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Abstract

We work on the proof of Gauge/Toda Duality(AGT conjecture) through two different ways.First we generalized
A. Mironov et. al.’s idea to the much more complicated SU(N) case. We calculated the conformal block in the
form of Dotsenko-Fateev integral and reduce it in the form of Selberg integral of N Jack polynomials. We found
a formula for such Selberg average which satisfies some nontrivial consistency conditions and showed that it
reproduces the SU(N) version of AGT conjecture. Besides, we worked out many technical details, including
proofs of lemmas lacked in A. Mironov et. al.’ s paper, which are essential to bring Selberg average into the form
of Yang-Mills partition function. The other approach is based on recursion relations. We derive an infinite set of
recursion formulae for Nekrasov instanton partition function for linear quiver U(N) supersymmetric gauge theories
in 4D. They have a structure of a deformed version of Wi« algebra which is called SH€ algebra (or degenerate
dual affine Hecke algebra) in the literature. The algebra contains Wy algebra with general central charge defined
by a parameter 3, which gives the Q background in Nekrasov’s analysis. Some parts of the formulae are identified
with the conformal Ward identity for the conformal block function for Toda field theory. The SU(N) constraints
give a direct support for AGT conjecture for general quiver gauge theories.
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1 Introduction

This thesis features on the author’s efforts to prove AGT conjecture[l]. AGT conjecture surprises the academics as an
amazing identification between two seemingly totally independent subjects: the partition function of 4 dimensional
gauge theory and the correlation function of 2 dimensional conformal field theory. These two subjects have been
respectively important research objects in both physics and mathematics, but even mathematicians did not notice
the relation between them. Thus AGT conjecture achieves great concern from both fields and is highly evaluated as

a new territory of mathematical physics, and many related researches are inspired since its publication.

Historically, string duality is crucial in the understanding of different types of string theories and their counterparts
like quantum gravity and gauge theories, and serves as a powerful tool for studying strongly-coupled theories. For
years most of this kind of research has been limited to AdS/CFT, but in 2002, Nekrsov performed a technique called
Q deformation in the reduction from 6D N = 1 gauge theory to 4D N = 2 gauge theory, and implied its connection
with 2D conformal theory[2]. He found exact formulae of the partition function (Nekrasov partition function) of
the N' = 2 gauge theory, and showed that it reproduces the prepotential as determined by the Seiberg-Witten
curve[3, 4]. Later in 2009, some news attracts people s attention. Alday, Gaiotto and Tachikawa presented an
interesting observation that the Nekrasov partition functions of certain class of N=2 SU(2) gauge theories seem to
coincide with the correlation function of 2D Liouville field theory (AGT conjecture). Soon later, Wyllard [5] and
others [6, 7] have presented a generalization to SU(N) case.

In their observations, the correlation functions of Liouville (Toda) field theories[8, 9] are identified with the integral
of the Nekrasov partition function Zyck, where the instanton part Zi,s in the gauge theory written in a form [10]
is identical to the conformal blocks, and the perturbative part Zjjoop corresponds to the (product of) three point
functions. AGT conjecture is illuminating in showing a correspondence between 4D Yang-Mills and 2D integrable
models and will be fundamental in the understanding of the duality of gauge theories. It will also be relevant to
understanding strong coupling physics of multiple M5-branes. In this respect, it will be important to explore to what
extent and how this conjecture holds. Especially, since the coincidence was found through the first few orders in the

instanton expansion, the exact computation of conformal block is needed in the Liouville(Toda) side.

Since then there were many attempts on the interpretation of AGT conjecture, but no complete proof had been
achieved. In 2011, A. Mironov et. al. had embarked on an interesting step toward this direction[11, 12]. They used
the Dotsenko-Fateev method [13] to calculate the conformal blocks. They analyzed the simplest example SU(2),
Ny = 4 and proved the AGT relation for a special choice of the Q deformation parameter 3 = —e;/e2 = 1. The
key step in their analysis is the reduction of the Dotsenko-Fateev (DF) formula to Selberg average with one or two
Jack polynomial(s) which was computed explicitly by Kadell [14].This work is of great importance as the first direct
proof, but still rigorous analysis is in demand. Recently, O. Schiffmann and E. Vasserot successfully introduced an

algebra called SH to prove the AGT conjecture[15], yet their work is limited to pure super Yang-Mills theory.
We have been working on the proof of AGT conjecture through two different ways.

First we generalized A. Mironov et. al.’s idea to the much more complicated SU(N) case[16]. We calculated the
conformal block in the form of Dotsenko-Fateev integral and reduce it in the form of Selberg integral of N Jack
polynomials. The old Dotsenko-Fateev integral and the choice of paths of the screening operators play key roles in
this correspondence, and their significance to Matrix models and conformal blocks are pointed out in the work[17].
In [18], Itoyama and Oota calculated the SU(2) case of the reduction from DF integral to Selberg-Jack integral, and
we performed the SU(V) version’s study.



Selberg integral is an n-dimensional generalization of the Fuler beta integral, and Jack polynomial is a kind of
symmetric polynomial labeled by Young diagram. Selberg integral showed its prominence, evidenced by its central
role in random matrix theory, Calogero-Sutherland quantum many body systems, Knizhnik-Zamolodchikov equations,
and multivariable orthogonal polynomial theory. By q-deformation, Jack polynomial will upgrade to MacDonald
polynomial, whose application in five dimensions is in anticipation. These two subjects have long histories and are
wide applied in both mathematical and physical fields. Yet the interaction of them has been a forbidding issue.

Surely, if we want to achieve a full direct proof for SU(N) case, the exact expression of SU(N) Selberg Jack integral
will be required. No such formula is available in the mathematics literature, so we need to calculate this kind of
integral by ourselves. Fortunately there are still some materials that for us to refer to. For SU(2) case, the relevant
Selberg averages for one and two Jack polynomials were obtained by Kadell[14], and The one-Jack Selberg integral
for SU(N) could be calculated by the formula offered by Warnaar[19, 20]. There works serve as a good hint for our
calculation. Furthermore, another advantage we own is that, we already more or less know the deserved form of the

Selberg Jack integral, from the expectation of AGT conjecture.

Though the actual process is much more complicated than expected, we manage to found a formula for such Selberg
average which satisfies some nontrivial consistency conditions and showed that it reproduces the SU(N) version of
AGT conjecture. Besides, we work out many technical details, including proofs of lemmas lacked in A. Mironov et.
al. * s paper, which are essential to bring Selberg average into the form of Yang-Mills partition function. This work
is the first direct approach of SU(N) AGT conjecture with 5 = 1.

Our recent method is based on recursion relations. We derive an infinite set of recursion formulae for Nekrasov
instanton partition function for linear quiver U(N) supersymmetric gauge theories in 4D. They have a structure of a
deformed version of Wy, algebra which is called SH¢ algebra in the literature. The algebra contains Wy algebra
with general central charge defined by a parameter 8, which gives the {2 background in Nekrasov s analysis. Some
parts of the formulae are identified with the conformal Ward identity for the conformal block function for Toda field

theory. The SU(N) constraints give a direct support for AGT conjecture for general quiver gauge theories.

In detail, the instanton partition function for linear quiver gauge theories is decomposed into matrix like product
with a factor Z}?,W which depends on two sets of Young diagrams (28). Here the Young diagrams Y = (Y1,---,Yn)
represent the fixed points of U(N) instanton moduli space under localization. Zy 5 consists of contribution from
one bifundamental hypermultiplet and vectormultiplets. We find that the building block Zg 5 satisfies an infinite

series of recursion relations,
o102y i — UsinZy w =0, (1)

where (5i1,nZ?7W represents a sum of the Nekrasov partition function with instanton number larger or less than Z?,W
by one with appropriate coefficients and Ut ,, are polynomials of parameters such as mass of bifundamental matter or
VEV of gauge multilets. The subscript n takes any non-negative integer. The detailed form of the recursion formula
and its derivation is done in the section 8. The recursion formula is derived by a complicated but straightforward
calculation from the definition of the factor Z}?,vf/- We note that a classical limit of the such relations was recently

explored in [21].

Then we give an interpretation of (1). We show that the variation in (1) can be understood as an action

of an infinite-dimensional extended conformal algebra. It is defined in [15] and named SH€ algebra.! For this

I This name of the algebra appears only in [15]. Degenerate double affine Hecke algebra, or DDAHA in short, may be more appropriate.
We thank Y. Tachikawa for informing us of the relevance of [15].



purpose, we construct an explicit representation where the basis of the Hilbert space is labeled by sets of N Young
diagrams. Physically, it can be understood that these states correspond to instantons characterized by the same
set of Young diagrams. In our previous paper [22], we showed a similar form of recursion formula under self-dual
O-background (e; + €2 = 0) and discussed that it can be interpreted in terms of Wy ;. algebra. The analysis here is a
natural generalization to any {2-deformation. SH¢ algebra contains a parameter 3, which is related to 2-deformation
parameters by 8 = —e;/ea. When we take § = 1, (1) reduces to that in [22] and the action of SH® algebra can
be identified with the Wi, o, algebra. We will also see SH¢ algebra contains Heisenbergx Virasoro subalgebra and
its central charge is the same as that of Heisenbergx Wy algebra with background charge Q = /B — 1/+/B. The
combination of Heisenberg algebra with Wy appears in [23, 24, 25], where the authors formally construct a basis of
Hilbert space of Heisenbergx Wy algebra which reproduces the factorized form of Nekrasov partition function. Such
observation implies that one may regard the formula (1) as the conformal Ward identities which characterize the

conformal block function.

We mention that there is another one parameter deformation of Wi 4 algebra [26], W [p] in the context of higher
spin supergravity. SH® and W[u] share a property that they are generated by infinite higher spin generators and
contains Wy algebra with general 8 as their reduction. Here we use SH€ since their action on a basis parametrized
by sets of Young diagram is already known. It is natural to expect that these two algebras are identical although
their appearances are very different. It should be also noted that the introduction of further deformation parameter

is possible [27, 28, 29] and was applied to a generalization of AGT conjecture [30].

As we will see later, it is tempting to speculate that identities from SH€ algebra fully reproduce the conformal
block function. Because of a technical difficulty to characterize the vertex operator in SH€, explicit demonstration
of the relation is limited to the Heisenberg and Virasoro subalgebra. For these cases, the recursion for n = 0,1 can
be indeed interpreted as Ward identities. The algebra SH® was introduced in [15] to prove the AGT conjecture for
pure super Yang-Mills theory. Our analysis shows that it may be applied to linear quiver gauge theories as well. For

the recent development toward such direction, see also [31].

This thesis is orgnazied as follows. In section 2 we review the Nekrasov partiion function, including its origin from the
Q deformation of N/ = 2 SUSY gauge theories, and focus on its application on linear quiver gauge groups explicitly.
In section 3, we give a brief introduction to Liouville field theory and its SU(V) generalization, the Toda field theory.
DOZZ formula, conformal blocks, and the basic properties of the boson fields are provided, which are of importance
in later discussions.In section 4 we introduce the famous AGT conjecture, i.e., the duality between 4D SUSY gauge
theories and 2D conformal theories. The CFT correlation functions can be regarded as the integral of the Nekrasov
partition function Znek, with three-point functions (DOZZ formula) correspond to the one-loop part of Zyek, and
conformal blocks to the intanton part. In section 5, we study the Dotsenko and Fatteev’s method of screening

operators and transform the four point correlation function in Toda field theories into the Dotsenko-Fatteev integral.

Section 6 and 7 are one of the main results of this thesis. In section 6, after a short review of Selberg integral, we
perform some calculation to reduce the Dotsenko-Fatteev integral to a Selberg average of Jack polynomials. Then
based on limited known results, we conjecture a formula of SU(N) Selberg-Jack integral, and show that it clears
several nontrivial consistency checks. In section 7, we present a direct approach on AGT conjecture, mainly with
the Q deformation parameter 8 = 1. After the proof of several important lemmas and evaluation of parameters, we
manage to identify the Selberg-Jack integral with the instanton part of the Nekrasov partition function. Section 8
and 9 illustrate another substantial approach to the proof of AGT conjecture, using a recursion method. In section
8, we construct the recursion formula for Nekrasov partition function, with the help of some mathematical formulae.
Further we construct the basis using the symmetry algebra SH€¢, which contains Heisenberg and Virasoro algebra
as its subalgebra, and can also be reduced to Wi, algebra. In section 9, By using a modified vertex operator, we

successfully obtain the ward identities for U(1) currents and Virasoro generators, which serve as strong supports to



the AGT conjecture. In the appendix, substantial mathematical oriented proof and calculations are provided, which
are the main contributions of the author in his cooperation projects[16, 32].

2 Nekrasov partition function

In both physical and mathematical fields, it has been a puzzle that why Donaldson invariants are related to periods
of Seiberg-Witten curves [33] . Nekrasov s discovery on the relation between Nekrasov partion function and Seiberg-

Witten prepotential is considered as a first step towards the understanding of the mysterious relation.

For pure A/ = 2 supersymmetric Yang-Mills theory with the gauge group U(N) and its maximal torus T = U(1)",

The action is given by the integral over the superspace [34]:

_ 1 4, 34 T T2
S_SWhv/dxd 91m<2TradJ\I/), 2)

where the fields contain: Au,wé and ¢, where A, is a vector boson, YA, A =1,2 are two Weyl spinors and ¢ is a
complex scalar. Since vector bosons are usually associated with a gauge symmetry, A, is supposed to be a gauge
boson corresponding to a gauge group G. It follows that it transforms in the adjoint representation of G. To maintain
the N = 2 supersymmetry 92 and ¢ should also transform in the adjoint representation.Here Traq; means that the
trace is taken over the adjoint representation. These fields form the (A = 2) chiral multiplet (sometimes called the

gauge or the vector multiplet).

The most natural superfield representation for the chiral multiplet is given in the extended superspace, which has
the coordinates z#, 09, édA, A =1,2. Then we have
_ i y
(z,0,0) = ¢(z) + V2052 () — EEABGO‘AQﬁBUZﬁFW(x) +... (3)

Besides, we have
4 9
_ 4
T 92 271'7 ( )

with g2 being the Yang-Mills coupling constant (and the Plank constant as well) and ¥ is the instanton angle. Its

contribution to the action is given by the topological term, 9%k where k is the instanton number:

1

k= —W/Tradj(F/\F)a (5)

where the curvature F' = %F,Wd:v“ ANdz¥ =dA+ AN A.

In the low energy limit, when the N’ = 2 supersymmetry is unbroken, the most general effective action can be
obtained by the following generalization of (2):

Sest / died*0Im [f(\lf,A)}

1
~ 8whV

where F(a,A) is a holomorphic gauge-invariant function called the prepotential. Its classical expression can be read

from (2): Felass(a) = ga2. All perturbative correction are contained in the 1-loop term which is equal to

Foere(a,A) == > (a-a)’ (m]o‘/'\“\ - ;’) (6)

aeAt

where A is the dynamically generated scale. In this formula the highest root is supposed to have length 2.



The action (2) can be considered as a 5 + 1 dimensional N' = oo supersymmetric Yang-Mills theory in the
Q-background and compactified on the two dimensional torus. Actually the easiest way to construct the action
of the 4D super Yang-Mills theory with extended supersymmetry is to apply dimensional reduction from higher
dimensional minimal supersymmetric theories [35]. Consider lifting the A" = 2 four dimensional theory to N' = (1, 0)
six dimensional theory, and then compactify the six dimensional ' = 1 susy gauge theory on the manifold with the

topology T? x R* with the metric :

ds® = r’dzdz + gy, (da* + VFdz + VFdz) (da¥ + VVdz + VVdz) (7)

where V¥ = QHgY VF = QkaY and

0 e 0 O 0 & 0 O

qw _ | & 0o 0 O = - 0 0 E) (8)
0 0 € 0 0 0 €9
0 0 —e O 0 0 —& O

Here Q" = GV ete. The area r2 of the torus is to be sent to zero. For [Q, Q] = 0 the metric is flat.
K bl

The action of the four dimensional theory in the limit » — 0 is not that of the pure supersymmetric Yang-Mills
theory on R?. Rather, it is a deformation of the latter by the Q, Q-dependent terms. We shall write down here only
the terms with bosonic fields (for simplicity, we have set ¥y = 0):

1 1 o _
S(Q)bos = —@Tr <2F3U +(D,® — Q2 F,,)(D,® — Q52 F,) + [®, <1>]2> (9)
0

We shall call the theory (9) an A/ = 2 theory in the Q-background.

With his idea of the Q-background, Nekrasov calculated the following partition function

Z(1,a,m,€) = / D®DADX...e 5 (10)
¢(c0)=a

of the N/ = 2 susy gauge theory with all the higher couplings on the background with the fixed asymptotics of the

Higgs field at infinity. We take the limit 7o — oo, and the partition function becomes the sum over the instanton

charges of the integrals over the moduli spaces M of instantons of the measure, obtained by the developing the path

integral perturbation expansion around instanton solutions.

The detailed calculation can be found in, for example, [36]. The general idea is:
Split the configuration A, as
A, = AP 454, (11)

with the anti self-dual part AP and its deviation §4,. When §A,, is small, the action becomes

_ 8m2k
=

S + /d4m(2nd order of §A,,) + (higher terms), (12)

so that the partition function can also be divided in the form

7= / [DA,Je5 = Zk; / [DAASP] / A, e (13)




the exact investigation using this expansion is first done in [37], but due to the complexity of dealing 64, ,

instanton _ qu /[DAED] = qu/ dvol, (14)
k k

MN &

consider the simple model

where dvol is the natural volume form on My ,and ¢ = exp(—8m/g?) is the chemical potential of the instanton

number.The apparent divergence can be controlled by the insertion of some Gauss-like factor.

The important property of this partition function (10) is that it gives the prepotential of the theory in the limit
€g=—e=nh—=0
F(r,a,m) = %ir% h?log Z(7,a, m; h, —h). (15)
—

This limit was evaluated for a number of A/ = 2 theories, and reproduced the prepotential as determined by the
Seiberg-Witten curve.

Nekrasov partition function is applied in various matter contents. In this paper, we focous on the partition function
for G =U(Ny) x --- x U(N,,) linear quiver gauge theory:

qull(cﬂa'am;E) = ZtreezlloopZinst7 Zlnst q; a, m; 6 Zq Z Y a, m (16)

where the instanton is labeled by a N-tuple of Young diagrams: Y := (Y(®) ... ¥(™) (Fig. 1). The parameter a
resp. m) represents the diagonalized VEV of vector multiplets (resp. mass of hypermultiplets) whereas g; = ™ is
(resp. m) rep g p p yp P q

v ()
the instanton expansion parameter for ith gauge group SU(N;), q¥ := [+ Y

i—19 - The total partition function is
decomposed into a product of the contributions of the perturbative parts Zi;ee, Z1-100p and non-perturbative instan-
ton correction Zing. The latter is further decomposed into a sum of sets of Young diagrams. ¥ () = (Yl(i), e ,ng,i ))
is a collection of N; Young diagram which parameterizes the fixed points of instanton moduli space for i th gauge

group U(N;).

We will mainly focus on the instanton part. The coefficient z(Y, a,m) is described as a product of the contributions

h

Leg

j i, J) Arm

i m

Figure 1: Young diagrams are very useful in representing conjugacy classes in group theory. The above is a Young
diagram Y of (8,6,6,5,5,5,4,2,1). The ith column is named as Y;. h = Y7 is the height of Y, while m = Y7 is called the
length of Y, where Y’ stands for the transposed Young diagram.The arm-length and leg-length of the box (7, j) in the
tableaux Y are denoted by Army (4, j) and Legy (¢, ) defined separately as Army (¢, j) = Yj’ —i, Legy(i,j)=Yi—j.
For the box (i,j) = (3,2), the arm-length and leg-length are 5 and 4,respectively.

of the gauge- and hyper multiplets which describes the system:

2(Y,a,m) szect ))HZR(?,a,m) , (17)

R



where R is the representation for each hypermultiplets (we set 5 = —e;/€3):

N; Ns
zbifund(a, }7; b, W; m) = H H GYt,Ws (at — bs — m)GWS,Yt (bs —a+m+ 1-— ﬁ) s (18)
t s=1
N
qund(avy;m) = Hst(as -—m — 1+5) 5 (19)
s=1
zata(a,Yim) = zana(a,Y, -1+ 8 —m), (20)
Zadj (a7 _’; m) = Zbifund (CL, }77 a, }7; m) ) (21)
Zvect (a7 ?) = ]-/zadj (a7 ?7 0) . (22)

In eq.(18), the hypermultiplet is supposed to transform as bifundamental associated with gauge group U(N7) xU(N3).
Similarly, in eq.(19), the fundamental representation is associated with U(NN). The function G in eq.(18) is a function
with respect to the tableau Y’s arm-length and leg-length

Gyaw(@) = T[ (e+B07 =0+ Wi=j)+8), (23)
(4,5)€Y
and the function f in (19) is defined as

fy(z) = H (z+B0-1)—-0G-1). (24)

(i,5)€Y

Single gauge group case First we focus on the simplest case, G = SU(N), with Ny = 2N hypermultiplets in

fundamental representation. In this specific example, the partition function is written as

qull(Q§ Q, 4] 6) = ZtreeZHoopZinst7 Zinst (Q; a, m; 6) = Z Q‘YlN}fSt (a, u), (25)
v
2N N 2N
ins % 3 s= —1 Jy, (pg +as
Ny “(a, 1) = 2vect (Y, ) Hzfund(ya,“i) = 11 1\} Uiy v )» (26)
i=1 Ht,s:l 9gvi.v.(a — as)
with
gyw(z) = Gyw(z)Gyw(r+1-5). (27)
w; (i=1,---,2N) are mass parameters of hypermultiplets with fundamental representation.

Linear quiver case For four-dimensional N' = 2 superconformal linear quiver gauge theory with U(N) x U(N) x
-+ x U(N) gauge group, we make a different choice of zyeet, but with the total contribution remains the same. The

instanton partition function of N = 2 gauge theories can be written in the following form

T =
Zil:i:tl;{ = Z CA lV}?(l) : Z?(1)37(2) s Z?(n,—l)?(n/) : Vf(n) . (28)
P o P
Zpoyary = 2(@9,y0;gtth y it o), (29)
Ve = ZX0;a®, YW; 0, (30)
V?(") = Z(&'(n)’ }7(’”)7 X/7 @)’7 M(n))a (31)

where ¢; = exp (27i;) represents the complexified coupling constant 7; of i-th U(N) gauge group, Y@ is a set of
N Young diagram characterizing fixed points of localization in the instanton moduli space of the i-th U(N). a@®

10



Figure 2: Decomposition of Nekrasov function

is the VEV for an adjoint scalar field in the vector multiplet of i-th U(N) and u(* is the mass parameter for the
bifundamental matter field which interpolates i*" and i + 1*" gauge groups. We write () to represent a set of null

Young diagrams (@, -- ,0).
The building block reads,

N -
[ Zbf H,:ngqu(apibqiu)
Z(a@,Y;b,W;u) = = £2a 172 (32)

Zvec - N /
t (Hp,q 9v,v, (ap = aq)gw,w, (bp — bq))

The function gyw is
gyw@) = J] @+8/—i+1)+Wi—j) J] (—2+BW—i)+Yi—j+1). (33)
(1,7)€Y (i,5)eW

The decomposition of the form (28) seems to be natural if we recall the pants decomposition of multi-point function
on sphere and the dictionary of AGT relation; A bifundamental and a vector multiplet correspond to a vertex

operator insertion and an internal line respectively (see Fig.2).

3 Toda field theory

The conformal properties of two-dimensional surface can be understood with the help of quantum Liouville filed
theory[38], which can be transformed to a two-dimensional conformal field theory. Its algebra of generators of the
conformal symmetry coincides with the Virasoro algebra, which can be obtained from affine s((2) algebra. Generalize
the s[(2) algebra to a general affine simple Lie algebra g, one obtains associative algebra (W algebra) as a direct
extension of the Virasoro algebra[39]. The associated theory generalizing Liouville filed theory with simple Lie algebra
g is called Toda Field theory.

In subsection 3.1, the simpler and special case — Liouville theory is studied, with the concepts DOZZ formula and
conformal blocks explained[l, 40, 41]. Then in subsection 3.2, we discuss the general properties of Toda Field
theories[8, 9, 42].

3.1 Liouville theory: DOZZ formula and Conformal blocks

Let us begin with the action of free scalar field(free boson) ¢(z, z)[43],

1
S = & /d2a:\/§ (gabaago@b(p) (34)

The two-point function of ¢ reads,
(p(z, 2)p(w, w)) = log |2 — w|*. (35)
Here log |z — w|? is the Green function of the Lagrangian 9.0, which is equivalent to the point charge potential of

2D electromechanics. Thus the free boson system is sometimes called Coulomb Gas.

11



As a result of the Equation of motion 9,059 = 0, ¢(z, Z) can be divided as the sum of the holomophic and antiholo-
mophic parts

¢(2,2) = 6(2) + ¢(2). (36)
We will concentrate on the holomophic field ¢(z) in the discussion of Lioubille and Toda theory.

The central charge ¢ of the free boson CFT is fixed as ¢ = 1. In order to have more variations, the usual method is
to combine the scalar field with the world sheet curvature. Under the general 2D metric g,p, the action becomes

1 .
S = g/dzx\/ﬁ (9% 0apObp — iQRY) , (37)

with g = det(gap), R the scalar curvature, and @ a constant. When the metric is given by
ds® = odzdz, g.:= %m g2z = gzz = 0, (38)
the scalar curvature R has the form
R = 0 (—40.0; logo), (39)
thus
VR = —20,0; logo. (40)

Apparently the complex plane metric ds? = dzdZ leads to V9B = 0. Yet on the other hand, at z = co under the
coordinate transformation w = 1, the metric becomes ds? = w=2w~2dwdw, so \/gR ~ §*(0). This means that on

the Riemann sphere, there is a charge i@ at z = oo. Thus @ is named as the background charge.

Now we are ready to move to the Lioubille field theory[40] , with the action

1

S=1 / 22/ (§"0apOyd + QR + Ampie®?) . (41)

The parameters follow the definitions above: the background charge Q=i b-i/b, b the dimensionless coupling constant,
R the scalar curvature of the background metric g, and u called the cosmological constant.

The boson field ¢ has the mode expansion

_ N
6(z) = do +aolog s — 3 22z (42)
n#0
with the commutation relations
[an» am] = n5n+m,0a [ana ¢O] = 571,0 (43)

Then the Fock vacuum |0) is constructed through

an‘0> = 0, n > 07 <O|¢0 = <0|an = 07 n <0 (44)
Define the correlator of operator O to be
(0) = (0]0]0) (45)
It can be checked that
(9(2)p(w)) = log(z — w) (46)
The corresponding energy momentum tensor is
L 2. 1Q _ —n—2
T(z) =5 : 06(2)° : —ﬁa ¢(2) =Y Lnz (47)

nez
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with the central charge
c=1+6Q? (48)

DOZZ formula [44, 45, 46]

In conformal field theory we often encounter the three point correlation function with arbitrary vectors

C(Bla ﬂ27 BS)

(Vi (21, 21) Vg, (22, 22) Vs (23, 25)) = |21 [2(B1+82=85)| 515 [2(A1+85=82) | 154 |2(B2+ 83— A1)

(49)
in the Liouville theory case, this formular has the name of DOZZ formula(Dorn, Otto, Zamolodchikov and Zamolod-
chikov). Under the s[(2) condition, C' is calculable that we have

21(Q@—B1—B2—P3)/b
C(B1, B, ) = [mpy (62)p*~

T7(0)Y(261)Y(262) T (253)

X 50
Y(B1 + B2+ B3 — Q)Y (1 + B2 — B3)Y(B1 — P2 + B3) Y (=B1 + B2 + B3) (50)
where
v(z) =T(z)/T(1 - ). (51)
and )
T = . 52
@) = 5@l TG =2l b 1) (52)
With I'y(z|e1, €2) the Barnes’ double gamma functions.
Conformal blocks [47, 48, 49, 50]
In Liouville theory, a certain order correlation function of primary field O can be built from lower order ones:
(O1+ 00,41 05) = 3 {01+ O;L_y O Ky (Lo OiOj 1 -+ Oy (53)
i, M,N
Where £_s,—n stand for the descendants of the primary field O;
L NO;=L_p,L_p,--L_,,,0; (54)

with L,, the generators of the Virasoro algebra introduced in(3.1), and k = Zfil n; the level of the descendant. The
matrix K (called Gram matrix) at level k, are given by the inner product of L_ x|O;), the corresponding descendants
of the primary field O;.

For example, at level two,

K — <<Oi|L2L2|Oi> <Oi|L%L2|Oi>> _ <4h+0/2 6h )

55
(O;| Lo L2 1|0;)  {O;|L2L2 4| 0;) 6h 4h(1 + 2h) (55)

where h is the conformal dimension of O;. Then the elementary building blocks can be expressed of the form

(0102L_3O03)

Rur(hi, ho, hs) = (0,0,03)

(L O105L N O3)
(010:03)

Sar,n(hi,ho, hs) =

together with K ~1(h) representing the propagator, we can construct conformal blocks of higher order.

Such as, four-point correlation function on the sphere

R(hy, hs, h)K ' (h)R(h, ha, hy), (57)
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for five-point, it is
R(ha, hs, hp) K~ (hy)S (o, b, ha) K~ (ha) R(ha, ha, ) (58)

one point conformal blocks on the torus
Tr (K=Y (h)S(h, hi,h)), (59)

and for two-point case
Tr (K" (ha)S(ha, ha, hp) K~ (he)S(hy, b1, ha)) (60)

The full conformal block is obtained by multiplying each contribution with q]fl -+ gF» and adding up all contributions,
where the level of each contribution is fixed by the level of its internal propagators, k1, ko, ..., k,. For example, for

the five-point conformal block on the sphere and the two-point conformal block on the torus, we have

f;ﬁ% - 14 (*h1+h2+h2ah)§h3+ha*hb) a1+ (*h4+h5+hgb}3£h3*ha+hb) go+ -
hi+hqa—hy)(ha+ha—h hi—ha+hy)(ha—ha+h
]_-g2£t1 _ 1+ (h1+ b2)h(a2+ b)ql + (h1 + zé)h(bz + b)q2 +... (61)

3.2 General Toda theory properties

The Lagrangian of the sl(n) conformal Toda Field theory is given by

n—1
1
L= = (00)2 +p Y cHlen?) (62)

8T P
Let ¢(2) = (¢1(2),- -+ , ¢n(2)) be free bosons which satisfies the operator-product expansion: ¢;(2)¢x(0) ~ §7% log(z).
w1 is the cosmological constant, b is the dimensionless coupling constant. Denote h as the Cartan subalgebra of a Lie
algebra g (here it is sl(n) ),and h* its dual. «j are the simple roots of sl(n), p is the weyl vector (half of the sum
of all positive roots),and (-,-) denotes the scalar product, (-,-) denotes the pairings between h and h*. The Cartan

matrix Cij = (Oéi, Oéj) is

2 -1 0 ........ 0
-1 2 -1 ........ 0
0 =1 ...
Cl] = 1 0 (63)
0 ........ -1 2 -1
0 ........ 0o -1 2

The action is obtained by integrating the Lagrangian in reference metric §° on a surface with curvature R,

n—1
5= [&ai (;Tgab(aaqs, o)~ LYigh 1y eb(ak’¢)> (64)

™
k=1

The chiral field ¢ has the mode expansion

an _,
¢(2) = ¢o +aglogz— Y 2" €h (65)
n#0 n
The correlator in SU(N) Toda field theory is given as the conformal block for Wy algebra which consists of the
operator algebra chiral operators W(S)(z) with spin s = 2,---, N. It has a free boson representation [51].
N d d\N*
Ry =: — —i(hy, O, D= W) — . 66
v =1L (@ ~itm0:0)): = w0 (07 (66)
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hpm are vectors in RN and defined by (h;)y = d;5 — . Since it satisfies 3~ _ (hj)m = 0, a component of ¢ is
decoupled. The definition (66) gives W () (2) = 1 and W™ (z) = 0. The Virasoro generator is

<N—1 N -3 N -1

- ) (67)

(2 = ..
W (Z) 2 ) 2 ) ) 2

N | =

N—-1
H(0:0)7 1 —iQ(p, 020), p= ) wi=
=1

which has the central charge ¢ = (N — 1)(1 + N(N + 1)Q?).

Spinless primary fields field parameterized by (n — 1) component vector parameter (3
Vs = e8:9) (68)

are the essential objects of Toda Theory. Their multipoint correlation functions

(Vo (21,21) ... Vg, (21, 21)) = /[D¢]€_3Vﬂ1 (z1,21) ... Vg, (21, 21) (69)

are one of the most important problems in Toda field theory.This problem is nontrivial due to the exponential
interaction term in the Lagrangian. However, if pertubatively expanded in in cosmological constant u, correlation

functions are equal to zero unless the on shell condition is satisfied
l n—1
D Bi+bY swor=2Qp (70)
j=1 k=1

with s, some non-negative integer.

After performing the zero mode integral[52], we arrive at

n—1 _ Sk
<V51 (21,21) ... V3, (z1,21)) = bnl_l /[’D(ﬂe—so l H I'(—sk) (,u/eb(ockﬂb)) Vs, (21,21) - .. Vﬁ,(217gl> (71)

k=1
with
_ Q- 8) n
(= 02 (72)
wy, being the fundamental weights of sl(n), and the integration is performed over the free massless fields
1
So = — [ (0atp)?*d>x. 73
o= 5 [ (OuoPs (73)

4 AGT conjecture

In [1] Alday, Gaiotto and Tachikawa pointed out that Nekrasov partition function is identical to the correlation
functions of Liouville theory when the gauge group is SU(2). It takes the form (here we give example of n-point

function on sphere):

(Vi (00) Vo1 (D) Vi—a(q1) - - - Valqr -+ - 4n—3)V1(0))

= Z C(V1V2V1 '.'C‘/n73vn71‘/nfl|‘FV1V2U1"'U7173Vn71Vn (21"" 7Z7L)|2 . (74)
Y1, hn_g

Here the product of the constants Cy, vy, etc. are from the 3-point functions. For Liouville case, it is given by DOZZ
formula [44, 45, 46, 53, 54, 55]. The function F carries the coordinate (g) dependence and reflects the contributions
of the conformal descendants. It is the conformal block we mentioned before.

In order to give the identification of partition function with the correlator, we need some identification of pa-

rameters: a,m <> « and the coordinate ¢ in CFT is identified with the coupling constant ¢ = €™ in Yang-Mills.
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Here o € RY is a parameter which appears in the exponential of the vertex operator V,, = e(®® inserted in the

correlator.

Namely, on the one hand, The Nekrasov’ partition function is
Zal(T, @, M5 €) = Zelassical Z1-loop Zinstanton - (75)
On the other hand,
Liouville correlators = (Three—point functions) x (Conformal blocks) (76)

We will see that Zinstanton corresponds to conformal blocks, while the integration of Zy,; corresponds to Liouville

correlation functions.

4.1 Instanton sums and conformal blocks correspondence

Sphere with four punctures We have encountered the general expansion of Zi,g. Now for U(2) theory with
Ny = 4 flavors

U(2),Ns=4 > Lo Lo Lo Lo Lo
Zinét) == Z q‘YlZvector(aa Y)Zantifund (a7 Y, Nl)zantifund (a7 Y, ,UZ)qund(aa Y, ,US)qund (aa Y, ,UJ4)~ (77)
Y

d@ = (a1,az) is the adjoint vev of the U(2) gauge multiplet, p1 o are the masses of two hypermultiplets in the anti-
fundamental, and p3 4 are those of the fundamentals.
Redefine:

H1 = mg + Mo, H2 = Mg — My, H3 = mi + myq, fa =M1 — MNy. (78)

And decouple the U(1) part

ZU(2),Ny=4

inst

(a,mo, 1itg, my, 7in1) = (1 — q)2m0 (@m0 Fg ™0 57, (g) (79)

Surprisingly, it is Checked 2 that Fs,"° 3™ 5,(q) is the conformal block of a virasoro algebra with central charge

c =1+ 6Q? at position oo, 1,q,0, and an intermediate state operators of dimension

Ay = Bo(Q — Bo), Ao = mo(Q — myo),
Az =m1(Q —my), Ay = p1(Q — Br), (80)
A=p(Q - B).

Sphere and torus with multiple punctures For the multi-punctured sphere, again let us first redefine the
masses,

M1 =Mmg + Mo, p2 =Mmo— "o, M3 =My +M1, g ="y —M1. (81)

Decouple the U(1) factor

U(2) li i - i
Z B e AN (g my i) = 28O I (g ) Fg 05, g T (@1, Gy ) (82)
Here Fg,™05,™* -3, "3 ..(q1,q2,--.,qn) is supposed to be the conformal block of Virasoro algebra with central
charge ¢ = 1 + 6Q? for a sphere with n + 3 punctures at oo, 1, ¢1, ¢ig2, ---,q1G2 - qn, O.,

the corresponding operator dimensions are respectively

BO(Q_60)7 mO(Q_mO)7 ey mn(Q_mn); ﬂn+1(Q_5n+1) (83)

2Up to order ¢'! in [1].
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and for the i-th intermediate channel, it is 8;(Q — 53;).

Likewise, for the torus with multiple punctures, we have

U kla i

ZinSEZ) necklace qulver(qi; ai ml) _ ZU(l) neCk]ace(Qi; mi)Fﬁlml g My, ((J1, 92, . . . ,Qn) (84)
Fp,™ -5 ™ (q1,q2,-..,¢n) is the conformal block of Virasoro algebra with central charge ¢ = 1 + 6Q? for a

torus with multiple punctures at

1, @1, q1q2, ---, @1q2- - qn—1. The operator at the i-th puncture has dimension m;(Q — m;), while for the i-th

intermediate channel it is 5;(Q — 5;).

4.2 Liouville correlators and the full partition function

Sphere with four punctures For a Liouville theory on a sphere, the four-point correlation function of V' at

positions oo, 1, ¢,0 is[53, 55]
s

2

(V3 (00) Ving (1)Vim, (0) V3, (0)) :/%C(ﬁg,mOaﬁ)C(ﬁ*vmlaﬁl)’qAB_Aml_Agl]:ﬁomo,@mlﬁl(Q)‘ - (89)
Where C(f1, 52, 83) is the three point function given by the DOZZ formula we have seen.
* 2/4— — 2
s = F(55) £ ma)f(m) £(80) [ a2/ =50 | [ a?da| 25,55, ) (50)
where 8/b
o1 —
F(8) = [ruy@p= "] r(28) (87)
and TITa (o + o + a + Q/2) [[ Doy + 171 + a + Q/2)
—a2 2{Mo =My T a 2(m1 =My = a
Z mo M1 — a F mo M1 . 88
808" 8 (1) = ¢ T(2a+ b)Ts(2a + 1/0) B0 08" 8 (q) (88)
The above equation can be transformed into
mo _m1 _ —a? 1-loop 1-loop 1-loop 1-loop 1-loop mo _mi
ZfBO B B1 (q> =49 X Zyector (a)zantifund<a7lu’l)zantifund(a7p’2>zfund (a7lu3)zfund (CL, /“1’4)]:/80 B B1 (q>
= ClassicalZl—loopZinstanton (89)

= Ztunl

As a result, the four-point function of Liouville theory is proportional to the integration of Nekrasov’ partition
function[10].

(Vo (50) Vino (1)Vims (9)V, (0)) ox / a2da | Zs,™ 5™ 5, () (90)

Sphere with multiple punctures More generally, the multipoint correlation function in Liouville theory has its

gauge field interpretation through a sphere with multiple punctures

<Vﬂ0 (OO)Vmo (1)Vm1 (Q1) T an (ql T qn)VB,,L+1 (O)> =

Cf(ﬁo)f(ﬁnﬂ)Hf(mi)/H(afdai)lZﬂom%lml g M (@) (O1)

with Zg,™03,™ -+, ™5 . (¢;) being the Nekrasov’s full partition function. The torus case can be solved in a

similar way.
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4.3 SU(N) generalization

To be more explicit, for the specific example of SU (V) gauge theory with Ny = 2N fundamental matter, the relevant

Toda correlator is written in the form

(Vs (00)Vay (1) Vs (9) Vi, (0)) (92)

where the insertion of screening operators is necessary for the charge conservation. The conformal block of this

correlation function is written in the form,
-7:044,043’0121041 (Q) = Z Q‘YlN;'EOda(OZIu 2, (3, a4) . (93)
Y

It is known that the four point function of Toda theory can be obtained for special choice of parameters [8, 9], namely
the two of the vertex operator momentum (say «s and «g3) should be proportional to either wy or wy_1 where w;
(i=1,--+,N —1) is the fundamental weight of Ayx_1.

AGT conjecture for SU(N) [5, 6] implies that partition function and the correlator are the same. In particular

it implies,
N;;‘St(cuu) = N}?,Oda(al, g, a3, Qy), (94)
if we identify the parameters,
a=a; p=-a1—(1-PB)p, fi=-as—(1-p)p; (95)
where p = (p1, - ,pun) and & = (un41, -, Hon) are mass parameters of vector multiplets. a = a3 + as +
B, Naeat+ (1) = —(ag+az+B8Y, Naea+(1—3)) is the momentum which appears in the intermediate channel

(N, and N, are the numbers of screening charges and e, is the simple root of A N-1)- Weyl vector p = Zfi;l w;

shows up to represent the corrections of the background charge. As explained, we choose as and a3 to be proportional

to w1.

We focus on this “identity” in the following.

5 Dotsenko-Fateev integral

To understand Dotsenko and Fateev’s idea on screening operators, we first recall the simple action of curvature
coupled scalar field (37). Through the shift of the scalar field ¢ — ¢ + o, the variation of action is [43]

58 = % / d2x\/gR. (96)

According to Gauss-Bonnet’s theorem, for a 2D Riemann surface with genus h,

/ d*z\/gR = 87m(1 — h) (97)

In the case of sphere, h = 0, so
55 = iQgpo. (98)

Since the action S(y) and the functional integral measure D is invariant under the shift of ¢, it is easy to find that

the correlation function satisfies

<ea1ip(21751) o eath(ZN75N)> _ e(Ef;l ai—chpo)<ea1ga(z1,21) L. eou\/‘P(ZN,ZN)>7 (99)
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it will become zero unless

N
> ai =iQ. (100)
=1

For later convenience, let us set Q@ = i2ap, so that the central charge is ¢ = 1 — 24a2 and the conformal weight is

A = o? — 2aag. We construct an nonzero correlator
<V041V052 VOés V(X4> ) (101)

with >~ a; = 2a. we want all the operators to have the same conformal dimension A, if they are to be identified as
a single physical operator.So we are offered with the choice between V,, and Van,—a. If @9 = 0, such a function can
be easily found

(VaVa Voo V_a) (102)
in the case of ay # 0, even if we turn to functions like

<VaVaV2(x0—a‘/2ao—(x> ) (103)

<VO¢VO£VO¢V206070£> 9 (104)

apprently > a; = 2ag cannot be satisfied. However there is a method to make the above correlators nonzero. There
are two nontrivial operators which can ”screen” additional charges. Such screening operators should have conformal
dimension A = 0 so that they do not change the conformal properties of the correlator. A local operator with A =0
is an identity operator of the algebra. Here it has two representatives, V,,, (z) and Va,, (2). But neither of these could

provide the necessary screening. There remains the possibility of the integral operators like

2mi

O- / % o). (105)

For the operator @ to be conformal invariant, the operator O(z) must have A = 1. We take O(z) = V,,(2) =: e*?(*) .

, with the conformal dimension
Ay = a? —2aag = 1. (106)

Thus its OPE with the stress tensor becomes

L 0ww) + ——0,00) + - = d(—

(z —w) z—w z—w

T(2)O(w) = Ow)) +--- (107)

So as long as the boundary contribution is ignored, we have

7(2), / % o) = 0. (108)

2mi

This means Q commutes with the Virasoro algebra L,,. There are two solutions to (106),

ar =apt/ad+1 (109)

So there are two screening operators

0 :/%Oi(z), 0.(2) = Vi, (2). (110)
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In the case of (104), we have > a; — 2ap = 2a, which can be canceled by adding Q4 , with « quantized:
200 = —na_ — mag. (111)
In general, the 4-point function will have the following form

<¢n m(zl (bnm 22 ¢nm Z3 ¢nm 24

=2 /d“” 1/dvl /dvm = (Vo (21) Vi (22) Vi (23) Vi (24) O— (1) + -+ O— (1) O (v1) -+ O (U —1))

2mi 2m 27 2
(112)
This is the famous Dotsenko-Fatteev integral.
5.1 Application on SU(N) Toda field theory
The primary operator of Wy algebra is given as the vertex operators:
Va(z) =: el@9() . (113)
which has the OPE with the Wy generators as
wi (o _
Wi(2)Va(0) = v, (0) + 0+ (114)
with
1 .
wg(Oé) = A(O[) = 5(04, OL) + ZQ(pv a) ) (115)

g

==
—

o
S—

Il
—

|
—_
N
>

> H Q(k —m) +i(hi,,a)). (116)

1<i1 << <nm=1

As discussed above, in order to derive non-vanishing correlation function of the form (Vz, (z1) -+ Va,, (za)), we

have freedom to insert screening operators,

d d
Qi — /i,vj(i)(z) :/72. ot (e.0(2) . (117)

211 21

By the requirement of conformal invariance, we(a) = 1, we need to put we(ase;) = 1. By writing Q = ib — i/b, the
two solutions are ay = b, a— = —1/b.

For the computation of four point functions (Vg, (00)Va,(1)Va,(q)Va, (0)) we insert N, screening currents inte-
grated along [0, ¢] and N, currents integrated [1,00]. This is a useful prescription to see the connection with the
Selberg formula [18]. For simplicity, we assume we need only the screening operators Q™) in the correlator. It gives
the Dotsenko-Fateev integral [13] for the four point functions,

Zpr(q) =
N—-1 q N, (o) Na
0D (200 () (o)) ] < /  bleadl(2)) dz) ( /  blead(2) | dz) .
a=1 0 1
(118)
For the charge conservation, this correlator has nonvanishing norm only when
dy +dy+ds+ds+0Y (Na+ Nadea +2iQp=0. (119)
a
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We apply Wick’s theorem to evaluate the correlator
<<; @1:8()) L (@nd(zn) >> = I Gi-=@, (120)
1<i<j<n

where e, are the simple roots of SU(N), and (,) the bilinear symmetric form on the space dual to the Cartan
subalgebra. To be consistent with the parameters introduced in the last section, defining @; = a; /b, 8 = b* , (118)

becomes
N-1 N, No+N, No+N,
Zoi(q) = ¢l02)/P(1 - g)lo=ea)/ HH/M@II/dz [T == x
a=1 I=1 J=N,+1 i<j

(121)
Ng+Ng N—2Ny+Ny Nat1+Nai1

(av1,€q asg,eq as,eq +1 -
< H (a) 1, ) (a) _ q)( 2 )(Zi(a) _ 1)( 3,€q) H H H (Z](a ) _ Zz(a)) B
a=1 i 7

Noticing that we do not include the 3-point functions in the correlator, so this expression should be compared with
the instanton contribution of Yang-Mills partition functions in AGT conjecture [17].

6 Selberg integral

In 1944 Selberg find a proof of a noteworthy multiple integral which now plays the role as one of the most fundamental
hypergeometric integrals [19, 20].

Selberg integral

27 T o o Tyt = )NCB+ (i = DY)y + 1)
A@)P [[a0 =)’ e =] (R ey o o ooy y (122)

[0.1]% i=1 i=1

When k =1 the Selberg integral simplifies to the Euler beta integral [56]

' I'(a)l'(B)
22711 = 2)P e = =21 R(a) >0, R(B) >0, 123
[amta-a) Tl @) > 0. R() (128)
Where k is a positive integer, z = (z1,...,zx), dz = dz; - - - dog, and
A)= ][] (zi—=)) (124)
1<i<j<k

the Vandermonde product.

For «, 8,7 € C such that

R(a) >0, R(B) >0, R(v) > —min{1/k, R(e)/(k —1),R(B)/(k —1)} (125)
which reduces to the standard definition of the gamma function
INa) = / r*te "dx, R(a) >0 (126)
0

upon taking (8, x) — ({,x/¢) (with ¢ € R) and letting { — oo.

Though the Selberg integral was largely overlooked at the time of its publication, now, nearly 70 years later, it has

been widely regarded as one of the most fundamental and important hypergeometric integrals. It has connections
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and applications to orthogonal polynomials, random matrices, finite reflection groups, hyperplane arrangements,
Knizhnik—Zamolodchikov equations and more, check e.g., [57, 58, 59, 60, 61, 62, 63, 64].

Here we consider its Ay_1 extension [19] (Ay_1 Selberg integral):

N-1 N, N-2
Sans = [ do T [|aG) P TI6) 0 -a)" | TTA@.a0) (127)
a=1 i=1

a=1
1 1
where [dx := [dz™M ... [de™¥~1. As indicated, the integral contains parameters @ = (uy, -+ ,un—1), U =
0 0
(v1,--+ ,vn—1) and SB. Similarly, Ay_1 Selberg average is the integration with the Selberg integration kernel,
1 N—1 25 o @ N—2 5
— (a) (a) _ Va (a) (a+1))|~
<f>ﬁ,r;,,8 = S /dm H {‘A X 1:1 1 x; ) ] X al;[l’A(:c T )‘ f(z) . (128)

6.1 Reduction to Selberg integral

In this subsection, we rewrite the Dotsenko-Fateev integral in the form of Ay _1 Selberg average for the product of N
Jack polynomials (see appendix A for a summary of relevant material and [65, 66] for further mathematical details).
In physics literature, Jack polynomial is the eigenfunction of quantum Calogero-Sutherland model and relevant to the
representation theory of Wy algebra. See for example [67, 68]. The appearance of the product of N Jack polynomials
reminds us of another line of recent developments [69, 25, 70, 24, 77] for the computation of conformal block where
the convenient basis for the Hilbert space is expressed in terms of Jack polynomial. In particular for f = 1, it is
expressed as product of N Schur polynomial. While the mathematical origin of the appearance of Jack polynomial
is different, there should be a good hint to be learned from each other.

Proposition 1 The integral (121) can be written in the following form (up to U(1) factor),

Zora Zq|Y<HJ(ﬂ) N a+> <H]<a) 2)> , (129)

-(53)

Here we have to explain some notations. Y is a collection of N Young diagrams, jy = is normalized Jack symmetric

polynomial. We introduced new parameters v,+ and uq+ by

Vat = (@2,€q), Va— = (a3,€4), Uat = (01,€4), Ua— = (4, €4), (130)

where we use a relation
Uat + Ua— + Vat +va- + B Y Cap(Ny + Np) =23 — 2 (131)
b

implied by Eq.(119) to define uq—. The Selberg average (--- )1 is taken with respect to these parameters, (--- )y =

(- Ve, 8- r,(f) and r( ) s related to the integration variables ;U( ) and yia) through

R =n? = Y =@ wd RO =50 -5 b= (132)
with p(o) = p,(cN) —p,(co) p( ) = 0. Finally v, == — ZS 1 Us—, and ’U(N a4 = Do UN—s)+-
In particular, when N = 2, the above reduce to (notice that v{_ = vy, = 0)
Zorw = S (0 n 0000 (0603 =) (133)

which was used in [11]. The proposition is a generalization of their result.
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Proof: Let us derive the proposition in the rest of this subsection. Following the procedure in [18] for SU(2), we
rename the integration variables in (121) zy =: gqz;, 1 < I < N, and z; =: y%, N,+1<J<N,+N,. Then

Eq.(121) is rewritten as a double average?,
N-1 ( N, N, N—-1N-1 ( No N
<<H {H(l—qxﬁ‘”)“a <1—qy;)>”a+} {HH(l—qx“‘) i)° B}> > . (34
a=1 \ i=1 j=1 a=1 b=1 \i=1j=1 A

where Cyp, is Ay_1 Cartan matrix,

2 a=>b
Cahp=4¢-1 a=b=+1
0 Ja—b>1,

and the Selberg average (---)4 (resp. (---)_) is taken over the variables xz(a’) (resp. yz( )) with parameters @, U4

(resp. U_,U_).

We change the second product in the integral (134) into exponential form

N-1 N, N, N-1
H HH(l_qmz(‘a)yj(‘b))CabB = exp{ﬂ Oabzln(l ( y]( ))}

a,b=1i=1j=1 a,b=1 i,j
N-1 0o
_ exp{ 3 Cuy qk (a) ~ (b)}
a,b=1 k=1
© L N-1 N-2
_ exp{ -8y % [2 Z B = > e =Y pEPﬁ,&““’] }
k=1 a=2 =

- exp{ 52 Zr(‘” <“>} (135)

In the second line, We performed Taylor expansion and rewrite the variables x,y by p,(ca) and p‘g’). In the last line,

we rewrite pg, pr by Tk ; (a)-

Likewise, we rewrite

N, 00 N /
H(l—nga))vaf exp{ ﬂz Z (a) Va— } :exp{ —ﬂqujzrl(ca)v;g} . (136)

In the second equivalence we change the basis from p,(ca) to r,ga). The coefficients v/,_ are determined from v,_ with

N-1

an additional condition vj_ := 0 which is somewhat arbitrary. Similarly,

N-1 N, ( ) < g N v
Wyvat = LN pla) Zat
H_Hl_qy +_exp{_5zkz7~k 5}. (137
a=1 j=1 k=1 a=1
This time we define v, from another condition vy, = 0 for the convenience of later arguments.

Combining the above factors together, the integrand in (134) takes the form

N [0, Vhtaa) | Vhe | Vhs Vo }
expy — B ) — (r® + 25 (7Y + )
{ kz_‘:’fz_:l[ EUBR T BB ﬂ]
N N /
= [T -0ty T v (on” = S 37+ 50y (139
a=1 }'/' a=1

3The U(1) prefactors are omitted for its irrelevance to the Nekrasov function.
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where we have made use of the Cauchy-Stanley identity (269) for the Jack polynomial in the second line

1
exp(B ) 7 prph) = ij ')y (v (139)
k=1

So the conformal blocks (118) finally becomes
N

= N 7} /
H(1 _ q)v;w;f/ﬂ ng <(111j)(€)(_r1(€a) _ > <H3(B) %* )>_ ) (140)

a=1

Absorbing the prefactor into the U(1) part of the product, we arrive at (129). QED

6.2 Known results and a conjecture on Selberg average

The Dotzenko-Fateev integral is now reduced to the evaluation of Selberg average of N Jack polynomials. Before
evaluating that, let us first summarize the known results on Selberg average in the literature.

SU(2) case: The relevant Selberg averages for one and two Jack polynomials were obtained by Kadell [14],

(W), " - NPl + M 2 Pl , ()
wed ] (B = i)+ (Yi— )+ B)[u+ v+ 2N +2 - 28]y
(4,§)€Y
(8) (8) SU(2)_ [U+Nﬂ+1—ﬁ]A[U+Nﬁ+1—ﬂ]B
<JA (p+w)Jy (p)> = T NBulut o+ NF 12270 (142)
N . . N . . N . .
(4= 45+ G =09) 11 (B - B+ (- 05) ) [[(u+vr28N42-(1+i+))8 )
N . . N . . N . . ’
g(u+v+25N+2+Ai+Bj—(1+l+])ﬁ)ﬁ 1 ((]—Z)ﬁ)ﬁil;lj (G-08),
where we have used the following notation
[a= T[] @=8G-1)+5-1) =) fa(-2), (143)
(i,5)€A
and Pochhammer symbol
I(z+k)
@) =—7———=2x(z+1)...(x+k—-1). (144)

I'(z)
Jy # , the Jack polynomial, is related to normalized one jg,ﬁ ) as (267). Inclusion of a shift w of the argument for the

two Jack case was conjectured in [11]. Together with the identity ](ﬁ)( —p/B) = (—1)|A|j1(£,/5)(p) and an identification

of parameter w = (v + 1 — )/, these are sufficient to evaluate (129) for SU(2) case [11].

SU(n+1) case: The one-Jack Selberg integral for SU(n+1) could be calculated by the formula offered by Warnaar
[19]. To perform the integral, we need to restrict the parameter v as,

Vg =+ = Vp = O7 and V1 = 0. (145)

As already explained, in Toda field theory, this condition is necessary to solve conformal Ward identity for the
W-algebra [5, 8]. The formula by Warnaar is,

@), (m\\ VD (G —i+1)B)B,—B,
B0),e, = 11 G- 855,

(un a+1+"'+un+a+(Nn_a_i+1)B)Bi
i—1 (vn a+1+un a+1+ +un+a+1+(Nn+ana+l_ana_a_i)ﬂ)Bi ’

X

1<i<j<N,
N,

X ﬁ (146)

a=11
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To evaluate (129), we need Selberg average of (n + 1) Jack polynomials. While we do not perform the integration so
far, we find a formula for 3 = 1 which reproduces known results and satisfies consistency conditions*. As explained
in appendix A, the Jack polynomial for 5 =1 is called Schur polynomial and we write Jé,ﬁ ) lg=1 = xv-

Conjecture  We propose the following formula of Selberg average for n + 1 Schur polynomials,

. , SU(n+1)
<XY1 (_pl(cl) —v1) . XYy (pgg Y- p§€ ) - 'U;) s XYt (pgb))>ﬂ 7,8=1
_ ﬁ {(_1)|Y5\ % [vs + Ns — Ns_1]y: % H (G—i+ 1)Ys/i_ys/j } % H =i+ DY =Yt
ol [Ns + Ns—1]y: 1<i<§<N,_1+ N (G- Z)Ys’i—Ys’j 1<i<i<Ny, (- Z)Y(n+1)i*Y<n+1)j
y H { [Vt +ut + -+ us—1 + Ne — Ne—alyy o [—vs +ur + - +us—1 — N+ Na_1ly,
1<t<s<n+41 [ve —vs + e+ Fus—1 4+ Ne = Neen = Nolyy - [oe —vs +us+ -+ s — Neo1 = Ns 4+ Noaly,
Ny Ns—1 . .
" H H Ve — Vs + Ut + -+ Us—1 + N¢ — Ny—1 — No + No—1 + 1 — (i + j)
i1 el Ve —VsF+ur+ - Fus—1+Ne—Nemy — Ne+ No1 + 14+ Y/, + Y — (i 4 7) ’

(147)
with vy, := Y"_ v, = vd,1 after imposing the constraint (145).

a=r7

As we wrote, this formula seems reasonable since

o It reproduces the AGT relation as we will see in the next section.
e It is reduced to the known results for 5 = 1 with the help of (322),

(a) For Y1 =--- =Y, =0, and Y,,;1 = B, the above reduce to the A4,, one Jack integral (146).
(b) Forn=1,Y; = A and Y, = B, it coincides with the A; two Jack integral (142).

(¢c) Forn=2,Y; = R, Y, =0, and Y3 = B, the above is consistent with the A, two Jack integral (274) given
by Warnaar [20].

(d) For N,, =0, u, =0 and Y, 41 = ), the above reduces to the formula for A, _;.

Another type of consistency conditions is also considered. For the simplest case, we start from multiplying a
trivial zero factor v + (—pgl) —v)+ (pgl) - p?)) +o- 4 (pgn_l) —pi")) —|—p§") = 0 in the integrand of (147). We then
apply to each term a property of Schur polynomial,

pixa(Pr) = Y Xz(Pr) (148)
R

where the summation is over all possible Young diagrams which can be obtained from R by adding one cell. This

gives rise to a consistency condition for any combination (Y1, ,¥,11);
SU(n+1)
1 r—1 T n
v 0o (o = eD) oo Y =0 =)o 0
n+1 SU(n+1)
1 r—1 s n
#3030 ol =)o, 0 = =) 0)) =00 (149)
r=1 y_ sU,p=

While this looks trivial, the cancellation becomes rather nontrivial. We give a detailed computation for the simpler
cases, n = 2 (SU(3)) with Y7, Y5, Y3 being rectangle Young diagrams, in appendix C.

4 Actually we could guess a formula for general 3 (see appendix B) which reproduces the known results. While the formula looks quite
reasonable, it does not pass one of the consistency checks. It seems that some modifications up to the terms proportional to 1 — 3 are
needed.
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We may write easily some generalizations of (148) such as,

Xy (Pr)X R (Pk) ZXR Pr) (150)

where R/R is [n]. We hope that such series of consistency conditions may serve as a proof of the formula (147) in

the future.

7 Direct approach on AGT conjecture

7.1 AGT conjecture from Selberg integral

In the following, we present a ‘proof’ of AGT conjecture for SU(n + 1) case by using the postulated formulae for
Selberg average in 6.2. It is a generalization of the proof for SU(2) case in [11, 12]. As we already mentioned, what

we need to see is the coincidence of partition function,

Zinst(q) = Zpr(q) , (151)

up to U(1) factor but we would like to see the stronger condition, namely the coefficient Nt in the instanton
partition function (26) with the similar coefficient NT°d2 in (129)

inst __ arToda
Nipst = loda, (152)

We show that this stronger identity holds at § = 1.

We note that both coefficients have the factorized form:

inst — inst prinst Toda — Tod Toda
Nipst = NigstNipst - NTeda = yTodayToda (153)
with
1
NiPSt = HTH‘I Hn+1 fY (/.tk + aé) o {(1)|Y5 GYs,Ys (0) }
v P Gy, v (- as) o Gy, v.(1=5) "
inst HnJrl Hintlj-Q fY Nk + G,S o \Y | GYs,Ys (1 B 5)
Ng® = H e (154)
ti1 Gy,y. (e —as+1—0) - v.,v,(0)
and

Toda _ | TT () (o) _ ai T Gvv O /T e, @ Vi
Npi™= H‘] H nyl—ﬁ) HJ = kiﬁ)i. (155)

We remind that rl(f) = p,(ca) pl(ca v v ==Y 1 vs— and vy,
is to figure out whether the (n+1)—Jack Selberg integral has the same form with its Nekrasov counterpart for g = 1,

=30, U(N—s)4+- Lherefore, the problem left
Toda __ inst
N?j[ &= N?i . (156)

7.2 Special case: Y = (), --- ,0, B), arbitrary j

In the following, we prove (156) for ‘+’ part. Proof for ‘=’ is similar. We will omit the lower index”+" in v,4and

Ug+ as long as there are no misunderstanding.
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We start from the simplest case, when Y; = --- =Y, =0, Y,,,; = B. In this case, the Selberg integral is already

proved by Warnaar for arbitrary 8. So our proof for this case is exact and holds without the restriction of 5.

In the instanton part, we have,

inst ( )lB‘ Hn+1 fB(:uk + an+1)

N, . (157)
(@0.B)+ = VGi.e0)Ge (1 —B) 1 Gpo(@nt1 — am)
On the other hand, the one-Jack Selberg integral is given in (146)
n SU(n+1)
N %o pyy = <JJ(3 v ))>+
Gp.5(0) () \ SU (1)
= == J
GB,B<1 _ 6) X < B(pk )>
(158)

Gp.0(0) (= i+ )B)s. n,
T R ¥ S =y

n

xﬁH (Un—a—H+"‘+un+a+(Nn—a_i+1)ﬂ)Bi
riaiey (’Unfa+1 + Un—q+1 +~-~+un+a+1+(Nn+Nn,a+1 — Nn_a —a—i)B)Bi '

To see the equivalence, first we note that the function fz(z) in N'™* is linked to the notation [z]p by (143).
Then we need to rewrite G 4p in terms of (z)p in (158). For this purpose, we need the following lemmas which will

be proved in appendix:

Lemma 1 o N
H ((j —l+ )B)B,—B, _ C£ ﬁ]f(;) (159)
Lemma 2
N
[IG—i8)s = [w—,@]B (160)
i=1
Lemma 3
2] = (-1)/P!Gpy(—x+1-B) (161)
With the help of these formulae, we arrive at the results
NG = (387 0)) =
[Nnﬁ] ﬁ (_ )'Bl[un a+1+"'+un+Nnﬁ+a_alB]B
\/GBB GBB ].— am1 vn a+1 + Up— a+1+ +un+Nn6+ana+lﬁ_anaﬁ"i_a_aﬁ)).
(162)

This is equivalent to (157), with the identifications of parameters (where we have omitted the lower index”+” in v,
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and uq ) °

Pnt1 + App1 = — B,

/st+an+1:_(us+"'+Un+Nnﬂ+(n_S+l)(l_ﬁ))7

1t angr = —(ur+ - + NoB+n(l = B))

(163)
Ap — An41 :'Un+un+2Nnﬂ_Nn—1/8+l_/Ba
(s — Gpt1 = Vs +Us+ -+ Uy + NS+ NS — Ne_1f+(n—s+1)(1—-0),
ay — Gpy1 =01 +up + -+ Uy + NpS+ N1 +n(l - 8),
with the restriction vo = - -- = v, = 0 and v; = v. While this looks complicated, it is simplified in the vector notation
in R*HL
a:O[1+O£2+ﬂZNa6a+(1*5)p, Hzfalf(lfﬂ)pa (164)

where a = E 1 Yash; and p = va';l wih;. We note that a thus written can be identified with the momentum of the
vertex in the intermediate channel. This gives (95). Eq.(164) is the desired identification of parameters in SU(N +1)
AGT conjecture [5, 6]. We note that this holds for arbitrary f.

7.3 General case: arbitrary }7, 6=1

By interpolation method, we have derived that the (N + 1)-Schur Selberg integral has the form of (147):
At =1,
Toda
Ny

Vpd e U SU(n+1)

B
['U5+N — Ny 1]

= H { 1Pl . R LER H Ml)yl_yl?} < U =4+ Dyininyi=Yintny
s=1 [Ns + stl}ys’ 1<i<j<Ng_1+Ns (- l)YJfYJj 1<i<j<Np (- Z)Y(nﬂ)r”(nﬂ)j

B <XY1(fp§§)*(vl+~-+vn))- v (oY —p” — )---XYW,+1(p<k"))>

d1

i,

B

o H { [ve +up + -+ us—1 +Nt*Nt—1]Yt/ " [—vs +ut + -+ us—1 — Ns + No_1]y,
1<t<s<n+1 [w_U5+ut+"'+u3*1+Nt_Ni*1_NS]Y{ [vi —vs +ur + -+ +us—1 = Neer — Ns + Noaly,
XHH ’Ut—US+U1}+"'+US—1+Nt_Nt—1_N9+N9—1+1_(i+j) }
bl i 1Ut—Us+ut+"'+u571+Nt—Nt71—N5+N571+1+Yt'i+ysj—(i+j) '

(165)

Then with the lemmas (159) to (161) introduced in the last section and a new assistant (which only holds at 3 = 1),°

Lemma 4
A (z+1-(i+7)8), (—=1)1Bl[z — NoB+ 1 — Blarfz — N1B + 1 — B]5
HUHI @+ 1+ A[+B;— (i+1)B), Gap(2)Cpal—2) (166)

5There is some degree of freedom to choose the possible identifications.
6Check the appendix for the proof.
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Equation (165) transforms to

SU(n+1)
_ v’r‘ + “ee + Un
<XY1<p,§” (o)) o Y ) - ) .XYnﬂ(pé")>>
u,7,8
n
_ {(_1)Ys| o st N —Nsl]Y;} o Nalvais
e Gy;,v;(0) GYri1,Yu11(0)
y H [vt+ut+...—|—u8,1—|—Nt—Nt,1]Yt/ " [_(vs_ut_.-._qul—’_NS_stl)]Ys y (167)
1 1
1<t<s<n+1
1
X X
Gv.v,(ve —vs +ug + - +us—1+ Ny — Ny_y — Ny + Ny_1)
(=p)r }
>< .
GYS,Yt(_ (Ut — Us +ut + - +’U/S,1 +Nt - Ntfl - NS +stl))
Further notice that for g =1,
[2]ar = (- [=2]a = fa(x), Gaa(x)=GCaalx) (168)

(167) is equivalent to its Nekrasov counterpart (154) N;;‘j: at f = 1 with the identifications(163) and the following
(where we have again omitted the lower index”+” in v,4and g4 )
ap — s =0 — Vst U+ F g1 + Ny = Ny = No + Nooa
ps +ar =v+ug+ -+ us—1 + Ne— Ny
(169)
et as =vs —up— - —us1+Ng— Ng_1,
Us + as =vs+Ng—Ng 1,

where 1 <t < s < n. The above are of course in accordance with (163) and (164).

This implies AGT relation for SU(n+ 1) at 8 = 1.

8 Recursive approach for general beta case

In the above sections we found a formula for such Selberg average and show that it reproduces the SU(N) version
of AGT conjecture with 8 = 1. The only pity is that, our formulae for Selberg average are not based on explicit
evaluation but determined by consistency. So now we would like to turn to another approach, using the recursive
method.

8.1 Recursion formula for Nekrasov partition function

In this section, we present the accurate form of the formula (1) and then derive it from the definition (32). For
this purpose, we need to introduce some notations. We decompose Y, W into rectangles Y = (ri,--- ,7¢; 81, -+ ,5f)
(With 0 <7y < -+ <7p, 81 >--- > s >0, see Figure 3 for the parametrization). We use f, (resp. f,) to represent
the number of rectangles of Y, (resp W},). Furthermore, we write (with 79 = sx41 = 0);

AY) = Brici—sp—§& (k=1,---,f+1), (170)
Bp(Y) = Bri—sp, (k=1,---,f), (171)

where ¢ := 1 — 3. Ap(Y) (resp. Bp(Y)) represents the k*® location where a box may be added to (resp. deleted

from) Young diagram Y (Figure 4) composed with a map from location to C. v € C is an arbitrary constant.
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Y=/415 ksf@

Figure 3: Decomposition of Young diagram by rectangles. For later convenience, in this and the next section we

choose the notation where the diagram is upside-down compared to before

Y =412 H P Y9 kb

Figure 4: Locations of boxes

We denote Y (k1) (resp. Y(k’_)) as the Young diagram obtained from Y by adding (resp. deleting) a box at

VAL

re—1 + 1,85 + 1) (resp. (rg,sk)). Similarly we use notation YkHp = Yi,-- -, ,YNn) to represent the
P

variation of a Young diagram in a set of Young tables Y.

One can write the schematic relation (1) more explicitly. We define,

N fpt+1
S Z(@ Y0, Wip) = Y[ D (ap+v+ A(Y) AP (@, Y) Z(@ Y&, W )
p=1 k=1
o . .
S by + v+ BuW) ARG W) Z(@, Vib WDy | (172)
k=1
N I
S1:nZ(a@ Y0, Wip) = Y =D (ap+v+Bp(Y)"AS (@, Y)Z(@, Y™ )b, W; )
p=1 k=1
o Lo L
+ 3 (b + v+ p+ A (W) + AL (6, W) 2@, Y6, WD) ) (173)
k=1
where we introduced coefficients A:
N [ f 1/2
— 2 — -‘rAk(Y)—Bg(Y)—I—f 'fot+la, —a -‘rAk(Y)—Ag(Y)—f
A(k NG V) = ap — Qg P q P q p q 174
@Y) H H HZ:l ap — aq + Ap(Yp) — Ae(Yy) w)

21\ @~ ag + Ar(Yy) = Be(Ye)
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1/2

N [fot1

IR —aq+ By(Yp) — —&p/fa ap — ag + B(Yy) — Be(Yy) + £
ARG Yy = (T I 2= 1, =~ a (175
p Y =1\ =1 WAt By (p) ap — aq + Br(Yp) — Be(Yy) (175)

Prime in the product symbol ([]') represents that (¢,q) = (k,p) is excluded in the product. A parameter v is

arbitrary.
In order to define the polynomial Ui, ,, we introduce a generating functional for multi-variables, z1, -,z
Y1, -, YN, (the expansion around ¢ = o0),
N C—y 00
—YI _
II =1+ qulz,y)". (176)
7= 6 n=1

which gives the order n polynomial g,, in variables z; and y;. Uy, is written in terms of ¢, as

U—l,n = /871/2(]71,4-1(5% y)v Ul,n == [371/2%4—1(% y) . (177)
where we need make replacements of variables:

vy — {v+ A, v+u+Bi(Wy)}, yr = {v+u+As(Wy,) +& v+ Brp(Yy) —&F for U_y,, (178)
rr — {v+pu+AWy)+&v+Bi(Yy)}, yr > {v+Ax(Y,) + & v+ p+ B(Wy)} for Uy,. (179)

Here k,p run over all possible values and the number of variables is N'= N + Z;V:l( fo+ o)
We note that the right hand side of (176) is written as
N o N
o (32 i) ) = 3" ), (130
n=1 I=1

In terms of p,, the function ¢, is written as,

Lips+p2),- - (181)

g1 =p1, 42= B

and so on. In general it takes the form of Schur polynomial for single row Young diagram (n) written in terms of

power sum polynomial.

Let us give a proof of the recursion relation (1). It is based on a direct evaluation of the variations of Nekrasov

partition function which is given in the appendix.

By the formulae (334-341), the left hand side of (172,173) are written in the form,

g1 Z< e M (182)

I=1 HJ(xI - 'I:J)

with the replacements (178,179). We rewrite this expression in the form of the generating functional,

[T (s — 1 HNzl(xI_yJ)_NC_yI_
Z<Z<n+1> > Zg—x, ﬁ}(ml—xJ) == (183)

!
=1 \n=0 J(I_xJ

From the second to the third term, we need use a nontrivial identity [22] which can be proved by comparing the
locations of poles and the residue on both hand side. The third term takes the form of the left hand side of (172,173).

Comparing the coefficients of ¢ ="+ we arrive at the recursion formula (1).
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8.2 Symmetry algebra SH¢

In this section, we show that the structure of the one box variations in (1) has a nonlinear algebra which is denoted
as SH® in the literature [15]. It has generators D, ; with r € Z and s € Z>o. We call the first index r as degree and

the second index s as order of generator. The commutation relation for degree +1,0 generators is defined by,

[Dogs Dik] = Dijyr—1, 121,
Doy, D-1k] = —D_1p4k-1, 1>1,
[D_1x,D1y) = Egy LkE>1,

[Doi, Dox] = 0, k1>0,

where E}, is a nonlinear combination of Dy j determined by

1+ (1=8)) Es'™ =exp(d (=1 am(s)) exp(d  Dogyrwi(s)),

1>0 1>0 1>0

where

m(s) = s'Gi(1+ (1 - B)s),
wis)= D s(G(1—gs) = Gi(1+as)),

q=1,—f,6-1
Go(s) = —log(s), Gi(s)=(s"'=1)/1 1>1.

The parameters ¢; (I > 0) are central charges. First few E; can be computed more explicitly as,

Ey = co,

By = —c1+coleo —1)§/2,

Ey = cote(l—co)é+coleo—1)(co—2)€2/6 + 28Dy 1,

Es = 6BDg2+2coBEDg + -+,

E; = 128Dg3+6cofEDo 2 + (—coBE? + cifE” — 2¢1 86 +2 — 46 + 462 —26%) Doy + - -
where - -- are terms which does not contain Dy ;.

Other generators are defined recursively by,

1 1
Dij10= 7 [D11,D10], D_j_10= 7 [D_10,D_11],

D, = [Do,1+1, D] D_,;=[D_r0,Do,+1] -

for{ >0,r>0.

Some of the basic properties of SH® [15] are following:

e The algebra has a natural action on the fixed points of localization in the moduli space of SU(

It can be derived as a singular limit of double affine Hecke algebra (DAHA) [27].

When  — 1, the algebra reduces to much simpler algebra Wi .

It has close relation with the recursion relation among Jack polynomials.
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(184)
(185)
(186)
(187)

(188)

(197)
(198)

N) instantons.

For general 3, the algebra contains Wy algebra when the representation is constructed out of NV Young diagrams.



8.3 Introduction of the basis

The SU(N) generalization of AGT conjecture implies that the partition function (28) can be written as the conformal
block of n+3 point function of SU(N) Toda field theory where the Hilbert space H is described by chiral W, algebra
with U(1) factor.

The conformal block can also be illustrated by Figure 2. It can be reduced to the multiplication of three point
functions by inserting a complete basis of the Hilbert space at the intermediate channel. In Figure 2, insertion points
of such operators are depicted by arrows. In W,, +U (1) system, the basis of the Hilbert space is labeled by N Young
tables Y. Then it may be possible to choose such basis such that the factor Zy v in the previous section may be
rewritten as Zg yp ~ (Y|V(1)|W) with some vertex operator V. The existence of such basis was formally claimed
in [23, 24] for general 3 in terms of Jack polynomial, but the explicit form was not given except for some simple

examples.

An exceptional case occurs when 8 = 1 and the system is described by N pairs of free fermions ( appendix G ). In
this case, there is a reasonable guess on the explicit form of |, ?) [25, 70] as a product of Schur polynomials, namely

Y) ~ H;\Zzl Xy - (See also [77] for a similar analysis.)

Now for the general 8 case, to see the relation with (1), we introduce a Hilbert space Hz spanned by an basis
|@,Y) where @ € CN and Y = (V3,---,Yy) is a set of N Young tables. The dual basis (@, Y] is defined such that

(@ Yo, W) = b 3,0(d@ —b). (199)
Inspired from 8 =1 case, we DEFINE the action of D41, Dg; on the ket and bra basis as,
N fq
Doy, W > = (=1)" >0 “(bg + Be(Wy))' AL (W) b, W0 > (200)
g=1t=1
N fqt+1
Db, W > = (=1)'Y > (bg + Ad(Wy)' AL (W) o, W > (201)
qg=1 t=1
N
Dousilb W > = (=1'S0 ST (b + c(w)! 5 W >, (202)
q=1 peW,
N f+1
@YDy = (1" (ap+ A(Y) AP D (V)@ Y| (203)
p=1t=1
N f
@Y[Drs = (=1D)'Y ) ap+ Bi(Y) AL (V)@ Y7y, (204)
p=1t=1
N
(@Y Dosyr = (=)' (ap+c(u)(@, Y], (205)

kS
Il
-
*
m
<

where ¢(p) = Bi — j for pu = (4, 7).

With such definitions, we claim that the action of D, ; on the ket and bra basis satisfies SH® algebra with central

charges

SN g — &)t (for ket)
‘o { szav:l(aq - &)t (for bra) (206)

We note that the “central charges” depend on the label a, b in bra and ket state in general except for ¢cg = N. Of

-,

course, when the inner product between them becomes nonvanishing (@ = b), they coincide.
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Up to overall sign and shift of parameters a, — a, + v and b, — b, + u + v, the coefficients which define D4, ; are
identical to the variations 611, in (172,173). This observation suggests that the partition function may be written
as an inner product of the basis (@ + v&,Y| and |b+ (v + p)& W) (€:= (1,--- ,1)) with some operator insertions,
and the recursion formula should be regarded as the Ward identity for the symmetry algebra SH¢. We will pursue
this idea in the following.

Actually there exists a small mismatch in the above observation. The coefficient appearing in (173) is shifted from
the coefficient in (201) by £. As we see later, this factor will be canceled by slightly modifying the vertex operator

inserted between two basis. Namely the vertex operator is not primary due to the U(1) factor.

We need to perform a lengthy computation to confirm that the action of Dy;; indeed gives a representation of SH®.
See appendix H for some detail.

8.4 Comparison with Wy,

For general value of 8, SH® is a complicated nonlinear algebra. Simplification occurs when we choose parameter

B = 1. In this case, the nonlinear algebra reduces to a linear algebra Wi, ... It is an algebra of higher order

differential operator z"D™ (n € Z, m = 0,1,2,---, D = z0,). Then a quantum generator W(z"D™) is assigned to
each differential operator (say z"D™) and satisfies the algebra with a central extension,
me _ ,ny
[W(ZnemD), W(ZmeyD)} = (e™® — eny)w(zn+me(z+y)D) _ C%(Sn—&-m 0. (207)
erty — ’

The connection between SH® and W ;o was already explained in appendix F in [15]. In our previous paper [22], we
use the explicit action of Wi generators on the free fermion Fock space and have shown that Nekrasov partition

function satisfies a recursion formula associated with the symmetry.

Here we make a direct comparison of the action of Wiy algebra on the free fermion Fock space in [22] with the
corresponding action of SH¢ (200-202). For simplicity, we consider N = 1 case.

f

W(zDYa,Y) = (—1)IZ(CL—|—Bi(Y)—1)l|a,Y(i’_)>7 (208)
o

W(E'DYa,Y) = (-1)') (a+ Ai(Y))|a, YD), (209)

i=1

We need rewrite A in [22] with —a here. This implies the correspondence in the f — 1 limit:

D_1; = W((D+1)) =W(D2), (210)
Dy < W('DY. (211)

One may proceed to see the correspondence between the generators in Wiy, with those in SH¢. The recursion
formulae and the Ward identity obtained in [22] can be obtained from the corresponding formulae in this paper by
taking the limit § — 1.

8.5 Heisenberg and Virasoro algebra in SH¢

In the following, we focus on the important subalgebra in SH¢, namely the Heisenberg (or U(1) current) and Virasoro

algebra. They are important since we can make the explicit evaluation of Ward identity because the higher generators
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in general have nonlinear commutation relation with the vertex operator.

Generators of Heisenberg (J;) and Virasoro algebra (L;) are embedded in SH€ as [15],

Ji=(=vB)"'D_ro, Jor=(—/B)"'Do, Jo=E1/B, (212)
Ly = (=V/B) ' D1 /14 (1 = el Ji/2
Loy=(=VB) ' Dia/l+ (1= )egt T 1/2,

Lo =[L1,L_1]/2=Dy1 + % (02 +c1(1—c)é + %CO(CO —1)(co — 2)> . (213)
The commutation relations among these generators are the standard ones,
[Jn, Im] = %&wm,m (214)
[Lny Im] = —mJptm, (215)
(Lo L] = (n—m)Lpsm + 1—62(n3 — 1)Bntm.o (216)

The derivation of these simple formulae from SH® commutator is nontrivial since in the commutation relation of SH€,
we have generators with degree= +1,0 while J,,, L,, have degree n. Proof of the first line is given in [15]. We need
derive the commutation relation among them recursively. The confirmation of Virasoro algebra is much more tedious
but we give the explicit computation of [La, L_5] in appendix I. This particular commutation relation is important

since it implies the central charge of Virasoro algebra is related to those in SH€ as,

— B2 oo —cob +af?) =1+ (N=1)(1—Q* (N +N)), Q:=B-B =-8"%.  (217)

1

c=—
5
This is the central charge for a combined system of Wy algebra and a free scalar field. It motivate us to propose a

free field representation,

~
—

I
-

I

N
Z Jaz "= 5723 000 (2), (218)
=1

T(:) = Z( @6 - Qpi0*e () (219)

with
: @) oy
0D (2) = ¢ + ag” log z - ZE:AAA* -, (220)
n#0
[O(,Eli), Oégrjl)} = n5n+m,05ij ) [Oé,%), q(j)] = 5m,05ij . (221)

Eqgs.(212, 213) imply

Jol@,Y) =

1
B
LO|&" }7> = (

We assign the eigenvalue of oz(()i) on the state |d, Y') as

(— S (- 6) + ’EN“Z‘”) @), (222)

71+ 55 (Z(ai —OPH (= N)EY (e —©) + %N(N —HWV - 2))) @v).  (223)

i
VB

With such assignments, we can rewrite (222, 223) in the more familiar form,

of1@, V) =pild@,Y), pii=——=—Qi, i=1---,N. (224)

7 (7 —2Qp)

L o . L o Lo > Lo
Bl Y) = 5 @@ Y), Llay) = (VI+a@)ay),  Aw =" (225)
where p; = % — 4. A(p) is the conformal dimension of a vertex operator : e?? :.
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9 Nekrasov partition function as a correlator and Heisenberg-Virasoro

constraints

In the previous sections, we have seen that the recursion formulae for Nekrasov partition function takes a form of
the representation of SH algebra in terms of the orthonormal basis. We have also seen that SH algebra contains
Heisenberg and Virasoro algebras as its subalgebras.

As mentioned in section 8.3 , we observe that AGT conjecture can be proved once we prove the relation
Z(@,Y b, Wi ) = (i@ + v&, YV(1)[b+ (€ + v+ p)e, W), (226)

with the orthonormal basis |@,Y) defined in previous sections and a vertex operator V. Existence of such basis was
formally proved in [24]. The vertex operator is factorized as V = VHYW where VW is the vertex operator for Wy
algebra and V! describes the contribution of U (1) factor. Furthermore it is known that the correlator of Toda theory

is calculable only for the special momenta.
ﬁ: —/ﬁé} or ﬁ: —lié}v, 51:(170,--'70), gN:(O,---7O,1). (227)

The new parameter  is to be determined later. For the convenience of the computation, we take the latter choice.
VH and VW in the decomposition should be written as,

VH = o~ REE YW — o~s(@EN-R)F (228)

for p taking the second value in (227). This form of Wy vertex operator is also important in the context of AGT
conjecture. VWV is a vertex operator corresponding to the so-called simple puncture. As we see, we need modify vH

to meet the behavior of U(1) factor in AGT conjecture.

The relation (226) can be established once one proves that the partition function Z satisfies the recursion relation
which defines the right hand side [22] . Namely,

0= (<d+ V€7?|Dn,m)v(1)|5+ (§ +v+ U)a VT/>
—(@ + V&Y | Dy, VD] b+ (§ + v + p)&, W) = (@ + vE, Y V(1) (Db + (€ + v + p)&W)) . (229)

The right hand side gives the Ward identity for the conformal block. One may translate such relation into a recursion
relation which Z should satisfy if we use the relation (226). It may sound strange to use the relation to be proved.
Here we use it as the assumption in the inductive method. It is obvious that the relation (226) holds for the trivial
case Y = W = § with a proper definition of the inner product. General relation (226) will be obtained through the
Ward identities by induction.

As we have seen, the recursion relation for Z exists for n = £1 and arbitrary m > 0. Other relations should
be derived from them. On the right hand side of (229), we have already defined the action of D,, ,, on the basis.
A problem is that the commutation relation with the vertex operator cannot be written in the closed form except
for Heisenberg and Virasoro generators. Thus we focus on these cases in the following though it is not sufficient to

complete the inductive proof.

9.1 Modified vertex operator for U(1) factor

While the definition of the vertex operator for Wy algebra is well-known, those for U(1) factor V¥ is somewhat

tricky [1, 24, 74].” We give a brief account on the construction.

"We thank V. Pasquier to point out this important fact.
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The free boson field which describes the U(1) part is given by the operators J,, defined in the previous section.
With

Qp =/ ﬂ/NJna (230)

we define a free boson field as,

oy
A

$(z) =q+aologz— ) %z*" =—. (231)
n#0

=

We modify the vertex operator V! for the U(1) factor as,

VI (z) = e 9w N0 o Txmts (232)
N, N,
QS_,_:onlogz—nZl?z , ¢_:q+nz_:172 . (233)

Such definition of modified vertex operator is needed to reproduce the contribution of U(1) factor in the correlator

8
)

VA - VIE)=]]G-z)" & . (234)
i<j
Due to the modification, the commutation relation with U(1) current (Heisenberg generator) becomes asymmetric,
1 m -1 —n
[, VE(2)] = W(NQ —k)2™"VH(2), Ja_,,VI(2)] = ﬁnz VE(2), (235)
for m >0, n > 0.

Unlike the standard definition of the vertex operator V =: e*? :, the conformal property of the modified vertex
becomes rather complicated. It is, however, helpful to understand the recursion relations (1) which has some anomaly

as well. We define the Virasoro generator for the U(1) factor as,

1
L = 3 > w1 (236)
m

which has ¢ = 1. The commutator of the total Virasoro genrators L, = LI + LW with the vertex V,(z) =
VH(2)VV (2) becomes,

2 n
[Ln, Vi(2)] = 2"10.Vi(2) + %(n +1)2"Vi(2) + VNQ Z 2"V (2)am + (n+ 1)2"Aw Vi (2), n > 0(237)
m=0

2 In]
[Ln, Vi(2)] = 2"M0.Vi(2) + ;—N(n +1)2"Viu(2) — VNQ Z 2", Vie(2) + (n 4+ 1)2"Aw Vi(2), n <0, (238)

m=1
where Ay = w - % is the conformal dimension of Wy vertex operator V' with Toda momenta
p=—k(én — %) as in (228). The anomaly due to the modification of U(1) vertex manifests itself through the third
term on the right hand side. We write the commutator for the special cases n = £1,0 for the convenience of later

calculation.
2 (NQ — k)*
(L1, Ve(2)] = 220:Vile) + ——5——2Va(2) + VNQzV(2)ap + VNQVi(2)ar 4+ 22Aw Vi (2),  (239)
NO — 2

(Lo, Vi(2)] = 20.Vi(2) + %VH(Z«) +VNQV,(2)ap + Aw Vi (2), (240)
[L_1,Vi(2)] = 0.Vi(2). (241)

In the following, we examine the relation (229) for Heisenberg (U(1)) and Virasoro generators for D, p,.

8Compared with the reference [24], we included the zero mode to modify the commutator with the Virasoro generator.
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9.2 Ward identities for U(1) currents

We start from examining the case n = 0 which can be interpreted as the Ward identity for Ji1,

—

+(E+v+ P W) — (@+ve, YIV(1)(Jualb + (€ + v + p)e, W))
10)E, W) . (242)

(@ + ve, 17|Ji1) V(1 )|
= (@+ve,Y|[Je, VA b+ (E+ v+

By the definition of the representation of SH¢ algebra (212, 7?7, 200) and the vertex operator (235), the action of J;

on the bra and ket basis and the commutator with the vertex operator are given as,

N fp+1
@+ve Yl = (=VB™), Y EH P A (), (243)
p=1 k:l
. N fp
Ao+ (E+v+peaW) = (=B DD ALIW) b+ (€ + v+ pe W), (244)
q=1 /=1
J,Ve(1)] = —=(NQ-k)Vx(1 245
[J1, Vie(1)] \/B( WVe(1). (245)
Plugging them into (242) gives,
N fpt1
(=VB) YD AED @)@+ ve, YRRV D)6+ (6 + v + p)E W)
p=1 k=1
N fp .
—(=VB) T YD AL W+ ve YIV)b+ (€ + v+ p)e WED) (246)
g=1¢=1

- %(NQ — W)@+ vE, VIV()[E + (€ + v+ n)E, W) .

Using the assumption (226), the left hand side of (246) becomes
VB 6102 Vb, W) (247)

On the other hand, taking account of U(1) charge conservation condition, which is derived from the action of Jy,

N

K= —571/2 Z(ap —bp— ), (248)
p=1
the right hand side of (246) becomes
1 N
ﬁ(NQ—ﬁ)Z(JaY;@W%N):5_1Z(ap_bp—ﬂ—§)z(5> \[ U_10Z(@,Y;0,Wsp).  (249)
p=1

Thus the Ward identity for .J; is proved since it is identified with the recursion formula 61 02y 7 —U-1,0Zy y; = 0.

Derivation of the identity for J_; can be performed similarly. The actions of J_; are given by

N fp
@+veYJoy = (=/B) 1D D (a+ve Y EIPAEDI(Y), (250)
p=1k=1
N fpt+l
Joalb+ E+v+me W) = (=/B) YD AED Wb+ (§ + v+ p)e, W), (251)
q=1 /=1
1
J 1,V.(1)] = ———=rVi(1). 252
[J-1, Vi (1)] /i (1) (252)
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By the assumption (226), we have

(@+ve, Y [T VeI + (€ +v+pE W) — <6+V€V\V() J b+ (£+u+u)€W>
(@+ve, Y|[J_1,Ve(I|b+ (€ + v+ p)e, W) = =B~ Y2k2(a,Y; 0, W; ) . (254)

In the last equality in (254), we use U(1) charge conservation (248). It shows the equivalence between the recursion
formula, 51,0Z}7 w — U102y 5 = 0 and the Ward identity for J_;. We note that the modification of the vertex
operator is necessary to produce the Ward identities for U(1) currents.

9.3 Ward identities for Virasoro generators

We proceed to examine the equivalence of the Ward identity for Virasoro generators and the recursion formula. The
actions of L; on the basis and the vertex operator are evaluated by (213, 200205, 237),

N fp
@+ ve, VL =B SO a+ve, YEDP|(a, + v+ Ap(Y,)) AR DY),
p=1k=1
N fp .
LB+ E+v+me W) =B S S ACDIIT) by + v+ i+ Bo(W,) + b + (€ + v + e, W9y,
q=1¢=1
(NQ — k)?
(L1, V(1)) = 0Ve(1) + == Ve(1) + VNQV(Dao + VNQV (e + 28w Vie(1).

As we see from the derivative term in the commutator, in order to evaluate the Virasoro Ward identities, we need
to evaluate (@ -+ v&, Y |0V (1)[b+ (v + p + £)& W). Since the modified vertex operator is not a primary operator, the
correlator does not have the standard dependence on the position of the vertex operator. We can, however, derive it
through the Ward identity of L.

According to the actions of Ly on the basis (223), we have

<6+V€,}7|L0VH(2)|Z;+(£+1/+u)é'W> (@4 vE,Y|Vi(2)Lolb + (£ + v + p)&, W)
(@+ve,Y|Ve(2)|b+ (€ + v+ p)é, W)

:A(_Ef—i—ue_Q QN—i—l (_b+(\1//%‘ 1e —Qp +QN+1> |W| (255)

VB

On the other hand, from the commutator between Ly and vertex operator (240), we obtain

—

(@+ v, Y |[Lo, Vi (2)]Ib+ (€ + v + p)é, W)

(@+ve Y|Va(2)b+ (E+v+me W) | _

(@+ e Y[VNQVi(2)aolb+ (£ + v+ p)é, W)
(@4 ve, Y|V (2)|b+ (€ + v+ p)é W)

(@+ve, Y20,V (1)|b+ (€ + v+ p)e,
(@+veE, Y|Ve(D)|b+ (€ + v+ p)é W)

(NQ — r)?
2N

w)

z=1

—Aw. (256)

z=1
Since (255) is identical with (256) by the Ward identity for Ly, the derivative term can be evaluated as follows,
(@ +ve V10 Ve (Db + (€ +v + p)E V)

=

(@+ve,Y|Ve(D|b+ (€ + v+ p)é W)

:A(—6+V€—Q5+QN;1€>+|}7|—A<—b+(\l//;u)€—Q +QN+1 > .

O+ v+ + N = 1)gf2) - G mEZ QD) S

I
o
A~

I

(=
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Now we are ready to check the recursion relation for Virasoro generators. Applying (226), we obtain
) =@+ Ve YV La|b+ (§+ v+ p)e, W)
N fp
= VB 6.142(@ Y5 Wi ZZ E W) 2@, Y b, WO ) (257)
Unlike in the J; case, an additional term appears because the action of SH¢ algebra on the ket space is slightly
different from the action of 0_1 1 on Z(d@, Y; 5, W; 1) as we have explained previously. The commutator part becomes
(@+v& Y[y, Ve(D][b + (& + v + p)&, W)
@+ ve . b+ (wv+uée . N+1. S
ENE Q+Q)+|Y|_A(_<ﬂw_@p+@e)_|m

VB 2
LWNQ=r)?  A(k=QWN 1)) 7.7 Qiiw—)q W 2@, V35, e )
ON 2 oN 2" o ’ o
N fp
= VB UL Z(@ V5 W) — Q30 S AT 2(@, VB, W ). (258)
q=1 /=1

In the last equality we use (248). This also have an anomalous term since the modified vertex is not primary operator
and its commutator with Ly has the V,,J; term. However, the anomalies in (257) and (258) are identical and the
Ward identity for L is reduced to the recursion relation 5,1,1237,”7 — Ufl,lz?,vff = 0 which is already proved. We
note that the identity holds only when we have the special value for the vertex momentum (227).

In the same way, for L_;, we have

(@+ve, YL aVe(D)b+ (€ + v+ w)& W) — (@ + v& Y|Va(D)L 1 [b+ (& + v+ p)é, W)
= \/37161,12(@',17;5, W), (259)

-,

(@+veY|[Loy, Ve(D)]|b+ (€ + v + p)E, W)

VB 2 VB 2
N
~S(- Xt N - 1)5/2) _ O _ sl QN ) Q@QV}Z(&,?;*,W;M
p=1
—1 Lo
== 1, y 4y Uy 3 .
VB ULLZ(@,Y b, W; ) (260)

Again, we use (248) to derive the last equality in (260). Thus, the recursion formula 61,12y 13 — U112y 7 = 0 can
be identified with the Ward identity. These two consistency conditions are highly nontrivial and strongly suggest
that the identify (1) are a part of the Ward identities for the extended conformal symmetry.

10 Conclusion

we calculated the conformal block in the form of Dotsenko-Fateev integral and reduce it in the form of Selberg
integral of N Jack polynomials. We found a formula for such Selberg average and show that it reproduces the SU(N)
version of AGT conjecture with 8 = 1. The only pity is that, our formulae for Selberg average are not based on
explicit evaluation but determined by consistency. Thus as long as we want to pursue a direct and complete proof

of this crucial string duality, the full evaluation of Selberg-Jack integral and W-algebra will be necessary.
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Further we chose another method and showed that Nekrasov instanton partition function for SU(N) gauge theories
satisfies recursion relations in the form of U(1)+Virasoro constraints,with 8 to be chosen arbitrarily. This case is
much more complicated than before and we introduce many new methods to solve the issues caused by the arbitrary
8. For example, we have to choose a modified vertex operator to satisfy the commuting feature; and to define the
basis, we need the help of SH¢ algebra, etc. These make the calculation rather tedious, and also call for more precise
physical interpretations. The constraints give a strong support for AGT conjecture for general quiver gauge theories.
One remarkable feature is that the proof is not restricted by the number of boxes of Young diagrams but holds in
all orders analytically. However, due to its recursive nature, this method provides an indirect testification, still not

enough for a complete proof.

We would like to mention some recent papers which are relevant to this work. In [75], large N limit (NN is the size of
Young tableaux) is taken to relate AGT conjecture to matrix model. There should be similar limit in our recursion
formula where the computation becomes much simpler and the relation with Nekrasov-Shatashvili limit [76] will be
clearer. In [77] , the correlator of primary fields is defined in terms of null state condition of W algebra which in tern
related to Calogero-Sutherland system. Since the symmetry of Jack polynomial is identified with SH¢, there should

be interesting connection with the current work. In [78], an M-theoretic approach to AGT relation was explored.

We note that the two parameter extension of Wi 1, [27], there are some important progress in terms of AGT relation
[30]. It is, however, nontrivial to derive AGT from the results from DAHA since the degeneration limit is singular.

We hope to come back to this issue in our future work.

Moreover, SH® seems to have interesting applications to quantum Hall effects or higher spin theories [79]. This may

be also interesting directions.
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A Jack polynomials

Jack polynomials J}(,ﬁ )[zl, .-+, zp] are a kind of symmetric polynomials of variables z1,--- , zjs labeled by a Young
diagram Y. Detailed properties of Jack polynomial is given in [65]. they are characterized by the fact that they are
the eigenfunctions of Calogero-Sutherland Hamiltonian written in the form,

M
Zi + 25 0
= D} ——2(D; - D; D;:=z4—. 261
H 2_; P L i) SE (261)
i= i<h
Sometimes they are written as functions of power sum pg(z) = 1sz In the text, we write the Jack polynomial in
terms of them, J)(/ﬁ) (p1,p2, ) = Ji(/ﬁ)(pk) = Jx(f) [21,- - ,zm]. The explicit form of low level ones are listed below;
I k) =11,
p2 + Bpi 1
o o) = S5 I ) = 5 (= 2) (262)
2ps + 3Bpip2 + 577 (s) (1= B)pip2 — p3 + B (8) 1 1 1
JB) (pr) = J - J = —pd— = “ps .
(3] (pk?) (5_’_ 1)(ﬂ+2) ) [21](pk:) (5_’_ 1)(ﬂ+2) 3 [111](pk) D1 P1D2 + pP3

6 2 3

Jack polynomials are orthogonal with each other (Jy;,Jy,) o dy,v,. There are two inner products defined for the

symmetric polynomial which has such property. One is defined in terms of products of power sum,

(it - ply oS-l = O B = R [ [k eks! (263)
i=1
We write the norm for this inner product as (Jy,Jy)s = ||Jy|[?>. The explicit form of the norm is given in the
literature[65]
Qy
I8 = % (264)
Y
with Py and Qy given by
Py =TI (BO7 =)+ (=) +8) = Gy (0) (265)
(i,5)€Y
Qv =TI (07 -0+ Mi-i)+1)=Gry(1-9). (266)
(i,5)€Y

In this paper, we denote the normalized Jack polynomials as,

(8)
@y ._Jy () _ Gyy(0) (s
]Y (p) T ||§3(,6)|| - GY,:(}I o ﬂ) JY (p) . (267)

Especially, at 8 = 1, Jack polynomials reduced to Schur polynomials xy :
j3(/ﬁ)|ﬂ:1 _ J}(/ﬁ)‘ﬁzl =Yy . (268)

The relation between Jack polynomial and Toda theory is that Jack polynomial is characterized as the null states of
W-algebra, as discussed, for example, in [67]. In particular, the Calogero-Sutherland Hamiltonian (261) is written in

in terms of Virasoro and W-generators (see, for example, eq.(52) of [67]).

The relevance of Jack polynomial in Selberg integral is through the Cauchy-Riemann relations,

[Tz =Y KB Wl 72 [IQ+ziy) =Y K] P (269)
Y

ij Y i

The first property was essentially used in the text.
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B Formula for general /3

Here we write a formula of A, Selberg average for product of n + 1 Jack polynomials which generalizes (147).
While some modifications on the terms proportional to 1 — 8 are required to meet the constraints (149), it survives
other constraints which are quite nontrivial. We write this formula since it may give a useful hints in the future

development, though some modifications are necessary.

The formula for n + 1 Jack polynomials should be close to the following,

SU(n+1)
1 v+t Un r—1 T Vp 4 -+ Un n
Tl = =) LR T ) - T LY (o ))>

S

@ 8 Y \k
f[ { el [vs + N8 — N1 Bly: 11 ((4 - i + DB)y: -y, }X 1 (4 - i - DB Y1y~ Yonsnys
=1 [N B+ Ns— lﬁ]YS’ 1<i<j<N._1+Ns ((] - Z)IB)YS’ifYS’]. 1<i<i<Nn ((] - Z)ﬂ)y(ywrl)i*y(n#rl)j

[ve +ue + - Fus—1 + NS = Neeaf+ (s =t +1)(1 = B)ly;
X1<g<n{[vt_v5+ut+“'+us1+Ntﬁ_Nt15_NSB+(S—t+1)(1—B)]YtI x
[—vs +ur+ - Fus 1 = N+ N1 B+ (s =) (1 = B)]y,
[vt7v8+m+~~+us,1—Nt,157N5ﬂ+NS,15+(57t+1)(175)}&
—Us+Ut+"'+us—1+Ntﬂ—Nt—lﬁ—Nsﬂ-l-Ns—lﬂ-i‘(S—t)(l—5)4‘1—(i+j)/6)ﬂ
XHH (ve — vs +ur + - +us_1+Nt,6’—Nt_1ﬁ—NSB+NS_1B+(s—t)(1—ﬂ)+1+Yt'i+YS]-_(i+j)5)ﬁ}

=1 j=1

X

% H { +"'+un+Nn/8+(n75+1)(176)] Yot1 %
1<s<n [vs + us + “Fun+ Nof — Neo1f 4+ (n — s+ 2)(1 = B)]y, Y41
x
i=1j=1 U.s+us +U7L+Nnﬂ+Naﬁ_N.s—l,6+(n_5+1)(1_ﬁ)+1+YS/,+Y(n+l)] - (Z+]),6)6
(270)
It satisfies consistency conditions with the known results:
(a) For Yy = --- =Y, =0, and Y,,;1 = B, with the help of (322) the above reduce to the A,, one Jack integral
(146). The proof of this statement is obvious.
(b) Forn =1, Y; = A and Y5 = B, the above reduce to
(9 (= - E)J<ﬁ>(p(1))>5”2) (el L NBlafut NS+ 1 - fls
BIE TR s [NBlafu+v+NB+2—28]p
Al — A4 (j—i Bi—B;+(j—i
% H ( i ] .(J )ﬁ)ﬁ H ( i j ""_‘(.] 2)6)5 (271)
L<icieN ((G—9)B)s L<ici<n ((G—9)B)s
ﬁ (utv+2NB+1-B+1~(i+])B),
>< )
Pt (u+v+2NB+ AL+ B; +1—ﬂ+1—(z+])6)
which is consistent with the A; two Jack integral (142) by considering
(1
i =p/8) = (DD ). (272)
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(¢c) Forn=2,Y; =R, Y5 =0, and Y3 = B, with the help of (322) the above reduce to

SU(3)
1) Ui+ T U+ 2
(I = P 1D )

5
_ (_1)|R| % H ((j_i"f'l)ﬂ)R;fR; % H ((j*iJrl)ﬂ)Bl_Bj

1<i<j<Ni ((.] _i)ﬂ)RQ—R; 1<i<j <N, ((] _i)ﬁ)Bi_B]‘
1
[’Ul — V2 —+ U1 —+ 2N15 — Ngﬁ + 2(]. — 5)]]3/
y [v1 +uy + N1+ 2 — 2]/

+

X

1
1 - (273)
N Vo (vi+ur+uz+ Nof+ N1 +2(1 = ) + 1= (i +5)B)
XEH (vi+ur+uz+ Nof+ N1 +2(1 = B) + 1+ R+ B — (i +5)B) ,
[ug +uz + NoS+2(1 — B)] y [v1 + N1B]rr
[v1 +u1 +ug + NoB 4+ 3(1 — 8|5 [N16] R
1

“ o2t us+2NB—NiB+2(1- B)ln
y [ug + N2+ (1 — )]s
1

x 1.

Notice the shift in jg’s argument, and the restrictions v =0, vy =v, wv;+wve = —1 (this last restrictions

is only claimed by Warnaar’s Ay two Jack integral), the above is consistent with the Ay two Jack integral given
by Warnaar[20] as below

<J§B) ()T )(p;(f))iz(;)
_ ((] —i+ l)ﬁ)Ri*R]‘ ((.7 _Z'"'_]-)B)Bi*Bj
1§zl;[§N1 ((] - i)ﬂ)Ri*R]‘ 1§ig[§N2 ((.7 - i)B)Bi*B_j
[ug + N1 +1-Blr [ug + NoS +1—B]p

X
[v1 +u1 +2N1 3 — Noff +2 = 28]g  [va +u2 +2N23 — N1 +2 —28]p
N Ns

(w1 +us+ NiB+ Nof+1—B+1—(i+5)8),
XEE (ur +us + Nif+Nof+ Ri + Bj+ 1= B+ 1~ (i+])B),
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(d) For N, =0 (so that u,, = v, =0, and Y, ;1 = ), the above reduce to

B B Py W

ot E] sM s— / ((] _Z—"_l)ﬂ)Y'fY’ ((] —Z-i—l)ﬂ)y =Y
— —1)I¥sl [vs + Nsf — Ns—15]y; si u} ()i~ Y(n)j
1l {( L R Y. 19<j£{_1w5 (G = DBy, v, XHN (G = DB Vo,

{ ['Ut‘f'ut‘f""“!‘usfl+Nt5_Nt71/8+(5_t+1)(1_ﬁ)]yt/
< 1
[ 1-

SU(n+1)
v1 440 - Ur 4 -+
<J¥f)(—p$)—7l D) oY =) - ) ) (p("))>

X
I<tcsen_1 LVt = Us +ur+-Fus1+NeB— Ne1ff — NS+ (s =t + 1)( ﬁ)]yt/
« [—vs +ut+ -+ us—1 — NS+ No—15+ (s — £)(1 — B)]y, "
[Ut — Us +ut + .-+ Us—1 — Nt—l/B - Nsﬁ"'Ns—l,B"' (5 — t+ 1)(1 — ﬂ)]ys

Ny Na1 (v = vs +ue -+ tsm1 + Nef = Neoaf = Noff + Noc1 B+ (s = 1) (1= B) + 1= (i + 4)B)
XEH (Ut—vs+ut+---+us—1+Ntﬂ—Nz—1ﬁ—N35+Ns—15+(S—t)(l—ﬁ)+1+3/t/i+5/;j—(i+j)5),8}

[ut+...+un_1—|—Nn_1/3+(7’b_5)(1_/6)]yn
Xlgg1{1X[vt+ut+---+un1+Nn1ﬁNt15+(nt+1)(15)]% "
Ny N (v + e+ -+ s + Naca B+ NoB = Nea Bt (n = )(1 = B) +1 - (i + 5)B)
le;[1 3131 (Ut+Ut+"'+Un1+Nn1/8+Ntﬂ_Ntlﬁ"_(n_t)(l_5)+1+Ys,i+}/(”+1)j_(i—’_j)ﬁ)ﬁ}

x 1.

(274)

This is just the expression of

An_q
1y Vit U r—1 L (! n—1 !
<JY1<—p,i>— RSNy gy Y - ) - EEERS) y f >>> |

In addition, we would like to attach the consistence checks which our formula fails to pass, according to some
deviations proportional to § — 1. Those are expected to be modified in our future work.

Check 1. (1) @) SU(3) ) SU(3) ) SU(3)
(el =) = ()= () (275)
Using [z]; = 2, and G1,1(0) = .
Check 2.
SU(3) SU(3) SU(3) ) SU(3)
(A =) = (A Re) T = () - g () (276)

USiIlg [I]Q = I(I + ].), [IE]ll = I(IE — 5)7G272(0) = ﬂ(ﬂ + 1) and G11,11(O) = 2[32
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C Proof of consistency relations

Here we present the detailed computation of the second sets of consistency conditions (149) in the text.
When n =2 (SU(3) case), making use of (168), and setting Y1 = R, Yo = A, Y3 = B, the conjecture (147) becomes

SU(3)
(xa(=p" = o)xa®l? = o))

_ [-v1 — MNi]gr y [N1 — NaJa y [N2]B
Gr.r(0) Ga.4(0) GB,B(0)

[-v—u; — Ni|g y [ur + N1 — NaJa o [ur + u2 + Nolp y [uz + Na)p
[—v —u1 — N1+ NoJg [v+u1 + N1 — Noja [v4+ui +u2 + Nojp [ug — N1 + Na|B
Xﬁﬁ v+ us+ 2Ny — No+1— (i +5) (277)
j:“:lv—l—u1+2N1—N2+1+R;-+Ai—(i+j)
Ni N

vtur+us+ N+ No+1—(i+7)
<1111

jzlizlU+U1+U2+N1+N2+1+R;-+Bi—(i-i-j)

Xﬁﬁ ug — N1+ 2Ny + 1 — (i +j)
Uy — Ny +2No + 1+ AL+ B — (i +7)

j=1i=1
where we have switched the name of ¢ and j in the last three lines.
For simplicity, we consider the case with R, A, B being rectangle Young diagrams, when (148) reduce to

p1XA(Pk) = X4 (k) + X4 (PK) » (278)

as illustrated in Figure 5.

Sa+1

sA SA

1 ra 1

ra ra+l

Figure 5: The white cells stands for A, with length r4 and height s4. the left is the diagram of A, with an extra
grey cell compared to A; the right is the diagram of ;1, with an extra black cell compared to A. A; = sy4, A;- =174,
/L:sAJrl, and/vl’ler+1.

Now at 8 = 1, there are

[m]A:Hﬁ(m—i+j) , GA}A(O):f[H(TA-i-SA—i—j—i—l) . (279)

Furthermore with the information given in Figure 5, we find several lemmas shown below

i _ [] 4
Wl ST Tl

=x—rg |, (280)
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0 l—A[ rA+54—7J . A GA7A(0) :ﬁ rA+ sS4 —1 SA
0 i1 A+SA—j+1 A+ SA ’ GA,A(O) i1 A+SA—Z+1 A+ SA
ﬁﬁx+1+A;+Bi—(i+j)
imrim T+ L+ A+ B — (i+ )
N2

Hm+1+0+B —(sa+1) ﬁ

T+ Sp—Sa—1

I+5375A*TB
T+ Sp—Sa

T — 54— Ny
X
r—8A—TB

l—in+1+A + B; — (i +j)
a:+1+A’+B (i +7)

r .
& T+ sptra—i

1x+SB—SA—i+1

_H r+1l+ra+Bi—i—1 11 )
—i:1x+1+rA+1+Bi_i_1_i:1$+sB+7'A—7;+1

T+sp+ra—1Tp
T+Sp+7TAa

$+TA—N2
X
rT+T1rA—TB

ﬂHx+1+A’+B (i + 7)
ic1im v 1+ A+ Bi — (i + )
N1

_H x+1+A;+sB_1_j

_ﬁ T+ra+sp—7j
14+ A +sptl-1-

T+7T4+SB—SA
1'+7'A+SB

x"'SB—Nl
X
T+ SB—Sa

and

il T+14+A;+Bi—(i+j
HH

x+1+A’+0 (rg+1

:17+TA+SB—]+1

H T—8SA—1

rT—8Sa—1+1
i=rp+1 A +

N .
ﬁ T+ra—1
i:rB+1x+TA_7’+1

N .
o | A
[ THsp—Jg+1

Ny

)
j=1i= 1$+1+A/-+Bi—(i+])
) —
) —

_Ha:+1+A;+1_(TB+1

T+7Ta—TB—SA
r+74—TB

r—rp— N
X

r—Tp —SA
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l—A[ T+ra—TB—J
i1 +7‘A—7“B—]—|—1

11 _T-TB—]
jesap ToTBI T

(281)

(282)

(283)

(284)

(285)



With the help of the above lemmas, we can calculate that

(xa(=p" = oxa®l? = o))

<XR(*P§:) —o)xaly” - PEQ))XB(PS)»
v —Nip | Grr(O)  [v—w—Nlp [-v—u - Ni+ NoJg
[-v1=Mlr  Gz0)  [-v—ur—Ni]r [-v—u — N1+ Nop
y ﬁﬁv+u1+2N1—N2+1+R;+Ai—(i+j)

v+up +2N1 — N+ 14 R+ A; — (i + j)

j=1i=1

286
Ny N2v+u1+U2+N1+N2+1+R;+Bi_(i+j) -

X =
HHv+u1+u2+N1+N2+1+R;+Bi—(z‘+j)

j=li=1

TR —v—u; — N1 + sg
7(7U7N1+SR)X 'R+ SR x —U—Ul—N1+N2+SRX
Xv+u1+2N1—N2+sA—sR—rAX v+ uy + Ny — Ny — sg »
v+ uy +2N1 — No+ 54 — SR v4+uy +2N;1 — No —Sgp—1Ta
XU+U1+U2+N1+N2+SB—SR—TBX v+ uy +us + Ny — sp

v+ uy +us + Ny + No+sSg — sy v+us +us+ Ny + No—sgp—rp

Likewise, we have

1 1 2 2
<x1§(*p;(€ " —o)xalpl) — P xs (! ))>

<XR(_p§€1) —v)xalpy” — p;(f))xB(p,(f))>
SR, —v—u; — Ny —TR
re+sg —v—u — N1+ Ny—1rpg
XU+U1+2N1*N2+SA+TR*7’AX v4+u, + N1 — No+ 1R y
v4+u; +2N7 — No+ 854+ TR v4+u +2N1 — No+rgp—ryg
v+u1+u2+N1+N2+sB+rR—rBX v4+uy+us+ Ny +rR
v+uy +us+ Ny + No+sp+rp v4+ur+us+ Ny +No+7r—17TB

(v Ny — ) x (287)

1 1 2 2
<XR(—p§<) — )iy = p)xs 0} ))>
1 1 2 2
<XR(_P1(C) —0)xay — ) x50} ))>
rA up + Ny — Ny + 54
= (N1 — Ny +s4) X X X
(M 2+ 54) rTA+sa v+u+ Ny — Ny+sy
XU+U1+2N1—N2+’I“R+$A—SRX v+uy + Ny — No+ 54
v4+u, +2N1 — No+ 1R+ sa v4+uy +2N1 — No+ 54— sg
U2_N1+2N2+5B_5A_7'BX us — N1+ No — s4
UQ—N1+2N2+SB—SA UQ—N1+2N2—SA—T’B

(288)

xa(=pi = ol = oxs )

1 1 2 2
<XR(—p1(€ " —o)xa — P )xs ))>
sS4 U+ Ny — Ny —74 «
ra+sa v4+u+N;i—No—14
Xv+u1+2N17N2+errAstX v+ur+ Ny — Nog—1y

:(Nl—NQ—’/’A)X (289)

X
v+ur +2N1 — No+7rp—17T4a v+uy +2N1 — Ny — 14 — SR
’LL2—N1-|—2N2+SB+7‘A—T‘BX ugs — N1+ No+ 174
g — N1 + 2Ny +sg+14 U — N1 +2Ns+14 — 7B
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(=2 —xa®l” =21

(xa(=p" = oxatl” = o))

B uy +uz + No + sp uz + Na + sp
= (N2+SB) X X (290)
rg + Sp v+ uy + us + No + sp us — N1+ No + sp
Xv+u1—|—u2+N1+N2+rR+sB—SRX v+ uy +us + Ny + sp
v4ur +us+ Ny +No+1rRr+ 5B v+u; +us+ Ny + No+sp — Sgr
XUQ—N1+2N2+7“A+SB—SAX ug — N1+ Na+ s
Uy — N1 + 2Ny + 14 + S Ug — N1 +2N5 + sgp — sS4y

and

(er(=pl = oxa®l? = o xa0) )

<XR(_p§c1) —v)xa(py’ p;(f))xB(p;(f))>

SB Uy +uz + No —7p ug + Ny —1p
X X
rg+sg v+uy+uy+Na—1rg Uy — Ni+ Ny—r1rp (291)
Xv+u1+u2+N1+N2+7’R—TB—sRX v4+uy +us+ No—1p
v+uy +us+Ny+ No+rg—rp v4+uy +us+ Ny + Ny —1rg —Sp
XUQ—N1+2N2+TA—TB—SAX UQ—Nl-I-NQ—T‘B
Uy — N1 +2Ny+14 — TR us — N1+ 2Ny —rg — sS4

= (N2 —’I“B) X

X

Summing v and the above six expressions together, we obtain

. (xa(= = ol = o)) <xR( = oxam - pxs(l)
(e3P — ol - 52 xa ) (x5 — Oxalol — i)
<XR(— V= oxam —p)x (2))> <XR( Y=oy - pf))xfz(pf))>
+ 1 2 1 2 2) (292)
(xr(=p” =o)xae” =P s (i) <xR< —opxal” = o s l?))
. <XR( —py) — v)xalpl’ — o)Xl pff) > <XR( U)XA(p;(f) - )X (p;(f))> 0
<XR(— = v)xaley - (2)) B(p (2))> < r(-py) = v)xalpy” —pf))xB(p;(f))>
This reproduces (149), which serves as a quite nontrivial check of our conjecture (147).
D Proof of the lemmas
Lemma 1 (G —i+1)5) N )
J—1 B;—B; B
B0 i P A ) 29
Proof: Since (z); = F%E(I)k), we obtain
(U —i+VB)p-p, _T((G-i+1)B+Bi—B)) L(( —1)B) _ (Bi=Bj+(—9)B)s (290)
((7 —1)B)B,-5, (G —i+1)8) I'((j —i)B+ Bi — B)) ((G—9)B)s '
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So we only need to prove the following

[I Ng=pBi-1)+j—1)

11 (Bi =B+ (—i)B)s _ (j)eB _ INBls
i<icen (=B 1 [8B;—i)+(Bi-j)+5] Ces)
(1,7)€B

Suppose the length of B to be m, The left hand side can be expressed as

(Bi=Bi+(G=08)s 77 17 BitU=—08s 17 17 BizBit(-08)s
AL e L e I G

where

I GG 08 CHG-0ds (Bt G- 05
U AL G008, 0rG-0fs  B-1+G- 00

m N

B g—z+1ﬁ1+(g—z+1)5 ..Bi—1+(j—i+1)5
-1 1 Y55 s S

i=1j=m+1
N B;

- E—1+( g—z+1b’ J=1+(k—i+1)3
=11 1I H k—1+(—1i)B HH H j—1+k—-98

i=1j=m+1 k=1 i=1j=1k=m+1

3

N . .
j— —i+1)8 j—14+(N—-i+1)p
H H k 0B H j—1+(m—i+1)B3"

(i,j7)€B k=m+1 (i,7)eB
So what is left is to prove the following equation:

m B;

‘v (Bi—Bj+(j (mB—p(i—1)+5—1)
11 (G -0p Hqu[ B’—i)+(Bi—J)+/3}'

Notice when 1 < j < B,,,, we have B} = m,

T (mB—Bm—1)+j—1)

Thus the sufficient condition of (298) is

m

(Bi—B;+ (i —)B)s _ 1 (mB—BG-1)+j—1)
11 (G —1)B)s ]1;[1 |BB; — i)+ (Bi—j)+ 8]

j=it1

which becomes our new goal.

In Figure 6, we have

m1 Bpm, +1<j< B,
ma Bmg,"'l SjSBerg

mn 1<) < Bp,
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(297)

(298)

(299)
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3m1
B
Bi Bm.
3m3
Bm«
E;mn1
Bm.
m i me ms Mk Ma-1 mn
(me) () (m)
Figure 6:
and if m;_1 +1 <4 < my, we have B; = B,,,. Besides, We define B,,, ., = 0.
Now the denominator on the right hand side of (300) is
B; n Bmk
R=]] [5(B§—i)+(3i—ﬂ')+ﬂ} =11 [(Bi_j)+/6(mk—i+1):| : (301)
j=1 k=t j=Bm,, +1
and the left hand side of (300) is
I T (Bi— B+ —)B)s
i (G —=1B)s
_ ﬁ (Bi =B+ —9)B)s
e (G=9)B)s
_ ﬁ (—i+DB1+(j—i+1)B Bi—Bj—1+(j—i+1)8
j=matl (=98 1+ (j—19)B B, —Bj—1+(j—1i)B

302
I alG =i+ DB+ G — i+ D) [(Bi = By — 1+ (j — i+ 1)B)] e
T (k= i+ DB A+ (k—i+1)B)] - [(Bi — Bgs — 1+ (k — i+ 1)B)]
_ dm=i+ DB+ (m =i+ 1)) [(Bi = B — 14 (m —i+1)B)]

[((my — i+ DB (L4 (me —i+1)B)] - [(Bi = Bmy+1 — 1+ (my —i 4+ 1)5)]

m—1

< 11 (G =i+ DA+ G —i+ DB [(Bi =B =1+ ([ —i+1)P)]
(G =i+ DAA+ G =i+ 1B [(Bi = Bjya — 1+ (G —i+ 1B)]

j=ms+1

Name the term in the last line to be H, we see H = 1 unless B; # B,1, (i.e.,primary rows j = my). And notice

that B, +1 =B we can count only over the primary rows.

ME4+19
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As a result, we find

H =
I ! ! !
k=tt1 (B — By — 1+ (my —i+1)B)] [(Bi — By + (my —i+1)8)] [(Bi = By, + (mg — i+ 1)5)] (303)
n—1 B, 1
- kgrl j—BE1+1 [(Bz = J)+ Blme —i+ 1)} .

Combine the above three equations, we obtain

R1XL:

[(m—i+DBI[L+(m—i+1)B)]-[(Bi = By — 1+ (m —i+1)B)]
[(me =i+ 1)BI(L+ (me —i+1)B)] - [(Bi — By+1 — 1+ (my — i+ 1)5)]
By
[ i —J) + B(m —z‘+1)]>< 11 [(Bi_j)'i'ﬂ(mt—i-‘rl)} (304)
J=Bm; 4 +1

i
.

i =)+ Bm—i+ D] = []lms-pli—1)+j-1).

Jj=1

This is equivalent to (300), thus complete the proof of lemma 1.

Lemma 2

[[—i8)s = [w - 6} . (305)

Proof: Use (144), we find

— =
=
|
S
%

—F(xiiﬂJrBi)—m—F(IizﬂjLBi) mx—i T —1 x—1 i — 1) =
T =) =11 G5 =[[@-iB)@—iB+1)...(x—iB+ Bi—1) (306)

=1

o

<
Il
-

.(x—ZﬁJrJ—l) [ @-8-86-D+i-1=[z-5] .

L
::ca

s
Il
—
<.
Il
—
—
-
&,
=
m
os]

where m is the length of B.

Lemma 3
@ls = (—)PIGp (-2 +1-pB) (307)
Proof
B B; B, BJ,'
s =[[[[@-8G-D)+i-D)=]][[@-8B;-i)+i-1) =) Gpp(-z+1-5).  (308)
j=1i=1 j=1i=1

The second equivalence is based on the fact that when j is fixed, both ¢ — 1 and B; — 4 count from 0 to Bé- —1.
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Lemma 4a

Nz Ni

x4+ 8(—i+1)—j x—|—,3(i—N2)—j x4+ B(1l—-i)— N +5—-1
HHx-i—ﬁ L—i+1 )+B-—j: H r+pB(A,—i+1)+Bi—j H x—B(B,—i)—A;+j—-1" (309)
i=1j=1 ! (i.1)EA (i.1)EB J !
Proof: Step 1: Proof for B = (.
The left hand side of (309) is,
ﬁH z+ f(— HH z+B(—i+1)—j
P 1x—|—ﬂA’ z+1 el _lm—l—ﬂA’ i+1)—j
No h A (310)
:ﬁHﬁ r+ B(—i+ k) —y HHx+ﬁ —No+k)—j _ I x4+ B(=Ny+1i) —j
i:lj:lk:1x+’8(k_z+l j=1k=1 T+ Bk —j (i,j)€A T+ Bi—]
where h is the hight of A.
On the other hand, the right hand side of (309) becomes,
z+B(i—Ng)—j r+ B(=Na+1i) —j
ro= I N ] RS (311)
(i’j)Aac—i—ﬂ(Aj i+1)—j itea x+fBi—j

We see Ly = Ry, the equation (309) holds with B = 0.

Step 2: Induction for other cases. Suppose (309) is valid for B. As shown in Figure 7, let us construct C' which
has only one cell difference from B: C,, = B,, +1, By =m —1,Cy ., =m, with m the length of B. (Notice
that the special case B,, = 0 means C,, starts from a new column, thus we can build any diagram from zero).

Bm

Figure 7: Construction of C. The white cells stands for B , while C' has one extra cell (marked in black) than B in
the last column.

so we just need to prove that
No Ny

— ‘_.* I - — Iy ] - .
z + B(A, z+ )+Ci—3j (i,j)eAx—f—B(AJ i+1)+Ci—3j iec® B(C;—i)—Ai+j—1

(312)

i=17=1
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The left hand side of (312) is

‘2 1 m—"—ﬁ )
L= HHaH—ﬁ —z+1)+C—j

i=1j=1

N2 N N / - (313)
ﬁﬂ x+ﬁ +1)—3j ﬂ x+ B(A; —m+1) 4+ By, —
r+ B(A 72+1)+B—] Lz B(A —m+ 1)+ By +1—j

i=1j5=1

The first term on the right hand side of (312) is

_ x+ (i — Na)—j
Ri= ] a4+ BA, —i+ 1) +C;—

(i,9)€A
A , (314)
- I s /I s
(i,j)eAerﬂ(Aj i+1)+ B; ]j:1x+ﬂ(A] m+1)+ B, +1—
And the second term becomes
x+pB(l—i)— N +5—-1
Ry = H — -
(i,j)ecx_ﬂ(cj_l)_Al—i_J_l
B H x4+ 8(1—-i)—N1+5—-1 >(9c—|—6(1—m)—Nl—&—Bm
- _ T A+ — _ 315
(m)eBx B(Cj i)—A+j—1 xz— A, + B, (315)
_ 2+ BA-m) =N+ By I e+ B1—i) - Ny +j—1 Tﬁlz—ﬁ(m—l—i)—Ai+Bm
- . _ /,—’— ] . _ A ]
T — Ay + By, isen”® BB —i)—Ai+j—1:2 x—B(m—i)—Ai+Bp
Since we have assumed the equation (309)is correct for B, we only need to proof
ﬁ z+ B(A, —m+ 1)+ By, —
e+ B(A —m+1) 4+ B+ 1
o+ B(A, —m+1) + By,
—H vt By —m+1) (316)
LT+ B(A —m+1)+B +1—j
Xx—l—ﬁ(l—m)—Nl—i—Bmxm_lm—ﬁ(m—l—i)—Ai+Bm
x— A, + B bl x—B(m—i)— A+ B
which is equivalent to
ﬁ r+ B(A —m+1) + By —
- z+pB(A, —m+1)+B,+1—j
i=Am+1 ! 1 (317)
_a:+ﬂ(1—m)—N1+Bmx“i—[x B(m —1—1) A; + By,
o xz— A, + Bn, Pl x—B(m—1i)—A; + Bn,
The left hand side of the above transforms to
o ﬁ x4+ BAS —m+1) + By, —
= - .
j:Ame—i—ﬁ(Aj—m+1)+Bm+1—j
_ﬁ o+ B(—m+1)+ By, — j ﬁ 2+ B(A, —m+1) + By — is)
= - :
j=h+1x+ﬂ( m+1)+ By, +1—j5 Am+1x+B(Ajfm+1)+Bm+1fj

2+ B(—m+1)+ B,y — Ny 1’-[ o+ B(AS —m+1) + By, —

x4+ B(~m+1)+ B, —h s+ BA —m+ 1)+ By +1—j

Jj=Am+1
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Here h is again the hight of A. Name the second term of the last line as L],

h x4+ B(AS —m+1) + By,

L =
! j:}:[Hx—i-B( —m+1)+Bm+1—]

_ ﬁ ( g+ B(-m+1)+Bp—j x+BA—m+1)+Bn—j z4+B(-m+1)+Bn+1—j )
r+pB(-m+1)+Bp+1-j x+B(-m+1)+Bn—j x+pA,—m+1)+Bn+1-]

J=Am+1

_ ﬁ 2+ B(=m+1)+ By —

r+pB(=m+1)+Bn+1—-j

j=Am+1
" H H(m—i—ﬂz—m—i—l)—i—B x4+ pB(i—m)+ By, +1—j )
A1 r+pB(i—m)+Bn—j z+pi-—m+1)+Bu,+1-35)"
(319)
This time we call the last term of the last line as Ls.
The second term of the right hand side of (317) has the form
m—1 .
x—0B(m—-1—4)—A;+ B,
R}, =
2 21;[1 x—pP(m—1i)—A;+ Bn
_"ﬁl z—Bm—-1—4)+Bpzx—pB(m—-1—4)—A;+B,, x—0(m—1)+ Bn
o x—p(m—1i)+ B, x—pFfm—-1—i)+B,, x—pB(m—i)—A;+ B,
i=1
m—1 (320)
B x—pB(m—1—14)+ By,
2t = B(m—i)+ By
Xm_“‘"( 2+ Bli—m+1)+ By, —j x+5(z‘—m)+Bm+1—j>
r+B8(i—m+1)+By+1—7 x+8>i—m)+ By — ’

Am+1

Am Am

m-1 m

Figure 8: [[%] H ', is represented by the area marked by grey and black, while H P H ', is represented only

by the black cells Their difference, the grey cells, stands for [/ H which leads to the following equation.

j=1
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so we find (see Figure 8)

1

R} _ml—_[ x—ﬁ(m—l—i)—l—BmX

L73_ -1 *—pB(m—i)+ Bn
H( z+pB(i—m+1)+ B, x—|—ﬂ(i—m)—|—Bm—|—1—j>
et x+52—m+1)+Bm+1—j x+B(E—m)+ B, —J (321)
ni—[l Bli—m+1)+ By — A
Pl x4+ B —m)+ B, — A,
_ z+ B, — A,
S+ B(l—m)+ B, — Ay
Combine (318), (319) and (321), it is straightforward to find that (317) is tenable, thus complete the proof.
Lemma 5
ﬁNz (x+1—(i+j)5)ﬂ :[JJ—N15+1—5]B
L (@1 By (i+5)6) , z+1-8lg
I (322)
ﬂﬁ (@+1-(+7)B);  [z—NoB+1-Bla
pale e (z+1+4;— (z+y)5)[3 [z +1—plar
These are actually the special case of Lemma 4, but hold for arbitrary 3.
Proof: For the first statement, we have
L HH (z+1=(i+7)B),
i=1j=1 +1+Bj_(i+j)6>ﬁ
—ﬁﬁ (z+1-(i+5)B)(z+2—(i+5)B)...(x— (i+j—1)B)
Pt 1(x+1+B —(+5)B)(z+2+B;—(i+4)8)...(x+ B — (i+j—1)B) (523)
B; )
ﬁﬁl—[ x+k—(+7)p HHx—N16+k—jﬁ_
i=1j=1k= 1%—HC (i+j-1)8 G=1k=1 z+k—jp
_ H r—MNp—if+j [r-Nif+1—f]s R
ipes  TTBTI [x+1-f]s
where m is the length of B.
The second statement can be proved in totally the same way.
E More details about Eq.(183)
Let 2y (I =1,---,N) be arbitrary complex numbers. We first observe,
N N 1
Y1 =0. (324)
Ty —XTg



If we apply it to a set of variables {z1,--+ ,zp,&}, (€ = xn41) one derives,

| e Dl | (il | P i e S N
= T iy T =gen T T LS T S S
The function b, (z) defined in the last line can be written as,
bp(x) = Z xp T, (326)

I <---<I,

The first part of this equality can be expanded as, ZZOZO Do (;n%)l HJ(;,A[) ﬁ So we derived,

N N
0 n=0,---,N—2
Z(mIonfx _{b (z) n>N-1 . (327)
=1 J(ED) I J n—N+1 et
. M M 4n .
If we write [[;_ (& +ys) = >0 & fr—n(y) with
fn(z) = Z Tr, T, (328)
I < <Ip
Then we obtain,
M N M
(xr +yr) zr)"
il SICESTIRNS Sy WA S I N P (329)
I—1 J(7g[)(371 J) n=0 I=1 HJ(#I) (.231 - xJ) n=N-1

: - o : M-N+1 o T ()
It is not difficult to show that the last quantity is the coefficient of of the function T e
I=1

F Variations of Nekrasov formula

We decompose Y, W into rectangles Y = (ry,--- ,r¢;s1,---,5¢) and W = (¢4, - b, ,uf). Also we use the
same notation such as Y *:%) and W(*)_ For the variation of Y (resp. W), Py, Ps (resp. Py, Ps) remain the same.
Variation of P, (resp. P») produces a term which cancel the Ny (resp. Nj) dependent term in the variation of Q.

We also uses a notation 79 = sy =tg = uj =0 After some computation, we obtain,

dvoow@ T @+ B —te i+ 1)+ — s — 1) (330)
gv,w () T @+ Bres —te+1) +up— s, —1)

gyeow(® Tl (@4 Blr —te) +ue —si) (331)
v () Tl + By — ter) +ue — s5)

Graween (@) Tlog(—x+ Blter — k) — ue + sp41) (332)
gYW(Qf) Hizl(—l‘—F,B(tg_l —Tk) — Up + Sk) 7

Gvweo (@) Tl (et Blte =1 —ri) —ue + s+ 1) (333)
gy,w x) Hizo(—x + Bty — i — 1) —ug+ Sp+1 + 1) .
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These expressions becomes more compact by the use of the notation Ax(Y},), Bx(Y,) in (170,171),

Gygow, @ —ba— 1) T (0, — by — ot Ag(Yy) — A(Wy) — €) (334)
Gy (ap = by = p1) It (ap = by — o+ Au(Y) — Be(Wy)

Gy ko, (ap = by — 1) _ T0 (ay — by — p+ Bi(Y,) — Bo(W,)) (335)
9y, W (ap = by = 1) I ay — by — ot Bil(Yy) — Ad(Wy) —€)

Ty, wie-o (ap — by — 12) _ It by — ap + i+ Ad(Wy) — A(Y,)) (336)
Gvyw,(ap = bg = 1) Wby = ap+ i+ A(Wy) = B(Yy) +€)

Iy,wgeo (@ —ba =) L2 (b — ap + o+ Be(Wy) = Bi(Yy) +€)
Gvw,(ap —bg—p) It by — ap + i+ Bo(Wy) — Ax(Y)) (337)

These are sufficient to calculate variation of zps in (32).

To derive the variation of zyect for p # ¢, we need following formula which is obtained by putting W, — Yq,

gYqu (ap — aq)gy, YqYp (aq — ap) _ 511(017 —ag+ Ap(Yp) — Be(Yy))(ap — ag + Ar(Yp) — Be(Yy) + §) (338)
gy<k By (ap aq)g Iy, v+ + (aqg — ap) fitl(ap —aq+ Ar(Yp) — Ap(Yy) — &) (ap — aq + A (Yyp) — Ae(Yy)) 7

Gy, v, (ap — aq)gv,v, (aq — ap) _ gqi_l(azﬂ —aq + Bi(Yp) — Ac(Yy) — ) (ap — aq + Bi(Yn) — Ae(Yq)) (339)
~ ~ _ - f .
Gy (k) (ap aq)g Yo vk o) (ag — ap) 121(ap — aq + Be(Yp) — Be(Yy))(ap — aq + Bi(Yp) — Be(Yq) + )

For the case p = ¢, we obtain,

gypvyp(o) _ l Hé 1(Ak( ) (Yp))(Ak( P) BZ( )+§) (340)
Fygoyen O BT (A() = Ae(Yy) = O(Ar(Yy) = Ac(¥y))
() LI (BR0G) — AdYy) —(Bi(Y) — AdYy)). (341)
Iy gy (0) B T2 (Br(Yp) = Be(Y,)) (Bi(Yy) = Be(Yy) +€)
These formulae are sufficient to derive the recursion relation (1).
G Recursive construction under § =1 limit
G.1 Free fermions
We start from the definition of fermions,
B (2) = 3D gl g)(z) = Y P po1 N, zeC (342)

nez nez

with anti-commutation relation, {1/_)7(1” ) (q)} = 0p g0n+m,0- We note that there are extra parameters X € RN which

represent the shift of the usual mode expansion of fermion. We define the vacuum as, |X) = <X>i,\’:1|)\(p)>7
PPN =p@PIX) =0 (n>0,m>0), X=AD ... AN, (343)
The parameters X represent the fermion sea levels. Similarly, the bra vacuum (X| = T (A®)] is defined by

NP = (Xp® =0 (n<0,m<0), X=AO ... AM), (344)

In formula (226), the bra state has different sea level (say fi) in general. In such cases, we need redefine fermion
mode expansion as w(p)(z) = ez w,&p)z_"‘*‘)‘fi = ez z/;,(lp)z_”‘*‘”p and define the bra vacuum in terms of 1/? The
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Hermitian conjugate is defined as (|]X))! = (X and ¥ = ¢_,,. This is consistent with the shift of label by the change

of vacuum.

With this preparation, the fermion basis is,

NY) = e (zﬁ(”j@i”j&m 0 A, sl>) AP ) = @) L@ (345)

(_l)ly‘ ®é\f:1 <¢(_ps)§p)¢(_ps)ép) e w(_pg)gﬁ) |)\(p)7 Tp>> 5 |/\(p), T‘1> = @@T)I e 1;8"1)|/\(p)> (346)

XY = (Y, 0)1 (347)

Here we represent a Young diagram Y, by the number of each row r((fp ) = (TY,)s or the number of each columns
s&) = (Y,)o. The parameters with bar are ) =P — 541 and 5% = s — 5. These states give a natural basis

of the Hilbert space with fixed fermion number. By construction, they are orthonormal (Y, @|W,b) = 0p wozp-

We define the vertex operator Vj; in (226) by standard bozonization technique. We write,

PP (z) = e () ) (5) = P (2) . (348)
with
ait’ (@
dp(2) = 2 + aglog 2z — Z Tz—n 0P alD] =16, 10nimos [Ty ag”] = Opg - (349)
n#0

The vacuum and the fermionic basis (345) is written in a form,

X) = lim s e 2o @ 15) P X) = [[xym (@))IX). (350)

z—0

(p)

—n

Here xy o (a
O

) is Schur polynomial expressed in terms of power sum p,, = >,(x;)" and each p, is replaced by
. While the second expression is not used in the following, it is this expression that appeared in the literature
[24, 25, 70].

G.2 Action on bra and ket basis for § =1 case

In order to evaluate the action of W (z"e*?) (n # 0) on |X,Y), a graphic representation (Maya diagram) of |X,Y) is
useful. For the simplicity of argument, we take N = 1 and remove the the index p in (345,346). We take the first
expression (345) and rewrite it as,

INY) =0 5y hp stspr L] — L A) (351)

and take L — oo limit. From this representation, we associate a Young diagram Y with a semi-inifinite sequence of
integers Sy = {Fy,7a, -+ ,7s,—S,—8 — 1,--- }. We prepare an infinite strip of boxes with integer label and fill the
boxes with the integer in Sy (Figure 9 left). It represents the occupation of fermion in each level. To understand the
correspondence with the Young diagram Y, we associate each black box with vertical up arrow and white box with
horizontal right arrow. We connect these arrows for each box from the left on Sy. Then the Young diagram shows
up in the up/left corner (Figure 9 right). The generator W(z"e*?) = 3=, e+ : 4y, 40, : flips one black box at
¢ to white and one white box at —¢ — n to black (if wrong color was filled at each place, it vanishes). It amounts
to flipping vertical arrow by horizontal one and vice versa. By analyzing the effect of such flipping, the action of

W(z"e*P) on |\, Y) can be summarized as,

e For n > 0 it erases a hook of length n and multiply (—1)"("~1e2(*+A) where v(h) is the height of the hook.

(Figure 10 up) If there are some hooks of length n, we sum over all such possibilities.
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Figure 9: Young diagram and fermion state

[l
;»

Figure 10: Action of W on |Y')

e For n < 0 it adds a strip of length |n| and multiply (—1)"()=1e=(+X) where v(h) is the height of the strip.
(Figure 10 down) As in n > 0 case, if there are some possibility, we need to add them.

H Derivation of commutation relations of SH® algebra

First we notice that

N (f+1
(D1, Db, W > = (=DM 8N " (by + Ay (W) AL (b, W))?
q=1 t=1

f
3 e BuW)) AL )

t=1

b, W > . (352)

We have to be careful that the off-diagonal terms, where the two generator modifies different Young diagrams or two
different box in the same Young diagram, cancels with each other. This can be checked as below.

H.1 Cancellation of off-diagonal terms

First, for a Yong diagram with one box removed W®*>=) (or added), we find the relation between A,(W*:~)),
Bt(W(k”)) and their counterparts of the orignal yong diagram W.

A(W) 1<t<k By(W) 1<t<k-1
A (WE=) =8 B(W) ¢ :_k _T_ 1 By(W k) = By(W)—-p t=k
t 7 B(W)+1 t=k+1 )

A (W) k+2<t<f+2 _
(W) k2t S Bi1(W) k+2<t<f+1
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B,(W) 1<s<k-1
, B{(WED) = A W) s=k
Be (W) k+1<t<f+1

Ag(W) 1<s<k-1
A(W)—1 s=k
Ak(W)—Fﬂ s=k+1

A (W) k4+2<s< f+2

A (WhH)y =

With the above relations, we obtain that (For simplicity, in the following we do not write b, explicitly, which
always comes together with A,(W,) and B,(W,). This choice do not effect the proof at all),

N N f'7+1
Do1xDulb,W > = Y (Be(W )AL D (et 3 )AL () b, W > (353)
g=1 t=1 y=1 u:l
N FPTe N fq
DuD kbW > = (Au (WO A (WD) NS B (W) A (W)[b, W0 > . (354)
~y=1 u=1 q=1t=1
For g =7, t>u,
N ~t,7 . 1/2
o0 (1] SH Ay (W20 = By (W00 4 prfit e Au(T3 ) — A (T — ¢
o1\ eni AR = By (W) e Au(WR ) — A, (W
— common terms x Au(Wy) = (B:(Wo) = 1) Au(Wy) = (Be(W5) + 5)  Au(W5) — (Bt(Wv)JrO’
Au(Wy) = (Bl(Wy) = B)  Au(Wy) — (Be(W5) +1) Au(Wy) = By(W5)
(355)
f(u ), ’v+1 1/2

(Bea (WD )* | - Braa (Wi ) — A W) — €y By (W) = B ) 4
q

2 i

Bt+1(W(“ )5 7y — AS(WIS“’J’)’W) s=1 Bt+1(V_[’/q(u,+),’Y) _ Bs(Wéu’J’M)
— common terms x BtWa) = (Au(Wq) =) Bi(Wy) = (Au(Wo) +1)  Be(Wo) — (Au(Wy) =€)
( Wy) = (Au(W. ) 1) Bi(Wq) = (Au(Wo) + 5) Bi(Wq) — Au(Wo)
(356)

Thus we find that Zgi)_g"’ cancels with Z(:)JQJ For ¢ = 7, t < u — 2, we have the same result. For ¢ = +,
t = u— 1, we have the direct sum. For ¢ # -, using a similar method, we also find that Zq Zﬁ{ cancels with 27 Zq.
In total we show that all the off-diagonal terms are gone.

H.2 Evaluation of diagonal terms

Since the right hand side of (352) only depends on k + I, we have [D_1 i, D1 ;] = [D_1,0, D1,+%]. We need to define
the action of Dy ;. For this purpose, we consider

X(s) =< b,W| Y [D_1,0, Drals'[b, W > . (357)

1>0
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Then from the definition of algebra, we obtain

al o~ s€ (t, ) ! (t,=) (7 T\ 2
SgX(S):;{;1+s(bq+At(Wq))(A " §1+sb T B.(W, ))(A (6, W)
MRS N by by Ad(Wy) = Bu(Wi) + € T by — by + A(W,) e
:2{t11+s(bq+At Ul{kUl by — by + A(Wy) = Bu(W,) L) b ~ b, +At(W)f }
T = o i (358)
/ f f+1

bq - bp + Bt(Wq) — Bk(Wp) +¢£ bq — sz + Bt(Wq) — Ak(Wp) _ 5}}
)

N
11+3(b +Bt (We)) H bg — bp + Be(Wy) — Be(Wy) el bg — bp + Be(Wy) — Ae(Wp

t= p=1 (p)k#(a)t

3 N1 s(by + Be(W, 14 5(bg + Ac(Wy) + €)
*_1+HH 1+ s(b, _|_Bt H 1+sb + A (W)

=1

The last equality holds because the both sides (i) are degree 0 rational function in s, (ii) have the same simple poles
and residues at s = —1/(by + B:(Wy)),—1/(bqg + At(W )) and (iii) vanish at s = 0. We can rewrite (358) as

N s(by + BuW) — &) T4 s(by + Ad(W,) + €)
L+seX(s) = [T11 1+ 5(by + B.(W,)) H 1+ 5(bg + Ac(Wy))

g=1t=1 t=1

N oo )s! f fH1
= eXP{ZZ( 1l Z bg + B:(Wy)) — Pl(bq+Bt(Wq)_§)+Z(pl(bq+At(Wq))_pl(bq+At(Wq)+f))}’

q=11=1 t=1 t=1

(359)
where pi(z7) =, !

We define Hy(W,) == S0, (pi(by + B (W) —pi(bg + Be(Wy) — &)+ 1 (0i(by + Ae(Wy)) — pu(by + A (W) +€)).
Then we use a formula,

H(Wy) = (bg—&)' = (b)' = D auleq(n)), (360)
HeEW,

where o(2) = (e + 1) = (@ -+ (@ -B)! —(@+B) + (e + B -1 — (z+1—B) and ¢,(u) = by + Bi — j for
w = (i,7). It was proved in appendix B of [15]. Thus we can proceed as

N oo Sl N x Sl
1+€sX(s) = exp{zg_lyl((b EOIDIPIE llal«cq(u))}

q=11=1

q=1[l= q=11=0 pew,

N o N oo
exp {ZZ 1)t (bg — exp {ZZ lcq(u)l)wl(s)} . (361)

In the last equality of (361), we use the following formula

i(q)l“sjl{(a +b)l—dl} = i(q)l“alsl(:l(l + bs), (362)
=1 =0

which can be proved by some computation. Comparing (361) with (188), the algebra (186) is proved once we set
(202, 206). The proof of the algebra for the action on the bra state is similar.

I Derivation of Virasoro algebra from SH¢

Here we give a sample computation to give the Virasoro algebra from the definition of SH¢ (184—187) and (213). We
focus on the relation

(L2, Lo] = 4Lo + 5 (363)
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since it gives the simplest commutator to give the Virasoro central charge.

The definition of generators gives

(Lo, L] = # {[D_2,1,D21] — co€[D_2,1, D2o] — co&[D_2,0, D2.1] + (co€)*[D—2,0, Dao]} .
We express degree 2 generator as the commutator of degree 1 generator
Dy = [D1,1, D], D_50=[D_10,D-11],
Dy 1 = [D12,D1], D 91 =[D_10,D-1p2]. (364)

The commutation relation between degree two operators is reduced to those for degree one operator. After some
computation we arrive at

[D_21,D21] = 8BE;+6c0BEE — 5B + g fE? — 2coc1 BE + 2¢0f8 — 2¢03E + 2c0 fE7, (365)
[D_50,D21] = —4c1 44586 — 2¢o¢ (366)
[D_21,D20] = —4c18+ 4c5BE — 260 3¢, (367)
[D—20,D20] = 2cof. (368)
It gives
[La, L] = %EQ + % {—c3€* + co — co€ + co€?} . (369)

After identifying Ly = ﬁEg, we can identify the Virasoro central charge (217).

J Calculation of the U(1) and Virasoro constraints

Calculation for U(1) The formulas offered in appendix F enable us to calculate the following,

- - xr ' = 17 N fp+1 - 7
(@+ve YINVQb+ E+v+meaW) V'Y (@+ve, Y EHPv( )Ib+(£+v+u)§ W>A<k,+>(5+,,é»y)
(@+ v, YIV)|b+ (€4 v+ peé W) =1 11 a+ve,YIV)b+ (E+v+pew) 7

N fp+1{ M

H gyp(k,Jr)Wq (ap - b - " (ﬂ gY Y aq)quyp (aq — ap) )1/2
( g (ag — ap)

p=1 k=1 =1 gYqu (ap - b‘l - ap gy(k +)y a‘q)quyp(k»*) a
. 1/2
x w x AP (G 4 ve,Y)
Gy (kH)y (k+) b
o 5,1 EN: fpz—él {Hév_l H{q:Jlrl(ap - bq —p+ Ak(Yp) - AE(Wq) - 5) % Hq 1 Hz 1(ap g + Ak(y;a) - Bé(Yq) + f) }
o f fa+1 :
it im U TIL T (ap — by — o+ A(Yy) = Bo(W)) [T T2 (0 = ag + A(Yy) = Ae(Yy)

(370)

In the first equivalence we use the action of J_; on the basis, and in the second equivalence we use the definition of
Nekrasov partition function.While in the third equivalence, the total plus sign comes from the sign choice inside the
square root, in accordance with g = 1 case.

Similarly, the variation on the ket side is evaluated as below,
(@+v& Y|V(1)Ji]b+ (£ + v + p)é, W)
(@ +ve, Y|V b+ (€ + v+ e W)

N f; f+1
_ a1 Hp (b +:u_ap+B€(W) Bk H : bp"’BZ(Wq)_Ak(Wp)_f)
- ZZ{pF_Il 1 (bg + 1 — ap + Bo(W,) — Ak<Yp> H ;fa(b — by + Be(W,) — Be(Wy)) }

(371)

63



Then, by setting,

ap+v+Ap(Y,), bg+v+pu+B(Wy)=ar, ap+v+Bp(Y,) =& bo+v+p+ A(Wy)+E=—yy,

(372)

we find that the difference of the above two equations satisfy the formula(182) we mentioned in section 3, thus

(@+ve, Y| LV Q)b+ (& + v+ p)é, > (@4 ve, Y[V Jib+ (E+v+peé W)
(@4 ve,YIV)|b+ (€ + v+ p)e, W)

1 HJ (rr—vys) Y _ p-1 - A
=6 Z =B (wrty) =8 (ap—by—pu—¢).
I= I=1 p=1

1 J(xlfl']

The J_; and Ly, cases can be illustrated in parallel.

Calculation for L; The quantity to be evaluated is,
Tr+Yg
S it zzzz
HJ;&I('TI I<J I<J
We rewrite it explicitly (here ¢, u are the conterparts of r s in the Young diagram W),

N
ZyILUJ =
J

fa+1

+

—ttv—sP 4 BrP(ag—E+v— sV 4 pr9)

o

— et v s 807 (bg v+ = + 84"

+

T M =M

+

EMZ 'GMZ 'GMZ @MZ
<M= <M=z < [= <=

—(by +V+u—u§cp) +Bt,(f?1)(aq e Sl(q) +ﬁﬁ@1)

N
+ -
AR
NM“’H M
P

+ SN v p—ul + 850 (b + v+ = + 87,
k

N fp+1 fq+1
S o =3° 2 S ap— 40—+ 5P ) ay — €+ v — 0 4 ri%)
I<J p<q l

N fp+1

+ZZ(CLP—§+V (p)'f'ﬁ""k, )(ap—£+u +6T(p))
p k<l

N N fptl fq

3N S ey ety B b+ v+ - uf® + pt?)
P q k l

N fp fq
+ZZZ(bﬁ+V+”_U;(€p)+6t,(€p))(bq+u—|—,u— (q)+6t )
p<q k 1
N fo
+3 Ny v =l + BN (b + v+ i —uP + B,
p k<l
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(373)

(374)

(375)

(376)



N fp fq

ZnyJ _ ZZZ v (p) +B7’(p))(aq v — (Q) +ﬂr(q))

1<J pr<q k
N fp
+ZZ(GP_€+V (P)+5T(P))(ap_£+y_sl(17)_’_Brl(p))
p k<l
N N fp fqtl
NS S gy - v =P 4 B bg + v+ - + B (377)
P k l
N fpt+1 fo+1
+ZZ Z(prrl/Jr,ufué.p)+ﬂt,(€p_)1)(bq+l/+,u* ul? 4 D)
p<q l
N fptl
JFZ Z(bp+’/+ll*u1(€p)Jrﬂt;gp—)1)(bp+V+ﬂ* (p)+ﬂt(p)1)a
p k<l
N N fp+l N fp
Zx?zzZ(ap—g—i—u—s,(f)—&—Br,(ﬁ)l)Q—l—ZZ(bp—!—V—l—u (p)—i—ﬁt )2, (378)
I P k p k

Sum the above four equations together, we find most of the cross terms cancel with each other, and the remaining is

N N

Z( +Z —§+v)(a f+V)_Z(ap_§+V)<bq+V+ﬂ)
p p<q p,q
N N fp
+ D by + v+ ) (bg + v+ 1) +ZZS(") (Bri — pr) ZZup) 8t — i) (379)
r<q
1Y 1Y 1 al > -
=5 (ap+v=8?= 5> (bptv+m?+5(D (ap =& —by— ) + Y] = BIWI,
p=1 p=1 p=1
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