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Abstract We have investigated the relativistic quantum
dynamics of a bosonic field in Born–Infeld spacetime with
a topological charge by characterizing the global monopole.
Firstly, we have analyzed a free bosonic field, by definition,
is free in this non-trivial geometry. Due to the effects of the
geometry, in fact, the spin-0 boson is confined, of which it is
possible to obtain solutions of bound states. Then, in order to
generalize the system, we introduce the interaction of the rel-
ativistic oscillator and, analytically, we obtain the relativistic
energy profile of the system.

1 Introduction

In the field of mathematics, topological defects are solutions
of non-linear differential equations [1]. On the other hand, in
physics, topological defects are regions that separate differ-
ent states [2]. A well-intuitive and well-known example are
the domain walls in electromagnetic materials that separate
different states in the same sample of magnetic material [3],
which arise for several reasons, such as intrinsic properties of
the material, external fields, temperature and pressure varia-
tions, etc. However, in addition to the domain walls, there are
also other types of defects, for example, of a linear nature,
such as disclinations and dislocations [4,5], and of a punctual
nature [4], such as impurities and vacancies, which can arise
in elastic media, generally investigated in crystallography
[6].
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Based on theories of the primordial universe [2], there
are predictions that in the Universe there are cosmologi-
cal objects analogous to the topological defects mentioned
above, that is, domain walls [1,7], defects of a linear nature,
such as the cosmic string [8–11] and dislocations [12] asso-
ciated with curvature and torsion in space-time, respectively,
and the global monopole [13]. It is noteworthy that the lat-
ter is one of the most quoted to be observed in the scope of
observational cosmology [2].

In particular, the global monopole (GM) has been inves-
tigated in several areas of physics, for example, in obser-
vational cosmology [2], in scenarios f (R) theory [14,15],
in presence of Wu-Yang magnetic monopole [16] and in
the gravitating magnetic monopole [17], the polarization of
the fermionic vacuum [18] and Casimir effect [19]. There
are also studies of this type of defect in quantum mechan-
ical, non-relativistic and relativistic systems. In the case of
non-relativistic quantum mechanics, there are studies on the
harmonic oscillator [20,21], on a particle interacting with
a Kratzer potential [22], on a charged particle-magnetic
monopole scattering [23], on a particle subjected to the self-
interaction potential [24], on the Hulthén potential [25] and
thermodynamics systems [26]. In a relativistic context, GM
has been investigated on the hydrogen atom and the pionic
atom [27], on the exact solutions of scalar bosons in the pres-
ence of the Aharonov-Bohm and Coulomb potentials [28]
and on the Klein–Gordon and Dirac oscillators [29–31].

Recently, gravitational effects have been investigated
on quantum particles. These studies are possible through
non-trivial metrics arising from the solutions of Einstein’s
equations. In order to understand the primordial Universe,
these non-trivial solutions come up with information or
parameters associated with the “fossils” of the first min-
utes of the Universe, including topological defects. There-
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fore, through mathematical tools capable of absorbing this
information in the mathematical description of fundamental
particles, it is possible to analytically describe fundamen-
tal particles such as spin-0 bosons and spin-1/2 fermions in
these non-trivial geometries with the presence of topologi-
cal charges. As examples to be cited, we have the following
studies: scalar solutions in Kerr–Newman and Friedmann–
Robertson–Walker spacetimes both containing a cosmic
string [32], relativistic quantum dynamics of scalar and spin-
0 particles in Safka-Witten spacetime [33], Klein–Gordon
[32,34–38], Dirac [39] and Weyl [40] particles in Gödel-type
spacetime and on a scalar particle in Ellis-Bronnikov-type
wormhole spacetime [41,42].

It is noteworthy that the geometries mentioned above rep-
resent a drop in the ocean with regard to the topologically
charged geometries proposed in the theoretical framework.
Recently, a topologically charged spacetime has been pro-
posed which has drawn a lot of attention in the scientific
community. This is the gravitational field generated by a GM
within the so-called Eddington-inspired Born-Infeld gravity
(Ei B I -gravity) [43]. Such a solution was originally obtained
by Lambaga and Ramadhan [44]. The authors coupled the
energy-momentum tensor referring to the external region of
the core of Barriola and Vilenkin’s GM [13] to the Ei B I -
gravity field equations through the metric-affine formalism. It
is worth noting that in [45], the authors also considered non-
canonical GM models within Ei B I -gravity and obtained
regular black hole solutions. However, there is still no study
in the literature on the quantum dynamics of a spin-0 boson
in the Ei B I GM spacetime. Therefore, the purpose of this
work is to analytically describe solutions of the bound state of
a spin-0 boson with and without interaction in this non-trivial
geometry.

The structure of this paper is as follows: in Sect. 2, we
investigate the KGO for a massive scalar particle in Ei B I
spacetime, and through analytical studies, we obtain the
energy spectrum for bound states; in Sect. 3, we analyze
the bosonic Klein–Gordon oscillator (KGO) in that same
spacetime and by using analytical methods, we obtain the
relativistic energy profile for this interaction; finally, in Sect.
4, we present the conclusions.

2 Klein–Gordon oscillator

In Refs. [44,45] show that the spacetime generated by a
source of matter, such as that related to the region outside
the GM core [13], is described by the following line element
in spherical coordinates:

ds2 = −(1 − κ2η2)dt2 + r2dr2

(1 − κ2η2)(r2 + εκ2η2)

+r2(dθ2 + sin2 θdφ2) (1)

where κ2 = 8πG, being G the gravitational constant and
η is the energy scale of the spontaneous symmetry break-
ing. The Eddington parameter ε controls the non-linearity
of the Ei B I -gravity. In [46] it was shown that the cohe-
sion of astrophysical objects by their own gravity imposes

κ2ε < 10−2 m5

kg s2 for the case of neutron stars. We can fur-

ther rescale the (1): t → √
1 − κ2η2 and ε → εκ2η2 to

get

ds2 = −dt2 + dr2

α2(1 + ε
r2 )

+r2(dθ2 + sin2 θdφ2) (2)

with α2 = 1 − κ2η2. For negative values of the parameter ε

such a solution describes a topologically charged wormhole
[45]. In fact, many implications have already been studied
admitting this possibility [41,42]. For ε > 0, the above met-
ric describes a GM spacetime within Ei B I -gravity.

KGO equation is constructed from the Klein–Gordon
equation by considering the redefinition of the four-
dimensional linear momentum through a non-minimal cou-
pling p̂μ → p̂μ + imωXμ [37,47,49], where ω is the fre-
quency of the relativistic oscillator and m is the rest mass
of the scalar field. This relativistic oscillator model was pro-
posed based on the relativistic oscillator model for spin-1/2
particles, known in the literature as the Dirac oscillator [50].
KGO became a successful relativistic quantum model for
the harmonic oscillator due to the possibility of solving it
analytically and for recovering the Shoröndinger oscillator
in the non-relativistic limit. This relativistic oscillator model
has been investigated in Minkowski spacetime [51–53], in
possible Lorentz symmetry breaking scenarios [54,55], by
interacting with a magnetic screw dislocation [56,57] and in
a Kaluza-Klein theory [58,59].

The expression that defines the Klein–Gordon oscillator
is given by

1√−g
(∂μ + mωXμ)(

√−ggμν)(∂ν − mωXν)φ − m2φ = 0,

(3)

where g = det(gμν) and gμν is the inverse of the metric
tensor. We also have the radial direction where the KGO is
located Xμ = (0, r, 0, 0).

Replacing the components of the metric tensor Eq. (2)
together with its inverse in the expression referring to KGO,
we have

−∂2φ

∂t2 + α2
(

1 + ε

r2

) ∂2φ

∂r2 +
(

2α2

r
+ α2ε

r3

)
∂φ

∂r

−m2φ − 3mωα2φ − m2ω2α2
(
r2 + ε

)
φ
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−2mωεα2

r2 φ + 1

r2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)

+ 1

sin2 θ

∂2

∂ϕ2

]
φ = 0. (4)

By using the method of separation of variables, we define
that the scalar field is written in terms of new functions
φ (t, r, θ, ϕ, ) = e−i Et f (r) Yl,m(θ, ϕ), where Yl,m(θ, ϕ) are
the spherical harmonics, f (r) is the radial wave function and
E represents the energy eigenvalues of the system. With the
following definition
[

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂ϕ2

]
Yl,m(θ, ϕ)

= −l(l + 1)Yl,m(θ, ϕ), (5)

and by substituting Eq. (5) into Eq. (3) we obtain the follow-
ing second order differential equation
(

1 + ε

r2

)
f ′′ (r) +

(
2

r
+ ε

r3

)
f ′ (r)

+
[

K 2
1 − K 2

2

r2 − K 2
3r

2

]

f (r) = 0, (6)

where we define the parameters

K 2
1 = E2 − m2 − 3mωα2 − m2ω2α2ε

α2 ,

K 2
2 = l (l + 1) + 2mωεα2

α2 , K 2
3 = m2ω2. (7)

In order to solve Eq. (6), let us consider the change f (r) =
e− K3r

2

2 g (r). This redefinition must be valid for all r . It should
be well behaved in origin r → 0 and spatial infinities r →
±∞. In this way, Eq. (6) is rewritten as follows,
(

1 + ε

r2

)
g′′ (r) +

[
2

r
− 2εK3

r
+ ε

r3 − 2K3r

]
g′ (r)

+
[(

K 2
1 − 3K3 + εK 2

3

)
−

(
K 2

2 + 2εK3
)

r2

]

g (r) = 0.

(8)

From now on, let us define the change of variable u =
1 + r2

ε
into Eq. (8), from which we obtain the following

second-order differential equation

d2g

du2 + dg

du

[
−K3ε + 1

2u
+ 1

u − 1

]

+g (u)

[(
P1 + P2

u

)
−

(
P2

u − 1

)]
= 0, (9)

where we define the new parameters

P1 = ε

4

(
K 2

1 − 3K3 + εK 2
3

)
, P2 =

(
K 2

2 + 2εK3

)

4
.

(10)

Eq. (9) is the confluent Heun equation [60–62] and g (u) is
the confluent Heun function given as follows

g (u) = Hc

(

−K3ε;−1

2
, 0,

εK 2
1

4
+ ε2K 2

3

4
,

1

4
− K 2

2

4

−K 2
1 ε

4
− ε2K 2

3

4
, u

)

. (11)

Equation (9) has singular points, of which the origin is a
regular singular point. In this sense, Eq. (9) admits solutions
around the origin given in power series form [63]

g (u) =
∞∑

j=0

c j u
j . (12)

Thus, by substituting Eq. (12) into Eq. (9) we obtain a relation
between the coefficients c1 and c0 and the recurrence relation

c1 = −2c0 (P1 + P2) , (13)

c j+2 = c j [P1 − jεK3] + c j+1
[
( j + 1)

(
j + 3

2 + εK3
) − (P1 + P2)

]

( j + 2)
(
j + 3

2

) .

(14)

In order to find bound state solutions we must truncate the
confluent Heun series (12) to obtain finite degree polynomials
of order n. This is possible by truncating the confluent Heun
series (12) through the recurrence relation (14) imposing that
cn+1 = 0, with j = n − 1. Thus, the recurrence relation Eq.
(14) is rewritten

cn = cn−1 [(n − 1) εK3 − P1]
[
n

(
n + 1

2 + εK3
) − (P1 + P2)

] , (15)

where n = 1, 2, 3, . . . represent the radial modes of the sys-
tem. It is only possible to analyze Eq. (15) imposing values
for the radial mode n, due to the dependence of the coeffi-
cients cn and cn−1. Therefore, let us consider the radial mode
n = 1, which represents the lowest energy state of the rela-
tivistic quantum system. Therefore, substituting n = 1 into
Eq. (15), we obtain the following expression

c1 = c0P1[
(P1 + P2) − ( 3

2 + εK3
)] . (16)

Thus, by combining Eqs. (13) and (16), in which they relate
coefficients c0 and c1, we find a second-degree algebraic
equation in the variable P1 that contains the energy term

P2
1 + P1 (2P2 − 1 − εK3)

+P2

[
P2 − 1

2
(3 + 2εK3)

]
= 0. (17)

Therefore, the solution of Eq. (17) gives us, in terms of the
parameter E = El,1, the solution
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El,1 = ±
[
m2 + 4mωα2 − l (l + 1)

ε

+2α2

ε
± α2

ε

√

4 + 4m2ω2ε2 + 16mωε + 2l (l + 1)

α2

] 1
2

.

(18)

Equation (18) represents the allowed energy values for the
lowest energy state of KGO in Ei B I spacetime. By Compar-
ing to Eq. (18) with the results obtained in Refs. [29,47] we
can see that the KGO has its energy profile drastically modi-
fied, that is, in Refs. [29,47], the energy spectrum of KGO is
determined by a closed expression, while the KGO in Ei B I
spacetime can’t determine a closed expression for its energy
spectrum; due to gravitational effects intrinsic aspects of this
non-trivial topology characterized by the metric given in Eq.
(1), it is only possible to determine allowed values of energy
for the quantum system by imposing values of n to Eq. (15)
separately. Furthermore, the lowest energy state of the system
is not defined by the radial mode n = 0, as in Refs. [29,47],
but by the radial mode n = 1. In addition, we can note that
the allowed energy values for the lowest energy state of KGO
depend on the parameter associated with the GM, α.

By making ω = 0 in Eq. (18), we have

El,1 = ±
[
m2 − l (l + 1)

ε
+ 2α2

ε
± α2

ε

√

4 + 2l (l + 1)

α2

] 1
2

,

(19)

that is, the allowed energy values for the lowest energy state
of a scalar particle in Ei B I spacetime. This means that, even
without interaction, the particle continues to have discrete
energy, characterizing the confinement, which comes from
gravitational effects.

We can observe through Eqs. (18) and (19) that, by tak-
ing the limit of ε → −a2 we recover the energy profiles
of a scalar particle [41] and of KGO [42] in a topologically
charged Ellis-Bronnikov space-time, respectively. The focus
of this work is totally focused on the analysis of the posi-
tive part of the ε parameter, by making our analysis more
generally.

In Fig. 1, we define some values for the constants α and
we perform the evolution of the parameters ω/m. In this way,
we can have a visual representation for the energy levels for
the ground state. Since on this occasion, we consider m2ε

constant. Likewise, we define some values for the constant
α and provide the evolution of the parameters m2ε. Now, we
keep the relationship between the parameters ω/m constant
and obtain a visual representation of the ground state of the
energy spectrum (see Fig. 2).

The eigenfunction corresponds to the ground state of the
energy spectrum Eq. (18) is described by the first term of the
polynomial of the confluent Heun equation Eq. (12), defined
as gl,1 = c0 +c1u. Therefore, the general solution contained

in the general ansatz fl,1 (r) = e− K3r
2

2 gl,1 (r) is explicitly
rewritten in the form below

fl,1 (r) = c0e
−mωr2

2

[
1 − 2 (P1 + P2)

(
1 + r2

ε

)]
. (20)

We can see that the eigenfunction (20) for the lowest energy
state of the quantum system is influenced by the GM and
the KGO, since it depends on the parameters P1 and P2,
which in turn depend on the parameters associated with the
topological defect, α, and the relativistic scalar oscillator, ω.

3 KGO plus a gravitational Mie-type potential

In this second part of the work, we are interested in the study
of a massive particle with spin zero, now being influenced
by the Born-Infeld spacetime curvature scalar. In a way, we
want to verify how the parameter that accompanies the geo-
metric term ξ modifies the energy spectrum. Furthermore,
investigate how the Born-Infeld term can be seen as a per-
turbation of the global monopole metric, by modifying both
the spectrum and its eigenfunctions. In this case, Eq. (3) is
redefined as

1√−g
(∂μ + mωXμ)(

√−ggμν)(∂ν − mωXν)φ

−
(
ξ R + m2

)
φ = 0, (21)

where ξ is the coupling constant that binds to the geometric
term. We are by considering that this oscillator is in the same
direction as the case treated in the previous section Xμ =
(0, r, 0, 0). The curvature scalar is defined as follows

R = 2εα2

r4 + 2
(
1 − α2

)

r2 . (22)

Equation (22) reminds us of a particular case of a well-
known potential in the study of molecular atomic physics,
known in the literature as Mie-type potential [64,65]. This
type of potential describes the interaction between two atoms
which form a diatomic molecule and is given in the form

V (r) = V0

[(
σ

κ − σ

) (r0

r

)κ −
(

σ

κ − σ

) (r0

r

)σ
]

, (23)

where σ and κ are parameters and V0 is the interaction energy
between two atoms separated by the distance r0 in a molec-
ular system. For σ = 2 e κ = 1, for example, we recover the
Kratzer–Fues potential [66–68]. By taking σ = 4 and κ = 2
into Eq. (23), we obtain V (r) → 1/r4 + 1/r2, a possible
particular case of the Mie-type potential. Therefore, based on
this discussion, due to the mathematical structural analogy,
we can consider Eq. (22) or ξ R as a gravitational Mie-type
potential. In this way, from Eqs. (2), (5) and (22) into Eq. (21)
we have
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Fig. 1 In both graphs contained in the figures on the right and left, we
have | El,1

m | as a function of ω/m. In the figure on the left, we have the
continuous blue curve that represents the positive sign inside the square
root Eq. (18) and the red curve continues the negative sign also from

inside the root of Eq. (18). We fixed m2ε = l = 1 and also did α = 0.2.
The dotted lines indicate the negative energy values. In the figure on
the right, we carry out the same process now by varying the parameter
α = 0.6

Fig. 2 In both figures we are visualizing | El,1
m | as a function of m2ε.

In the figure on the left, we have the continuous blue curve that repre-
sents the positive sign inside the square root Eq. (18) and the red curve
continues the negative sign also from inside the root of Eq. (18). We

fixed ω/m = l = 1 and also did α = 0.2. The dotted lines indicate the
negative energy values. In the figure on the right, we carry out the same
process now by varying the parameter α = 0.5

(
1 + ε

r2

)
Z ′′ (r) +

(
2

r
+ ε

r3

)
Z ′ (r)

+
[

�2
1 − �2

2

r2 − �2
3r

2 − �2
4

r4

]

Z (r) = 0, (24)

with

�2
1 = E2 − m2 − 3mωα2 − m2α2ω2ε

α2 , �2
3 = m2ω2

�2
2 = l (l + 1) + 2εmωα2 + 2ξ

(
1 − α2

)

α2 , �2
4 = 2ξε.

(25)

From now on, let us consider the redefinition of the radial

wave function Z (r) = e− �3r
2

2 r |�|β (r) into Eq. (24) and by
remembering that |�| = �4√

ε
we obtain

(
1 + ε

r2

)
β ′′ (r) +

[
2

r
(1 + |�| − ε�3) + ε

r3 (1 + 2|�|)

−2�3r ] β ′ (r) +
[

ζ1

r2 + ζ2

]
β (r) = 0. (26)
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where we define the new parameters

ζ1 = |�|2 − 2ε|�|�3 + |�| − 2ε�3 − �2
2,

ζ2 = �2
1 − 3�3 + ε�2

3 − 2|�|�3. (27)

Next, we perform the change of variables given by s = − r2

ε
,

then, Eq. (26) becomes

β ′′ (s) +
[

ε�3 + (1 + |�|)
s

+
1
2

s − 1

]

β ′ (s)

+
⎡

⎣− ζ1
4

s
+

(
ζ1−εζ2

4

)

s − 1

⎤

⎦ β (s) = 0. (28)

Equation (28) is the confluent Heun equation [60–62], and
β (s) is the confluent Heun function defined in the form:

β (s) = Hc

(

ε�3, |�|,−1

2
,−ε�2

1

4
− ε2�2

3

4
,

1

4

+|�|2
4

− �2
2

4
, s

)

. (29)

Analogously to what was done in the previous section,
Eq. (28) can also be solved by using power series, that is, by
using the so-called Fröbenius method [63]

β (s) =
∞∑

j=0

d j s
j . (30)

Therefore, substituting Eq. (30) in Eq. (28), we obtain a rela-
tion between the coefficients d0 and d1 and recurrence rela-
tion:

d1 = ζ1d0

4 (1 + |�|) , (31)

d j+2 =
ε
(
�3 j− ζ2

4

)
d j +

[(
ζ1
4

)
+( j + 1)

(
j + 3

2 +|�|−ε�3

)]
d j+1

( j + 2) ( j + 2 + |�|) .

(32)

As we have discussed in the previous section, the confluent
Heun series becomes a polynomial of degree n = j+1 when

dn = ε
dn−1

[(
ζ2
4

)
+ �3 (1 − n)

]

[(
ζ1
4

)
+ n

(
n + 1

2 + |�| − ε�3
)] , (33)

where n = 1, 2, 3, . . . represent the radial modes of the sys-
tem.

Let us follow the steps from Eqs. (15) to (16), then, we
write

d1 =
ε
(

ζ2
4

)
d0

[(
ζ1
4

)
+ 3

2 + |�| − ε�3

] . (34)

We verified that tor there is compatibility between the results
of the bosonic scalar field and the case referring to KGO

under effects of the scalar curvature, it is necessary that the
parameter |�| = − �4√

ε
= −√

2ξ , by making the parameter ξ

positive and defined. Thus, we have that the allowed values
for the lowest energy state of the system defined by the radial
mode n = 1 are given by

El,1 = ±
{
m2 + 6mωα2 − 2mωα2

(
�4√

ε

)

+ α2

4ε
(

1 − �4√
ε

)
[
ζ 2

1 + 4ζ1

(
3

2
− mωε − �4√

ε

)]
⎫
⎬

⎭

1
2

.

(35)

In Eq. (35), we can note that the parameter ξ that accompa-
nies the curvature scalar, contributes to modifying the ener-
gies of the bosonic KGO. The characteristic term of the Born-
Infeld metric ε can be seen as a correction for the GM metric.
And therefore, it should also corroborate modifications in the
energy spectrum.

We can observe in the Figs. 3, 4, 5 and 6 that we have
created a graphical representation to describe some energy
configurations for the ground state, contained in Eq. (35).
First, in the Figs. 3 and 4 we set m2ε = 1 and vary the
parameters α and ξ through the function ω/m. And later, in
the Figs. 5 and 6 we kept the reason ω/m fixed and varied
the same parameters α and ξ through the function m2ε.

Another result that we can construct from Eq. (35) is the
case of a bosonic scalar field. That it is enough to consider the
frequency of KGO in the limit of ω → 0. Thus, the spectrum
refers to the ground state of this model is described by

El,1 = ±
[
m2 + α2

ε
(
1 − √

2ξ
)

(
ξ2 + 11ξ

2
+ l2(l + 1)2

4α4

+ ξ2(1 − α2)2

α4 + ξ l(l + 1)(1 − α2)

α4

)

+ α2

ε
(
1 − √

2ξ
)

(
l(l + 1) + 2ξ(1 − α2)

α2

)

×
(

3

2

√
2ξ − ξ− 3

2

)
− α2

ε
(
1 − √

2ξ
)

3

2

√
2ξ (1+2ξ)

] 1
2

.

(36)

which represents the allowed values for the lowest energy
state of a scalar field subject to the gravitational Mie-type
potential arising from the curvature scalar. We can notice
that the energy profile of the system is drastically modified.

The eigenfunction corresponding to the ground state of
the bosonic KGO is defined through the expression below

Zl,1 (r) = c0e
−mω

2 r2
r−√

2ξ

[

1 − ζ1r2

4ε
(
1 − √

2ξ
)

]

. (37)

which carries information on the dependency of KGO inter-
action and on the spacetime topology adopted as background.
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Fig. 3 In both graphs contained in the figures on the right and left, we
have | El,1

m | as a function of ω/m. In the figure on the left, we have the
setting of the parameter α = 0.1 and two values of the parameter ξ . The
continuous curves represent the positive sign of the spectrum Eq. (35)

and the dotted curves the negative sign of the spectrum. In the figure
on the right, the same process was carried out, now with the parameter
α = 0.5. Was fixed m2ε = l = 1

Fig. 4 In both graphs contained in the figures on the right and left, we
have | El,1

m | as a function of ω/m. In the figure on the left, we have the
setting of the parameter ξ = 0.1 and two values of the parameter α. The
continuous curves represent the positive sign of the spectrum Eq. (35)

and the dotted curves the negative sign of the spectrum. In the figure
on the right, the same process was carried out, now with the parameter
ξ = 0.4. Was fixed m2ε = l = 1

4 Conclusion

In the present work, we study quantum dynamics in Born–
Infeld space-time. First, we focus on investigating the effects
of a massive particle subjected to KGO, through analytical
methods, we construct the energy spectrum referring to the
ground state and its corresponding eigenfunction. Looking at
the energy spectrum Eq. (18), we can directly observe how
the Born–Infeld parameter ε modifies it.

Furthermore, we show that it is possible to adapt the
energy spectrum Eq. (18) for negative values of the ε param-
eter and retrieve the KGO case for the topologically charged

Ellis-Bronnikov spacetime [42]. We also built a graphical
representation for some configurations of the energy spec-
trum Eq. (18) referring to the ground state (see Figs. 1 and 2).

We investigated a second model, now the massive bosonic
particle subjected to the effects of a KGO. In the same way,
we build the energy spectrum through analytical methods
and in Eq. (18) we stipulate the expression referring to the
ground state of energy and later in the equation Eq. (37) the
corresponding eigenfunction. We show that not considering
the limit of ω → 0 in the energy spectrum Eq. (36), we can
construct the ground state of a massive bosonic particle under
the effects of the Born–Infeld parameter ε.
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Fig. 5 In both figures we are visualizing | El,1
m | as a function of m2ε.

In the figure on the left, we fixed the parameter α = 0.1 and varied
some values for the parameter ξ . The continuous curves represent the

positive sign of the energy spectrum Eq. (35) and the dotted curves the
negative sign. On the curve on the right, we fix the parameter α = 0.3
and vary the parameter ξ . In both cases, we set ω/m = l = 1

Fig. 6 In both figures we are visualizing | El,1
m | as a function of m2ε.

In the figure on the left, we fixed the parameter ξ = 0.1 and varied
some values for the parameter α. The continuous curves represent the

positive sign of the energy spectrum Eq. (35) and the dotted curves the
negative sign. On the curve on the right, we fix the parameter ξ = 0.3
and vary the parameter α. In both cases, we set ω/m = l = 1

A graphical representation was also constructed to make
visual some of the ground state configurations contained in
the spectrum Eq. (35). We can observe in the Figs. 3, 4, 5 and
6 that both the parameter accompanying the curvature scalar
ξ and the parameter α, are correlated for the construction
of the spectrum. Depending on the values assigned to these
parameters, the energy spectrum may diverge. For example,
when we consider m2ε → 0 (see Figs. 5 and 6).
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