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Abstract of Dissertation

Beginning with a review of the Standard Model of particle physics, as well as supersymmetry and su-

pergravity, we explore the phenomenology of models built in the framework of supergravity grand uni-

fication. The models are studied by considering results from prominent experiments such as the search

for exotic particles with the Large Hadron Collider, satellite telescopes that determine the anisotropy in

the cosmic microwave background, and terrestrial searches for dark matter. In particular, the discovery

and mass measurement of the Higgs boson is used to consider the implications for naturalness and

discovery prospects of supergravity models.
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Chapter 1

Introduction and Overview

The Standard Model can be thought to have begun in the late 1920s and early 1930s, as Dirac devel-

oped [1] and introduced [2] one of its core components, Quantum Electrodynamics. Since that time,

the theory has evolved greatly, introducing new particles and structures of interactions, while being

simultaneously verified by experiments that have similarly evolved with increasing ambition and pre-

cision. Now, with the apparent discovery of the final piece, the Higgs boson, the Standard Model can

be considered to have been completed, in 2012.

Of course, particle physics itself is not complete as many unsolved questions remain; there is great

interest in arriving at the correct theory of physics beyond the Standard Model. The reason for the

success of the Standard Model is largely due to the apparent fact that the framework upon which the

Standard Model is built, the relativistic mechanics of quantum fields and gauge invariance, allows one

to correctly articulate aspects of nature. That is, the framework does not allow one to see what particles

and interaction must exist, instead it allows one to accurately describe how they exist. In order to

retain this success, it is sensible to retain the foundational underpinning of the Standard Model while

adjusting and elaborating on its features.
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This dissertation explores models of physics beyond the Standard Model developed within super-

gravity grand unification, a theoretically attractive framework that begins to solve some of the unre-

solved questions from the Standard Model. The models are studied with the use of empirical data

and constraints from particle accelerators, deep underground nuclear recoil detectors, and satellite tele-

scopes.

The dissertation is organized as follows. In Chapter 2, a basic introduction to the formalism and

features of the Standard Model of particle physics is presented, along with a discussion of the open

problems. In Chapter 3, the ideas and methods of supersymmetric field theories are introduced and

motivated. In Chapter 4, relevant aspects of supergravity grand unification are studied for the models of

interest. The impact of the very first searches for supersymmetric particles for the parameter space of the

supergravity models and supersymmetric dark matter are given in Chapter 5 and Chapter 6. The impact

of large scalar masses for naturalness is studied in Chapter 7. The allowed parameter space of minimal

supergravity for the theoretically viable ranges of the Higgs boson mass is explored in Chapter 8. The

first measurement of the Higgs boson mass is used to estimate the parameters of minimal supergravity

using Bayesian methods in Chapter 9. A new class of supergravity grand unification models is proposed

and explored in Chapter 10 that aim to simultaneously produce the accepted Higgs boson mass along

with the anomalous magnetic moment of the muon.
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Chapter 2

The Standard Model

2.1 Introduction

The Standard Model (SM) [3–11] is a Yang-Mills gauge field theory built on the spacetime symmetry

of the Poincaré group and on the internal symmetry group of SU(3)C× SU(2)L×U(1)Y, where SU(3)C

is the gauge group of strong color interactions, SU(2)L is the gauge group of weak chiral interactions,

and U(1)Y is the weak hypercharge factor. The coupling strength for these are taken to be g3, g, and

g′, respectively. The weak hypercharge is related to electric charge and T3, a generator of SU(2)L by the

relation

Q = T3 +
1
2
Y . (2.1)

The electroweak gauge symmetry of SU(2)L ×U(1)Y is spontaneously broken to U(1)Q, the electro-

magnetic gauge group, by the Brout-Englert-Higgs mechanism [12–15] where a scalar field, known as

the Higgs field, with a potential that has a symmetry-breaking minimum is introduced, giving a non-

zero vacuum expectation value (VEV) to the field. Gauge-invariant interactions with the Higgs field

3



Figure 2.1: A schematic sketch of the shape of the symmetry-breaking Higgs potential. The height of
the surface is the value of VH and the base is the complex plane of H.

produce mass terms for the fermions in the spontaneously broken SM. The extra degrees of freedom

arising from the Nambu-Goldstone [16–18] scalars become the longitudinal polarizations of three lin-

ear combinations (W± and Z0) of the four massless SU(2)L andU(1)Y gauge fields, making them massive

in the unitary gauge. Thus it is said that the Higgs mechanism gives mass to the other particles of the

SM.

2.2 Electroweak Symmetry Breaking

Spontaneous breaking of the electroweak gauge symmetry is crucial in the Standard Model as a length

scale was observed in the weak nuclear force, a feature otherwise incompatible with Yang-Mills theories.

This is achieved by means of the Higgs potential

VH = −μ
2H†H + λ (H

†H)
2

(2.2)
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where the relative sign of μ2 and λ produces a potential with a symmetry-breaking minimum. A

schematic sketch of the Higgs potential is given in Fig. 2.1.

The vacuum state will occupy any part of the circle in the complex plane which gives the minimum

value of the potential. This means that the Higgs field acquires a non-zero vacuum expectation value,

which can be written as

⟨H⟩ = ⎛⎜⎜
⎝

0

v/√2

⎞⎟⎟
⎠

(2.3)

with v = μ/√λ . Then, the Lagrangian can be re-written perturbatively around this minimum with

H → ⟨H⟩ + h.

The Higgs field is a doublet of SU(2)L, and its weak hypercharge is arranged so that it has a neutral

component, which will have the VEV. Additionally, its couplings to the electroweak gauge fields will

guarantee that one linear combination ofWa
µ and Bµ fields which has no electric charge will not couple

to the Higgs. That combination is the photon, and it is the vector boson that mediates the preserved

U(1)Q factor for electromagnetic interactions. Also, the Higgs is a singlet of SU(3)C so the gluon does

not interact with the Higgs either and remains massless as well.

2.3 Particle Content

The fields of the Standard Model can be divided into the spin-1 gauge fields, the spin-1/2 matter fields,

and the scalar Higgs field.

In the adjoint representation of SU(3)C are the gluon fields Ga
µ(x), with a = 1… 8. Similarly for

SU(2)L, we have the W1,2,3
µ (x) fields. Associated with the abelian hypercharge factor is the Bµ(x) field.

The matter fields of the SM all have spin-1/2 and transform either as SU(2)L singlets, in which

case they are called right-handed or right-chiral, or they transform in the fundamental representation

5



Field Content SU(3)C SU(2)L U(1)Y

Quarks
Qi (uL, dL) � � 1/3

ui uRi � 𝟏 4/3

di dRi � 𝟏 − 2/3

Leptons
Li (ν, eL)i 𝟏 � −1

ei eRi 𝟏 𝟏 −2

Higgs
H (H+, H0) 𝟏 𝟏 1

Gauge
G Ga

µ Adj 𝟏 0
W W0

µ, W
±
µ 𝟏 Adj 0

B Bµ 𝟏 𝟏 0

Table 2.1: A listing of the fields and particle content of the Standard Model. The irreducible repre-
sentations of the non-Abelian gauge groups that the fields belong to are indicated by Young tableaux,
with “Adj” denoting the adjoint representation. The weak hypercharge factor is also listed. The index i
is for each of the 3 generation of quarks and leptons.

6



of SU(2)L, and are called left-handed (or left-chiral). Quark fields transform as SU(3)C triplets, and

lepton fields transform as singlets. There are three “generations” of quarks and leptons in the standard

model.

The particle content of the SM is summarized in Table 2.1, with the Higgs also listed.

2.4 Lagrangian

The Lagrangian of the SM can be organized in a few parts:

ℒ = ℒYM + ℒKinetic + ℒYukawa + ℒHiggs . (2.4)

The Yang-Mills Lagrangian, ℒYM, provides the kinetic terms of the gauge field strengths

− ℒYM = 1
4
Ga

µνG
aµν + 1

4
Wa

µνW
aµν + 1

4
BµνB

µν , (2.5)

where the gauge field strengths are defined by

Ga
µν = ∂µG

a
ν − ∂νG

a
µ − g3f

a
bcG

b
µG

c
µ , with a, b, c = 1, 2, … , 8 (2.6)

Wa
µν = ∂µW

a
ν − ∂νW

a
µ − gϵ

a
bcW

b
µW

c
µ , with a, b, c = 1, 2, 3 (2.7)

Bµν = ∂µBν − ∂νBµ . (2.8)

In the equations above, fabc are the SU(3) structure constants, and ϵabc are the SU(2) structure constants.

The kinetic terms for matter fields are in ℒKinetic, but it also provides the gauge–matter couplings by

means of the covariant derivative. For a given Weyl spinor field1, χ, the covariant derivative Dµχ takes

1The spinor notations used are explained in Appendix A.1.
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the form

Dµχ = (
∂µ + ig3

λa
2
Ga

µ(x) + igTaW
a
µ(x) + ig

′y
2
Bµ)

χ , (2.9)

where Ta are the generators of SU(2), λa are the Gell-Mann matrices, and y is the hypercharge of χ. If

χ is a singlet of SU(3)C or of SU(2)L then the g3 term or the g term vanishes, respectively. If χ is in the

� representation of SU(3)C, then the g3 term is conjugated. Then, we can write ℒKinetic as

ℒKinetic = L̄iσ
µDµL

i + ̄eσµDµe
i + Q̄iσ

µDµQ
i + ūiσ

µDµu
i + d̄iσ

µDµd
i , (2.10)

and i is summed from 1 to 3 for each generation of quarks and leptons.

The Higgs coupling to matter, ℒYukawa is written as

ℒYukawa = iY
ij
e L̄iσ2H

∗ej + iY
ij
u Q̄iσ2Huj + iY

ij
d Q̄iσ2H

∗dj + c.c. (2.11)

Here, Ye, Yu, and Yd are the Yukawa coupling matrices. They are in principle complex-valued and

entirely arbitrary. Without electroweak symmetry breaking, the Yukawa Lagrangian describes the cou-

pling of the Higgs field to the left- and right-chiral matter spinors. With electroweak symmetry break-

ing, the Higgs field in the interaction terms is replaced as

H → ⟨H⟩ + 1
√2

h ≡ 1
√2

(v + h) (2.12)

where v, a c-number is the Higgs VEV, and h is the Higgs boson. Then we are left with mass terms for

the fermions as well as interactions between the Higgs boson and the fermions. The generated fermion

mass parameters in the Lagrangian will have the formm = yv/√2 , where y is the corresponding Yukawa

matrix element. Thus the otherwise arbitrary Yukawa coupling matrices are adjusted to reproduce the

correct empirically observed mass, and offer no insight into the structure of the fermion mass spectrum.
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The final piece of the Standard Model Lagrangian is the Higgs Lagrangian, which was introduced

in Section 2.2. The Higgs Lagrangian includes the Higgs kinetic terms and couplings to gauge fields,

as well as the Higgs potential responsible for electroweak symmetry breaking. Noting that

DµH = (∂µ + igTaW
a
µ + ig

′yHBµ)H , (2.13)

where yH = 1 is the Higgs hypercharge, we have

ℒHiggs = (DµH)
†
(DµH) + μ

2H†H + λ (H
†H)

2
. (2.14)

With this, we have constructed the full structure of the Standard Model Lagrangian.

2.5 Problems in the Standard Model

Despite the remarkable success of the Standard Model, it is quite clear that it must be extended for a

variety of reasons. A sampling of these are enumerated here

• Gravity The Standard Model does not include the gravitational interaction. We cannot hope

to conclude a fundamental theory of particles and interactions without mention of gravity, thus

this is perhaps the most glaring omission.

• NeutrinoMassesThe absence of right-handed neutrinos precludes one from writing any dimension-4

operator for neutrino mass, and higher-dimensional operators are not within the SM framework.

• Flavor There is an extraordinary disparity in the magnitudes of the quark and lepton masses.

This hierarchy in the Yukawa couplings is completely arbitrary in the SM.

• Matter–antimatter Asymmetry Assuming an equal amount of matter and anti-matter in the

9



early universe, as is natural in the SM, no sufficient source of CP violation exists to account for

the vast asymmetry in the amount of matter and antimatter today.

• Higgs Hierarchy The nature of scalar field theory implies that the Higgs boson mass receive

corrections from matter that it couples to, and in the SM, these corrections are divergent. If a

cut-off scale Λ is established, then the corrections diverge as Λ2. If the cut-off scale is taken to

be the Planck mass, where the SM is not sensible anyway, then the Higgs mass parameter must

be tuned to a bewildering 32 digits.

• Dark Matter Cosmological data indicates that the matter in the SM accounts for roughly 4.9%

of the mass-energy in the universe. An otherwise unexplained form of matter called Dark Matter

apparently accounts for 26.8% while the cosmological constant contains the remaining 68.3% of

the universe. A particle theory of dark matter is an essential starting point for physics beyond

the Standard Model.

Thus it is essential that physics beyond the Standard Model be developed. We will introduce super-

symmetry in the next chapter which addresses some, but certainly not all of the issues raised here.
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Chapter 3

Supersymmetry

3.1 Origins of Supersymmetry

Supersymmetry (SUSY) was discovered by Ramond [19] in 1971, while writing the string Dirac equa-

tion. It was further applied towards the development of a superstring theory by Neveu and Schwarz [20],

followed by Gervais and Sakita [21]. The first 4-dimensional Poincaré superalgebra came from Gol’fand

and Likhtman [22], and independently, the first 4-dimensional interacting supersymmetric QFT came

from Wess and Zumino [23]. Additionally, Volkov and Akulov [24] produced the earliest theory of

spontaneously broken supersymmetry, where they identified the neutrino (then thought to be mass-

less) as the Goldstone fermion. Salam and Strathdee [25] introduced the superspace in 1974, giving

the easiest way to produce field representations of supersymmetry. In 1975, Haag, Łopuszański, and

Sohnius showed [26] that by relaxing the assumptions of the Coleman-Mandula theorem [27] to in-

clude both commuting and anti-commuting generators, one finds that the Poincaré superalgebra is the

most general nontrivial symmetry of the S-matrix.
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3.2 Formulation

3.2.1 Superalgebra

Superalgebra [28–38] (also called a graded Lie algebra) generalizes the notion of a commutator to the

so-called supercommutator by alternating between commutation and anti-commutation, based on the

“grading” of the generators. Specifically, one defines the supercommutator by

�ta, tb} ≡ tatb − (−1)
ηaηbtbta = iC

c
abtc (3.1)

where ηa is the grading of the generator ta, and Cc
ab are the structure constants. The gradings serve as

a parity between even (bosonic) and odd (fermionic) generators. Conventionally, even generators have

η = 0 and odd generators have η = 1. Operators formed by the product of graded generators in turn

have a grading equal to the modulo-2 sum of the gradings of the generator factors. Additionally, one

obtains a super-Jacobi identity of the form

(−1)ηaηc �ta, �tb, tc}} + (−1)
ηbηc �tc, �ta, tb}} + (−1)

ηaηb �tb, �tc, ta}} = 0 . (3.2)

In supersymmetry, the even generators of the Poincaré group are combined with a collection of𝒩 odd

Weyl spinor generators, QA
α , where A = 1…𝒩 and α is the spinor index, using the supercommutator.

Then, the Coleman-Mandula theorem along with a conventional choice of basis determines the form

of the superalgebra. Using the gradings of the generators, one resolves the supercommutator into an

explicit form, giving the following commutation and anti-commutation relations of the supersymmetry

algebra

{Q
A
α , Q̄Bβ̇} = 2σ

µ
αβ̇Pµδ

A
B (3.3)
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�Mµν, Q
A
α� = i (σµν)

β

α
QA

β (3.4)

�Mµν, Q̄
Aα̇
� = i (σ̄µν)

α̇

β̇
Q̄Aβ̇ (3.5)

�Pµ, Q
A
α� = �Pµ, Q̄Bβ̇� = 0 (3.6)

{Q
A
α , Q

B
β} = εαβZ

AB (3.7)

{Q̄
A
α , Q̄

B
β} = εαβZ

∗AB (3.8)

where the usual 2-component notation has been used1. Further, Pµ and Mµν are the generators of

the Poincaré group; Q̄ denotes the complex conjugate of Q. The elements Z and Z∗ are called central

charged as they belong to an abelian invariant subalgebra of the superalgebra, and commute with every

element of the superalgebra. However, since they are anti-symmetric, they do not appear for 𝒩 = 1.

We see that the generator of translations Pµ commutes with Q and Q̄, and P2 is a Casimir operator,

thus fields within an irreducible representation, a “supermultiplet”, must have equal mass. This is in

contradiction to experiment; if supersymmetry is realized in nature it must be spontaneously broken.

In contrast to mass, the spin of the fields need not be equal, instead, the fermionic degrees of freedom

must equal the boson degrees of freedom. For this reason, only if 𝒩 = 1 does one find it possible to

write a chiral theory. Thus, we will restrict our discussion in the 𝒩 = 1 case. Additionally, all fields

within a supermultiplet belong to the same representation of the gauge group.

An important result of supersymmetry is that from Eq. (3.3), we can obtain a set of 𝒩 equations

for the vacuum energy in terms of the SUSY generators, by inspecting the 2 × 2 trace, for each A, and

simply adding them all. The resulting expression for the Hamiltonian operator is

P0 =
1
4𝒩 ∑A,α

�QA
α Q̄

A
α̇ + Q̄

A
α̇Q

A
α � (3.9)

1The spinor notations used are explained in Appendix A.1.
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We can find its expectation value for any given state |ψ⟩,

⟨ψ|P0|ψ⟩ =
1
4𝒩 ∑

A,α,k
�⟨ψ|QA

α |ϕk⟩⟨ϕk|Q̄
A
α̇ |ψ⟩ + ⟨ψ|Q̄

A
α̇ |ϕk⟩⟨ϕk|Q

A
α |ψ⟩� (3.10)

= 1
2𝒩 ∑A,α

|⟨ϕk|Q
A
α |ψ⟩|

2 (3.11)

Thus, it is guaranteed that ⟨ψ|P0|ψ⟩ ≥ 0. Now, any state that gives a zero expectation value must be the

vacuum; if there is no such state then the vacuum spontaneously breaks supersymmetry.

3.2.2 Superspace and Superfields

In this section, we develop the superspace formulation for the case 𝒩 = 1. Supermultiplets may be

obtained by repeated use of the super-Jacobi identity. However, the superspace formalism allows one

to write expressions that are manifestly supersymmetric. This is achieved by adding to spacetime coor-

dinates, a pair of Grassmann coordinates θα and its complex conjugate ̄θα̇:

Spacetime: xµ ⟶ Superspace: {xµ, θα, ̄θα̇} (3.12)

Because the Grassmann coordinates2 anti-commute, all polynomials in a Grassmann variable must be

truncated at the quadratic term. This means that any given function in superspace has an exact finite

Taylor expansion in the Grassmann coordinates:

𝐒 (xµ, θα, ̄θα̇) = ϕ(x) + θξ(x) + θ
2f(x) + θ̄χ̄(x) + ̄θσ̄µθAµ(x)

+ iθ2θ̄λ̄(x) + ̄θ2g∗(x) + iθ̄2θη(x) + θ2θ̄2d(x) (3.13)

2For more details on Grassmann coordinates, see Appendix A.2.
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here the “superfield” 𝐒 is a Lorentz scalar with 4 scalar components: ϕ, f, g, and d, 4 Weyl spinor

components: ξ, χ, λ, and η, and 1 vector: A. Indeed, we could promote the rank of the superfield to

e.g. 𝐒ν by additionally increasing the rank of its components. One may also add a spinor index to the

superfield, but that will change the expansion slightly.

Transformations of the superfields are constructed by finding a form for the SUSY generators that

satisfy

exp (−iϵQ − iϵ̄Q̄) 𝐒 (xµ, θα, ̄θα̇) = 𝐒 (xµ + Δµ, θα + ϵα, θ̄α̇ + ϵ̄α̇) (3.14)

where ϵ is an arbitrary spinor parameter of the transformation and Δµ = iϵσµ ̄θ + iϵ̄σ̄µθ. We note that

translations in the spinor coordinate are accompanied by a translation of the scalar coordinate. One

finds

Qα = i
∂
∂θα

− (σµθ̄)α ∂µ, and, Q̄α̇ = i ∂
∂θα̇

− (σµθ)α̇ ∂µ (3.15)

satisfy the Poincaré superalgebra. The effect of the transformation on𝐒 can be explicitly determined [38]

in terms of its components:

δϕ = ξϵ + χ̄ϵ̄ (3.16)

δξ = 2fϵ − (Aµ + i∂µϕ)σ
µϵ̄ (3.17)

δf = λ̄ϵ̄ + i
2
∂µξσ̄

µϵ (3.18)

δχ̄ = 2g∗ϵ̄ + (Aµ − i∂µϕ)σ̄
µϵ (3.19)

δAµ = λ̄σ̄µϵ − ησµϵ̄ +
i
2
∂ν(ξσµσ̄

νϵ − χ̄σ̄µσ
νϵ̄) (3.20)

δλ̄ = 2dϵ̄ − i∂µfσ̄
µϵ̄ + i

2
∂µAνσ̄

νσµϵ̄ (3.21)

δg∗ = ϵη + i
2
∂µχ̄σ̄

µϵ (3.22)

δη = 2dϵ − i∂µg
∗σµϵ̄ − i

2
∂µAνσ

νσ̄µϵ (3.23)
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δd = i
2
∂µ (λ̄σ̄

µϵ + ησµϵ̄) (3.24)

Crucially, we see that at translation in superspace of the “highest component” d is a divergence in

spacetime, and will not contribute to the action.

In order to create superfields using derivatives that transform correctly, it is convenient to introduce

the covariant derivative:

Dα =
∂
∂θα

− i (σµθ̄)α ∂µ, and, D̄α̇ = ∂
∂θα̇

− i (σµθ)α̇ ∂µ (3.25)

yielding the relation

{Dα, D̄
α̇} = 2iσ

µ
αβ̇∂µ . (3.26)

The covariant derivative is a crucial aspect of superspace as it lets us project out any component of a

given superfield. E.g., we may obtain the highest component (the θ2θ̄2 component) of 𝐒:

d = 1
16
D2D̄2𝐒|θ=θ̄=0

. (3.27)

Now, we saw from Eq. (3.24) that the d component transforms as a total divergence, which will not

contribute to the action. This means that we can use the covariant derivative to write a SUSY-invariant

action (ensuring that the Lagrangian is Hermitian) from a generic superfield 𝐒

S = ∫ d
4x 1
16
D2D̄2𝐒|θ=θ̄=0

+ H.c. = ∫ d
4x d4θ 𝐒 + H.c. (3.28)

The covariant derivative also allows us to both define and build an irreducible representation of the
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𝒩 = 1 SUSY algebra, the chiral superfield3, defined by

Chiral superfield: D̄α̇𝚽 = 0 . (3.29)

Thus any superfield 𝐒 may be turned into a chiral superfield 𝚽 using D̄ as

D̄α̇𝚽 ≡ D̄α̇ �D̄
2𝐒� = 0 . (3.30)

When working with chiral superfields, it becomes useful to define a new variable

yµ ≡ xµ + iθσµ ̄θ (3.31)

so that chiral superfields may now be written simply as arbitrary functions of yµ and θα, which in

general has the form4

𝚽(yµ, θα) = ϕ(y) + √2 θξ(y) + θ2F(y) (3.32)

where F is an auxiliary (non-dynamic) scalar to be eliminated by the field equations (similar to d in 𝐒).

The superspace translation acts on the components of 𝚽 by

δϕ = √2 ϵξ (3.33)

δχ = −i√2 σµϵ̄∂µϕ +√2 ϵF (3.34)

δF = −i√2 ϵ̄σ̄µ∂µχ . (3.35)

We now see that in the case of the chiral superfield, once again, the highest component transforms

under SUSY by a total derivative (just like d). This means that we have another way of constructing a

3This is a left chiral superfield–the right chiral superfield is constructed by D̄ → D
4For a right chiral superfield, instead of yµ one uses ȳµ ≡ xµ − i ̄θσ̄µθ; additionally θ → ̄θ, with θξ → ̄θχ̄.
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SUSY-invariant action, based on chiral superfields; for an arbitrary chiral superfield 𝚽,

𝐒 = −1
4 ∫

d4xD2𝚽|θ=θ̄=0
+ H.c. = ∫ d

4x d2θ𝚽 + H.c. (3.36)

Thus, we have two ways of constructing SUSY invariant actions. Actions such as Eq. (3.28) are due

to D-terms and actions such as Eq. (3.36) are due to F-terms. Note that the D-term is in essence an

F-term since it is based on D̄2𝐒, which is in fact a chiral superfield.

Another important irreducible representation is the gauge superfield. It begins with the condition

for a vector superfield and adds to it the requirement of belonging to the gauge algebra

Vector superfield: 𝐕 = 𝐕† . (3.37)

Thus, from the notation of Eq. (3.13), χ = ξ, f = g, and η = λ. Also, ϕ, Aµ and dmust be real. Gauge

freedom allows us to zero the components ϕ, ξ = χ, and f = g, as is done in the Wess-Zumino gauge

wherein the gauge superfield is written as

𝐕 (xµ, θα, θ̄α̇) = θ̄σ̄µAµ(x) + iθ
2θ̄λ̄(x) − i ̄θ2θλ(x) + 1

2
θ2θ̄2d(x) . (3.38)

Here, Aµ is the usual gauge field, λ is its “superpartner” which is called the gaugino field, and d is the

auxiliary field.

3.2.3 Supersymmetric Lagrangians

Starting with a set of chiral superfields 𝚽i, we note that any holomorphic function 𝒲(𝚽i) satisfies

D̄α̇𝒲(𝚽
i) = 0 , (3.39)
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meaning that it in turn is also a chiral superfield. We know from the previous section (cf. Eq. (3.36))

that we can build an F-term from it to have a supersymmetric Lagrangian term

ℒ𭒲 = ∫ d
2θ𝒲(𝚽i) + H.c. (3.40)

which can be rewritten as

ℒ𭒲 = Fi ∂𝒲
∂ϕi

− 1
2
ξiξj ∂2𝒲

∂ϕi∂ϕj
+ H.c. (3.41)

Here, Fi, ϕi, and ξi refer to the corresponding components of 𝚽i. The holomorphic function 𝒲 is

called the superpotential.

For supersymmetric gauge theories, we already have the gauge superfield 𝐕 that allows us to embed

the massless spin-1 gauge boson along with its superpartner gaugino field. In order to write gauge-

invariant kinetic terms for 𝐕 it is useful to define the supersymmetric field strength. For the case of an

Abelian gauge theory,

𝐖α ≡ −1
4
D̄2Dα𝐕 (3.42)

which is a gauge-invariant chiral superfield, which carries a spinor index from the super derivative.

Now, to finally obtain the gauge kinetic term, we obtain the F-term in the bilinear of the super field

strength [29]

ℒAbelian = ∫ d
2θ𝐖α𝐖α = 2iλ̄σ̄

µ∂µλ + d
2 − 1

2
FµνFµν +

i
4
εµνλσFµνFλσ (3.43)

where Fµν is the usual gauge field strength.

In the case of a non-Abelian gauge theory, the super field strength must be changed to accommodate

the change in the form of gauge transformations, and one finds that for a non-Abelian gauge group
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with generators Ta gauge superfields 𝐕a, and coupling g,

𝐖α ≡ −1
4
D̄2
(e

−Ta𭐕aDαe
Ta𭐕a) (3.44)

where it is conventional to have scaled 𝐕 → 2g𝐕. The gauge kinetic terms in this case arise from

ℒnon-Abelian =
1
4g2 ∫

d2θ𝐖aα𝐖a
α + H.c. (3.45)

In principle, it is not necessary that the gauge kinetic terms be limited to the trace. We can obtain a

more general form that can also include higher-dimensional operators by introducing the gauge kinetic

function so that

ℒgauge = ∫ d
2θ 𝐟ab (𝚽

i)𝐖aα𝐖b
α (3.46)

where 𝐟ab is (like the superpotential) a chiral superfield that is a holomorphic function of chiral super-

fields. The gauge kinetic function for Eq. (3.45) is of course

𝐟ab =
1
4g2

δab . (3.47)

The gauge–matter Lagrangian terms are due to the so-called Kähler potential, 𝒦. Here, the left

and right chiral and gauge superfields are combined into a gauge-invariant vector superfield, and the

Lagrangian terms are obtained from the D-term

ℒKähler = ∫ d
4θ𝒦 (𝚽

̄i†, e2𭐕𝚽j
) (3.48)

where the barred index runs over right-chiral superfields while the un-barred index is over the left-chiral

superfields.
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It is worth pointing out that the formalism of the superpotential, gauge kinetic function, and the

Kähler potential were brought into global supersymmetry by way of local supersymmetry. I.e., they were

first discovered in the development of supergravity, a key topic in Chapter 4. Indeed, the formalism of

the Kähler potential become more elaborate in supergravity, and the reader is referred to [29] for more

details.

3.3 Spontaneous Supersymmetry Breaking

As already mentioned, the prediction of equal-mass superpartners in SUSY does not agree with exper-

iment, thus SUSY can only exist if spontaneously broken. The idea is similar to electroweak symmetry

breaking, but here SUSY cannot be broken by radiative corrections–if it is not broken at tree-level it

will not be broken at the loop-level [39–42].

Now, we have already seen that non-zero vacuum energy means that supersymmetry is spontaneously

broken. Since essentially the scalar potential is made up of F-terms and D-terms, as long as we can

arrange them to not both be zero on average, we will have spontaneous breaking.

3.3.1 F-term breaking

Spontaneously breaking SUSY with an F-term can be achieved by the O’Raifeartaigh [43] mechanism.

Here, one begins with the superpotential of 3 chiral superfields written as

𝒲 = m𝚽2𝚽3 + λ𝚽1 (𝚽
2
3 − μ

2) (3.49)
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which yields the scalar potential

V = |ℱ1|
2 + |ℱ2|

2 + |ℱ3|
2 , where ℱi =

∂𝒲
∂ϕi

, and (3.50)

ℱ1 = −λ (ϕ
∗
3
2 − μ2) (3.51)

ℱ2 = −mϕ
∗
3 (3.52)

ℱ3 = −mϕ
∗
2 − 2λϕ

∗
1ϕ

∗
3 . (3.53)

One can see that it is not possible to simultaneously have every ℱi = 0. Thus the minimum value of

the potential will be non-zero, indicating broken supersymmetry.

3.3.2 D-term breaking

If there is a U(1) gauge invariance, one can also have D-term breaking without F-term breaking by the

Fayet-Iliopoulos [44] mechanism. This is achieved by arranging the scalar potential to have term linear

in the gauge multiplet’s auxiliary field:

ℒFI = ∫ d
2θ𝐖α𝐖α − ∫ d

4θ κ2𝐕 (3.54)

⟹V = 1
2
d2 − κ2d + gdqi|ϕ

i|2 (3.55)

where g is the gauge coupling of the U(1) group with charges qi for the scalars ϕi, and κ is a parameter

with [κ] = 1. If the scalars each have5 ⟨ϕi⟩ = 0 then one will have the vacuum energy be V ∼ κ4.

It turns out that in minimal phenomenological models of SUSY (such as the one discussed in Chap-

ter 3), if the weak hypercharge group is used, it can lead to spontaneous breaking of electromagnetism.

Thus it would only be sensible to use this mechanism with an otherwise undetermined U(1). Though,

5This typically only happens with accompanying terms in the superpotential omitted from the discussion.
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as we will see next, this will still not be sufficient for phenomenology.

3.3.3 Supertrace Sum Rule

If SUSY is broken by an elementary superfield, we get the phenomenologically desired result of having

different masses for the component fields of different spin. However, there remains a strict constraint

relating [45] these masses. For a given superfield with mass M, let Mj be the mass matrix of the

component spin-j field. Then one finds the so-called “supertrace” sum rule6,

STrM2 =∑
j
(−1)2j(2j + 1)TrM2

j = 0 . (3.56)

This constraint leads to severe conflict with empirical data, but remains a feature of most theories of

spontaneously broken global supersymmetry.

Typically, the supertrace sum rule is avoided by introducing a set of additional superfields that are

neutral gauge singlets of the Standard Model gauge group and are very massive, so that they do not

affect low energy physics. Then, these fields are free to break supersymmetry, and the breaking of

supersymmetry will be communicated to the elementary superfields by some additional mechanism.

We will consider the breaking of local supersymmetry in Chapter 4, where these problems are neatly

avoided.

3.4 The Minimal Supersymmetric Standard Model

Beginning with the Standard Model: the 3 generation of fermions, the electroweak and strong in-

teractions, and the electroweak symmetry breaking via the Higgs mechanism, the simplest 𝒩 = 1

6The value of the supertrace can be adjusted by introducing an anomalous gauge group.
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Superfield Bosons Fermions SU(3)C SU(2)L U(1)Y

Chiral Superfields
𝐐i (ũL, d̃L)i (uL, dL) � � 1/3

𝐮̄i ũ∗
R,i ūi = u

†
Ri � 𝟏 − 1/3

𝐝̄i d̃∗R,i d̄i = d
†
Ri � 𝟏 2/3

𝐋i (ν̃, ̃eL)i (ν, eL)i 𝟏 � −1

𝐞̄i ̃e∗R,i ̄ei = e
†
Ri 𝟏 𝟏 1

𝐇u (H+
u , H

0
u) (H̃

+
u , H̃

0
u) 𝟏 � 1

𝐇d (H0
d, H

−
u) (H̃

0
d, H̃

−
u) 𝟏 � −1

Gauge Superfields
𝐆a Ga

µ G̃a Adj 𝟏 0
𝐖i W0

µ, W
±
µ W̃0, W̃± 𝟏 Adj 0

𝐁 Bµ B̃ 𝟏 𝟏 0

Table 3.1: A listing of the superfields and particle content within the MSSM. The irreducible rep-
resentations of the non-Abelian gauge groups that the superfields belong to are indicated by Young
tableaux–“Adj” is for the adjoint representation. The weak hypercharge factor is also listed. The index i
is for each of the 3 generation of quarks and leptons.The chiral superfields are divided into the three
groups. The first group has the squark bosons and quark fermions; the second group has the slepton
bosons and lepton fermions; the third group has the Higgs bosons and the Higgsino fermions. The
gauge superfields contain gauge bosons and gaugino fermions.

supersymmetric extension is called the Minimal Supersymmetric Standard Model (MSSM).

3.4.1 Particle Content

Here, the quarks and leptons are situated in chiral superfields, which additionally have new scalar

(sfermion) superpartners: the squarks and sleptons. The chiral superfields belong to the same repre-

sentations of the gauge group as in the SM. As expected, the gauge fields are within gauge superfields,

along with Majorana gaugino fields.
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It is not possible to have only one multiplet for the Higgs field. This is because the Higgs-fermion

Yukawa couplings arise in SUSY from the superpotential, which must be holomorphic. As the SM

builds the Higgs Lagrangian by using the Hermitian conjugate of the Higgs to obtain the opposite

hypercharge, only one Higgs doublet is needed there. In the MSSM, two Higgs doublets are necessary:

one that couples to up-like quarks and one that couples to down-type quarks and leptons. Thus, there

are two chiral superfields for the Higgs scalars, and with them are two Weyl Higgsino spinors. In

Table 3.1, a summary of the MSSM supermultiplets and its particle content is presented, with the

representation of each multiplet within the gauge group indicated by Young tableaux.

3.4.2 The Lagrangian

The MSSM Lagrangian consists of the usual SUSY-invariant D-terms and F-terms in ℒSUSY, but addi-

tionally, one adds to the Lagrangian “soft” terms that explicitly break supersymmetry. For the purposes

of the MSSM, one assumes they are generated by some mechanism that effectively generate ℒsoft. Thus

is MSSM Lagrangian is composed of two parts [35]

ℒMSSM = ℒSUSY + ℒsoft . (3.57)

The supersymmetric part is the result of supersymmetrizing the SM Lagrangian, noting that there are

two chiral superfields for the Higgs. The Lagrangians for the gauge sector is given by the F-term for the

field strengths

ℒgauge =
1
4 ∫

d2θ (𝐆aα𝐆a
α +𝐖

iα𝐖i
α + 𝐁

α𝐁α) + H.c. (3.58)

where 𝐆α and 𝐖α are the non-Abelian supersymmetric field strengths for the SU(3)C and SU(2)L

gauge superfields, respectively. And, 𝐁α is the Abelian supersymmetric field strength of the U(1)Y

gauge superfield. The a and i are the group adjoint indices.
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The kinetic terms for the chiral superfields reside in the matter Lagrangian, and arise from theD-term

of the gauge-invariant Kähler potential, 𝒦. In the MSSM, the simplest form of the Kähler potential is

used, giving

ℒmatter = ∫ d
4θ (𝐐

†
̄ıe
𭛀Q𝐐i + 𝐮̄

†
̄ıe
𭛀u𝐮̄i + 𝐝̄

†
̄ıe
𭛀d𝐝̄i + 𝐋

†
̄ıe
𭛀L𝐋i + 𝐞̄

†
̄ıe
𭛀e𝐞̄i) , (3.59)

where i is the index of the generation of matter, and for a given chiral superfield 𝚽,

e𭛀𝚽 = exp �g3𝐆aλ
a + g𝐖iT

i + g′y𝐁�𝚽 . (3.60)

In the above, if 𝚽 is a singlet of SU(3)C or of SU(2)L then the g3 term and/or the g term vanish,

respectively. If 𝚽 is in the � representation of SU(3)C, then the g3 term is conjugated. The factor y is

the weak hypercharge of 𝚽.

The Higgs–matter Yukawa terms come from the MSSM superpotential,

𝒲MSSM = μHuHd + Y
ij
u 𝐮̄iQjHu + Y

ij
d 𝐝̄iQjHd + Y

ij
e 𝐞̄iLjHd (3.61)

where the SU(2)L indices are implicitly contracted. Further, [μ] = 1 is a new dimensional parameter,

while we also have the familiar Yukawa coupling matrices in generation space. The Higgs Lagrangian

is built from this superpotential and the D-term of the Higgs–gauge coupling giving

ℒHiggs = ∫ d
4θ (𝐇

†
ue

g𭐖iT
i+g′yH𭐁𝐇u + 𝐇

†
de

g𭐖iT
i−g′yH𭐁𝐇d) + ∫ d

2θ𝒲MSSM + H.c. (3.62)

With this we have the SUSY-invariant portion of the MSSM Lagrangian

ℒSUSY = ℒgauge + ℒmatter + ℒHiggs (3.63)
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The “soft” SUSY-breaking Lagrangian consists of the Higgs–sfermion trilinear terms, the scalar mass

terms, and the gaugino mass terms

−ℒsoft = ϵαβ (A
ij
uY

ij
uHα

uQ̃
β
i ũj + A

ij
dY

ij
dH

α
dQ̃

β
i d̃j + A

ij
e Y

ij
dH

α
d L̃

β
i ̃ej + H.c)

+ m2
Hu
|Hu|

2 + m2
Hd
|Hd|

2 + (μB0HuHd + H.c.)

+ (M
2
Q)ij Q̃

†iQ̃j + (M2
u)ij ũ

†iũj + (M2
d)ij d̃

†id̃j (3.64)

+ (M2
L)ij L̃

†iL̃j + (M2
e)ij ̃e†i ̃ej

+ 1
2
(M1B̃ ⋅ B̃ + M2W̃

iW̃i +M3G̃
aG̃a + H.c.)

where the trilinear couplings [Af] = 1, the parameter μ is the same as in the superpotential, M2
f is the

squared mass matrix of sfermion ̃f, and the M1, M2, and M3 are the masses of the bino, wino, and

gluino, respectively. The massive parameter B arises also from the breaking.
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Chapter 4

Supergravity Grand Unification

4.1 Historical Introduction

A major issue with the global supersymmetry introduced in Chapter 3 is the difficulty with breaking

SUSY and producing a spectrum of new sparticles consistent with observations. In the MSSM for-

malism, one simply adds to the Lagrangian a collection of terms that explicitly break SUSY, and all

of the couplings in these terms are arbitrary parameters. By promoting supersymmetry to be a local

symmetry, i.e., allowing the superspace translations to depend on the spacetime coordinate solves this

issue, we are able to break supersymmetry in a phenomenologically viable way and realistic models can

be constructed.

The first theory of local supersymmetry was super-gauge symmetry (or gauge supersymmetry) pro-

posed in 1975 by Arnowitt and Nath [46, 47]. This was done by introducing the concept of gauge-

completion in superspace, a method for constructing a covariant tensor for an arbitrary transforma-

tion group. The theory necessarily included Einstein gravity, and thus was later called supergravity

(SUGRA). A different approach to supergravity was developed in 1976 by Freedman, Ferrara, and van
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Nieuwenhuizen [48] and further simplified by Deser and Zumino [49]. In 1981, Witten elaborated

the nature of dynamical breaking of supersymmetry [42] and van Nieuwenhuizen gave an extensive

paper on the details of SUGRA [28]. In 1979, Cremmer et al. constructed [50] a supergravity La-

grangian coupled to a single chiral supermultiplet, a first step towards a realistic model of supergravity.

In 1982, Chamseddine, Arnowitt, and Nath presented [51–54] the first realistic model of supergravity

by coupling an arbitrary number of chiral superfields to supergravity, allowing for the presence of the

quarks and leptons, and the Higgs bosons. This model came to be known as minimal supergravity

(mSUGRA), and today it is also referred to in the literature as the constrained MSSM (CMSSM).

4.2 Essential Supergravity

4.2.1 Pure Supergravity

The discussion here is limited to 4-dimensional 𝒩 = 1 supergravity, and only a brief overview of the

formalism is provided. The reader is directed to [28–32, 34] for excellent expositions of the formal

aspects.

Here, supersymmetry becomes a local symmetry, generated by Mµν and Pµ of the Poincaré group,

which must have corresponding gauge fields

Mab ⟶ωµ
ab the spin connection (4.1)

Pa ⟶ eµa the vierbein , (4.2)

where Latin characters are now used for the group indices, though they still run from a = 0, 1, 2, 3. The

super field strengths of these gauge fields are given by the Riemann curvature tensor and the torsion

tensor, which give the kinetics of supergravity.
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Of course, in supersymmetry we do not have Poincaré group but the super-Poincaré group, which

includes the spinor generators Qα, which must also have an associated gauge field, called the gravitino

Qα ⟶ψµ
α the gravitino. (4.3)

As a vector-spinor, the gravitino has spin-3/2. Now, considering that the vierbein of course has spin-2,

we realize that its superpartner must have spin-3/2 or spin-5/2. Since we cannot couple a spin-5/2 field to

matter, it is natural to arrange the vierbein and the gravitino into the so-called gravity supermultiplet.

The action for pure supergravity is then the sum of the action for the vierbein with the Rarita-Schwinger

action [55] for the gravitino

S = 1
2κ2 ∫

d4x |det eaµ| R +
i
4 ∫

d4x εµνρσψ̄µγ5γνDρσ (4.4)

where1 κ2 ≡ 8πG, with [κ] = −1 and G is the Newtonian gravitational constant. Additionally R is the

curvature scalar, γµ and γ5 are Dirac matrices, and Dρσα is the field strength of the gravitino. In the

above, the contracted spinor indices are omitted.

4.2.2 Supergravity Coupled to Matter

The development of supergravity lead to the formalism used to construct the chiral Lagrangian, which

depends on three functions: the superpotential𝒲, the Kähler potential 𝒦, and the gauge kinetic func-

tion 𝐟ab, where a and b are indices in the adjoint representation. The Lagrangian has the form

ℒ = ∫ d
4θ𝒦 (𝚽

̄ı†, e2𭐕𝚽j
) + �∫

d2θ 𝐟ab (𝚽
i)𝐖aα𝐖b

α + ∫ d
2θ𝒲 (𝚽i) + H.c.

�
(4.5)

1The inverse of κ has dimensions of mass, and is called the Planck mass, MPl.
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Here, 𝐖 are super field strengths, 𝒲 and 𝐟 are holomorphic functions, and 𝐟 transforms as a sym-

metric product of two adjoint representations in the gauge group. This Lagrangian includes non-

renormalizable terms, and all higher-dimensional operators are suppressed by a factor of κ. It turns out

that the Lagrangian only depends on 𝒦 and 𝒲 in the combination

𝒢 = κ2𝒦 − ln (κ6 |𝒲|2) (4.6)

where 𝒢 is known as the Kähler function. This is because the Kähler transformation, where for some

function f of the scalar components of the chiral superfields,

𝒦 → 𝒦 + f(ϕi) + f†(ϕ ̄ı†) (4.7)

𝒲 → e−f(ϕi)𝒲 (4.8)

leaves 𝒢 invariant. Note that this is only valid at the classical level, and is in fact anomalous at the

quantum level [56–60].

The Kähler metric is defined by

gi ̄ȷ ≡
∂2𝒦

∂ϕi∂ϕ ̄ȷ† . (4.9)

In the simplest case, gi ̄ȷ = δij is called a flat Kähler metric.

The full Lagrangian involves many terms suppressed by κn, which can be neglected. Some of the

important terms are presented here [35, 61, 62], beginning with the scalar potential

− ℒV =
1
2 ∑i

g2iℜ �𝐟
−1
ab� (𝒢,iT

aijϕj) (𝒢,kT
bklϕl) − κ

−4e−𭒢
(g

i ̄ȷ𝒢,i𝒢, ̄ȷ + 3) (4.10)

where we see that the potential is not positive-definite any longer. However, for suitable choices of 𝐟,

𝒦, and 𝒲, in the limit κ → 0, we recover the scalar potential of global SUSY.
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The Lagrangian will also have terms bilinear in the gaugino fields

− ℒgaugino = �
1
4κ
e−𭒢/2gi ̄ȷ𝒢,if

†
ab,i�

λ̄aλb . (4.11)

The idea here is that SUSY breaking will cause the factor in brackets to grow a VEV, making the gauginos

massive.

We also have a bilinear in the gravitino field

− ℒgravitino = �κ
−1e𭒢/2� ψ̄µσ

µνψν (4.12)

and once again the VEV growth in the bracketed factor will give a mass term, this time for the gravitino.

4.3 Gravity-mediated Supersymmetry Breaking

In supergravity, the scalar potential is no longer positive semi-definite. However, we still cannot break

SUSY by elementary fields due to the supertrace sum rule. In gravity mediation, the local supersym-

metry is broken by a super-Higgs field, in analogy to electroweak symmetry breaking. Since the broken

symmetry is generated by a spinor, in place of a Goldstone boson, there will be a Goldstone fermion,

or goldstino. This will be absorbed by the gravitino, making it massive. The SUSY breaking is commu-

nicated to the elementary fields by operators suppressed by κ. This is achieved by additively separating

the superpotential into a “visible” sector of elementary fields, and a “hidden” sector of SUSY breaking

fields.

As a sketch, let z be a super-Higgs field, and let ϕi be the physical fields. If z is a gauge singlet, there
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will be no gauge interactions with ϕi. Additionally, if 𝒲 has the form

𝒲 = 𝒲visible(ϕ
i) + 𝒲hidden(z) (4.13)

then in the Lagrangian, the only couplings between z and ϕi will be scaled by powers of κ. Then, z is

free to grow a VEV

⟨z⟩ = 𝒪 (κ−1) = 𝒪 (MPl) (4.14)

and the matter fields will not become super-heavy due to the κ suppression of the couplings to z. Now,

the fermionic partner to the scalar z is absorbed by the gravitino, and its mass is a useful parametrization

of SUSY breaking

m3/2
= κ−1e−〈𭒢〉/2 = κ2e〈z〉

2/2
|⟨𝒲hidden⟩| . (4.15)

Essentially, we have m3/2
∼ κm2. To obtain m3/2

∼ 1TeV, we should choose m ∼ 1010 GeV.

The resulting effective scalar potential will now include terms of the form

− ℒ = m2
0|ϕ

i|2 + 1
2
m1/2

λ̄aλa + μB0HuHd + A0𝒲
(3) (4.16)

exactly matching the form of the soft breaking Lagrangian given in Eq. (3.64). A key difference being

the ∼ 100 arbitrary parameters are now replaced by 4: m3/2
∼ m0, m1/2

, A0, μ, and B0. The reason why

the number of parameters is so few is to do with assumptions that are made, including a flat Kähler

metric, which treats all of the chiral superfields symmetrically, and choosing the gauge kinetic function

to be

𝐟ab ∼ δab + 𝒪 (κ) . (4.17)

We noted earlier that the 𝐟ab transforms as the symmetric product of two adjoint representations. In

the case that we choose the singlet, then the mass of all three gauginos will be equal,m1/2
. For any other
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choice, we can have three independent masses

m1/2
→ M1, M2, M3 . (4.18)

Similarly, adjustments can be made to the Kähler potential and the trilinear superpotential terms to

allow for more flexible models.

4.4 Grand Unification

In the Standard Model, the three gauge couplings when evolved to high energies tend toward, but

do not quite converge to a single point. Their unification would have been remarkable–showing that

the seemingly disparate forces have a common origin. Remarkably, with the renormalization group

equations in supersymmetry, the couplings do unify, within uncertainties. The RG evolution of the

couplings in the SM and the MSSM are displayed in Fig. 4.1, and it is observed that the MSSM case

does unify at a scale μ ∼ 2 × 1016 GeV, while in the SM the couplings do not unify.

The scale at which the gauge couplings unify in supersymmetry is called the grand unification scale,

MGUT. This can easily be interpreted as the scale at which a higher gauge symmetry group, GGUT is

broken to the gauge group of the Standard Model,

GSM = SU(3)C × SU(2)L ×U(1)Y . (4.19)

The first grand unified theories were developed without supersymmetry. Pati and Salam [63, 64]

introduced the notion of lepton number as the fourth color in

SU(4)C × SU(2)L × SU(2)R (4.20)
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Figure 4.1: The renormalization group evolution of the gauge coupling constants 1/αi, where αi =
g2i /4π. In the top panel is evolution under the Standard Model RGEs. In the bottom panel is evolution
under the MSSM RGEs. One can see that the couplings do not unify in the SM, but do unify in the
MSSM at a scale μ ∼ 2 × 1016 GeV.
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and the differences between quarks and leptons are obtained once the symmetry is spontaneously bro-

ken to GSM. An attractive feature of this is the emergence of electric charge quantization. However,

this did not unify GSM into a single grand unified group.

Georgi and Glashow [65–67] unified GSM into SU(5), a particular case of

SU(n) ⊃ SU(p) × SU(n − p) ×U(1) , for p > 1 , and n > p + 1 . (4.21)

Some of the main drawbacks in non-supersymmetric GUTs include the particles without some inter-

vention would be of order MGUT in mass. Additionally, the scale of unification itself is low enough to

cause grave problems in proton decay.

We note that the first supersymmetric grand unified theories (SUSY GUTs) were presented in [68,

69]. The first formulation of supergravity grand unification (SUGRA GUT) was given in [51, 52].

In the framework of a SUGRA GUT, it is natural to write the effective Lagrangian including soft-

breaking terms, generated by gravity-mediated SUSY breaking at the scaleMGUT. Then, one RG evolves

the high scale parameters to the electroweak scale, where phenomenological effects are determined.

4.4.1 Radiative Electroweak Symmetry Breaking

A highly attractive feature of SUGRA GUTs is the origin of electroweak symmetry breaking. While in

the SM, the Higgs mechanism is the result of inserting a negative mass-squared into the Higgs potential

to precipitate the breaking, in SUGRA GUTs the process emerges due to radiative corrections [70–72].

In fact, it is the breaking of supersymmetry itself, at the Planck scale that causes the radiative corrections

that break electroweak symmetry.
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Taking VH = V0 + ΔV1 to be the Higgs potential, tree-level plus loop-correction, one finds

V0 = m
2
Hu
|Hu|

2 + m2
Hd
|Hd|

2 + μB0(HuHd + H.c.) + 1
8
(g2 + g′2)(|Hu|

2 + |Hd|
2)2 (4.22)

and at the 1-loop level [73, 74]

ΔV1 =
1

64π2 ∑
a
(−1)2sanaM

4
a ln

�

M2
a

e3/2Q2�
(4.23)

where for some particle labeled by a, Ma is its tree-level mass, sa its spin, and na the number of its

helicity states. The running scale is indicated at Q.

As there are now two Higgs fields that shall have VEVs, it is convenient to define an angle to

parametrize their ratio by

vu ≡ ⟨Hu⟩ , vd ≡ ⟨Hd⟩ , and tanβ ≡
vu
vd

. (4.24)

Due to the presence of new scalars (with respect to the SM), constraints are established on the soft

parameters by requiring that QED and QCD remain unbroken. The minimization conditions which

require ∂Vh/∂vi = 0, with i = u, d gives two relations

sin 2β =
2μB0

2|μ|2 + m̄2
Hu
+ m̄2

Hd

(4.25)

μ2 + 1
2
M2

Z =
m̄2

Hd
− m̄2

Hu
tan2 β

tan2 β − 1
. (4.26)

In the above, m̄Hi
is the loop-corrected mass of Hi. These relations allow us to determine B0 and μ.

However, the sign of μ remains undetermined as it only enters into the constraints as μ2. Additionally,

we are left with the new parameter tanβ.
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These means that our SUGRA GUT formalism has led us to a model with 4 parameters and 1 sign

m0, m1/2
, , A0, tanβ, sgn (μ) . (4.27)

This model is referred to as mSUGRA–the minimal supergravity model.

4.4.2 Sparticle Masses

The mass matrices of the sfermions can be more or less read off directly from ℒsoft, as there is only L-R

mixing. The Higgs sector and the gaugino sector are not as straightforward, as the Higgs potential must

be minimized for EWSB, and there is mixing between gauginos and Higgsinos.

In the Higgs sector, there are 5 massive Higgs bosons after EWSB, h0, H0, A0, and H±. The two

neutral CP-even bosons are h0, and H0 where the mass of h0 is lower than that of H0. The other neutral

Higgs boson A0 has odd CP-parity. Finally, we have the charged Higgs H±. At tree-level there masses

are

m2
h,H =

1
2 (

m2
A +M

2
Z ∓√(m

2
A −M

2
Z)

2 + 4M2
Zm

2
A sin2 2β

)
(4.28)

m2
A = 2|μ|

2 + m2
Hu
+ m2

Hd
(4.29)

m2
H± = m2

A +M
2
W . (4.30)

An important result from the Higgs boson mass formulae is that lighter CP-even neutral Higgs, h0,

behaves very similarly to lone Higgs boson of the Standard Model. Further, the mass of h0 at tree-level

does not exceedMZ and in fact, without additional structure, there is an upper limit of roughly 130GeV

on the mass of h0 in SUSY. This is phenomenologically crucial and will be studied more carefully in

Chapter 8 and Chapter 9.
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The gauginos and the Higgsinos mix to form mass eigenstates, with the exception of the color-octet

gluinos. They mix with neither the other gauginos nor the Higgsinos, and have massM3. Discounting

the gluinos, the electrically neutral gauginos and Higgsinos mix to create a 4×4 symmetric mass matrix

for the “neutralinos”, χ̃0i , in the basis (B̃0, W̃0, H̃0
d, H̃

0
u):

Mχ̃0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎝

M1 ⋅ ⋅ (sym.)

0 M2 ⋅ ⋅

−
g′vd
√2

gvd
√2

0 ⋅

g′vu
√2

−
gvu
√2

−μ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

⎠

. (4.31)

The charged gauginos and Higgsinos create the mass matrix for the “charginos”, χ̃±, in the basis

(W̃±, H̃±):

Mχ̃± = ⎛⎜⎜
⎝

M2 g2v2

g2v1 μ

⎞⎟⎟
⎠

. (4.32)

At the tree-level, we can obtain from these mass matrices sum rules for the squared masses of the

neutralinos and charginos

m2
χ̃0
1
+ m2

χ̃0
2
+ m2

χ̃0
3
+ m2

χ̃0
4
− 2M2

Z = μ
2 +M2

1M
2
2 (4.33)

m2
χ̃±
1
+ m2

χ̃±
2
− 2M2

W = μ2 +M2
2 . (4.34)

These equations are quite useful as the charginos and neutralinos do not receive large loop corrections

to their masses.
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Chapter 5

First LHC Searches for Supersymmetry

5.1 Introduction

In this chapter, the first searches [75–77] by CMS and ATLAS for supersymmetric particles are con-

sidered in the context of the mSUGRA model. The experimental collaborations have used 35 pb−1 of

integrated luminosity in p on p collisions at the LHC, operating at √s = 7TeV, to provide limits on

mSUGRA in them0–m1/2
plane, fixing the other parameters. Remarkably, the limits have immediately

surpassed those set by DØ and CDF at the Tevatron [78].

We begin by reproducing the expected limits as given by CMS and ATLAS using Monte Carlo

event generation for the signal (supersymmetric) processes, and a simulation of the detector response.

Expected limits are then determined by supposing that the number of observed events in the defined

signal regions are exactly equal to the expected background (Standard Model) yield, based on our own

simulations [79–81]. We next determine how the limits are expected to change if the parameters A0

and tanβ are adjusted. Then, we will use other constraints on the mSUGRA parameter space arising

from high-precision flavor physics experiments and the measured relic density of dark matter to view
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the impact of the LHC searches on global fits to mSUGRA. In this larger context, we will discuss the

naturalness of mSUGRA.

5.2 Reach plots with 35 pb−1 of integrated luminosity

The ATLAS collaboration has released two analyses, one with 1 lepton [76] and the other with 0 lep-

tons [77] both of which are considered in our analysis. For the 1 lepton analysis we follow the se-

lection requirements that ATLAS reports in [76]. The pre-selection requirements for events are that

a jet must have pT > 20GeV and |η| < 2.5, electrons must have pT > 20GeV and |η| < 2.47 and

muons must have pT > 20GeV and |η| < 2.4. Further, we veto the “medium” electrons1 in the elec-

tromagnetic calorimeter transition region, 1.37 < |η| < 1.52. An event is considered if it has a single

lepton with pT > 20GeV and its three hardest jets have pT > 30GeV, with the leading jet having

pT > 60GeV. The distance, ΔR = √(Δη)2 + (Δϕ)2 , between each jet with the lepton must satisfy

ΔR (ji, ℓ) > 0.4, and events are rejected if the reconstructed missing energy, /ET, points in the direction

of any of the three leading jets, Δϕ (ji, /ET) > 0.2. Events are then classified into 2 channels, depending

on whether the lepton is a muon or an electron. These are then further classified into four regions

based on the missing energy and mT cuts, where we reconstruct the missing transverse momentum

using the selected lepton plus jets with pT > 20GeV and |η| < 4.9 following ATLAS analysis, and

mT = √2pT (ℓ) /ET (1 − cos (Δϕ (ℓ, /ET))) is the transverse mass between the lepton and the missing

transverse momentum vector. The four regions alluded to above are labeled the “signal region”, the

“top region”, the “W region” and the “QCD region”. For the “signal region” events were required to

pass the additional cuts of mT > 100GeV, /ET > 125GeV, /ET > 0.25Meff and Meff > 500GeV. Here the

effective mass, Meff, is the scalar sum of the missing energy with the pT’s of the selected visible objects

(in this case the lepton and the 3 jets). The number of events were then compared to the 95% CL
1See [82] for a definition of “loose”, “medium” and “tight” electrons
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Figure 5.1: Left: Reach plot with 35 pb−1 of integrated luminosity using the ATLAS cuts [76] [77]
with different tanβ and A0: A0 = 0 and tanβ = 3 (dashed line); A0 = 0 and tanβ = 45 (solid green
line); A0 = 2m0 and tanβ = 45 (solid red line). For comparison we give the ATLAS observed limit
(A0 = 0 and tanβ = 3) (solid blue line). Right: Reach plot with 35 pb−1 of integrated luminosity of
data using the ATLAS 0 lepton cuts. For comparison we give the ATLAS observed limit (red dashed
line).

upper bounds that ATLAS found (Ne < 2.2 events and Nµ < 2.5 events) [76]. The “top region” and

“W region” are defined by events with 30GeV < /ET < 80GeV and 40GeV < mT < 80GeV, where the

“top region” requires at least one of the three hardest jets to be b-tagged and the “W region” requires

none of the three hardest jets to be b-tagged. The “QCD region” was required to havemT, /ET < 40GeV

and was purely data driven. For our analysis events were rejected if they contaminated the three control

regions. Using the standard model background from [80] we reproduced the ATLAS results.

For the 0 lepton analysis we follow the selection requirements that ATLAS reports in [77] where

the pre-event selection is the same as for the 1 lepton case except that leptons are identified to have

pT > 10GeV. Here the events are classified into 4 regions “A”, “B”, “C” and “D”; where regions A and

B have at least 2 jets and regions C and D have at least 3 jets. When referring to different cuts in these

regions we define cuts on the “selected” jets to mean that the bare minimum number of jets in this

region must satisfy the following requirement: For regions A and B “selected” jets mean that they are
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the first two hardest jets and for regions C and D “selected” jets mean that they are the first three hardest

jets. Events are required to have /ET > 100GeV and the selected jets must each have pT > 40GeV with

the leading jet pT > 120GeV. As in the case with 1 lepton, events are rejected if the missing energy

points in the direction of any of the selected jets, Δϕ (ji, /ET) > 0.4, where i is over the selected jets.

Region A requires events to have /ET > 0.3Meff andMeff > 500GeV and regions C and D require events

to have /ET > 0.25Meff with region C requiring Meff > 500GeV and region D requiring Meff > 1TeV.

In this case Meff is defined in terms of selected jets, i.e. for regions A and B it is the scalar sum of the

first two hardest jets and for regions C and D it is the scalar sum of the first three hardest jets. For the

analysis here we do not apply the cut for region B, i.e. mT 2 > 300GeV, since the models excluded in

this region are already excluded in region D [83].

Following the framework of the ATLAS Collaboration [76] we have carried out a set of three pa-

rameter sweeps in the m0–m1/2
plane taking m1/2

≤ 500GeV and m0 ≤ 1TeV. Two of the parameter

sweeps were a 10GeV × 10GeV grid scan in the m0–m1/2
plane having a fixed universal trilinear pa-

rameter, A0 = 0, and fixed tanβ; one set with tanβ = 3 and the other with tanβ = 45. A third

parameter scan was done with A0 = 2m0 and tanβ = 45. Throughout the analysis we take μ > 0

and mpole
top = 173.1GeV. For the simulation of the mSUGRA models, renormalization group evolution

and computation of the physical masses of the sparticles was performed using SuSpect [84] and we

implement both MadGraph and PYTHIA for event generation [85, 86]. A comparison of our reach

to the reach done by the ATLAS Collaboration is shown in Fig. 5.1.

In Fig. 5.2 we plot the number of signal events for electrons in the m0–m1/2
plane where the reach

plot from ATLAS is also exhibited and where the ATLAS reach plot corresponds to the number of

observed events and those that have a larger number predicted by the model. For the 1 lepton analysis,

we first present the models excluded by the muon channel, colored by Nµ
events (indicated by squares).

Next, we overlay from the remaining models, those that have been excluded by the electron channel,
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Figure 5.2: Top left panel: Number of signal events in them0–m1/2
plane for the caseA0 = 0, tanβ = 3

using the 1 lepton ATLAS cuts in the m0–m1/2
plane. The dark areas correspond to number of events

greater than 2 with the actual numbers indicated along the vertical line to the right while the white
areas are filled with models but have number of events less than 2. Top right panel: Same as the left
panel except that the plot is mg̃ (gluino)–mq̃ (squark) mass plane for the lightest squark of the first 2
generations. The square region in the left panel becomes squeezed into the polygon-like region in the
physical mass plane in the right panel. One may note that the ATLAS constraints do not rule out a
low mass gluino on the scale of order 400 GeV for heavy squarks. Bottom left panel: The same as the
top left panel except that the analysis is done using 0 lepton ATLAS cuts. Bottom right panel: Same
as the top right panel except that the analysis is done using the 0 lepton ATLAS cuts. The (red) stars
correspond to channel D. In channel D we find maximally 51 events over the space scanned after a
requirement that the number of events be at least 15 before cuts. However, when only considering
models not already excluded by channels A and C, the number of events in channel D is maximally 18.
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and colored by Ne
events (indicated by diamonds). Similarly for the 0 lepton analysis, we begin with

models excluded by channel A, colored by NA
events (indicated by squares); overlay models excluded by

C (but not A) and colored by NC
events (indicated by diamonds). Next, we overlay models excluded by

channel D alone in a single color (stars), as ND
events are not comparable with NA

events or NC
events. We also

show the number of signal events for electrons in the mg̃–mq̃ plane. An ATLAS reach curve is also

exhibited.

The upper left panel of Fig. 5.2 gives us a more quantitative description of the electron and muon

channels in putting constraints on the m0–m1/2
parameter space with 35 pb−1 of data. As expected the

largest number of single e and μ events arise at low mass scales, i.e., for low values of m0 and of m1/2

and the number of signal events decrease and we approach the boundary after which they fall below 2

for the 1 lepton ATLAS analysis. It is also instructive to examine the signal events in the gluino-squark

mass plane where the squark mass corresponds to the average first two generation squark mass. This is

done in the upper right panel of Fig. 5.2. Here the polygon shape of the region is a simple mapping

of the allowed parameter in the m0–m1/2
plane of the upper left panel. The plot is useful as it directly

correlates squark and gluino model points that are either excluded or allowed by the 1 lepton ATLAS

analysis. The 0 lepton analysis of the lower panels in Fig. 5.2 is very similar to the analysis of the upper

panels except for different array of cuts. There is a general consistency in the analysis of the 1 lepton and

the 0 lepton analysis, although the 0 lepton cuts appear more constraining as they appear to exclude a

somewhat larger region of the parameter space. Together the analysis of the upper and lower panels of

Fig. 5.2 gives us a more analytical understanding of the relative strengths of the 1 lepton and 0 lepton

cuts.
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5.3 Implications of Constraints

In the analysis of the reach plots experimental constraints were not imposed beyond those that arise from

the ATLAS analyses. Next we include these constraints and in our analysis we will consider the larger

parameter space when all four parameters m0, m1/2
, A0, tanβ are varied. In doing so, we apply various

constraints from searches on the sparticle mass limits, B-physics and from gµ − 2. Next we explore the

constraint from upper bound on the relic density from WMAP only, and then with combination of all

of the above. These indirect constraints were calculated using MicrOMEGAs [87], with the Standard

Model contribution in the ℬr (b → sγ) corrected using the NNLO analysis of Misiak et al. [88, 89].

We now describe this more general analysis. In the upper left panel of Fig. 5.3 we apply the following

“collider/flavor constraints” [90] mh0 > 93.5 GeV, m ̃τ1
> 81.9 GeV, mχ̃±

1
> 103.5GeV, and m ̃t1 >

100 GeV, along with (−11.4 × 10−10) ≤ δ (gµ − 2) ≤ (9.4 × 10
−9), see [91], ℬr (B0

s → μ+μ−) ≤ 4.7 ×

10−8 (90 % C.L.) [92], and (2.77 × 10−4) ≤ ℬr (b → sγ) ≤ (4.27 × 10−4) [93]. These collider/flavor

constraints by themselves have an effect, but the effect is quite small in terms of reducing the density

of models that are already constrained by the ATLAS results.

We note that our scans of the parameter are very dense with 106 models after EWSB alone. In the

m0–m1/2
plane the collider/flavor cuts eliminate 12% of the models. However because A0 and tanβ are

not fixed to specific values, but are allowed to run over their full natural ranges, a model point which

is eliminated for say, large tanβ by b → sγ or B0
s → μ+μ− at a specific point in the m0–m1/2

plane

can correspond to a model point with a smaller value of tanβ for the same (m0, m1/2
) which is not

eliminated. Thus them0–m1/2
plane appears densely filled. This is contrary to what one would observe

for fixed values of (A0, tanβ). For example, for (A0, tanβ) = (0, 45) the b → sγ constraint would

remove models at large m0 up to close to 2 TeV and m1/2
up to about 750 GeV. As another example,

for (A0, tanβ) = (0, 3) (the space looked at by ATLAS, and in the previous section) a strict limit of

mh0 < 102GeV for light CP even Higgs removes all model points below the ATLAS limits. However
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Figure 5.3: Upper left panel: An exhibition of the allowed models indicated by grey (dark) dots in the
m0–m1/2

plane when only flavor and collider constraints are imposed. The region excluded by ATLAS
(as well as CMS) lies below the thick black curve in the left hand corner. Upper right panel: same as the
left upper panel except that only an upper bound on relic density ofΩh2 ≤ 0.14 is imposed. Lower left
panel: Same as the upper left panel except that the relic density constraint as in the upper right panel
is also applied. This panel exhibits that most of the parameter space excluded by ATLAS is already
excluded by the collider/flavor and relic density constraints. The dark region below the ATLAS curve
is the extra region excluded by ATLAS which was not previously excluded by the indirect constraints.
Lower right panel: The analysis of this figure is similar to the lower left panel except that models with
|μ| < 500GeV are exhibited in green.

because one is varying (A0, tanβ) the area below the ATLAS limit is filled in this case.

Continuing on we next consider the “cosmological constraint” in the upper right panel of Fig. 5.3

where we apply only an upper bound on the relic density of the thermally produced neutralino dark
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matter of Ωh2 ≤ 0.14 [94, 95]. The WMAP upper bound constraint removes 96.5% of the models

alone, thus this cosmological constraint is very severe eliminating a large fraction of models, but again

the ATLAS constraints remain quite strong.

Next we consider the “combined collider/flavor and cosmological constraints” and find that together

these constraints are generally much more severe than the ATLAS constraints. This is shown in the lower

left panel of Fig. 5.3. Here models that were separately allowed by previously known collider/flavor

constraints, and models that were separately allowed by just the upper bound from WMAP, are now

eliminated under the imposition of the combined constraints. There is, however, a new region that

ATLAS appears to exclude above and beyond what the indirect constraints exclude and this region is a

region for low m0 and for m1/2
around 350 GeV. Thus it would require a larger integrated luminosity

to move past the barren region, which is above the ATLAS bound, to get into the fertile region of the

parameter space, where the fertile region is the area above the white patch in the lower panel of Fig. 5.3.

Finally in lower right panel of Fig. 5.3 we show the value of μ (at the electroweak symmetry breaking

scale) in the m0–m1/2
plane where μ is the Higgsino mass parameter that enters in the Higgs bilinear

term in the superpotential. The analysis is given under the “combined constraints” discussed in the

lower left panel of Fig. 5.3. We note that essentially all of the natural region of the parameter space

corresponding to small μ, most of which lies close to the hyperbolic branch (Focus point) (HB/FP)

[96–98] of radiative breaking of the electroweak symmetry or near the vicinity of the light CP even

Higgs pole region [99] remains untouched by the CMS and LHC exclusion limits as illustrated in the

lower right panel of Fig. 5.3 and remains to be explored. Further, as pointed out in [100], low mass

gluinos as low as even 420 GeV in mSUGRA are allowed for the region for largem0 where relic density

can be satisfied on the light CP even Higgs pole [99]. This can be seen from Fig. 5.3 as the gluino and

squark masses are exhibited in the plots. Along the Higgs pole region, electroweak symmetry breaking

can also be natural, i.e., one has a small μ. It is also seen that this region is not constrained by CMS and
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ATLAS since their limits taper off at largem0 asmsquark gets heavy and the jets from squark production

are depleted (see [100]).

5.4 Conclusion

The CMS and ATLAS analyses on the search for supersymmetry are impressive in that with only 35 pb−1

of data their reach plots already exceed those from CDF and DØ experiments at the Tevatron. Both

CMS and ATLAS have given reach plots in the m0–m1/2
plane for the case A0 = 0, tanβ = 3 with

the ATLAS analysis presenting more stringent limits compared to CMS. Because of the more stringent

limits from ATLAS we adopted the ATLAS cuts in our analysis presented in this work. In our analysis

we find consistency with the 1 lepton and 0 lepton results of ATLAS for the case analyzed by ATLAS,

i.e., A0 = 0, tanβ = 3. We have also investigated reach plots for other values of A0, tanβ, i.e., A0 =

0, tanβ = 45 and A0 = 2, tanβ = 45. Another interesting question explored in this work is a relative

study of the constraints on the m0–m1/2
parameter space by the CMS and ATLAS experiments vs the

constraints that arise from Higgs mass limits, flavor physics, and from the dark matter constraints

from WMAP. One finds that the current CMS and ATLAS limits are consistent with such constraints.

Specifically a significant part of the parameter space excluded by the CMS and ATLAS 35 pb−1 data

is already excluded by the indirect constraints. We emphasize that low gluino masses (even as low as

400 GeV) remain unconstrained in mSUGRA, and this conclusion holds generically for other high

scale models of soft breaking, for the case when the squark masses are significantly larger than the

gluino mass. Of interest to the model at hand, is that such situation arises on the hyperbolic branch of

radiative breaking of the electroweak symmetry where typically μ is relatively small, and the region is

very dense in the allowed set of parameter points.
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Chapter 6

First Searches for Neutralino Dark Matter at

the LHC

6.1 Introduction

In this chapter, constraints on dark matter from the first CMS and ATLAS SUSY searches are investi-

gated. It is shown that within the minimal supergravity model, the early search for supersymmetry at

the LHC has depleted a large portion of the signature space in dark matter direct detection experiments.

In particular, the prospects for detecting signals of dark matter in the XENON and CDMS experiments

are significantly affected in the low neutralino mass region. Here the relic density of dark matter typ-

ically arises from slepton co-annihilations in the early universe. In contrast, it is found that the CMS

and ATLAS analyses leave untouched the Higgs pole and the Hyperbolic Branch/Focus Point regions,

which are now being probed by the most recent XENON results. Analysis is also done for supergravity

models with non-universal soft breaking where one finds that a part of the dark matter signature space

depleted by the CMS and ATLAS cuts in the minimal SUGRA case is repopulated. Thus, observation
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of dark matter in the LHC depleted region of minimal supergravity may indicate non-universalities in

soft breaking.

CMS and ATLAS have recently reported their first results for supersymmetry searches [75–77] and

have put new constraints on the parameter space of the 𝒩 = 1 supergravity unified model [51, 52]

which, with universal boundary conditions on the soft breaking parameters at the unification scale, is

the model mSUGRA [51–53, 101]. In a subsequent work [102], the implications of the CMS and

ATLAS searches on the mSUGRA parameter space was analyzed in the context of indirect constraints

from LEP and Tevatron searches, from the Brookhaven gµ − 2 experiment, from FCNC constraints in

B-physics, i.e., b → sγ and B0
s → μ+μ− and from WMAP.

In this chapter, we analyze the impact of the first results from CMS and ATLAS SUSY searches on

the direct detection of dark matter [103–107]. It is found that the LHC results have a large impact

on the signature space available for the low mass slepton co-annihilation region, depleting a significant

region where direct detection experiments are sensitive to detecting a signal. Thus, we explore the effect

of the recent LHC data on the prospects for directly detecting cold dark matter in experiments such

as XENON and CDMS in supergravity unified models. We will discuss both minimal supergravity

models, and SUGRA models with non-universal soft breaking terms at the grand unification scale.

For completeness, we begin with a brief summary of the independent parameters generated by

softly broken supergravity theories which are needed to test such models at colliders and in dark matter

experiments. The conditions under which the soft breaking in the minimal supergravity model are

derived are summarized as follows: (i) supersymmetry is broken through a super Higgs effect giving

mass to the gravitino through the presence of a hidden sector (singlet); (ii) the hidden and the visible

interact only gravitationally; (iii) the Kähler potential is generation independent; (iv) the gauge kinetic

function is minimally linear in the hidden sector singlet. This then gives rise to soft terms of the
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form [51, 52]

Lsoft = −
1
2
(Maλ

aλa + H.c.) − m2
αC

∗αCα −
(
1
6
AαβγYαβγC

αCβCγ + μB0H1H2 + H.c.
)

(6.1)

where λa are the gauginos, Hi=1,2 are Higgs doublets, and Cα are the slepton, squark and Higgs fields

of the minimal supersymmetric standard model. For the case of universal boundary conditions at the

unification (GUT) scale, mα = m0 is the universal scalar mass, Ma = m1/2
is the universal gaugino

mass, Aαβγ = A0 is the universal trilinear coupling, and B0μ is the bilinear coupling where μ is the

Higgs mixing parameter that enters the superpotential in the form μH1H2 (all at the GUT scale).

Thus, the minimal supergravity models are specified by the following set of GUT scale parameters

(m0, m1/2
, A0, B0, μ). The renormalization group improved scalar potential at the electroweak symmetry

breaking scale Q is given by

V = m2
1|H1|

2 + m2
2|H2|

2 + μB0(H1H2 + h.c.) +
(g22 + g

2
Y)

8
(|H1|

2 − |H2|
2)2 + ΔV1, (6.2)

ΔV1 =
1

64π2 ∑
a
(−1)2sa(2sa + 1)M

4
a
�
ln
M2

a

Q2
− 3
2�

, (6.3)

where the termΔV1 is the one loop correction to the effective potential in the MSSM [97, 108, 109], and

sa is the spin of particle a. The gauge couplings are subject to boundary conditions at the unification

scale α2(0) = αG =
5
3
αY(0), while if the soft parameters are universal one hasm2

i (0) = m
2
0+μ

2, i = 1, 2.

The breaking of electroweak symmetry occurs when (a) the determinant of the Higgs squared-mass

matrix turns negative and (b) the potential is bounded from below; i.e. (a) m2
1m

2
2 + (μB0)

4 < 0,

and (b) m2
1 + m

2
2 − 2|μB

2
0| > 0. Minimization of the potential then yields the following relations (I)

M2
Z = 2(μ

2
1−μ

2
2 tan

2 β)(tan2 β−1)−1 and (II) sin 2β = 2(μB0)(m
2
1+m

2
2)

−1, where μ2
i = m

2
i +Σi, where

Σi are the loop corrections [97, 109]. Here tanβ = v2/v1 is the ratio of the Higgs VEVs. (I) can be

used to fix μ using the experimental value of MZ, and the constraint (II) can be used to eliminate B0
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in favor of tanβ. The supergravity model at low energy can then be parametrized by [101]

m0, m1/2
, A0, tanβ, sgn (μ) . (6.4)

After specifying the high scale soft breaking parameters, one implements renormalization group analysis

(see [110] for the two loop analysis) and is then able to predict all 32 sparticles masses as well as their

couplings and interactions. The full analysis can be done using SuSpect [84].

6.2 ATLAS and CMS Constraints on Dark Matter Direct Detec-

tion in minimal Supergravity

We discuss now the implications of ATLAS and CMS results on dark matter. SUGRA models predict

a dark matter candidate which over much of the parameter space is the lightest neutralino, the lightest

(R-parity odd) superpartner (LSP). The LSPs are traveling with non relativistic speed order 0.001c in

the galactic halo. This then translates into the fact that their momentum transfer is very small (order

100 MeV for LSP masses of order 100 GeV) in collisions with nuclei in a terrestrial detector. As such,

the relevant interactions for the direct detection of LSP dark matter is calculated in the limit of zero

momentum transfer in collisions with nuclei. For SUGRA models the interaction Lagrangian is given

by [113–116]

ℒ = χ̄γµγ5χ ̄qiγµ(α1i + α2iγ
5)qi + α3iχ̄χ ̄qiqi + α4iχ̄γ

5χ ̄qiγ
5qi + α5iχ̄χ ̄qiγ

5qi + α6iχ̄γ
5χ ̄qiqi . (6.5)
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Figure 6.1: A plot of spin independent neutralino-proton cross section vs neutralino mass for
mSUGRA under experimental constraints. The search for supersymmetry at LHC with 35 pb−1 lu-
minosity has excluded a significant number of models in this signature space which are marked by red
color. In the red region, all the models in our scans have been constrained by the ATLAS search, while
in the mixed region (maroon), about 60% of the models in our scans are constrained by the ATLAS
search. Both the red and maroon regions satisfy the WMAP constraints. We also display the present
CDMS [106, 107] and XENON-100 [103–105] curves as well as the future projected experimental
curves [111, 112].
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The spin independent (SI) cross section for neutralinos scattering elastically off target nuclei is mostly

governed by the operator α3iχ̄χ ̄qiqi. For heavy nucleus targets, the SI cross section add up coherently

σχT =
4μ2

χT

π
(Zfp + (A − Z)fn)

2 , (6.6)

where μχT is the reduced mass of the neutralino and the target system, and (Z, A) are the atomic (num-

ber, mass) of the nucleus. The interactions between the LSP and the target nuclei occur dominantly

via t-channel CP-even Higgs exchange, and s-channel squark exchange. The relevant interactions are

given in terms of

fp/n = ∑
q=u,d,s

f(p/n)
Tq

aq

mp/n

mq
+ 2
27
f(p/n)
TG ∑

q=c,b,t
aq

mp/n

mq
. (6.7)

Here f(p/n)
Tu

, f(p/n)
Td

, f(p/n)
Ts

are the nucleon parameters which can be obtained from the measurements of

the pion-nucleon sigma term, and f(p/n)
TG ≡ 1 − f(p/n)

Tu
− f(p/n)

Td
− f(p/n)

Ts
. Numerical values and further

details are given in, for example, in Ref. [87]. The spin independent cross section depends sensitively on

LSP neutralino decomposition in terms of its Bino, Wino and Higgsino eigen-components ((B̃, W̃3) ≡

(λY, λ
3))

χ ≡ χ01 = n11B̃ + n12W̃
3 + n13H̃1 + n14H̃2 . (6.8)

The relevant couplings that enter in the spin independent cross section are [113–116]

aq ≡ a3i = −
1

2 (m2
1i − m

2
χ)
ℜ �(Xi) (Yi)

∗� −
1

2 (m2
2i − m

2
χ)
ℜ �(Wi) (Vi)

∗�

−
g2mq

4mWB �
ℜ (δ1[g2n12 − gYn11]) DC

(
− 1
m2

H

+ 1
m2

h)

+ ℜ (δ2[g2n12 − gYn11])
(
D2

m2
h

+ C2

m2
H)�

. (6.9)
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Here the various quantities Xi, Yi, Wi etc. are defined in [113–116], where the full forms of aq can also

be found. The first two terms arise from squark (m1i, m2i) exchange while the remaining terms arise

from Higgs exchange which are almost always dominant in the models we discuss. The parameters

δ1,2 depend on eigen components of the LSP wave function and B, C, D depend on VEVs of the Higgs

fields and the Higgs mixing parameter α and are given by

for u quarks: δ1 = n13 , δ2 = n14 , B = sinβ , C = sinα , D = cosα ,

for d quarks: δ1 = n14 , δ2 = −n13 , B = cosβ , C = cosα , D = − sinα . (6.10)

In Fig. 6.1 we give the spin independent cross sections vs the neutralino mass after experimental con-

straints are applied (discussed in Section 6.4) as well as constraints from the LHC SUSY searches [102].

We describe the simulations further in what follows. Also shown are the XENON-100 [103–105],

CDMS II [106, 107] and projected XENON and SuperCDMS limits for comparison [111, 112]. The

direct mapping of the parameter space constrained by the recent CMS and ATLAS searches is sub-

stantial in the spin independent scattering cross section - dark matter mass plane. This is achieved by

simulating the LHC SUSY production of the models and SM backgrounds under CMS and ATLAS

cuts. We extend their results by considering a larger class of models over the parameter space relevant to

early SUSY searches. In Fig. 6.1, we identify the region in this plane that the LHC data constrains. We

will see that this corresponds to the low mass branch of the slepton co-annihilation region, defined by

(m ̃l−mχ̃0
1
)/mχ̃0

1
≲ 0.2. Thus, observation of dark matter in the LHC depleted region may indicate the

presence of non-universalities. We discuss now the CMS and ATLAS analyses, and their generalizations

and implications in more detail.

56



6.3 LHC Analysis

Here, we analyze the nature of the NLSP in the regions of the parameter space depleted by the CMS

and ATLAS results as well as the SUSY event rates in the region that would be accessible to both the

dark matter direct detection experiments and the LHC in the next rounds of data. As evident from the

results of [75–77] the 0 lepton ATLAS analysis is the most stringent, so we mainly focus on this search

in our analysis, but we have still checked these models with the 1 lepton ATLAS search and the CMS

αT jet search. We discuss in detail the 0 lepton ATLAS search only; the reader is directed to [75, 76]

for a more detailed discussion on the other LHC SUSY searches.

We follow the pre-selection requirements that ATLAS reports in [77, 82]. Jet candidates must

have pT > 20GeV and |η| < 4.9 and electron candidates must have pT > 10GeV and |η| < 2.47.

Events are vetoed if a “medium” electron [82] is in the electromagnetic calorimeter transition region,

1.37 < |η| < 1.52. Muon candidates must have pT > 10GeV and |η| < 2.4. Further, jet candidates

are discarded if they are within ΔR = √(Δη)2 + (Δϕ)2 = 0.2 of an electron. For the analysis, the

(reconstructed) missing energy, /ET, for an event is the negated vector sum of the pT of all the jet and

lepton candidates.

The analysis is made up of 4 regions, “A”, “B”, “C” and “D”, each having 0 lepton candidates.

When referring to different cuts in these regions we define cuts on the “selected” jets to mean that the

“selected” jet candidate has |η| < 2.5 and the bare minimum number of jets in this region must satisfy

the requirement. For regions A and B “selected” jets refers to the first two hardest jets in the |η| < 2.5

region and for regions C and D “selected” jets refers to the first three hardest jets in the |η| < 2.5 region.

Events are required to have /ET > 100GeV and the selected jets must each have pT > 40GeV with

the hardest jet pT > 120GeV. Further, events are rejected if the missing energy points along the same

direction as any of the selected jets., i.e. we require Δϕ (ji, /ET) > 0.4, where i is over the “selected”
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jets. Region A requires events to have /ET > 0.3Meff with Meff > 500GeV and regions C and D both

require events to have /ET > 0.25Meff with region C requiring Meff > 500GeV and region D requiring

Meff > 1TeV. In this case Meff is defined to be the scalar sum of the missing energy and the pT of the

“selected” jets. As in the analysis of [102] we do not apply the cut for region B, i.e. mT 2 > 300GeV,

since the models constrained in this region are already constrained in region D [83].

For our analysis, we use the simulated SM background of [80] which was generated with Mad-

Graph [85] for parton level processes, PYTHIA [86] for hadronization and PGS [117] for detector

simulation. A more thorough discussion on the details of this background can be found in [80, 81],

(see also [79, 118] for discussions on SM background for 2 → N processes). After applying the LHC

SUSY analysis to our SM background we are able to reproduce their reported standard model Monte

Carlo results.

6.4 Result of dark matter analysis with CMS-ATLAS Constraints

We discuss now the implications of the data from CMS and ATLAS on dark matter. To this end we

first carry out a survey of the mSUGRA parameter space as follows: m0 ∈ (10, 4000)GeV, m1/2
∈

(10, 2000)GeV, A0 ∈ (−10, 10) ⋅ m0, tanβ ∈ (1, 60). Performing a general survey of the mSUGRA

model space we simulate the models that satisfy radiative electroweak symmetry breaking (REWSB)

as well as direct and indirect experimental constraints including sparticle mass limits, B-physics con-

straints, and constraints from gµ − 2. We further require that the relic density be within the observed

WMAP limit [94, 95], 0.0896 < Ωχh
2 < 0.1344. These indirect constraints were calculated using

MicrOMEGAs [87], with the Standard Model contribution in the ℬr (b → sγ) corrected using the

NNLO analysis of Misiak et al. [88, 89]. We apply the following “collider/flavor constraints” [90]mh >

93.5 GeV,m ̃τ1
> 81.9 GeV,mχ̃±

1
> 103.5GeV,m ̃τ1

> 100 GeV,mb̃1
> 89 GeV,mẽR

, mẽL
> 107 GeV,
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mµ̃R
, mµ̃L

> 94 GeV, and mg̃ > 400 GeV, along with (−11.4 × 10−10) ≤ δ (gµ − 2) ≤ (9.4 × 10−9),

see [91], ℬr (Bs → μ+μ−) ≤ 4.2 × 10−8 (90% C.L.) [119], and (2.77 × 10−4) ≤ ℬr (b → sγ) ≤

(4.37 × 10−4) [93].

To investigate the constraints from the LHC SUSY search on the dark matter detection signals,

we scanned over 20 million models in the mSUGRA parameter space. After imposing the various

experimental constraints as previously discussed, we simulate the models with the ATLAS 0-lepton

analysis. It is found that there exists a large portion of the signature space in the spin independent

cross section-neutralino plane which is being excluded by the ATLAS 0-lepton search. This excluded

region which is marked by red color as shown in Fig. 6.1 was populated by mSUGRA models before

considering the new LHC data. We further divide the excluded region into the red region where all

the mSUGRA models scanned are excluded by the LHC data, and the two maroon regions each with

about 60% of the models excluded by the LHC. (Note that ATLAS carried out their analysis for a few

fixed values of tanβ and A0 while our analysis allow these to vary.) Next, by considering the NLSP, we

find that essentially all of the region that is depleted by the LHC at 95% CL is the low mass region of

the slepton co-annihilation branch.

This is shown more clearly in Fig. 6.2 where we display the number of SUSY events vs the neutralino

mass for a subset of models in the two panels corresponding to the regions A and D with low neutralino

masses. We do not display region C since it gives results similar to region A and we do not display region

B since it is subsumed in region D. The dashed black lines in Fig. 6.2 can be viewed as the 95% C.L.

limit in each signal region, as they correspond to the event thresholds reported by ATLAS. Indeed, most

of the model points being constrained by the LHC are those where the stau is the NLSP appropriate for

the slepton coannihilation branch. Further, very few of the model points are constrained by the ATLAS

analysis which lie on the Hyperbolic Branch (HB) (Focus Point region) [96–98] of REWSB. The NLSP

on the HB is mostly the light chargino and from Fig. 6.1 we find that very few of the chargino NLSP
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models are currently constrained by the ATLAS analysis.

In contrast, the higher mass HB/FP region is becoming constrained by the XENON data [103–

105]. This effect can be seen in Fig. 6.3 where we show the m0–m1/2
plane for the mSUGRA case

denoted by their NLSP where the models on the left panel are constrained by XENON-100 and the

models on the right panel are unconstrained by XENON-100.

Thus, we come to the conclusion that the ATLAS constraints are very severe for the low m0 region,

while the XENON constraints are very severe for the large m0 region as shown. As can be seen from

Ref. [102], the region which is now being constrained by XENON corresponds to μ ≲ 400GeV and

here the LSP wavefunction has a significant Higgsino component. We add here that bulk region and

the Higgs pole region (the latter being the horizontal strip of essentially fixed m1/2
∼ 𝒪 (100–150) GeV)

remain largely untouched by either experiments.

More generally while the recent XENON analysis [103–105] has presented plots along with

mSUGRA [101] (see Eq. (6.4)) model points on top of the data – we suggest that the XENON col-

laboration include the 50 GeV to 65 GeV mass range of mSUGRA in their constraint plots as this is

the region where the XENON data shows its greatest present sensitivity. We also remark that in the

analysis of the spin independent cross section we used the default values of the form factors as given in

Ref. [87]. It is well known, the predictions for the SI cross section are sensitive to the precise knowledge

of the form factors and in particular the strange quark form factor. In addition, variations on the order

of 5 or larger have been reported in [115] and in [87] over a reasonable range of the pion-nucleon sigma

term (for which the above form factors depend on). These uncertainties should be kept in mind while

interpreting the results of dark matter direct detection experiments on the parameter space of models.

Thus, while we have shown in Fig. 6.3 the regions which lie below and above the reported XENON

limits one does need to factor in more generally the uncertainties in the hadronic matrix elements as

well as the uncertainties in astrophysical quantities to have a more precise account of the constrained
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region of parameter space. However, such an analysis goes beyond the scope of this chapter. Thus our

aim here is to emphasize that the sensitivity of the XENON detector is encroaching on a new part of

the space of SUGRA models, and it is beginning to provide more stringent constraints on the larger

m0 region for which the Higgsino component of the LSP wavefunction can become significant.

6.5 SUGRA models with non-universal breaking

The analysis for the mSUGRA case highlighted in Fig. 6.1 shows a deficit of models after the LHC con-

straints are applied in the region under the XENON-100 curve in the neutralino mass range of 50GeV

to 100GeV corresponding to the slepton coannihilation region. While the assumption of universal

boundary conditions on soft breaking in supergravity grand unification [51, 52] is the simplest possi-

bility leading to the model mSUGRA, the framework of supergravity unification [51, 52] allows for

non-universalities in the soft parameters which occurs generically for several classes of string motivated

models (see [120–127]).

Non-universal gaugino masses can arise in two ways (a) from tree level supergravity with a gauge

kinetic function dependent on singlets or products of singlets and fields which transform under the

gauge groups of the standard model (b) from loop induced gaugino masses dependent on the beta

function coefficient for each group. For tree level gaugino masses, one has

Ma =
1

2ℜ(fa)
FI∂Ifa ,

where FI are the order parameters of SUSY breaking, I denotes the hidden sector (singlet) fields respon-

sible for the breaking of SUSY and fa is a diagonal gauge kinetic function, where a is an adjoint index
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for each gauge group. In addition for loop induced gaugino masses one has [54, 120, 121, 128]

M1
a|adj = −b

0
ag

2
am3/2 + …

where the higher order terms are given in [128] and the beta function coefficient is given in terms of

Ca, C
i
a ; the quadratic Casimir operators for the gauge group Ga respectively in the adjoint representa-

tion

b0a =
1

16π2
(3Ca −∑

i
Ci

a) .

Thus we now consider the case of non-universal supergravity (NUSUGRA) models to see if the region

depleted in the mSUGRA case can become populated when non-universalities are included. Here we

will keep the analysis rather general and parametrize the non-universalities as in the gaugino masses

which can be sourced from tree level supergravity, from loop induced gaugino masses, and most gen-

erally a combination of both as

Ma = m1/2
(1 + δa) , (6.11)

at the GUT scale for the gauge groups U(1), SU(2)L, SU(3)C corresponding to a = 1, 2, 3. The ranges

chosen are δa = (−1, 1) with the ranges for the remaining parameters as in the mSUGRA case.

The result of the analysis is shown in Fig. 6.4 where we exhibit the allowed set of models over a

broad range of neutralino masses which satisfy all the experimental constraints, but do not yet have

the LHC SUSY search constraints applied to them. The area depleted by the LHC for the mSUGRA

case lies within the red boundary and is shown for comparison. One observes that the presence of

non-universalities in the gaugino sector repopulates a significant part of the region of the signature

space in the spin independent scattering cross section-neutralino mass plane that is constrained by the

LHC SUSY searches relative to the case of minimal SUGRA. This region of re-population is found to

produce a consistent relic density via multiple coannihilation channels.
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In particular, because the chargino mass can be split from the LSP mass with non-universalities in

the gaugino sector consistent with the LEP bound on the chargino mass, the low mass region below

the light CP even Higgs pole, which is largely the Z-pole region, is now allowed by the relic density

constraint. Thus one can have a dark matter mass as low as

mχ̃0
1
≳ 40GeV (NUSUGRA–gauginos), (6.12)

in the NUSUGRA case, where the lower limit is higher in the mSUGRA case to be consistent with the

LEP data.

The top panel of Fig. 6.5 gives the analysis with a focus on the 50GeV to 100GeV neutralino mass

region where we also apply the LHC analysis as already described. From Fig. 6.4 and the top panel

of Fig. 6.5, it is apparent that the gaugino mass non-universalities produce a significant re-population

of the region with models specifically in the 50GeV to 100GeV neutralino mass range. Also shown in

the bottom two panels of Fig. 6.5 are the gluino mass and the lightest second generation squark mass.

We note that a gluino mass as low as 400 GeV and a squark mass as low as 600 GeV are unconstrained

by the present ATLAS data. Similar results are obtained when non-universalities in both the gaugino

sector and the Higgs sector [126, 127] are present. In this case the analysis gives results similar to those

of Fig. 6.5 with a larger density of allowed models which populate the region depleted by the LHC

SUSY searches.

6.6 Conclusion

The implications of the first SUSY analysis by CMS and ATLAS on supersymmetric dark matter are

analyzed. It is found that the CMS and ATLAS constraints deplete a significant branch of the slep-

ton coannihilation regions in the mSUGRA parameter space where dark matter can originate in the
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early universe while the Higgs pole region and the Hyperbolic Branch (focus point region) are not

constrained. However, a large portion of the Hyperbolic Branch region is now becoming constrained

by the recent XENON data. The effect of non-universalities in the gaugino masses are analyzed and it

is found that a part of the region in the spin-independent cross section vs the LSP mass plane depleted

by the CMS and ATLAS analysis for mSUGRA is repopulated when non-universalities are included,

i.e., for the NUSUGRA case. Thus observation of dark matter in the mSUGRA region depleted by the

ATLAS constraints could point to supergravity models with non-universal soft breaking.
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Figure 6.2: Exhibition of the number of SUSY events in the ATLAS 0 lepton analysis and the cor-
responding NLSPs against the neutralino mass with 35 pb−1 of integrated luminosity for a subset of
models around the LHC excluded region of Fig. 6.1. Left panel: Region A [77]; Right panel: Region
D [77]. The dashed black lines can be viewed as the 95% C.L. limit in each signal region, as they
correspond to the event thresholds reported by ATLAS along them0–m1/2

boundaries [83]. Essentially,
the models being eliminated by the ATLAS results (above the dashed black line) are those with the stau
as the NLSP.
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Figure 6.3: Exhibition of models in the m0–m1/2
plane denoted by their NLSPs and the ATLAS 0

lepton curve (red) is drawn for comparison (see Fig. 6.1). The left panel corresponds to the models that
have been constrained by XENON-100 [103–105] and the right panel corresponds to the models that
are unconstrained by XENON-100. All models have the same constraints as Fig. 6.1. From this analysis
we see explicitly that the reported XENON constraints are severe in the larger m0 region constraining
the hyperbolic branch, while the lowm0 region, which are the low mass slepton co-annihilation regions,
are being constrained by both XENON and the LHC.
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ATLAS results and is shown for comparison. While this random scan does not emphasize the mSUGRA
parameter region, a more intensive scan would include all of the gray area of Fig. 6.1.
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Figure 6.5: Re-population of the region depleted by ATLAS. Shown are NUSUGRA models, where
the red contour is the ATLAS constrained region in mSUGRA. The non-universal gaugino models
simulated (a subset of models in Fig. 6.4) under the ATLAS 0 lepton cuts that are constrained by the
analysis indicated by red squares. The bottom two panels show the gluino mass and the lightest second
generation squark mass where we note a gluino mass as low as 400 GeV and squark masses as low as
600 GeV are unconstrained by the present ATLAS data.
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Chapter 7

Hyperbolic Branch of Minimal Supergravity

and Naturalness

7.1 Introduction

In this chapter, it is shown that the Hyperbolic Branch of radiative breaking of the electroweak symme-

try contains in it three regions: the Focal Point, Focal Curves, and Focal Surfaces. Further, the Focal

Point is shown to lie on the boundary of Focal Curves. These focal regions allow for a small μ while

scalar masses can become large. It is shown that for the mSUGRA model the current LHC-7 constraint

depletes the Focal Point region while regions on Focal Curves and Focal Surfaces remain intact. The

LHC implications for models which lie on Focal Curves are briefly discussed as well as the implications

of dark matter constraints for the Focal Point, Focal Curves and Focal Surfaces are discussed.

Several naturalness, hierarchy, and, fine-tuning problems exist in particle physics: some big and

some small. The most severe one relates to the smallness of the vacuum energy in units of the Planck

mass, followed by the smallness of the ratio MW/MPl. There are several other small-to-moderate size
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hierarchies such as the ratioMGUT/MPl and the ratios in the fermion mass spectra such asmu/mt. Also,

there are hierarchy problems of a more technical nature, such as in the Higgs sector of the standard

model, where the Higgs boson mass receives a loop correction which is quadratically dependent on the

cutoff. This problem is resolved in supersymmetric models with a cancellation between the fermionic

and super-fermionic loops which results in the quadratic dependence on the cutoff being replaced by

a logarithmic dependence. A similar problem at a much smaller scale often called the little hierar-

chy problem appears for supersymmetric models if the scalar masses turn out to be large. In fact, in

certain models of soft breaking the scalar masses can get large, as is the case in supergravity grand uni-

fied models [51] with hierarchical breaking of supersymmetry [129] and for certain string motivated

models [125]. Large scalar masses have also been considered in other contexts [130].

The little hierarchy problem can be roughly described as follows: in the radiative breaking of the

electroweak symmetry (REWSB) one has 1
2
M2

Z ≃ −μ
2 − m2

H2
where μ is the Higgs mixing parameter

and mH2
is the mass of the Higgs boson that couples to the top quark. Naively mH2

gets large as the

universal scalar mass m0 gets large and a large cancellation is needed between μ and mH2
to get a small

MZ. A more practical approach is to view the REWSB relation as a determination of μ which is the

view point we adopt here. From this perspective, ifm0 is large the accessibility of sparticles at the LHC

rests on the size of m1/2
and μ and thus a small μ (and a small mH2

) is desirable.

The question then is how one may achieve a small μ for the above class of models in the context of

radiative breaking of the electroweak symmetry. The basic mechanism for achieving the above was first

realized in [96]. In the analysis of [96] it was found that there exist two natural regions of radiative

breaking, one where there is an upper bound on the soft parameters m0, m1/2
, A0 for a fixed μ (the

Ellipsoidal Branch, EB), and the other where one or more soft parameters can get very large for fixed

μ (the Hyperbolic Branch, HB). In a later work, [98], it was shown that there exists a region where

the value of the Higgs mass squared, m2
H2

, becomes essentially independent of the values of the input
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parameter m0 at the GUT scale. Such a region was then labeled the Focus Point.

In this chapter, we classify the solutions of the Hyperbolic Branch in Section 7.2 and show that it

contains three main regions: (1) Focal Points (HB/FP): This region lies at the boundary between the

Ellipsoidal and the Hyperbolic Branches where μ2 becomes independent of m2
0 and thus m0 can get

large while μ remains fixed with the other soft parameters being held fixed. In this definition we do not

include the Focal Point on the EB. The Focal Point is technically different from the Focus Point [98]

but for tanβ ≫ 1 they are essentially the same as will be made clear in Section 7.2 and Section 7.3. The

HB/FP region, however, is only a small part of HB and the larger parts of HB are Focal Curves and Fo-

cal Surfaces as discussed below, and in detail in Section 7.2 and Section 7.4. (2) Focal Curves (HB/FC):

Focal Curves are where two soft parameters are comparable and can get large while μ is fixed. We define

HB/FC such that the HB/FP region is excluded. (3) Focal Surfaces (HB/FS): Here one may have a

fixed (and small) μ while the three dimensional soft parameters may get large. The HB/FS region is the

set of all Focal Curves, thus does not include the HB/FP region.

In Section 7.5, we carry out a numerical analysis considering experimental constraints including

from the LHC-7 data, to observe its effect on the HB region. We will show that the combined con-

straints severely deplete the Focal Point region, while the Focal Curves and thus Focal Surfaces largely

remain intact. We also explore implications for LHC and dark matter searches.

Concluding remarks are presented in Section 7.6.
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7.2 Focal Points, Curves, Surfaces of the Hyperbolic Branch

In this section we will discuss in detail the classification of HB into the three broad regions mentioned

in the last section. We begin with the equation for the radiative breaking of the electroweak symmetry

μ2 + 1
2
M2

Z =
m2

H1
− m2

H2
tan2 β

tan2 β − 1
, (7.1)

where we have m2
Hi
= m2

Hi
+ Σi and Σi is the contribution arising from the loop corrections to the

effective potential for i = 1, 2 [97]. In this section we will focus on the supergravity grand unification

model with universal boundary conditions [51–53] whose soft breaking sector is described by

(m0, m1/2
, A0, tanβ, sgn(μ)) , (7.2)

where m0 is the universal scalar mass, m1/2
is the universal gaugino mass, A0 is the universal trilinear

coupling and μ is the Higgs mixing parameter in the superpotential. The model of Eq. (7.2) is referred to

as mSUGRA or sometimes as the constrained minimal supersymmetric model, CMSSM. The analysis

is done using the techniques given in [101] where one starts with universal boundary conditions given

by Eq. (7.2) for the soft parameters at the GUT scale and evolves the sparticle masses downwards using

renormalization group equations. For illustration in the text, we consider one loop evolution where we

neglect the Yukawa couplings except for the top quark. The simulations presented later are done using

numerical codes which include the effects of the b and τ Yukawa couplings. In this model the radiative

breaking of the electroweak symmetry allows for a determination of μ2 in terms of the soft parameters

as [96, 126]

μ2 = −1
2
M2

Z + m
2
0C1 + A

2
0C2 + m

2
1/2C3 + m1/2

A0C4 + Δμ
2
loop , (7.3)
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where

C1 =
1

tan2 β − 1 (
1 −

3D0 − 1
2

tan2 β
)
, (7.4)

C2 =
tan2 β

tan2 β − 1
k , (7.5)

C3 =
1

tan2 β − 1
(g − e tan2 β) , (7.6)

C4 = −
tan2 β

tan2 β − 1
f , (7.7)

and the functions e.f, g, k are as defined in [131]. D0(t) is defined by

D0(t) = (1 + 6Y0F(t))
−1 (7.8)

with, Y0 = ht(0)
2/(4π2) . (7.9)

Here, ht(0) is the top Yukawa coupling at the GUT scale, MG ≃ 2 × 10
16 GeV. Further,

F(t) = ∫
t

0
E(t′)dt′ , (7.10)

where

E(t) = (1 + β3t)
16/3b3 (1 + β2t)

3/b2 (1 + β1t)
13/9b1 . (7.11)

Here βi = αi(0)bi/(4π) and bi = (−3, 1, 11) for SU(3), SU(2) and U(1) and t = ln (M2
G/Q

2) where Q

is the renormalization group point. Our normalizations are such that α3(0) = α2(0) =
5
3
α1(0) = αG(0).

Further, Δμ2
loop is the loop correction [97].

As is well known, the tree value of μ2 (Eq. (7.3) without Δμ2
loop), is sensitive to the renormalization

group scale and the same is true of the loop correction. However, the sum of the tree and the loop term

is relatively insensitive to variations in Q [96].
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Further, one of the interesting phenomena observed in [96] is the following: suppose one goes to a

renormalization group point Q where the loop contribution Δμ2
loop is minimized (this typically occurs

at Q ∼ 𝒪
(√

M ̃t1M ̃t2 )
, whereM ̃t1 andM ̃t2 are the stop masses). Now at low values of tanβ and Q it

is observed that the co-efficients Ci (i = 1 − 4) continue to be all positive. In this case it is clear that

for any fixed μ the soft parameters have well defined upper limits. However, for larger values of tanβ,

C1 can vanish or even turn negative as Q increases. We will call the region where C1 either vanishes or

is negative as the Hyperbolic Branch. In this case it is possible to have large soft parameters while μ

remains relatively small.

The HB of REWSB contains three regions: (1) The Focal Point (HB/FP): We define the points

where C1 vanishes as Focal Points. From Eq. (7.3) and Eq. (7.4) we find that when C1 = 0, m0 can get

large without affecting μ. For practical purposes, for a fixed tanβ, we will take a small region around

C1 = 0, and call it the Focal Point region, specifically

|C1| < δ (Q,mt) , δ (Q,mt) ≪ 1 . (7.12)

In determining δ (Q,mt) we are guided by the experimental error in the top quark mass from mt =

(173.1 ± 1.3)GeV. Now, for a fixed tanβ, C1 = C1(mt, Q) where

Q ∼ 𝒪
(√

M ̃t1M ̃t2 )
and thus, Q depends on the top mass via the dependence of the stop masses

on mt. However, this implicit dependence on mt via Q is rather weak and effectively δC1 =
δC1

δmt
δmt.

A direct analysis gives the following approximate result

δC1 ≃ 3 (1 − D0)
δmt

mt
. (7.13)

This result agrees with the one loop analysis in Fig. 7.1 where δC1 can be interpreted as the vertical

spacing between the curves in the right panel of Fig. 7.1. In the full numerical analysis presented later
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in identifying the parameter points that lie in the Focal Point region, we calculate δC1 numerically

for each point by calculating the variation in C1 for variations in mt. (2) Focal Curves (HB/FC): The

region where C1 < 0 allows for two soft parameters to get large while μ remains small is the Focal Curve

region. In fact, in this case there are two general possibilities: HB/FC1 and HB/FC2. In the case of

HB/FC1 (HB/FC2), we have C1 < 0 and m1/2
(A0) as well as μ are held fixed with m0 and A0 (m1/2

)

allowed to vary. These two cases can be combined into a single form HB/FCα defined by C1 < 0 and

the constraintm1/2
= α(1−α)−1A0 where 0 < α < 1. We note that HB/FCα reduces to HB/FC1 when

α ∼ 0 and reduces to HB/FC2 when α ∼ 1. (3) The Focal Surface (HB/FS): is the region of HB where

C1 < 0 while all the soft parameters (except tanβ), i.e, m0, m1/2
, A0 vary and may get large while μ

remains fixed. In terms of HB/FCα, varying α creates a Focal Surface.

We discuss now briefly the issue of fine-tuning. Often one uses the criterion of fine-tuning to

designate some regions of the parameters as preferred over others. However, such criteria are necessarily

subjective and widely different results can be attained by different choices. For example, one criteria

used is to look at the sensitivity of MZ to variations in the parameters that enter in Eq. (7.1). Let us

define the set of such parameters to be ai, then the sensitivities fi and the fine tuning parameter f are

taken to be as in [98]:

fi =
|

∂ lnM2
Z

∂ ln ai |
, f = max {fi} . (7.14)

Using the above criteria it has been argued that certain regions of the parameter space (such as when

A0 ≠ 0) are less natural than the A0 = 0 region [98]. However, such an argument appears to us as hasty

in suppressing parts of the parameter space based purely on a theoretical prejudice. For example, as

already noted in [98] inclusion of the top Yukawa in the list {ai}would lead to very different conclusions.

It may turn out that nature chooses a parameter point which one might consider ‘unnatural’ from a

criteria such as of Eq. (7.14) but is perhaps the natural consequence of a more unified approach. In our

analysis we will not rely on criteria such as Eq. (7.14) as a selection principle for the parameter space,
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since the subjectivity of such criteria is their weakness. Rather, we take the more pragmatic approach

regarding exploration of the entire parameter from a phenomenologically desirable view point. Such a

view point requires that we explore the small μ region of the parameter space while one or more of the

other soft parameters (such as m0 and A0) could become large. Effectively our naturalness criteria will

be simply regions of small μ as in the analysis of [96]. Thus solutions of this type appear desirable for

phenomenological reasons regarding the detectability of new physics at the LHC. Further, as mentioned

earlier situations of this type arise in theory models [125, 129].

7.3 The Focus Point region of HB

While the Hyperbolic Branch [96] and the Focus Point [98] both allow for large values of m0 while

μ remains small, the exact relationship of the Hyperbolic Branch and of the Focus Point has not been

elucidated in the literature; this is the focus of this section. We show that the Focus Point is the

boundary point of a Focal Curve on the Hyperbolic Branch. Again for illustration we will consider one

loop evolution, and among the Yukawa couplings retain only the top quark coupling. Here the scalar

masses m2
H2

, m2
Ũ and m2

Q̃ satisfy the following set of coupled equations

dm2
H2

dt
= −3YtΣ − 3YtA

2
t + (3α̃2M

2
2 + α̃1M

2
1) , (7.15)

dm2
Ũ

dt
= −2YtΣ − 2YtA

2
t + (

16
3
α̃3M

2
3 +

16
9
α̃1M

2
1)

, (7.16)

dm2
Q̃

dt
= −YtΣ − YtAt + (

16
3
α̃3M

2
3 + 3α̃2M

2
2 +

1
9
α̃1M

2
1)

. (7.17)

Here Σ = (m2
H2
+ m2

Q̃ + m2
Ũ), Yt = h2

t/(16π
2), and where ht is the Yukawa coupling at scale Q.

The analysis of [98] made the observation that the solution to Eq. (7.15), can be written in the form
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m2
i = (m

2
i )p+δm

2
i where (m2

i )p is the particular solution and the δm2
i obey the homogeneous equation

d
dt

⎛⎜⎜⎜⎜⎜⎜
⎝

δm2
H2

δm2
U

δm2
Q

⎞⎟⎟⎟⎟⎟⎟
⎠

= −Yt

⎛⎜⎜⎜⎜⎜⎜
⎝

3 3 3

2 2 2

1 1 1

⎞⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜
⎝

δm2
H2

δm2
U

δm2
Q

⎞⎟⎟⎟⎟⎟⎟
⎠

. (7.18)

The solution to the above with the universal boundary conditions at the GUT scale is given by

⎛⎜⎜⎜⎜⎜⎜
⎝

δm2
H2

δm2
U

δm2
Q

⎞⎟⎟⎟⎟⎟⎟
⎠

= 1
2
m2

0

⎛⎜⎜⎜⎜⎜⎜
⎝

3J(t) − 1

2J(t)

J(t) + 1

⎞⎟⎟⎟⎟⎟⎟
⎠

, (7.19)

where J is an integration factor defined by

J(t) ≡ exp
�
−6 ∫

t

0
Yt(t

′)dt′
�
. (7.20)

As Q → MG, one has J(t) → 1 and the universality of the masses is recovered at the GUT scale. Noting

that Y(t) at the one loop level satisfies the equation

dYt
dt

=
(
16
3
α̃3 + 3α̃3 +

13
9
α̃1)

Yt − 6Y
2
t , (7.21)

one finds Yt so that

Yt(t) =
Y(0)E(t)

1 + 6Y(0)F(t)
. (7.22)
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where F(t) and E(t) are defined after Eq. (7.8), one can inspect J(t) to find that J(t) = D0(t), where

D0(t) is defined by Eq. (7.8). Thus δm2
H2

takes the form

δm2
H2
≡
δm2

H2

m2
0

= 1
2
(3D0 − 1) . (7.23)

and C1 can be expressed in terms of δm2
H2

C1 =
1

tan2 β − 1 (
1 − δm2

H2
tan2 β) . (7.24)

From Eq. (7.23) we see that the correction δm2
H2

becomes independent of m0 when D0 = 1/3, which

corresponds to the so called Focus Point region [98], and from Eq. (7.24) one finds that δm2
H2

→ 0

implies that C1 also vanishes, for tanβ ≫ 1. Thus for large tanβ, i.e. tanβ ≳ 5, the Focal Point and

the Focus Point essentially merge. More explicitly, the Focus Point implies the vanishing of δm2
H2

while

the Focal Point requires the vanishing of C1. A numerical analysis of the behavior of C1 as a function

of Q for a set of fixed tanβ’s is given in Fig. 7.1 as well as a graphical representation of the different

branches. Fig. 7.1 shows that the Focal Point is the boundary point of HB or, in other words, the

transition point between EB and HB.

7.4 Focal Curves and Surfaces

Focal Curves (HB/FC): To exhibit the emergence of a Focal Curve we rewrite Eq. (7.1) in the following

form

μ2 = −1
2
M2

Z + m
2
0C1 + A

2
0C2 + m

2
1/2
C3 + Δμ

2
loop , (7.25)

with, A0 ≡ A0 +
C4

2C2
m1/2

, and C3 ≡ C3 −
C2

4

4C2
. (7.26)
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Now, suppose we go to the renormalization group point Q where the loop corrections are minimized

and, further, we are in a region of tanβ and Q where C1 is negative. In this case one finds that there

exist curves wherem0 and A0 get large whilem1/2
is held fixed and μ is relatively small compared tom0

and A0. Thus we can rewrite Eq. (7.25) in the form

(
A0√C2 )

2
−
(√

|C1| m0)

2
= ±|μ1|

2 (HB/FC1), (7.27)

where ±|μ1|
2 ≡ μ2 + 1

2
M2

Z − m
2
1/2
C3 − Δμ

2
loop , where ± indicates the overall sign of the right hand

side. Thus one has two branches corresponding to the two signs. We can interpret Eq. (7.27) as an

equation of a Focal Curve in the m0–Ā0 plane (or in the m0–A0 plane around a shifted origin in A0)

such that asm0 and A0 get large, μ remains fixed for fixedm1/2
(this is Focal Curve HB/FC1 as defined

in Section 7.2). In the limit when m0, |A0| (and Q) are much larger than μ and m1/2
one gets the result

Ā0

m0
⟶

A0

m0
⟶±

√√√√
√

|C1|
C2

⟶∼ ±1 . (7.28)

where the last entry in Eq. (7.28) arises from a numerical evaluation of C1 and C2 as given by Eq. (7.4)

and Eq. (7.5) as shown in Fig. 7.2.

In order to identify which points lie on Focal Curves we compute the Ci for each point and then

subject them to the conditions necessary for them to lie on a Focal Curve. Thus for the case presented

above we consider m1/2
fixed while m0 and A0 vary with C1 < 0 and outside the Focal Point region.

An analysis illustrating Focal Curves in this case is given in Table 7.1. For this analysis and subsequent

figures and tables we use both SuSpect [84] and SoftSUSY [132] which include the two loop renor-

malization group equations and the two loop corrections to the Higgs sector. The analysis is done for

the case whenm0 lies in the range 500GeV to 4000GeV andA0 lies in the range−500GeV to−3000GeV

with tanβ = 15 and μ remaining within 10% of 600GeV. A similar analysis is shown pictorially in the
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m0 (GeV) A0 (GeV) Q (GeV) μ (GeV)

500 -482 750 597
1000 -550 940 599
1500 -650 1195 599
2000 -800 1484 596
2500 -1050 1790 600
3000 -1350 2105 601
3500 -1700 2428 602
4000 -2080 2754 599
4500 -2500 3083 600
5000 -2950 3413 605

Table 7.1: Display of HB/FC1 form1/2
= 400GeV and tanβ = 15. This is an example of HB/FC1 with

A0 < 0 solution with μ = (600 ± 6) GeV. The values of μ have been calculated with both SuSpect [84]
and SoftSUSY [132].

left panel of Fig. 7.3, where we have displayed the Focal Curves for m1/2
= 500GeV, tanβ = 45 and

μ = (465 ± 35) GeV. We see that for m0 and |A0| large, there is good agreement with Eq. (7.28), i.e.,

one finds A0/m0 → ±1 asymptotically for large m0. We note that the limit A0/m0 ∼ 1 consistent with

small μ was noticed and discussed recently in the analysis of [133] in the context of a string motivated

model. From the left panel of Fig. 7.3 we note that this limit is part of HB and is specifically the end

point of the Focal Curve HB/FC1. The left panel of Fig. 7.4 shows model points with m1/2
< 1TeV

and m0 > 10TeV with μ < 2TeV. The result of m0 up to 10TeV were exhibited in [96], and up to

30TeV in [133], and here we exhibit m0 up to 50TeV and beyond for μ < 2TeV, i.e., μ/m0 ≪ 1.

Now there is also another possibility of achieving a Focal Curve which can be illustrated by writing

Eq. (7.3) in the form

μ2 + 1
2
M2

Z = m
2
0C1 + A

2
0C2 + m

2
1/2C3 + Δμ

2
loop . (7.29)
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m1/2
≡ m1/2

+
C4

2C3
A0, C2 ≡ C2 −

C2
4

4C3
. (7.30)

As before, we can write this equation in the form

(
m1/2√C3 )

2
−
(
m0√|C1| )

2
= ±|μ2|

2 (HB/FC2), (7.31)

where ±|μ2|
2 ≡ μ2 + 1

2
M2

Z − A
2
0C2 − Δμ

2
loop . Thus again one has two branches depending on the

sign. Here one keeps A0 fixed while m0 and m1/2
get large and μ is relatively small (this is Focal Curve

HB/FC2 as defined in Section 7.2). For the case when |μ2| is small relative to m0 and m1/2 one finds

the following relationship asymptotically

m1/2

m0
⟶

m1/2

m0
⟶

√√√
√

|C1|
C3

⟶ ≈ 0.4 . (7.32)

where the last entry in Eq. (7.32) is obtained by using Eq. (7.4) and Eq. (7.6) as shown in Fig. 7.2. An

illustration of this case is given in the right panel of Fig. 7.3 wherem1/2
gets very large. For these curves

we see that we can still have models with μ small (μ ≲ 450GeV) and m1/2
large (m1/2

≳ 1500GeV),

which leads to the gluino mass being on the order of a few TeV or larger.

To show that there exists a larger set of Focal Curves than the cases we have discussed above we exhibit

a whole set of parametric Focal Curves which we label as HB/FCα. To do this we definem1/2
= α

1−α
|A0|,

where 0 ≤ α < 1. This allows us to rewrite Eq. (7.3) as

± |μα|
2 = −

(√
|C1| )

2
m2

0 + CαA
2
0 . (7.33)
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where ±|μα|
2 = μ2 + 1

2
M2

Z − Δμ
2
loop. Further,

Cα = C2 +
α2

(1 − α)2
C3 +

α
1 − α

C4 sgn (A0) , (7.34)

Eq. (7.33) shows that there exists parametric Focal Curves, parameterized by α, where one can get the

same value of μ which can be taken to be small, while α can take on values in the range [0, 1). This

phenomenon illustrated in the right panel of Fig. 7.4 displays several Focal Curves for constant μ. One

finds that as α decreases the asymptotic form of the curves in the A0 − m0 plane become more steep.

This result is in agreement with the theoretical prediction at one loop for the asymptotic ratio A0/m0

which is

A0/m0 → ±√|C1| /Cα . (7.35)

Focal regions in mSUGRA Hyperbolic Branch

Focal Region Symbol Varying Parameters Fixed Parameters

Focal Point HB/FP m0 m1/2
, A0

Focal Curve HB/FC1 m0 A0 m1/2

Focal Curve HB/FC2 m0 m1/2
A0

Focal Curve HB/FCα m0, A0 or m1/2
m1/2

= α
1 − α

|A0|

Focal Surface HB/FS m0, m1/2
, A0

Table 7.2: A summary of the classification of focal regions in mSUGRA. The focal regions are those
where μ remains constant while one or more soft parameters may get large. tanβ is assume fixed in
each of the cases discussed and α has the range 0 ≤ α < 1.

Focal Surfaces HB/FS: We consider next the radiative breaking of the electroweak symmetry where

all the three parametersm0,m1/2
, or A0 can get large while μ remains small. This solution is again valid

in the region of the parameter space where C1 turns negative at the value of renormalization group

point which minimizes the loop correction. This is the Focal Surface HB/FS as defined in Section 7.2
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and we can express it in the following two forms

± |μs|
2 = −

(√
|C1| m0)

2
+
(
A0√C2 )

2
+
(
m1/2√C3 )

2
(7.36)

where ±|μs|
2 = μ2 + 1

2
M2

Z − Δμ
2
loop. A summary of focal regions is given in Table 7.2. An exhibition

of a Focal Surface for the case μ = (0.465 ± 0.035)TeV is given in Fig. 7.5. We note that on the Focal

Surface shown in Fig. 7.5 m0, m1/2
, or A0 can all be seen to get large in certain regions while μ remains

relatively constant. We note in passing that another way to generate a Focal Surface is to consider a

Focal Curve HB/FCα and let α vary over its allowed range 0 ≤ α < 1. Thus a Focal Surface can be

viewed as a collection of Focal Curves as in the right panel of Fig. 7.4.

7.5 LHC and Dark Matter Implications

Constraints of LHC-7 data on Focal Regions: We now investigate the implications of the recent LHC

data [75–77, 134–136] on the focal regions constituted of the Focal Point, Focal Curves and Focal Sur-

faces. To this end we first generate mSUGRA parameter points using a uniformly distributed random

scan over the soft parameters with m0 < 4TeV, m1/2
< 2TeV, A0/m0 ∈ (−10, 10), and tanβ ∈ (1, 60).

After the constraint of REWSB roughly 22 million mSUGRA parameter points are collected. These are

then subject to experimental constraints which include the LEP and Tevatron [90] limits on the Higgs

mass and on the sparticle masses as discussed in [137, 138] and ℬr (B0
s → μ+μ−) ≤ 1.1 × 10−8 [139].

These constraints will be referred to as the general constraints. In imposing these constraints we use

MicrOMEGAs [87] for the computation of the relic density and SuSpect for the computation of the

sparticle mass spectrum and μ at the scale at which electroweak symmetry breaks, QEWSB. A more sta-

tistically rigorous procedure for the implementation of the constraints would be to use χ2 or maximum

likelihoods, but for the purpose of this analysis it is unnecessary.
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CMS and ATLAS have reported results for supersymmetry searches [75–77, 134–136] based on

about 1 fb of data. The implications of these results (as well as dark matter results) have been considered

for the parameter space of SUSY models in a number of works [100, 102, 137, 140–151] and some

discussion on the collider implications on naturalness can be found in [152–155]. Here we use the

constraint arising from the recent the ATLAS 1 fb search [135, 136] and the CMS 1 fb search [75]

to explore their implications on the focal region. The implications of the LHC data for the Ellipsoidal

Branch and for the Hyperbolic Branch are exhibited in Fig. 7.6. The top left panel gives the parameter

space in EB and here one finds that most of the model points being constrained by LHC-7 lie in the

low m0 region. The top right panel gives the corresponding analysis for HB/FP and HB/FC. In the

analysis here we have assumed that m1/2
/m0 ≤ 0.1 for HB/FC1 and A0/m0 ≤ 0.1 for HB/FC2. The

middle left panel exhibits the same set of parameter points on HB/FP and HB/FC as the top left panel

except that the regions are now labeled according to the sparticle landscape picture [123, 156–158] by

the next to lightest particle beyond the Standard Model (NLP) in the mass hierarchy (note that this

includes all of the sparticles and Higgs sector particles, but omits the Standard Model-like h0). Here

one finds that most of the region being constrained by the LHC-7 data is the highm0 region. The HB

region contains the Focal Point, Focal Curves and Focal Surfaces as discussed in the preceding sections.

Of these we display just the Focal Point region in the middle right panel. Here one finds that the

Focal Point region is highly depleted and is further constrained by the LHC-7 data. The bottom panels

of Fig. 7.6 show the parameter points on the entire HB region consisting of the HB/FP, HB/FC and

HB/FS, where the left panel displays the parameter points where the NLP is either a χ̃±1 or ̃τ1, and the

right hand panel shows the parameter points where the NLP is ̃t, A or H. Thus the analysis of Fig. 7.6

shows that the HB/FP is almost empty and most of the parameter space remaining on HB lies in the

region of Focal Curves or Focal Surfaces, i.e., it lies on HB/FC and HB/FS.

LHC signals on HB/FC1: We discuss now an important phenomenon related to HB/FC1, which
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arises from the constraint that m1/2
and μ are fixed even though A0 and m0 get large. This can lead

to observable leptonic signatures, specifically the trileptonic signature [159–163], even when m0 lies

in the several TeV region (For a recent work on the trileptonic signal see [164]). The reason for this

is rather obvious, in that the chargino and the neutralino masses are held relatively constant along

the Focal Curve HB/FC1. Thus the production cross-section for the charginos and neutralinos will

be essentially independent of m0. We are specifically interested in the production cross-section of the

light chargino χ̃±1 and the second lightest neutralino χ̃02, i.e., σχ̃±
1 χ̃0

2
which can lead to a trileptonic signal

from the decay of χ̃±1 , χ̃
0
2 so that χ̃±1 → l± + νl + χ̃

0
1 and χ̃02 → l+l−χ̃01 (important contributions can

also arise from the production of χ̃±1 χ̃
0
i (i = 3, 4) depending on the part of the parameter space one

is in). The chargino and neutralino final state can arise at tree level from two main processes in pp

collisions. Thus, for example, χ̃+a χ̃
0
i can arise from the s-channel fusion diagram u + d̄ → W+∗ →

χ̃+a + χ̃
0
i and from the t-channel exchange diagram of a d̃L squark. The latter diagram is suppressed

when m0 is large so that the main production cross-section proceeds via the s-channel off -shell W±

production [159–163]. Thus the χ̃±1 χ̃
0
i production cross-section is expected to be independent ofm0 for

largem0. The constancy of σχ̃±
1 χ̃0

2
/σtotal is exhibited in Fig. 7.7 for HB/FC1 defined bym1/2

= 0.35TeV,

tanβ = 45 and μ = (0.20 ± 0.01)TeV. The branching ratio into trileptons is also computed. In the

analysis we use SUSY-HIT [165] for the computation of decays, PYTHIA [86] for event generation,

and PGS [117] for detector simulation. For the case of models exhibited in Fig. 7.7 the χ̃±1 χ̃
0
2 production

cross-section is (164.3 ± 9.97) fb and the χ̃±1 χ̃
0
3 production cross-section is (112.1 ± 8.53) fb, which leads

to roughly 50 raw trilepton events at 10 fb where we have included τ’s in the definition of leptons.

The number of events will be reduced when off-line cuts are imposed and a more detailed analysis

would require further knowledge of the cuts used in the experimental multileptonic search at that

luminosity. Of course a much larger number of events is expected at higher √s = 10TeV, or √s =

14TeV at the same luminosity. Similarly, the χ̃±1 χ̃
0
2 and χ̃±1 χ̃

0
3 production states can decay hadronically.

For the hadronic analysis we use the cuts as outlined in Ref. 1 of [135, 136] by ATLAS and find
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that our effective cross-sections are (5.2 ± 0.15) fb, (0.7 ± 0.16) fb, (1.6 ± 0.33) fb, (0.6 ± 0.18) fb and

(0.5 ± 0.15) fb which can be compared to the reported 95% C.L. upper bounds at 1.04 fb of 22 fb, 25 fb,

429 fb, 27 fb and 17 fb, respectively. Typically these points produce hard jet signatures, but with low

jet multiplicity. Thus the hadronic signals on HB/FC1 may become visible if a luminosity in excess of

20 fb can be achieved at LHC-7. Another possible channel for discovery would be a combination of

jets and leptons, but such an analysis is outside the scope of the current work.

Dark Matter in the EB and the Focal Domains: It is interesting to investigate the prediction for

dark matter searches in EB vs HB domains. We begin by considering first the full parameter space of

mSUGRA which, after general constraints, is exhibited in the top left panel of Fig. 7.8 where the LHC-7

constraint with 1 fb of data is also exhibited. The spin-independent cross-section vs the neutralino

mass corresponding to the parameter space in the top left panel is exhibited in the top right panel

where we have also exhibited the experimental exclusion from XENON-100 experiment. Next, in

the bottom-left panel of Fig. 7.8, we exhibit the spin-independent neutralino-proton cross-section vs

the neutralino mass for EB while the bottom right panel exhibits the same for the full HB domain

consisting of HB/FP, HB/FC and HB/FS. The HB/FP region indicated by the red area is rather small

while most of the remaining parameter space is constituted of HB/FC and HB/FS.

7.6 Conclusion

It is shown that the Hyperbolic Branch of radiative breaking of the electroweak symmetry consists

of several regions of the parameter space where μ is small. These regions consist of the Focal Points,

Focal Curves and Focal Surfaces. The Focal Point (HB/FP) region is where m0 can get large with fixed

m1/2
andA0 while μ remains small. A small μ can also be achieved on Focal Curves and on Focal Surfaces.

There are two possible Focal Curves: HB/FC1 and HB/FC2 such that on HB/FC1, m0 and A0 both
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may get large, while m1/2
and μ remain fixed, while on HB/FC2, m0 and m1/2

may get large while

A0 remains fixed. These two general categories can be unified by the parameter α defining the Focal

Curve mode HB/FCα. An explicit illustration of these regions is given for mSUGRA where it is shown

that the HB/FP region is significantly depleted when the current constraints from the LHC-7 data are

applied. Thus the remaining parameter points in this region lie on Focal Curves (or more generally,

on Focal Surfaces). The possible signatures arising from the HB region were briefly discussed. On the

HB/FC1 region one can get scalar masses to lie in the several TeV region and still have light gauginos.

This region gives a significant enhancement to proton lifetime [166] because of the smallness of the

gaugino masses and relative heaviness of the squark masses.

87



Domain of EB and of HB
HB ⊃ Focal Point, Focal Curves, Focal Surfaces
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Figure 7.1: Left panel: A display of C1 as a function of Q for different values of tanβ, i.e., tanβ =
5 (brown), tanβ = 6 (magenta), tanβ = 10 (black) and tanβ = 45 (blue). For larger values of tanβ, C1
is positive for Q ≲ 1TeV. Right panel: A display of the sensitivity of C1(Q) to the top quark mass. The
dashed blue lines correspond to ±1σ in the top pole mass around the black solid line which corresponds
to the central value, where the pole mass is taken to be mt = (173.1 ± 1.3) GeV.
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Evolution of √|C1|/C2 and √|C1|/C3 with Q
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Figure 7.2: A numerical analysis of the evolution of√|C1|/C2 and√|C1|/C3 using Eq. (7.4), Eq. (7.5),

and Eq. (7.6). Here one finds that √|C1|/C2 tends to ∼ 1 and √|C1|/C3 tends to ∼ 0.4 as Q becomes
large. The analysis is shown for tanβ = 10 and tanβ = 45.

89



Focal Curve HB/FC1
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Figure 7.3: Left panel: Exhibition of Focal Curves HB/FC1 withm1/2
= 0.5TeV and tanβ = 45 where

μ lies in the range μ = (0.465±0.035)TeV. Points are displayed by μ value. Right panel: An illustration
of Focal Curves HB/FC2 which arise when m0 and m1/2

are free to vary while A0 is fixed and μ is held
relatively constant. The analysis is for tanβ = 45 and for four values ofA0 which areA0 = 0.7TeV (red),
A0 = 1.2TeV (blue), A0 = 5.0TeV (cyan) and A0 = 2.5TeV (black). The analysis above shows that
on the Focal Curve HB/FC1 and HB/FC2 one has good agreement with the asymptotic behavior as
predicted by Eq. (7.28) and Eq. (7.32).
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m0 Reach for small μ on Focal Curves
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Figure 7.4: Left panel: An exhibition of the reach in m0 on Focal Curves HB/FC1 and HB/FP with
μ < 2TeV consistent with radiative breaking of the electroweak symmetry where points are displayed
by their μ value in units of TeV. It is seen that an m0 as large as 50TeV and above can be reached in
this region. Essentially all models lie on HB/FC1, but there are a few (0.1% of the displayed models)
that are HB/FP. Models were found by doing a uniformly distributed parameter scan of m0, m1/2

, A0
and tanβ. Right Panel: Exhibition of Focal Curves HB/FCα using m1/2

= α
1−α

|A0| for tanβ = 45
and μ = (0.465 ± 0.035) TeV with m0 between 10GeV and 10TeV and A0 between −8m0 and 8m0.
We display the cases where α = 0.01, 0.05, 0.15, 0.25, 0.50 and notice that for smaller α the asymptotic
behavior is more steep.
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Focal Surface HB/FS
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Figure 7.5: Exhibition of a Focal Surface when tanβ = 45 and μ = (0.465 ± 0.035) TeV whilem0,m1/2
,

and A0 can all get large. The left panel shows a scatter plot of model points lying on a Focal Surface.
The right panel shows the same Focal Surface using an interpolation of the points presented in the left
panel.
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EB HB/FP + HB/FC

HB/FP + HB/FC HB/FP

HB/FS

Figure 7.6: Top Left: The mSUGRA parameter points passing the general constraints in the m0–m1/2

plane that are a part of the Ellipsoidal Branch, labeled by the NLP. Please note in the definition of
EB we have excluded the HB/FP region. Top Right: The mSUGRA parameter points in the m0–m1/2

plane passing the general constraints that are a part of HB/FC1, HB/FC2, or HB/FP, labeled as such.
Middle Left : An exhibition of the mSUGRA parameter points passing general constraints that also lie
on HB/FC1 or HB/FC2, labeled by the NLP. Middle Right: The mSUGRA parameter points passing
the general constraints that arise from the Focal Point (HB/FP) region. Bottom Left: A display of
the mSUGRA parameter points containing the χ̃±1 and the ̃τ1 NLPs passing the general constraints
and including the parameters in HB/FS, i.e., the entire Hyperbolic Branch except for HB/FP. Bottom
Right: Same as Bottom Left except the NLPs displayed are ̃t1, A, H.
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LHC-7 Fractional χ̃±1 χ̃
0
2 Production on HB/FC1
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Figure 7.7: Fraction of the total cross-section that is made up by χ̃±1 χ̃
0
2 production as a function of

m0 at √s = 7TeV. The analysis shows that the production cross-section is rather insensitive to m0
which implies the signatures from HB/FC1 such as the trileptonic signal could be visible even in the
asymptotic region when m0 and A0 are very large.
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Full mSUGRA parameter space

Dark Matter on EB Dark Matter on HB

Figure 7.8: Top left: A display for the mSUGRA model points in them0–m1/2
plane that pass the gen-

eral constraints as discussed in text. Top right: A display of the spin-independent neutralino-proton
cross-section σSI

χ̃0
1,p

for the parameter points in the top left panel. Bottom left: A display of the spin-

independent neutralino-proton cross-section, σSI
χ̃0
1p

, for the EB region. Bottom right: Same as the
bottom left except that the analysis is for HB which contains the Focal Point as well as Focal Curves
and Focal Surfaces.
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Chapter 8

Higgs Mass Predictions in Supergravity

Unification

8.1 Introduction

LHC-7 has narrowed down the mass range of the light Higgs boson. This result is consistent with

the supergravity unification framework, and the current Higgs boson mass window implies a rather

significant loop correction to the tree value, pointing to a relatively heavy scalar sparticle spectrum with

universal boundary conditions. It is shown that the largest value of the Higgs boson mass is obtained

on the Hyperbolic Branch of radiative breaking. The implications of light Higgs boson in the broader

mass range of 115 GeV to 131 GeV and a narrower range of 123 GeV to 127 GeV are explored in the

context of the discovery of supersymmetry at LHC-7 and for the observation of dark matter in direct

detection experiments.

In models based on supersymmetry the light Higgs boson [12–15] has a predictive mass range, and

recently LHC-7 has stringently constrained the light Higgs boson to lie in the 115GeV to 131GeV
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range (ATLAS) and the 115GeV to 127GeV range (CMS) at the 95% C.L. [167, 168] with possible

hints of evidence within a few GeV of 125GeV. This mass window lies in the range predicted by

supergravity unification (SUGRA) [51, 169]. In this chapter, we investigate supergravity model points

that are consistent with the mass range given by the new LHC-7 data [167, 168].

LHC-7 has made great strides in exploring the parameter space of supersymmetric models. Indeed,

early theoretical projections for the expected reach in sparticle masses and in the m0–m1/2
plane for

LHC-7 [79, 80, 170] have been met and exceeded by the 1 fb and 2 fb LHC-7 data [75–77, 134–136].

The implications of the new LHC results have been analyzed by a number of authors in the context of

lower limits on supersymmetric particles and in connection with dark matter [100, 102, 137, 138, 140–

152]. Now the most recent results from CERN [167, 168] indicate that the two detectors, ATLAS and

CMS, have collected as much as 5 fb of data. One of the most interesting implications of the LHC-7

data concerns the constraints it imposes on the Higgs boson mass.

As mentioned above we will work within the framework of a supergravity grand unification model

with universal boundary conditions [51–53, 169]. Here we discuss the dependence of the light Higgs

boson mass on the parameter space, i.e., on m0, m1/2
, A0, tanβ [97, 101], where m0, m1/2

, and A0 are

the parameters at the GUT scale, where the GUT scale, MGUT ∼ 2 × 10
16 GeV is defined as the scale

at which the gauge couplings unify, and where m0 is soft scalar mass, m1/2
, the gaugino mass, A0, the

trilinear coupling and tanβ, the ratio of the two Higgs VEVs in the minimal supersymmetric standard

model.

An important aspect of SUGRA models is that the radiative electroweak symmetry breaking, REWSB,

is satisfied for A0/m0 typically in the −5 to 5 range. The renormalization group evolution then leads to

a value of the trilinear coupling, At, at the electroweak scale to also be 𝒪(TeV). The relevance of this

observation is that quite generically supergravity unification leads to a sizable At which is needed to

give a substantial leading order loop correction to the Higgs Boson mass for any fixed μ, tanβ and m0,
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where μ is the Higgs mixing parameter in the superpotential. Thus a generic prediction of SUGRA

models under radiative electroweak symmetry breaking for a sizable A0/m0 is that there would be a

substantial loop correction to the Higgs boson mass, and it is well known that the light Higgs mass at

the tree level has the value mh0 ≤ MZ and there is a significant loop correction Δmh0 to lift it above

MZ [171–180].

The dominant one loop contribution arises from the top/stop sector and is given by

Δm2
h0 ≃

3m4
t

2π2v2
ln
M2

S

m2
t

+
3m4

t

2π2v2 (

X2
t

M2
S

−
X4
t

12M4
S)

, (8.1)

where v = 246GeV, MS is an average stop mass, and Xt is given by

Xt ≡ At − μ cotβ . (8.2)

From Eq. (8.1) one finds that the loop correction is maximized when

Xt ∼ √6MS . (8.3)

We note that there can be important loop corrections also from the b-quark sector and a correction

similar to Eq. (8.1) can be written whereXt is replaced byXb = Ab−μ tanβ along with other appropriate

replacements. Thus when μ tanβ becomes large, the b-quark contribution to the loop correction, which

is proportional to powers of Xb, becomes large and is comparable to the top contribution which implies

that a high Higgs mass can also result in stau-coannihilation models where typically m1/2
is large and

m0 is relatively small.

Further, we note that the approximation of Eq. (8.3) would not hold if the off-diagonal elements

of the stop mass squared matrix are comparable to the diagonal elements which can happen for very
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large At. In addition, it is well known that the two loop corrections are substantial (see e.g. [181] for

a numerical analysis). While the correction at the one loop level has the symmetry Xt → −Xt, this

symmetry is lost when the two loop corrections are included and then sgn (A0/m0) plays an important

role in the corrections to the Higgs boson mass. As seen later this observation is supported by the full

numerical analysis which includes the two loop corrections. We note in passing that the theoretical

predictions for the light Higgs boson mass depend sensitively on the input parameters which include

the gauge coupling constants as well as the top mass with their experimental errors. Additionally, there

are also inherent theoretical uncertainties which together with the uncertainties of the input parameters

allow theoretical predictions of the light Higgs boson mass accurate to only within an error corridor of

a few GeV (see e.g. [181]).

Since the loop corrections involve the sparticle spectrum, a large loop correction implies a relatively

heavy sparticle spectrum and specifically heavy scalars. Such a possibility arises in REWSB which

allows for scalars heavier than 10TeV [96]. Specifically, with scalars approaching 10TeV, the Higgs

boson mass can remain heavy while the gaugino sector is free to vary. This occurs within the minimal

SUGRA framework and similar situations arise in other works of radiative breaking [133, 182, 183].

Indeed, quite generally in SUGRA and string models with the MSSM field content, the analysis of

the Higgs mass with loop corrections under the constraints of REWSB gives an upper limit on the

light Higgs boson mass of about 135GeV for a wide range of input parameters.1 A very interesting

aspect of the recent LHC-7 data concerns the fact that a large portion of the Higgs boson mass window

has been excluded and what remains is consistent with the range predicted by the SUGRA models.

1We note that heavier Higgs boson masses can be obtained in a variety of different models such as hierarchical breaking
models [129, 184, 185] or by addition of vector like multiplets [186].

99



8.2 Higgs Mass in minimal SUGRA

We discuss now the dependence of the light Higgs boson mass on the SUGRA parameter space. The

numerical analysis was done using a uniformly distributed random scan over the soft parameters with

sgn (μ) = 1,m1/2
< 5TeV, |A0/m0| ≤ −8, tanβ ∈ (1, 60) and two different ranges form0. One scan was

done sampling over lower values of m0, i.e. m0 ≤ 4TeV, and has roughly 10 million mSUGRA model

points (where a model point is defined as 1 set of the mSUGRA input parameters). The other scan

was done sampling over larger values of m0, i.e. m0 ≥ 4TeV, and contains approximately 24 million

mSUGRA model points. For the scan sampling over large values of m0 we have imposed the upper

bound of m0 = 100TeV.

Experimental constraints were then applied to these mSUGRA model points which include the

limits on sparticle masses from LEP [90]: m ̃τ1
> 81.9GeV, mχ̃±

1
> 103.5GeV, m ̃t1 > 95.7GeV,

mb̃1
> 89GeV, mẽR

> 107GeV, mµ̃R
> 94GeV, and mg̃ > 308GeV. Additionally, we apply

the WMAP [94, 95] 4σ upper bound, i.e. Ωχh
2 < 0.1344. We define (Ωχh

2)WMAP ≡ 0.1120, the

central value from the WMAP-7 data. Only taking the WMAP upper limit allows for the possibil-

ity of multicomponent dark matter [187]. Other constraints applied to the mSUGRA parameter

points include the gµ − 2 [91] constraint (−11.4 × 10−10) ≤ δ (gµ − 2) ≤ (9.4 × 10−9) and con-

straints from B-physics measurements [93, 119, 139] which yield flavor constraints from the data,

i.e. (2.77 × 10−4) ≤ ℬr (b → sγ) ≤ (4.37 × 10−4) (where this branching ratio has the NNLO correc-

tion [88]) and ℬr (Bs → μ+μ−) ≤ 1.1 × 10−8. As done in [138, 188], we will refer to these constraints

as the general constraints. These constraints were imposed using MicrOMEGAs [87, 189] for the relic

density as well as for the indirect constraints and SoftSUSY [132] for the sparticle mass spectrum.

The model points are generated with SoftSUSY version 3.2.4 which includes an important bug fix for

heavy scalars when computing mh0.
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We display the model points consistent with the general constraints in Fig. 8.1 and in Fig. 8.3. In the

left panel of Fig. 8.1 we exhibit the Higgs boson mass as a function ofm0 for the case when tanβ > 20

and in the right panel we exhibit it for the case when tanβ < 20. In both cases we see a slow logarithmic

rise of mh0 with m0 for large m0. In the left and middle panels of Fig. 8.3 we show the distribution of

the light Higgs boson mass in the tanβ − A0/m0 plane. One finds that a large part of the parameter

space exists where the Higgs boson mass lies in the rangemh0 > 115GeV (left panel) or in the narrower

range mh0 > 123GeV (middle panel). In the right panel of Fig. 8.3, we show the distribution of

log(m0) (where m0 is in GeV units) in the mh0 − A0/m0 plane.

Our analysis shows a range of possibilities where a heavier Higgs boson, i.e. mh0 ≳ 125GeV,

can arise in the minimal supergravity model. Thus for values of m0 < 4TeV a heavier Higgs boson

mass can be gotten for a large A0/m0 (typically of size ±2 with a significant spread). There may be

a fine-tuning cost associated with producing this mass range for h0, involving implicit cancellations

which we demonstrate in Fig. 8.2, by displaying the tree-level mass term for H2 and the correction to

its mass from its coupling to the top quark. For values of m0 > 4TeV a heavier Higgs boson mass for

relatively smaller values ofA0/m0 is also allowed. For this case the first and second generation sfermions

may be difficult to observe while the third generation sfermions would still be accessible. However, for

the first case where a Higgs mass mh0 ≳ 125GeV arises for low m0 and relatively larger |A0/m0|, the

observation of signals arising from the production of first and second generation sfermions and heavier

SUSY Higgs bosons remain very much within reach of the LHC with sparticles of relatively low mass

in the spectrum, and variable mass hierarchies present [190] . This will be shown in more detail in the

next section.
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Mass mh0 > 115 mh0 > 117 mh0 > 119 mh0 > 121 mh0 > 123 mh0 > 125 mh0 > 127

mH0 ∼ mA0 212 216 273 324 1272 1517 2730
mH± 230 234 288 337 1275 1520 2732

mχ̃0
1

81 81 81 88 193 218 236
mχ̃±

1
∼ mχ̃0

2
104 104 104 111 376 424 459

mg̃ 800 800 803 803 1133 1264 1373

m ̃t1 156 197 228 230 231 246 260
m ̃τ1

142 161 201 232 321 576 1364
mq̃ 729 796 995 1126 1528 2235 2793
mℓ̃ 163 194 265 325 475 1631 2557

μ 107 107 107 120 1418 1863 2293

Mass mh0 > 115 mh0 > 117 mh0 > 119 mh0 > 121 mh0 > 123 mh0 > 125 mh0 > 127

mH0 ∼ mA0 287 287 287 338 367 548 644
mH± 301 301 301 349 378 555 646

mχ̃0
1

91 91 91 91 91 91 256
mχ̃±

1
∼ mχ̃0

2
104 104 104 104 104 104 261

mg̃ 802 802 802 802 925 1006 1813

m ̃t1 229 229 229 229 229 360 360
m ̃τ1

911 911 911 911 1186 1186 1186
mq̃ 4035 4035 4035 4035 4215 4493 4493
mℓ̃ 3998 3998 3998 4002 4085 4308 4308

μ 118 118 118 118 138 140 251

Table 8.1: Display of the lower limits on the sparticle masses as a function of a lower bound on the
light Higgs mass for the mSUGRA models. The top panel shows the sparticle lower bounds for the
small m0 scan and the lower panel shows the sparticle lower bounds for the large m0 sampling. The
model points in both cases pass the general constraints as well as an additional constraint that the gluino
mass exceed 800GeV. We note that the lower bound limits for the sparticles are not necessarily for the
same model point. All masses are in GeV. A remarkable aspect of the analysis is that a stop mass as low
as 300GeV can be obtained for parameter points with m0 > 4TeV. We further note that in this region
one has the possibility of the first two neutralinos and the light chargino being degenerate as seen above
when μ is smaller than the electroweak gaugino masses M1 and M2.
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Benchmark m0 m1/2
A0/m0 tanβ

Light Stop 5108 764 2.549 33.29
Light Gauginos, Low μ 3340 306 -0.395 29.521

Light Stau 248 548 -6.834 14

Benchmark mh0 mχ̃0
1

mχ̃±
1

mg̃ m ̃t1 m ̃τ1
mq̃ mℓ̃ μ

Light Stop 125 321 621 1828 334 3604 5240 5108 3887
Light Gauginos, Low μ 121 91 115 832 1974 3070 3352 3335 125

Light Stau 121 228 438 1254 569 232 1126 325 1072

Table 8.2: Benchmark mSUGRA points that show the regions of parameter space that give masses
near the minima presented, which shows how some but not all of the lower limits may be obtained by
specific points. All masses are in GeV.

8.3 Sparticle Spectra and Higgs Mass

There are some interesting correlations between the light Higgs and the sparticle spectrum. As noted

already a larger light Higgs boson mass typically indicates a relatively heavier sparticle spectrum. We

give now a more quantitative discussion using the two scans discussed in the previous section after

imposing the general constraints. In Table 8.1 we present the lower limits on some of the sparticles as

the light Higgs mass gets progressively larger betweenmh0 = 115GeV andmh0 = 127GeV showing the

results of the two scans (upper and lower tables). The top panel of the table is for the low value sampling

of m0, i.e. the scan with m0 ≤ 4TeV, and the middle panel is for the large value sampling of m0, i.e.

the scan withm0 between 4TeV and 100TeV. In the bottom panel, we give benchmark points with the

sparticle masses near the lower limits presented. Thus, after applying an additional 800GeV gluino cut

on the models, for the low m0 scan we find that a light Higgs boson mass of mh0 = 115GeV allows

for a lightest neutralino mass of around 80GeV, but mh0 = 125GeV indicates a lightest neutralino

mass of around 220GeV. The value of 220 GeV is consistent with independent constraints coming

from the search for squarks and gluinos at the LHC (see [137, 138]). For the cases mh0 = 115GeV
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and mh0 = 125GeV corresponding masses for the lightest chargino, χ̃±1 , (degenerate with the second

lightest neutralino, χ̃02) are 100GeV and 425GeV; for the gluino, g̃, 800GeV and 1.3TeV; for the first

and second generation squarks, q̃, 730GeV and 2.2TeV, and for the first and second generation sleptons,

̃ℓ, 150GeV and 1.6TeV. Thus for the low m0 scan the shifts in lower limits are dramatic for the gluino

and for the first generation sfermions. The stop, ̃t1, and the stau, ̃τ1, however, continue to be relatively

light. The ̃τ1 mass, though is very sensitive to the higher mass bins in the light Higgs mass, i.e. bins

greater then 123GeV.

For the large m0 scan the sparticle lower limits are modified in a significant way. Most noticeably,

the electroweak gaugino spectrum can remain light at higher Higgs mass relative to what one finds in

the more restrictive low m0 scan. Further we observe that as the Higgs mass grows, the value of μ can

remain a few times the Z mass, where as in the low m0 scan this does not occur. In addition we can

see that the sfermion bounds do not change as drastically as the Higgs mass changes as they did with

the low m0 scan, and in particular the masses of the other Higgs bosons A0, H0, H± can remain much

lighter.

More graphically, in Fig. 8.4 we compare ranges on the sparticle masses distributed by a light Higgs

mass. Thus the left panel of Fig. 8.4 gives a plot of the stop mass vs. the gluino mass and the middle

panel gives a plot of the stop mass vs the stau mass. These correlations of the light Higgs mass with

the respective sparticle masses show directly how a determination of the Higgs mass at the LHC will

constrain the masses of the R-parity odd particles. The right panel of Fig. 8.4 gives a display of the

gluino mass vs μ (the Higgsino mass parameter at the scale Q where electroweak symmetry breaking

occurs). Here one finds that a μ, as small as a 200GeV, can generate a Higgs boson mass up to about

122GeV. However, the larger Higgs masses, i.e., Higgs masses above 125GeV can also have μ of size

that is sub-TeV. Thus, one can have a heavier Higgs, scalars in the several TeV region, but still have a

light μ [96, 123, 133].
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8.4 Hyperbolic Branch of REWSB and Focal Surfaces

It is known that the radiative electroweak symmetry breaking carries in it a significant amount of infor-

mation regarding the parameter space of SUGRA models. Thus REWSB allows for a determination of

μ2 in terms of the soft parameters [96, 126] so that the breaking of electroweak symmetry is encoded

in the following expression

μ2 = −1
2
M2

Z + m
2
0C1 + A

2
0C2 + m

2
1/2
C3 + m1/2

A0C4 + Δμ
2
loop , (8.4)

where Ci, i running from 1 to 4, depend on the top mass, tanβ and Q. It was shown in [96] that one

can classify regions of Eq. (8.4) in the following two broad classes: the Ellipsoidal Branch, denoted EB,

where C1 > 0, and the Hyperbolic Branch, denoted HB, where C1 ≤ 0. More recently in [188] it was

shown that HB can be further classified into three regions. One such region was defined as the Focal

Point, HB/FP, where C1 = 0. It was further shown that the HB/FP limits to the Focus Point [98] when

tanβ ≫ 1. Another region defined was the Focal Curve, HB/FC, whereC1 < 0 and two soft parameters

are free to get large, i.e., either m0, A0 or m0, m1/2
. The last region was defined to be the Focal Surface,

HB/FS, where C1 < 0 and three soft parameters were free to get large, i.e., m0, A0, m1/2
. It was further

shown in [188] that HB/FC was a subset of HB/FS and that the HB/FP was mostly depleted after

imposing constraints from flavor physics, WMAP, sparticle mass lower limits and LHC-7. However,

other regions of the parameter space were found to be well populated.

In Fig. 8.5 we give an analysis of the Higgs mass ranges lying on the EB and on the Focal Regions

with a comparison to the LHC-7 curves (Ref. 1 of [135, 136] and Ref. 2 of [75]). In the top two panels

we consider the Higgs mass range upwards of 115GeV. The left panel is for the Ellipsoidal Branch and

the middle left panel is for the Focal Point region. In the EB region one finds that the majority of light

Higgs boson masses do not exceed 124GeV, while in the HB/FP region the Higgs masses do not get
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beyond 120GeV except perhaps for some isolated points. Further the HB/FP region is highly depleted

as can be seen by the paucity of allowed model points in the middle left panel of Fig. 8.5. The largest

Higgs boson masses are achieved on HB/FS, which includes HB/FC, shown in the right two panels of

Fig. 8.5 where the region above a Higgs boson mass of 115GeV (middle right) and between 123GeV

and 127GeV (right) are shown. The right panel shows that the Higgs mass region within a few 125GeV

is well populated.

8.5 Higgs boson and dark matter

There is a strong correlation between the light Higgs mass and dark matter. It has already been

pointed out that annihilation via the Higgs pole can generate the relic density to be consistent with

WMAP [191]. In this case the neutralino mass would be roughly half the light Higgs boson mass. For

heavier neutralino masses other annihilation mechanisms become available. We would be interested

in the cases which include large m0 and specifically in the spin independent proton-neutralino cross

section in this domain. For this case whenm0 is large the s-channel squark exchange which contributes

to the spin independent proton-neutralino cross section becomes suppressed while the t-channel Higgs

exchange dominates. The scattering cross section in this case is given by

σSI
χ̃0
1N
=
(
4μ2

χ̃0
1N
/π
) (

Zfp + (A − Z)fn)
2
. (8.5)

Here fp/n = ∑q=u,d,s f
(p/n)
Tq

Cq
mp/n

mq
+ 2

27
f(p/n)
TG ∑q=c,b,t Cq

mp/n

mq
, where the form factors f(p/n)

Tq
and

f(p/n)
TG are given in [87, 113, 114, 189] and the couplings Ci are given by [113, 114]
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Cq = −
g2mq

4mWδ3 �
(g2n12 − gYn11]) δ1δ4δ5

(
− 1
m2

H

+ 1
m2

h)

+ (g2n12 − gYn11) δ2
(

δ24
m2

H

+
δ25
m2

h)�
. (8.6)

For up quarks one has δi = (n13, n14, sβ, sα, cα) and for down quarks δi = (n14, −n13, cβ, cα, −sα),

where i runs from 1 to 5, α is the neutral Higgs mixing parameter, n1j is the neutralino eigen-content,

cα denotes cosα and sα denotes sinα. The above approximation holds over a significant part of the

parameter space specifically for largem0 and we have checked that it compares well with the full analysis

where the full theory calculation is done with MicrOMEGAs. In the analysis presented here, how-

ever, we exhibit only the results of the full analysis. In Fig. 8.6 we give a plot of the proton-neutralino

spin-independent cross section, σSI
χ̃0
1p

times ℛ plotted as a function of the neutralino mass where we

have corrected σSI
χ̃0
1p

by a factor ℛ ≡ (Ωh2) / (Ωh2)WMAP to take into account the possibility of multi-

component dark matter. The points are shaded according to the Higgs boson masses and we show the

XENON-100 [103, 104] exclusion curve as well as the XENON-1T [111] and the SuperCDMS [112]

projections.

It is important to observe that when the Higgs mass region 123GeV to 127GeV is considered, nearly

all of the mSUGRA parameter points that lie in this region which are also consistent with the general

constraints (from our low m0 and high m0 scans) give rise to neutralino mass and proton-neutralino

spin-independent cross section (scaled by ℛ), that lies just beyond what the most recent results from

the XENON collaboration have probed. However, a vast majority of this region is projected to be

explored by XENON-1T and SuperCDMS. This point is clearly seen in the right panel of Fig. 8.6.
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8.6 Conclusion

Recent data from LHC-7 indicates a narrow window on the light Higgs mass. This allowed mass

window is consistent with the range predicted by SUGRA models and specifically by the mSUGRA

model. Here we discussed the implications of the indicated mass range for the light Higgs mass for the

sparticle mass spectrum and for dark matter. Using the allowed Higgs mass range above 115GeV the

corresponding ranges for the soft masses and couplings, as well as the ratio of the vacuum expectation

values of the Higgs doublets and the Higgsino mass parameter were found. We then investigated the

ranges for the sparticle masses correlated to the predicted value of the Higgs Boson mass, specifically for

the chargino, the neutralino, the gluino, the stop, the stau, for the first and second generation squarks

and sleptons and for the heavier Higgs of the minimal supersymmetric standard model, i.e., the CP-odd

Higgs A0, the CP-even Higgs H0, and the charged Higgs H±.

Our conclusions are that the largest Higgs masses are realized on the Focal Surface of the Hyperbolic

Branch of radiative electroweak symmetry breaking. We also point out that low values of μ ∼ 150GeV

are consistent with heavy squarks and sleptons in the 10 TeV region or larger. We find that mh0 ∈

(123 − 127)GeV does allow for light third generation stop as low asmt̃1
> 230GeV, though the second

generation squarks are at least mq̃ > 1.5TeV and second generation sleptons are at least 475 GeV.

Thus, the restriction of the light Higgs boson to the mass window mh0 ∈ (123 − 127)GeV provides

further constraints on the sparticle spectrum that are complimentary to the direct searches for sparticles

at the LHC.

Further, we find precise predictions for dark matter if the light Higgs boson mass lies between

123GeV and 127GeV. For these light Higgs boson masses, the corresponding range of the lightest

neutralino mass would be accessible in the next generation of direct detection dark matter experiments.

The light Higgs boson in the 123GeV and 127GeV range was shown to be generic for the case of heavy
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scalars in minimal supergravity with |A0/m0| ∼ 𝒪(1).
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Figure 8.1: Left: Exhibition of the light Higgs mass as a function of m0 for tanβ > 20. Right:
Same as the left panel except that tanβ < 20. The data analyzed passes the general constraints and are
generated with both scans of m0.
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Figure 8.2: Here we display the tree-level mass term of theH2 doublet, μ2(Q)+(mtree
H2
(Q))2 and the loop

correction resulting from the coupling to the top quark, 3Y2
t(Q)

8π (3Q2 + A2
t(Q)) ln(

MGUT

Q )
, arising from

parameter points that satisfy the general constraints and have mh0 ∈ (115, 131) GeV, as an indication
of the fine-tuning from implicit cancellations.
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Figure 8.3: Left: A display of the model points in the tanβ − A0/m0 plane when mh0 > 115GeV.
Model points are shaded according to their light Higgs boson mass,mh0. Middle: Same as the left panel
except thatmh0 > 123GeV . Right: Exhibition of the model points in themh0−A0/m0 plane displayed
by log (m0) with m0 in GeV units. It is seen that for low values of |A0/m0| larger m0 corresponds to a
heavier light Higgs boson. The data analyzed passes the general constraints and are generated with both
scans of m0 as discussed in the text.
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Figure 8.4: Analysis is based on the general constraints discussed in the text and for both scans of m0.
Left panel: Exhibition of the stop vs the gluino mass in the mass window where both the stop and
the gluino masses run till 10TeV. Middle panel: Exhibition of stop mass vs stau mass. Right panel:
Exhibition of the gluino mass vs μ.
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Figure 8.5: Analysis of the Higgs boson mass in Focal Regions. The analysis is done for the model
points that satisfy the low m0 sampling and the general constraints. Left: Shows the EB region with
the light Higgs boson mass greater than 115GeV. We see that the majority of these points are not in
the heavy Higgs boson region. Middle Left: Displays the HB/FP where we see that there are no Higgs
masses greater then 120GeV. In the right two panels we display the HB/FS (which include HB/FC)
as follows: in the middle right panel we exhibit the HB/FS model points for the Higgs mass range
above 115GeV and in the right panel we exhibit the HB/FS model points that have the light Higgs
boson mass between 123GeV and 127GeV. In all panels the dotted magenta line corresponds to the
curve CMS given in Ref. 2 of [75] and the solid magenta line corresponds to the ATLAS curve of
Ref. 1 of [135, 136].
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Figure 8.6: Exhibition of proton-neutralino spin-independent cross section against the neutralino
mass. Here we see that models with a Higgs Boson mass in the range consistent with the results from
LHC-7 will be probed in the next round of dark matter experiments. In the plots the proton-neutralino
spin-independent cross section was corrected by ℛ ≡ (Ωh2) / (Ωh2)WMAP to allow for multicomponent
dark matter. The analysis is done for the model points passing the general constraints from the low m0
sampling. The left panel gives the full light Higgs boson mass range, i.e. 115GeV to 131GeV and the
right panel only deals with the sensitive region between 123GeV to 127GeV.
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Chapter 9

Implications of the Higgs Boson Discovery

for Minimal Supergravity

9.1 Introduction

A Bayesian analysis is carried out to identify the consistent regions of the mSUGRA parameter space,

where the newly-discovered Higgs boson’s mass is used as a constraint, along with other experimental

constraints. It is found that m1/2
can lie in the sub-TeV region, A0/m0 is mostly confined to a nar-

row strip with |A0/m0| ≤ 1, while m0 is typically a TeV or larger. Further, the Bayesian analysis is

used to set 95% CL lower bounds on sparticle masses. Additionally, it is shown that the spin inde-

pendent neutralino-proton cross section lies just beyond the reach of the current sensitivity but within

the projected sensitivity of the SuperCDMS-1T and XENON-1T experiments, which explains why

dark matter has thus far not been detected. The light sparticle spectrum relevant for the discovery of

supersymmetry at the LHC are seen to be the gluino, the chargino and the stop with the gluino and

the chargino as the most likely candidates.
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The most recent search at the LHC [192–198] for the Higgs boson [12–15] with the combined

7 TeV and 8 TeV data indicates a signal for the Higgs boson with mass 125.3±0.4 (stat.)±0.5 (syst.)GeV

for CMS with a local significance of 5.0 σ and with mass 126.0 ± 0.4 (stat.) ± 0.4 (syst.)GeV for ATLAS

with local significance of 5.9 σ. As is well known the Higgs boson mass at the tree level lies below the Z0

boson mass, but it can be made larger by inclusion of loop corrections. However, in supergravity grand

unification [51–53] there is another upper limit, i.e., of about 130GeV due to the constraint of radiative

breaking of the electroweak symmetry (for a review see [199]) as well as other experimental constraints

(for a recent analysis see [200, 201]). The correction to the Higgs boson mass is given by [171–179]1.

Δm2
h0 ≃

3m4
t

2π2v2
ln
M2

S

m2
t

+
3m4

t

2π2v2 (

X2
t

M2
S

−
X4
t

12M4
S)

, (9.1)

where Xt ≡ At − μ cotβ, where At is the A0 parameter run down to the weak scale (see Eq. (9.2)),

v = 246GeV, andMS is an average stop mass. The loop correction in Eq. (9.1) is maximized when Xt ∼

√6MS. There are also additional loop corrections from, e.g., the b-quark sector as well as from higher

loops. The early searches at the LHC-7 gave a possible hint of the Higgs boson in the mass range ∼ (117−

129)GeV [135] and the combined Tevatron analysis reported an excess between (115−140)GeV [203].

These findings have led to significant activity [200, 204–209] to investigate the implications of the

results for supersymmetry.

9.2 Implications for mSUGRA

We note that the scale MS in Eq. (9.1) which is determined by the soft parameters depends sensitively

on the Higgs mass. In the analysis we use the Higgs boson mass constraint within the Bayesian statistical

framework to estimate the soft parameters of mSUGRA (sometimes referred to as CMSSM) which are

1For reviews, see [180, 202]
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given by [51–53]

m0, m1/2
, A0, tanβ, sgn(μ) (9.2)

where m0 is the universal scalar mass, m1/2
is the universal gaugino mass, A0 is the trilinear cou-

plings and tanβ is the ratio of the two Higgs VEVs in MSSM, and μ is the Higgs mixing param-

eter. The soft parameters of Eq. (9.1) define our model’s parameter set, θ = {m0, m1/2
, A0, tanβ},

and additionally we consider a set of the most sensitive standard model nuisance parameters, ψ =

{mt, mb(mb)
MS, αs(mZ)

MS, αEM(mZ)
MS
}. These together form the basis parameter set: Θ = {θ, ψ}.

Using Bayes’s theorem, the posterior probability density function (PDF) for the theory described by Θ,

which may be mapped to observables, ξ(Θ) to be compared against experimental data, d is given by:

p(Θ|d) =
p(d|ξ(Θ))π(Θ)

p(d)
, (9.3)

where ℒ ≡ p(d|ξ(Θ)) is the likelihood function–the terms of which are described in Table 9.1, π(Θ) is

the distribution in Θ prior to considering experimental results, and 𝒵 ≡ p(d) is the Bayesian evidence

which can be used in model selection. However, in our goal of parameter estimation, it serves only as

a normalization factor. We present results obtained by considering both the 2D marginalized posterior

PDF (where the full N-dimensional posterior PDF of Eq. (9.3) has been integrated over the other

parameters), as well as the profile likelihoods (where the confidence levels are determined by comparison

to the global best-fit point). (For a more detailed description see [210].)

The analysis was done by using SusyKit [211], which employs the MultiNest [210, 212, 213]

package for sampling parameter points efficiently, and uses SoftSUSY [132] for spectrum calculation,

and MicrOMEGAs [87, 189] to calculate the relic density as well as for the indirect constraints. The

credible intervals, marginalized posterior PDFs, and profile likelihood distributions were calculated

using the plotting routines of SuperBayes [214, 215], which is largely based on the tools provided by
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CosmoMC [216]. The constraint from the gµ − 2 measurement is not imposed in this analysis and

this issue will be discussed later in the text.

In our analysis, we took our prior knowledge of the parameters to be either flat linear distribu-

tions or flat logarithmic distributions, with m0 ∈ (0.05, 8)TeV (log), m1/2
∈ (0.05, 5)TeV (log), A0 ∈

(−30, 30)TeV (linear), and tanβ ∈ (3, 60) (linear). We have fixed sgn(μ) to be positive. The Standard

Model nuisance parameters were allowed to vary in 2 σ windows of their central values, as quoted in

Table 9.1. Our MultiNest sampling parameters, as defined in [210, 212, 213], were nlive = 20, 000

and tol = 0.0001. It has been shown in [217] and in [213] that these parameters are not only sufficient

to provide a map of the posterior PDF, but also to find the true best-fit point which is essential for the

profile likelihood analysis.

In our likelihood analysis we use the CMS result since that result was available earlier [192]. We

report our fits to the data, including the Higgs mass, in Fig. 9.1 in the form of 2D posterior PDF maps

(left panels) as well as the profile likelihood maps (right panels). The posterior mean is marked with a

large dot and the global best-fit is marked with a circled ‘X’. (Note that while the best-fit point is crucial

in Frequentist likelihood-ratio tests, it has no significance in the Bayesian framework.) The top panels

exhibit the constraint in them0−m1/2
plane and show thatm0 is typically a TeV or larger, whilem1/2

can

lie below 500GeV. The middle panels exhibit the constraint in the A0/m0 − tanβ plane, and here one

finds that most of the allowed parameter space lies in the narrow strip |A0/m0| ≤ 1 with a small strip in

the range |A0/m0| ∈ (−2, −6). The bottom panels exhibit the constraint in the mA − tanβ plane, and

here one finds that the majority of the allowed range of mA lies above 1TeV. Thus mA ≫ mh0 for the

majority of the parameter space and thus we are in the so-called decoupling limit.

It was pointed out in [188] that most of the experimentally consistent parameter space of mSUGRA

lies on the Hyperbolic Branch (HB) [96, 98] of radiative breaking of the electroweak symmetry under

the LHC-7 constraints. The HB region has sub-regions which we may label as Focal Point (HB/FP),
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Observable Central value Exp. Error Theory Error Distribution Ref.

SM Nuisance Parameters
mt 173.5GeV 1.0GeV — Gaussian [218]

mb(mb)
MS 4.18GeV 0.03GeV — Gaussian [218]

αs(mZ)
MS 0.1184 7 × 10−4 — Gaussian [218]

1/αEM(mZ)
MS 127.944 0.014 — Gaussian [218]

Measured
ℬr (b → sγ) × 104 3.21 0.33 0.21 Gaussian [88, 93]

Ωh2 0.1126 0.0036 10% Upper-Gaussian [94]
mh0 125.3GeV 0.6GeV 1.1GeV Gaussian [192]

Limits (95% CL)
ℬr (B0

s → μ+μ−) 4.5 × 10−9 — 14% Upper — Error Fn [139]
mh0 122.5GeV — — Lower — Step Fn [219]
mh0 129GeV — — Upper — Step Fn [219]
mχ̃0

1
46GeV — 5% Lower — Error Fn [218]

mχ̃0
2

62.4GeV — 5% Lower — Error Fn [218]
mχ̃0

3
99.9GeV — 5% Lower — Error Fn [218]

mχ̃0
4

116GeV — 5% Lower — Error Fn [218]
mχ̃±

1
94GeV — 5% Lower — Error Fn [218]

mẽR
107GeV — 5% Lower — Error Fn [218]

mµ̃R
94GeV — 5% Lower — Error Fn [218]

m ̃τ1
81.9GeV — 5% Lower — Error Fn [218]

mb̃1
89GeV — 5% Lower — Error Fn [218]

m ̃t1 95.7GeV — 5% Lower — Error Fn [218]
mg̃ 500GeV — 5% Lower — Error Fn [218]
mq̃ 1100GeV — 5% Lower — Error Fn [218]

Table 9.1: Summary of the observables used to estimate the mSUGRA parameters. Only the upper-
half of the Gaussian is used in the consideration of Ωh2, i.e., there is only a penalty for values larger
than the central value which allows for multicomponent dark matter [187]. The 95% CL limits have
been evaluated under the assumption of only theoretical uncertainty, so the distribution used here is
based on the error function, given explicitly in the fourth reference of [214].

Focal Curves (HB/FCi, i=1,2), and Focal Surfaces (HB/FS). It was shown in [188, 200] that the HB/FP

is mostly depleted while the remaining parameter space lies on HB/FCi or HB/FS. Specifically we note
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here that the right edge of A0/m0 in Fig. 9.1 is ∼ 1. The value |A0/m0| = 1 was argued as string-

motivated in [133] and was shown to be the asymptotic limit on the focal curve HB/FC1 in [188].

In Fig. 9.2 we present the 2D posterior PDF’s (left panels) and the profile likelihoods (right panels)

in the planes of the phenomenologically important sparticle masses. The top panels present the results

in the gluino–squark mass plane, and indicate that the gluino can be below a TeV. The second row is

plotted in the squark–chargino mass plane and demonstrates that the chargino masses are only bounded

from below by the direct searches at LEP. The next row exhibits our fit in the stau–stop mass plane.

Here one finds that the stau and stop masses are typically large except for a small strip where the stop

mass can lie below a TeV. This is largely to be expected as we rely on a heavy stop to provide a sizable

loop correction to the Higgs mass. The bottom panels show the analysis in the μ − mg̃ plane. One

finds that μ is typically quite light, i.e., μ can be significantly below 500GeV.

Using the marginalized 1D posterior PDF we are able to set lower limits on the sparticle masses

from the 2 σ credible regions. We present those limits here: mg̃ > 1.39TeV, mχ̃±
1
> 196GeV, mA0

∼

mH0
∼ mH± > 1.3TeV, m ̃t1 > 3.1TeV, m ̃τ1

> 3.1TeV, mq̃ > 5TeV, and mℓ̃ > 4.8TeV. The

profile likelihood analysis yields different results. Here, we find the 95% CL sparticle lower limits

to be mg̃ > 690GeV, mχ̃±
1
> 95GeV, mA0∼H0∼H± > 540GeV, m ̃t1 > 580GeV, m ̃τ1

> 310GeV,

mq̃ > 1.5TeV, and mℓ̃ > 580GeV. We note that as expected the lower limits given by the profile

likelihood analysis lie lower than the limits given by the PDF analysis. The analysis thus indicates

that the light particles in mSUGRA in view of the Higgs mass measurement are the neutralino, the

chargino, the gluino, the stau and the stop. Among these the most likely candidates for discovery in

the next phase of CERN experiment are the gluino, the chargino and the stop.
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9.3 125GeV Higgs boson and dark matter

Neutralino-proton spin independent cross section σSI
χ̃0
1p

depends sensitively on the Higgs boson mass

(for a discussion see [200]). Thus considering the ∼ 125GeV Higgs mass leads to a more constrained

prediction for dark matter. In Fig. 9.3 we give a plot of ℛ×σSI
χ̃0
1p

as a function of the lightest neutralino

massmχ̃0
1
where the factor ℛ is defined by ℛ ≡ (Ωh2) / (Ωh2)WMAP, and (Ωh2)WMAP is the central value

of the WMAP-7 data. By only applying a likelihood penalty for points that are above the WMAP-7

limit, we have taken into account the possibility that there may be additional components of dark

matter beyond the neutralino [187]. Quite remarkably, the bulk of the credible region of mSUGRA

falls essentially exclusively between the current limits on dark matter by XENON-100 [103–105, 220]

and the projected sensitivity of SuperCDMS [112] and XENON-1T [111].

We discuss now the constraint from gµ − 2. In supersymmetric theories, sparticle loops make sig-

nificant contributions to the anomalous magnetic moment of the muon [221] if the relevant sparticles

(charginos, neutralinos, smuons, sneutrinos) entering the loops are relatively light. The experimental

determination of δaµ = aexp
µ − aSM

µ where aµ = (gµ − 2)/2, depends sensitively on the hadronic cor-

rection to the standard model value. There are two main procedures for the estimation of the hadronic

correction, which are either using the e+e− annihilation cross section or from τ decay. The result using

the e+e− annihilation gives δaµ = (28.7 ± 8.0) × 10
−10 (3.6 σ) while for τ-based hadronic contributions

one has δaµ = (19.5 ± 8.3) × 10−10 (2.4 σ) [222, 223]. In any case, within the universal soft SUSY-

breaking paradigm there would be tension between the gµ − 2 result (specifically the one using e+e−

annihilation cross section) and the 125GeV Higgs boson mass since the m0 scale is rather high. If the

gµ−2 results stay, then there are at least two avenues open to make compatible the gµ−2 results and the

Higgs boson mass. The first possibility is that we stay within the universal soft breaking paradigm and

additional contributions to the Higgs mass arise due to the presence of extra matter which can generate

new loop corrections to the Higgs mass, or from extra gauge groups under which the Higgs is charged
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yielding corrections to the Higgs mass throughD-terms. Alternatively, one could give up universality of

soft parameters and consider non-universal or flavored SUGRA models [126]. For instance, to satisfy

the gµ − 2 constraint one may consider the soft scalar mass for the first two generations much smaller

than for the third generation, or the sleptons being lighter than the squarks. These possibilities require

further investigation.

9.4 Conclusion

In this work we have analyzed the implications of the Higgs boson discovery at CERN for supersym-

metry. Specifically we analyzed the mSUGRA model to delineate constraints on soft parameters and

identified the light particles that are prime candidates for discovery in the next phase of runs at the

LHC. The analysis presented here explains why supersymmetric dark matter has not been seen thus far

since essentially all of the parameter space lies below the current sensitivity of dark matter experiments

due to the high Higgs mass. The analysis also points to excellent prospects for the discovery of dark

matter at SuperCDMS and XENON-1T as well as the possibility of light neutralinos, charginos and

gluinos, and possibly light stops and staus.
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Figure 9.1: Left panels: plots of the 2D posterior probability densities, 1 σ and 2 σ contours are also
drawn. Right panels: plots of the profile likelihoods. Top: in the m0 − m1/2

plane. Middle: in the
A0/m0 − tanβ plane. Bottom: in the mA − tanβ plane. The posterior mean is marked by a large dot
while the best-fit point is shown by a circled ‘X’. The color bar above the top panel gives the relative
likelihood which increases left-to-right.
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Figure 9.2: Left panels: plots of the 2D posterior probability densities, 1 σ and 2 σ contours are also
drawn. Right panels: plots of the profile likelihoods. Top: in themg̃–mq̃ plane. Upper-middle: in the
mq̃–mχ̃±

1
plane. Lower-middle: in the mτ̃1

− mt̃1
plane. Bottom: in the μ − mg̃ plane. The posterior

mean is marked by a large dot while the best-fit point is shown by a circled ‘X’. The color bar above
the top panel gives the relative likelihood which increases left-to-right.
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1
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experiments. The color bar above the panels gives the relative likelihood which increases left-to-right.
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Chapter 10

Gluino-driven Radiative Breaking and

Electroweak Supersymmetry

10.1 Introduction

We attempt to reconcile seemingly conflicting experimental results on the Higgs boson mass, the

anomalous magnetic moment of the muon, null results in search for supersymmetry at the LHC within

the 8 TeV data and results from B-physics, all within the context of supersymmetric grand unified theo-

ries. Specifically, we consider a supergravity grand unification model with non-universal gaugino masses

where we take the SU(3)C gaugino field to be much heavier than the other gaugino and sfermion fields

at the unification scale. This construction naturally leads to a large mass splitting between the slepton

and squark masses, due to the mass splitting between the electroweak gauginos and the gluino. The

heavy Higgs bosons and Higgsinos also follow the gluino toward large masses. We carry out a Bayesian

Monte Carlo analysis of the parametric space and find that it can simultaneously explain the large Higgs

mass, and the anomalous magnetic moment of the muon, while producing a negligible correction to
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the Standard Model prediction for ℬr (B0
s → μ+μ−). We also find that the model leads to an excess in

the Higgs diphoton decay rate. A brief discussion of the possibility of detection of the light particles is

given. Also discussed are the implications of the model for dark matter.

The CMS and ATLAS collaborations have discovered and measured [194–198] the mass of a new

boson which is most likely the Higgs boson [12–15] responsible for breaking electroweak symmetry.

In supersymmetry, one would identify this as the light CP-even Higgs boson [200, 204–209], h0. Both

experiments agree that the mass is between 125 and 126 GeV. It is quite remarkable that the observed

Higgs boson mass lies close to the upper limit predicted in grand unified supergravity models [51–

53, 101] which is roughly 130 GeV [200, 201, 208, 224–226]. (For a recent review of Higgs and

supersymmetry see [227].) Because the mass of the h0 boson in supersymmetry [54, 180, 202] is less

than that of theZ boson at the tree level, a large loop correction is necessary to match the measured value.

The dominant one-loop Higgs self energy correction arises from its coupling to the top supermultiplet

so that

Δm2
h0 ≃

3m4
t

2π2v2
ln
M2

S

m2
t

+
3m4

t

2π2v2 (

X2
t

M2
S

−
X4
t

12M4
S)

, (10.1)

where v = 246GeV,MS is the average stop mass, Xt = At−μ cotβ, μ is the Higgs mixing parameter and

At is the trilinear coupling (both at the electroweak scale), and tanβ = ⟨H2⟩/⟨H1⟩, where H2 gives mass

to the up quarks while H1 gives mass to the down quarks and leptons. Since Δm2
h0 has a logarithmic

dependence ofMS, a sizable Δm2
h0 correction implies that the scaleMS is high, lying in the several TeV

region.

A high SUSY scale is also suggested by the ATLAS and CMS collaborations. So far, the LHC has

delivered 5.3 fb−1 and 23 fb−1 of integrated luminosity [228] at 7 TeV and 8 TeV respectively to both

CMS and ATLAS. Analysis of large portions of this data in search of supersymmetry has only yielded
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null results, though it is important to note that the parametric exclusion limits provided are typically

only on minimal or simplified models. Whenever one works with non-minimal models of supersym-

metry, it is necessary to evaluate the signal efficiencies specific to one’s model and determine the credible

region. The null searches can be evaded obviously by just raising the masses of the superpartners, and

thereby raising the scale of SUSY, but it can also be done by producing mass hierarchies and mass

splittings that are atypical in minimal models.

The search for the rare decay B0
s → μ+μ− also has important implications for supersymmetry.

The LHCb collaboration has recently observed [229] this rare decay, determining the branching ra-

tio ℬr (B0
s → μ+μ−) = (3.2+1.5

−1.2) × 10
−9, which is in excellent agreement with the Standard Model,

and thus requires the supersymmetric contribution [230–232] to this decay to be very small. This

contribution is mediated by the neutral Higgs bosons and will involve a flavor-changing scalar quark

loop. (It is also sensitive to CP violation [233, 234].) In the large tanβ limit, the branching ratio is

approximately [138, 235, 236]

ℬr (B0
s → μ+μ−) ≃ 3.5 × 10−5

(

τBs

1.5 ps)(

fBs

230MeV)

2

× ⎛
⎝

|V
eff
ts|

0.040
⎞
⎠

2

(
tanβ
50 )

6

(

mt

mA)

4 (16π2)2ϵ2Y
(1 + (ϵ0 + ϵYy

2
t) tanβ)2(1 + ϵ0 tanβ)2

, (10.2)

where τBs
is the mean lifetime, fBs

is the decay constant, and Veff
ts is the effective CKM matrix element.

The loop factors ϵ0 and ϵY are given in terms of soft breaking parameters of the 3rd generation mQ̃,

mŨ, mD̃, which are the masses of the left-handed squark, up-type squark, and down-type squark, as

well as the gluino mass mg̃, the strong coupling constant αs, and the CP-odd Higgs mass mA:

ϵ0 = −
2αs

3π
μ
mg̃

H(m2
Q̃
/m2

g̃, m
2
D̃
/m2

g̃) (10.3)

ϵY =
1

16π2

At

μ
H(m2

Q̃
/μ2, m2

Ũ
/μ2) (10.4)
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H(x1, x2) =
x1 ln x1

(1 − x1)(x1 − x2)
+

x2 ln x2
(1 − x2)(x2 − x1)

. (10.5)

We note that the branching ratio given by Eq. (10.2) is suppressed by the factor (mt/mA)
4 and

so a large weak scale of SUSY which implies a large mA, naturally leads to a small contribution to

ℬr (B0
s → μ+μ−). Additionally, we see in Eq. (10.2) the factor (tanβ/50)6, which implies that the

SUSY contribution to B0
s → μ+μ− is further suppressed if tanβ ≲ 50. Together these effects also

reduce the SUSY contribution [236, 237] to ℬr (b → sγ) to negligible value.

While the observation of a high Higgs boson mass, null results on the discovery of sparticles and the

observation of no significant deviation in the B0
s → μ+μ− branching ratio from the Standard Model re-

sult all appear to indicate a high scale for SUSY, the opposite is indicated by the Brookhaven experiment

E821 [238] which measures aµ =
1
2
(gµ −2) to deviate from the Standard Model prediction [223, 239]

at the 3 σ level. If this deviation is taken to arise from supersymmetry, then

aSUSY
µ = δaµ = (287 ± 80.) × 10

−11 . (10.6)

The SUSY contribution [221, 240–246] arises from χ̃±–ν̃µ and χ̃0–μ̃ loops. A rough estimate of the

supersymmetric correction is

δaµ ≃ sgn(M2μ) (130 × 10
−11)

(
100GeV
MSUSY )

2

tanβ , (10.7)

where MSUSY is the SUSY scale. In order to obtain a SUSY correction of size indicated by Eq. (10.6)

the masses of sparticles in the loops, i.e., the masses of χ̃±, χ̃0, μ̃, and ν̃µ must be only about a few

hundred GeV.

Another result which may be a signal of SUSY concerns the excess seen in the diphoton decay rate

of the Higgs, which is above the Standard Model prediction. This excess is parametrized by the signal
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strength

Rγγ =
σ(pp → H)obs

σ(pp → H)SM
×
Γ(H → γγ)obs

Γ(H → γγ)SM
(10.8)

and is reported as Rγγ = 1.6 ± 0.4 at CMS [194] and Rγγ = 1.8 ± 0.5 at ATLAS [198]. The excess

is not statistically conclusive and can easily be attributed to a simple fluctuation or to QCD uncer-

tainties [247]. Still it is worthwhile to consider how SUSY can contribute to this loop-induced decay

(considering h0 in place of H). The excess in the diphoton rate has been discussed in a variety of mod-

els by various authors (see, e.g., [207, 248, 249] and the references therein). Within the MSSM, the

largest contributions would arise via a ̃τ triangle, provided that its mass is not too high. (We discuss the

calculation of Rγγ in more detail in Section 10.5.1.) So, if the diphoton result is real, we have another

indication of low scale SUSY.

Assuming that the gµ − 2 and the diphoton rate hold up, one has apparently conflicting results for

the weak scale of SUSY. On the one hand, the high Higgs boson mass, null results on the observation of

sparticles at the LHC, and the lack of any significant deviation in the ℬr (B0
s → μ+μ−) branching ratio

from the Standard Model prediction point to a high SUSY scale, i.e., a SUSY scale lying in the several

TeV range. On the other hand, the 3 σ deviation in aµ and a fledgling excess in the diphoton decay of

the Higgs boson decay point to a low SUSY scale lying in the sub-TeV range. These results cannot be

simultaneously satisfied in minimal models such as mSUGRA [250, 251] as they point to split scale

SUSY with one scale governing the colored sparticle masses and the heavy Higgs boson masses, and

the other SUSY scale governing the uncolored sparticle masses. To generate this split scale SUSY, we

construct in this work a supergravity grand unified model [51–53] by introducing non-universalities

in the gaugino sector with the feature that the gaugino mass in the SU(3)C sector is much larger than

the other soft masses. In this model, radiative electroweak symmetry breaking [70–72] (for a review

see [199]) is driven by the gluino mass. In this work, we label this model as ̃gSUGRA. We will show

that ̃gSUGRA satisfies all of the experimental results simultaneously by exploiting a feature of the
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renormalization group equations which leads to a splitting between the squarks, gluino, Higgs bosons,

and Higgsinos which become very heavy, and the sleptons, bino and winos which are allowed to remain

light at the electroweak scale. (The sfermion masses still unify at a high scale.) We will use a Bayesian

Monte Carlo analysis of ̃gSUGRA to show that it satisfies all experimental results and determine the

credible regions in the parameters and sparticle masses.

The outline of the rest of the chapter is as follows: In Section 10.2, we discuss the general framework

of non-universal SUGRA models with specific focus on ̃gSUGRA where the gaugino mass in the SU(3)C

color sector is much larger than other mass scales in the model. In Section 10.3, we discuss the statistical

framework used in our Bayesian Monte Carlo analysis of a simplified parametric space for ̃gSUGRA.

In Section 10.4 we explore the impact of LHC searches for sparticles on ̃gSUGRA using event-level

data and signal simulations. The results of our analyses as well as the details of Higgs diphoton rate are

presented in Section 10.5. Concluding remarks are given in Section 10.6.

10.2 The ̃gSUGRA Model

Supergravity grand unification [51–53] is a broad framework which depends on three arbitrary func-

tions: the superpotential, the Kähler potential, and the gauge kinetic energy function. Simplifying

assumptions on the Kähler potential and the gauge kinetic energy function lead to universal boundary

conditions for the soft parameters which is the basis of the model referred to as mSUGRA/CMSSM.

The parameter space of mSUGRA is given by m0, m1/2
, A0, tanβ, and sgn (μ), where m0 is the

universal scalar mass, m1/2
is the universal gaugino mass, A0 is the universal trilinear coupling, and

tanβ = ⟨H2⟩/⟨H1⟩. Here H2 gives mass to the up quarks and H1 gives mass to the down quarks and

the leptons, and μ is the Higgs mixing parameter which enters in the superpotential as μH1H2.

However, the supergravity grand unification framework does allow for non-universalities of the soft

132



parameters, i.e., non-universalities for the scalar masses, for the trilinear couplings and for the gaugino

masses1. In ̃gSUGRA, we consider supergravity grand unification with universal boundary conditions

in all sectors except in the gaugino sector. In this sector, we specify that the SU(3)C gaugino mass,M3,

be much larger than the universal scalar mass and also much larger than the gaugino massesM2,M1 in

the SU(2)L, U(1)Y sectors, i.e.,

M3 ≫ m0,M1,M2 (10.9)

The constraints of Eq. (10.9) ensure that the radiative breaking of electroweak symmetry will be driven

by the gluino (hence, ̃gSUGRA). Now, the gluino mass enters in the renormalization group equations

for the squark masses and thus the squark masses will be driven to values proportional to the gluino

mass as we move down from the GUT scale toward the electroweak scale. Consequently, a gluino mass

in the ten TeV region will also generate a squark mass in the several TeV region. On the other hand,

the RGEs for the sleptons do not depend on the gluino mass at the one-loop level and if m0,M1,M2

are 𝒪 (100GeV), the masses of the sleptons as well as the electroweak gauginos at the electroweak scale

will likely remain this size. Thus the RG evolution creates a natural splitting of masses between the

squarks and the sleptons at the electroweak scale even though they have a common mass at the grand

unification scale. The renormalization of these soft masses for a sample point in ̃gSUGRA is shown in

Fig. 10.1. The huge mass splitting between the squark and slepton masses at low scales even though

they are unified at high scales is reminiscent of the gauge coupling unification where the three gauge

couplings αi which are split at the electroweak scale but come together at the grand unification scale.

We note that the split spectrum of ̃gSUGRA is very different in nature from that of what is commonly

called “split supersymmetry” [263], which consists of light Higgsinos H̃u,d, B̃, W̃, ̃g and one Higgs

doublet but does not allow for light sfermions.

1The literature on non-universalities in SUGRA models is enormous. For a sample of early and later works see [126,
127, 191, 252–261] and for a review see [262].
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In GUT models, non-universal gaugino masses can arise from superfields that transform as a non-

singlet IRs of the GUT group and get VEVs in the spontaneous breaking and give masses to the gaug-

inos. The general form of the gaugino mass term in the Lagrangian is

−
⟨F⟩ab
MPl

1
2
λaλb +H.c. (10.10)

where ⟨F⟩ab is a non-zero VEV of mass dimension 2, andMPl is the Planck mass. The λ’s belong to the

adjoint of the GUT group: 𝟐𝟒 for SU(5) and 𝟒𝟓 for SO(10). Now only the symmetric product of the

adjoints enters in the analysis. Thus for SU(5) one has (𝟐𝟒⊗𝟐𝟒)sym = 𝟏⊕𝟐𝟒⊕𝟕𝟓⊕𝟐𝟎𝟎, while for SO(10)

one has (𝟒𝟓 ⊗ 𝟒𝟓)sym = 𝟏 ⊕ 𝟓𝟒 ⊕ 𝟐𝟏𝟎 ⊕ 𝟕𝟕𝟎. With the use of singlet and non-singlet breaking, one can

produce a hierarchy in the gaugino masses so that Eq. (10.9) holds. We note that non-universalities of

gaugino masses arise also in string based models, see, e.g., [264].

In our study of ̃gSUGRA, we introduce gaugino sector non-universalities by having m1/2
→ m̃1/2

≡

M1 = M2 andM3 = 10 m̃1/2
as an illustrative example, so that at the unification scale,M1 ∶ M2 ∶ M3 =

1 ∶ 1 ∶ 10. We now show how this choice can be constructed by combining singlet and non-singlet

breaking in SU(5) and in SO(10). In SU(5) we consider the linear combination 𝟏 + a 𝟐𝟒 + b 𝟕𝟓. Now

the singlet breaking gives the ratio M1 ∶ M2 ∶ M3 = 1 ∶ 1 ∶ 1, the 24-plet gives the ratio [259]

−1/2 ∶ −3/2 ∶ 1 while the 75-plet gives the ratio [259] −5 ∶ 3 ∶ 1. Choosing a = −8/11 and b = −1/11

leads to the desired ratio M1 ∶ M2 ∶ M3 = 1 ∶ 1 ∶ 10. This scheme also applies to SO(10) since

SU(5) ⊂ SO(10). However, for SO(10) we can also consider gaugino mass terms in representations of

SU(4)×SU(2)L×SU(2)R ⊂ SO(10) and label the breaking terms by SU(4)×SU(2)R representations as

subscripts. In this case we consider the breaking 𝟏+a 𝟐𝟏𝟎(𭟏,𭟏)+b 𝟐𝟏𝟎(𭟏𭟓,𭟏) where the 𝟐𝟏𝟎(𭟏,𭟏) gives the

gaugino mass ratio [259] of −3/5 ∶ 1 ∶ 0 and 𝟐𝟏𝟎(𭟏𭟓,𭟏) gives the gaugino mass ratio [259] of −4/5 ∶ 0 ∶ 1.

Thus we can choose a = −3/4 and b = 3/2 to get the desired 1 ∶ 1 ∶ 10 ratio. We limit ourselves to this

ratio for the rest of the analysis in this chapter. However, many features of this analysis will persist with
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different ratios of M1 ∶ M2 ∶ M3 as long as M3 ≫ m0,M1,M2.

In ̃gSUGRA, radiative electroweak symmetry breaking is dominated by the large gluino mass which

is responsible for giving large masses to the squarks. We contrast this work with other recent works

which have attempted to explain gµ − 2 in the context of a high Higgs boson mass. This is attempted

in [248] with the assumption of a light slepton and heavy squark spectrum. The analysis also tries to

correlate gµ − 2 with the diphoton rate. However, this model is not a high scale model and the analysis

is limited to assumptions of the spectrum at the electroweak scale. In [265] the authors assumed a split

family supersymmetry. The analysis of [266] uses non-universal gaugino masses in an SU(5)model but

the details of the model are significantly different from the work presented here. The work [267] also

addresses the issue of getting light uncolored and heavy colored particles but the analysis is within a

gauge mediated supersymmetry breaking. Similar scenarios are studied in [268, 269] where the authors

also attempt to reconcile the experimental results using non-universal gaugino masses.

The attractive feature of ̃gSUGRA is that the relatively large value of M3 automatically drives the

squarks to be massive while the sleptons as well as the bino and the light wino are left alone. This is

illustrated in Fig. 10.1 where we display the renormalization group flow for a sample point from our

analysis. We wish to show that this simple feature automatically satisfies all of the empirical results that

we have discussed here that hint at the supersymmetric spectrum. To this end, we perform a Bayesian

Monte Carlo analysis of ̃gSUGRA with the illustrative example of the 1 ∶ 1 ∶ 10 gaugino mass ratio,

which we discuss in the sections that follow.

10.3 Statistical Framework

We study here the parameter space of ̃gSUGRA for the case where the ratio of the gaugino masses at

the GUT scale is 1 ∶ 1 ∶ 10. In this case, ̃gSUGRA is parametrized by m0, m̃1/2
, A0, and tanβ (having
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Figure 10.1: Two-loop renormalization group evolution of the soft parameters in ̃gSUGRA. The input
parameters used here are those of the best-fit point determined from our analysis in Section 10.3. The
fields are labeled in the figure and also in color. The gaugino fields are presented in black and the Higgs
fields are presented in green. The squarks and sleptons are in blue and red, where the left-handed fields
are solid and the right-handed fields are dot-dashed. Additionally, m0 is the soft mass for the scalars,
m̃1/2

is the common mass of the U(1)Y and SU(2)L gaugino fields, and μ is the Higgs mixing parameter.

selected sgn (μ) = 1). Here, m̃1/2
= M1 = M2 while M3 = 10 m̃1/2

. The dimensionful parameters m0,

m̃1/2
, and A0 are all specified at the GUT scale. The ratio of the two Higgs VEVs tanβ = ⟨H2⟩/⟨H1⟩,

is specified at MZ. We further include four Standard Model nuisance parameters to create an 8D

parameter space. Namely, we add the top quark pole mass, the running bottom quark mass, the strong
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Observable Central value Exp. Error Theory Error Distribution Ref.

SM Nuisance Parameters
mpole

t (GeV) 173.5 1.0 – Gaussian [218]
mb(mb)

MS (GeV) 4.18 0.03 – Gaussian [218]
αs(MZ)

MS 0.1184 7 × 10−4 – Gaussian [218]
α−1

EM (MZ)
MS 127.933 0.014 – Gaussian [218]

Measured
δaµ × 10

11 287 80 10 Gaussian [223, 238, 239]
ℬr (B

0
s → μ+μ−) × 10

9 3.2 1.92 14% Gaussian [229]
ℬr (b → sγ) × 104 3.55 0.26 0.21 Gaussian [270]

ℬr (B+ → τ+ν) × 104 1.79 0.48 0.38 Gaussian [270]
ωχ 0.1126 0.0036 10% Upper-Gaussian [271]

h0 Mass (GeV) 125.7 0.2 2.0 Gaussian [194, 198]

95% CL Particle Mass Limits (GeV)
h0 122.5 – – Lower – Step Func. [272]
h0 129 – – Upper – Step Func. [272]
χ̃01 46 – 5% Lower – Error Func. [218]
χ̃02 62.4 – 5% Lower – Error Func. [218]
χ̃03 99.9 – 5% Lower – Error Func. [218]
χ̃04 116 – 5% Lower – Error Func. [218]
χ̃±1 94 – 5% Lower – Error Func. [218]

̃eR 107 – 5% Lower – Error Func. [218]
μ̃R 94 – 5% Lower – Error Func. [218]

̃τ1 81.9 – 5% Lower – Error Func. [218]
b̃1 89 – 5% Lower – Error Func. [218]

̃t1 95.7 – 5% Lower – Error Func. [218]
̃g 500 – 5% Lower – Error Func. [218]
q̃ 1100 – 5% Lower – Error Func. [218]

Table 10.1: Summary of the observables used to construct the likelihood function. The distribution
labeled “Upper-Gaussian” used for the ωχ observable means that there is only a decrease in likelihood
for values larger than the central value. The 95% CL limits are evaluated using the complementary
error function, as the bound is smeared by the theoretical uncertainty. Limits specified with a step
function distribution indicate a hard cut, where points on the wrong side of the limit are assigned zero
likelihood.

coupling, and the EM coupling. We create from these the parameter space 𝚯:

𝚯 = {m0, m̃1/2
, A0, tanβ,m

pole
t , mb(mb)

MS, αs(MZ)
MS, α−1

EM(MZ)
MS
} . (10.11)
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For each parameter θi ∈ 𝚯, we begin by selecting uniform distributions in the allowed ranges prior to

considering the experimental data. The prior distributions that we have selected for our parameters are

uniform on either a linear or a log scale:

m0 ∈ [50, 5000]GeV (log)

m̃1/2
∈ [50, 2500]GeV (log)

A0 ∈ [−50, 50]TeV (linear)

tanβ ∈ [3, 60] (linear) .

(10.12)

The nuisance parameters in𝚯 are uniform in a 2 σ range (linear scale) around the central values, which

are specified in Section 10.2.

Next we collect the relevant observables into 𝐃, which is a set of pairs of central values and un-

certainties of experimental measurements. The observables include the precise measurements of the

nuisance parameters, along with the results from flavor physics ℬr (B0
s → μ+μ−) and ℬr (b → sγ), the

muon anomalous magnetic moment δaµ, the measured mass of the (ostensibly) light CP-even Higgs

boson, as well as limits on superpartner masses. We further include the fit to the thermal relic den-

sity of dark matter, ωχ ≡ Ωχh
2, from CMB temperature fluctuations measured by WMAP (9 year

dataset) [273] and Planck (15.5 month dataset) [274]. In ̃gSUGRA, the lightest neutralino is indeed a

candidate for cold dark matter, but we wish to allow for multicomponent models of dark matter, and

so we only consider the upper limit of ωχ. The central values and uncertainties of 𝐃 are specified in

Section 10.2.

The goal now is to update our a priori guess for the probability distributions of the parameters in𝚯

(given in Eq. (10.12)) with the empirical information in𝐃, giving the posterior probability distribution.

This distribution can then be marginalized to determine the credible region of one or two parameters.

The calculation of the posterior probability distribution is achieved using Bayesian inference, but we

138



first need to be able to compare a parametric point in our model to the empirical data in 𝐃. This

requires a set of mappings ξi ∶ 𝚯 → R corresponding to each di ∈ 𝐃, which just give the theoretical

calculation for the observable corresponding to each di. These mappings are computed using numerical

codes incorporated in our analysis software SusyKit [211].

Now we can move on to constructing the posterior probability distribution, which is given by Bayes’

theorem

P(𝚯|𝐃) =
P(𝐃|𝚯)P(𝚯)

P(𝐃)
. (10.13)

P(𝚯) is the prior distribution given in Eq. (10.12). The denominator is the so-called Bayesian evidence

𝒵 = P(D), which can be used in model selection tests, but as we are only interested in parameter

estimation, it serves as a normalization constant. The final factor is the likelihood function 𝔏 = P(𝐃|𝚯),

which is constructed by the “pulls” method

− 2 ln𝔏 = ∑
di∈𭐃

(ξi(𝚯) − di)
2

σ2i + τ
2
i

(10.14)

where σi and τi are the experimental and theoretical uncertainties, respectively. This is straightforward

for the case that a measurement with precision is reported. In many cases only the 95% CL limits are

given. In those cases, a smearing due to the implicit theoretical uncertainty in the computation is used

and the likelihood is computed from the complementary error function. A hard cut on an observable

can also be made by using a step function, i.e. assigning zero likelihood to points that are on the wrong

side of a limit. The numerical values used to construct the likelihood function is given in Section 10.2.

Our analysis was performed using our software package SusyKit [211], which uses the efficient

multi-modal ellipsoidal nested sampling algorithm implemented in the MultiNest [210, 212, 213] li-

brary. Additionally, SusyKit interfaces with several standard numerical codes such as SoftSUSY [132],

MicrOMEGAs [87, 189], FeynHiggs [275, 276], and SuperIso Relic [277, 278]. SusyKit is written
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entirely in C++11 and is largely inspired by the FORTRAN-90 code SuperBayes [214, 215].

We specify the MultiNest sampling parameters nlive = 5,000 and tol = 0.01. The analysis has

required the evaluation of the likelihood function at 1.1 million points to sufficiently explore the para-

metric space. The result is a chain of 81,000 Monte Carlo sample points which is used to compute 1D

and 2D marginalized distributions in our principal and derived parameters, and to establish credible

regions in these parameters. We found that the credible regions entered areas that would be excluded

by the LHC in minimal SUSY GUT models such as mSUGRA, so we found it necessary to evaluate

the impact of LHC searches on ̃gSUGRA.

10.4 LHC Analysis

In order to evaluate the impact of null results in the searches for supersymmetry at the LHC on

̃gSUGRA, we construct an auxiliary likelihood function, 𝔏LHC, based on the Monte Carlo event gen-

eration and detector simulation for our sample points.

We begin by generating 200,000 events for each sample point in our chain using PYTHIA [86, 279]

considering 2 → 2 SUSY production processes with √s = 8TeV. We find that the total cross section

for these processes is 𝒪 (100 fb) and the dominant modes involve the production of χ̃01, χ̃
0
2, χ̃

±
1 , ̃ℓ, ̃τ1,

̃τ2, and, ̃ℓ and ν̃. This is to be expected because in ̃gSUGRA, the scalar quark fields all become heavy

as they are renormalized to the electroweak scale, while the scalar leptons are allowed to remain light

to produce contributions to δaµ and the Higgs diphoton decay rate. By investigating the dominant

decays of these particles, we decide that supersymmetry searches in leptonic final states are the most

relevant to ̃gSUGRA. We have used the 3ℓ and same-sign 2ℓ searches at CMS [280] using 9.2 fb−1

at √s = 8TeV to construct our 𝔏LHC, in a manner similar to [251]. These searches are performed

using 108 and 4 event bins respectively, which serve as counting experiments and are naturally Poisson
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distributed. Therefore 𝔏LHC is computed by

𝔏LHC = ∏
i∈bins

𝔏i . (10.15)

Each 𝔏i would be a simple Poisson likelihood, except that one of the parameters to the Poisson

distribution, the expected background yield, bi, can have a large uncertainty, δbi. Thus, it is necessary

to convolve the Poisson distribution with a distribution for the background yield. Naïvely this would

be a Gaussian distribution, however in the case that the relative error in the background yield is large,

i.e., δbi/bi ≳ 20%, then a non-trivial portion of the convolution is due to contributions from negative

bi, or even if the integration is limited to non-negative background, a large portion of the PDF may be

omitted. Thus as a heuristic, we use the following definition for 𝔏i:

𝔏i = ∫
∞

0
Pois(si + b̄; oi)F(bi, δbi; b̄) db̄ , (10.16)

where i is the event bin, Pois is the Poisson probability mass function, si is the expected signal yield, oi

is the number of observed events, and as defined already bi is the expected background yield, and δbi

is the uncertainty in the background. The function F is defined according to our heuristic

F(bi, δbi; b̄) =

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪
⎩

𝒩(bi, δbi; b̄) , δbi/bi < 20%

ln𝒩(bi, δbi; b̄) , δbi/bi ≥ 20%
, (10.17)

where 𝒩 is the Gaussian distribution and ln𝒩 is the log-normal distribution. As a further heuristic, it

is necessary to account for cases when either bi = 0 or δbi = 0. These cases are clearly oversights in the

CMS preliminary analysis summary; still they must be addressed. We choose a sentinel value Δ = 10−6

and use δbi = Δ if δbi is zero and we set bi = δbi if bi is zero.
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The expected signal yield si is the product of the efficiency ϵi with the total SUSY cross section and

the integrated luminosity. The efficiency ϵi is the proportion of the total generated events that would be

counted in the ith bin, and is determined by running the events through a detector simulation, which

we have carried out with PGS [117]. Jet objects were reconstructed using the anti-kT algorithm, with

a distance parameter of 0.5. We implemented the cuts to place events into bins in a modified version

of Parvicursor [281]. The object selection criteria, event vetoes, and geometrical cuts are reproduced

as in [280].

To combine the likelihood from these searches to the likelihood function described in Section 10.3,

we first compute the likelihood for the Standard Model according to this analysis by turning off the

signal, 𝔏SM ≡ 𝔏LHC|s=0
. We then add the likelihood ratio statistic to the full likelihood function,

− 2 ln𝔏 → −2 ln𝔏 − 2 ln
(
min

{

𝔏LHC

𝔏SM
, 1
})

, (10.18)

which is approximately χ2 distributed, and is a natural addition to the other “pull” terms in our like-

lihood function. Having computed the updated likelihood due to these CMS searches, it is necessary

to re-weight the samples by a factor exp (Δ ln𝔏). We can now proceed to determine the marginalized

posterior probability distributions within our parameters of interest.

10.5 Results

In this section we present the results from our Bayesian analysis. Given our likelihood function, we de-

termine the Bayesian evidence of ̃gSUGRA to be ln𝒵 = −11.9±0.042. We provide this for reference, as

we do not perform a model selection test. The best-fit point in our analysis is determined to have χ2min =

2.73, and leaving out some of the nuisance parameters, is specified by (m0, m̃1/2
, A0, tanβ,m

pole
t ) =

(341, 429, 298, 9.73, 174) where the massive parameters are specified in GeV. This point illustrates the
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general result of ̃gSUGRA that high h0 mass and δaµ can be simultaneously satisfied. Additionally, the

large scalar quark and gluino masses allow for consistency with ℬr (B0
s → μ+μ−) and ℬr (b → sγ). The

credible regions in the masses of the heavier particles in ̃gSUGRA are presented in the right panel of

Fig. 10.2, and the light particles of ̃gSUGRA that create the δaµ contribution as well as the contribution

to the diphoton Higgs decay are given in the left panel.

The 1 σ and 2 σ credible regions in our parameters of interest are given in Fig. 10.3, where we have

chosen to use the dimensionless parameter A0/m0. The 1D posterior distributions in these parameters

are given in the top panels of Fig. 10.4, though here we did give the distribution for the dimensionful

parameter A0.

While ̃gSUGRA largely achieves the correct h0 mass and δaµ contribution as shown in the middle

two lower panels of Fig. 10.4, the posterior distribution in the top mass is shifted up from the central

value by 0.5 GeV to 174 GeV, which is evident in the lower left panel of Fig. 10.4. The tension between

the top mass, the h0 mass and δaµ is clearly displayed in Fig. 10.7 where we have interpolated sample

points from a slice in our likelihood function and presented level curves in “χ2(δaµ)” which is the

contribution to −2 ln𝔏 due to δaµ. It is evident that the higher h0 mass and δaµ is best matched in

̃gSUGRA for a slightly heavier top quark.

We point out that this tension is not overly significant in ̃gSUGRA for two reasons. First, there is a

large theoretical uncertainty in the calculation of the h0 mass at the 2-loop level, which when considered

does lift most of the tension. Next, we specified in ̃gSUGRA M3 = 10 m̃1/2
, where 10 is an arbitrary

choice. Allowing the coefficient to be a new degree of freedom or simply selecting several different

choices will likely resolve this tension as well.

In our Bayesian analysis, we have sampled the parameter space using the older WMAP7 value forωχ

in ℒ but we can see from the fourth panel from the left in the bottom row of Fig. 10.4 that the slightly

larger value indicated by WMAP9 and Planck would simply enlarge our credible region. Additionally,
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we see in Fig. 10.6 that ̃gSUGRA is not currently constrained by the best available limit on the direct

detection of χ̃01 dark matter, and is slightly beyond the projected sensitivity of XENON1T and Super-

CDMS1T, creating a sort of nightmare scenario for dark matter experiments, as our dark matter signal

would be competing with the cosmic neutrino background. The LSP in our model is consistently a

bino, and the χ̃02 is a wino. There is virtually no mixing with the Higgsino sector as the Higgsino mass

parameter μ becomes very large due to the large M3. The sensitivity to dark matter experiments can

be increased by adjusting the ratio of M1 to M2 to allow for greater bino-wino mixing within the LSP

state.

One of the exceptional aspects of ̃gSUGRA is the presence of many light superpartners that have

thus far evaded detection at the LHC. We concede that the searches that we considered here are not

by any means comprehensive, but they are designed to constrain the production modes most prevalent

in ̃gSUGRA. The limits are evaded largely due to the stringent selection criteria and the difficulty in

identifying τ leptons. Additionally, the mass hierarchy of ̃gSUGRA limits the possibility of cascading

decays.

We note that the parametric space of ̃gSUGRA, naturally fits into the Hyperbolic Branch [96, 282,

283] of radiative breaking of the electroweak symmetry. This is due to the fact that the stop masses are

driven to be large by the gluino, giving a large Q =
√
m ̃t1m ̃t2 , and it was shown in [188, 284] that

Q ≳ 1TeV corresponds to a hyperbolic geometry of soft parameters that give radiative EWSB (a large

SUSY scale in the tens of TeV also arises in a certain class of string motivated models [133, 285]). Still,

̃gSUGRA as it stands produces a large value of μ with respect to the Z mass. Specifically, a large value

of μ is necessary to balance the large value of M3 which enters in the corrections to the H2 field mass.
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10.5.1 Higgs Diphoton Decay

In the Standard Model, the loop-induced decay of the Higgs into two photons is mediated mainly by

the W, top, and to a lesser extent, the bottom quark. The partial width reads [286]

Γ (H → γγ) =
α2

EMm
2
H

256v2π3 |
∑
f=t,b

Nc,fQ
2
fA1/2(τf) + A1(τW)

|

2

(10.19)

where τi = 4m2
i /m

2
H, and the spin form factors are

A1/2(τ) = 2τ (1 − (τ − 1)f(τ)) (10.20)

A1(τ) = − (2 + 3τ − 3τ(τ − 2)f(τ)) (10.21)

and the universal scaling function f(τ) is

f(τ) =

⎧⎪⎪⎪⎪

⎨⎪⎪⎪⎪
⎩

arcsin2 (τ−1/2) ∶ τ ≥ 1

−1
4 (

ln 1 + √1 − τ
1 − √1 − τ

− ıπ
)

2

∶ τ < 1
. (10.22)

Supersymmetry corrects this partial width [180] by factors involving the Higgs mixing angle α and

β arising from the two Higgs doublets. Additionally, new amplitudes are available mediated by the

charged Higgs, charginos, and sfermions. The couplings to the charginos arise from Higgsino–gaugino

mixing, but in ̃gSUGRA the Higgsinos are very heavy thus the lighter chargino is always purely charged

wino while the heavier one is purely charged Higgsino. This means that overall the chargino contri-

bution is small either because the coupling is suppressed or because the mass is too large. The charged

Higgs exchange is also suppressed due to its large mass. Thus the largest contributions can come only

from the sfermion sector, which in ̃gSUGRA is dominated by the staus.

In the decoupling limit where MA ≫ MZ which corresponds to α = β − π/2, the Higgs coupling
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to the staus is given by [248, 249]

gh0 ̃τi ̃τi
= Iτ3ci ∓ Qτ sin

2 θW cos 2θ ̃τ ∓
mτ(Aℓ − μ tanβ)

2M2
Z

sin 2θ ̃τ −
m2

τ

M2
Z

(10.23)

with c1 = cos2 θ ̃τ, and c2 = sin2 θ ̃τ. The ‘−’ case corresponds to i = 1, and the ‘+’ case corresponds to

i = 2. The partial width in ̃gSUGRA including the amplitude due to staus then reads

Γ (h0 → γγ) =
α2

EMm
2
H

256v2π3 |
∑
f=t,b

Nc,fQ
2
fA1/2(τf) + A1(τW) + ∑

i=1,2
gh0 ̃τ1 ̃τ2

M2
Z

m2
̃τ
A0(τi)

|

2

(10.24)

and the spin zero form factor is

A0(τ) = −τ(1 − τf(τ)) . (10.25)

We identify the ratio of this partial width to the Standard Model width given in Eq. (10.19) as Rγγ.

(We have taken the ratio of the theoretical and observed h0 production to be unity.) We compute

this ratio for each of our Monte Carlo samples and construct the 1D posterior PDF in this derived

parameter which we present in Fig. 10.8. We find that ̃gSUGRA generically produces a ∼ 20% boost

to this decay mode over the Standard Model case. The 2 σ credible interval is [1.03, 1.38], which is

quite consistent with the preliminary results arriving from the LHC, but is also consistent with the SM

prediction. As the Higgs boson couplings are studied with greater precision in the future, it will be

useful to compute Rγγ with greater precision and estimate the uncertainty so that Rγγ may be used as

an additional constraint on the parametric space.

10.6 Conclusion

The recent observation of the Higgs boson mass around 125 GeV points to large loop corrections which

can be achieved with a large weak scale of SUSY. A large SUSY scale also explains the suppression of
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SUSY contributions to the decay B0
s → μ+μ−, to be consistent with the recently measured branching

ratio for this process. On the other hand, the experimental observation of a 3σ effect in δaµ and a

possible excess in the diphoton rate Rγγ in the Higgs boson decay over the standard model prediction

cannot be explained with a high SUSY scale. Thus the two sets of data point to a two scale SUSY

spectrum, one a high scale consisting of colored particles, i.e., the squarks and the gluinos, and the

Higgs bosons (aside from the lightest Higgs) and the other a low scale for masses of uncolored particles

including sleptons and the electroweak gauginos.

In this work we discuss the high scale supergravity grand unified model, ̃gSUGRA, which includes

the feature of a two scale sparticle spectrum where the sparticle spectrum is widely split at the elec-

troweak scale. This is accomplished within supergravity grand unification with non-universal gaug-

ino masses such that M3 ≫ M1,M2, m0. As an illustration we consider the specific case where

M1 ∶ M2 ∶ M3 = 1 ∶ 1 ∶ 10 at the unification scale, M1 = M2 = m̃1/2
and M3 ≫ m0. This case

is designed to be mainly illustrative and can be easily embedded within SU(5) and SO(10). Using a

Bayesian Monte Carlo analysis, It is found that this construction simultaneously explains the high h0

mass, null results for squarks and gluino searches at the LHC, a negligible correction to the branching

ratio for B0
s → μ+μ−, a 3σ deviation of gµ−2 from the Standard Model prediction as well as the nascent

excess in the Higgs diphoton signal.

The observable sparticle spectrum at the LHC in this model consists of light sleptons and light

electroweak gauginos. However, sleptons and electroweak gauginos are typically difficult to observer

at the LHC and thus far have evaded detection in multi-lepton searches in experiments at the ATLAS

and the CMS detectors with the 7 TeV and 8 TeV data. The most promising 2 → 2 processes that can

generate sparticles at the LHC in this model are pp → χ̃±1 χ̃
∓
1 , χ̃

0
2χ̃

±
1 . The identifying signatures of such

processes will indeed be multi-leptons and missing energy. It is hoped that at increased energies and

with larger luminosities such signals will lie in the observable region. However, a detailed analysis of
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the signals is needed, requiring a knowledge of the backgrounds.

Another aspect of the simplified ̃gSUGRA model relates to the spin-independent χ̃01−p cross section.

This cross section is found to be rather small for the case when the gaugino masses are chosen in the

ratio 1 ∶ 1 ∶ 10. The reason for this smallness is easily understood. The constraint M1 = M2 at the

GUT scale, leads to an LSP which is essentially purely bino with very little Higgsino or wino content.

The purely bino nature of the LSP leads to a suppressed χ̃01 − p cross section (see e.g., [287]) which lies

beyond the reach of the current and projected sensitivities for direct-detection experiments. However,

the above result is very specific to the M1 ∶ M2 ∶ M3 = 1 ∶ 1 ∶ 10 assumption and a modification of

the above should allow χ̃01−p cross section within the observable range in the projected sensitivities for

direct-detection experiments. We note that while our analysis was performed using the older WMAP7

measurement of the cold dark matter relic density, the newer measurements from WMAP9 and Planck

(with 15.5 months of data) only slightly increase the measurement. As we only apply the upper limit

from these measurements to allow for the possibility of multi-component theories of dark matter, the

newer results would only expand the credible regions of our parameter space and either increase or not

affect at all the likelihood of our best-fit point.

Finally, we note that the large squark masses in ̃gSUGRA would also help stabilize the proton against

decay from baryon and lepton number violating dimension five operators [284, 288, 289] (for a review

see [166]).
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Figure 10.2: A display of the mass spectrum for sparticles and the Higgs boson with split scales, i.e., a
low scale for χ̃01, χ̃

±
1 , ̃τ1, ̃τ2, ̃ℓ, and a high scale forH0, χ̃±2 , ̃t1, q̃, ̃g. Shown are the credible intervals in the

superpartner masses from the Bayesian analysis of ̃gSUGRA. The lighter superpartners are presented
in the left panel, and the heavier are presented in the right panel. The posterior means are indicated in
red.
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Figure 10.3: An exhibition of the 1 σ and 2 σ credible regions of the marginalized posterior probability
distributions for the parameters of interest of ̃gSUGRA. Left panel: the credible regions in m0 and
m̃1/2

. Right panel: the credible regions in the dimensionless parameter A0/m0 and tanβ. The location
of the best-fit point is indicated by a circled ‘X’ and the posterior mean is given with a solid dot.
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Figure 10.4: A display of the marginalized posterior probability distributions for ̃gSUGRA in the
parameters of interest as well as some important derived quantities. The top row (left to right) gives the
posterior PDF for m0, m̃1/2

, A0, and tanβ, and the bottom row (left to right) displays the same for the
top quark mass, the light CP even Higgs boson mass, the contribution to −2 ln𝔏 due to the anomalous
magnetic moment of the muon (which we have denoted as χ2(δaµ), and the thermal relic density of
cold dark matter, ωχ. The location of the best-fit point is indicated by a circled ‘X’ and the posterior
mean is given with a solid dot.
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Figure 10.5: A display of the marginalized posterior probability distributions for ̃gSUGRA in the
parameters of interest as well as some important derived quantities. The top row (left to right) gives the
posterior PDF for m0, m̃1/2

, A0, and tanβ, and the bottom row (left to right) displays the same for the
top quark mass, the light CP even Higgs boson mass, the contribution to −2 ln𝔏 due to the anomalous
magnetic moment of the muon (which we have denoted as χ2(δaµ), and the thermal relic density of
cold dark matter, ωχ. The location of the best-fit point is indicated by a circled ‘X’ and the posterior
mean is given with a solid dot.

152



χ̃
0
1 Mass (GeV)

lo
g 1

0

[

R
×

σ
S
I

χ̃
0 1
p

(

cm
2
)

]

XENON100 (2012)
Observed Limit (90% CL)
±1 σ Expected
±1 σ Expected

SuperCDMS1T
(Projection)

XENON1T
(Projection)

10
1

10
2

10
3

−51

−50

−49

−48

−47

−46

−45

−44

−43

−42

Figure 10.6: A display of the 1 σ and 2 σ credible regions of the marginalized posterior PDF of
̃gSUGRA in the plane of the spin-independent p–χ̃01 cross section and the χ̃01 mass. The current limit

from XENON100 is displayed as well as the projected sensitivities for XENON1T and SuperCDMS1T.

153



h0 Mass (GeV)

T
o
p

M
a
ss

(G
eV

)

 

 

χ
2
(δ

a
µ
)

123 124 125 126 127 128
171.5

172

172.5

173

173.5

174

174.5

175

175.5

1

2

3

4

5

6

7

8

Figure 10.7: A display of level curves in the statistic χ2 (δaµ), which is the contribution to −2 ln𝔏
due to δaµ. The level curves are given in the plane of the top mass and h0 mass. The level curves
are constructed by interpolating equally-weighted sample points. The interpolation is also colored by
χ2(δaµ) so that blue region indicates a good agreement with δaµ and the red region indicates poor
agreement.

154



P
ro

b
a
b
il
it
y

D
en

si
ty

Rγγ

1 σ Credible Interval

2 σ Credible Interval

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
0

0.2

0.4

0.6

0.8

1

Figure 10.8: A display of the marginalized posterior probability density of Rγγ from our analysis. The
1 σ and 2 σ credible intervals are indicated in darker blues. We define Rγγ as the ratio of the diphoton
partial width of the light CP-even Higgs boson to the corresponding width for a Standard Model Higgs
of the same mass (see Eq. (10.8)).

155



Chapter 11

Conclusions

The focus of this dissertation was to examine supergravity grand unification models as viable candidates

of beyond the Standard Model physics, in the context of this data-rich age in particles physics. With

the conclusion of Run-I of the LHC operating at √s = 7 and 8TeV, stringent limits on the minimal

supergravity model have been placed, and lesser ones on supergravity grand unification models with

non-universalities. We saw that initially, the region probed by the LHC was largely unavailable due to

existing constraints from flavor measurements.

Meanwhile, the deep underground experiments searching for nuclear recoils with dark matter have

continued to lower their limits on nuclear cross sections with WIMP dark matter. In models of super-

symmetric dark matter, the LHC has provided a complementary probe, in some regions.

The major milestone was undoubtedly the discovery of the Higgs boson. The measured Higgs

boson mass is among the most important constraints to be placed on all supersymmetry models, and

the paradigm has rapidly become to account for it, and identify its impact on finding sparticles. We

saw that the mass range of the Higgs boson as measured implies parameters of mSUGRA that are well

beyond what the LHC has probed in all of Run-I.
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Still, the question of naturalness has arisen. The simplest way to get the correct Higgs boson mass in

mSUGRA and other SUGRA GUTs is to have very heavy scalars. This typically leads to a large value

of μ, the Higgsino mass parameter and thus requires tuning in order to preserve the Z boson mass. It

was shown instead that within the Hyperbolic Branch, there are focal curve and focal surface solutions

wherein the scalar sparticles can become heavier than ≳ 10TeV and one still finds a much smaller value

of μ.

In SUSY models where the scalars are heavy, the overall scale of SUSY gets dragged up with them.

This can make it difficult for SUSY to influence other aspects of electroweak physics. A striking example

is the difficulty in explaining the discrepancy between experimental measurement and Standard Model

prediction of the anomalous magnetic moment of the muon. This is because the sleptons necessary to

provide the SUSY corrections are typically of the same order of magnitude in mass as the squarks. Since

in GUT models the quarks and leptons belong to the same representation, it would not be attractive to

simply separate their masses at the GUT scale in order to produce lighter sleptons and heavier squarks

at the electroweak scale. Instead, we suggested the ̃gSUGRA paradigm where just the gluino mass

is taken to be heavier than the other parameters. Then, simply due to renormalization, the squark

fields diverge from the slepton fields in mass as one approaches the electroweak scale, giving a splitting

between squarks and sleptons, within a GUT framework. We demonstrated that this proves to be an

excellent fit to both the Higgs boson mass and the anomalous muon magnetic moment, in addition to

other results from flavor physics.
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Appendix A

Conventions

A.1 Metric, Spinors

This dissertation uses the “mostly minus” metric

ηµν = ηµν = diag(+1, −1, −1, −1) . (A.1)

For an excellent review of two-component spinor techniques, please see [290] and also [38].

The Pauli matrices are given by

σµαβ̇ = (1, σ
1, σ2, σ3) , and, σ̄µα̇β = (1, σ̄1, σ̄2, σ̄3) with (A.2)

σ1 = −σ̄1 = ⎛
⎝

0 1

1 0
⎞
⎠

, σ2 = −σ̄2 = ⎛
⎝

0 −i

i 0
⎞
⎠

, σ3 = −σ̄3 = ⎛
⎝

1 0

0 −1
⎞
⎠

. (A.3)
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Any given Lorentz vector is packaged with spinor indices by

Pαβ̇ ≡ Pµσ
µ
αβ̇ , so Pαβ̇ = ⎛

⎝

P0 + P3 P1 − iP2
P1 + iP2 P0 − P3

⎞
⎠

. (A.4)

Notice then that

det Pαβ̇ = P
2
0 − P

2
1 − P

2
2 − P

2
3 = PµP

µ (A.5)

is invariant under SL(2, C) transformations.

Spinor indices are raised and lowered by the rank-2 totally anti-symmetric symbol

εαβ = −εαβ = ⎛
⎝

0 1

−1 0
⎞
⎠

. (A.6)

For a given spinor χα, transforming under the (1/2, 0) representation of the Lorentz algebra

χα = εαβχβ and χα = εαβχ
β . (A.7)

For a given spinor ξ̄α̇, transforming under the (0, 1/2) representation of the Lorentz algebra

ξ̄α̇ = εα̇β̇ξ̄
β̇ and ξ̄α̇ = εα̇β̇ξ̄β̇ . (A.8)

Products of spinors can be written without the contracted indices, bearing in mind a conventional

order for the direction of the contracted indices. The convention is to have undotted indices falling

and dotted indices rising as

α
α and α̇

α̇ (A.9)
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thus without the indices we write

ξχ ≡ ξαχα and ξ̄χ̄ ≡ ξ̄α̇χ̄
α̇ . (A.10)

Since these are fermions, we obtain the nice relation

ξχ = ξαχα = −χαξ
α = +χαξα = χξ . (A.11)

However, when a Lorentz index is included

ξ̄σ̄µχ = ξ̄α̇σ̄
µα̇βχβ = −χβσ̄

µα̇βξ̄α̇ = −χ
βσµα̇βξ̄

α̇ = −χσµξ . (A.12)

We also define

σµν ≡ 1
2
(σµσ̄ν − σνσ̄µ) and σ̄µν ≡ 1

2
(σ̄µσν − σ̄νσµ) . (A.13)

A.2 Grassmann Coordinates

An extensive and formal review of supergroups, superalgebras, and supermanifolds can be found in [291],

and the most relevant results can be found in [35, 37, 38].

In the 𝒩 = 1 superspace formulation, we have two Grassmann coordinates θ1 and θ2, and their

conjugates, θ̄1 and θ̄2. Any Grassmann coordinate η (such as θ1, θ̄1, etc.) satisfies

{η, η} = 0 ⟺ η2 = 0 . (A.14)
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The derivative is ∂
∂η
η = 1 as expected, but the integration is defined by the Berezin rules

∫ dη = 0 and ∫ dη η = 1 . (A.15)

In the 𝒩 = 1 superspace, these Grassmann coordinates are arranged into Weyl spinors which span

the fermionic subspace

θα = (θ1, θ2) , and ̄θα̇ = ( ̄θ1, θ̄2) . (A.16)

Making use of the spinor conventions from Appendix A.1, we write

θ2 = θαθα = ε
αβθβθα = 2θ2θ1 (A.17)

θ̄2 = θ̄α̇θ̄
α̇ = εα̇β̇ ̄θα̇θ̄β̇ = 2 ̄θ1 ̄θ2 . (A.18)

All cubic and higher terms in either of the θα and θα̇ spinors separately are equal to zero but we define

the non-zero

θ4 ≡ θ2θ̄2 . (A.19)

The derivatives of the spinors are given by

∂
∂θα

θβ = δ β
α , ∂

∂θ̄α̇
θ̄β̇ = δ

α̇
β̇ , and ∂

∂θα
θ̄β̇ = ∂

∂θ̄α̇
θβ = 0 . (A.20)

For integration, we first scale the measures to normalize the integrals

d2θ ≡ −1
4
dθαdθα = −

1
4
εαβdθ

αdθβ (A.21)

d2θ̄ ≡ −1
4
dθα̇dθ

α̇ = −1
4
εα̇β̇dθα̇dθβ̇ (A.22)

d4θ ≡ d2θd2θ̄ (A.23)
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so that the integrals

∫ d
2θ θ2 = ∫ d

2θ̄ ̄θ2 = ∫ d
4θ θ4 = 1 . (A.24)
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