ≡
1

a
sin(pµa) (7.32)

would give rise to the phenomenon of fermion doublers.

In principle there are many possible ways of introducing a Wilson-like operator due to the

rather non-standard structure of the Dirac-like operator (7.25). An optimal discretization

should

• preserve all symmetries of the continuum action, including the global U(1) symmetry

x→ eiα x, θi → eiα/2 θi, ηi → e−iα/2 ηi with α ∈ R, discussed in section 7.2.3,

• reproduce the result (7.6) in the a→ 0 limit,
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• not induce complex phases in the fermionic determinant in addition to the one already

implicit in the Hubbard-Stratonovich procedure adopted, see (7.23), in order not to

obstruct Monte Carlo simulations.

Notice that the vanishing entries in (7.30) are set to zero by the U(1) symmetry because

they couple fermions with the same charge, and therefore a U(1)-preserving discretization

should not alter them. Furthermore, the SO(6) symmetry fixes completely the structure of

the matrix (7.30) so that the only Wilson term preserving all the symmetries would be of

the form p0 → p0 + ai and p1 → p1 + bi for different ai and bi in the four entries where p0

and p1 appear in (7.30). After implementing such a shift and computing the determinant

of the fermionic operator, one immediately finds that this would not yield the perturbative

result (7.6) for any value of ai and bi. For this reason, we choose to give up the global U(1)
symmetry and introduce the (free) Wilson-like lattice operator

K̂F =

⎛
⎜⎜⎜⎜⎜⎜
⎝

W+ −p̊0I4 (p̊1 − im2 )ρMuM 0

−p̊0I4 −W †
+ 0 (p̊1 − im2 )ρ†

Mu
M

−(p̊1 + im2 )ρMuM 0 W− −p̊0I4

0 −(p̊1 + i m2 )ρ†
Mu

M −p̊0I4 −W †
−

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

(7.33)

where

W± =
r

2
(p̂2

0 ± i p̂2
1)ρMuM , ∣r∣ = 1 (7.34)

and, from (F.25),

p̂µ ≡
2

a
sin

pµa

2
. (7.35)

The analogue of (7.31) reads now

DetK̂F = (p̊2
0 + p̊2

1 +
r2

4
(p̂4

0 + p̂4
1) +

M2

4
)

8
(7.36)

and can be used together with its bosonic counterpart – obtained via the naive replacement

pµ → p̂µ in the numerator of the ratio (7.20) – to define in this discretized setting the

one-loop free energy

Γ
(1)
LAT = − logZ

(1)
LAT = I(a) , (7.37)

where set r = 1 and used (F.18) for an infinite-volume lattice

I(a) = V2

2a2 ∫
π

−π

d2p

(2π)2
{5 log [4(sin2 p0

2
+ sin2 p1

2
) ] + 2 log [4(sin2 p0

2
+ sin2 p1

2
+ M

2

8
) ]

+ log [4(sin2 p0

2
+ sin2 p1

2
+ M

2

4
) ] − 8 log [4 sin4 p0

2
+ sin2 p0 + 4 sin4 p1

2
+ sin2 p1 +

M2

4
]} .

(7.38)
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A consistent discretization makes (7.37)-(7.38) converge to the value in the continuum (7.20)

in the a→ 0 limit. The numerical integration of (7.38) yields

Γ(1) = − logZ(1) = lim
a→0

I(a) = −3 log 2

8π
(2N2)M2 , (7.39)

where we used that V2 = T L = 2(Na)2 from (F.13). If we plug M = ma and expand the

integrand in (7.38) for a→ 0, the O(a0) and O(a1) terms vanish and ensure the cancellation

of quadratic O(a−2) and linear O(a−1) divergences in (7.39). In the continuum model this

is a consequence of the equal number of fermionic and bosonic degrees of freedom and of the

mass-squared sum rule. The O(a2) part of the integrand finally gives the expected finite

part (7.39).

7.4.2 Promoting the Wilson-like term to the interacting case

Given the structure of the Wilson term evaluated on the vacuum (7.33), it is quite natural

to find a suitable generalization to the interacting case. We shall promote (7.25) to the

following operator

ÔF =

⎛
⎜⎜⎜⎜⎜
⎝

W+ −p̊0I4 (p̊1−i
m
2
)ρM zM

z3
0

−p̊0I4 −W †
+

0 ρ†M (p̊1−i
m
2
)
zM

z3

−(p̊1+i
m
2
)ρM zM

z3
0 2 z

M

z4
ρM(∂sx−m

x
2
)+W− −p̊0I4−AT

0 −ρ†M (p̊1+i
m
2
)
zM

z3
−p̊0I4+A −2 z

M

z4
ρ†M(∂sx∗−m

x
2
∗
)−W †

−

⎞
⎟⎟⎟⎟⎟
⎠

(7.40)

with

W± =
r

2 z2
(p̂2

0 ± i p̂2
1)ρMzM . (7.41)

In the expression above we added the factor 1/z2, which becomes invisible to (7.34) because

z = 1 on the vacuum, since it improves the stability of the simulations 8.

It is worth pausing to appreciate that (7.40)-(7.41) meets the requirements below (7.32),

save for the broken U(1) symmetry that is not possible to conciliate with the other demands.

• The operator is manifestly SO(6)-invariant because the index M is fully contracted.

• The operator evaluated on the vacuum is (7.33), which is known to reproduce the

correct, finite number in (7.39) in combination with the bosonic contribution.

• To see that the discretization does not induce (additional) complex phases, let us

begin with the fermionic operator (7.25) obtained by setting to zero the auxiliary

fields φM that bring a Yukawa term responsible for the phase problem. It is easy to
8A two-loop calculation in lattice perturbation theory would help to clarify the proposed structure (7.40)-

(7.41)-(7.41).
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check that it satisfies the properties (antisymmetry and a constraint reminiscent of

the γ5-hermiticity in lattice QCD [235])

(ÔF ∣φM=0)
T = − ÔF ∣φM=0 , (ÔF ∣φM=0)

† = Γ5 (ÔF ∣φM=0)Γ5 , (7.42)

where for us Γ5 is the 16 × 16 unitary, antihermitian matrix

Γ5 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 I4 0 0

−I4 0 0 0

0 0 0 I4

0 0 −I4 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

, Γ†
5Γ5 = I4 Γ†

5 = −Γ5 . (7.43)

The properties (7.42) are enough to ensure that Det ÔF ∣φM=0 is real and non-negative.

Requiring that the addition of a Wilson term in the discretization of the full fermionic

operator should preserve (7.42) is one of the criteria leading to ÔF in (7.40)-(7.41).

This is indeed what happens, as can be checked both numerically and analytically, con-

firming that the phase problem described in section 7.6.3 is only due to the Hubbard-

Stratonovich transformation.

In appendix F.6 we present simulations obtained with another fermionic discretization

(F.46)-(F.47) consistent only with lattice perturbation theory around a vacuum chosen in

one of the six directions uM (see (7.16)) with all vanishing entries but one. It breaks the

U(1) symmetry like (7.40)-(7.41) and also the SO(6) invariance of the model. We will show

that in the range of the couplings explored, the measurements of the x-mass, the derivative

of the scaling function and the occurrence of a complex phase in the fermion determinant

appear not to be sensitive to the different discretization.

7.5 Continuum limit

The parameter space of the continuum model consists of two “bare” variables: the dimension-

less coupling g =
√

λ
4π and the mass scale m. The lattice regularization introduces additional

dimensionless parameters built out of the lattice spacing a: the combination M = am and

the lattice sizes NT = T /a and NL = L/a, which are always chosen to be NT = 2NL ≡ 2N to

improve the study of the two-point function ⟨xx∗⟩ in section 7.6.1.

The discrete nature of the lattice spacetime provides a natural regulator for all observables

measured in the simulations, but we are eventually interested to obtain results for the

underlying continuum model. Therefore, one wants to remove the lattice cutoffs using a

scheme tailored to the model itself. The guideline is to adjust the simulation parameters in
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order not to alter the physics of the discretized model for decreasing a. The dimensionless

quantities that it is natural to keep constant when a→ 0 are the physical masses of the field

excitations rescaled by L, the spatial lattice extent. In our investigation we have focused

only on the x-mass (7.21) so far. This means that our prescription for the continuum limit

is to send a→ 0 along a line of constant physics characterized by

L2m2
x = constant , leading to L2m2 ≡ (NM)2 = constant . (7.44)

The second equation in (7.44) relies first on the hypothesis that g is not (infinitely) renormal-

ized 9. Secondly, one should also investigate whether the relation (7.21), and the analogue

ones for the other fields of the model, are still true in the discretized model – i.e. the

physical masses undergo only a finite renormalization. In this case, at given g, fixing L2 m2

constant would be enough to keep the rescaled physical masses constant, namely no tuning

of the “bare” parameter m would be necessary.

In the present study, we start by considering the example of bosonic x,x∗ correlators, where

indeed we find that the dimensionless ratio m2
x/m2 is free of 1/a-divergences and approaches

the expected continuum value 1/2 (7.21) for large g, as shown in section 7.6.1 below. Having

this as hint, and because with the proposed discretization we have recovered in perturbation

theory the one-loop cusp anomaly (7.39), we assume that in the discretized model no further

scale but the lattice spacing a is present.

Any expectation value of a functional of lattice fields ⟨FLAT⟩ is therefore a function of the

triplet of input (dimensionless) “bare” parameters (g,N,M) and in the limit discussed above

we expect to extrapolate its value ⟨F ⟩ in the continuum model

⟨FLAT(g,N,M)⟩ = ⟨F (g)⟩ +O(N−1) +O (e−MN) . (7.45)

Lattice spacing effects are N−1 corrections, while finite volume effects lead to exponential

corrections e−MN 10. At fixed coupling g and fixed largeMN = Lm, the observable ⟨FLAT⟩
is evaluated for different values of N and extrapolated to infinite N to obtain its continuum

limit ⟨F ⟩.

Table F.1 summarizes the parameters employed in our simulation runs. While most of them

are done at Lm = 4, for one value of the coupling (g = 30) we perform simulations at a larger
9This supposition is somewhat supported, a posteriori, by our analysis of the (derivative of the) scaling

function, which can be used as a definition of the renormalized coupling. As discussed in section 7.6.2,
occurring divergences in SLAT can be consistently subtracted showing an agreement with the continuum
expectation, at least for the region of lattice spacings and couplings that we explore.

10The combination MN = (m
a
)(La) can be understood as the number of typical Compton wavelengths

m−1 that fits into the lattice box. Finite volume effects e−Lm are suppressed when interactions around the
spatial direction are negligible for m−1 ≪ L. Similarly, in QCD the mass of the lightest particle would give
the largest error.
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value Lm = 6 to explicitly check finite volume effects. For the physical observables under

investigation, Figures 7.6 (right panel) and 7.10 , we find these effects to be very small

and within the present statistical errors. They appear to play a role only in the case of

the coefficient of the divergences which must be subtracted non-perturbatively in order to

define the cusp action, see section 7.6.2, as in Figure 7.7 (right panel).

Each value of ⟨FLAT(g,N,M)⟩ is the output of a Monte Carlo evolution that uses the

standard RHMC algorithm to compute quantum expectation values as time averages over a

fictitious lattice dynamics (appendix F.4). We show two examples of Monte Carlo histories

for the correlator ⟨xx∗⟩ and the action ⟨S⟩ in Figure 7.4. We determined auto-correlation

times of the observables and included their effect in the error analysis [443]. Multiple points

at the same value of g and N in Figure 7.6 (left panel), Figure 7.8 and Figure 7.9 – and

similarly in Figure F.6 (left panel), Figure F.8 and Figure F.9 – indicate multiple replica.
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Figure 7.4: Monte Carlo histories for the correlator ⟨xx∗⟩ at time separation T /4 and for
⟨Scusp⟩, at g = 10 and L/a = 16, in terms of Molecular Dynamic Units (MDU). The HMC
produces a series of bosonic field configurations, on each of them the observable is evaluated
and plotted here for the same series at the given parameters. The fact that successive
configurations produced by the RHMC are statically correlated might lead to strong so-
called auto-correlations in the data, which would appear in these plots as fluctuations with
long periods. As one can see, the histories presented here do not suffer from such long
fluctuations, and sample well the observables under investigation.

7.6 Measuring the observables

7.6.1 The ⟨xx∗⟩ correlator

To motivate the line of constant physics (7.44), we first investigate the physical mass of the

bosonic fluctuation field x around the string vacuum (7.12) as determined from the ⟨xx∗⟩
correlator. The mass of the bosonic field x, defined as the value of energy at vanishing

momentum, in (7.15) can be read off at leading order from the expansion of the quadratic

fluctuation Lagrangian (7.17). The leading quantum correction to its dispersion relation
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has been computed in [440], leading to the expression (7.21).

One can estimate the dependence of the physical mass on the coupling constant by mea-

suring the connected two-point correlation function of the discretized x-field on the lattice

(see for example [235]). In configuration space one defines the two-point function

Gx(t1, s1; t2, s2) = ⟨x(t1, s1)x∗(t2, s2)⟩ (7.46)

and Fourier-transforms over the spatial direction (cf. (F.19)) to define the lattice timeslice

correlator

Cx(t; k) =
NL−1

∑
s1, s2=0

e−ik(s1−s2)Gx(t, s1; 0, s2) . (7.47)

The latter admits a spectral decomposition over propagating states of different energies,

given spatial momentum k and amplitude cn

Cx(t; k) = ∑
n

∣cn∣2e−tEx(k;n) (7.48)

which is dominated by the state of lowest energy for sufficiently large temporal distance

t. This effectively single asymptotic exponential decay corresponds to a one-particle state

with energy equal – for vanishing spatial momentum – to the physical mass of the x-field

Cx(t; 0) ∼ e−tmxLAT , t≫ 1 , mxLAT = Ex(k = 0) . (7.49)

Corrections to the asymptotic behaviour of Cx(t; 0) are proportional to e−∆E t, where ∆E is

the energy splitting with the nearest excited state. The physical mass on the lattice mxLAT

is usefully obtained as a limit of an effective mass meff
x , defined at a given temporal extension

T of the lattice and fixed pair of neighbouring points at time t and t + a by the discretized

logarithmic derivative of the timeslice correlation function (7.47) at zero momentum

mxLAT = lim
T, t→∞

meff
x ≡ lim

T, t→∞,

1

a
log

Cx(t; 0)
Cx(t + a; 0) . (7.50)

Figure 7.5 (left) shows the effective mass measured from (7.50) as a function of the time sep-

aration t in units of mxLAT for different g and lattice sizes. To reduce uncertainty about the

saturation of the lowest-energy state in the asymptotics of the correlation function (7.49),

we work in a lattice of size NT ×NL with temporal extent NT = T /a always twice the spatial

extent NL = L/a. The flatness of the effective mass in Figure 7.5 (right) indicates that t

and T are large enough to wash out the excited states in (7.50) and the estimate of the

x-mass through (7.50) is reliable. We extract the value m2
x/m2 = 1

2 , which appears to be

consistent with the classical, large g prediction (7.21). We do not see a clear signal yet for
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Figure 7.5: Correlator Cx(t; 0) = ∑s1,s2⟨x(t, s1)x∗(0, s2)⟩ of bosonic fields x,x∗ (left
panel) and corresponding effective massmeff

x = 1
a

log Cx(t)
Cx(t+a) normalized bym2 (right panel),

plotted as functions of the (dimensionless) time separation t mxLAT for different g and
lattice sizes. The flatness of the effective mass indicates that the lowest-energy state in the
two-point function saturates the correlation function, and allows for a reliable extraction
of the mass of the x-excitation. Data points are masked by large errorbars for time scales
greater than unity because the signal of the correlator degrades exponentially compared
with the statistical noise.

the expected bending down at smaller g. Decreasing the coupling drives up the numerical

cost of the simulations and parallel computing would be necessary.

The most important corollary of the analysis of the ⟨xx∗⟩ correlator is the following. As

it happens in the continuum, also in the discretized setting there appears to be no infinite

renormalization occurring for (7.21), and thus no need of tuning the bare parameter m to

adjust for it. This corroborates the choice of (7.44) as the line of constant physics along

which a continuum limit can be taken.

7.6.2 The bosonic action and the scaling function

In measuring the action (7.2) on the lattice, exploring first the “weak coupling” (large g)

region we are supposed to recover the following general linear behavior in g

⟨SLAT⟩ ≡ c
2
(2N2) + S0 , g ≫ 1, where S0 ≡

1

2
(2N2)M2 g . (7.51)

In the formula above we reinstated the mass scale m, used V2 = T L = a2 (2N2) (F.13) and

recalled the leading classical behavior f(g) = 4 g in (7.6). We also introduced the value of

the (discretized) classical action S0, which is fixed in each simulation for given g and NM .

In (7.51) we also added a shift c
2N

2 constant in g and quadratically divergent in N2 in the

continuum limit.
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Figure 7.6: Plot of m2
xLAT(N,g)/m2 = mx(g) + O(1/N) (left panel), as from plateaux

average of results, which for g = 30 are shown in Figure 7.5 (right panel). To ensure better
visibility of the fits at different g values, log g has been added. Dashed lines represent
a linear fit to all the data points for one value of g, while for dotted lines the fit is to a
constant and only includes the two smallest lattice spacings. Multiple points at the same
value of g and N indicate multiple replica.

Continuum extrapolation (right panel) corresponding to the linear fits in the left
panel. The simulations represented by the orange point (Lm = 6) are used for a check of
the finite volume effects, that appear to be within statistical errors. The extrapolation is
plotted as a function of the continuum coupling gc = 0.04 g to facilitate the comparison
with the prediction coming from the sigma-model perturbation theory expectation (PT)
(7.21), and uses the matching procedure performed for the observable action. The latter
is described at the end of section 7.6.2.

The constant c can be extrapolated for very large values of g with a fit linear in N−2

of the relation ⟨S⟩
2N2 = c

2 +
S0

2N2 . Data points for g = 100,50,30 – red, green and violet fits

respectively in the left panel of Figure 7.7 11 – yield a value c/2 = 7.5(1) consistent with

the number 15 = 8 + 7 of bosonic fields appearing in the path-integral. In other words, we

expected that this (field-independent and proportional to the lattice volume) contribution

to the expectation value ⟨S⟩ = −∂ logZ/∂g in (7.51) simply counts the number of degrees

of freedom which appear quadratically in the action and carry a power of the coupling

constant g. Indeed the theory is quadratic in bosons for very large g 12 and equipartition

holds, namely integration over the bosonic variables yields a factor proportional to g−
(2N2

)

2

for each bosonic field species 13.

Having determined with good precision the coefficient of the divergence, we can proceed
11Recall that in Figure 7.7 log g has been added to ensure better visibility of the fits at different g values.
12In lattice codes and in (7.29) here, it is conventional to omit the coupling form the pseudo-fermionic

part of the action, since this is quadratic in the fields and hence its contribution in g can be evaluated by a
simple scaling argument.

13It is interesting to mention that in theories with exact supersymmetry this constant contribution of the
bosonic action (this time on the trivial vacuum) is valid at all orders in g, due to the coupling constant
independence of the free energy. For twisted N = 4 SYM this is the origin of the supersymmetry Ward
identity Sbos = 9N2/2 per lattice site, one of the observables used to measure soft supersymmetry breaking,
see [444]. We thank David Schaich and Andreas Wipf for pointing this out to us.
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Figure 7.7: In the left panel, we plot ⟨SLAT⟩
2N2 with linear fits in 1/N2 (dashed lines).

To ensure better visibility of the fits at different g values, log g has been added. The
extrapolation to the continuum limit (symbol at infinite N) determines the coefficient c/2
of the divergent (∼ N2) contribution in (7.51)-(7.52) and is represented in the diagram of
the right of this figure.

In the right panel, data points estimate the continuum value of c/2 as from the
extrapolations of the linear fits in the left panel. The simulations at g = 30, Lm = 6
(orange point) are used for a check of the finite volume effects, which appear here to be
visible. Dashed and dotted lines are the results of, respectively, a linear fit in 1/g and a
fit to a polynomial of degree two.

first fixing it to be exactly c = 15 and subtracting from ⟨SLAT⟩ the corresponding contribu-

tion. In the finite g region we perform simulations to determine the ratio

⟨SLAT ⟩ − c
2 (2N2)

S0
≡ f

′

LAT(g)
4

. (7.52)

On the right hand side we consistently restored the general definition (7.2) valid for any

coupling. The plots at g = 100,50,30,20 in Figure 7.8 show a good agreement with the lead-

ing order prediction in (7.6) for which f ′(g) = 4. For lower values of g – orange and light

blue data points in Figure 7.8 – we observe deviations that obstruct the continuum limit

and signal the presence of further quadratic divergences in N2. They are compatible with

an ansatz for ⟨SLAT⟩ in which the “constant” c contribution multiplying 2N2 in (7.51)-(7.52)

is actually g-dependent. It seems natural to relate these power divergences to those arising

in continuum perturbation theory, where they are usually set to zero using dimensional reg-

ularization [440]. From the perspective of a hard cut-off regularization like the lattice one,

this is related to the emergence in the continuum limit of power divergences – quadratic,

in the present two-dimensional case – induced by mixing of the (scalar) Lagrangian with

the identity operator under UV renormalization. Additional contributions to these devi-

ations might be due to the (possibly wrong) way the continuum limit is taken, i.e. they

could be related to a possible infinite renormalization occurring in those field correlators
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with quadratic divergences.
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Figure 7.9: Plots for the ratio ⟨SLAT ⟩− c2 (2N2)
S0

+ log g as a function of 1/N , where the
divergent contribution cN2/2 is now the continuum extrapolation determined in Figure
7.7. To ensure better visibility of the fits at different g values, log g has been added. Dashed
lines represent a linear fit to all the data points for one value of g, while for dotted lines
the fit is to a constant and only includes the two smallest lattice spacings. Symbols at zero
(infinite N) are extrapolations from the fit constant in 1/N .

and corresponding physical masses which have been not investigated here (fermionic and z

excitations).

While such points should be investigated in the future to shed light on the issue, here we

proceed with a non-perturbative subtraction of these divergences. Namely, from the data of

Figure 7.8 we subtract the continuum extrapolation of c2 (multiplied by the number of lattice

points 2N2), as determined in Figure 7.7 (right panel), for the full range of the coupling

explored. The result is shown in Figure 7.9. The divergences appear to be completely

subtracted, confirming their purely quadratic nature. The flatness of data points, which
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Figure 7.10: Plot for f ′(g)/4 as determined from the N → ∞ extrapolation of (7.52),
i.e. from the extrapolations of the fits in Figure 7.9, and plotted as a function of the
(bare) continuum coupling gc under the hypothesis that the latter is just a finite rescaling
of the lattice bare coupling g (gc = 0.04 g), see discussion at the end of this section. The
dashed line represents the first few terms in the perturbative series (7.6), the continuous
line is obtained from a numerical solution of the BES equation and represents therefore the
prediction from the integrability of the model. The simulations at g = 30, Lm = 6 (orange
point) are used for a check of the finite volume effects, that appear to be within statistical
errors.

can be fitted by a constant, indicates very small lattice artifacts. At least in the region of

lattice spacings explored from our simulations errors are small, and do not diverge as one

approaches the N → ∞ limit. We can thus use the extrapolations at infinite N of Figure

7.9 to show the continuum limit for the left hand side of (7.52) in Figure 7.10. This is our

measure for f ′(g)/4, and in principle it allows a direct comparison with the perturbative

series (dashed line) and with the prediction obtained via the integrability of the model

(continuous line, representing the first derivative of the cusp as obtained from a numerical

solution of the BES equation [239]).

To compare our extrapolations with the continuum expectation, we match the lattice point

for the observable f ′(g) at g = 10 – as determined from the N →∞ limit of f ′(g)LAT (7.52)

– with the continuum value for the observable f ′c(gc) as determined from the integrability

prediction, i.e. as obtained from a numerical solution of the BES equation. This is where

in Figure 7.10 the lattice point lies exactly on the integrability curve. The value g = 10

has been chosen as a reference point since it is far enough from both the region where the

observable is substantially flat and proportional to one (which ensure a better matching

procedure) and the region of higher errors (also, where the sign problem plays no role

yet, see section 7.6.3). Assuming that a simple finite rescaling relates the lattice bare

coupling g and the (bare) continuum one gc, from f ′(g) = f ′c(gc) we then derive that

gc = 0.04g. Figure 7.10 shows that in the perturbative region our analysis and the related

assumption for the finite rescaling of the coupling yield a good qualitative agreement with

the integrability prediction. About direct comparison with the perturbative series (7.6),
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since we are considering the derivative of (7.6) the first correction to the expected large

g behavior f ′(g)/4 ∼ 1 is positive and proportional to the Catalan constant K. The plot

in Figure 7.10 does not catch the upward trend of such a first correction (which is too

small, about 2 percent, if compared to the statistical error). Notice that, again under the

assumption that such simple relation between the couplings exists – something that within

our error bars cannot be excluded – the nonperturbative regime beginning with gc = 1 would

start at g = 25, implying that our simulations at g = 10,5 would already test a fully non-

perturbative regime of the string sigma-model under investigation. The mild discrepancy

observed in that point of this region (g = 5 or gc = 0.2) which is not fixed by definition via

the “matching” procedure discussed above could be the effect of several contributing causes.

Among them, systematic factors as the ones related to the complex phase – and its omission

from the measurements, see next section – as well as finite volume effects with related errors

in the non-perturbative subtraction of divergences. We emphasize that the relation between

the lattice and continuum bare couplings might well be not just a finite rescaling. To shed

light on this point, the matching procedure should use points at further smaller values of g.

In the next section we discuss in more detail one of the most relevant issues which inhibits

measurements at the interesting, small values of g.

7.6.3 The Pfaffian phase

After the linearization realized via the Hubbard-Stratonovich transformation (7.22), the for-

mal integration over the fermionic components leads to a Pfaffian in (7.27). For any given

bosonic configuration, the latter is manifestly not real. As discussed in section 7.3, the

Yukawa term (7.23) introduces a phase, so that Pf ÔF ≡
√

∣DetÔF ∣ eiϕ = [Det (ÔF Ô†
F )]

1
4
eiϕ.

The standard way to bypass this problem is to perform phase-quenched simulations, omit-

ting eiϕ from the integration measure

⟨F ⟩ ≡ ∫ DxDx
∗DzMDφDφM PfÔF F e−SB

∫ DxDx∗DzMDφDφM PfÔF e−SB
(7.53)

→ ⟨F ⟩phase-quenching ≡
∫ DxDx∗DzMDφDφM [Det (ÔF Ô†

F )]
1
4
F e−SB

∫ DxDx∗DzMDφDφM [Det (ÔF Ô†
F )]

1
4
e−SB

.

Such a procedure ensures drastic computational simplifications and still can deliver the

true expectation values via the phase reweighting method, which prescribes to redefine the

measure by incorporating the non-positive part of the Boltzmann weight (here the complex
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phase) into the observable

⟨F ⟩ ≡ ∫ DxDx
∗DzMDφDφM PfÔF F e−SB

∫ DxDx∗DzMDφDφM PfÔF e−SB
(7.54)

= ⟨Feiϕ⟩reweighting
⟨eiϕ⟩reweighting

≡
∫ DxDx∗DzMDφDφM [Det (ÔF Ô†

F )]
1
4 (Feiϕ) e−SB

∫ DxDx∗DzMDφDφM [Det (ÔF Ô†
F )]

1
4 (eiϕ) e−SB

.

However, the phase averages to zero if it displays a highly oscillatory behaviour far from

zero in a significant part of the bosonic field configurations. In this case the reweighting

procedure breaks down because numerator and denominator evaluate to a small number,

whose exact value is masked by the stochastic noise of the Monte Carlo sampling process.

The severity of sign problem is quantified by the smallness of the (ensamble-averaged) phase

∫ DxDx∗DzMDφDφM [Det (ÔF Ô†
F )]

1
4 (eiϕ) e−SB . (7.55)

We have explicitly computed the reweighting (phase) factor for smaller lattices, up to L/a = 12,

and observed that the reweighting has no effect on the central value of the two observables

that we study, i.e. it holds ⟨Feiϕ⟩reweighting
⟨eiϕ⟩reweighting

= ⟨F ⟩ within errors. Thus, in the analysis pre-

sented in the previous sections and in appendix F.6 we omit the phase from the simulations

in order to be able to consistently take the continuum limit. In absence of data for the

phase factor in the case of larger lattices, we do not assess the possible systematic error

related to this procedure.

To explore the possibility of a sign problem in simulations, we have then studied the relative

frequency for the real part (the imaginary part is zero within errors, as predicted from the

reality of the observables studied) of the Pfaffian phase eiϕ at g = 30,10,5,1 (from left to

right, top to down) in Figure 7.11. At g = 1 (right bottom histogram) the observed ⟨eiϕ⟩ is
consistent with zero, thus preventing the use of standard reweighting. As explained above,

the analysis that we present here is also limited to the values g = 100,50,30,20,10,5 (and

with the further parameters listed in Tables F.1 and F.2). Therefore, a severe sign problem

is appearing precisely for values of the coupling referring to a fully non-perturbative regime

(corresponding to weakly-coupled N = 4 SYM). We conclude that alternative algorithms or

settings (in terms of a different, phase-free linearization) should be considered in order to

investigate this interesting region of g.
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Figure 7.11: Histograms for the frequency of the real part of the reweighting phase
factor eiϕ of the Pfaffian Pf ÔF ≡

√
∣DetÔF ∣ eiϕ, based on the ensembles generated at

g = 30,10,5,1 (from left to right, top to down) on a lattice with NL = 8. The plots use
the discretization (F.46)-(F.47), however we found no substantial difference between this
analysis and the one performed with the discretization (7.40)-(7.41).

7.7 New insight into the Pfaffian phase

One important question that we are currently addressing [8] is whether one can engineer

a Hubbard-Stratonovich transformation for a new set of auxiliary fields that leads to a

real and positive Pfaffian in the path-integral. We are modelling a new proposal upon the

linearization of the SO(4)-invariant four-fermion interactions in [445]. After some lengthy

manipulations, the relevant global symmetry SO(6) suggests to write the integral identity

exp{ − g∫ dtds[ − 1
z2 (ηiηi)

2 + ( i
z2 zNηiρ

MNi
jη
j)

2
]}

∝ ∫ DφDφij exp{−g∫ dtds [6φ2 + 12

z
(ηiηi)

2
φ (7.56)

+φijφ
j
i +

2

z
ηjφ

j
iη
i + 2

z3
(ρN)ikzNηkφji (ρ

L)jlzLηl]} .
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where now we integrate over 17 real auxiliary degrees of freedom, split between a real field

φ and a set of 16 fields φij with the property (φij)
∗ = φji (i, j = 1, . . .4). The nice feature is

that each term in the linearized Lagrangian is now hermitian (cf. (7.24)-(7.25)):

Lnew = ∣∂tx +
m

2
x∣

2

+ 1

z4
∣∂sx −

m

2
x∣

2

+ (∂tzM + m
2
zM)

2

+ 1

z4
(∂szM − m

2
zM)

2

+ 6φ2 + φijφ
j
i + ψ

TOnew
F ψ (7.57)

with

Onew
F =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 iI4∂t −iρM (∂s + m
2
) zM
z3 0

iI4∂t 0 0 −iρ†
M (∂s + m

2
) zM
z3

i z
M

z3 ρ
M (∂s − m

2
) 0 2 z

M

z4 ρ
M (∂sx −mx

2
) iI4∂t −ATnew

0 i z
M

z3 ρ
†
M (∂s − m

2
) iI4∂t +Anew −2 z

M

z4 ρ
†
M (∂sx∗ −mx

2
∗)

⎞
⎟⎟⎟⎟⎟⎟
⎠

,

Anew = −6

z
φ + 1

z
φ̃ + 1

z3
ρ∗N φ̃

TρLzNzL + i
zN

z2
ρMN∂tz

M (7.58)

and φ̃ being a 4×4 matrix whose (i, j)-entry is φij . We perform again a fermion discretization

that replaces Onew
F with a double-free Ônew

F while preserving the reality of the operator. This

eliminates the presence of a complex phase in the new Pfaffian Pf Ônew
F ≡

√
∣Det Ônew

F ∣ eiϕnew
,

leaving only the two possibilities ϕnew = 0, π. The only question left to answer is whether the

Pfaffian in also positive (ϕnew = 0). Preliminary studies suggest that such sign problem is not

ruled out yet because the simulation visits configurations with (field-dependent) alternating

sign for the Pfaffian Pf Ônew
F = ±

√
∣Det Ônew

F ∣, especially when we depart from the weakly-

coupled regime of the theory. Further work is also needed to assess whether the argument

of [445] can be traduced to our case in a way different from (7.56) and directly circumvent

the sign problem in (7.58).



Chapter 8

Conclusion and outlook

In this thesis we have reviewed the construction of superstring theory in two background

spaces – AdS5×S5 and AdS4×CP3 – relevant for the study of the respective AdS/CFT inte-

grable systems. We performed perturbative calculations at large ’t Hooft coupling in order

to compute quantum corrections to non-trivial classical solutions of the superstring action.

They correspond to solitonic solutions (related to certain local gauge-theory operators) and

open string solutions (here associated to BPS and non-BPS Wilson loops). On a parallel

route, we have investigated a promising non-perturbative approach that relies on purely

lattice field theory methods to obtain information on observable defined in the AdS5/CFT4

duality at finite ’t Hooft coupling.

The motivation behind all these analyses is twofold. The main interest is to collect com-

plementary perspectives on string sigma-models that provide support to predictions based

on integrability and supersymmetric localization. Our results offer also a direct demonstra-

tion of the quantum consistency of superstring actions in perturbative quantization around

particular string vacua embedded in curved spacetimes.

Summary of the main results

In chapter 3 we made the first step in the direction of computing one-loop quantum cor-

rections to arbitrary classical solutions in AdS5 × S5 by deriving the quadratic action for

the small fluctuations. While it would be virtually impossible to address regularization pro-

cedures at this general level, we pedagogically illustrated a manifestly-covariant algorithm

to derive the structure of differential operators entering the fluctuation Lagrangian. The

appropriate bosonic and fermionic gauge-fixings, the diffeomorphism-ghost operator, the

decoupling of bosonic longitudinal modes, the gauge connections associated to the normal

bundle and the reduction of type IIB Green-Schwarz fermions to 2d Dirac spinors are the

159
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principal results scattered in literature [192, 292] that we have organized and generalized

here.

In particular, a novelty of our formulas is the treatment of the fermionic fluctuation La-

grangian and the general expressions for bosonic and fermionic masses (as in all cases pre-

viously analyzed, simplifications occurr due to the flatness of the normal bundle). The sum

rules for the masses find a nice application in reviewing the argument for the cancellation

of the one-loop conformal anomaly in the AdS5 × S5 superstring [192].

In chapter 4 we analytically solved the matrix-valued fluctuations determinant for two non-

trivial string configurations in AdS5 × S5. We evaluated exactly the one-loop partition

function for the quantum Landau-Lifshitz model on the SU(2) folded string solution of

[329]. The relevant differential operator can be written in terms of a fourth-order differential

operator with coefficients being meromorphic, doubly periodic functions (combinations of

Jacobi elliptic functions) on the complex plane.

The same procedure allows the diagonalization of the operator in conformal gauge that

governs the bosonic excitations around the two-spin folded string solution of [171] in AdS5×
S5. Here the differential equations governing the fermionic spectrum do not satisfy the

conditions that allowed us to solve the bosonic sector and we did not find the necessary

generalization of the tools we have developed in appendix C. However, our analysis still

proves to be useful to analytically demonstrate the equivalence between the full exact one-

loop partition function for the one-spin folded string in conformal and static gauge, which

is a non-trivial statement verified only numerically in [172].

The purpose of chapter 5 is to re-examine a delicate issue [196] in the semiclassical compu-

tation of the partition function of AdS5 ×S5 superstring that represents a 1/2-BPS circular

Wilson loop in N = 4 SYM, where the one-loop string correction does not match the

expansion of the localization result for the gauge-theory observable [151]. To avoid any

measure-related ambiguity in the string path-integral, we calculated the ratio between the

one-loop partition functions for two classical solutions with the same topology: a generic

1/4-BPS latitude Wilson loop and the 1/2-BPS circular loop. By comparing with the gauge-

theory prediction for such ratio, we addressed the question whether such procedure could

eliminate the measure-related ambiguity under the assumption that they only depend on

the worldsheet topology. Our answer is that the standard setup to compute one-loop cor-

rections (infinite sum of 1d determinants obtained via Gel’fand-Yaglom theorem and cutoff

regularization) fails to restore the agreement with gauge theory. In section 5.7 we have

summarized the current status of the mismatch after a similar attempt was carried out in

[385] and we devoted section 5.8 to point out how our work suggests possible continuations.

In chapter 6 we extended the computation of the cusp anomalous dimension of ABJM

theory to second order in its strong coupling expansion. This result has been determined
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considering the κ-symmetry gauge-fixed action of [230, 231] in AdS4 × CP3. We studied

its fluctuations about the null cusp background and the AdS light-cone gauge makes the

explicit evaluation of the free energy rather manageable, as in the AdS5 ×S5 counterpart of

this calculation [225].

While at one loop we confirm the result of [57, 403, 404], the two-loop correction provides a

new important information that, once combined with a proposal based on the Bethe Ansatz

[124] and the correction to the effective string tension [58], gives information on the two-loop

coefficient in the expansion of the interpolating function h(λ) of the AdS4/CFT3 duality.

At this perturbative order, our calculation gives a test of the validity of the exact expression

for h(λ) conjectured in [130] and also indirect evidence of quantum integrability for the type

IIA superstring in the AdS light-cone gauge.

The cancellation of UV divergences gives strong evidences of the quantum consistency of

the non-supercoset action of [230, 231] and shows that it can be used for other non-trivial

strong-coupling computations in AdS4 ×CP3 [233].

In chapter 7 we investigate a path that has led us out of the context of perturbation theory.

We proposed possible lattice discretizations of the two-dimensional AdS5 × S5 supercoset

sigma-model in which local symmetries are fixed in the AdS light-cone gauge.

We measured numerically the derivative of the light-like cusp anomaly of N = 4 SYM (from

the value of the bosonic action) and the mass of the two bosonic AdS worldsheet excita-

tions (from their two-point function) that are transverse to the relevant classical solution.

Lattice simulations are performed with a Rational Hybrid Monte Carlo algorithm and two

Wilson-like fermion discretizations breaking different subgroups of the global symmetry of

the action. They agree within errors in continuum extrapolations of the observables, in

which no tuning of the “bare” mass parameter (the light-cone momentum p+) seems to be

required.

Both observables are in good agreement (qualitative for the mass and quantitative for the ac-

tion) with integrability predictions in the weakly-coupled regime at large ’t Hooft coupling.

For smaller values, the action develops quadratic divergences that we non-perturbatively

subtracted before taking the continuum limit. Our choice for the linearization of fermionic

interactions leads to a complex phase in the fermionic determinant. In the non-perturbative

regime this causes a severe sign problem that we can not be treated via standard reweighting.
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Future directions

All this work has opened up a number of interesting directions that is worth exploring.

In the perspective adopted in chapter 3 there is no explicit reference to the classical inte-

grability of the AdS5 × S5 superstring [79]. In a number of semiclassical studies [172, 174]

the underlying integrable structure of the AdS5 × S5 background emerges in the appear-

ance of certain “solvable” differential operators [172], whose determinants can be calculated

explicitly and result in closed form expressions for the one-loop partition functions. The

question of a deeper relation between our geometric approach to fluctuations and the inte-

grability of the sigma-model of interest should become more manifest within the algebraic

curve approach to semiclassical quantization [446–448], likely on the lines of [449].

The observations above apply also to the spectral problem encountered in chapter 4. For the

two-spin string of [171] it is arguably more urgent to complete the solution of the spectral

problem in the fermionic sector, which might require a non-trivial field redefinition for the

corresponding Lagrangian, or equivalently a modification of the ansatz for the solution of

the related differential operator. Perfecting the analysis in this direction should enlarge the

range of the class of problems that can be solved analytically.

An immediate follow-up [9] inspired by the work in chapter 5 is the development of heat

kernel techniques to evaluate one-loop determinants around minimal surfaces that possess

a geometry “infinitesimally close” to the hyperbolic space H2. This occurs whenever the

worldsheet is actually a family of classical surfaces, controlled by a certain deformation

parameter α, that reaches such special configuration for α = 0. The power of our method

relies on the knowledge of the heat kernels of Laplace and Dirac operators on the maximally

symmetric H2 [209–212]. The fundamental idea is to approximate the heat kernels of

the fluctuation operators on the (non-maximally-symmetric) worldsheet as a perturbative

series in small α around the known heat kernels at α = 0. The fluctuation determinants

can be eventually extracted from this spectral information via zeta-function regularization.

The principles of the algorithm have strong resemblance to the perturbative solution of a

Schrödinger-like equation (heat equation in formula (1.15)), where one adds a perturbation

parameter α to an exactly solvable potential (maximally-symmetric worldsheet metric) and

then tries to determine the small corrections to a certain wavefunction (heat kernel). Our

method reproduces [9] the small-angle coefficient in the one-loop partition function (here

α = k2)

log
Z(1)(k = 0)
Z(1)(k)

≡ Γ(1)(k) − Γ(1)(k = 0) = 3T

8
k2 +O(k2) (8.1)
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dual to a Wilson loop made of two nearly-antipodal lines on R×S3 [174] 1. We have started

to address the case of latitude Wilson loops of chapter 5 for small values of the angular

parameter θ0, so in a configuration very close to the 1/2-BPS circular loop (left panel in

figure 5.2, with φ0 ≡ π − θ0 ≈ π). Preliminary results indicate that we can recover (here

α = θ2
0)

log
Z(1)(θ0)

Z(1)(θ0 = 0)
≡ Γ(1)(θ0 = 0) − Γ(1)(θ0) =

3

4
θ2

0 +O(θ4
0) (8.2)

in agreement with the small-angle limit of −3
2 log cos θ0 in (5.22). A rather necessary step

will be of course to explain why the Gel’fand-Yaglom method applied to the antiparallel

lines of [174] agrees with thermodynamic Bethe ansatz [114] and quantum spectral curve

[117], whereas it fails to match localization for the latitude loops in chapter 5 and [385].

On a related note, one should be able to understand why the Gel’fand-Yaglom approach

seems nevertheless to capture the expected localization result once some contributions are

artificially excluded in [385] and here in (5.93). The authors of this paper speculated that

this ad hoc prescription might hint at the existence of some localization mechanism in

string theory that would reproduce the full partition function by integrating over only some

zero-modes, in the same way as localization writes the matrix model of the circular Wilson

loop in gauge theory [151]. Without endeavouring to prove such speculative statement, it

is certainly worthwhile to see [261] whether the prescription of [385] still applies to other

DGRT Wilson loops [298] and correlators with local operators, as they are known to localize

on a matrix model in N = 4 SYM [354].

The two-loop computation in chapter 6 provided support to the quantum consistency of the

AdS4×CP3 superstring action [230, 231]. Beyond the possibility of pushing the perturbative

check of the all-loop proposal for the ABJM interpolating function (6.4) to three-loop level,

one intriguing direction would be to see whether this action can be discretized on a lattice

as we did for the AdS5 ×S5 sigma-model action in chapter 7. In this way we would be able

to obtain information on the ABJM scaling function in terms of the coupling constant, for

any value thereof. By comparison with its integrability prediction in terms of the ABJM

interpolating function h(λ), one could then provide numerical values of h(λ) at some finite

values of the ’t Hooft coupling, which could then be contrasted with (6.4).

Another topic of high relevance is the non-perturbative investigation of the AdS5×S5 sigma-

model set up in chapter 7. The next step currently underway is to extend the analysis to

all field correlators and proceed with the comparison of their physical masses – obtained

from the exponential decay of the two-point lattice correlators – with their predictions from
1See formula (D.48) therein, where T = ∫ dt+O(k2) and T ≡ ∫ dt is the AdS time cutoff on the temporal

extension of the Wilson lines in Figure 1. In the notation of the paper, we are considering a loop coupled
to a fixed scalar (setting θ = 0 in (2.1)) and made of two lines separated by an angle π −φ along a big circle
on S3, where in first approximation φ ≈ πk in (B.10) for k → 0.
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semiclassical string theory [440] or at smaller coupling via asymptotic Bethe ansatz [439] 2.

A rather stringent test of our computational setup would be to see that fermions remain

massless at any coupling [424].

Current data in chapter 7 has already clearly exposed many numerical and conceptual chal-

lenges that we are addressing in parallel. The action at small values of g appears to be

quadratically divergent in the inverse lattice spacing ∼ a−2. It is possible that the reason-

ing leading to the proposed line of constant physics might be subject to change once all

fields correlators are investigated. At the same time, such divergences are expected in our

lattice regularization because in the continuum theory in this [225] and analogue models

(chapter 6) power-like divergences are set to zero in dimensional regularization. While we

have proceeded to non-perturbative subtractions of those divergences so far, in general this

procedure leads to potentially severe ambiguities, with errors diverging in the continuum

limit. We remark however that for the other physical observable here investigated, the

⟨xx∗⟩ correlator, we encountered no problems in proceeding to the continuum limit.

The comparison for both observable under investigation with the integrability predictions

(figures 7.6 and 7.10) is carried out by matching at a given coupling the corresponding

values for the continuum extrapolation of f ′(g)LAT and the integrability prediction f ′(gc)c.
Assuming that a simple finite rescaling relates the lattice bare coupling g and the (bare)

continuum one gc, we have derived the relation gc = 0.04g and proceeded with the compar-

ison of further data points. Nevertheless, it is possible that further data at smaller values

of g might prove that the assumption is not justified. A non-trivial relation between g and

gc would take away any predictivity from the lattice measurements for the (derivative of

the) cusp. To proceed, one could then define the continuum (BES) prediction as the point

where to study the theory and tune accordingly the lattice bare coupling, i.e. numerically

determine such non-trivial interpolating function of the bare couplings. This could then

be used as an input for the – this time fully predictive – measurements of other physical

observables (like the mass m2
x here).

Our simulations have also detected a phase in the fermionic determinant that descends from

the linearization of fermionic interactions taken from [238]. The phase undergoes strong fluc-

tuations, signalling a severe sign problem, when we approach the non-perturbative regime

at small values of g. Current numerical simulations are now employing the new proposal in

section 7.7 and they will furnish a non-trivial benchmark for the new fermionic discretiza-

tion. Current efforts are also focussing on an implementation of these improvements in a

parallel software.

2We thank Benjamin Basso and Pedro Vieira for proving a Mathematica script solving for the mass of
the x excitation based on [146].



Appendix A

Jacobi elliptic functions

In the course of proving the results of chapter 4 and appendix C we need the following

relations for the Jacobi elliptic functions, mainly taken from appendices A and C of [172].

Two more complete resources are [450–452]. We adopt the standard notation of [453], which

is the same of the Mathematica built-in functions.

The incomplete elliptic integrals of the first, second and third kind are respectively defined

through

F (z∣k2) ≡ ∫
z

0

dθ√
1 − k2 sin2 θ

= ∫
sin z

0

dt√
(1 − t2)(1 − k2t2)

,

E(z∣k2) ≡ ∫
z

0
dθ

√
1 − k2 sin2 θ = ∫

sin z

0
dt

√
1 − k2t2

1 − t2 , (A.1)

Π(`2; z∣k2) ≡ ∫
z

0

dθ

(1 − `2 sin2 θ)
√

1 − k2 sin2 θ
= ∫

sin z

0

dt

(1 − `2t2)
√

(1 − t2)(1 − k2t2)
,

where k2 is the elliptic modulus and `2 is the characteristic. The modulus can take any

complex values, but it shall be restricted to the interval 0 ≤ k < 1 for the applications in this

thesis.

We obtain the complete elliptic integrals by setting z = π
2

K ≡ K(k2) ≡ F (k2) = F (π2 ∣k
2) , K′ ≡ K′(k2) ≡ K(k′) ,

E(k2) ≡ E(π2 ∣k
2) , Π(`2∣k2) ≡ Π(`2; π2 ∣k

2) ,
(A.2)

with k′ ≡
√

1 − k2 being the complementary modulus.

Defining the Jacobi amplitude by

ϑ ≡ am(u∣k2) with u = F (arcsinϑ∣k2) , (A.3)
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the sine, cosine and delta amplitudes are given by

sn(u∣k2) = sinϑ , cn(u∣k2) = cosϑ , dn(u∣k2) =
√

1 − k2 sin2 ϑ . (A.4)

They are doubly periodic functions of the complex variable u. Like the trigonometric func-

tions, they have a real-valued period (2K for dn and 4K for sn, cn) and, like the hyperbolic

ones, a purely-imaginary period (2iK′ for sn and 4iK′ for cn, dn). By convention, K is called

real quarter period and iK′ imaginary quarter period. The fundamental parallelogram of the

elliptic functions is a rectangle on the complex plane with corners at (0, 4K, 4iK′, 4K+4iK′).

One can also define nine minor Jacobi elliptic functions built from the three above. The

quotients and reciprocals are designated in Glaisher’s notation by

nsu ≡ 1
sn u , tnu ≡ scu ≡ sn u

cn u , sdu ≡ sn u
dn u ,

ncu ≡ 1
cn u ,

1
tnu ≡ csu ≡ cn u

sn u , cdu ≡ cn u
dn u ,

ndu ≡ 1
dn u , dsu ≡ dn u

sn u , dcu ≡ dn u
cn u ,

(A.5)

where we suppressed the modulus k2 in order not to clutter formulas 1.

The functions satisfy the algebraic relations

−dn2(u∣k2) + k′2 = −k2 cn2(u∣k2) = k2 sn2(u∣k2) − k2 ,

−k′2 nd(u∣k2) + k′2 = −k2k′2 sd2(u∣k2) = k2 cd(u∣k2) − k2 .
(A.6)

The inverse functions of (A.4) possess an integral representation in terms of elliptic integrals

sn−1(u∣k2) = ∫
1

u

dt√
(1 − t2)(1 − k2t2)

= F (arcsin u∣k2) , (A.7)

cn−1(u∣k2) = ∫
1

u

dt√
(1 − t2)(k′2 + k2t2)

= F (arcsin
√

1 − u2∣k2) , (A.8)

dn−1(u∣k2) = ∫
1

u

dt√
(1 − t2)(t2 − k′2)

= F (arcsin

√
u2

1 − u2
∣k2) (A.9)

and similar expressions for (A.5). The derivatives of the three basic Jacobi functions are

d

dz
sn(u∣k2) = cn(u∣k2)dn(u∣k2) , (A.10)

d

dz
cn(u∣k2) = − sn(u∣k2)dn(u∣k2) , (A.11)

d

dz
dn(u∣k2) = −k2 sn(u∣k2) cn(u∣k2) , . (A.12)

1We drop the dependence on k2 and k′2 also in chapter 4.
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The Jacobi H, Θ and Z functions are given by the Jacobi θ functions with nome q = q(k2) =
exp(−πK′K ) 2

H(u∣k2) = ϑ1 (
π u

2 K
; q) , Θ(u∣k2) = θ4 (

π u

2 K
; q) , Z(u∣k2) = π

2 K

θ′4(π u2K ; q)
θ4(π u2K ; q) . (A.13)

Useful integral representations are

Z(sn−1(u∣k2)∣k2) = ∫
u

0
dt

⎡⎢⎢⎢⎢⎣

√
1 − k2t2

1 − t2 − E(k2)
K(k2)

1√
(1 − t2)(1 − k2t2)

⎤⎥⎥⎥⎥⎦
, (A.14)

Z(u∣k2) = ∫
u

0
dv dn2(v∣k2) − E(k2)

K(k2) u , 0 < u < K . (A.15)

2See [453] for further discussion.





Appendix B

Methods for functional determinants

in one dimension

The theory of functional determinants of partial differential operators is an important sub-

ject in many areas of mathematical physics 1. In this thesis we shall concentrate on the

problem of computing one-loop corrections to string effective actions around minimal-area

surfaces, which is a task requiring the knowledge of the determinant of highly non-trivial

matrix operators in two variables. This appendix continues the discussion started in section

1.4.1 for fluctuation operators that are translationally invariant in one worldsheet direction.

B.1 Gel’fand-Yaglom method

The method originally developed by Gel’fand and Yaglom [217] provides a simple way to

evaluate ratios of functional determinants of ordinary differential operators, defined on

compact intervals under a large class boundary conditions. Although equivalent to zeta-

function regularization, this algorithm bypasses the need of knowing the full sequence of

the eigenvalues. In particular, no previous information about the spectrum, e.g. bound

or continuum states, is needed. The complexity of the spectral problem is reduced to the

solution of an initial value problem, which can be then analytically or numerically solvable 2.

The situation we typically encounter is finding a determinant relative to a fiducial one

DetO1

DetO2
. (B.1)

1The reader can consult [454] and references therein to find a report on recent progress.
2The solutions of the 1d spectral problems in this thesis (4.45), (4.63), (5.45)-(5.48), (5.65) and (5.68)-

(5.70) are all known in closed form.
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The linear differential operators O1, O2 are either of Dirac-type for spinor fields

O1 = P0(x)
d

dx
+ P1(x) , O2 = P0(x)

d

dx
+Q1(x) , (B.2)

or of Laplace-type for scalar fields

O1 = P0(x)
d2

dx2
+ P1(x)

d

dx
+ P2(x) , O2 = P0(x)

d2

dx2
+Q1(x)

d

dx
+Q2(x). (B.3)

The coefficients above are complex matrices, continuous functions of x on the finite interval

I = [a, b]. The two operators have the same principal symbol P0(x). This assumption en-

sures that the behaviour of the large eigenvalues is comparable, thus the ratio is well-defined

despite the fact each determinant is the product of infinitely-many eigenvalues of increas-

ing magnitude. More formally, it guarantees the cancellation of the leading Seeley-deWitt

coefficients, responsible for the divergences of the individual determinants [206, 208, 317],

in the difference of the zeta-functions of O1 and O2.

In appendix B.2 we deal with a class of spectral problems free of zero modes (i.e. van-

ishing eigenvalues) using some results built on the Gel’fand-Yaglom theorem. We closely

follow the technology developed by Forman [221, 222], who gave a prescription to work

with even more general elliptic boundary value problems. We derive a compact formula for

the square of first-order operators in appendix B.3. Appendices B.4 and B.5 conclude the

discussion with some corollaries.

B.2 nth-order operators

Let us consider the pair of n-order ordinary differential operators

O1 = P0(x)
dn

dxn
+
n−1

∑
k=0

Pn−k(x)
dk

dxk
, O2 = P0(x)

dn

dxn
+
n−1

∑
k=0

Qn−k(x)
dk

dxk
(B.4)

with coefficients being r × r complex matrices. The principal symbols of the two operators

(proportional to the coefficient P0(x) of the highest-order derivative) are equal and invertible

(det P0(x) ≠ 0) on the compact interval I = [a, b]. We do not impose further conditions on

the matrix coefficients, besides the requirement of being continuous functions on I. The

operators act on the space of square-integrable r-component functions

f̄ ≡ (f1, f2, ..., fr)T ∈ L2 (I) , (B.5)
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where for our purposes one defines the Hilbert inner product (∗ stands for complex conju-

gation)

(f̄ , ḡ) ≡ ∫
b

a

√
h(x)dx

r

∑
i=1

f∗i (x) gi(x). (B.6)

The inclusion of the measure factor, given by the invariant volume element
√
h, guarantees

that the worldsheet operators are self-adjoint when supplemented with appropriate bound-

ary conditions. One has to specify the two nr × nr constant matrices M,N to implement

the linear boundary conditions at the endpoints of I

M

⎛
⎜⎜⎜⎜⎜⎜
⎝

f̄ (a)
d
dx f̄ (a)

⋮
dn−1

dxn−1 f̄ (a)

⎞
⎟⎟⎟⎟⎟⎟
⎠

+N

⎛
⎜⎜⎜⎜⎜⎜
⎝

f̄ (b)
d
dx f̄ (b)

⋮
dn−1

dxn−1 f̄ (b)

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

0

0

⋮
0

⎞
⎟⎟⎟⎟⎟⎟
⎠

. (B.7)

We restrict ourselves to operators without zero modes on the functions satisfying (B.7).

The proof uses a particular integral representation of the zeta-function to eventually arrive

to the elegant formula for the ratio (B.1)

DetO1

DetO2
=

exp{∫ ba tr [R(x)P1(x)P −1
0 (x)]dx}det [M +NYO1 (b)]

exp{∫ ba tr [R(x)Q1(x)P −1
0 (x)]dx}det [M +NYO2 (b)]

. (B.8)

The matrix R is defined below. This result agrees with the one obtained via zeta-function

regularization for elliptic differential operators, where the divergent part of the individual

determinants cancels in the ratio. Notice that M,N in (B.7) are uniquely fixed up to a

constant rescaling, which leaves the ratio unaffected. When P1(x) = Q1(x), the exponential
factors cancel out. The nr × nr matrix

YO1(x) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

f̄(I)(x) f̄(II)(x) . . . f̄(nr)(x)
d
dx f̄(I)(x)

d
dx f̄(II)(x) . . . d

dx f̄(nr)(x)
⋮ ⋮ ⋱ ⋮

dn−1

dxn−1 f̄(I)(x) dn−1

dxn−1 f̄(II)(x) . . . dn−1

dxn−1 f̄(nr)(x)

⎞
⎟⎟⎟⎟⎟⎟
⎠

(B.9)

accommodates all the independent homogeneous solutions of 3

O1 f̄(i)(x) = 0 i = I, II, ...,2r (B.10)

normalized such that YO1 (a) = Inr. The matrix YO2(x) is similarly defined with respect to

O2.
3The solutions of this auxiliary problem are not zero modes of the operator with the boundary condition

(B.7).
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If we focus on even-order differential operators, then R(x) = 1
2 Inr is proportional to the

identity matrix and (B.8) becomes

DetO1

DetO2
=

exp{1
2 ∫

b
a tr [P1(x)P −1

0 (x)]dx}det [M +NYO1 (b)]

exp{1
2 ∫

b
a tr [Q1(x)P −1

0 (x)]dx}det [M +NYO2 (b)]
. (B.11)

For odd n one gets a slightly more complicated structure, constructed as follows. Let us

assume that the spectrum of the principal symbols, i.e. the matrix (−i)n P0(x), has no

intersection with the cone

C ≡ {z ∈ C ∶ θ1 < arg(z) < θ2} (B.12)

for some choice of θ1, θ2. This is to say that O1 and O2 have principal angle between θ1 and

θ2. It also follows that no eigenvalue falls in the opposite cone

−C ≡ {z ∈ C ∶ θ1 + π < arg(z) < θ2 + π} (B.13)

for odd n. Consequently, the eigenvalues fall under two sets, depending on which sector

of C ∖ (C ∪ −C) they belong to. The matrix R(x) is then defined 4 as the projector onto

the subspace spanned by the eigenvectors associated to all eigenvalues in one of these two

subsets of the complex plane.

We stress again that the powerful, yet simple, result (B.8) is possible only for the ratio.

We do not known of any simple formula when the two operators are defined on different

intervals or the boundary conditions do not fall under (B.7). Another severe limitation is

the equality of the principal symbols. For instance, this prevents to compare two scalar

Laplacians defined on different 1d manifolds, as the coefficient of the highest derivative

would depend on the metric of the space.

The results above generalise in several ways. It is possible to use a similar formalism

to deal with single determinants of second-order operators with periodic coefficients on S1

[455, 456] and on a line [457], as well as with operators of any order and more general

boundary conditions [458]. We also emphasise that a number of physically interesting sys-

tems displays zero modes and one has to find a way to single them out from the spectrum

and treat them separately [459, 460]. A regularization procedure via contour integration

methods is discussed in detail in [461–464].
4Up to a factor 1

n
according to the amendment in [222].
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B.3 Square of first-order operators

As a corollary of the Forman’s construction, we can easily compute the ratio of determi-

nants of the square of first-order operators with reference only to the operators themselves.

Consider the matrix operator of the form (B.2) 5

O1 = P0 (x)
d

dx
+ P1 (x) O2 = P0 (x)

d

dx
+Q1 (x) (B.14)

and denote by YO1 (x) its fundamental matrix that solves the equation (here ′ is the deriva-

tive with respect to x)

P0 (x)Y
′

O1
(x) + P1 (x)YO1 (x) = 0, YO1 (a) = Ir. (B.15)

The matrix of fundamental solutions of the square of this operator

O2
1 = P 2

0 (x) d2

dx2
+ [P0 (x)P

′

0 (x) + {P0 (x) , P1 (x)}]
d

dx
+ P 2

1 (x) + P0 (x)P
′

1 (x) (B.16)

can be constructed via the method of reduction of order as

Y
O

2
1
(x) =

⎛
⎝
YO1 (x) −ZO1 (x)Y

′

O1
(a) ZO1 (x)

Y
′

O1
(x) −Z ′

O1
(x)Y ′

O1
(a) Z

′

O1
(x)

⎞
⎠
, Y

O
2
1
(a) = I2r , (B.17)

in which

ZO1 (x) = YO1 (x)∫
x

a
ds [Y −1

O1
(s)P −1

0 (s)YO1 (s)]P0 (a) ZO1 (a) = 0 Z ′

O1
(a) = Ir.

(B.18)

encapsulates the solutions of O1f̄ = 0 and two more ones of O2
1f̄ = 0.

Suppose that the spectral problem of the squared operator is determined by the bound-

ary condition

M
O2 f̄ (a) +N

O2 f̄ (b) = 0 . (B.19)

After some algebra, successive applications of (B.11),(B.17),(B.18) bring

DetO2 =
¿
ÁÁÀdetP0 (b)

detP0 (a)
det [M

O2 +NO2Y
O

2
1
(b)]

detYO1 (b)
. (B.20)

5We do not report the analogue formulas for O2.
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For Dirichlet boundary conditions at the endpoints x = a, b

f1 (a) = f2 (a) = f1 (b) = f2 (b) = 0 , (B.21)

M
O2 =

⎛
⎝

Ir 0

0 0

⎞
⎠
, N

O2 =
⎛
⎝

0 0

Ir 0

⎞
⎠
,

then (B.20) gives

(DetO2
1)Dirichlet b.c. =

√
detP0 (a)detP0 (b) det [∫

b

a
dsY −1

O1
(x)P −1

0 (x)YO1 (x)] (B.22)

which is understood to hold when the convenient normalisation with the fiducial O2 is taken,

see (B.25).

B.4 Corollaries for second-order operators

• Scalar-valued differential operators,

Dirichlet boundary conditions f1 (a) = f1 (b) = 0.

M =
⎛
⎝

1 0

0 0

⎞
⎠
, N =

⎛
⎝

0 0

1 0

⎞
⎠
,

Det [ d2

dx2 + P2(x)]

Det [ d2

dx2 +Q2(x)]
=
f(II)1 (b)
g(II)1 (b)

. (B.23)

The normalization of the matrix (B.9) tells that the functions f(II)1 (x) and g(II)1 (x)
solve the initial value problems

f ′′
(II)1(x) + P2(x)f(II)1(x) = 0 , f(II)1 (a) = 0 , f ′

(II)1 (a) = 1 ,

(B.24)

g′′
(II)1(x) +Q2(x)g(II)1(x) = 0 , g(II)1 (a) = 0 , g′

(II)1 (a) = 1 .

• 2 × 2 matrix-valued differential operators,

Dirichlet boundary conditions f1 (a) = f2 (a) = f1 (b) = f2 (b) = 0.
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This is a corollary of (B.22).

M =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

, N =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

,

YP0∂x+P2 (x) =
⎛
⎝
f(I)1 (x) f(II)1 (x)
f(I)2 (x) f(II)2 (x)

⎞
⎠
, YP0∂x+Q2 (x) =

⎛
⎝
g(I)1 (x) g(II)1 (x)
g(I)2 (x) g(II)2 (x)

⎞
⎠
,

(B.25)

Det [P0 (x) d
dx + P1 (x)]

2

Det [P0 (x) d
dx +Q1 (x)]

2
= ∫

b
a dsY

−1
P0∂x+P2

(s)P −1
0 (s)YP0∂x+P2 (s)

∫ ba dsY −1
P0∂x+Q2

(s)P −1
0 (s)YP0∂x+Q2 (s)

with

P0(x)
⎛
⎝
f ′
(I)1(x)
f ′
(I)2(x)

⎞
⎠
+ P1(x)

⎛
⎝
f(I)1(x)
f(I)2(x)

⎞
⎠
=
⎛
⎝

0

0

⎞
⎠
,

f(I)1 (a) = 1 , f(I)2 (a) = 0 ,

P0(x)
⎛
⎝
f ′
(II)1(x)
f ′
(II)2(x)

⎞
⎠
+ P1(x)

⎛
⎝
f(II)1(x)
f(II)2(x)

⎞
⎠
=
⎛
⎝

0

0

⎞
⎠
,

f(II)1 (a) = 0 , f(II)2 (a) = 1 ,

(B.26)

P0(x)
⎛
⎝
g′
(I)1(x)
g′
(I)2(x)

⎞
⎠
+Q1(x)

⎛
⎝
g(I)1(x)
g(I)2(x)

⎞
⎠
=
⎛
⎝

0

0

⎞
⎠
,

g(I)1 (a) = 1 , g(I)2 (a) = 0 ,

P0(x)
⎛
⎝
g′
(II)1(x)
g′
(II)2(x)

⎞
⎠
+Q1(x)

⎛
⎝
g(II)1(x)
g(II)2(x)

⎞
⎠
=
⎛
⎝

0

0

⎞
⎠
,

g(II)1 (a) = 0 , g(II)2 (a) = 1 .

It is straightforward to apply the first block of formulas (B.23)-(B.24) to (5.40)-(5.42) and

the second one (B.25)-(B.26) to (5.53), provided that x ∈ [a, b] is replaced by σ ∈ [ε0,R] and
the one-dimensional Det is understood as the Detω at fixed frequency. Since we square the

fermionic operator (5.53), we do not make use of formulas for first-order operators in this

thesis. Note that the Weyl rescaling of the operators by
√
h done in sections 5.5.1 and 5.5.2
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removes the measure from (B.6) and also the θ0-dependence in the principal symbol of each

operator, effectively making possible to normalize latitude and circle operators in section

(5.6).

B.5 Corollary for fourth-order operators

• Scalar-valued differential operators,

boundary conditions ρf1 (a) = f1 (b) = 0, ρ ∈ C.

M = −ρ I4 , N = I4 ,
Det [ d4

dx4 + P2(x) d2

dx2 + P3(x) d
dx + P4(x)]

Det [ d4

dx4 +Q2(x) d2

dx2 +Q3(x) d
dx +Q4(x)]

=

=

det

⎛
⎜⎜⎜⎜⎜⎜
⎝

f(I)1(x) − ρ f(II)1(x) f(III)1(x) f(IV )1(x)
f ′
(I)1(x) f ′

(II)1(x) − ρ f ′
(III)1(x) f ′

(IV )1(x)
f ′′
(I)1(x) f ′′

(II)1(x) f ′′
(III)1(x) − ρ f ′′

(IV )1(x)
f ′′′
(I)1(x) f ′′′

(II)1(x) f ′′′
(III)1(x) f ′′′

(IV )1(x) − ρ

⎞
⎟⎟⎟⎟⎟⎟
⎠

det

⎛
⎜⎜⎜⎜⎜⎜
⎝

g(I)1(x) − ρ g(II)1(x) g(III)1(x) g(IV )1(x)
g′
(I)1(x) g′

(II)1(x) − ρ g′
(III)1(x) g′

(IV )1(x)
g′′
(I)1(x) g′′

(II)1(x) g′′
(III)1(x) − ρ g′′

(IV )1(x)
g′′′
(I)1(x) g′′′

(II)1(x) g′′′
(III)1(x) g′′′

(IV )1(x) − ρ

⎞
⎟⎟⎟⎟⎟⎟
⎠

(B.27)

with

f ′′′′
(I)1 + P2(x)f ′′(I)1 + P3(x)f ′(I)1 + P4(x)f(I)1 = 0 ,

f ′
(I)1 (a) = f

′′

(I)1 (a) = f
′′′

(I)1 (a) = 0 , f(I)1 (a) = 1 ,

f ′′′′
(II)1 + P2(x)f ′′(II)1 + P3(x)f ′(II)1 + P4(x)f(II)1 = 0 ,

f(II)1 (a) = f ′′(II)1 (a) = f
′′′

(II)1 (a) = 0 , f ′
(II)1 (a) = 1 ,

(B.28)

f ′′′′
(III)1 + P2(x)f ′′(III)1 + P3(x)f ′(III)1 + P4(x)f(III)1 = 0 ,

f(III)1 (a) = f ′(III)1 (a) = f
′′′

(III)1 (a) = 0 , f ′′
(III)1 (a) = 1 ,

f ′′′′
(IV )1 + P2(x)f ′′(IV )1 + P3(x)f ′(IV )1 + P4(x)f(IV )1 = 0 ,

f(IV )1 (a) = f ′(IV )1 (a) = f
′′

(IV )1 (a) = 0 , f ′′′
(IV )1 (a) = 1

and similar relations for the reference operator upon replacing P → Q and f → g.
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The case encompasses periodic (ρ = 1) and anti-periodic boundary conditions (ρ = −1) for

differential operators (C.1). The formulas above will find application in (C.14)-(C.16).





Appendix C

Exact spectrum for a class of

fourth-order differential operators

We examine the spectral properties of linear ordinary differential operators of the fourth

order, whose coefficients are meromorphic and doubly periodic functions in one complex

variable. They can be seen as higher-order generalization of the second-order Lamé equa-

tion. The exact solution of these operators has been found in the course of the study of the

energy corrections for the rotating strings in chapter 4.

In appendix C.1 we write a generalization of the Floquet analysis – which is for homo-

geneous linear second-order operators with periodic coefficients [465] (also [172]) – to the

fourth-order operators (C.1) below. The Gel’fand-Yaglom method allows to express their

determinants in terms of two quasi-momenta functions, which we are able to derive ex-

plicitly for a subclass of doubly periodic operators on the complex plane (C.17)-(C.18) in

appendices C.2 - C.4. These results are the basis for the one-loop analysis in chapter 4,

which we supplement with some technical details in appendices C.5 - C.6.

C.1 Generalization of the Floquet-Bloch theory to periodic

fourth-order operators

Let us consider the fourth-order differential operator on the real line x ∈ R 1

O(4) = d4

dx4
+ v1(x)

d2

dx2
+ v2(x)

d

dx
+ v3(x), (C.1)

1We encourage the reader to consult in parallel chapter 1 of [465] (also section 4.1 [175]) for the original
discussion of second-order Hill’s operators.
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with coefficients having a fundamental period L,

vi(x +L) = vi(x) . (C.2)

The solution of the eigenvalue problem

O(4)f(x,Λ) = Λf(x,Λ), f(x +L,Λ) = f(x,Λ) (C.3)

consists of four independent functions f(i)(x,Λ) (i = I, II, III, IV ), which can be normalized

f(I)(0,Λ) = 1, f ′
(1)(0,Λ) = 0, f ′′

(1)(0,Λ) = 0, f ′′′
(1)(0,Λ) = 0,

f(II)(0,Λ) = 0, f ′
(II)(0,Λ) = 1, f ′′

(II)(0,Λ) = 0, f ′′′
(II)(0,Λ) = 0,

f(III)(0,Λ) = 0, f ′
(III)(0,Λ) = 0, f ′′

(III)(0,Λ) = 1, f ′′′
(III)(0,Λ) = 0,

f(IV )(0,Λ) = 0, f ′
(IV )

(0,Λ) = 0, f ′′
(IV )

(0,Λ) = 0, f ′′′
(IV )

(0,Λ) = 1,

(C.4)

such that the Wronskian determinant is one. The periodicity of the operator implies that

also f(i)(x +L,Λ) is an eigenfunction with the same eigenvalue Λ, so it must be written as

a linear combination of the f(i)(x,Λ):

f(i)(x +L,Λ) =
IV

∑
j=I

aijfj(x,Λ) . (C.5)

Setting x = 0 yields

aij =
d(j−1)

dx(j−1)
f(i)(L,Λ) , (C.6)

with f
(0)
(i)

≡ f(i) . This shows that any four independent solutions at x = L are related to

those at x = 0 by the monodromy matrix

M(Λ) ≡

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

f(I)(L,Λ) f ′
(I)(L,Λ) f ′′

(I)(L,Λ) f ′′′
(I)(L,Λ)

f(II)(L,Λ) f ′
(II)(L,Λ) f ′′

(II)(L,Λ) f ′′′
(II)(L,Λ)

f(III)(L,Λ) f ′
(III)(L,Λ) f ′′

(III)(L,Λ) f ′′′
(III)(L,Λ)

f(IV )(L,Λ) f ′
(IV )

(L,Λ) f ′′
(IV )

(L,Λ) f ′′′
(IV )

(L,Λ)

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

. (C.7)

After diagonalizing it one obtains a new set of four linear independent Floquet or Bloch

solutions f̃i(x,Λ) with the property f̃i(x+L,Λ) = ρf̃i(x,Λ) (ρ ∈ C), i.e. in matrix notation

[M(Λ) − ρ I4]

⎛
⎜⎜⎜⎜⎜⎜
⎝

f̃(I)(x,Λ)
f̃(II)(x,Λ)
f̃(III)(x,Λ)
f̃(IV )(x,Λ)

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎟
⎠

. (C.8)
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Setting ρ = 1 selects four independent periodic eigenfunctions with period L, while ρ = −1

four antiperiodic ones. We can restrict to the compact interval x ∈ [0, L]. The eigenvalues

form a discrete set {Λi}: Λ is an allowed eigenvalue if we can find a non-trivial Bloch solution

f̃(i)(x) from the algebraic system of equations (C.8), i.e. if there exists a ρ satisfying the

characteristic equation

0 =det(M(Λ) − ρ I4) = ρ4 − (f(I) + f ′(II) + f
′′

(III) + f
′′′

(IV )
)ρ3

+ [det
⎛
⎝
f(I) f ′

(I)

f(II) f ′
(II)

⎞
⎠
+ det

⎛
⎝

f(I) f ′′
(I)

f(III) f ′′
(III)

⎞
⎠
+ det

⎛
⎝

f(I) f ′′′
(I)

f(IV ) f ′′′
(IV )

⎞
⎠

+ det
⎛
⎝
f ′
(II) f ′′

(II)

f ′
(III) f ′′

(III)

⎞
⎠
+ det

⎛
⎝
f ′
(II) f ′′′

(II)

f ′
(IV )

f ′′′
(IV )

⎞
⎠
+ det

⎛
⎝
f ′′
(III) f ′′′

(III)

f ′′
(IV )

f ′′′
(IV )

⎞
⎠
]ρ2

− [det

⎛
⎜⎜⎜
⎝

f(I) f ′
(I) f ′′

(I)

f(II) f ′
(II) f ′′

(II)

f(III) f ′
(III) f ′′′

(III)

⎞
⎟⎟⎟
⎠
+ det

⎛
⎜⎜⎜
⎝

f(I) f ′
(I) f ′′

(I)

f(II) f ′
(II) f ′′′

(II)

f(IV ) f ′
(IV )

f ′′′
(IV )

⎞
⎟⎟⎟
⎠

(C.9)

+ det

⎛
⎜⎜⎜
⎝

f(I) f ′′
(I) f ′′′

(I)

f(III) f ′′
(III) f ′′′

(III)

f(IV ) f ′′
(IV )

f ′′′
(IV )

⎞
⎟⎟⎟
⎠
+ det

⎛
⎜⎜⎜
⎝

f ′
(II) f ′′

(II) f ′′′
(II)

f ′
(III) f ′′

(III) f ′′′
(III)

f ′
(IV )

f ′′
(IV )

f ′′′
(IV )

⎞
⎟⎟⎟
⎠
]ρ + 1 .

Let ρi (i = 1,2,3,4) be the roots of this polynomial equation. We pose

det(M(Λ) − ρ I4) ≡ ρ4 − (ρ1 + ρ2 + ρ3 + ρ4)ρ3 (C.10)

+(ρ1ρ2 + ρ1ρ3 + ρ1ρ4 + ρ2ρ3 + ρ2ρ4 + ρ3ρ4)ρ2

−(ρ1ρ2ρ3 + ρ1ρ2ρ4 + ρ1ρ3ρ4 + ρ2ρ3ρ4)ρ + ρ1ρ2ρ3ρ4

and the comparison between (C.9) and (C.10) gives a condition on the Floquet factors ρi

ρ1ρ2ρ3ρ4 = 1. (C.11)

The constraint implies that a general solution of (C.9) would require the introduction of

three functions to parametrize the four roots. However, elaborating on the Floquet-Bloch

theory [465], we will show that we can conveniently solve the equation introducing just two

quasi-momenta functions pi(Λ) (i = 1,2), periodic with period L, from the definitions

ρ1 ≡ eip1(Λ)L , ρ2 ≡ e−ip1(Λ)L,

ρ3 ≡ eip2(Λ)L , ρ4 ≡ e−ip2(Λ)L . (C.12)

We postpone the construction of the pi(Λ) in appendix C.2 for a subclass of operators with

coefficients (C.18).
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The advantage of our method is that, given the quasi-momenta, we can immediately com-

pute the functional determinant DetO(4) without knowing the eigenvalues explicitly. We

apply the corollary (B.11) of Gel’fand and Yaglom [217] for differential operators of even

order [454, 461–464]. The method relies on an integral identity to express the spectral zeta-

function, which defines the finite part of the determinant in zeta-function regularization, in

a contour integral representation. The proof parallels what was done for the Hill’s operators

[455], where the so-called resolvent function carries the spectral information to be plugged

in such integral representation.

We shall use (B.27)-(B.28) and set the range of x ∈ [a, b] to be the line segment [0, L].
The functional determinant can be eventually calculated in closed form 2

DetO(4) = det (M(Λ = 0) − ρ I4) . (C.13)

The formula makes sense only considering the ratio of two determinants of operators in the

form (C.1) with the same boundary conditions on a interval (i.e. same values for L and ρ).

The division by a reference determinant ensures that the divergent part of the determinant

(C.13) is properly subtracted 3.

It is useful to spell out the important formulas for section 4.2 for periodic (P, ρ = 1) or

anti-periodic (AP, ρ = −1) boundary conditions at the endpoints.

• Periodic functions with period L

Periodic eigenfunctions fi(x + L) = fi(x) exist only for special values of Λ which are

determined by setting ρ = 1 in (C.10) and using (C.12)-(C.13) we get

(DetO(4))
P,L

= 16 sin2 (L
2
p1) sin2 (L

2
p2) . (C.14)

• Anti-periodic functions on an interval of length L

We analogously get the determinant for antiperiodic eigenfunctions fi(x+L) = −fi(x)
by setting ρ = −1

(DetO(4))
AP,L

= 16 cos2 (L
2
p1) cos2 (L

2
p2) . (C.15)

• Periodic functions with period 2L

Doubling the period L → 2L in (C.10), the case fi(x + 2L) =fi(x) is the product of
2Note that the monodromy matrix (C.7) at zero eigenvalue Λ = 0 is the transpose of the matrix of

fundamental solutions (B.9) for operators of the fourth order (n = 4) acting on scalar functions (r = 1).
3In the example of the (J1, J2)-string of section 4.2.1, the normalization for the Landau-Lifshitz deter-

minant (4.48), parametrized by k (4.7), is provided in (4.50) by the same determinant with k = 0. A similar
normalization for (4.63) of the (S,J)-string of section 4.2.2 would be naturally provided by the determinants
of fermionic degrees of freedom, which we are not able to solve at the moment.
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the previous matrix determinants:

(DetO(4))
P,2L

= (DetO(4))
P,L

(DetO(4))
AP,L

= 16 sin2 (Lp1) sin2 (Lp2) . (C.16)

C.2 Quasi-momenta for operators with doubly periodic coef-

ficients

In the last appendix we presented an algorithm to evaluate the determinant of (C.1) given

an ansatz (C.12) that needs the input of two quasi-momenta functions. While the problem

with arbitrary periodic coefficients in (C.1) is hard to address, here we proceed with giving

explicit formulas for the quasi-momenta for a special choice of such coefficients. We will

also find the Bloch solutions f̃(i) (C.8). A first attempt to study this kind of equations was

carried out by Mittag-Leffler [330] 4. The differential operators of interest are of the type

(C.1)

O(4) = d4

dx4
+ v1(x)

d2

dx2
+ v2(x)

d

dx
+ v3(x) (C.17)

with potentials

v1(x) = α0 + α1k
2sn2(x, k2) ,

v2(x) = β0 + β1k
2sn2(x, k2) + 2β2k

2sn(x, k2)cn(x, k2)dn(x, k2) , (C.18)

v3(x) = γ0 + 2γ3k
2 + (γ1 − 4(1 + k2)γ3)k2sn2(x, k2)

+2γ2k
2sn(x, k2)cn(x, k2)dn(x, k2) + 6γ3k

4sn4(x, k2)

given in terms of elliptic functions – summarized in appendix A – with only one regular

singular pole 5 at x = iK′. We conventionally suppress the elliptic modulus k2 in what

follows. We will now find conditions on the parameters αi, βi, γi such that the eigenvalue

equation

O(4)f(x,Λ) = Λf(x,Λ), f(x +L,Λ) = f(x,Λ) (C.19)
4Apparently with the help of the diligent student Stenberg mentioned in a footnote of this paper.
5Given an ordinary differential equation ∑ni=0 pi(z)(d/dz)if(z) = 0 in one complex variable z, at ordinary

points the coefficients of the equation are analytic functions, whereas at singular points some of them diverge.
The latter are classified into regular singular points, if pn−i(z) has a pole of order at most i, otherwise the
point is an irregular singularity.
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is solved by a Hermite-Bethe-like ansatz [450] 6

f(x,Λ) =
n

∏
r=1

H(x + ᾱr)
Θ(x) exρexλ (C.20)

where the Jacobi H, Θ and Z functions are defined in terms of the Jacobi θ functions

in (A.13). The constants ρ and ᾱr are determined as functions of the parameters of the

eigenfunction αi, βi, γi and the eigenvalue Λ by analyticity constraints on the eigenfunction

as follows. Let us introduce the function

F (x,Λ) ≡ 1

f(x,Λ)O
(4)f(x,Λ) , (C.21)

which is an elliptic function with periods 2K and 2iK′ and a certain number of poles xi of

order pi in the period-parallelogram. We rewrite the eigenvalue equation as

F (x,Λ) = Λ . (C.22)

Now we use the Liouville’s theorem in complex analysis [450] to state that that an elliptic

function without any poles in a fundamental period parallelogram of the complex plane

has to be constant. If f(x) in (C.20) is a solution of the differential equation, then the

elliptic function F (x) should merely be a constant. Therefore, we have to impose that in

the Laurent expansion of F (x)

F (xi + ε,Λ) = Ai,pi
εpi

+ Ai,pi−1

εpi−1
+ ⋅ ⋅ ⋅ + Ai,1

ε
+ ai,0 + ai,1ε + . . . (C.23)

all coefficients Ai,j of the principal part vanish. This will constrain the free parameters in

(C.18) and deliver the corresponding Bethe-ansatz equations for the spectral parameters ᾱi.

C.3 Pole structure

In order to proceed we need to collect information about the pole structure of the functions

appearing in (C.20)-(C.21). In the study of their analytic properties, it is useful to start
6The ansatz provides four linearly independent solutions – see for example (4.60)-(4.61) with (C.44)-

(C.52), or Figure 4.3 which gives a graphical representation of them. However, at the edges (a finite set of
points) where the color lines meet, there can be a problem, since two or all four functions become linearly
dependent. This is expected from the second-order case [450, 465], where the ansatz gives all two linear
independent solutions, except for a finite number of problematic points (the band edge solutions for Lamé
operators [172]). The missing solutions at those points may be found [466] and this is expected to be
generalizable to our fourth-order case. For our purpose of evaluating a partition function (see below (4.49))
we only need the solutions, the associated quasi-momenta and the relations (C.35) in the physical region
Ω2 < 0, which is free from such problematic “edge” points.
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with the auxiliary function

Φ(x,Λ) ≡ 1

f(x,Λ)
df(x,Λ)
dx

=
n

∑
r=1

[Z(x + ᾱr + iK′) −Z(x)] + ρ + λ + nπi
2K

(C.24)

that has n + 1 poles at x = iK′ and x = −ᾱ1,−ᾱ2, . . . ,−ᾱn, up to translations by the periods

2K and 2iK′. We separately examine these two cases.

C.3.1 Expansion around the pole x = iK′

The expansion of (C.24) around iK′ produces

Φ(iK′ + ε,Λ) = A1

ε
+ a0 + a1ε + a2ε

2 + a3ε
3 + . . . ,

Φ′(iK′ + ε,Λ) = −A1

ε2
+ a1 + 2a2ε + 3a3ε

2 + . . . ,

Φ′′(iK′ + ε,Λ) = 2A1

ε3
+ 2a2 + 6a3ε + . . . , (C.25)

Φ′′′(iK′ + ε,Λ) = −6A1

ε4
+ 6a3 + . . . ,

where we denoted

A1 = −n, a0 =
n

∑
r=1

Z(ᾱr) + ρ + λ, a1 =
n

3
(1 + k2) − k2

n

∑
r=1

sn2(ᾱr),

a2 = −k2
n

∑
r=1

sn(ᾱr)cn(ᾱr)dn(ᾱr), (C.26)

a3 = n

45
(1 − 16k2 + k4) + 2

3
(1 + k2)k2

n

∑
r=1

sn2(ᾱr) − k4
n

∑
r=1

sn4(ᾱr).

The same procedure applied to the potentials (C.18) leads to the series

v1(iK′ + ε) = α1

ε2
+ α0 +

α1

3
(1 + k2) + α1

15
(1 − k2 + k4)ε2 + 0 ⋅ ε3 + . . . ,

v2(iK′ + ε) = −2β2

ε3
+ β1

ε2
+ β0 +

β1

3
(1 + k2) + 2β2

15
(1 − k2 + k4)ε

+β1

15
(1 − k2 + k4)ε2 + . . . , (C.27)

v3(iK′ + ε) = 6γ3

ε4
− 2γ2

ε3
+ γ1

ε2
+ γ0 +

γ1

3
(1 + k2) + 2γ3

15
(1 − k2 + k4)

+2γ2

15
(1 − k2 + k4)ε + . . . .
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C.3.2 Expansion around the poles x = −ᾱi (i = 1, . . . n)

The analysis carried out for the family of poles −ᾱi yields

Φ(−ᾱi + ε,Λ) = 1

ε
+ b0,i + b1,iε + b2,iε2 + . . . (C.28)

where we identify the ε-coefficients with

b0,i = ∑
r=1,...n , r≠i

Z(ᾱr − ᾱi + iK′) + nZ(ᾱi) +
iπ(n − 1)

2K
+ ρ + λ ,

b1,i = − ∑
r=1,...n , r≠i

cs2(ᾱi − ᾱr) +
1

3
(2 − k2) − ndn2(ᾱi) , (C.29)

b2,i = − ∑
r=1,...n , r≠i

cn(ᾱi − ᾱr)dn(ᾱi − ᾱr)
sn3(ᾱi − ᾱr)

− nk2sn(ᾱi)cn(ᾱi)dn(ᾱi).

The potentials vj(−ᾱi) (j = 1,2,3) are non-singular functions.

C.4 Consistency equations

From the behaviour of the auxiliary function (C.24) and the potentials (C.18) around the

singularities, it is now possible to reconstruct the pole structure of F , since the differential

operators in (C.21) translate into combinations of the auxiliary function and its derivatives:

1

f(x,Λ)
d2f(x,Λ)

dx2
= Φ(x,Λ)2 +Φ′(x,Λ) ,

1

f(x,Λ)
d3f(x,Λ)

dx3
= Φ(x,Λ)3 + 3Φ(x,Λ)Φ′(x,Λ) +Φ′′(x,Λ) , (C.30)

1

f(x,Λ)
d4f(x,Λ)

dx4
= Φ(x,Λ)4 + 6Φ(x)2Φ′(x,Λ) + 4Φ(x,Λ)Φ′′(x,Λ)

+3Φ′(x,Λ)2 +Φ′′′(x,Λ).
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The condition of vanishing Laurent coefficients of F at x = iK′ gives constraining equations
on the numerical parameters αi, βi and γi, provided we take into account (C.25)-(C.27):

ρ = −
n

∑
r=1

Z(ᾱr) ,

0 = n(n + 1)(n + 2)(n + 3) + n(n + 1)α1 + 2nβ2 + 6γ3 ,

0 = λ[4(n + 2)(n + 1)n + 2(nα1 + β2)] + (nβ1 + 2γ2) , (C.31)

0 = λ2[6n(n + 1) + α1] + λβ1 + a1[−2n(n + 1)(2n + 1) + α1(1 − 2n) − 2β2]

+n(n + 1)(α0 +
1

3
α1(1 + k2)) + γ1 ,

0 = 4λ3n − 2λ[a1(6n2 + α1) − n(α0 +
α1

3
(1 + k2))]

−a1β1 + 2a2[2n(1 + n2) + α1(n − 1) + β2] + n(β0 +
β1

3
(1 + k2)) .

In particular, the term O(ε0) in the Laurent expansion gives the relation between the eigenvalue
parameter Λ and the spectral parameters ᾱi

Λ = λ4 + λ2[6a1(1 − 2n) + (α0 +
α1

3
(1 + k2))] + λ [a2(4(2 + 3n(n − 1)) + 2α1)

+(β0 +
β1

3
(1 + k2))] + a2

1[3(1 − 2n(1 − n)) + α1]

+a1(1 − 2n)(α0 +
α1

3
(1 + k2)) + a2β1 +

+a3[2(2n − 1)(n(1 − n) − 3) + α1(3 − 2n) − 2β2] +

+ 1

15
(1 − k2 + k4)[n(n + 1)α1 − 2nβ2 + 2γ3] + γ0 +

γ1

3
(1 + k2) . (C.32)

Finally, imposing that the 1/ε-coefficient around the poles x = −ᾱi should vanish gives the Hermite-
Bethe ansatz equations for the spectral parameters (i = 1, . . . n)

4b30,i+2b0,i(6b1,i+α0+α1k
2sn2(ᾱi))+8b2,i+β0+β1k

2sn2(αi)−2β2k
2sn(ᾱi)cn(ᾱi)dn(ᾱi) = 0 (C.33)

where we used (C.28). In deriving these conditions, we have assumed that αi ≠ αj for any pair
i, j = 1, . . . n.
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It is important to mention that in the examples of chapter 4 we made use of the n = 1 consistency
equations alone, which we report here separately for reader’s convenience.

0 = 12 + α1 + β2 + 3γ3 ,

0 = λ(24 + 2(α1 + β2)) + β1 + 2γ2 ,

0 = λ2(12 + α1) − a1(α1 + 12 + 2β2) + λβ1 + 2(α0 +
1

3
α1(1 + k2)) + γ1 ,

0 = −4λ3 − 2λ(α0 − a1(6 + α1) +
1

3
α1(1 + k2)) + a1β1 − 2a2(4 + β2)

−β0 −
1

3
β1(1 + k2) , (C.34)

Λ = λ4 + λ2 [−6a1 + α0 +
1

3
α1(1 + k2) ] + λ [2a2(α1 + 4) + β0 +

1

3
β1(1 + k2) ]

+a2
1(α1 + 3) − a1(α0 +

1

3
α1(1 + k2)) + a2β1 + a3(α1 − 6 − 2β2)

+ 2

15
(1 − k2 + k4)(α1 − β2 + γ3) + γ0 +

1

3
γ1(1 + k2) .

The condition for the pole at x = −ᾱ to vanish turns out to be equivalent to the fourth equation in
(C.34) and therefore it does not give any further constraint. Our result for the consistency equations
is in partial disagreement with [330]. However, the examples discussed in the main text and the
numerical cross-checks of the provided solutions, as well as the study of the square of the Lamé
operator in appendix A of [2], give support to the correctness of our procedure.

C.5 Spectral domain for the (J1, J2)-string

In section 4.2 the expressions of αi in the different branches for real Ω2 read as follows.

• Case −∞ < Ω2 < 0

α1(Ω, k) = u(Ω, k) − iv(Ω, k)

α2(Ω, k) = 2K − u(Ω, k) + iv(Ω, k)

α3(Ω, k) = 2K + u(Ω, k) + iv(Ω, k)

α4(Ω, k) = 2K − u(Ω, k) + 2iK′ − iv(Ω, k) (C.35)

with

u(Ω, k) = sn−1

⎡⎢⎢⎢⎢⎣

√
2

Ω2
(1 −

√
1 −Ω2), k

⎤⎥⎥⎥⎥⎦
(C.36)

v(Ω, k) = sn−1

⎡⎢⎢⎢⎢⎢⎣

¿
ÁÁÀΩ2 − 2k2 + 2k2

√
1 −Ω2

Ω2 − 4k2k′2
, k′

⎤⎥⎥⎥⎥⎥⎦
.
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• Case 0 < Ω2 < 4k2k′2

α1(Ω, k) = 2K − u2(Ω, k) − iv2(Ω, k)

α2(Ω, k) = u2(Ω, k) + iv2(Ω, k)

α3(Ω, k) = 2K + u2(Ω, k) − iv2(Ω, k)

α4(Ω, k) = 2K − u2(Ω, k) + 2iK′ + iv2(Ω, k) (C.37)

with

u2(Ω, k) = sn−1

⎡⎢⎢⎢⎢⎢⎣

1

k

¿
ÁÁÀ

1 − 2k′2
1 −

√
1 −Ω2

Ω2

⎤⎥⎥⎥⎥⎥⎦

v2(Ω, k) = sn−1 [ 1√
2k′

√
1 −

√
1 −Ω2, k′] . (C.38)

• For 4k2k′2 < Ω2 < ∞ as

α3(Ω, k) = 2K − iK′ + 2iα0(Ω, k′)

α4(Ω, k) = 2K + 3iK′ − 2iα0(Ω, k′) . (C.39)

• Case 4k2k′2 < Ω2 < 1

α1(Ω, k) = 2K − i sn−1

⎡⎢⎢⎢⎢⎣

√
1 − 4k2

Ω2
(1 − 2k2 −

√
Ω2 − 4k2k′2), k′

⎤⎥⎥⎥⎥⎦

α2(Ω, k) = i sn−1

⎡⎢⎢⎢⎢⎣

√
1 − 4k2

Ω2
(1 − 2k2 −

√
Ω2 − 4k2k′2), k′

⎤⎥⎥⎥⎥⎦
. (C.40)

• Case 1 < Ω2 < ∞

α1(Ω, k) = 2K − iK′ − 2α0(Ω, k)

α2(Ω, k) = iK′ + 2α0(Ω, k) (C.41)

with

α0(Ω, k) = sn−1

⎡⎢⎢⎢⎢⎣

√
1 − Ω

2k2
+ 1

2k2

√
Ω2 − 4k2k′2, k

⎤⎥⎥⎥⎥⎦
. (C.42)

C.6 Spectral domain for the (S,J)-string

For convenience we define

χ±(Ω̄) = (κ w̄ ±
√

(w̄2 − ν2)(κ2 − ν2 + ν2Ω̄2))
2

− ν4. (C.43)

Then in section 4.2.2 the expressions of αi in the different branches for real Ω2 read as follows.
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• Case −∞ < Ω̄2 < −(κ2

ν2 − 1)

α1,2(Ω) = sn−1 [
√

(κ2−ν2)+(w̄2−ν2)(1−Ω̄2)−
√

((κ2+w̄2)−(w̄2−ν2)Ω̄2)2−4κ2w̄2

2(κ2−ν2+ν2Ω̄2) , k2] (C.44)

±idn−1 [k
κ

√
(w̄2−κ2)2−(w̄2−ν2)(κ2+w̄2)Ω̄2+(w̄2−κ2)

√
((κ2+w̄2)−(w̄2−ν2)Ω̄2)2−4κ2w̄2

−2(w̄2−ν2)Ω̄2 , k′]

• Case −(κ2

ν2 − 1) < Ω̄2 < − (κ2−ν2)(w̄2−κ2)
(w̄2−ν2)κ2

α1(Ω̄) = K − sn−1 [
√

χ−(Ω̄)+ν4Ω̄2/k2
χ−(Ω̄)+ν4Ω̄2 , k] (C.45)

• Case − (κ2−ν2)(w̄2−κ2)
(w̄2−ν2)κ2 < Ω̄2 < 0

α1(Ω̄) = 2K − sn−1 [
√

−ν4Ω̄2

k2χ−(Ω̄) , k] (C.46)

• Case 0 < Ω̄2 < (w̄−κ)2
w̄2−ν2

α1(Ω̄) = 2K + i sn−1 [
√

ν4Ω̄2

k2χ−(Ω̄)+ν4Ω̄2 , k
′] (C.47)

• Case (w̄−κ)2
w̄2−ν2 < Ω̄2 < 1 − κ2

w̄2

α1(Ω̄) = 2K + iK′ − sn−1 [
√

χ−(Ω̄)
−ν4Ω̄2 , k] (C.48)

• Case 1 − κ2

w̄2 < Ω̄2 < (w̄+κ)2
w̄2−ν2

α1(Ω̄) = K + iK′ − sn−1 [
√

χ−(Ω̄)+ν4Ω̄2

k2χ−(Ω̄)+ν4Ω̄2 , k] (C.49)

• Case (w̄+κ)2
w̄2−ν2 < Ω̄2 < ∞

α1(Ω̄) = i sn−1 [
√

ν4Ω̄2

k2χ−(Ω̄)+ν4Ω̄2 , k
′] (C.50)

• Case −(κ2

ν2 − 1) < Ω̄2 < 0

α2(Ω̄) = sn−1

⎡⎢⎢⎢⎢⎣

¿
ÁÁÀ− ν4Ω̄2

k2χ+(Ω̄) , k
⎤⎥⎥⎥⎥⎦

(C.51)

• Case 0 < Ω̄2 < ∞
α2(Ω̄) = i sn−1 [

√
ν4Ω̄2

k2χ+(Ω̄)+ν4Ω̄2 , k
′] (C.52)

In the main body we have used the following identity, which does not seem to be tabulated but can
be easily checked to be true

Z(α, k) = 2

1 + k̃′
Z ( α

1 + k̃′
+ iK′

1 + k̃′
, k̃) − 1 + cn(α, k)dn(α, k)

sn(α, k) + iπ

2K
, (C.53)

where k̃ is the Landen transformed modulus, i.e. k̃2 = 4k/(1 + k)2 .



Appendix D

Conventions for worldsheet geometry

Throughout chapters 3 and 5 we use the following index conventions, when not otherwise stated.

M,N, ... = 0, ...9 curved target-space indices
A,B, ... = 0, ...9 flat target-space indices
i, j, ... = 0,1 = τ, σ curved worldsheet indices
a, b, ... = 0,1 = τ, σ flat worldsheet indices

(D.1)

We introduce the target-space metric GMN and a set of vielbein EAM and its inverse EMA

GMN = EAMEBNηAB , EAME
M
B = δAB , ηAB = diag(−1,1, . . .1) , (D.2)

Given a classical surface Σ in section 3.2, we have similar relations for the induced metric hij ≡
GMN∂iX

M∂jX
N and the zweibein eai

hij = eai ebjηab , eai e
i
b = δab , ηab = diag(−1,1) , (D.3)

When not explicit, indices are raised/lowered via contractions with the metrics above. The 10d
indices can be “pullbacked” onto the 2d embedding Σ using the derivatives of the background,
namely Vi ≡ ∂iXMVM .

We also need a pair of tangent vectors (labeled by the flat index ã = 0,1)

tAã = EAMeiã∂iXM (D.4)

and 8 vectors NA
a orthogonal to Σ (labeled by the flat index a = 2, . . .10):

tAã t
B
b̃
ηAB = ηãb̃ , NA

a N
B
b ηAB = ηab , tAãN

B
b ηAB = 0 ,

tAã t
B
b̃
ηãb̃ +NA

a N
B
b η

a,b = ηAB . (D.5)

For convenience we often tolerate an abuse of notation that consists in adding a tilde over 2d curved
indices, e.g. identifying ĩ = i.

191
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Flat and curved 32 × 32 Dirac matrices are respectively denoted by ΓA and ΓM ≡ EAMΓA while the
symbol In stands for the n × n identity matrix:

{ΓA,ΓB} = 2ηABI32 , {ΓM ,ΓN} = 2GMN I32 . (D.6)

The doublet of 10d spinors of type IIB string theory have the same chirality

Γ11ΨI = ΨI (D.7)

and labeled by capital letters I, J, ... = 1,2.

D.1 Latitude Wilson loops at strong coupling

In what follows we specialize to the analysis in chapter 5. Here, GMN is (5.28) upon Wick rotation
t→ it to Euclidean time. The chosen representation of the SO(10) Dirac matrices reads (σ1, σ2, σ3

are Pauli matrices)

Γ0 = i (σ3 ⊗ σ2) ⊗ I4 ⊗ σ1 Γ5 = I4 ⊗ (σ3 ⊗ σ2) ⊗ σ2

Γ1 = (I2 ⊗ σ1) ⊗ I4 ⊗ σ1 Γ6 = I4 ⊗ (σ1 ⊗ σ2) ⊗ σ2

Γ2 = (I2 ⊗ σ3) ⊗ I4 ⊗ σ1 Γ7 = I4 ⊗ (−σ2 ⊗ σ2) ⊗ σ2

Γ3 = (σ1 ⊗ σ2) ⊗ I4 ⊗ σ1 Γ8 = I4 ⊗ (I2 ⊗ σ1) ⊗ σ2

Γ4 = (−σ2 ⊗ σ2) ⊗ I4 ⊗ σ1 Γ9 = I4 ⊗ (I2 ⊗ σ3) ⊗ σ2

(D.8)

along with the chirality matrix

Γ11 = Γ0123456789 = −I4 ⊗ I4 ⊗ σ3 . (D.9)



Appendix E

Details on the null cusp fluctuation

Lagrangian in AdS4 × CP
3

E.1 Fluctuation Lagrangian in the null cusp background

We present the expressions for the Feynman propagators and the interaction vertices of the fluctu-
ation Lagrangian (6.17). We drop the tildes over the fluctuation fields for better readability. The
bosonic propagators can be easily read off from the quadratic Lagrangian (6.24)

Gϕϕ(p) =
1

p2 + 1
, Gzaz̄b(p) =

2 δba
p2

, Gx1x1(p) = 1

p2 + 1
2

(E.1)

and the fermionic propagators from the inverse of the kinetic matrix KF (6.27)

Gη4η̄4(p) = Gθ4θ̄4(p) =
p0

p2
, Gη4θ̄4(p) = Gθ4η̄4(−p) = −

p1

p2
,

Gηaη̄b(p) = Gθaθ̄b(p) =
p0

p2 + 1
4

δba , Gηaθ̄b(p) = Gθaη̄b(−p) = −
p1 + i

2

p2 + 1
4

δba . (E.2)

The expansion of the exponentials of φ̃ in (6.18)-(6.20) would bring an an infinite tower of interac-
tions. Only terms with four fields at most are relevant for the two-loop computation in section 6.3.
Vertices bring along the factor T

2
from the overall coefficient in the action (6.17). We include the

factor of 1
2
but ignore the string tension T in the lists below.

The cubic interactions read

Vϕx1x1 = −4ϕ (∂sx1 − x1)2
, Vϕ3 = 2ϕ [(∂tϕ)2 − (∂sϕ)2] , Vϕ∣z∣2 = 2ϕ [∣∂tz∣2 − ∣∂sz∣2] , (E.3)
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Vzηη = −εabc∂tz̄aηbηc + h.c., Vzηθ = −2 εabcz̄aηb(∂sθc − θc) − h.c., (E.4)

Vϕηθ = −4 iϕηa(∂sθa − θa) − h.c., Vx1ηη = −4 i ηaηa(∂sx1 − x1), (E.5)

Vzηaη4 = −2∂tz
aηaη4 + h.c., Vzηaθ4 = 2∂sz

aηaθ4 − h.c., (E.6)

Vϕη4θ4 = −2 iϕ (θ4∂sη4 − ∂sθ4η4) − h.c., Vx1ψ4ψ4
= −2 i (η4η4 + θ4θ4)(∂sx1 − x1), (E.7)

while the quartic vertices are

Vz4 =
1

6
[(z̄a∂tza)2 + (z̄a∂sza)2 + (za∂tz̄a)2 + (za∂sz̄a)2

−∣z∣2 (∣∂tz∣2 + ∣∂sz∣2) − ∣z̄a∂tza∣2 − ∣z̄a∂sza∣2] , (E.8)

Vϕ2x1x1 = 16ϕ2 [(∂sx1 − x1)]2
, Vϕ4 = 4ϕ2 [(∂tϕ)2 + (∂sϕ)2 + 2

3
ϕ2] , (E.9)

Vϕ2∣z∣2 = 4ϕ2 [∣∂tz∣2 + ∣∂sz∣2] , Vżz̄ψ4ψ4
= −2 i (η4η4 + θ4θ4)z̄b∂tzb + h.c., (E.10)

Vη2η4η4 = 8η4η4η
aηa, Vz′z̄ψ4ψ4

= −2 i (η4θ4 − θ4η4)z̄b∂szb − h.c., (E.11)

Vη4 = 4(ηaηa)2, Vϕ2η4θ4 = 4 iϕ2 (θ4∂sη4 − ∂sθ4η4) − h.c., (E.12)

Vη4η4θ4θ4 = −8η4η4θ
4θ4, Vϕx1ψ4ψ4

= 12 iϕ (η4η4 + θ4θ4)(∂sx1 − x1), (E.13)

Vη3η4 = 4 εabcηaηbηcη4 + h.c., Vzzηaη4 = −2 i εabc∂tz
azbηcη4 + h.c., (E.14)

Vϕzηaθ4 = −8ϕ∂sz
aηaθ4 − h.c., Vϕzηθ = 8ϕεabcz̄aηb(∂sθc − θc) − h.c., (E.15)

Vzzηaθ4 = 2 i εabc∂sz
azbηcθ4 − h.c., Vzzηη = −2 i (z̄a∂tzaηbηb − z̄b∂tzaηbηa) + h.c., (E.16)

Vϕx1ηη = 24 iϕηaηa(∂sx1 − x1), Vzzηθ = −2 i [∣z∣2ηa(∂sθa − θa)+ (E.17)

− z̄bzaηa(∂sθb − θb)] − h.c.,

Vϕ2ηθ = 8 iϕ2 ηa(∂sθa − θa) − h.c., Vx1zηη = −4 (∂sx1 − x1)εabcz̄aηbηc − h.c.. (E.18)

E.2 Two-loop integral reductions

We list the relevant Passarino-Veltmann reductions of tensor integral appearing in the computation
of the two-loop free energy. We first define the master scalar integrals

I (m2) ≡ ∫
d2p

(2π)2

1

p2 +m2
, (E.19)

I (m2
1,m

2
2,m

2
3) ≡ ∫

d2pd2q d2r

(2π)4

δ(2)(p + q + r)
(p2 +m2

1)(q2 +m2
2)(r2 +m2

3)
, (E.20)

in terms of which we can decompose the following integrals (µ, ν, . . . = 0,1 and (2π)−4 is omitted in
the integrands)

∫
d2pd2q d2r pµqν δ(2)(p + q + r)
(p2 +m2

1)(q2 +m2
2)(r2 +m2

3)
= (E.21)

= δ
µν

4
[I(m2

1)I(m2
2) − I(m2

1)I(m2
3) − I(m2

2)I(m2
3) + (m2

1 +m2
2 −m2

3)I(m2
1,m

2
2;m2

3)] ,

I(m2
1,m

2
2;m2

3) = ∫
d2pd2q d2r (p ⋅ q) δ(2)(p + q + r)
(p2 +m2

1)(q2 +m2
2)(r2 +m2

3)
= (E.22)

= 1

2
[I(m2

1)I(m2
2) − I(m2

1)I(m2
3) − I(m2

2)I(m2
3) + (m2

1 +m2
2 −m2

3)I(m2
1,m

2
2;m2

3)] ,
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∫
d2pd2q d2r pµ pν δ(2)(p + q + r)
(p2 +m2

1)(q2 +m2
2)(r2 +m2

3)
= δ

µν

2
[I(m2

2)I(m2
3) −m2

1 I(m2
1,m

2
2;m2

3)] , (E.23)

J ≡ ∫
d2pd2q d2r p2q2 δ(2)(p + q + r)
(p2 +m2

1)(q2 +m2
2)(r2 +m2

3)
=m2

1m
2
2 I(m2

1,m
2
2;m2

3) −m2
1 I(m2

1)I(m2
3)+

−m2
2 I(m2

2)I(m2
3) , (E.24)

K ≡ ∫
d2pd2q d2r (p ⋅ q)2 δ(2)(p + q + r)
(p2 +m2

1)(q2 +m2
2)(r2 +m2

3)
= 1

2
[−m2

2 I(m2
2)I(m2

3) −m2
1 I(m2

1)I(m2
3)+

+(m2
1 +m2

2 −m2
3)Iµµ(m2

1,m
2
2;m2

3)] , (E.25)

∫
d2pd2q d2r pµ pν qρ qσ δ(2)(p + q + r)

(p2 +m2
1)(q2 +m2

2)(r2 +m2
3)

= (3

8
J − 1

4
K) δµνδρσ+

+ (1

4
K − 1

8
J) (δµρδνσ + δµσδνρ) , (E.26)

∫
d2pd2q d2r pµ pν pρ qσ δ(2)(p + q + r)

(p2 +m2
1)(q2 +m2

2)(r2 +m2
3)

= 1

8
(δµνδρσ + δµρδνσ + δµσδνρ) ,

[m2
2 I(m2

2)I(m2
3) −m2

1 I
µ
µ(m2

1,m
2
2;m2

3)] , (E.27)

L ≡ ∫
d2pd2q d2r p2 (q ⋅ r) δ(2)(p + q + r)

(p2 +m2
1)(q2 +m2

2)(r2 +m2
3)

= −m2
1 I

µ
µ(m2

3,m
2
2;m2

1) , (E.28)

M ≡ ∫
d2pd2q d2r (p ⋅ q)(p ⋅ r) δ(2)(p + q + r)

(p2 +m2
1)(q2 +m2

2)(r2 +m2
3)

= 1

2
[(m2

1 +m2
3 −m2

2)Iµµ(m2
1,m

2
2;m2

3)+

+m2
1 I(m2

1)I(m2
3) −m2

2 I(m2
2)I(m2

3)] , (E.29)

∫
d2pd2q d2r pµ pν qρ rσδ(2)(p + q + r)

(p2 +m2
1)(q2 +m2

2)(r2 +m2
3)

= (3

8
L − 1

4
M) δµνδρσ+

+ (1

4
M − 1

8
L) (δµρδνσ + δµσδνρ) . (E.30)





Appendix F

Simulating strings on the lattice

This appendix serves as a complement to chapter 7. Appendix F.1 presents the matrix algebra
of the ρ-matrices. Appendices F.2 and F.3 are meant to provide the preliminaries of what we
need to discretize and simulate our model and a short presentation of the issue represented by
fermion doublers. While we do not to directly address the implementation of numerical routines,
the Monte Carlo algorithm is illustrated in appendix F.4. The reader can find a list of the relevant
technical parameters that were used with the SO(6)-preserving fermion discretization (7.40)-(7.41)
in the main text. We conclude in appendix F.6 with a summary of the results descending from an
alternative fermion discretization that breaks both the U(1) and SO(6) symmetry of the model.

The literature on numerical quantum field theory is extremely vast: we recommend the textbooks
[235, 237, 467] for a comprehensive and coherent account of the subject.

F.1 SO (6) matrix representation

We adopt the chiral representation for the 8 × 8 Euclidean Dirac matrices γM (M = 1, . . .6) in the
fundamental representation of the so (6) algebra:

γM ≡
⎛
⎝

0 ρ†
M

ρM 0

⎞
⎠
=
⎛
⎝

0 (ρ†M)ij

(ρM)
ij

0

⎞
⎠
, {γM , γN} = 2δMN . (F.1)

The two off-diagonal blocks, carrying upper and lower indices respectively, are related by (ρM)ij =
−(ρMij )∗ ≡ (ρMji )∗, so that indeed the block with upper indices is the conjugate transpose of the one

197
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with lower indices. For these matrices we use the representation

ρ1
ij =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

, ρ2
ij =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 i 0 0

−i 0 0 0

0 0 0 −i
0 0 i 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

, ρ1
ij =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

,

(F.2)

ρ4
ij =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 0 −i
0 0 i 0

0 −i 0 0

i 0 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

, ρ5
ij =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 i 0

0 0 0 i

−i 0 0 0

0 −i 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

, ρ6
ij =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

The Clifford algebra (F.1) induces the anticommutation relations

(ρM)
il
(ρ†N)lj − (ρN)

il
(ρ†M)lj = δji δ

MN , (F.3)

(ρ†M)il (ρN)
lj
− (ρ†N)il (ρM)

lj
= δijδMN . (F.4)

We can also build the SO (6) generators generators

(ρMN) j
i
≡ 1

2
[(ρM)

il
(ρ†N)lj − (ρN)

il
(ρ†M)lj] , (F.5)

(ρ†MN)i
j
≡ 1

2
[(ρ†M)il (ρN)

lj
− (ρ†N)il (ρM)

lj
] , (F.6)

for which it holds

(ρMN)ij =
1

2
(ρMi`

ρN`j − ρN
i`
ρM`j ) =

1

2
(ρMi` ρN

`j − ρNi` ρM
`j)∗ ≡ ((ρMN) ji )∗

(ρMN)ij = −(ρMN) i
j (ρMN) ji = −(ρMN)ji ,

(F.7)

where in the last equation we used that 1
2
(ρMi`

ρN`j − ρN
i`
ρM`j ) = − 1

2
(ρMj` ρN

`i − ρNj` ρM
`i).

Useful flipping rules are

η ρM θ = ηi ρMij θj = −θj ρMij ηi = θj ρMji ηi ≡ θi ρMij ηj = θ ρM η , (F.8)

η†ρ†
M θ† = ηi ρM

ij
θj = −θj ρM

ij
ηi = θj ρM

ji
ηi ≡ θi ρM

ij
ηj = θ†ρ†

M η† , (F.9)

ηi (ρMN)ij θj = −θj (ρMN)ij ηi = θj (ρMN) i
j ηi ≡ θi (ρMN) ji ηj . (F.10)

F.2 From the worldsheet to the lattice

The field theory corresponding to the model (7.24) lives on a two-dimensional Euclidean spacetime
equipped with coordinates (t, s). To discretize it, the spacetime is replaced by a two-dimensional
array of points Λ with lattice spacing a (Figure F.1)

Λ = {ξµ = (an0, an1) ∶ n0 = 0, . . .NT − 1, n1 = 0, . . .NL − 1} (F.11)
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so that a two-integer label (n0, n1) takes the place of the continuous coordinates (t, s). Above, ξµ

is a discrete vector (µ = 0,1) while NT and NL ≡ N are the number of lattice points in the time and
space direction respectively. Let us call T and L the corresponding extensions of the grid in length
units 1. The total number of lattice points is ∣Λ∣ = NTNL and we have the relations T = NT a and
L = NL a. In our simulations the lattice temporal extent T is always twice the spatial extent L.

Figure F.1: Rectangular lattice grid with NT = 2NL = 16. Scalar fields live at the
intersection points.

Surface integration over the worldsheet is replaced by a discrete sum

∫ dtds → a2 ∑
nµ∈Λ

. (F.12)

This formula shows that 2d “volume” V2 of the classical worldsheet in (7.1) translates into the
(dimensionful) lattice volume

V2 ≡ ∫ dtds 1 → a2∣Λ∣ = T L . (F.13)

We shall simplify the notation by referring to both sides in (F.13) as simply V2 when the precise
expression is clear from context. We run simulations on a lattice with NT = 2NL, i.e. T = 2L ≡ 2aN

in Tables F.1 and F.2, so we have V2 = TL = 2a2N2 in the main text.

The model (7.24) consists of 8 commuting (x,x∗, zM with M = 1, . . .6) and 16 anti-commuting
fields (seen as components of ψ ≡ (θi, θi, ηi, ηi)T ), supplemented by 7 commuting auxiliary fields
(φ,φM with M = 1, . . .6). The latter ones are integrated out (7.27) and the resulting 16-component
commuting variable ζ (7.29) will be treated in appendix F.4.1 as a set of non-dynamical degrees
of freedom. The discretization of the fields is straightforward because they are all scalars 2: one
assigns them, here generically called f , to each lattice site

f(t, s) → f(n0, n1) (F.14)

1The time length T has not to be mistaken with the string tension in (7.3).
2This observation drastically simplifies the discretization of the field content. For instance, gauge fields

would require the introduction of link variables between pairs of neighbouring sites with the net effect of
driving up the computational cost.
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imposing periodic boundary conditions for all fields, save for antiperiodic temporal boundary con-
ditions in the case of Grassmann-odd fields, i.e. in compact form borrowed form [237]

f(ξ + µ⃗Nµ) = e2πiδµ(f)f(ξ), δµ(f) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 for f = x, x∗, zM , φ, φM and µ = 0,1

0 for f = θi, θi, ηi, ηi and µ = 1

1
2

for f = θi, θi, ηi, ηi and µ = 0

, (F.15)

where we identified N0 ≡ NT and N1 ≡ NL.

The momentum space Λ̃ is the reciprocal lattice of Λ

Λ̃ = {pµ = (p0, p1) ∶ pµ =
2π

aNµ
(kµ + δµ(f)), kµ = −

Nµ

2
+ 1, . . .

Nµ

2
} (F.16)

where points are shifted by the phase δµ(f) to ensure that plane waves eipµnµa obey the boundary
conditions (F.15) for any pµ ∈ Λ̃. Integration in this space becomes a summation

∫ dp0dp1 → 1

∣Λ∣ ∑
p⃗∈Λ̃

(F.17)

and an integral in the infinite-volume limit T,L→∞

∫ dp0dp1 → 1

(2π)2 ∫
π
a

−πa
∫

π
a

−πa
dp0dp1 . (F.18)

In the latter case, the momenta become continuous and the effect of the field-dependent phase δµ(f)
is washed out.

The lattice Fourier transform and its inverse [235] are defined by

f̃(p0, p1) = ∑
n⃗∈Λ

f(n0, n1)e−ip
µnµa , f(n0, n1) =

1

∣Λ∣ ∑
p⃗∈Λ̃

f̃(p0, p1)eip
µnµa . (F.19)

The discrete approximation of continuum derivatives are finite difference operators. There are
different two-point stencils for the discretization of ∂µf(t, s): the forward derivative in the direction
of the unit vector µ̂

(∆µf) (ξ) ≡
f (ξ) − f (ξ − µ̂)

a
, (F.20)

the backward derivative

(∆∗
µf) (ξ) ≡

f (ξ) − f (ξ − µ̂)
a

, (F.21)

and the centered derivative

(∆̄µf) (ξ) ≡
(∆µf +∆∗

µf) (ξ)
2

= f (ξ + µ̂) − f (ξ − µ̂)
2a

. (F.22)

The first two are accurate discretizations up to O(a) corrections, and this improves to O(a2) in the
third case. We always pick the centered derivative due to its smaller errors. It is also useful to write
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its expression in momentum space

( ˜̄∆µ) (p) = i

a
sin(pµa) ≡ i

○
pµ . (F.23)

The wave operator ◻f (τ, σ) ≡ ∂µ∂µf (τ, σ) acts on a lattice field as

(◻f) (ξ) ≡ (∆∗
µ∆µf) (ξ) =

1

a2 ∑
µ̂

[f (ξ + µ̂) − 2f (ξ) + f (ξ − µ̂)] . (F.24)

and in Fourier space as

(◻̃) (p) = ∑
µ=0,1

(2

a
sin

pµa

2
)

2

≡ ∑
µ=0,1

p̂2
µ . (F.25)

The path-integral (7.28) becomes a multi-dimensional integral 3

∫
15

∏
i=1

Dfi (Det(ÔF Ô†
F )[{fi}])

1
4 e−SB[{fi}]

→ ∫
15

∏
i=1

NT−1

∏
n0=0

NL−1

∏
n1=0

dfi(n0, n1) (Det(ÔF Ô†
F )[{fi}])

1
4

LAT e
−SB,LAT[{fi}] . (F.26)

where the product over lattice sites is discrete and the infinite-volume limit will be taken afterwards.
In the spirit of previous appendices, we have already specialized to the 2d model of interest with
field content

fi = (x,x∗, z1, z2, z3, z4, z5, z6, φ, φ1, φ2, φ3, φ4, φ5, φ6)i i = 1, . . .15 . (F.27)

We also understood the various quantities labeled by “LAT” in (F.26) to be the discretizations of
the their continuum counterparts according to the prescriptions above.

F.3 Fermion doublers in the standard Dirac operator

This appendix briefly elucidates the origin of the fermion doubling problem raised at the beginning
of section 7.4. Doublers are identified when one computes the inverse lattice fermionic operator in
momentum space for the case of free lattice fermions in d dimensions. In the naive discretization
one replaces partial derivatives in the continuum action Sferm (γµ are SO(d) Dirac matrices)

Sferm = ∫ ddx ψ̄(x)(γµ∂µ +m)ψ(x) (F.28)

with centered derivatives (F.22) to obtain

Sferm, LAT = ad ∑
n⃗=(n1,...nd)∈Λ

ψ̄(n⃗)∑
µ̂

(ψ(n⃗ + µ⃗) − ψ(n⃗ − µ⃗)
2a

+mψ(n⃗)) . (F.29)

3We will run phase-quenched simulations, see section 7.6.3.
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The inverse of the lattice Dirac operator in momentum space is (see equation (5.43) in [237])

D̃(p)−1 =
m I − i

a ∑
d
µ=1 γµ sin(pµa)

m2 + 1
a2 ∑

d
µ=1 sin2(pµa)

, p2 =
d

∑
µ=1

p2
µ . (F.30)

In the continuum limit a→ 0 it has a pole in p2 = −m2 in correspondence to the value of the physical
mass. The situation is different on the lattice because additional poles appear where one or more
components pµ are at the corners of the first Brillouin zone (i.e. equal to π

a
). For a massless fermion

this explicitly means that each component is either 0 or π
a
:

pµ = (π
a
,0, . . .0) , (0,

π

a
, . . .0) , . . . (π

a
,
π

a
, . . .

π

a
) . (F.31)

When one of the components is close to π
a
the lattice fermion propagator (F.30) behaves in the same

way as around the point p2 = −m2. One physical fermion is then accompanied by 2d − 1 unphysical
excitations in the spectrum of the theory at finite a. In two-dimensions the operator (7.25) would
produce a total number 16× 3 doublers. This observation motivates the discussion of section 7.4 to
construct the doubler-free operator (7.40)-(7.41).

F.4 Monte Carlo algorithm for the worldsheet model

Numerical simulations of lattice field theory can measure expectation values of functionals F [{fi}]
of the field variables (F.27), providing a practical mean to measure the quantum mechanical average

⟨F ⟩ ≡ 1

Z
∫

15

∏
i=1

Dfi F [{fi}] (Det(ÔF Ô†
F )[{fi}])

1
4 e−SB[{fi}] (F.32)

with Z ≡ ∫
15

∏
i=1

Dfi (Det(ÔF Ô†
F )[{fi}])

1
4 e−SB[{fi}] .

We consider a bosonic path-integral where the fermionic factor (Det(ÔF Ô†
F )) 1

4 is a real functional
of the fields 4. For us the functional of fields is F = xx∗ in section 7.6.1 and F = SB in section 7.6.2.
The regularization imposed by the lattice in appendix F.2 translates the expressions above into

⟨FLAT⟩ ≡ 1

ZLAT
∫

15

∏
i=1

NT−1

∏
n0=0

NL−1

∏
n1=0

dfi(n0, n1) FLAT[{fi}] (Det(ÔF Ô†
F )[{fi}])

1
4

LAT e
−SB,LAT[{fi}]

with ZLAT ≡ ∫
15

∏
i=1

NT−1

∏
n0=0

NL−1

∏
n1=0

dfi(n0, n1) (Det(ÔF Ô†
F )[{fi}])

1
4

LAT e
−SB,LAT[{fi}] . (F.33)

We now concentrate on how to measure the lattice observables and leave the topic of their continuum
extrapolation in section 7.5.

The number of degrees of freedom (15 field variables for each of the NT NL sites) increases rapidly
with the lattice size and makes a deterministic numerical integration of (F.33) prohibitive in terms
of computation time. The central idea of Monte Carlo (MC) simulations is to replace the quantum
average with a time average over a sequence of states produced by a stochastic dynamics. One

4See comments in footnote 3.
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resorts to randomly generate a sequence of field configurations {fi}j (j = 1, . . .NMC) according to
a statistical probability P ({fi}j), evaluate the corresponding values of the observable and compute
their arithmetic sum

⟨FLAT⟩ = 1

NMC

NMC

∑
j=1

FLAT[{fi}j] + O(N−1/2
MC ) , NMC ≫ 1 . (F.34)

The probability distribution is the Gibbs measure (modified by the inclusion of the fermionic deter-
minant)

P ({fi}j) =
1

ZLAT
(Det(ÔF Ô†

F )[{fi}])
1
4

LAT e
−SB,LAT[{fi}], 0 < P ({fi}j) < 1 , (F.35)

This method replaces the exact average by a sample over the phase space of the quantum fields.
The sample average (F.34) for the Monte Carlo integration captures the expectation value of the
observable in the lattice field theory (F.33) within (probabilistic) accuracy of order N−1/2

MC by the
central limit theorem 5.

The MC method relies on an algorithm to find field configurations distributed according to the prob-
ability (F.35). To this end, one considers a Markov chain to construct a sequence of configurations
from an initial arbitrary state {fi}1

{fi}1 → {fi}2 → ⋅ ⋅ ⋅ → {fi}j → ⋅ ⋅ ⋅ → {fi}NMC
, (F.36)

where the probability of being in the state {fi} is given by the same P ({fi}) in equation (F.35).
Any Markov state consists for us of 15NTNL field variables describing the values of the fields on
the discretized spacetime (F.11). The update of a state to the next one is a Monte Carlo step and
the length of the chain is NMC Monte Carlo units.

The state of the system undergoes a stochastic process where each state {fi} evolves into a new one
{f ′i} with a conditional transition probability PM ({fi} → {f ′i}) that depends on the current state
{fi} only. The latter property is what defines a time-homogeneous Markov chain. Together with
the detailed balance equation

P ({fi}) PM ({fi} → {f ′i}) = PM({f ′i}) P ({f ′i} → {fi}) , (F.37)

it guarantees that the equilibrium distribution of the chain exists and coincides with (F.35). This
means that – after the information on the starting configuration is lost (thermalization) – we eventu-
ally reach the equilibrium distribution regardless of which state the process begins in. Hence we have
a way to produce a canonical ensemble of configurations that appears in the chain (for sufficiently
large j) with frequency (F.35) and can be included into the ensemble average (F.34). However,
at equilibrium subsequent configurations are not completely uncorrelated. The typical length of a

5The length of a typical Monte Carlo history in our simulations is limited to NMC ≈ 103 by the available
computer resources. The index j labels the configurations as they are subsequently generated. Since j is
a measure of the “fictitious time” of the stochastic process, it is not to be mistaken with the Wick-rotated
time t of the 2d worldsheet/lattice or the time variable tHMC of the Hybrid Monte Carlo algorithm (see
below (F.40) in the next appendix).
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Figure F.2: Sketch of a Markov chain in the space of field configurations. A black
dot symbolizes a configuration of the physical x,x∗, zM and auxiliary scalars φ,φM over
the 2d lattice grid. In the inset it is graphically represented for one of them (z) as the
“vertical” fluctuation of the string embedding in AdS3. Each black segment is a state
update occurred in the time of one Monte Carlo step. The dots tends to visit the region
where the Boltzmann factor (F.35) is larger, here at the center of the blob. Figure adapted
from [237].

series of states that keeps “memory” of the first configuration is given by the autocorrelation time
[235]. An optimal number of sample configurations must be much larger than this time scale.

Another important point to address is whether any configuration can be eventually reached in a
finite number of steps. In our case, the condition P ({fi} → {f ′i}) > 0 for any pair of states guarantees
that the stochastic process can explore the entire state space. An efficient algorithm to randomly
generate new configurations takes also into account that a direct sampling of the entire state space
proves to be computationally too difficult, while only a relatively small number of field configurations
is statistically significant. The importance sampling involves visiting more frequently states with
significant Boltzmann weight. This concept is incorporated in the type of MC algorithm that we
present in the next paragraph.

F.4.1 Rational Hybrid Monte Carlo algorithm

The lattice simulations in chapter 7 are prepared with a type of Rational Hybrid Monte Carlo
(RHMC) algorithm [468–470].

“Rational” refers to the fact that it differs from the standard HMC (described below) in the treatment
of the fermion contribution to the action, as it uses a rational approximation of the fourth root of
operators called Remez algorithm [470, 471]

(M †M)− 1
4 = α0 +

P

∑
i=1

αi
M †M + βi

, (F.38)

here with M = Ô†
F (7.40)-(7.41) and coefficients αi and βi tuned by the range of eigenvalues of M

to optimize the rational approximation. More information is in appendix F.5.
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The term “hybrid” Monte Carlo [472] characterizes the Markov chain as an algorithm that uses deter-
ministic molecular dynamics to generate new configurations, paired up with a Metropolis acceptance
test 6 (see below).

We shall work with an equivalent form of (F.33) in terms of the 16 complex pseudo-fermions ζk
(k = 1, . . .16) in (7.29)

⟨FLAT⟩ = 1

ZLAT
∫

NT−1

∏
n0=0

NL−1

∏
n1=0

(
15

∏
i=1

dfi(n0, n1) ) (
16

∏
k=1

dζ†
k(n0, n1)dζk(n0, n1) )

× FLAT[{fi}] e−SB,LAT[{fi}]−Sζ,LAT[{fi}] (F.39)

with ZLAT = ∫
NT−1

∏
n0=0

NL−1

∏
n1=0

(
15

∏
i=1

dfi(n0, n1) ) (
16

∏
k=1

dζ†
k(n0, n1)dζk(n0, n1) )

× e−SB,LAT[{fi}]−Sζ,LAT[{fi}] .

We also postulate the evolution Hamiltonian

HHMC = 1

2

15

∑
i=1

π2
i + SB,LAT[{fi}] + Sζ,LAT[{ζk}] (F.40)

to describe the evolution of the fields in the “fictitious” time tHMC. At variance with [238], the pseudo-
fermions do not undergo a time evolution and we only need the canonically conjugate momenta πi
to the fi fields.

A MC simulation begins with the initialization of the field variables {fi}1. The central part of the
program is the updating subroutine to advance the Markov chain from {fi}j to {fi}j+1 in succession
for j = 1, . . .NMC.

1. Suppose the system is in a state {fi} at a certain j. At the beginning of each HMC trajectory
the momenta πi, the real and imaginary part of the pseudo-fermions ζk are randomly generated
with Gaussian distribution centered at zero and with unit standard deviation.

2. To make a proposal for a new configuration, we numerically integrate the Hamilton’s equations
of motion

∂ πi
∂tHMC

= −∂HHMC

∂fi
≡ Fi ,

∂ fi
∂tHMC

= ∂HHMC

∂πi
= πφ , (F.41)

to evolve deterministically the state into {f ′i} (Figure F.3). The time is discretized in small
steps of size δt and the Fi are the so-called forces. Formulas in (F.41) are also known as molec-
ular dynamics equations because of their evident resemblance with the differential equations
governing the mechanical evolution of a classical system.

The numerical integration uses the leapfrog scheme: we update the values of fields and their
conjugate momenta at staggered time steps as in Figure F.4:

fi(tHMC + δt/2) = fi(tHMC) + πi(tHMC)δt , (F.42)

πi(tHMC + 3δt/2) = πi(tHMC + δt/2) + Fi(tHMC)δt . (F.43)

6See [473] (also in chapter 5 of [474]) for a detailed discussion of the algorithm and its variations.
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It is a second-order method (the error per step is proportional to δt2) in contrast to the Euler
integration (linear in δt).

3. We obtain a HMC trajectory made of nHMC time steps. The final configuration {f ′i} is
affected by numerical errors that make the energy only approximately conserved. One needs a
quantitative way to test whether {f ′i} can be taken as the result of a truly quantum mechanical
evolution at δt = 0. Although one can extrapolate to vanishing δt, it is practically more
convenient to introduce a corrective test called Metropolis algorithm [472]. The acceptance
test renders the discrete Hamiltonian evolution exact for any small, yet finite, δt.

The candidate configuration undergoes the acceptance test : it is accepted with probability
given by min (1, e−δH) with δH =HHMC[{f ′i}] −HHMC[{fi}].

(a) This means that the state is always updated if the change in the energy is negative, so
driving the simulation towards states of higher probability;

(b) otherwise, the test can still be passed if the condition e−δH > n is verified, where n is a
number randomly generated in the interval (0,1) with flat distribution. The proposal
is rejected if e−δH < n.

Notice the if we could solve the equations of motion (F.41) for zero δt, the time evolution
would be exactly energy-preserving (δH = 0) and any configuration would always be accepted,
rendering the Metropolis test superfluous.

4. The chain is either updated with the candidate {fi}j+1 = {f ′i} or the starting configuration is
considered as the new state {fi}j+1 = {fi}j .

5. The process restarts from point 1 taking {fi}j+1 as the next configuration to evolve.

Figure F.3: Sketch of a HMC trajectory. In the magnified area, an initial state is driven
by the molecular dynamics (F.41) to a final configuration. The latter is depicted as passing
the acceptance test and turning into the next chain state. The dotted trajectory lies on a
hypersurface of constant energy within numerical errors. Figure adapted from [237].
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Figure F.4: Leapfrog integration advances fields and momenta at evenly-spaced inter-
leaved time points in a manner that they “leapfrog" over each other. Courtesy of [238].

F.5 Subroutines and simulation parameters

The source code has been implemented 7 in Fortran 95 and uses the ranlux pseudo-random number
generator [475] 8.

• The Remez algorithm (F.38) uses a rational approximation of degree P = 15 [476] and we
checked for a subset of the generated configurations that its accuracy is always better than
10−3.

• The right hand side of (F.38) enters the bilinear in the pseudo-fermionic Lagrangian in (7.29)

ζ†(ÔF Ô†
F )− 1

4 ζ = α0 ζ
†ζ +

P

∑
i=1

ζ† αi

ÔF Ô†
F + βi

ζ (F.44)

and eventually appears in the bosonic forces (F.41) via (F.40). Defining si ≡ 1

ÔF Ô†
F
+βi

ζ sug-
gests to evaluate the summand in (F.44) by solving a system of P matrix equations

(ÔF Ô†
F + βi) si = ζ i = 1, . . . P . (F.45)

The equations are solved simultaneously at the cost of solving one single equation using
a multi-mass conjugate gradient solver [477]. This is an iterative algorithm with a total
computational cost given by the number of iterations required to solve the slowest-convergent
equation in (F.45).

• Each HMC trajectory stops after a time span of tHMC = 0.5. The typical number of integration
steps nHMC ranges from 50 to 100, which means a time step δt between 0.005 and 0.01. In
the simulation runs of Table F.1 the acceptance probability of the Metropolis test is above
90% in order to quickly sample a large region of the configuration space.

Table F.1 summarizes the other relevant parameters: the coupling g, the temporal and spatial extent
of the lattice NT ×NL = T

a
× L
a
in units of the lattice spacing a, the line of constant physics fixed by

Lm and the mass parameter M = am.
7We are very thankful to Mattia Bruno for having played a key role in setting up the code in an early

stage of the project.
8The implementation in C language is available at http://luscher.web.cern.ch/luscher/ranlux/

index.html.

http://luscher.web.cern.ch/luscher/ranlux/index.html
http://luscher.web.cern.ch/luscher/ranlux/index.html
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• The size of the statistics after thermalization is given in the last column in terms of Molecular
Dynamic Units (MDU). One unit of the time variable tHMC defines one MDU and since a
HMC trajectory lasts up to tHMC = 0.5, a statistics of n MDU equals a Monte Carlo history
of 2n HMC trajectories.

In the case of multiple replica the statistics for each replica is given separately.

• The auto-correlation times τ of our main observables are given in MDU.
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g T /a ×L/a Lm am τSint τmxint statistics (MDU)

5 16 × 8 4 0.50000 0.8 2.2 900
20 × 10 4 0.40000 0.9 2.6 900
24 × 12 4 0.33333 0.7 4.6 900, 1000
32 × 16 4 0.25000 0.7 4.4 850, 1000
48 × 24 4 0.16667 1.1 3.0 92,265

10 16 × 8 4 0.50000 0.9 2.1 1000
20 × 10 4 0.40000 0.9 2.1 1000
24 × 12 4 0.33333 1.0 2.5 1000, 1000
32 × 16 4 0.25000 1.0 2.7 900, 1000
48 × 24 4 0.16667 1.1 3.9 594, 564

20 16 × 8 4 0.50000 5.4 1.9 1000
20 × 10 4 0.40000 9.9 1.8 1000
24 × 12 4 0.33333 4.4 2.0 850
32 × 16 4 0.25000 7.4 2.3 850, 1000
48 × 24 4 0.16667 8.4 3.6 264, 580

30 20 × 10 6 0.60000 1.3 2.9 950
24 × 12 6 0.50000 1.3 2.4 950
32 × 16 6 0.37500 1.7 2.3 975
48 × 24 6 0.25000 1.5 2.3 533, 652
16 × 8 4 0.50000 1.4 1.9 1000
20 × 10 4 0.40000 1.2 2.7 950
24 × 12 4 0.33333 1.2 2.1 900
32 × 16 4 0.25000 1.3 1.8 900, 1000
48 × 24 4 0.16667 1.3 4.3 150

50 16 × 8 4 0.50000 1.1 1.8 1000
20 × 10 4 0.40000 1.2 1.8 1000
24 × 12 4 0.33333 0.8 2.0 1000
32 × 16 4 0.25000 1.3 2.0 900, 1000
48 × 24 4 0.16667 1.2 2.3 412

100 16 × 8 4 0.50000 1.4 2.7 1000
20 × 10 4 0.40000 1.4 4.2 1000
24 × 12 4 0.33333 1.3 1.8 1000
32 × 16 4 0.25000 1.3 2.0 950, 1000
48 × 24 4 0.16667 1.4 2.4 541

Table F.1: Parameters of the simulation runs with the discretization (7.40)-(7.41).
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F.6 SO(6)-breaking Wilson-like term

We collect the results of the simulations performed employing an alternative discretization with
fermionic operator

ÕF =
⎛
⎜⎜⎜⎜
⎝

W̃+ −p̊0I4 (p̊1−im2 )ρM zM

z3
0

−p̊0I4 −W̃ †
+

0 ρ†
M

(p̊1−im2 ) z
M

z3

−(p̊1+im2 )ρM zM

z3
0 2 z

M

z4
ρM(∂sx−m x

2
)+W̃− −p̊0I4−AT

0 −ρ†
M

(p̊1+i m2 ) z
M

z3
−p̊0I4+A −2 z

M

z4
ρ†
M

(∂sx∗−m x
2
∗)−W̃ †

−

⎞
⎟⎟⎟⎟
⎠

(F.46)

where the only change with respect to (7.40) is in the Wilson term adopted here

W̃± =
r

2 z3
(p̂2

0 ± i p̂2
1) (ρ6

5

∑
M=1

zMzM + ρ1 (z6)2) . (F.47)

We employed this discretization to present our preliminary results in [6] with the simulation param-
eters in Table F.2. It is consistent with lattice perturbation theory performed around a vacuum with
all six entries of uM vanishing but one (see (7.16)). It satisfies all requirements in the bulleted list of
section 7.4.1, except for the SO(6)- and U(1)-invariance, the latter being broken by (7.40) as well.
One can compare the continuum extrapolations of the two observables under investigation in the
two discretizations, namely Figure 7.6 with Figure F.6 for the x-mass and Figure 7.10 with Figure
F.10 for the action. They agree within errors, which strongly suggests that the two discretizations
lead to the same continuum limit.
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Figure F.5: Correlator and mass for the x field, realized here using the SO(6)-breaking
discretization (F.46)-(F.47). Detailed explanation and comments as in Figure 7.5.
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Figure F.6: Plot ofm2
xLAT(N,g)/m2 =mx(g)+O(1/N) and its continuum extrapolation,

realized here using the SO(6)-breaking discretization (F.46)-(F.47). Detailed explanation
and comments as in Figure 7.6.
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Figure F.7: Plots of ⟨SLAT⟩
2N2 and its continuum extrapolation to determine c/2, real-

ized here using the SO(6)-breaking discretization (F.46)-(F.47). Detailed explanation and
comments as in Figure 7.7.
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, realized here using the SO(6)-
breaking discretization (F.46)-(F.47). Detailed explanation and comments as in Figure 7.8.
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Figure F.9: Plots for the ratio ⟨SLAT⟩− c2 (2N2)
S0

+ ln g as a function of 1/N , realized here
using the SO(6)-breaking discretization (F.46)-(F.47). Detailed explanation and comments
as in Figure 7.9.
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Figure F.10: Plot for f ′(g)/4 as determined from the N → ∞ extrapolation of (7.52),
realized here using the SO(6)-breaking discretization (F.46)-(F.47). Detailed explanation
and comments as in Figure 7.10.
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g T /a ×L/a Lm am τSint τmxint statistics (MDU)

5 16 × 8 4 0.50000 0.8 2.7 900

20 × 10 4 0.40000 0.8 2.8 900

32 × 16 4 0.25000 2.0 8.1 950,950

10 20 × 10 8 0.80000 1.1 2.2 900

24 × 12 8 0.66667 1.4 2.5 900

32 × 16 8 0.50000 2.4 5.8 750,750

40 × 20 8 0.40000 5.8 10.6 900,900

16 × 8 4 0.50000 0.8 1.9 900

20 × 10 4 0.40000 1.0 2.2 900

24 × 12 4 0.33333 1.1 2.6 900,900

32 × 16 4 0.25000 1.9 5.0 925,925

40 × 20 4 0.20000 7.8 11.7 925,925

20 16 × 8 4 0.50000 8.7 2.7 1000

20 × 10 4 0.40000 10.9 2.3 1000

24 × 12 4 0.33333 4.7 2.0 1000

32 × 16 4 0.25000 6.5 3.3 850

48 × 24 4 0.16667 6.2 3.2 918

30 16 × 8 4 0.50000 1.3 2.0 800

20 × 10 4 0.40000 1.2 2.1 800

24 × 12 4 0.33333 1.7 2.9 900

32 × 16 4 0.25000 2.7 4.1 950,950

40 × 20 4 0.20000 3.7 11.0 950,900

64 × 32 4 0.12500 6.9 31.1 579,900

100 16 × 8 4 0.50000 1.6 3.3 900

20 × 10 4 0.40000 2.0 3.8 750

32 × 16 4 0.25000 2.8 3.8 900,900

40 × 20 4 0.20000 6.2 10.4 900,900

Table F.2: Parameters of the simulation runs with the discretization (F.46)-(F.47). See
appendix F.5 for explanations.
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