SLAC-PUB-13788

ORBIT DISPLAY'S USE OF THE PHYSICS APPLICATION FRAMEWORK
FOR LCLS*

Michael Zelazny®, Sergei Chevtsov', Chungming Paul Chu*, Diane Fairley”, Patrick Krejcik™,
Partha Natampalli®, Deborah Rogind”, Greg White™, SLAC National Accelerator Laboratory,
Menlo Park, CA, U.S.A.

Abstract

At the SLAC National Accelerator Laboratory (SLAC)
the Controls Department (CD) is developing a physics
application framework based on the Java(tm)
programming language developed by Sun Microsystems.
This paper will discuss the first application developed
using this approach: a new Orbit Display. The software is
being developed by several individuals in reusable Java
packages. It relies on the Experimental Physics and
Industrial Control System (EPICS) toolkit for data
collection and XAL - A Java based Hierarchy for
Application Programming for model parameters. The
Orbit Display tracks and displays electron paths through
the Linac Coherent Light Source (LCLS) in both a
graphical, beam line plot, and tabular format. It contains
many features that may be unique to SLAC and is meant
to be used both in the control room and by individuals in
their offices or at home. Unique features include BSA
Beam Synchronous Acquisition (BSA), Orbit Fitting, and
Buffered Acquisition.

TECHNOLOGIES

Reusable Java Packages

With an eye towards reusability, and the availability of
several programmers, we adopted a divide and concur
strategy. Thinking ahead to the various projects required
of the Controls Physics-Applications group we partitioned
the Java packages into several reusable components.
Their dependencies are listed in Figure 1.

Being our first venture into the Java programming
language, we learned, albeit the hard way, the two things
Java programmers worry about the most:

1. The Java Classpath

2. The Java Threads
We discovered that certain things, such as handling the
Graphics User Interface (GUI) button pushes and screen
updates must be done in a special GUI thread, already
present in your application courtesy of the Java
programming language. The Orbit display’s Java threads
are described in figure 2.

*Work supported by the U.S. Department of Energy under contract
number DE-AC02-76SF00515.

*zelazny@slac.stanford.edu

‘chevtsov @slac.stanford.edu

‘pchu@slac.stanford.edu

“dfairley @slac.stanford.edu

‘pkr@slac.stanford.edu

‘partha@slac.stanford.edu

“drogind @slac.stanford.edu

‘greg @slac.stanford.edu

Unique File
Mams AR

Figure 1: Java Library Dependencies

1) controler = OrbitDisplayDat
OrbitDisplayPanel _" SpisyLaia
EventListener OrbitData

OrbitDisplayBSAData
OrbitDisplayPanel
SignalPlot
OrbitFitSettings
AlarmedMagnetSetup
ObstructionSetup

GUI Event
Thread
(controller,
odData)

2) perform CA

jca
Thread

queue foreve
jdata = acquireData()

draw(/

2)
OrbitDisplayView
view{odMode

Acquisition
Thread
(controller,
odData)

Swing Warker
Thread
start()

1) odModel=

OrbitDisplayModel.

ptup(odDatg

2) add data to
BdData.OrbitDisplayBSAData

4) sleep refresh time

OrbitDisplayModel

OrbitDisplayBSAData
OrbitDisplayPanel
SignalPlat
BPMZPlots
OrbitFitModel
OrbitFittingTable Each odData object has a
TextDi ized setup() and view()
TabSelected when applicable

Slider Enabled

Figure 2: Java Threads
Eclipse

Due to its wide acceptance, and it low price, we chose
Eclipse as our integrated development environment
(IDE). Its build tool creates a file that contains a known
working Java classpath. This a little shell script coaxing,

this file can be used to properly set the CLASSPATH
environment variable when launching the application.
EPICS

The LCLS has adopted the EPICS toolkit for new and
upgraded beam line devices. To access EPICS process
variables (PV) we chose to use Java Channel Access
(JCA). JCA was chosen because it is a pure Java
implementation of the EPICS CA protocol.

XAL

XAL, a high level accelerator application framework
originally developed by the Spallation Neutron Source
(SNS), Oak Ridge National Laboratory, provides generic
hierarchical view for an accelerator [1]. XAL is also used
to calculate the physics model used by the Orbit Display.

Standard GUI Framework

After considering frameworks as diverse as Eclipse and
XAL, we decided that they lacked some of our desired
features and were generally too complex to quickly build
robust applications. So, we developed our own Graphical
User Interface (GUI) Framework (GFW) [2]. In contrast,
simplicity and customization are the main criteria behind
GFW's existence. Using only basic Swing components,
GFW defines a standard layout for GUI applications and
allows the developers to extend the generic look-and-feel
without any constraints (see Figure 3).

= [Dessgn [» Tl Bas

safuegr | Mis- s | 14383 | Verssen 1234 e (58

Figure 3: SLAC Standard Java GUI Framework

STANDARD DISPLAYS

The Orbit Display application is the simplest extension
of the standard beam line Z plot — devices displayed in the
order the beam reaches them — Java package. This display
shows a continuously updating portion of LCLS’s beam
position monitors (BPM), toriod charge monitors, out of
tolerance magnets, beam line obstructions such as
inserted profile monitors, and a cartoon representing the
various beam line components, see Figure 4.

Since the standard beam line Z plot only gives the user
a cursory overview of the various device’s values, an
updating table is also provided, see Figure 5.

Dewvier: v [N e TMIT e e S

Figure 5: Orbit Table

FEATURES UNIQUE TO SLAC

Beam Synchronous Acquisition

SLAC physicists desire the ability to track a single
particle bunch through the accelerator. Since the EPICS
toolkit does not provide this functionality, we developed a

facility to do this called Beam Synchronous Acquisition
(BSA).

Orbit Fitting

Using a combination of measured parameters and the
beam trajectory predicted by the accelerator model, it is
possible to overlay the predicted beam path with the
actual beam path, see Figure 6. Among other things, this
is used to determine, for example, whether BPM signals
are properly wired to the electronics used to read their
signals.

i e s s T ———,
S
e Bl] R Feta o

S (B B Pari 128 H

£ et Tt | iy

CIATHONIE 103 UM Abclie Db Sep 27, 000 1808500

|
e ~ - = E -~ = - St
G 1000 108
el tasass = 2 U L AL AR
471 14nanT — The R DT b T 2
e s s L AR KRR =
ety
Pt st [TT=",
nbgea, gt v e TG =
o M =1 Bl

B Bl ATHORE i
= =] ||[FEE— e I
Lalpmm (EMN1a = LSS e il
TR S E.

TP o1z -

L

Figure 6: Orbit Fitting

Buffered Acquisition

In addition to viewing the beam trajectory through the
accelerator, SLAC physicist’s desire the ability to set up
an experiment, run that experiment, then view how
various signals changed. Since that LCLS machine rate is
too fast to for our network to read every signal at the
beam rate, the data is buffered on the EPICS Input Output
Controller (IOC) then sent later to the applications
requesting the data. Figure 7 is a plot of a BPM signal
over time. Figure 8 is a table of the same signal. Figure 9
is a histogram of that signal.

g o | ose [

TR T o e] o foure AL el o e 5|
21 T4 mam Tuiwsdamys = Aqn K, 7009 12 22 41 00000000 |
e & s q

Figure 8: Signal Table

s | |snomrimme | | mon| semas e mnse

[rTeerrye—

Histogram of CATHODE TO DUMP EPM2 X

BOW DAY BESG BN GAAN BOMS GIR DA AR0D B4 AmS0
e LUK Ampiilute—= 2l 828 Lanlee = USSR G—lAAN HL0L

LT |

i e s s T ———,
A—— — q
| | e e o f
T
ey
e
3
—
—
——
....... —
& NS MW MW M3ER LMSEL IS LA 1064 1o S
T oo pauievad Do 5000 — well e v dung
e e g
R

Figure 7: Signal Plot

(2]

Figure 9: Signal Histogram

REFERENCES

C. Paul Chu, “XAL Adoption Experience at LCLS”,

ICALEPCS °’09, Kobe, Japan,

October 2009,

TUPO12 http://icalepcs2009.spring8.or.jp/index.html.
S. Chevtsov, “GFW - New GUI Framework at
SLAC”, ICALEPCS ’09, Kobe, Japan, October 2009,
THP103 http://icalepcs2009.spring8.or.jp/index.html.

	ORBIT DISPLAY'S USE OF THE PHYSICS APPLICATION FRAMEWORK FOR LCLS*
	TECHNOLOGIES
	STANDARD DISPLAYS
	FEATURES UNIQUE TO SLAC
	REFERENCES

