

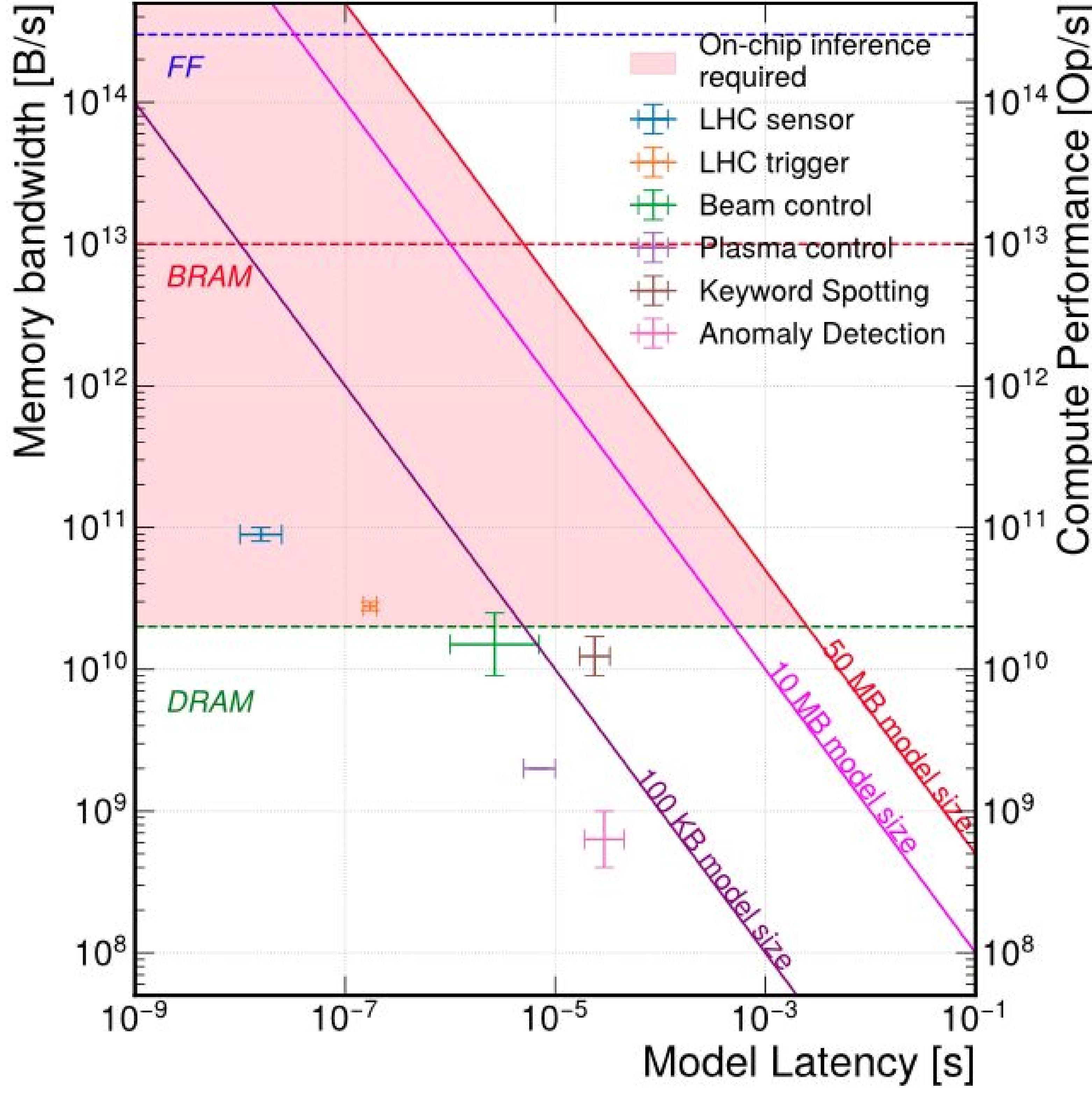
Fast ML for Science benchmarks and architectural implications

Ben Hawks, Nhan Tran

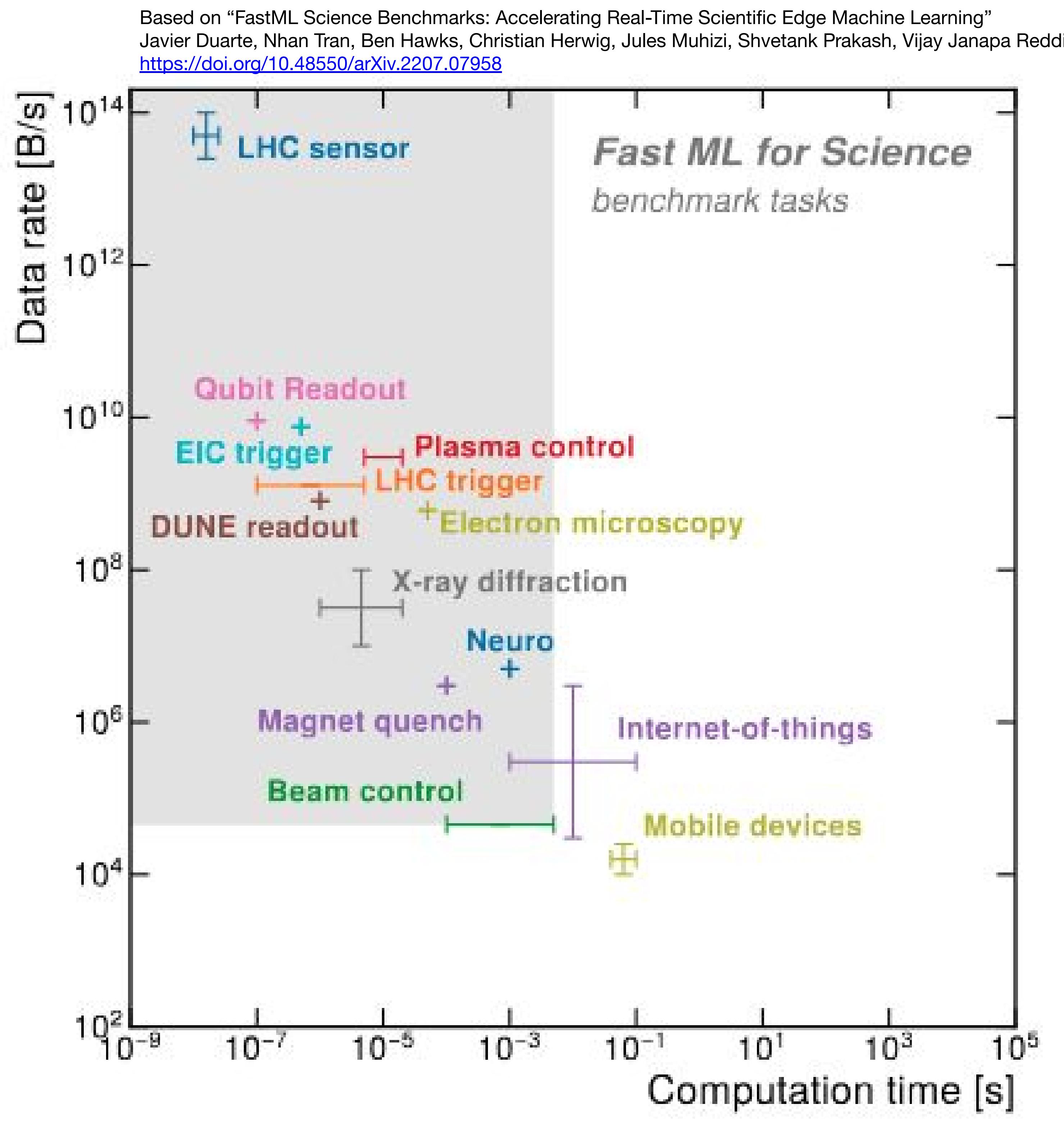
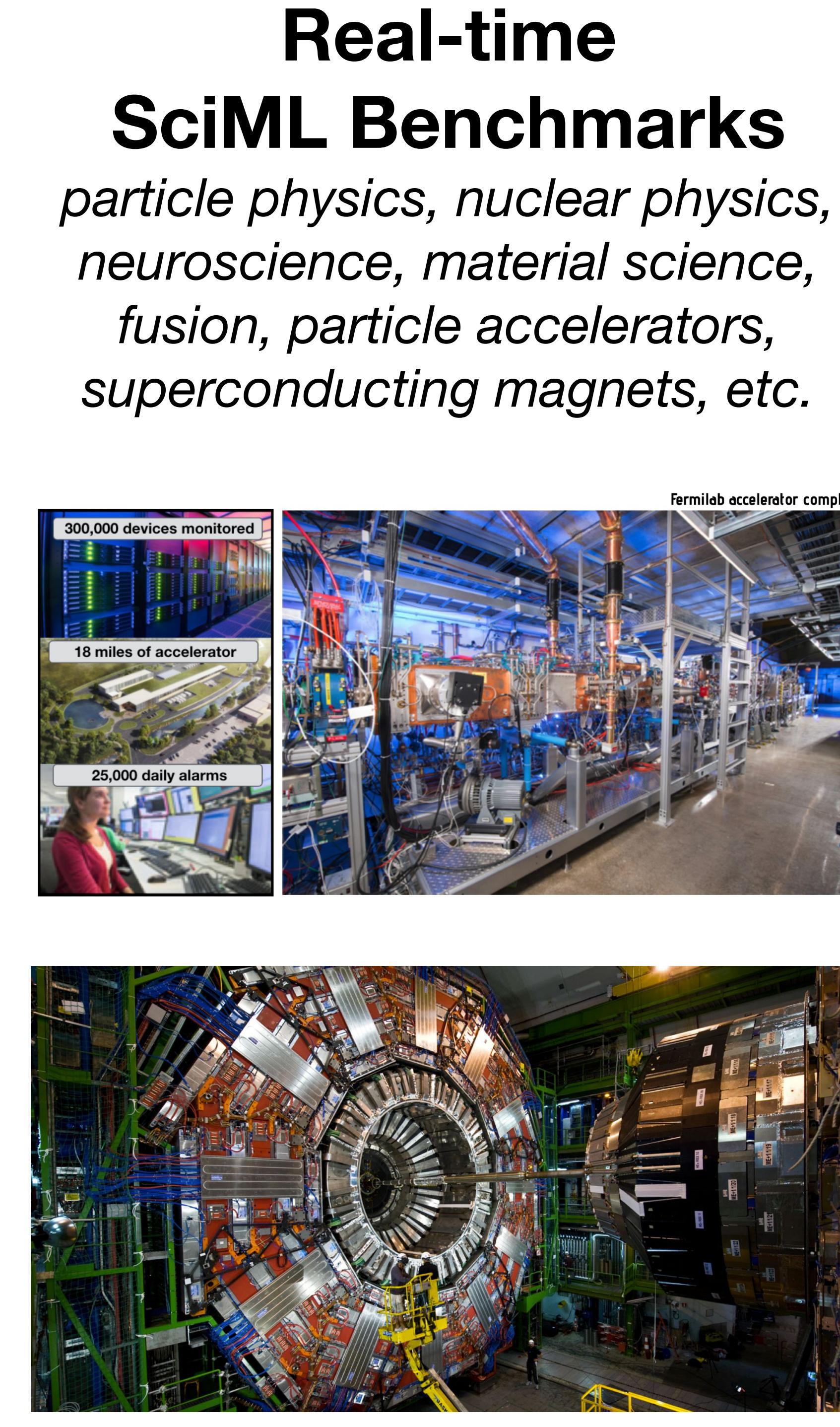
Olivia Weng, Javier Duarte, Ryan Kastner, Alexander Redding

Grand vision: autonomous experiments operating at the timescales of nature to solve mysteries of the universe, discover new materials, sources of energy, and beyond!

“Scientific discoveries come from groundbreaking ideas and the capability to validate those ideas by **testing nature at new scales-finer and more precise temporal and spatial resolution**. This is leading to an explosion of data that must be interpreted, and ML is proving a powerful approach. The more efficiently we can test our hypotheses, the faster we can achieve discovery. To fully unleash the power of ML and accelerate discoveries, it is necessary **to embed it into our scientific process, into our instruments and detectors.**”



“Architectural Implications of Neural Network Inference for High Data-Rate, Low-Latency Scientific Applications”
Olivia Weng, Alexander Redding, Nhan Tran, Javier Mauricio Duarte, Ryan Kastner
<https://doi.org/10.48550/arXiv.2403.08980>



Unique architectural challenges for science:

- ultra-fast all-on-chip inference
- highly customizable models for custom applications including multiple platforms (SoC, AIE, PL, ...)
- Adaptive workflows for extreme environments and changing conditions, e.g. digital twin interfaces

Benchmarks lead to innovations and improvements
particle physics jet substructure task –
~500x improvement in LUT x ns from original works!

Dataset	Model	Accuracy /EMD	LUT	FF	DSP	BRAM	Latency (ns)	FMax (MHz)	Area x Delay (LUT x ns)
MNIST	AmigoLUT-LogicNet-XS (2 models)	94.7	9711	9047	0	0	12.3	569	119 445
	AmigoLUT-NeuralLUT (4 models)	95.5	16 081	13 292	0	0	7.6	925	122 216
	PolyLUT [3]	96	70 673	4 681	0	0	16	378	1 130 768
	NeuralLUT [4]	96	54 798	3 757	0	0	12	431	657 576
	PolyLUT-Add [16]	96	14 810	2 609	0	0	10	625	148 100
JSC	DWN [5]	77.6	2 632	1 737	0	0	2.2	675	15 210
	AmigoLUT-NeuralLUT-XS (4 models)	71.1	320	482	0	0	3.5	1445	1 120
	AmigoLUT-NeuralLUT-XS (16 models)	72.9	1 243	1 240	0	0	5.0	1 008	6 215
	AmigoLUT-NeuralLUT-S (32 models)	74.4	42 742	4 717	0	0	9.6	520	410 323
	LogicNet-L	73.1	36 415	2 790	0	0	6	390	218 490
	PolyLUT	72	12 436	773	0	0	5	646	62 180
	PolyLUT	75	236 541	2 775	0	0	21	235	4 967 361
	NeuralLUT	72	4 684	341	0	0	3	727	14 052
	NeuralLUT	75	92 357	4 885	0	0	14	368	1 292 998
	PolyLUT-Add	75	36 484	1 209	0	0	16	315	583 744
HGCal	PolyLUT-Add	72	895	1 649	0	0	4	750	3 580
	DWN	73.7	134	106	0	0	3.7	1 361	496
	DWN	76.3	6 302	4 128	0	0	14.4	695	90 749
AmigoLUT-LogicNet-S (2 models)	AmigoLUT-LogicNet-S (2 models)	1.286	26 400	4 040	0	0	15.6	512	411 840
	AmigoLUT-LogicNet-S (16 models)	1.270	195 724	23 515	0	0	24.0	334	4 697 376
	LogicNet-L	1.407	32 529	2 340	0	0	12.2	323	396 854

Table 4: Comparing model resource utilization and performance metrics across the three datasets/tasks with prior work.

See presentation from Olivia Weng et al from Thursday

Greater than the Sum of its LUTs: Scaling Up LUT-based Neural Networks with AmigoLUT.
Olivia Weng, Marta Andronic, Daniela Zuberi, Jiaqing Chen, Caleb Geniesse, George A. Constantinides, Nhan Tran, Nicholas Fraser, Javier Mauricio Duarte, Ryan Kastner.
<https://doi.org/10.1145/3706628.3708874>