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Abstract

We work on the proof of Gauge/Toda Duality(AGT conjecture) through two different ways.First we generalized

A. Mironov et. al.’s idea to the much more complicated SU(N) case. We calculated the conformal block in the

form of Dotsenko-Fateev integral and reduce it in the form of Selberg integral of N Jack polynomials. We found

a formula for such Selberg average which satisfies some nontrivial consistency conditions and showed that it

reproduces the SU(N) version of AGT conjecture. Besides, we worked out many technical details, including

proofs of lemmas lacked in A. Mironov et. al.’s paper, which are essential to bring Selberg average into the form

of Yang-Mills partition function. The other approach is based on recursion relations. We derive an infinite set of

recursion formulae for Nekrasov instanton partition function for linear quiver U(N) supersymmetric gauge theories

in 4D. They have a structure of a deformed version of W1+∞ algebra which is called SHc algebra (or degenerate

dual affine Hecke algebra) in the literature. The algebra contains WN algebra with general central charge defined

by a parameter β, which gives the Ω background in Nekrasov’s analysis. Some parts of the formulae are identified

with the conformal Ward identity for the conformal block function for Toda field theory. The SU(N) constraints

give a direct support for AGT conjecture for general quiver gauge theories.
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1 Introduction

This thesis features on the author’s efforts to prove AGT conjecture[1]. AGT conjecture surprises the academics as an

amazing identification between two seemingly totally independent subjects: the partition function of 4 dimensional

gauge theory and the correlation function of 2 dimensional conformal field theory. These two subjects have been

respectively important research objects in both physics and mathematics, but even mathematicians did not notice

the relation between them. Thus AGT conjecture achieves great concern from both fields and is highly evaluated as

a new territory of mathematical physics, and many related researches are inspired since its publication.

Historically, string duality is crucial in the understanding of different types of string theories and their counterparts

like quantum gravity and gauge theories, and serves as a powerful tool for studying strongly-coupled theories. For

years most of this kind of research has been limited to AdS/CFT, but in 2002, Nekrsov performed a technique called

Ω deformation in the reduction from 6D N = 1 gauge theory to 4D N = 2 gauge theory, and implied its connection

with 2D conformal theory[2]. He found exact formulae of the partition function (Nekrasov partition function) of

the N = 2 gauge theory, and showed that it reproduces the prepotential as determined by the Seiberg-Witten

curve[3, 4]. Later in 2009, some news attracts people ’s attention. Alday, Gaiotto and Tachikawa presented an

interesting observation that the Nekrasov partition functions of certain class of N=2 SU(2) gauge theories seem to

coincide with the correlation function of 2D Liouville field theory (AGT conjecture). Soon later, Wyllard [5] and

others [6, 7] have presented a generalization to SU(N) case.

In their observations, the correlation functions of Liouville (Toda) field theories[8, 9] are identified with the integral

of the Nekrasov partition function ZNek, where the instanton part Zinst in the gauge theory written in a form [10]

is identical to the conformal blocks, and the perturbative part Z1loop corresponds to the (product of) three point

functions. AGT conjecture is illuminating in showing a correspondence between 4D Yang-Mills and 2D integrable

models and will be fundamental in the understanding of the duality of gauge theories. It will also be relevant to

understanding strong coupling physics of multiple M5-branes. In this respect, it will be important to explore to what

extent and how this conjecture holds. Especially, since the coincidence was found through the first few orders in the

instanton expansion, the exact computation of conformal block is needed in the Liouville(Toda) side.

Since then there were many attempts on the interpretation of AGT conjecture, but no complete proof had been

achieved. In 2011, A. Mironov et. al. had embarked on an interesting step toward this direction[11, 12]. They used

the Dotsenko-Fateev method [13] to calculate the conformal blocks. They analyzed the simplest example SU(2),

Nf = 4 and proved the AGT relation for a special choice of the Ω deformation parameter β = −ϵ1/ϵ2 = 1. The

key step in their analysis is the reduction of the Dotsenko-Fateev (DF) formula to Selberg average with one or two

Jack polynomial(s) which was computed explicitly by Kadell [14].This work is of great importance as the first direct

proof, but still rigorous analysis is in demand. Recently, O. Schiffmann and E. Vasserot successfully introduced an

algebra called SHc to prove the AGT conjecture[15], yet their work is limited to pure super Yang-Mills theory.

We have been working on the proof of AGT conjecture through two different ways.

First we generalized A. Mironov et. al.’s idea to the much more complicated SU(N) case[16]. We calculated the

conformal block in the form of Dotsenko-Fateev integral and reduce it in the form of Selberg integral of N Jack

polynomials. The old Dotsenko-Fateev integral and the choice of paths of the screening operators play key roles in

this correspondence, and their significance to Matrix models and conformal blocks are pointed out in the work[17].

In [18], Itoyama and Oota calculated the SU(2) case of the reduction from DF integral to Selberg-Jack integral, and

we performed the SU(N) version’s study.
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Selberg integral is an n-dimensional generalization of the Euler beta integral, and Jack polynomial is a kind of

symmetric polynomial labeled by Young diagram. Selberg integral showed its prominence, evidenced by its central

role in randommatrix theory, Calogero-Sutherland quantummany body systems, Knizhnik-Zamolodchikov equations,

and multivariable orthogonal polynomial theory. By q-deformation, Jack polynomial will upgrade to MacDonald

polynomial, whose application in five dimensions is in anticipation. These two subjects have long histories and are

wide applied in both mathematical and physical fields. Yet the interaction of them has been a forbidding issue.

Surely, if we want to achieve a full direct proof for SU(N) case, the exact expression of SU(N) Selberg Jack integral

will be required. No such formula is available in the mathematics literature, so we need to calculate this kind of

integral by ourselves. Fortunately there are still some materials that for us to refer to. For SU(2) case, the relevant

Selberg averages for one and two Jack polynomials were obtained by Kadell[14], and The one-Jack Selberg integral

for SU(N) could be calculated by the formula offered by Warnaar[19, 20]. There works serve as a good hint for our

calculation. Furthermore, another advantage we own is that, we already more or less know the deserved form of the

Selberg Jack integral, from the expectation of AGT conjecture.

Though the actual process is much more complicated than expected, we manage to found a formula for such Selberg

average which satisfies some nontrivial consistency conditions and showed that it reproduces the SU(N) version of

AGT conjecture. Besides, we work out many technical details, including proofs of lemmas lacked in A. Mironov et.

al. ’s paper, which are essential to bring Selberg average into the form of Yang-Mills partition function. This work

is the first direct approach of SU(N) AGT conjecture with β = 1.

Our recent method is based on recursion relations. We derive an infinite set of recursion formulae for Nekrasov

instanton partition function for linear quiver U(N) supersymmetric gauge theories in 4D. They have a structure of a

deformed version of W1+∞ algebra which is called SHc algebra in the literature. The algebra contains WN algebra

with general central charge defined by a parameter β, which gives the Ω background in Nekrasov ’s analysis. Some

parts of the formulae are identified with the conformal Ward identity for the conformal block function for Toda field

theory. The SU(N) constraints give a direct support for AGT conjecture for general quiver gauge theories.

In detail, the instanton partition function for linear quiver gauge theories is decomposed into matrix like product

with a factor ZY⃗ ,W⃗ which depends on two sets of Young diagrams (28). Here the Young diagrams Y⃗ = (Y1, · · · , YN )

represent the fixed points of U(N) instanton moduli space under localization. ZY⃗ ,W⃗ consists of contribution from

one bifundamental hypermultiplet and vectormultiplets. We find that the building block ZY⃗ ,W⃗ satisfies an infinite

series of recursion relations,

δ±1,nZY⃗ ,W⃗ − U±1,nZY⃗ ,W⃗ = 0 , (1)

where δ±1,nZY⃗ ,W⃗ represents a sum of the Nekrasov partition function with instanton number larger or less than ZY⃗ ,W⃗
by one with appropriate coefficients and U±1,n are polynomials of parameters such as mass of bifundamental matter or

VEV of gauge multilets. The subscript n takes any non-negative integer. The detailed form of the recursion formula

and its derivation is done in the section 8. The recursion formula is derived by a complicated but straightforward

calculation from the definition of the factor ZY⃗ ,W⃗ . We note that a classical limit of the such relations was recently

explored in [21].

Then we give an interpretation of (1). We show that the variation in (1) can be understood as an action

of an infinite-dimensional extended conformal algebra. It is defined in [15] and named SHc algebra.1 For this

1This name of the algebra appears only in [15]. Degenerate double affine Hecke algebra, or DDAHA in short, may be more appropriate.

We thank Y. Tachikawa for informing us of the relevance of [15].
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purpose, we construct an explicit representation where the basis of the Hilbert space is labeled by sets of N Young

diagrams. Physically, it can be understood that these states correspond to instantons characterized by the same

set of Young diagrams. In our previous paper [22], we showed a similar form of recursion formula under self-dual

Ω-background (ϵ1+ϵ2 = 0) and discussed that it can be interpreted in terms of W1+∞ algebra. The analysis here is a

natural generalization to any Ω-deformation. SHc algebra contains a parameter β, which is related to Ω-deformation

parameters by β = −ϵ1/ϵ2. When we take β = 1, (1) reduces to that in [22] and the action of SHc algebra can

be identified with the W1+∞ algebra. We will also see SHc algebra contains Heisenberg×Virasoro subalgebra and

its central charge is the same as that of Heisenberg×WN algebra with background charge Q =
√
β − 1/

√
β. The

combination of Heisenberg algebra with WN appears in [23, 24, 25], where the authors formally construct a basis of

Hilbert space of Heisenberg×WN algebra which reproduces the factorized form of Nekrasov partition function. Such

observation implies that one may regard the formula (1) as the conformal Ward identities which characterize the

conformal block function.

We mention that there is another one parameter deformation ofW1+∞ algebra [26],W∞[µ] in the context of higher

spin supergravity. SHc and W∞[µ] share a property that they are generated by infinite higher spin generators and

contains WN algebra with general β as their reduction. Here we use SHc since their action on a basis parametrized

by sets of Young diagram is already known. It is natural to expect that these two algebras are identical although

their appearances are very different. It should be also noted that the introduction of further deformation parameter

is possible [27, 28, 29] and was applied to a generalization of AGT conjecture [30].

As we will see later, it is tempting to speculate that identities from SHc algebra fully reproduce the conformal

block function. Because of a technical difficulty to characterize the vertex operator in SHc, explicit demonstration

of the relation is limited to the Heisenberg and Virasoro subalgebra. For these cases, the recursion for n = 0, 1 can

be indeed interpreted as Ward identities. The algebra SHc was introduced in [15] to prove the AGT conjecture for

pure super Yang-Mills theory. Our analysis shows that it may be applied to linear quiver gauge theories as well. For

the recent development toward such direction, see also [31].

This thesis is orgnazied as follows. In section 2 we review the Nekrasov partiion function, including its origin from the

Ω deformation of N = 2 SUSY gauge theories, and focus on its application on linear quiver gauge groups explicitly.

In section 3, we give a brief introduction to Liouville field theory and its SU(N) generalization, the Toda field theory.

DOZZ formula, conformal blocks, and the basic properties of the boson fields are provided, which are of importance

in later discussions.In section 4 we introduce the famous AGT conjecture, i.e., the duality between 4D SUSY gauge

theories and 2D conformal theories.The CFT correlation functions can be regarded as the integral of the Nekrasov

partition function ZNek, with three-point functions (DOZZ formula) correspond to the one-loop part of ZNek, and

conformal blocks to the intanton part. In section 5, we study the Dotsenko and Fatteev’s method of screening

operators and transform the four point correlation function in Toda field theories into the Dotsenko-Fatteev integral.

Section 6 and 7 are one of the main results of this thesis. In section 6, after a short review of Selberg integral, we

perform some calculation to reduce the Dotsenko-Fatteev integral to a Selberg average of Jack polynomials. Then

based on limited known results, we conjecture a formula of SU(N) Selberg-Jack integral, and show that it clears

several nontrivial consistency checks. In section 7, we present a direct approach on AGT conjecture, mainly with

the Ω deformation parameter β = 1. After the proof of several important lemmas and evaluation of parameters, we

manage to identify the Selberg-Jack integral with the instanton part of the Nekrasov partition function. Section 8

and 9 illustrate another substantial approach to the proof of AGT conjecture, using a recursion method. In section

8, we construct the recursion formula for Nekrasov partition function, with the help of some mathematical formulae.

Further we construct the basis using the symmetry algebra SHc, which contains Heisenberg and Virasoro algebra

as its subalgebra, and can also be reduced to W1+∞ algebra. In section 9, By using a modified vertex operator, we

successfully obtain the ward identities for U(1) currents and Virasoro generators, which serve as strong supports to
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the AGT conjecture. In the appendix, substantial mathematical oriented proof and calculations are provided, which

are the main contributions of the author in his cooperation projects[16, 32].

2 Nekrasov partition function

In both physical and mathematical fields, it has been a puzzle that why Donaldson invariants are related to periods

of Seiberg-Witten curves [33] . Nekrasov’s discovery on the relation between Nekrasov partion function and Seiberg-

Witten prepotential is considered as a first step towards the understanding of the mysterious relation.

For pure N = 2 supersymmetric Yang-Mills theory with the gauge group U(N) and its maximal torus T = U(1)N ,

The action is given by the integral over the superspace [34]:

S =
1

8πh∨

∫
d4xd4θ Im

(τ
2
Tradj Ψ

2
)
, (2)

where the fields contain: Aµ, ψ
A
α and ϕ, where Aµ is a vector boson, ψAα , A = 1, 2 are two Weyl spinors and ϕ is a

complex scalar. Since vector bosons are usually associated with a gauge symmetry, Aµ is supposed to be a gauge

boson corresponding to a gauge group G. It follows that it transforms in the adjoint representation of G. To maintain

the N = 2 supersymmetry ψAα and ϕ should also transform in the adjoint representation.Here Tradj means that the

trace is taken over the adjoint representation. These fields form the (N = 2) chiral multiplet (sometimes called the

gauge or the vector multiplet).

The most natural superfield representation for the chiral multiplet is given in the extended superspace, which has

the coordinates xµ, θαA, θ̄
A
α̇ , A = 1, 2. Then we have

Ψ(x, θ, θ̄) = ϕ(x) +
√
2θαAψ

A
α (x)−

i√
2
ϵABθ

αAθβBσµναβFµν(x) + . . . (3)

Besides, we have

τ =
4πi

g2
+

ϑ

2π
, (4)

with g2 being the Yang-Mills coupling constant (and the Plank constant as well) and ϑ is the instanton angle. Its

contribution to the action is given by the topological term, ϑk where k is the instanton number:

k = − 1

16π2h∨

∫
Tradj(F ∧ F ), (5)

where the curvature F = 1
2Fµνdx

µ ∧ dxν = dA+A ∧A.

In the low energy limit, when the N = 2 supersymmetry is unbroken, the most general effective action can be

obtained by the following generalization of (2):

Seff =
1

8πh∨

∫
d4xd4θ Im

[
F(Ψ,Λ)

]
where F(a,Λ) is a holomorphic gauge-invariant function called the prepotential. Its classical expression can be read

from (2): Fclass(a) =
τ

2
a2. All perturbative correction are contained in the 1-loop term which is equal to

Fpert(a,Λ) = −
∑
α∈∆+

(α · a)2
(
ln
∣∣∣α · a

Λ

∣∣∣− 3

2

)
(6)

where Λ is the dynamically generated scale. In this formula the highest root is supposed to have length 2.
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The action (2) can be considered as a 5 + 1 dimensional N = ∞ supersymmetric Yang-Mills theory in the

Ω-background and compactified on the two dimensional torus. Actually the easiest way to construct the action

of the 4D super Yang-Mills theory with extended supersymmetry is to apply dimensional reduction from higher

dimensional minimal supersymmetric theories [35]. Consider lifting the N = 2 four dimensional theory to N = (1, 0)

six dimensional theory, and then compactify the six dimensional N = 1 susy gauge theory on the manifold with the

topology T2 ×R4 with the metric :

ds2 = r2dzdz̄ + gµν
(
dxµ + V µdz + V̄ µdz̄

) (
dxν + V νdz + V̄ νdz̄

)
, (7)

where V µ = Ωµνx
ν , V̄ µ = Ω̄µνx

ν , and

Ωµν =


0 ϵ1 0 0

−ϵ1 0 0 0

0 0 0 ϵ2

0 0 −ϵ2 0

 , Ω̄µν =


0 ϵ̄1 0 0

−ϵ̄1 0 0 0

0 0 0 ϵ̄2

0 0 −ϵ̄2 0

 (8)

Here Ωµν = GνκΩµκ etc.The area r2 of the torus is to be sent to zero. For [Ω, Ω̄] = 0 the metric is flat.

The action of the four dimensional theory in the limit r → 0 is not that of the pure supersymmetric Yang-Mills

theory on R4. Rather, it is a deformation of the latter by the Ω, Ω̄-dependent terms. We shall write down here only

the terms with bosonic fields (for simplicity, we have set ϑ0 = 0):

S(Ω)bos = − 1

2g20
Tr

(
1

2
F 2
µν + (DµΦ− Ωνλx

λFµν)(DµΦ̄− Ω̄νλx
λFµν) + [Φ, Φ̄]2

)
(9)

We shall call the theory (9) an N = 2 theory in the Ω-background.

With his idea of the Ω-background, Nekrasov calculated the following partition function

Z(τ, a,m, ϵ) =

∫
ϕ(∞)=a

DΦDADλ . . . e−S(Ω) (10)

of the N = 2 susy gauge theory with all the higher couplings on the background with the fixed asymptotics of the

Higgs field at infinity. We take the limit τ̄0 → ∞, and the partition function becomes the sum over the instanton

charges of the integrals over the moduli spaces M of instantons of the measure, obtained by the developing the path

integral perturbation expansion around instanton solutions.

The detailed calculation can be found in, for example, [36]. The general idea is:

Split the configuration Aµ as

Aµ = AASD
µ + δAµ (11)

with the anti self-dual part AASD
µ and its deviation δAµ. When δAµ is small, the action becomes

S =
8π2k

g2
+

∫
d4x(2nd order of δAµ) + (higher terms), (12)

so that the partition function can also be divided in the form

Z =

∫
[DAµ]e

−S =
∑
k

∫
[DAASD

µ ]

∫
[δAµ]e

− 8π2k
g2

+···
(13)
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the exact investigation using this expansion is first done in [37], but due to the complexity of dealing δAµ , we

consider the simple model

Z instanton =
∑
k

qk
∫

[DASD
µ ] =

∑
k

qk
∫
MN,k

dvol、 (14)

where dvol is the natural volume form on MN,k ,and q = exp(−8π/g2) is the chemical potential of the instanton

number.The apparent divergence can be controlled by the insertion of some Gauss-like factor.

The important property of this partition function (10) is that it gives the prepotential of the theory in the limit

ϵ1 = −ϵ2 = ~ → 0

F (τ, a,m) = lim
~→0

~2 logZ(τ, a,m; ~,−~). (15)

This limit was evaluated for a number of N = 2 theories, and reproduced the prepotential as determined by the

Seiberg-Witten curve.

Nekrasov partition function is applied in various matter contents. In this paper, we focous on the partition function

for G = U(N1)× · · · × U(Nn) linear quiver gauge theory:

Zfull(q; a,m; ϵ) = ZtreeZ1loopZinst, Zinst(q; a,m; ϵ) =
∑
Y

qYz(Y, a,m), (16)

where the instanton is labeled by a N-tuple of Young diagrams: Y := (Y⃗ (1), · · · , Y⃗ (n)), (Fig. 1). The parameter a

(resp. m) represents the diagonalized VEV of vector multiplets (resp. mass of hypermultiplets) whereas qi = eπiτi is

the instanton expansion parameter for ith gauge group SU(Ni), q
Y :=

∏n
i=1 q

|Y⃗ (i)|
i . The total partition function is

decomposed into a product of the contributions of the perturbative parts Ztree, Z1−loop and non-perturbative instan-

ton correction Zinst. The latter is further decomposed into a sum of sets of Young diagrams. Y⃗ (i) = (Y
(i)
1 , · · · , Y (i)

Ni
)

is a collection of Ni Young diagram which parameterizes the fixed points of instanton moduli space for i th gauge

group U(Ni).

We will mainly focus on the instanton part. The coefficient z(Y, a,m) is described as a product of the contributions

(i, j)

i

j Arm

Leg

h

m

Figure 1: Young diagrams are very useful in representing conjugacy classes in group theory. The above is a Young

diagram Y of (8,6,6,5,5,5,4,2,1). The ith column is named as Yi. h = Y1 is the height of Y, while m = Y ′
1 is called the

length of Y, where Y ′ stands for the transposed Young diagram.The arm-length and leg-length of the box (i, j) in the

tableaux Y are denoted by ArmY (i, j) and LegY (i, j) defined separately as ArmY (i, j) = Y ′
j −i, LegY (i, j) = Yi−j .

For the box (i, j) = (3, 2), the arm-length and leg-length are 5 and 4,respectively.

of the gauge- and hyper multiplets which describes the system:

z(Y, a,m) =
n∏
i=1

zvect(a
(i), Y⃗ (i))

∏
R

zR(Y⃗ , a,m) , (17)
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where R is the representation for each hypermultiplets (we set β = −ϵ1/ϵ2):

zbifund(a, Y⃗ ; b, W⃗ ;m) =

N1∏
t

N2∏
s=1

GYt,Ws(at − bs −m)GWs,Yt(bs − at +m+ 1− β) , (18)

zfund(a, Y⃗ ;m) =

N∏
s=1

fYs(as −m− 1 + β) , (19)

zafd(a, Y⃗ ;m) = zfund(a, Y⃗ ,−1 + β −m) , (20)

zadj(a, Y⃗ ;m) = zbifund(a, Y⃗ , a, Y⃗ ,m) , (21)

zvect(a, Y⃗ ) = 1/zadj(a, Y⃗ , 0) . (22)

In eq.(18), the hypermultiplet is supposed to transform as bifundamental associated with gauge group U(N1)×U(N2).

Similarly, in eq.(19), the fundamental representation is associated with U(N). The function G in eq.(18) is a function

with respect to the tableau Y ’s arm-length and leg-length

GY,W (x) =
∏

(i,j)∈Y

(
x+ β(Y ′

j − i) + (Wi − j) + β
)
, (23)

and the function f in (19) is defined as

fY (z) =
∏

(i,j)∈Y

(z + β(i− 1)− (j − 1)) . (24)

Single gauge group case First we focus on the simplest case, G = SU(N), with Nf = 2N hypermultiplets in

fundamental representation. In this specific example, the partition function is written as

Zfull(q; a, µ; ϵ) = ZtreeZ1loopZinst, Zinst(q; a,m; ϵ) =
∑
Y⃗

q|Y⃗ |N inst
Y⃗

(a, µ), (25)

N inst
Y⃗

(a, µ) = zvect(Y⃗ , a)

2N∏
i=1

zfund(Y⃗ , µi) =

∏N
s=1

∏2N
k=1 fYs(µk + as)∏N

t,s=1 gYt,Ys(at − as)
, (26)

with

gY,W (x) := GY,W (x)GY,W (x+ 1− β). (27)

µi (i = 1, · · · , 2N) are mass parameters of hypermultiplets with fundamental representation.

Linear quiver case For four-dimensional N = 2 superconformal linear quiver gauge theory with U(N)×U(N)×
· · · × U(N) gauge group, we make a different choice of zvect, but with the total contribution remains the same. The

instanton partition function of N = 2 gauge theories can be written in the following form

ZNek
inst =

∑
Y⃗ (1),··· ,Y⃗ (n)

q
|Y⃗ (i)|
i V̄Y⃗ (1) · ZY⃗ (1)Y⃗ (2) · · ·ZY⃗ (n−1)Y⃗ (n) · VY⃗ (n) . (28)

ZY⃗ (i)Y⃗ (i+1) = Z (⃗a(i), Y⃗ (i); a⃗(i+1), Y⃗ (i+1);µ(i)), (29)

V̄Y⃗ (1) = Z(λ⃗, ∅⃗; a⃗(1), Y⃗ (1);µ(0)), (30)

VY⃗ (n) = Z (⃗a(n), Y⃗ (n); λ⃗′, ∅⃗;µ(n)), (31)

where qi = exp (2πiτi) represents the complexified coupling constant τi of i-th U(N) gauge group, Y⃗ (i) is a set of

N Young diagram characterizing fixed points of localization in the instanton moduli space of the i-th U(N). a⃗(i)

10



V VZ Z

Figure 2: Decomposition of Nekrasov function

is the VEV for an adjoint scalar field in the vector multiplet of i-th U(N) and µ(i) is the mass parameter for the

bifundamental matter field which interpolates ith and i + 1th gauge groups. We write ∅⃗ to represent a set of null

Young diagrams (∅, · · · , ∅).

The building block reads,

Z (⃗a, Y⃗ ; b⃗, W⃗ ;µ) =
zbf
z̃vect

=

∏N
p,q=1 g̃YpWq (ap − bq − µ)(∏

p,q g̃YpYq (ap − aq)g̃WpWq (bp − bq)
)1/2 (32)

The function g̃YW is

g̃Y,W (x) =
∏

(i,j)∈Y

(x+ β(Y ′
j − i+ 1) +Wi − j)

∏
(i,j)∈W

(−x+ β(W ′
j − i) + Yi − j + 1) . (33)

The decomposition of the form (28) seems to be natural if we recall the pants decomposition of multi-point function

on sphere and the dictionary of AGT relation; A bifundamental and a vector multiplet correspond to a vertex

operator insertion and an internal line respectively (see Fig.2).

3 Toda field theory

The conformal properties of two-dimensional surface can be understood with the help of quantum Liouville filed

theory[38], which can be transformed to a two-dimensional conformal field theory. Its algebra of generators of the

conformal symmetry coincides with the Virasoro algebra, which can be obtained from affine sl(2) algebra. Generalize

the sl(2) algebra to a general affine simple Lie algebra g, one obtains associative algebra (W algebra) as a direct

extension of the Virasoro algebra[39]. The associated theory generalizing Liouville filed theory with simple Lie algebra

g is called Toda Field theory.

In subsection 3.1, the simpler and special case – Liouville theory is studied, with the concepts DOZZ formula and

conformal blocks explained[1, 40, 41]. Then in subsection 3.2, we discuss the general properties of Toda Field

theories[8, 9, 42].

3.1 Liouville theory: DOZZ formula and Conformal blocks

Let us begin with the action of free scalar field(free boson) φ(z, z̄)[43],

S =
1

8π

∫
d2x

√
g
(
gab∂aφ∂bφ

)
(34)

The two-point function of φ reads,

⟨φ(z, z̄)φ(w, w̄)⟩ = log |z − w|2. (35)

Here log |z − w|2 is the Green function of the Lagrangian ∂z∂z̄, which is equivalent to the point charge potential of

2D electromechanics. Thus the free boson system is sometimes called Coulomb Gas.
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As a result of the Equation of motion ∂z∂z̄φ = 0, φ(z, z̄) can be divided as the sum of the holomophic and antiholo-

mophic parts

φ(z, z̄) = ϕ(z) + ϕ̄(z̄). (36)

We will concentrate on the holomophic field ϕ(z) in the discussion of Lioubille and Toda theory.

The central charge c of the free boson CFT is fixed as c = 1. In order to have more variations, the usual method is

to combine the scalar field with the world sheet curvature. Under the general 2D metric gab, the action becomes

S =
1

8π

∫
d2x

√
g
(
gab∂aφ∂bφ− iQRφ

)
, (37)

with g = det(gab), R the scalar curvature, and Q a constant. When the metric is given by

ds2 = σdzdz̄, gzz̄ =
1

2
σ, gzz = gz̄z̄ = 0, (38)

the scalar curvature R has the form

R = σ−1(−4∂z∂z̄ logσ), (39)

thus

√
gR = −2∂z∂z̄ logσ. (40)

Apparently the complex plane metric ds2 = dzdz̄ leads to
√
gR = 0. Yet on the other hand, at z = ∞ under the

coordinate transformation w = 1
z , the metric becomes ds2 = w−2w̄−2dwdw̄, so

√
gR ∼ δ2(0). This means that on

the Riemann sphere, there is a charge iQ at z = ∞. Thus Q is named as the background charge.

Now we are ready to move to the Lioubille field theory[40] , with the action

S =
1

4π

∫
d2z
√
ĝ
(
ĝab∂aϕ∂bϕ+QRϕ+ 4πµe2bϕ

)
. (41)

The parameters follow the definitions above: the background charge Q=i b-i/b, b the dimensionless coupling constant,

R the scalar curvature of the background metric ĝ, and µ called the cosmological constant.

The boson field ϕ has the mode expansion

ϕ(z) = ϕ0 + a0 log z −
∑
n ̸=0

an
n
z−n (42)

with the commutation relations

[an, am] = nδn+m,0, [an, ϕ0] = δn,0 (43)

Then the Fock vacuum |0⟩ is constructed through

an|0⟩ = 0, n ≥ 0, ⟨0|ϕ0 = ⟨0|an = 0, n < 0 (44)

Define the correlator of operator O to be

⟨O⟩ = ⟨0|O|0⟩ (45)

It can be checked that

⟨ϕ(z)ϕ(w)⟩ = log(z − w) (46)

The corresponding energy momentum tensor is

T (z) =
1

2
: ∂ϕ(z)2 : − iQ√

2
∂2ϕ(z) ≡

∑
n∈Z

Lnz
−n−2 (47)
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with the central charge

c = 1 + 6Q2 (48)

DOZZ formula [44, 45, 46]

In conformal field theory we often encounter the three point correlation function with arbitrary vectors β

⟨Vβ1(z1, z̄1)Vβ2(z2, z̄2)Vβ3(z3, z̄3)⟩ =
C(β1, β2, β3)

|z12|2(∆1+∆2−∆3)|z13|2(∆1+∆3−∆2)|z23|2(∆2+∆3−∆1)
. (49)

in the Liouville theory case, this formular has the name of DOZZ formula(Dorn, Otto, Zamolodchikov and Zamolod-

chikov). Under the sl(2) condition, C is calculable that we have

C(β1, β2, β3) =
[
πµγ(b2)b2−2b2

](Q−β1−β2−β3)/b

× Υ′(0)Υ(2β1)Υ(2β2)Υ(2β3)

Υ(β1 + β2 + β3 −Q)Υ(β1 + β2 − β3)Υ(β1 − β2 + β3)Υ(−β1 + β2 + β3)
(50)

where

γ(x) = Γ(x)/Γ(1− x). (51)

and

Υ(x) =
1

Γ2(x|b, b−1)Γ2(Q− x|b, b−1)
. (52)

With Γ2(x|ϵ1, ϵ2) the Barnes’ double gamma functions.

Conformal blocks [47, 48, 49, 50]

In Liouville theory, a certain order correlation function of primary field O can be built from lower order ones:

⟨O1 · · · OjOj+1 · · · On⟩ =
∑
i,M,N

⟨O1 · · · OjL−MOi⟩MK−1
MN ⟨L−NOiOj+1 · · · On⟩N (53)

Where L−M,−N stand for the descendants of the primary field Oi

L−NOi = L−n1L−n2 · · ·L−nNOi (54)

with Ln the generators of the Virasoro algebra introduced in(3.1), and k =
∑N
i=1 ni the level of the descendant. The

matrix K (called Gram matrix) at level k, are given by the inner product of L−N |Oi⟩, the corresponding descendants

of the primary field Oi.

For example, at level two,

K =

(
⟨Oi|L2L−2|Oi⟩ ⟨Oi|L2

1L−2|Oi⟩
⟨Oi|L2L

2
−1|Oi⟩ ⟨Oi|L2

1L
2
−1|Oi⟩

)
=

(
4h+ c/2 6h

6h 4h(1 + 2h)

)
(55)

where h is the conformal dimension of Oi. Then the elementary building blocks can be expressed of the form

RM (h1, h2, h3) =
⟨O1O2L−MO3⟩

⟨O1O2O3⟩

SM,N (h1, h2, h3) =
⟨L−MO1O2L−NO3⟩

⟨O1O2O3⟩

(56)

together with K−1(h) representing the propagator, we can construct conformal blocks of higher order.

Such as, four-point correlation function on the sphere

R(h4, h3, h)K
−1(h)R(h, h2, h1), (57)
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for five-point, it is

R(h4, h5, hb)K
−1(hb)S(hb, h3, ha)K

−1(ha)R(ha, h2, h1) (58)

one point conformal blocks on the torus

Tr
(
K−1(h)S(h, h1, h)

)
, (59)

and for two-point case

Tr
(
K−1(ha)S(ha, h2, hb)K

−1(hb)S(hb, h1, ha)
)

(60)

The full conformal block is obtained by multiplying each contribution with qk11 · · · qknn and adding up all contributions,

where the level of each contribution is fixed by the level of its internal propagators, k1, k2, . . . , kn. For example, for

the five-point conformal block on the sphere and the two-point conformal block on the torus, we have

F5pt
g=0 = 1 + (−h1+h2+ha)(h3+ha−hb)

2ha
q1 +

(−h4+h5+hb)(h3−ha+hb)
2hb

q2 + · · ·

F2pt
g=1 = 1 + (h1+ha−hb)(h2+ha−hb)

2ha
q1 +

(h1−ha+hb)(h2−ha+hb)
2hb

q2 + · · · (61)

3.2 General Toda theory properties

The Lagrangian of the sl(n) conformal Toda Field theory is given by

L =
1

8π
(∂aϕ)

2 + µ

n−1∑
k=1

eb(αk,ϕ) (62)

Let ϕ(z) = (ϕ1(z), · · · , ϕN (z)) be free bosons which satisfies the operator-product expansion : ϕj(z)ϕk(0) ∼ δjk log(z).

µ is the cosmological constant, b is the dimensionless coupling constant. Denote h as the Cartan subalgebra of a Lie

algebra g (here it is sl(n) ),and h∗ its dual. αk are the simple roots of sl(n), ρ is the weyl vector (half of the sum

of all positive roots),and (·, ·) denotes the scalar product, ⟨·, ·⟩ denotes the pairings between h and h∗. The Cartan

matrix Cij = (αi, αj) is

Cij =



2 −1 0 . . . . . . . . 0

−1 2 −1 . . . . . . . . 0

0 −1 . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . −1 0

0 . . . . . . . . −1 2 −1

0 . . . . . . . . 0 −1 2


. (63)

The action is obtained by integrating the Lagrangian in reference metric ĝab on a surface with curvature R,

S =

∫
d2σ
√
ĝ

(
1

8π
ĝab(∂aϕ, ∂bϕ)−

(ρ, ϕ)

4π
iQR̂+ µ

n−1∑
k=1

eb(αk,ϕ)

)
(64)

The chiral field ϕ has the mode expansion

ϕ(z) = ϕ0 + a0 log z −
∑
n ̸=0

an
n
z−n ∈ h (65)

The correlator in SU(N) Toda field theory is given as the conformal block for WN algebra which consists of the

operator algebra chiral operators W (s)(z) with spin s = 2, · · · , N . It has a free boson representation [51].

RN = :
N∏
m=1

(
Q
d

dz
− i(hm, ∂zϕ)

)
: =

∑
k

W (k)(z)

(
Q
d

dz

)N−k

. (66)
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hm are vectors in RN and defined by (hj)k = δjk − 1
N . Since it satisfies

∑N
m=1(hj)m = 0, a component of ϕ is

decoupled. The definition (66) gives W (0)(z) = 1 and W (1)(z) = 0. The Virasoro generator is

W (2)(z) =
1

2
: (∂zϕ)

2 : −iQ(ρ, ∂2zϕ), ρ =

N−1∑
i=1

ωi = (
N − 1

2
,
N − 3

2
, · · · ,−N − 1

2
) , (67)

which has the central charge c = (N − 1)(1 +N(N + 1)Q2).

Spinless primary fields field parameterized by (n− 1) component vector parameter β

Vβ = e(β,ϕ) (68)

are the essential objects of Toda Theory. Their multipoint correlation functions

⟨Vβ1(z1, z̄1) . . . Vβl
(zl, z̄l)⟩ =

∫
[Dϕ]e−SVβ1(z1, z̄1) . . . Vβl

(zl, z̄l) (69)

are one of the most important problems in Toda field theory.This problem is nontrivial due to the exponential

interaction term in the Lagrangian. However, if pertubatively expanded in in cosmological constant µ, correlation

functions are equal to zero unless the on shell condition is satisfied

l∑
j=1

βj + b
n−1∑
k=1

skαk = 2Qρ (70)

with sk some non-negative integer.

After performing the zero mode integral[52], we arrive at

⟨Vβ1(z1, z̄1) . . . Vβl
(zl, z̄l)⟩ =

1

bn−1

∫
[Dϕ̃]e−S0

[
n−1∏
k=1

Γ(−sk)
(
µ

∫
eb(αk,ϕ̃)

)sk]
Vβ1(z1, z̄1) . . . Vβl

(zl, z̄l) (71)

with

sk =
(2Qρ−

∑
βj , ωk)

b
(72)

ωk being the fundamental weights of sl(n), and the integration is performed over the free massless fields

S0 =
1

8π

∫
(∂aϕ)

2d2x. (73)

4 AGT conjecture

In [1] Alday, Gaiotto and Tachikawa pointed out that Nekrasov partition function is identical to the correlation

functions of Liouville theory when the gauge group is SU(2). It takes the form (here we give example of n-point

function on sphere):

⟨Vn(∞)Vn−1(1)Vn−2(q1) · · ·V2(q1 · · · qn−3)V1(0)⟩

=
∑

ψ1,··· ,ψn−3

CV1V2V1 · · ·CVn−3Vn−1Vn−1 |FV1V2U1···Un−3Vn−1Vn(z1, · · · , zn)|2 . (74)

Here the product of the constants CV1V2U1 etc. are from the 3-point functions. For Liouville case, it is given by DOZZ

formula [44, 45, 46, 53, 54, 55]. The function F carries the coordinate (q) dependence and reflects the contributions

of the conformal descendants. It is the conformal block we mentioned before.

In order to give the identification of partition function with the correlator, we need some identification of pa-

rameters: a,m ↔ α and the coordinate q in CFT is identified with the coupling constant q = eπiτ in Yang-Mills.
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Here α ∈ RN is a parameter which appears in the exponential of the vertex operator Vα = ei(α,ϕ) inserted in the

correlator.

Namely, on the one hand, The Nekrasov’ partition function is

Zfull(τ, a,m; ϵi) = ZclassicalZ1-loopZinstanton. (75)

On the other hand,

Liouville correlators = (Three−point functions)× (Conformal blocks) (76)

We will see that Zinstanton corresponds to conformal blocks, while the integration of Zfull corresponds to Liouville

correlation functions.

4.1 Instanton sums and conformal blocks correspondence

Sphere with four punctures We have encountered the general expansion of Zinst. Now for U(2) theory with

Nf = 4 flavors

Z
U(2),Nf=4
inst =

∑
Y⃗

q|Y⃗ |zvector(⃗a, Y⃗ )zantifund(⃗a, Y⃗ , µ1)zantifund(⃗a, Y⃗ , µ2)zfund(⃗a, Y⃗ , µ3)zfund(⃗a, Y⃗ , µ4). (77)

a⃗ = (a1, a2) is the adjoint vev of the U(2) gauge multiplet, µ1,2 are the masses of two hypermultiplets in the anti-

fundamental, and µ3,4 are those of the fundamentals.

Redefine:

µ1 = m0 + m̃0, µ2 = m0 − m̃0, µ3 = m1 + m̃1, µ4 = m1 − m̃1. (78)

And decouple the U(1) part

Z
U(2),Nf=4
inst (a,m0, m̃0,m1, m̃1) = (1− q)2m0(Q−m1)Fβ0

m0
β
m1

β1(q) (79)

Surprisingly, it is Checked 2 that Fβ0
m0

β
m1

β1(q) is the conformal block of a virasoro algebra with central charge

c = 1 + 6Q2 at position ∞, 1, q, 0, and an intermediate state operators of dimension

∆1 = β0(Q− β0), ∆2 = m0(Q−m0),

∆3 = m1(Q−m1), ∆4 = β1(Q− β1),

∆ = β(Q− β).

(80)

Sphere and torus with multiple punctures For the multi-punctured sphere, again let us first redefine the

masses,

µ1 = m0 + m̃0, µ2 = m0 − m̃0, µ3 = mn + m̃1, µ4 = mn − m̃1. (81)

Decouple the U(1) factor

Z
U(2) linear quiver
inst (qi; ai;mi; m̃i) = ZU(1) linear(qi;mi)Fβ0

m0
β1

m1 · · ·βn

mn
βn+1

(q1, q2, . . . , qn) (82)

Here Fβ0
m0

β1
m1 · · ·βn

mn
βn+1(q1, q2, . . . , qn) is supposed to be the conformal block of Virasoro algebra with central

charge c = 1 + 6Q2 for a sphere with n+ 3 punctures at ∞, 1, q1, q1q2, . . . , q1q2 · · · qn, 0.,
the corresponding operator dimensions are respectively

β0(Q− β0), m0(Q−m0), . . . , mn(Q−mn), βn+1(Q− βn+1) (83)
2Up to order q11 in [1].
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and for the i-th intermediate channel, it is βi(Q− βi).

Likewise, for the torus with multiple punctures, we have

Z
U(2) necklace quiver
inst (qi; ai;mi) = ZU(1) necklace(qi;mi)Fβ1

m1 · · ·βn

mn(q1, q2, . . . , qn) (84)

Fβ1
m1 · · ·βn

mn(q1, q2, . . . , qn) is the conformal block of Virasoro algebra with central charge c = 1 + 6Q2 for a

torus with multiple punctures at

1, q1, q1q2, . . . , q1q2 · · · qn−1. The operator at the i-th puncture has dimension mi(Q − mi), while for the i-th

intermediate channel it is βi(Q− βi).

4.2 Liouville correlators and the full partition function

Sphere with four punctures For a Liouville theory on a sphere, the four-point correlation function of V at

positions ∞, 1, q, 0 is[53, 55]

⟨Vβ0(∞)Vm0(1)Vm1(q)Vβ1(0)⟩ =
∫
dβ

2π
C(β∗

0 ,m0, β)C(β
∗,m1, β1)

∣∣q∆β−∆m1−∆β1Fβ0

m0
β
m1

β1(q)
∣∣2 . (85)

Where C(β1, β2, β3) is the three point function given by the DOZZ formula we have seen.

r.h.s = f(β∗
0)f(m0)f(m1)f(β1)

∣∣∣qQ2/4−∆m1−∆β1

∣∣∣2 ∫ a2da |Zβ0

m0
β
m1

β1(q)|
2

(86)

where

f(β) =
[
πµγ(b2)b2−2b2

]−β/b
Υ(2β) (87)

and

Zβ0

m0
β
m1

β1(q) = q−a
2

∏
Γ2(m̂0 ± m̃0 ± a+Q/2)

∏
Γ2(m̂1 ± m̃1 ± a+Q/2)

Γ2(2a+ b)Γ2(2a+ 1/b)
Fβ0

m0
β
m1

β1(q). (88)

The above equation can be transformed into

Zβ0

m0
β
m1

β1(q) = q−a
2

× z1-loopvector(a)z
1-loop
antifund(a, µ1)z

1-loop
antifund(a, µ2)z

1-loop
fund (a, µ3)z

1-loop
fund (a, µ4)Fβ0

m0
β
m1

β1(q)

= ZclassicalZ1-loopZinstanton

= Zfull

(89)

As a result, the four-point function of Liouville theory is proportional to the integration of Nekrasov’ partition

function[10].

⟨Vβ0(∞)Vm0(1)Vm1(q)Vβ1(0)⟩ ∝
∫
a2da |Zβ0

m0
β
m1

β1(q)|
2

(90)

Sphere with multiple punctures More generally, the multipoint correlation function in Liouville theory has its

gauge field interpretation through a sphere with multiple punctures

⟨Vβ0(∞)Vm0(1)Vm1(q1) · · ·Vmn(q1 · · · qn)Vβn+1(0)⟩ =

cf(β0)f(βn+1)
∏

f(mi)

∫ ∏
(a2i dai)

∣∣Zβ0

m0
β1

m1 · · ·βn

mn
βn+1(qi)

∣∣2 (91)

with Zβ0
m0

β1
m1 · · ·βn

mn
βn+1(qi) being the Nekrasov’s full partition function. The torus case can be solved in a

similar way.
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4.3 SU(N) generalization

To be more explicit, for the specific example of SU(N) gauge theory with Nf = 2N fundamental matter, the relevant

Toda correlator is written in the form

⟨Vα4(∞)Vα3(1)Vα2(q)Vα1(0)⟩ , (92)

where the insertion of screening operators is necessary for the charge conservation. The conformal block of this

correlation function is written in the form,

Fα4,α3,α2,α1(q) =
∑
Y⃗

q|Y⃗ |NToda
Y⃗

(α1, α2, α3, α4) . (93)

It is known that the four point function of Toda theory can be obtained for special choice of parameters [8, 9], namely

the two of the vertex operator momentum (say α2 and α3) should be proportional to either ω1 or ωN−1 where ωi

(i = 1, · · · , N − 1) is the fundamental weight of AN−1.

AGT conjecture for SU(N) [5, 6] implies that partition function and the correlator are the same. In particular

it implies,

N inst
Y⃗

(a, µ) = NToda
Y⃗

(α1, α2, α3, α4), (94)

if we identify the parameters,

a = α ; µ = −α1 − (1− β)ρ, µ̃ = −α4 − (1− β)ρ ; (95)

where µ = (µ1, · · · , µN ) and µ̃ = (µN+1, · · · , µ2N ) are mass parameters of vector multiplets. α = α1 + α2 +

β
∑
aNaea+(1−β) = −(α4+α3+β

∑
a Ñaea+(1−β)) is the momentum which appears in the intermediate channel

(Na and Ña are the numbers of screening charges and ea is the simple root of AN−1). Weyl vector ρ =
∑N−1
i=1 ωi

shows up to represent the corrections of the background charge. As explained, we choose α2 and α3 to be proportional

to ω1.

We focus on this “identity” in the following.

5 Dotsenko-Fateev integral

To understand Dotsenko and Fateev’s idea on screening operators, we first recall the simple action of curvature

coupled scalar field (37). Through the shift of the scalar field φ→ φ+ φ0, the variation of action is [43]

δS =
iQφ0

8π

∫
d2x

√
gR. (96)

According to Gauss-Bonnet’s theorem, for a 2D Riemann surface with genus h,∫
d2x

√
gR = 8π(1− h) (97)

In the case of sphere, h = 0, so

δS = iQφ0. (98)

Since the action S(φ) and the functional integral measure Dφ is invariant under the shift of φ, it is easy to find that

the correlation function satisfies

⟨eα1φ(z1,z̄1) · · · eαNφ(zN ,z̄N )⟩ = e(
∑N

i=1 αi−iQφ0)⟨eα1φ(z1,z̄1) · · · eαNφ(zN ,z̄N )⟩, (99)
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it will become zero unless

N∑
i=1

αi = iQ. (100)

For later convenience, let us set Q = i2α0, so that the central charge is c = 1− 24α2
0 and the conformal weight is

∆ = α2 − 2αα0. We construct an nonzero correlator

⟨Vα1Vα2Vα3Vα4⟩ , (101)

with
∑
αi = 2α0. we want all the operators to have the same conformal dimension ∆, if they are to be identified as

a single physical operator.So we are offered with the choice between Vα and V2α0−α. If α0 = 0, such a function can

be easily found

⟨VαVαV−αV−α⟩ , (102)

in the case of α0 ̸= 0, even if we turn to functions like

⟨VαVαV2α0−αV2α0−α⟩ , (103)

⟨VαVαVαV2α0−α⟩ , (104)

apprently
∑
αi = 2α0 cannot be satisfied. However there is a method to make the above correlators nonzero. There

are two nontrivial operators which can ”screen” additional charges. Such screening operators should have conformal

dimension ∆ = 0 so that they do not change the conformal properties of the correlator. A local operator with ∆ = 0

is an identity operator of the algebra. Here it has two representatives, Vα0(z) and V2α0(z). But neither of these could

provide the necessary screening. There remains the possibility of the integral operators like

Q =

∫
dz

2πi
O(z). (105)

For the operator Q to be conformal invariant, the operator O(z) must have ∆ = 1 . We take O(z) = Vα(z) =: eαϕ(z) :

, with the conformal dimension

∆α = α2 − 2αα0 = 1. (106)

Thus its OPE with the stress tensor becomes

T (z)O(w) =
1

(z − w)2
O(w) +

1

z − w
∂wO(w) + · · · = ∂w(

1

z − w
O(w)) + · · · (107)

So as long as the boundary contribution is ignored, we have

[T (z),

∫
dz

2πi
O(z)] = 0. (108)

This means Q commutes with the Virasoro algebra Ln. There are two solutions to (106),

α± = α0 ±
√
α2
0 + 1 (109)

So there are two screening operators

Q± =

∫
dz

2πi
O±(z), O±(z) = Vα±(z). (110)
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In the case of (104), we have
∑
αi − 2α0 = 2α, which can be canceled by adding Q±, with α quantized:

2α = −ñα− − m̃α+. (111)

In general, the 4-point function will have the following form

⟨ϕn,m(z1)ϕn,m(z2)ϕn,m(z3)ϕn,m(z4)⟩

=

∫
du1
2πi

· · ·
∫
dun−1

2πi

∫
dv1
2πi

· · ·
∫
dvm−1

2πi
⟨Vn,m(z1)Vn,m(z2)Vn,m(z3)Vn,m(z4)O−(u1) · · · O−(un−1)O+(v1) · · · O+(vm−1)⟩

(112)

This is the famous Dotsenko-Fatteev integral.

5.1 Application on SU(N) Toda field theory

The primary operator of WN algebra is given as the vertex operators:

Vα⃗(z) =: e(α,ϕ(z)) : , (113)

which has the OPE with the WN generators as

Wk(z)Vα(0) =
wk(α)

zk
Vα(0) +O(z−k+1) , (114)

with

w2(α) = ∆(α) =
1

2
(α, α) + iQ(ρ, α) , (115)

wk(α) = (−1)k
∑

1≤i1≤···≤ik≤n

k∏
m=1

(Q(k −m) + i(him , α)) . (116)

As discussed above, in order to derive non-vanishing correlation function of the form ⟨Vα⃗1
(z1) · · ·Vα⃗M

(zM )⟩, we
have freedom to insert screening operators,

Q
(±)
j =

∫
dz

2πi
V

(±)
j (z) =

∫
dz

2πi
: eα±(ej ,ϕ(z)) : . (117)

By the requirement of conformal invariance, w2(α) = 1, we need to put w2(α±ej) = 1. By writing Q = ib− i/b, the

two solutions are α+ = b, α− = −1/b.

For the computation of four point functions ⟨Vα⃗4
(∞)Vα⃗3

(1)Vα⃗2
(q)Vα⃗1

(0)⟩ we insert Na screening currents inte-

grated along [0, q] and Ña currents integrated [1,∞]. This is a useful prescription to see the connection with the

Selberg formula [18]. For simplicity, we assume we need only the screening operators Q(+) in the correlator. It gives

the Dotsenko-Fateev integral [13] for the four point functions,

ZDF(q) =⟨⟨
: e(α̃1,ϕ(0)) :: e(α̃2,ϕ(q)) :: e(α̃3,ϕ(1)) :: e(α̃4,ϕ(∞)) :

N−1∏
a=1

(∫ q

0

: eb(ea,ϕ(z)) : dz

)Na
(∫ ∞

1

: eb(ea,ϕ(z)) : dz

)Ña
⟩⟩

.

(118)

For the charge conservation, this correlator has nonvanishing norm only when

α̃1 + α̃2 + α̃3 + α̃4 + b
∑
a

(Na + Ña)ea + 2iQρ = 0 . (119)
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We apply Wick’s theorem to evaluate the correlator⟨⟨
: e(α̃1,ϕ(z1)) : . . . : e(α̃n,ϕ(zn)) :

⟩⟩
=

∏
1≤i<j≤n

(zj − zi)
(α̃i,α̃j) , (120)

where ea are the simple roots of SU(N), and (, ) the bilinear symmetric form on the space dual to the Cartan

subalgebra. To be consistent with the parameters introduced in the last section, defining α̃i = αi/b, β = b2 , (118)

becomes

ZDF(q) = q(α1,α2)/β(1− q)(α2,α3)/β
N−1∏
a=1

Na∏
I=1

∫ q

0

dz
(a)
I

Na+Ña∏
J=Na+1

∫ ∞

1

dz
(a)
J

Na+Ña∏
i<j

(z
(a)
j − z

(a)
i )2β ×

×
Na+Ña∏

i

(z
(a)
i )(α1,ea)(z

(a)
i − q)(α2,ea)(z

(a)
i − 1)(α3,ea)

N−2∏
a=1

Na+Ña∏
i

Na+1+Ña+1∏
j

(z
(a+1)
j − z

(a)
i )−β .

(121)

Noticing that we do not include the 3-point functions in the correlator, so this expression should be compared with

the instanton contribution of Yang-Mills partition functions in AGT conjecture [17].

6 Selberg integral

In 1944 Selberg find a proof of a noteworthy multiple integral which now plays the role as one of the most fundamental

hypergeometric integrals [19, 20].

Selberg integral∫
[0,1]k

|∆(x)|2γ
k∏
i=1

xα−1
i (1− xi)

β−1 dx =

k∏
i=1

Γ(α+ (i− 1)γ)Γ(β + (i− 1)γ)Γ(iγ + 1)

Γ(α+ β + (i+ k − 2)γ)Γ(γ + 1)
. (122)

When k = 1 the Selberg integral simplifies to the Euler beta integral [56]∫ 1

0

xα−1(1− x)β−1 dx =
Γ(α)Γ(β)

Γ(α+ β)
, ℜ(α) > 0, ℜ(β) > 0, (123)

Where k is a positive integer, x = (x1, . . . , xk), dx = dx1 · · ·dxk, and

∆(x) =
∏

1≤i<j≤k

(xi − xj) (124)

the Vandermonde product.

For α, β, γ ∈ C such that

ℜ(α) > 0, ℜ(β) > 0, ℜ(γ) > −min{1/k,ℜ(α)/(k − 1),ℜ(β)/(k − 1)} (125)

which reduces to the standard definition of the gamma function

Γ(α) =

∫ ∞

0

xα−1e−xdx, ℜ(α) > 0 (126)

upon taking (β, x) → (ζ, x/ζ) (with ζ ∈ R) and letting ζ → ∞.

Though the Selberg integral was largely overlooked at the time of its publication, now, nearly 70 years later, it has

been widely regarded as one of the most fundamental and important hypergeometric integrals. It has connections
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and applications to orthogonal polynomials, random matrices, finite reflection groups, hyperplane arrangements,

Knizhnik–Zamolodchikov equations and more, check e.g., [57, 58, 59, 60, 61, 62, 63, 64].

Here we consider its AN−1 extension [19] (AN−1 Selberg integral):

Su⃗,v⃗,β =

∫
dx

N−1∏
a=1

[∣∣∆(x(a))∣∣2β Na∏
i=1

(
x
(a)
i

)ua
(
1− x

(a)
i

)va]N−2∏
a=1

∣∣∆(x(a), x(a+1)
)∣∣−β , (127)

where
∫
dx :=

1∫
0

dx(1) . . .
1∫
0

dx(N−1). As indicated, the integral contains parameters u⃗ = (u1, · · · , uN−1), v⃗ =

(v1, · · · , vN−1) and β. Similarly, AN−1 Selberg average is the integration with the Selberg integration kernel,

⟨
f
⟩
u⃗,v⃗,β

=
1

Su⃗,v⃗,β

∫
dx

N−1∏
a=1

[∣∣∆(x(a))∣∣2β ×
Na∏
i=1

(
x
(a)
i

)ua
(
1 − x

(a)
i

)va] ×
N−2∏
a=1

∣∣∆(x(a), x(a+1)
)∣∣−β f(x) . (128)

6.1 Reduction to Selberg integral

In this subsection, we rewrite the Dotsenko-Fateev integral in the form of AN−1 Selberg average for the product of N

Jack polynomials (see appendix A for a summary of relevant material and [65, 66] for further mathematical details).

In physics literature, Jack polynomial is the eigenfunction of quantum Calogero-Sutherland model and relevant to the

representation theory ofWN algebra. See for example [67, 68]. The appearance of the product of N Jack polynomials

reminds us of another line of recent developments [69, 25, 70, 24, 77] for the computation of conformal block where

the convenient basis for the Hilbert space is expressed in terms of Jack polynomial. In particular for β = 1, it is

expressed as product of N Schur polynomial. While the mathematical origin of the appearance of Jack polynomial

is different, there should be a good hint to be learned from each other.

Proposition 1 The integral (121) can be written in the following form (up to U(1) factor),

ZDF(q) =
∑
Y⃗

q|Y⃗ |

⟨
N∏
a=1

j
(β)
Ya

(−r(a)k −
v′a+
β

)

⟩
+

⟨
N∏
a=1

j
(β)
Ya

(r̃
(a)
k +

v′a−
β

)

⟩
−

. (129)

Here we have to explain some notations. Y⃗ is a collection of N Young diagrams, j
(β)
Y is normalized Jack symmetric

polynomial. We introduced new parameters va± and ua± by

va+ = (α2, ea), va− = (α3, ea), ua+ = (α1, ea), ua− = (α4, ea), (130)

where we use a relation

ua+ + ua− + va+ + va− + β
∑
b

Cab(Nb + Ñb) = 2β − 2 (131)

implied by Eq.(119) to define ua−. The Selberg average ⟨· · · ⟩± is taken with respect to these parameters, ⟨· · · ⟩± :=

⟨· · · ⟩u⃗±,v⃗±,β. r
(a)
k and r̃

(a)
k is related to the integration variables x

(a)
i and y

(a)
i through

r
(a)
k := p

(a)
k − p

(a−1)
k , p

(a)
k :=

∑
i

(x
(a)
i )k and r̃

(a)
k := p̃

(a)
k − p̃

(a−1)
k , p̃k :=

∑
i

(y
(a)
i )k , (132)

with p
(0)
k = p

(N)
k = p̃

(0)
k = p̃

(N)
k = 0. Finally v′a− := −

∑a−1
s=1 vs−, and v

′
(N−a)+ :=

∑a
s=1 v(N−s)+.

In particular, when N = 2, the above reduce to (notice that v′1− = v′2+ = 0)

ZDF (q) =
∑
A,B

q|A|+|B|
⟨
j
(β)
A (−pk −

v+
β

)j
(β)
B (pk)

⟩
+

⟨
j
(β)
A (p̃k)j

(β)
B (−p̃k −

v−
β

)

⟩
−
, (133)

which was used in [11]. The proposition is a generalization of their result.
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Proof: Let us derive the proposition in the rest of this subsection. Following the procedure in [18] for SU(2), we

rename the integration variables in (121) zI =: qxI , 1 ≤ I ≤ Na and zJ =: 1
yJ

, Na + 1 ≤ J ≤ Na + Ña. Then

Eq.(121) is rewritten as a double average3,⟨⟨
N−1∏
a=1

{
Na∏
i=1

(1− qx
(a)
i )va−

Ña∏
j=1

(1− qy
(a)
j )va+

}
N−1∏
a=1

N−1∏
b=1

{
Na∏
i=1

Ñb∏
j=1

(1− qx
(a)
i y

(b)
j )Cabβ

}⟩
+

⟩
−

, (134)

where Cab is AN−1 Cartan matrix,

Cab =


2 a = b

−1 a = b± 1

0 |a− b| > 1 ,

and the Selberg average ⟨· · · ⟩+ (resp. ⟨· · · ⟩−) is taken over the variables x
(a)
i (resp. y

(a)
i ) with parameters u⃗+, v⃗+

(resp. u⃗−, v⃗−).

We change the second product in the integral (134) into exponential form

N−1∏
a,b=1

Na∏
i=1

Ñb∏
j=1

(1− qx
(a)
i y

(b)
j )Cabβ = exp

{
β
N−1∑
a,b=1

Cab
∑
i,j

ln(1− qx
(a)
i y

(b)
j )

}

= exp

{
− β

N−1∑
a,b=1

Cab

∞∑
k=1

qk

k
p
(a)
k p̃

(b)
k

}

= exp

{
− β

∞∑
k=1

qk

k

[
2
N−1∑
a=1

p
(a)
k p̃

(a)
k −

N−1∑
a=2

p
(a)
k p̃

(a−1)
k −

N−2∑
a=1

p
(a)
k p̃

(a+1)
k

]}

= exp

{
− β

∞∑
k=1

qk

k

N∑
a=1

r
(a)
k r̃

(a)
k

}
. (135)

In the second line, we performed Taylor expansion and rewrite the variables x, y by p
(a)
k and p̃

(b)
k . In the last line,

we rewrite pk, p̃k by r
(a)
k , r̃

(a)
k .

Likewise, we rewrite

N−1∏
a=1

Na∏
i=1

(1− qx
(a)
i )va− = exp

{
− β

∞∑
k=1

qk

k

N−1∑
a=1

p
(a)
k

va−
β

}
≡ exp

{
− β

∞∑
k=1

qk

k

N∑
a=1

r
(a)
k

v′a−
β

}
. (136)

In the second equivalence we change the basis from p
(a)
k to r

(a)
k . The coefficients v′a− are determined from va− with

an additional condition v′1− := 0 which is somewhat arbitrary. Similarly,

N−1∏
a=1

Ña∏
j=1

(1− qy
(a)
j )va+ = exp

{
− β

∞∑
k=1

qk

k

N∑
a=1

r̃
(a)
k

v′a+
β

}
. (137)

This time we define v′a+ from another condition v′N+ = 0 for the convenience of later arguments.

Combining the above factors together, the integrand in (134) takes the form

exp

{
− β

∞∑
k=1

qk

k

N∑
a=1

[
(r

(a)
k +

v′a+
β

)(r̃
(a)
k +

v′a−
β

)−
v′a+
β

v′a−
β

]}

=
N∏
a=1

(1− q)v
′
a+v

′
a−/β

∑
Y⃗

N∏
a=1

q|Y⃗ |jYa(−r
(a)
k −

v′a+
β

)jYa(r̃
(a)
k +

v′a−
β

) , (138)

3The U(1) prefactors are omitted for its irrelevance to the Nekrasov function.
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where we have made use of the Cauchy-Stanley identity (269) for the Jack polynomial in the second line

exp(β
∞∑
k=1

1

k
pkp

′
k) =

∑
R

j
(β)
R (p)j

(β)
R (p′) . (139)

So the conformal blocks (118) finally becomes

N∏
a=1

(1− q)v
′
a+v

′
a−/β

∑
Y⃗

q|Y⃗ |

⟨
N∏
a=1

j
(β)
Ya

(−r(a)k −
v′a+
β

)

⟩
+

⟨
N∏
a=1

j
(β)
Ya

(r̃
(a)
k +

v′a−
β

)

⟩
−

. (140)

Absorbing the prefactor into the U(1) part of the product, we arrive at (129). QED

6.2 Known results and a conjecture on Selberg average

The Dotzenko-Fateev integral is now reduced to the evaluation of Selberg average of N Jack polynomials. Before

evaluating that, let us first summarize the known results on Selberg average in the literature.

SU(2) case: The relevant Selberg averages for one and two Jack polynomials were obtained by Kadell [14],⟨
J
(β)
Y (p)

⟩SU(2)

u,v,β
=

[Nβ]Y [u+Nβ + 1− β]Y∏
(i,j)∈Y

(
β(Y ′

j − i) + (Yi − j) + β
)
[u+ v + 2Nβ + 2− 2β]Y

, (141)

⟨
J
(β)
A (p+ w)J

(β)
B (p)

⟩SU(2)

=
[v +Nβ + 1− β]A[u+Nβ + 1− β]B

[Nβ]A[u+ v +Nβ + 2− 2β]B
× (142)

×

N∏
i<j

(
Ai −Aj + (j − i)β

)
β

N∏
i<j

(
Bi −Bj + (j − i)β

)
β

N∏
i,j

(
u+ v + 2βN + 2 +Ai +Bj − (1 + i+ j)β

)
β

×

N∏
i,j

(
u+ v + 2βN + 2− (1 + i+ j)β

)
β

N∏
i<j

(
(j − i)β

)
β

N∏
i<j

(
(j − i)β

)
β

,

where we have used the following notation

[x]A =
∏

(i,j)∈A

(x− β(i− 1) + j − 1) = (−1)|A|fA(−x) , (143)

and Pochhammer symbol

(x)k =
Γ(x+ k)

Γ(x)
= x(x+ 1) . . . (x+ k − 1) . (144)

J
(β)
Y , the Jack polynomial, is related to normalized one j

(β)
Y as (267). Inclusion of a shift w of the argument for the

two Jack case was conjectured in [11]. Together with the identity j
(β)
A (−p/β) = (−1)|A|j

(1/β)
A′ (p) and an identification

of parameter w = (v + 1− β)/β, these are sufficient to evaluate (129) for SU(2) case [11].

SU(n+1) case: The one-Jack Selberg integral for SU(n+1) could be calculated by the formula offered by Warnaar

[19]. To perform the integral, we need to restrict the parameter v as,

v2 = · · · = vn = 0, and v1 = v. (145)

As already explained, in Toda field theory, this condition is necessary to solve conformal Ward identity for the

W-algebra [5, 8]. The formula by Warnaar is,⟨
J
(β)
B (p

(n)
k )
⟩SU(n+1)

u⃗,v⃗,β
=

∏
1≤i<j≤Nn

((j − i+ 1)β)Bi−Bj

((j − i)β)Bi−Bj

×

×
n∏
a=1

Nn∏
i=1

(un−a+1 + · · ·+ un + a+ (Nn − a− i+ 1)β)Bi

(vn−a+1 + un−a+1 + · · ·+ un + a+ 1 + (Nn +Nn−a+1 −Nn−a − a− i)β)Bi

. (146)
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To evaluate (129), we need Selberg average of (n+1) Jack polynomials. While we do not perform the integration so

far, we find a formula for β = 1 which reproduces known results and satisfies consistency conditions4. As explained

in appendix A, the Jack polynomial for β = 1 is called Schur polynomial and we write J
(β)
Y |β=1 = χY .

Conjecture We propose the following formula of Selberg average for n+ 1 Schur polynomials,⟨
χY1(−p

(1)
k − v′1) . . . χYr (p

(r−1)
k − p

(r)
k − v′r) . . . χYn+1(p

(n)
k )

⟩SU(n+1)

u⃗,v⃗,β=1

=

n∏
s=1

{
(−1)|Ys| ×

[vs +Ns −Ns−1]Y ′
s

[Ns +Ns−1]Y ′
s

×
∏

1≤i<j≤Ns−1+Ns

(j − i+ 1)Y ′
si−Y ′

sj

(j − i)Y ′
si−Y ′

sj

}
×

∏
1≤i<j≤Nn

(j − i+ 1)Y(n+1)i−Y(n+1)j

(j − i)Y(n+1)i−Y(n+1)j

×
∏

1≤t<s≤n+1

{
[vt + ut + · · ·+ us−1 +Nt −Nt−1]Y ′

t

[vt − vs + ut + · · ·+ us−1 +Nt −Nt−1 −Ns]Y ′
t

× [−vs + ut + · · ·+ us−1 −Ns +Ns−1]Ys

[vt − vs + ut + · · ·+ us−1 −Nt−1 −Ns +Ns−1]Ys

×
Nt∏
i=1

Ns−1∏
j=1

vt − vs + ut + · · ·+ us−1 +Nt −Nt−1 −Ns +Ns−1 + 1− (i+ j)

vt − vs + ut + · · ·+ us−1 +Nt −Nt−1 −Ns +Ns−1 + 1 + Y ′
ti + Ysj − (i+ j)

}
,

(147)

with v′r :=
∑n

a=r va = vδr1 after imposing the constraint (145).

As we wrote, this formula seems reasonable since

• It reproduces the AGT relation as we will see in the next section.

• It is reduced to the known results for β = 1 with the help of (322),

(a) For Y1 = · · · = Yn = ∅, and Yn+1 = B, the above reduce to the An one Jack integral (146).

(b) For n = 1, Y1 = A and Y2 = B, it coincides with the A1 two Jack integral (142).

(c) For n = 2, Y1 = R, Y2 = ∅, and Y3 = B, the above is consistent with the A2 two Jack integral (274) given

by Warnaar [20].

(d) For Nn = 0, un = 0 and Yn+1 = ∅, the above reduces to the formula for An−1.

Another type of consistency conditions is also considered. For the simplest case, we start from multiplying a

trivial zero factor v+ (−p(1)1 − v) + (p
(1)
1 − p

(2)
1 ) + · · ·+ (p

(n−1)
1 − p

(n)
1 ) + p

(n)
1 = 0 in the integrand of (147). We then

apply to each term a property of Schur polynomial,

p1χR(pk) =
∑
R̃

χR̃(pk) , (148)

where the summation is over all possible Young diagrams which can be obtained from R by adding one cell. This

gives rise to a consistency condition for any combination (Y1, · · · , Yn+1);

v
⟨
χY1(−p

(1)
k − v′1) . . . χYr (p

(r−1)
k − p

(r)
k − v′r) . . . χYn+1(p

(n)
k )
⟩SU(n+1)

u⃗,v⃗,β=1

+
n+1∑
r=1

∑
Ỹr

⟨
χY1(−p

(1)
k − v′1) . . . χỸr

(p
(r−1)
k − p

(r)
k − v′r) . . . χYn+1(p

(n)
k )
⟩SU(n+1)

u⃗,v⃗,β=1
= 0 . (149)

While this looks trivial, the cancellation becomes rather nontrivial. We give a detailed computation for the simpler

cases, n = 2 (SU(3)) with Y1, Y2, Y3 being rectangle Young diagrams, in appendix C.

4Actually we could guess a formula for general β (see appendix B) which reproduces the known results. While the formula looks quite

reasonable, it does not pass one of the consistency checks. It seems that some modifications up to the terms proportional to 1 − β are

needed.
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We may write easily some generalizations of (148) such as,

χ[n](pk)χR(pk) =
∑
R̃

χR̃(pk) , (150)

where R̃/R is [n]. We hope that such series of consistency conditions may serve as a proof of the formula (147) in

the future.

7 Direct approach on AGT conjecture

7.1 AGT conjecture from Selberg integral

In the following, we present a ‘proof’ of AGT conjecture for SU(n + 1) case by using the postulated formulae for

Selberg average in 6.2. It is a generalization of the proof for SU(2) case in [11, 12]. As we already mentioned, what

we need to see is the coincidence of partition function,

Zinst(q) = ZDF(q) , (151)

up to U(1) factor but we would like to see the stronger condition, namely the coefficient N Inst in the instanton

partition function (26) with the similar coefficient NToda in (129)

N inst
Y⃗

= NToda
Y⃗

. (152)

We show that this stronger identity holds at β = 1.

We note that both coefficients have the factorized form:

N inst
Y⃗

≡ N inst
Y⃗+

N inst
Y⃗− , NToda

Y⃗
≡ NToda

Y⃗+
NToda
Y⃗− , (153)

with

N inst
Y⃗+

≡
∏n+1
s=1

∏n+1
k=1 fYs(µk + as)∏n+1

t,s=1GYt,Ys(at − as)

n+1∏
s=1

{
(−1)|Ys|

√
GYs,Ys(0)

GYs,Ys(1− β)

}
,

N inst
Y⃗− ≡

∏n+1
s=1

∏2n+2
k=n+2 fYs(µk + as)∏n+1

t,s=1GYt,Ys(at − as + 1− β)

n+1∏
s=1

{
(−1)|Ys|

√
GYs,Ys(1− β)

GYs,Ys(0)

}
, (154)

and

NToda
Y⃗± ≡

⟨
n+1∏
a=1

j
(β)
Ya

(−r(a)k −
v′a±
β

)

⟩
±

=
n+1∏
a=1

√
GYa,Ya(0)

GYa,Ya(1− β)

⟨
n+1∏
a=1

J
(β)
Ya

(−r(a)k −
v′a±
β

)

⟩
±

. (155)

We remind that r
(a)
k ≡ p

(a)
k − p

(a−1)
k , v′a− = −

∑a−1
s=1 vs− and v′(N−a)+ =

∑a
s=1 v(N−s)+. Therefore, the problem left

is to figure out whether the (n+1)-Jack Selberg integral has the same form with its Nekrasov counterpart for β = 1,

NToda
Y⃗± = N inst

Y⃗± . (156)

7.2 Special case: Y⃗ = (∅, · · · , ∅, B), arbitrary β

In the following, we prove (156) for ‘+’ part. Proof for ‘−’ is similar. We will omit the lower index”+” in va+and

ua+ as long as there are no misunderstanding.
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We start from the simplest case, when Y1 = · · · = Yn = ∅, Yn+1 = B. In this case, the Selberg integral is already

proved by Warnaar for arbitrary β. So our proof for this case is exact and holds without the restriction of β.

In the instanton part, we have,

N inst
(∅,...,∅,B)+ =

(−1)|B|∏n+1
k=1 fB(µk + an+1)√

GB,B(0)GB,B(1− β)
∏n
m=1GB,∅(an+1 − am)

. (157)

On the other hand, the one-Jack Selberg integral is given in (146)

NToda
(∅,...,∅,B)+ =

⟨
j
(β)
B (p

(n)
k )
⟩SU(n+1)

+

=

√
GB,B(0)

GB,B(1− β)
×
⟨
JB(p

(n)
k )
⟩SU(n+1)

+

=

√
GB,B(0)

GB,B(1− β)
×

∏
1≤i<j≤Nn

((j − i+ 1)β)Bi−Bj

((j − i)β)Bi−Bj

×
n∏
a=1

Nn∏
i=1

(un−a+1 + · · ·+ un + a+ (Nn − a− i+ 1)β)Bi

(vn−a+1 + un−a+1 + · · ·+ un + a+ 1 + (Nn +Nn−a+1 −Nn−a − a− i)β)Bi

.

(158)

To see the equivalence, first we note that the function fB(x) in N inst is linked to the notation [x]B by (143).

Then we need to rewrite GAB in terms of (x)B in (158). For this purpose, we need the following lemmas which will

be proved in appendix:

Lemma 1 ∏
1≤i<j≤N

((j − i+ 1)β)Bi−Bj

((j − i)β)Bi−Bj

=
[Nβ]B
GB,B(0)

(159)

Lemma 2
N∏
i=1

(x− iβ)Bi
=
[
x− β

]
B

(160)

Lemma 3

[x]B = (−1)|B|GB,∅(−x+ 1− β) (161)

With the help of these formulae, we arrive at the results

NToda
(∅,...,∅,B) =

⟨
j
(β)
B (p

(n)
k )
⟩
=

=
[Nnβ]B√

GB,B(0)GB,B(1− β)
×

n∏
a=1

(−1)|B|[un−a+1 + · · ·+ un +Nnβ + a− aβ]B
GB,∅(−(vn−a+1 + un−a+1 + · · ·+ un +Nnβ +Nn−a+1β −Nn−aβ + a− aβ))

.

(162)

This is equivalent to (157), with the identifications of parameters (where we have omitted the lower index”+” in va+
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and ua+)
5

µn+1 + an+1 = −Nnβ ,
...

µs + an+1 = −
(
us + · · ·+ un +Nnβ + (n− s+ 1)(1− β)

)
,

...

µ1 + an+1 = −
(
u1 + · · ·+ un +Nnβ + n(1− β)

)
,

an − an+1 = vn + un + 2Nnβ −Nn−1β + 1− β ,

...

as − an+1 = vs + us + · · ·+ un +Nnβ +Nsβ −Ns−1β + (n− s+ 1)(1− β) ,

...

a1 − an+1 = v1 + u1 + · · ·+ un +Nnβ +N1β + n(1− β) ,

(163)

with the restriction v2 = · · · = vn = 0 and v1 = v. While this looks complicated, it is simplified in the vector notation

in Rn+1,

a = α1 + α2 + β
∑
a

Naea + (1− β)ρ, µ = −α1 − (1− β)ρ , (164)

where a =
∑N+1
i=1 aihi and µ =

∑N+1
i=1 µihi. We note that a thus written can be identified with the momentum of the

vertex in the intermediate channel. This gives (95). Eq.(164) is the desired identification of parameters in SU(N+1)

AGT conjecture [5, 6]. We note that this holds for arbitrary β.

7.3 General case: arbitrary Y⃗ , β = 1

By interpolation method, we have derived that the (N + 1)-Schur Selberg integral has the form of (147):

At β = 1,

NToda
Y⃗ +

=

⟨
χY1(−p

(1)
k − (v1 + · · ·+ vn)) . . . χYr (p

(r−1)
k − p

(r)
k − vr + · · ·+ vn

β
) . . . χYn+1(p

(n)
k )

⟩SU(n+1)

u⃗,v⃗,β

=
n∏

s=1

{
(−1)|Ys| ×

[vs +Ns −Ns−1]Y ′
s

[Ns +Ns−1]Y ′
s

×
∏

1≤i<j≤Ns−1+Ns

(j − i+ 1)Y ′
si−Y ′

sj

(j − i)Y ′
si−Y ′

sj

}
×

∏
1≤i<j≤Nn

(j − i+ 1)Y(n+1)i−Y(n+1)j

(j − i)Y(n+1)i−Y(n+1)j

×
∏

1≤t<s≤n+1

{
[vt + ut + · · ·+ us−1 +Nt −Nt−1]Y ′

t

[vt − vs + ut + · · ·+ us−1 +Nt −Nt−1 −Ns]Y ′
t

× [−vs + ut + · · ·+ us−1 −Ns +Ns−1]Ys

[vt − vs + ut + · · ·+ us−1 −Nt−1 −Ns +Ns−1]Ys

×
Nt∏
i=1

Ns−1∏
j=1

vt − vs + ut + · · ·+ us−1 +Nt −Nt−1 −Ns +Ns−1 + 1− (i+ j)

vt − vs + ut + · · ·+ us−1 +Nt −Nt−1 −Ns +Ns−1 + 1 + Y ′
ti + Ysj − (i+ j)

}
.

(165)

Then with the lemmas (159) to (161) introduced in the last section and a new assistant (which only holds at β = 1),6

Lemma 4

N1∏
i=1

N2∏
j=1

(
x+ 1− (i+ j)β

)
β(

x+ 1 +A′
i +Bj − (i+ j)β

)
β

=
(−1)|B|[x−N2β + 1− β]A′ [x−N1β + 1− β]B

GA,B(x)GB,A(−x)
(166)

5There is some degree of freedom to choose the possible identifications.
6Check the appendix for the proof.
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Equation (165) transforms to⟨
χY1(−p

(1)
k − (v1 + · · ·+ vn)) . . . χYr (p

(r−1)
k − p

(r)
k − vr + · · ·+ vn

β
) . . . χYn+1(p

(n)
k )

⟩SU(n+1)

u⃗,v⃗,β

=
n∏
s=1

{
(−1)|Ys| ×

[vs +Ns −Ns−1]Y ′
s

GY ′
s ,Y

′
s
(0)

}
×

[Nn]Yn+1

GYn+1,Yn+1(0)
×

×
∏

1≤t<s≤n+1

{
[vt + ut + · · ·+ us−1 +Nt −Nt−1]Y ′

t

1
×

[−
(
vs − ut − · · · − us−1 +Ns −Ns−1

)
]Ys

1
×

× 1

GYt,Ys

(
vt − vs + ut + · · ·+ us−1 +Nt −Nt−1 −Ns +Ns−1

) ×

× (−1)|Ys|

GYs,Yt

(
− (vt − vs + ut + · · ·+ us−1 +Nt −Nt−1 −Ns +Ns−1)

)} .

(167)

Further notice that for β = 1,

[x]A′ = (−1)|A|[−x]A = fA(x), GA′,A′(x) = GA,A(x) (168)

(167) is equivalent to its Nekrasov counterpart (154) N inst
Y⃗+

at β = 1 with the identifications(163) and the following

(where we have again omitted the lower index”+” in va+and ua+)

at − as = vt − vs + ut + · · ·+ us−1 +Nt −Nt−1 −Ns +Ns−1 ,

µs + at = vt + ut + · · ·+ us−1 +Nt −Nt−1 ,

µt + as = vs − ut − · · · − us−1 +Ns −Ns−1 ,

µs + as = vs +Ns −Ns−1 ,

(169)

where 1 ≤ t < s ≤ n. The above are of course in accordance with (163) and (164).

This implies AGT relation for SU(n+ 1) at β = 1.

8 Recursive approach for general beta case

In the above sections we found a formula for such Selberg average and show that it reproduces the SU(N) version

of AGT conjecture with β = 1. The only pity is that, our formulae for Selberg average are not based on explicit

evaluation but determined by consistency. So now we would like to turn to another approach, using the recursive

method.

8.1 Recursion formula for Nekrasov partition function

In this section, we present the accurate form of the formula (1) and then derive it from the definition (32). For

this purpose, we need to introduce some notations. We decompose Y,W into rectangles Y = (r1, · · · , rf ; s1, · · · , sf )
(with 0 < r1 < · · · < rf , s1 > · · · > sf > 0, see Figure 3 for the parametrization). We use fp (resp. f̄p) to represent

the number of rectangles of Yp (resp Wp). Furthermore, we write (with r0 = sk+1 = 0);

Ak(Y ) = βrk−1 − sk − ξ, (k = 1, · · · , f + 1) , (170)

Bk(Y ) = βrk − sk, (k = 1, · · · , f) , (171)

where ξ := 1 − β. Ak(Y ) (resp. Bk(Y )) represents the kth location where a box may be added to (resp. deleted

from) Young diagram Y (Figure 4) composed with a map from location to C. ν ∈ C is an arbitrary constant.
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f

Figure 3: Decomposition of Young diagram by rectangles. For later convenience, in this and the next section we

choose the notation where the diagram is upside-down compared to before

1Y   = k
(k,+)

1Y   = k
(k,-)

Figure 4: Locations of boxes

We denote Y (k,+) (resp. Y (k,−)) as the Young diagram obtained from Y by adding (resp. deleting) a box at

(rk−1 + 1, sk + 1) (resp. (rk, sk)). Similarly we use notation Y⃗ (k±),p = (Y1, · · · , Y (k,±)
p , · · · , YN ) to represent the

variation of a Young diagram in a set of Young tables Y⃗ .

One can write the schematic relation (1) more explicitly. We define,

δ−1,nZ (⃗a, Y⃗ ; b⃗, W⃗ ;µ) =
N∑
p=1

fp+1∑
k=1

(ap + ν +Ak(Yp))
nΛ(k,+)

p (⃗a, Y⃗ )Z (⃗a, Y⃗ (k,+),p; b⃗, W⃗ ;µ)

−
f̃p∑
k=1

(bp + µ+ ν +Bk(Wp))
nΛ(k,−)

p (⃗b, W⃗ )Z (⃗a, Y⃗ ; b⃗, W⃗ (k,−),p;µ)

 , (172)

δ1,nZ (⃗a, Y⃗ ; b⃗, W⃗ ;µ) =

N∑
p=1

−
fp∑
k=1

(ap + ν +Bk(Yp))
nΛ(k,−)

p (⃗a, Y⃗ )Z (⃗a, Y⃗ (k,−),p; b⃗, W⃗ ;µ)

+

f̃p∑
k=1

(bp + ν + µ+Ak(Wp) + ξ)nΛ(k,+)
p (⃗b, W⃗ )Z (⃗a, Y⃗ ; b⃗, W⃗ (k,+),p;µ)

 , (173)

where we introduced coefficients Λ:

Λ(k,+)
p (⃗a, Y⃗ ) =

 N∏
q=1

 fq∏
ℓ=1

ap − aq +Ak(Yp)−Bℓ(Yq) + ξ

ap − aq +Ak(Yp)−Bℓ(Yq)

∏′fq+1

ℓ=1

ap − aq +Ak(Yp)−Aℓ(Yq)− ξ

ap − aq +Ak(Yp)−Aℓ(Yq)

1/2

,(174)
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Λ(k,−)
p (⃗a, Y⃗ ) =

 N∏
q=1

fq+1∏
ℓ=1

ap − aq +Bk(Yp)−Aℓ(Yq)− ξ

ap − aq +Bk(p)−Aℓ(q)

∏′fq

ℓ=1

ap − aq +Bk(Yp)−Bℓ(Yq) + ξ

ap − aq +Bk(Yp)−Bℓ(Yq)

1/2

.(175)

Prime in the product symbol (
∏′

) represents that (ℓ, q) = (k, p) is excluded in the product. A parameter ν is

arbitrary.

In order to define the polynomial U±1,n, we introduce a generating functional for multi-variables, x1, · · · , xN ,

y1, · · · , yN , (the expansion around ζ = ∞),

N∏
I=1

ζ − yI
ζ − xI

= 1 +

∞∑
n=1

qn(x, y)ζ
−n . (176)

which gives the order n polynomial qn in variables xI and yI . U±1,n is written in terms of qn as

U−1,n = β−1/2qn+1(x, y), U1,n = β−1/2qn+1(x, y) . (177)

where we need make replacements of variables:

xI → {ν +Ak(Yp), ν + µ+Bk(Wp)}, yI → {ν + µ+Ak(Wp) + ξ, ν +Bk(Yp)− ξ} for U−1,n , (178)

xI → {ν + µ+Ak(Wp) + ξ, ν +Bk(Yp)}, yI → {ν +Ak(Yp) + ξ, ν + µ+Bk(Wp)} for U1,n . (179)

Here k, p run over all possible values and the number of variables is N = N +
∑N
p=1(fp + f̄p).

We note that the right hand side of (176) is written as

exp

( N∑
n=1

ζ−n

n
pn(x, y)

)
, pn(x, y) :=

N∑
I=1

(xI
n − yI

n) . (180)

In terms of pn, the function qn is written as,

q1 = p1, q2 =
1

2
(p2 + p21), · · · (181)

and so on. In general it takes the form of Schur polynomial for single row Young diagram (n) written in terms of

power sum polynomial.

Let us give a proof of the recursion relation (1). It is based on a direct evaluation of the variations of Nekrasov

partition function which is given in the appendix.

By the formulae (334–341), the left hand side of (172,173) are written in the form,

β−1/2
N∑
I=1

(xI)
n

∏N
J=1(xI − yJ )∏′
J(xI − xJ )

(182)

with the replacements (178,179). We rewrite this expression in the form of the generating functional,

N∑
I=1

( ∞∑
n=0

xnI
ζn+1

) ∏N
J=1(xI − yJ)∏′
J (xI − xJ)

=
N∑
I=1

1

ζ − xI

∏N
J=1(xI − yJ)∏′
J (xI − xJ)

=
N∏
I=1

ζ − yI
ζ − xI

− 1 . (183)

From the second to the third term, we need use a nontrivial identity [22] which can be proved by comparing the

locations of poles and the residue on both hand side. The third term takes the form of the left hand side of (172,173).

Comparing the coefficients of ζ−(n+1), we arrive at the recursion formula (1).
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8.2 Symmetry algebra SHc

In this section, we show that the structure of the one box variations in (1) has a nonlinear algebra which is denoted

as SHc in the literature [15]. It has generators Dr,s with r ∈ Z and s ∈ Z≥0. We call the first index r as degree and

the second index s as order of generator. The commutation relation for degree ±1, 0 generators is defined by,

[D0,l, D1,k] = D1,l+k−1, l ≥ 1 , (184)

[D0,l, D−1,k] = −D−1,l+k−1, l ≥ 1 , (185)

[D−1,k, D1,l] = Ek+l l, k ≥ 1 , (186)

[D0,l, D0,k] = 0 , k, l ≥ 0 , (187)

where Ek is a nonlinear combination of D0,k determined by

1 + (1− β)
∑
l≥0

Els
l+1 = exp(

∑
l≥0

(−1)l+1clπl(s)) exp(
∑
l≥0

D0,l+1ωl(s)) , (188)

where

πl(s) = slGl(1 + (1− β)s) , (189)

ωl(s) =
∑

q=1,−β,β−1

sl(Gl(1− qs)−Gl(1 + qs)) , (190)

G0(s) = − log(s), Gl(s) = (s−l − 1)/l l ≥ 1 . (191)

The parameters cl (l ≥ 0) are central charges. First few El can be computed more explicitly as,

E0 = c0, (192)

E1 = −c1 + c0(c0 − 1)ξ/2, (193)

E2 = c2 + c1(1− c0)ξ + c0(c0 − 1)(c0 − 2)ξ2/6 + 2βD0,1, (194)

E3 = 6βD0,2 + 2c0βξD0,1 + · · · , (195)

E4 = 12βD0,3 + 6c0βξD0,2 + (−c0βξ2 + c20βξ
2 − 2c1βξ + 2− 4ξ + 4ξ2 − 2ξ3)D0,1 + · · · . (196)

where · · · are terms which does not contain D0,l.

Other generators are defined recursively by,

Dl+1,0 =
1

l
[D1,1, Dl,0] , D−l−1,0 =

1

l
[D−l,0, D−1,1] , (197)

Dr,l = [D0,l+1, Dr,0] D−r,l = [D−r,0, D0,l+1] . (198)

for l ≥ 0, r > 0 .

Some of the basic properties of SHc [15] are following:

• The algebra has a natural action on the fixed points of localization in the moduli space of SU(N) instantons.

• It can be derived as a singular limit of double affine Hecke algebra (DAHA) [27].

• When β → 1, the algebra reduces to much simpler algebra W1+∞.

• For general β, the algebra containsWN algebra when the representation is constructed out ofN Young diagrams.

• It has close relation with the recursion relation among Jack polynomials.
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8.3 Introduction of the basis

The SU(N) generalization of AGT conjecture implies that the partition function (28) can be written as the conformal

block of n+3 point function of SU(N) Toda field theory where the Hilbert space H is described by chiralWn algebra

with U(1) factor.

The conformal block can also be illustrated by Figure 2. It can be reduced to the multiplication of three point

functions by inserting a complete basis of the Hilbert space at the intermediate channel. In Figure 2, insertion points

of such operators are depicted by arrows. In Wn +U(1) system, the basis of the Hilbert space is labeled by N Young

tables Y⃗ . Then it may be possible to choose such basis such that the factor ZY⃗ ,W⃗ in the previous section may be

rewritten as ZY⃗ ,W⃗ ∼ ⟨Y⃗ |V (1)|W⃗ ⟩ with some vertex operator V . The existence of such basis was formally claimed

in [23, 24] for general β in terms of Jack polynomial, but the explicit form was not given except for some simple

examples.

An exceptional case occurs when β = 1 and the system is described by N pairs of free fermions ( appendix G ). In

this case, there is a reasonable guess on the explicit form of |⃗a, Y⃗ ⟩ [25, 70] as a product of Schur polynomials, namely

|Y⃗ ⟩ ∼
∏N
p=1 χY (p) . (See also [77] for a similar analysis.)

Now for the general β case, to see the relation with (1), we introduce a Hilbert space Ha⃗ spanned by an basis

|⃗a, Y⃗ ⟩ where a⃗ ∈ CN and Y⃗ = (Y1, · · · , YN ) is a set of N Young tables. The dual basis ⟨⃗a, Y⃗ | is defined such that

⟨⃗a, Y⃗ |⃗b, W⃗ ⟩ = δY⃗ ,W⃗ δ(⃗a− b⃗) . (199)

Inspired from β = 1 case, we DEFINE the action of D±1,l, D0,l on the ket and bra basis as,

D−1,l |⃗b, W⃗ > = (−1)l
N∑
q=1

f̃q∑
t=1

(bq +Bt(Wq))
lΛ(t,−)
q (W⃗ )|⃗b, W⃗ (t,−),q > , (200)

D1,l |⃗b, W⃗ > = (−1)l
N∑
q=1

f̃q+1∑
t=1

(bq +At(Wq))
lΛ(t,+)
q (W⃗ )|⃗b, W⃗ (t,+),q > , (201)

D0,l+1 |⃗b, W⃗ > = (−1)l
N∑
q=1

∑
µ∈Wq

(bq + c(µ))l |⃗b, W⃗ > , (202)

⟨⃗a, Y⃗ |D−1,l = (−1)l
N∑
p=1

f+1∑
t=1

(ap +At(Yp))
lΛ(t,+)
p (Y⃗ )⟨⃗a, Y⃗ (t,+),p| , (203)

⟨⃗a, Y⃗ |D1,l = (−1)l
N∑
p=1

f∑
t=1

(ap +Bt(Yp))
lΛ(t,−)
p (Y⃗ )⟨⃗a, Y⃗ (t,−),p| , (204)

⟨⃗a, Y⃗ |D0,l+1 = (−1)l
N∑
p=1

∑
µ∈Yp

(ap + c(µ))l⟨⃗a, Y⃗ | , (205)

where c(µ) = βi− j for µ = (i, j).

With such definitions, we claim that the action of Da,l on the ket and bra basis satisfies SHc algebra with central

charges

cl =

{ ∑N
q=1(bq − ξ)l (for ket)∑N
p=1(aq − ξ)l (for bra)

. (206)

We note that the “central charges” depend on the label a⃗, b⃗ in bra and ket state in general except for c0 = N . Of

course, when the inner product between them becomes nonvanishing (⃗a = b⃗), they coincide.
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Up to overall sign and shift of parameters ap → ap + ν and bp → bp + µ+ ν, the coefficients which define D±1,l are

identical to the variations δ±1,l in (172,173). This observation suggests that the partition function may be written

as an inner product of the basis ⟨⃗a + νe⃗, Y⃗ | and |⃗b + (ν + µ)e⃗, W⃗ ⟩ (e⃗ := (1, · · · , 1)) with some operator insertions,

and the recursion formula should be regarded as the Ward identity for the symmetry algebra SHc. We will pursue

this idea in the following.

Actually there exists a small mismatch in the above observation. The coefficient appearing in (173) is shifted from

the coefficient in (201) by ξ. As we see later, this factor will be canceled by slightly modifying the vertex operator

inserted between two basis. Namely the vertex operator is not primary due to the U(1) factor.

We need to perform a lengthy computation to confirm that the action of D±1,l indeed gives a representation of SHc.

See appendix H for some detail.

8.4 Comparison with W1+∞

For general value of β, SHc is a complicated nonlinear algebra. Simplification occurs when we choose parameter

β = 1. In this case, the nonlinear algebra reduces to a linear algebra W1+∞. It is an algebra of higher order

differential operator znDm (n ∈ Z, m = 0, 1, 2, · · · , D = z∂z). Then a quantum generator W(znDm) is assigned to

each differential operator (say znDm) and satisfies the algebra with a central extension,

[W(znexD),W(zmeyD)] = (emx − eny)W(zn+me(x+y)D)− C
emx − eny

ex+y − 1
δn+m,0 . (207)

The connection between SHc and W1+∞ was already explained in appendix F in [15]. In our previous paper [22], we

use the explicit action of W1+∞ generators on the free fermion Fock space and have shown that Nekrasov partition

function satisfies a recursion formula associated with the symmetry.

Here we make a direct comparison of the action of W1+∞ algebra on the free fermion Fock space in [22] with the

corresponding action of SHc (200–202). For simplicity, we consider N = 1 case.

W(zDl)|a, Y ⟩ = (−1)l
f∑
i=1

(a+Bi(Y )− 1)l|a, Y (i,−)⟩, (208)

W(z−1Dl)|a, Y ⟩ = (−1)l
f+1∑
i=1

(a+Ai(Y ))l|a, Y (i,+)⟩ . (209)

We need rewrite λ in [22] with −a here. This implies the correspondence in the β → 1 limit:

D−1,l ↔ W(z(D + 1)l) = W(Dlz), (210)

D1,l ↔ W(z−1Dl). (211)

One may proceed to see the correspondence between the generators in W1+∞ with those in SHc. The recursion

formulae and the Ward identity obtained in [22] can be obtained from the corresponding formulae in this paper by

taking the limit β → 1.

8.5 Heisenberg and Virasoro algebra in SHc

In the following, we focus on the important subalgebra in SHc, namely the Heisenberg (or U(1) current) and Virasoro

algebra. They are important since we can make the explicit evaluation of Ward identity because the higher generators
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in general have nonlinear commutation relation with the vertex operator.

Generators of Heisenberg (Jl) and Virasoro algebra (Ll) are embedded in SHc as [15],

Jl = (−
√
β)−lD−l,0, J−l = (−

√
β)−lDl,0, J0 = E1/β, (212)

Ll = (−
√
β)−lD−l,1/l + (1− l)c0ξJl/2 ,

L−l = (−
√
β)−lDl,1/l + (1− l)c0ξJ−l/2 ,

L0 = [L1, L−1]/2 = D0,1 +
1

2β

(
c2 + c1(1− c0)ξ +

ξ2

6
c0(c0 − 1)(c0 − 2)

)
. (213)

The commutation relations among these generators are the standard ones,

[Jn, Jm] =
nN

β
δn+m,0, (214)

[Ln, Jm] = −mJn+m, (215)

[Ln, Lm] = (n−m)Ln+m +
c

12
(n3 − n)δn+m,0 . (216)

The derivation of these simple formulae from SHc commutator is nontrivial since in the commutation relation of SHc,

we have generators with degree= ±1, 0 while Jn, Ln have degree n. Proof of the first line is given in [15] . We need

derive the commutation relation among them recursively. The confirmation of Virasoro algebra is much more tedious

but we give the explicit computation of [L2, L−2] in appendix I. This particular commutation relation is important

since it implies the central charge of Virasoro algebra is related to those in SHc as,

c =
1

β

(
−c30ξ2 + c0 − c0ξ + c0ξ

2
)
= 1 + (N − 1)(1−Q2(N2 +N)) , Q :=

√
β −

√
β
−1

= −β−1/2ξ . (217)

This is the central charge for a combined system of WN algebra and a free scalar field. It motivate us to propose a

free field representation,

J(z) =
∑
n

Jnz
−n−1 = β−1/2

N∑
i=1

∂zφ
(i)(z) , (218)

T (z) =

N∑
i=1

(
1

2
(∂φ(i)(z))2 −Qρi∂

2φ(i)(z)

)
(219)

with

φ(i)(z) = q(i) + α
(i)
0 log z −

∑
n̸=0

α
(i)
n

n
z−n , (220)

[α(i)
n , α(j)

m ] = nδn+m,0δij , [α(i)
m , q(j)] = δm,0δij . (221)

Eqs.(212, 213) imply

J0 |⃗a, Y⃗ ⟩ =
1

β

(
−
∑
i

(ai − ξ) +
ξN(N − 1)

2

)
|⃗a, Y⃗ ⟩, (222)

L0 |⃗a, Y⃗ ⟩ =

(
|Y⃗ |+ 1

2β

(∑
i

(ai − ξ)2 + (1−N)ξ
∑
i

(ai − ξ) +
ξ2

6
N(N − 1)(N − 2)

))
|⃗a, Y⃗ ⟩ . (223)

We assign the eigenvalue of α
(i)
0 on the state |⃗a, Y⃗ ⟩ as

α
(i)
0 |⃗a, Y⃗ ⟩ = pi |⃗a, Y⃗ ⟩ , pi := − ai√

β
−Qi , i = 1, · · · , N . (224)

With such assignments, we can rewrite (222, 223) in the more familiar form,

J0 |⃗a, Y⃗ ⟩ = 1√
β
(p⃗ · e⃗) |⃗a, Y⃗ ⟩, L0 |⃗a, Y⃗ ⟩ =

(
|Y⃗ |+∆(p⃗)

)
|⃗a, Y⃗ ⟩, ∆(p⃗) :=

p⃗ · (p⃗− 2Qρ⃗)

2
, (225)

where ρi =
N+1
2 − i. ∆(p⃗) is the conformal dimension of a vertex operator : ep⃗φ⃗ :.

35



9 Nekrasov partition function as a correlator and Heisenberg-Virasoro

constraints

In the previous sections, we have seen that the recursion formulae for Nekrasov partition function takes a form of

the representation of SHc algebra in terms of the orthonormal basis. We have also seen that SHc algebra contains

Heisenberg and Virasoro algebras as its subalgebras.

As mentioned in section 8.3 , we observe that AGT conjecture can be proved once we prove the relation

Z (⃗a, Y⃗ ; b⃗, W⃗ ;µ) = ⟨⃗a+ νe⃗, Y⃗ |V (1)|⃗b+ (ξ + ν + µ)e⃗, W⃗ ⟩, (226)

with the orthonormal basis |⃗a, Y⃗ ⟩ defined in previous sections and a vertex operator V . Existence of such basis was

formally proved in [24]. The vertex operator is factorized as V = Ṽ HVW where VW is the vertex operator for WN

algebra and Ṽ H describes the contribution of U(1) factor. Furthermore it is known that the correlator of Toda theory

is calculable only for the special momenta.

p⃗ = −κe⃗1 or p⃗ = −κe⃗N , e⃗1 = (1, 0, · · · , 0), e⃗N = (0, · · · , 0, 1) . (227)

The new parameter κ is to be determined later. For the convenience of the computation, we take the latter choice.

Ṽ H and VW in the decomposition should be written as,

Ṽ Hκ = e−
κ
N e⃗·φ⃗, VWκ = e−κ(e⃗N− e⃗

N )φ⃗ , (228)

for p⃗ taking the second value in (227). This form of WN vertex operator is also important in the context of AGT

conjecture. VWκ is a vertex operator corresponding to the so-called simple puncture. As we see, we need modify Ṽ H

to meet the behavior of U(1) factor in AGT conjecture.

The relation (226) can be established once one proves that the partition function Z satisfies the recursion relation

which defines the right hand side [22] . Namely,

0 = (⟨⃗a+ νe⃗, Y⃗ |Dn,m)V (1)|⃗b+ (ξ + ν + µ)e⃗, W⃗ ⟩

−⟨⃗a+ νe⃗, Y⃗ | [Dn,m, V (1)] |⃗b+ (ξ + ν + µ)e⃗, W⃗ ⟩ − ⟨⃗a+ νe⃗, Y⃗ |V (1)(Dn,m |⃗b+ (ξ + ν + µ)e⃗, W⃗ ⟩) . (229)

The right hand side gives the Ward identity for the conformal block. One may translate such relation into a recursion

relation which Z should satisfy if we use the relation (226). It may sound strange to use the relation to be proved.

Here we use it as the assumption in the inductive method. It is obvious that the relation (226) holds for the trivial

case Y⃗ = W⃗ = ∅⃗ with a proper definition of the inner product. General relation (226) will be obtained through the

Ward identities by induction.

As we have seen, the recursion relation for Z exists for n = ±1 and arbitrary m ≥ 0. Other relations should

be derived from them. On the right hand side of (229), we have already defined the action of Dn,m on the basis.

A problem is that the commutation relation with the vertex operator cannot be written in the closed form except

for Heisenberg and Virasoro generators. Thus we focus on these cases in the following though it is not sufficient to

complete the inductive proof.

9.1 Modified vertex operator for U(1) factor

While the definition of the vertex operator for WN algebra is well-known, those for U(1) factor V H is somewhat

tricky [1, 24, 74].7 We give a brief account on the construction.
7We thank V. Pasquier to point out this important fact.
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The free boson field which describes the U(1) part is given by the operators Jn defined in the previous section.

With

αn =
√
β/NJn, (230)

we define a free boson field as,

ϕ(z) = q + α0 log z −
∑
n̸=0

αn
n
z−n =

e⃗ · φ⃗√
N
. (231)

We modify the vertex operator Ṽ H for the U(1) factor as,

V Hκ (z) = e
1√
N

(NQ−κ)ϕ−e
−1√
N
κϕ+ , (232)

ϕ+ = α0 log z −
∞∑
n=1

αn
n
z−n , ϕ− = q +

∞∑
n=1

α−n

n
zn . (233)

Such definition of modified vertex operator is needed to reproduce the contribution of U(1) factor in the correlator
8,

⟨V Hκ1
(z1) · · ·V Hκn

(zn)⟩ =
∏
i<j

(zi − zj)
−κi(NQ−κj)

N . (234)

Due to the modification, the commutation relation with U(1) current (Heisenberg generator) becomes asymmetric,

[αm, V
H
κ (z)] =

1√
N

(NQ− κ)zmV Hκ (z), [α−n, V
H
κ (z)] =

−1√
N
κz−nV Hκ (z) , (235)

for m ≥ 0, n > 0.

Unlike the standard definition of the vertex operator V =: eκϕ :, the conformal property of the modified vertex

becomes rather complicated. It is, however, helpful to understand the recursion relations (1) which has some anomaly

as well. We define the Virasoro generator for the U(1) factor as,

LHn =
1

2

∑
m

: αn−mαm : , (236)

which has c = 1. The commutator of the total Virasoro genrators Ln = LHn + LWn with the vertex Vκ(z) =

V Hκ (z)VWκ (z) becomes,

[Ln, Vκ(z)] = zn+1∂zVκ(z) +
(NQ− κ)2

2N
(n+ 1)znVκ(z) +

√
NQ

n∑
m=0

zn−mVκ(z)αm + (n+ 1)zn∆WVκ(z), n ≥ 0 ,(237)

[Ln, Vκ(z)] = zn+1∂zVκ(z) +
κ2

2N
(n+ 1)znVκ(z)−

√
NQ

|n|∑
m=1

zn+mα−mVκ(z) + (n+ 1)zn∆WVκ(z), n < 0 , (238)

where ∆W = κ(κ−Q(N−1))
2 − κ2

2N is the conformal dimension of WN vertex operator VWκ with Toda momenta

p⃗ = −κ(e⃗N − e⃗
N ) as in (228). The anomaly due to the modification of U(1) vertex manifests itself through the third

term on the right hand side. We write the commutator for the special cases n = ±1, 0 for the convenience of later

calculation.

[L1, Vκ(z)] = z2∂zVκ(z) +
(NQ− κ)2

N
zVκ(z) +

√
NQzVκ(z)α0 +

√
NQVκ(z)α1 + 2z∆WVκ(z) , (239)

[L0, Vκ(z)] = z∂zVκ(z) +
(NQ− κ)2

2N
Vκ(z) +

√
NQVκ(z)α0 +∆WVκ(z) , (240)

[L−1, Vκ(z)] = ∂zVκ(z) . (241)

In the following, we examine the relation (229) for Heisenberg (U(1)) and Virasoro generators for Dn,m.
8Compared with the reference [24], we included the zero mode to modify the commutator with the Virasoro generator.
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9.2 Ward identities for U(1) currents

We start from examining the case n = 0 which can be interpreted as the Ward identity for J±1,

(⟨⃗a+ νe⃗, Y⃗ |J±1)V (1)|⃗b+ (ξ + ν + µ)e⃗, W⃗ ⟩ − ⟨⃗a+ νe⃗, Y⃗ |V (1)(J±1 |⃗b+ (ξ + ν + µ)e⃗, W⃗ ⟩)

= ⟨⃗a+ νe⃗, Y⃗ | [J±1, V (1)] |⃗b+ (ξ + ν + µ)e⃗, W⃗ ⟩ . (242)

By the definition of the representation of SHc algebra (212, ??, 200) and the vertex operator (235), the action of J1

on the bra and ket basis and the commutator with the vertex operator are given as,

⟨⃗a+ νe⃗, Y⃗ |J1 = (−
√
β)−1

N∑
p=1

fp+1∑
k=1

⟨⃗a+ νe⃗, Y⃗ (k,+),p|Λ(k,+)
p (Y⃗ ), (243)

J1 |⃗b+ (ξ + ν + µ)e⃗, W⃗ ⟩ = (−
√
β)−1

N∑
q=1

f̃p∑
ℓ=1

Λ(ℓ,−)
q (W⃗ )|⃗b+ (ξ + ν + µ)e⃗, W⃗ (ℓ,−),q⟩ , (244)

[J1, Vκ(1)] =
1√
β
(NQ− κ)Vκ(1) . (245)

Plugging them into (242) gives,

(−
√
β)−1

N∑
p=1

fp+1∑
k=1

Λ(k,+)
p (Y⃗ )⟨⃗a+ νe⃗, Y⃗ (k,+),p|V (1)|⃗b+ (ξ + ν + µ)e⃗, W⃗ ⟩

−(−
√
β)−1

N∑
q=1

f̃p∑
ℓ=1

Λ(ℓ,−)
q (W⃗ )⟨⃗a+ νe⃗, Y⃗ |V (1)|⃗b+ (ξ + ν + µ)e⃗, W⃗ (ℓ,−),q⟩ (246)

=
1√
β
(NQ− κ)⟨⃗a+ νe⃗, Y⃗ |V (1)|⃗b+ (ξ + ν + µ)e⃗, W⃗ ⟩) .

Using the assumption (226), the left hand side of (246) becomes√
β
−1
δ−1,0Z (⃗a, Y⃗ ; b⃗, W⃗ ;µ) . (247)

On the other hand, taking account of U(1) charge conservation condition, which is derived from the action of J0,

κ = −β−1/2
N∑
p=1

(ap − bp − µ) , (248)

the right hand side of (246) becomes

1√
β
(NQ− κ)Z (⃗a, Y⃗ ; b⃗, W⃗ ;µ) = β−1

N∑
p=1

(ap − bp − µ− ξ)Z (⃗a, Y⃗ ; b⃗, W⃗ ;µ) =
√
β
−1
U−1,0Z (⃗a, Y⃗ ; b⃗, W⃗ ;µ) . (249)

Thus the Ward identity for J1 is proved since it is identified with the recursion formula δ−1,0ZY⃗ ,W⃗ −U−1,0ZY⃗ ,W⃗ = 0.

Derivation of the identity for J−1 can be performed similarly. The actions of J−1 are given by

⟨⃗a+ νe⃗, Y⃗ |J−1 = (−
√
β)−1

N∑
p=1

fp∑
k=1

⟨⃗a+ νe⃗, Y⃗ (k,−),p|Λ(k,−)
p (Y⃗ ), (250)

J−1 |⃗b+ (ξ + ν + µ)e⃗, W⃗ ⟩ = (−
√
β)−1

N∑
q=1

f̃p+1∑
ℓ=1

Λ(ℓ,+)
q (W⃗ )|⃗b+ (ξ + ν + µ)e⃗, W⃗ (ℓ+−),q⟩ , (251)

[J−1, Vκ(1)] = − 1√
β
κVκ(1) . (252)
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By the assumption (226), we have

⟨⃗a+ νe⃗, Y⃗ |J−1Vκ(1)|⃗b+ (ξ + ν + µ)e⃗, W⃗ ⟩ − ⟨⃗a+ νe⃗, Y⃗ |Vκ(1)J−1 |⃗b+ (ξ + ν + µ)e⃗, W⃗ ⟩

= −
√
β
−1
δ1,0Z (⃗a, Y⃗ ; b⃗, W⃗ ;µ) , (253)

⟨⃗a+ νe⃗, Y⃗ |[J−1, Vκ(1)]|⃗b+ (ξ + ν + µ)e⃗, W⃗ ⟩ = −β−1/2κZ (⃗a, Y⃗ ; b⃗, W⃗ ;µ) . (254)

In the last equality in (254), we use U(1) charge conservation (248). It shows the equivalence between the recursion

formula δ1,0ZY⃗ ,W⃗ − U1,0ZY⃗ ,W⃗ = 0 and the Ward identity for J−1. We note that the modification of the vertex

operator is necessary to produce the Ward identities for U(1) currents.

9.3 Ward identities for Virasoro generators

We proceed to examine the equivalence of the Ward identity for Virasoro generators and the recursion formula. The

actions of L1 on the basis and the vertex operator are evaluated by (213, 200–205, 237),

⟨⃗a+ νe⃗, Y⃗ |L1 =
√
β
−1

N∑
p=1

fp∑
k=1

⟨⃗a+ νe⃗, Y⃗ (k,+),p|(ap + ν +Ak(Yp))Λ
(k,+),p(Y⃗ ),

L1 |⃗b+ (ξ + ν + µ)e⃗, W⃗ ⟩ =
√
β
−1

N∑
q=1

fp∑
ℓ=1

Λ(ℓ,−),q(W⃗ )(bq + ν + µ+Bℓ(Wq) + ξ)|⃗b+ (ξ + ν + µ)e⃗, W⃗ (ℓ,−),q⟩ ,

[L1, Vκ(1)] = ∂Vκ(1) +
(NQ− κ)2

N
Vκ(1) +

√
NQVκ(1)α0 +

√
NQVκ(1)α1 + 2∆WVκ(1) .

As we see from the derivative term in the commutator, in order to evaluate the Virasoro Ward identities, we need

to evaluate ⟨⃗a+ νe⃗, Y⃗ |∂V (1)|⃗b+ (ν + µ+ ξ)e⃗, W⃗ ⟩. Since the modified vertex operator is not a primary operator, the

correlator does not have the standard dependence on the position of the vertex operator. We can, however, derive it

through the Ward identity of L0.

According to the actions of L0 on the basis (223), we have

⟨⃗a+ νe⃗, Y⃗ |L0Vκ(z)|⃗b+ (ξ + ν + µ)e⃗, W⃗ ⟩ − ⟨⃗a+ νe⃗, Y⃗ |Vκ(z)L0 |⃗b+ (ξ + ν + µ)e⃗, W⃗ ⟩
⟨⃗a+ νe⃗, Y⃗ |Vκ(z)|⃗b+ (ξ + ν + µ)e⃗, W⃗ ⟩

= ∆

(
− a⃗+ νe⃗√

β
−Qρ⃗+Q

N + 1

2
e⃗

)
+ |Y⃗ | −∆

(
− b⃗+ (ν + µ)e⃗√

β
−Qρ⃗+Q

N + 1

2
e⃗

)
− |W⃗ | . (255)

On the other hand, from the commutator between L0 and vertex operator (240), we obtain

⟨⃗a+ νe⃗, Y⃗ |[L0, Vκ(z)]|⃗b+ (ξ + ν + µ)e⃗, W⃗ ⟩
⟨⃗a+ νe⃗, Y⃗ |Vκ(z)|⃗b+ (ξ + ν + µ)e⃗, W⃗ ⟩

∣∣∣∣∣
z=1

=
⟨⃗a+ νe⃗, Y⃗ |z∂zVκ(1)|⃗b+ (ξ + ν + µ)e⃗, W⃗ ⟩
⟨⃗a+ νe⃗, Y⃗ |Vκ(1)|⃗b+ (ξ + ν + µ)e⃗, W⃗ ⟩

∣∣∣∣∣
z=1

− ⟨⃗a+ νe⃗, Y⃗ |
√
NQVκ(z)α0 |⃗b+ (ξ + ν + µ)e⃗, W⃗ ⟩

⟨⃗a+ νe⃗, Y⃗ |Vκ(z)|⃗b+ (ξ + ν + µ)e⃗, W⃗ ⟩

∣∣∣∣∣
z=1

− (NQ− κ)2

2N
−∆W . (256)

Since (255) is identical with (256) by the Ward identity for L0, the derivative term can be evaluated as follows,

⟨⃗a+ νe⃗, Y⃗ |∂zVκ(1)|⃗b+ (ξ + ν + µ)e⃗, W⃗ ⟩
⟨⃗a+ νe⃗, Y⃗ |Vκ(1)|⃗b+ (ξ + ν + µ)e⃗, W⃗ ⟩

=∆

(
− a⃗+ νe⃗√

β
−Qρ⃗+Q

N + 1

2
e⃗

)
+ |Y⃗ | −∆

(
− b⃗+ (ν + µ)e⃗√

β
−Qρ⃗+Q

N + 1

2
e⃗

)
− |W⃗ |

− ξ

β

(
−

N∑
p=1

(bp + ν + µ) +N(N − 1)ξ/2

)
− (NQ− κ)2

2N
− κ(κ−Q(N − 1))

2
+

κ2

2N
.
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Now we are ready to check the recursion relation for Virasoro generators. Applying (226), we obtain

⟨⃗a+ νe⃗, Y⃗ |L1Vκ(1)|⃗b+ (ξ + ν + µ)e⃗, W⃗ ⟩ − ⟨⃗a+ νe⃗, Y⃗ |Vκ(1)L1 |⃗b+ (ξ + ν + µ)e⃗, W⃗ ⟩

=
√
β
−1
δ−1,1Z (⃗a, Y⃗ ; b⃗, W⃗ ;µ)−Q

N∑
q=1

fp∑
ℓ=1

Λ(ℓ,−),q(W⃗ )Z (⃗a, Y⃗ ; b⃗, W⃗ (ℓ,−),q;µ) . (257)

Unlike in the J1 case, an additional term appears because the action of SHc algebra on the ket space is slightly

different from the action of δ−1,1 on Z (⃗a, Y⃗ ; b⃗, W⃗ ;µ) as we have explained previously. The commutator part becomes

⟨⃗a+ νe⃗, Y⃗ |[L1, Vκ(1)]|⃗b+ (ξ + ν + µ)e⃗, W⃗ ⟩

=

{
∆

(
− a⃗+ νe⃗√

β
−Qρ⃗+Q

N + 1

2
e⃗

)
+ |Y⃗ | −∆

(
− b⃗+ (ν + µ)e⃗√

β
−Qρ⃗+Q

N + 1

2
e⃗

)
− |W⃗ |

+
(NQ− κ)2

2N
+
κ(κ−Q(N − 1))

2
− κ2

2N

}
Z (⃗a, Y⃗ ; b⃗, W⃗ ;µ)−Q

N∑
q=1

fp∑
ℓ=1

Λ(ℓ,−),q(W⃗ )Z (⃗a, Y⃗ ; b⃗, W⃗ (ℓ,−),q;µ)

=
√
β
−1
U−1,1Z (⃗a, Y⃗ ; b⃗, W⃗ ;µ)−Q

N∑
q=1

fp∑
ℓ=1

Λ(ℓ,−),q(W⃗ )Z (⃗a, Y⃗ ; b⃗, W⃗ (ℓ,−),q;µ) . (258)

In the last equality we use (248). This also have an anomalous term since the modified vertex is not primary operator

and its commutator with L1 has the VκJ1 term. However, the anomalies in (257) and (258) are identical and the

Ward identity for L1 is reduced to the recursion relation δ−1,1ZY⃗ ,W⃗ − U−1,1ZY⃗ ,W⃗ = 0 which is already proved. We

note that the identity holds only when we have the special value for the vertex momentum (227).

In the same way, for L−1, we have

⟨⃗a+ νe⃗, Y⃗ |L−1Vκ(1)|⃗b+ (ξ + ν + µ)e⃗, W⃗ ⟩ − ⟨⃗a+ νe⃗, Y⃗ |Vκ(1)L−1 |⃗b+ (ξ + ν + µ)e⃗, W⃗ ⟩

=
√
β
−1
δ1,1Z (⃗a, Y⃗ ; b⃗, W⃗ ;µ) , (259)

⟨⃗a+ νe⃗, Y⃗ |[L−1, Vκ(1)]|⃗b+ (ξ + ν + µ)e⃗, W⃗ ⟩

=

{
∆

(
− a⃗+ νe⃗√

β
−Qρ⃗+

N + 1

2
e⃗

)
+ |Y⃗ | −∆

(
− b⃗+ (ν + µ)e⃗√

β
−Qρ⃗+

N + 1

2
e⃗

)
− |W⃗ |

− ξ

β

(
−

N∑
p=1

(bp + ν + µ) +N(N − 1)ξ/2

)
− (NQ− κ)2

2N
− κ(κ−Q(N − 1))

2
+

κ2

2N

}
Z (⃗a, Y⃗ ; b⃗, W⃗ ;µ)

=
√
β
−1
U1,1Z (⃗a, Y⃗ ; b⃗, W⃗ ;µ) . (260)

Again, we use (248) to derive the last equality in (260). Thus, the recursion formula δ1,1ZY⃗ ,W⃗ − U1,1ZY⃗ ,W⃗ = 0 can

be identified with the Ward identity. These two consistency conditions are highly nontrivial and strongly suggest

that the identify (1) are a part of the Ward identities for the extended conformal symmetry.

10 Conclusion

we calculated the conformal block in the form of Dotsenko-Fateev integral and reduce it in the form of Selberg

integral of N Jack polynomials. We found a formula for such Selberg average and show that it reproduces the SU(N)

version of AGT conjecture with β = 1. The only pity is that, our formulae for Selberg average are not based on

explicit evaluation but determined by consistency. Thus as long as we want to pursue a direct and complete proof

of this crucial string duality, the full evaluation of Selberg-Jack integral and W-algebra will be necessary.
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Further we chose another method and showed that Nekrasov instanton partition function for SU(N) gauge theories

satisfies recursion relations in the form of U(1)+Virasoro constraints,with β to be chosen arbitrarily. This case is

much more complicated than before and we introduce many new methods to solve the issues caused by the arbitrary

β. For example, we have to choose a modified vertex operator to satisfy the commuting feature; and to define the

basis, we need the help of SHc algebra, etc. These make the calculation rather tedious, and also call for more precise

physical interpretations. The constraints give a strong support for AGT conjecture for general quiver gauge theories.

One remarkable feature is that the proof is not restricted by the number of boxes of Young diagrams but holds in

all orders analytically. However, due to its recursive nature, this method provides an indirect testification, still not

enough for a complete proof.

We would like to mention some recent papers which are relevant to this work. In [75], large N limit (N is the size of

Young tableaux) is taken to relate AGT conjecture to matrix model. There should be similar limit in our recursion

formula where the computation becomes much simpler and the relation with Nekrasov-Shatashvili limit [76] will be

clearer. In [77] , the correlator of primary fields is defined in terms of null state condition ofWN algebra which in tern

related to Calogero-Sutherland system. Since the symmetry of Jack polynomial is identified with SHc, there should

be interesting connection with the current work. In [78], an M-theoretic approach to AGT relation was explored.

We note that the two parameter extension of W1+∞ [27], there are some important progress in terms of AGT relation

[30]. It is, however, nontrivial to derive AGT from the results from DAHA since the degeneration limit is singular.

We hope to come back to this issue in our future work.

Moreover, SHc seems to have interesting applications to quantum Hall effects or higher spin theories [79]. This may

be also interesting directions.
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A Jack polynomials

Jack polynomials J
(β)
Y [z1, · · · , zM ] are a kind of symmetric polynomials of variables z1, · · · , zM labeled by a Young

diagram Y . Detailed properties of Jack polynomial is given in [65]. they are characterized by the fact that they are

the eigenfunctions of Calogero-Sutherland Hamiltonian written in the form,

H =
M∑
i=1

D2
i + β

∑
i<h

zi + zj
zi − zj

(Di −Dj), Di := zi
∂

∂zi
. (261)

Sometimes they are written as functions of power sum pk(z) =
∑
i z
k
i . In the text, we write the Jack polynomial in

terms of them, J
(β)
Y (p1, p2, · · · ) ≡ J

(β)
Y (pk) := J

(β)
Y [z1, · · · , zM ]. The explicit form of low level ones are listed below;

J
(β)
[1] (pk) = p1 ,

J
(β)
[2] (pk) =

p2 + βp21
β + 1

, J
(β)
[11](pk) =

1

2

(
p21 − p2

)
, (262)

J
(β)
[3] (pk) =

2p3 + 3βp1p2 + β2p31
(β + 1)(β + 2)

, J
(β)
[21](pk) =

(1− β)p1p2 − p3 + βp31
(β + 1)(β + 2)

, J
(β)
[111](pk) =

1

6
p31 −

1

2
p1p2 +

1

3
p3 .

Jack polynomials are orthogonal with each other (JY1 , JY2) ∝ δY1Y2 . There are two inner products defined for the

symmetric polynomial which has such property. One is defined in terms of products of power sum,

⟨pk11 · · · pℓnn , p
ℓ1
1 · · · pℓnn ⟩β = δk⃗,ℓ⃗β

−
∑

i ki

n∏
i=1

ikiki! . (263)

We write the norm for this inner product as ⟨JY , JY ⟩β = ||JY ||2. The explicit form of the norm is given in the

literature[65]

||J (β)
A ||2 =

QY
PY

, (264)

with PY and QY given by

PY =
∏

(i,j)∈Y

(
β(Y ′

j − i) + (Yi − j) + β
)
= GY,Y (0) , (265)

QY =
∏

(i,j)∈Y

(
β(Y ′

j − i) + (Yi − j) + 1
)
= GY,Y (1− β) . (266)

In this paper, we denote the normalized Jack polynomials as,

j
(β)
Y (p) :=

J
(β)
Y (p)

||J (β)
Y ||

=

√
GY,Y (0)

GY,Y (1− β)
J
(β)
Y (p) . (267)

Especially, at β = 1, Jack polynomials reduced to Schur polynomials χY :

j
(β)
Y |β=1 = J

(β)
Y |β=1 = χY . (268)

The relation between Jack polynomial and Toda theory is that Jack polynomial is characterized as the null states of

W-algebra, as discussed, for example, in [67]. In particular, the Calogero-Sutherland Hamiltonian (261) is written in

in terms of Virasoro and W-generators (see, for example, eq.(52) of [67]).

The relevance of Jack polynomial in Selberg integral is through the Cauchy-Riemann relations,∏
i,j

(1− xiyj)
−β =

∑
Y

J
(β)
Y [x]J

(β)
Y [y]||JY ||−2,

∏
i,j

(1 + xiyj) =
∑
Y

J
(1/β)
Y ′ [x]J

(β)
Y [y] . (269)

The first property was essentially used in the text.
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B Formula for general β

Here we write a formula of An Selberg average for product of n + 1 Jack polynomials which generalizes (147).

While some modifications on the terms proportional to 1− β are required to meet the constraints (149), it survives

other constraints which are quite nontrivial. We write this formula since it may give a useful hints in the future

development, though some modifications are necessary.

The formula for n+ 1 Jack polynomials should be close to the following,⟨
J
(β)
Y1

(−p
(1)
k − v1 + · · ·+ vn

β
) . . . J

(β)
Yr

(p
(r−1)
k − p

(r)
k − vr + · · ·+ vn

β
) . . . J

(β)
Yn+1

(p
(n)
k )

⟩SU(n+1)

=

n∏
s=1

{
(−1)|Ys| [vs +Nsβ −Ns−1β]Y ′

s

[Nsβ +Ns−1β]Y ′
s

∏
1≤i<j≤Ns−1+Ns

((j − i+ 1)β)Y ′
si−Y ′

sj

((j − i)β)Y ′
si−Y ′

sj

}
×

∏
1≤i<j≤Nn

((j − i+ 1)β)Y(n+1)i−Y(n+1)j

((j − i)β)Y(n+1)i−Y(n+1)j

×
∏

1≤t<s≤n

{
[vt + ut + · · ·+ us−1 +Ntβ −Nt−1β + (s− t+ 1)(1− β)]Y ′

t

[vt − vs + ut + · · ·+ us−1 +Ntβ −Nt−1β −Nsβ + (s− t+ 1)(1− β)]Y ′
t

×

× [−vs + ut + · · ·+ us−1 −Nsβ +Ns−1β + (s− t)(1− β)]Ys

[vt − vs + ut + · · ·+ us−1 −Nt−1β −Nsβ +Ns−1β + (s− t+ 1)(1− β)]Ys

×

×
Nt∏
i=1

Ns−1∏
j=1

(
vt − vs + ut + · · ·+ us−1 +Ntβ −Nt−1β −Nsβ +Ns−1β + (s− t)(1− β) + 1− (i+ j)β

)
β(

vt − vs + ut + · · ·+ us−1 +Ntβ −Nt−1β −Nsβ +Ns−1β + (s− t)(1− β) + 1 + Y ′
ti + Ysj − (i+ j)β

)
β

}

×
∏

1≤s≤n

{
[us + · · ·+ un +Nnβ + (n− s+ 1)(1− β)]Yn+1

[vs + us + · · ·+ un +Nnβ −Ns−1β + (n− s+ 2)(1− β)]Yn+1

×

×
Ns∏
i=1

Nn∏
j=1

(
vs + us + · · ·+ un +Nnβ +Nsβ −Ns−1β + (n− s+ 1)(1− β) + 1− (i+ j)β

)
β(

vs + us + · · ·+ un +Nnβ +Nsβ −Ns−1β + (n− s+ 1)(1− β) + 1 + Y ′
si + Y(n+1)j − (i+ j)β

)
β

}
.

(270)

It satisfies consistency conditions with the known results:

(a) For Y1 = · · · = Yn = ∅, and Yn+1 = B, with the help of (322) the above reduce to the An one Jack integral

(146). The proof of this statement is obvious.

(b) For n = 1, Y1 = A and Y2 = B, the above reduce to⟨
J
(β)
A (−p(1)k − v1

β
)J

(β)
B (p

(1)
k )
⟩SU(2)

u,v,β
= (−1)|A| × [v +Nβ]A′ [u+Nβ + 1− β]B

[Nβ]A′ [u+ v +Nβ + 2− 2β]B
×

×
∏

1≤i<j≤N

(A′
i −A′

j + (j − i)β)β

((j − i)β)β

∏
1≤i<j≤N

(Bi −Bj + (j − i)β)β
((j − i)β)β

(271)

×
N∏

i,j=1

(
u+ v + 2Nβ + 1− β + 1− (i+ j)β

)
β(

u+ v + 2Nβ +A′
i +Bj + 1− β + 1− (i+ j)β

)
β

,

which is consistent with the A1 two Jack integral (142) by considering

j
(β)
A (−p/β) = (−1)|A|j

(1/β)
A′ (p) . (272)
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(c) For n = 2, Y1 = R, Y2 = ∅, and Y3 = B, with the help of (322) the above reduce to⟨
J
(β)
R (−p(1)k −

v1+ + v(2)+

β
)J

(β)
B (p

(2)
k )

⟩SU(3)

+

= (−1)|R| ×
∏

1≤i<j≤N1

((j − i+ 1)β)R′
i−R′

j

((j − i)β)R′
i−R′

j

×
∏

1≤i<j≤N2

((j − i+ 1)β)Bi−Bj

((j − i)β)Bi−Bj

× 1

[v1 − v2 + u1 + 2N1β −N2β + 2(1− β)]R′

× [v1 + u1 +N1β + 2− 2β]R′

1
× 1

×
N1∏
i=1

N2∏
j=1

(
v1 + u1 + u2 +N2β +N1β + 2(1− β) + 1− (i+ j)β

)
β(

v1 + u1 + u2 +N2β +N1β + 2(1− β) + 1 +R′
i +Bj − (i+ j)β

)
β

× [u1 + u2 +N2β + 2(1− β)]B
[v1 + u1 + u2 +N2β + 3(1− β)]B

× [v1 +N1β]R′

[N1β]R′

× 1

[v2 + u2 + 2N2β −N1β + 2(1− β)]B

× [u2 +N2β + (1− β)]B
1

× 1 .

(273)

Notice the shift in jR’s argument, and the restrictions v2 = 0, v1 = v, v1+ v2 = β− 1 (this last restrictions

is only claimed by Warnaar’s A2 two Jack integral), the above is consistent with the A2 two Jack integral given

by Warnaar[20] as below⟨
J
(β)
R (p

(1)
k )J

(β)
B (p

(2)
k )
⟩SU(3)

u,v,β

=
∏

1≤i<j≤N1

((j − i+ 1)β)Ri−Rj

((j − i)β)Ri−Rj

∏
1≤i<j≤N2

((j − i+ 1)β)Bi−Bj

((j − i)β)Bi−Bj

× [u1 +N1β + 1− β]R
[v1 + u1 + 2N1β −N2β + 2− 2β]R

× [u2 +N2β + 1− β]B
[v2 + u2 + 2N2β −N1β + 2− 2β]B

×

×
N1∏
i=1

N2∏
j=1

(
u1 + u2 +N1β +N2β + 1− β + 1− (i+ j)β

)
β(

u1 + u2 +N1β +N2β +Ri +Bj + 1− β + 1− (i+ j)β
)
β

.
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(d) For Nn = 0 (so that un = vn = 0, and Yn+1 = ∅), the above reduce to⟨
J
(β)
Y1

(−p
(1)
k − v1 + · · ·+ vn

β
) . . . J

(β)
Yr

(p
(r−1)
k − p

(r)
k − vr + · · ·+ vn

β
) . . . J

(β)
Yn+1

(p
(n)
k )

⟩SU(n+1)

=

n−1∏
s=1

{
(−1)|Ys| [vs +Nsβ −Ns−1β]Y ′

s

[Nsβ +Ns−1β]Y ′
s

∏
1≤i<j≤Ns−1+Ns

((j − i+ 1)β)Y ′
si−Y ′

sj

((j − i)β)Y ′
si−Y ′

sj

}
×

∏
1≤i<j≤Nn−1

((j − i+ 1)β)Y(n)i−Y(n)j

((j − i)β)Y(n)i−Y(n)j

×
∏

1≤t<s≤n−1

{
[vt + ut + · · ·+ us−1 +Ntβ −Nt−1β + (s− t+ 1)(1− β)]Y ′

t

[vt − vs + ut + · · ·+ us−1 +Ntβ −Nt−1β −Nsβ + (s− t+ 1)(1− β)]Y ′
t

×

× [−vs + ut + · · ·+ us−1 −Nsβ +Ns−1β + (s− t)(1− β)]Ys

[vt − vs + ut + · · ·+ us−1 −Nt−1β −Nsβ +Ns−1β + (s− t+ 1)(1− β)]Ys

×

×
Nt∏
i=1

Ns−1∏
j=1

(
vt − vs + ut + · · ·+ us−1 +Ntβ −Nt−1β −Nsβ +Ns−1β + (s− t)(1− β) + 1− (i+ j)β

)
β(

vt − vs + ut + · · ·+ us−1 +Ntβ −Nt−1β −Nsβ +Ns−1β + (s− t)(1− β) + 1 + Y ′
ti + Ysj − (i+ j)β

)
β

}

×
∏

1≤t≤n−1

{
1× [ut + · · ·+ un−1 +Nn−1β + (n− s)(1− β)]Yn

[vt + ut + · · ·+ un−1 +Nn−1β −Nt−1β + (n− t+ 1)(1− β)]Yn

×

×
Nt∏
i=1

Nn−1∏
j=1

(
vt + ut + · · ·+ un−1 +Nn−1β +Ntβ −Nt−1β + (n− t)(1− β) + 1− (i+ j)β

)
β(

vt + ut + · · ·+ un−1 +Nn−1β +Ntβ −Nt−1β + (n− t)(1− β) + 1 + Y ′
si + Y(n+1)j − (i+ j)β

)
β

}
× 1 .

(274)

This is just the expression of⟨
JY1(−p

(1)
k −

v1 + · · ·+ v(n−1)

β
) . . . JYr (p

(r−1)
k − p

(r)
k −

vr + · · ·+ v(n−1)

β
) . . . JYn(p

(n−1)
k )

⟩An−1

.

In addition, we would like to attach the consistence checks which our formula fails to pass, according to some

deviations proportional to β − 1. Those are expected to be modified in our future work.

Check 1. ⟨
J1(p

(1)
k − p

(2)
k )
⟩SU(3)

+
=
⟨
J1(p

(1)
k )
⟩SU(3)

u⃗,v⃗,β
−
⟨
J1(p

(2)
k )
⟩SU(3)

u⃗,v⃗,β
(275)

Using [x]1 = x, and G1,1(0) = β.

Check 2.⟨
J1(p

(1)
k − p

(2)
k )J1(p

(2)
k )
⟩SU(3)

+
=
⟨
J1(p

(1)
k )J1(p

(2)
k )
⟩SU(3)

+
−
⟨
J2(p

(2)
k )
⟩SU(3)

+
− 2

1 + β

⟨
J11(p

(2)
k )
⟩SU(3)

+
(276)

Using [x]2 = x(x+ 1), [x]11 = x(x− β),G2,2(0) = β(β + 1) and G11,11(0) = 2β2.
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C Proof of consistency relations

Here we present the detailed computation of the second sets of consistency conditions (149) in the text.

When n = 2 (SU(3) case), making use of (168), and setting Y1 = R, Y2 = A, Y3 = B, the conjecture (147) becomes⟨
χR(−p(1)k − v)χA(p

(1)
k − p

(2)
k )χB(p

(2)
k )
⟩SU(3)

=
[−v1 −N1]R
GR,R(0)

× [N1 −N2]A
GA,A(0)

× [N2]B
GB,B(0)

× [−v − u1 −N1]R
[−v − u1 −N1 +N2]R

× [u1 +N1 −N2]A
[v + u1 +N1 −N2]A

× [u1 + u2 +N2]B
[v + u1 + u2 +N2]B

× [u2 +N2]B
[u2 −N1 +N2]B

×
N1∏
j=1

N1∏
i=1

v + u1 + 2N1 −N2 + 1− (i+ j)

v + u1 + 2N1 −N2 + 1 +R′
j +Ai − (i+ j)

×
N1∏
j=1

N2∏
i=1

v + u1 + u2 +N1 +N2 + 1− (i+ j)

v + u1 + u2 +N1 +N2 + 1 +R′
j +Bi − (i+ j)

×
N2∏
j=1

N2∏
i=1

u2 −N1 + 2N2 + 1− (i+ j)

u2 −N1 + 2N2 + 1 +A′
j +Bi − (i+ j)

,

(277)

where we have switched the name of i and j in the last three lines.

For simplicity, we consider the case with R,A,B being rectangle Young diagrams, when (148) reduce to

p1χA(pk) = χÂ(pk) + χĂ(pk) , (278)

as illustrated in Figure 5.

1 rA

1

sA

1 rA

1

sA

sA + 1

rA + 1

Figure 5: The white cells stands for A, with length rA and height sA. the left is the diagram of Â, with an extra

grey cell compared to A; the right is the diagram of Ă, with an extra black cell compared to A. Ai = sA, A
′
j = rA,

Â1 = sA + 1, and Ă′
1 = rA + 1.

Now at β = 1, there are

[x]A =

rA∏
i=1

sA∏
j=1

(x− i+ j) , GA,A(0) =

rA∏
i=1

sA∏
j=1

(rA + sA − i− j + 1) . (279)

Furthermore with the information given in Figure 5, we find several lemmas shown below

[x]Â
[x]A

= x+ sA ,
[x]Ă
[x]A

= x− rA , (280)
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GA,A(0)

GÂ,Â(0)
=

sA∏
j=1

rA + sA − j

rA + sA − j + 1
=

rA
rA + sA

,
GA,A(0)

GĂ,Ă(0)
=

rA∏
i=1

rA + sA − i

rA + sA − i+ 1
=

sA
rA + sA

, (281)

N1∏
j=1

N2∏
i=1

x+ 1 +A′
j +Bi − (i+ j)

x+ 1 + Â′
j +Bi − (i+ j)

=

N2∏
i=1

x+ 1 + 0 +Bi − i− (sA + 1)

x+ 1 + 1 +Bi − i− (sA + 1)
=

rB∏
i=1

x+ sB − sA − i

x+ sB − sA − i+ 1
×

N2∏
i=rB+1

x− sA − i

x− sA − i+ 1

=
x+ sB − sA − rB
x+ sB − sA

× x− sA −N2

x− sA − rB
,

(282)

N1∏
j=1

N2∏
i=1

x+ 1 +A′
j +Bi − (i+ j)

x+ 1 + Ă′
j +Bi − (i+ j)

=

N2∏
i=1

x+ 1 + rA +Bi − i− 1

x+ 1 + rA + 1 +Bi − i− 1
=

rB∏
i=1

x+ sB + rA − i

x+ sB + rA − i+ 1
×

N2∏
i=rB+1

x+ rA − i

x+ rA − i+ 1

=
x+ sB + rA − rB
x+ sB + rA

× x+ rA −N2

x+ rA − rB
,

(283)

N1∏
j=1

N2∏
i=1

x+ 1 +A′
j +Bi − (i+ j)

x+ 1 +A′
j + B̂i − (i+ j)

=

N1∏
j=1

x+ 1 +A′
j + sB − 1− j

x+ 1 +A′
j + sB + 1− 1− j

=

sA∏
j=1

x+ rA + sB − j

x+ rA + sB − j + 1
×

N1∏
j=sA+1

x+ sB − j

x+ sB − j + 1

=
x+ rA + sB − sA
x+ rA + sB

× x+ sB −N1

x+ sB − sA
,

(284)

and

N1∏
j=1

N2∏
i=1

x+ 1 +A′
j +Bi − (i+ j)

x+ 1 +A′
j + B̆i − (i+ j)

=

N1∏
j=1

x+ 1 +A′
j + 0− (rB + 1)− j

x+ 1 +A′
j + 1− (rB + 1)− j

=

sA∏
j=1

x+ rA − rB − j

x+ rA − rB − j + 1
×

N1∏
j=sA+1

x− rB − j

x− rB − j + 1

=
x+ rA − rB − sA
x+ rA − rB

× x− rB −N1

x− rB − sA
.

(285)
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With the help of the above lemmas, we can calculate that⟨
χR̂(−p

(1)
k − v)χA(p

(1)
k − p

(2)
k )χB(p

(2)
k )
⟩

⟨
χR(−p(1)k − v)χA(p

(1)
k − p

(2)
k )χB(p

(2)
k )
⟩

=
[−v1 −N1]R̂
[−v1 −N1]R

× GR,R(0)

GR̂,R̂(0)
×

[−v − u1 −N1]R̂
[−v − u1 −N1]R

× [−v − u1 −N1 +N2]R
[−v − u1 −N1 +N2]R̂

×
N1∏
j=1

N1∏
i=1

v + u1 + 2N1 −N2 + 1 +R′
j +Ai − (i+ j)

v + u1 + 2N1 −N2 + 1 + R̂′
j +Ai − (i+ j)

×
N1∏
j=1

N2∏
i=1

v + u1 + u2 +N1 +N2 + 1 +R′
j +Bi − (i+ j)

v + u1 + u2 +N1 +N2 + 1 + R̂′
j +Bi − (i+ j)

= (−v −N1 + sR)×
rR

rR + sR
× −v − u1 −N1 + sR

−v − u1 −N1 +N2 + sR
×

× v + u1 + 2N1 −N2 + sA − sR − rA
v + u1 + 2N1 −N2 + sA − sR

× v + u1 +N1 −N2 − sR
v + u1 + 2N1 −N2 − sR − rA

×

× v + u1 + u2 +N1 +N2 + sB − sR − rB
v + u1 + u2 +N1 +N2 + sB − sR

× v + u1 + u2 +N1 − sR
v + u1 + u2 +N1 +N2 − sR − rB

.

(286)

Likewise, we have⟨
χR̆(−p

(1)
k − v)χA(p

(1)
k − p

(2)
k )χB(p

(2)
k )
⟩

⟨
χR(−p(1)k − v)χA(p

(1)
k − p

(2)
k )χB(p

(2)
k )
⟩

= (−v −N1 − rR)×
sR

rR + sR
× −v − u1 −N1 − rR

−v − u1 −N1 +N2 − rR
×

× v + u1 + 2N1 −N2 + sA + rR − rA
v + u1 + 2N1 −N2 + sA + rR

× v + u1 +N1 −N2 + rR
v + u1 + 2N1 −N2 + rR − rA

×

× v + u1 + u2 +N1 +N2 + sB + rR − rB
v + u1 + u2 +N1 +N2 + sB + rR

× v + u1 + u2 +N1 + rR
v + u1 + u2 +N1 +N2 + rR − rB

,

(287)

⟨
χR(−p(1)k − v)χÂ(p

(1)
k − p

(2)
k )χB(p

(2)
k )
⟩

⟨
χR(−p(1)k − v)χA(p

(1)
k − p

(2)
k )χB(p

(2)
k )
⟩

= (N1 −N2 + sA)×
rA

rA + sA
× u1 +N1 −N2 + sA
v + u1 +N1 −N2 + sA

×

× v + u1 + 2N1 −N2 + rR + sA − sR
v + u1 + 2N1 −N2 + rR + sA

× v + u1 +N1 −N2 + sA
v + u1 + 2N1 −N2 + sA − sR

×

× u2 −N1 + 2N2 + sB − sA − rB
u2 −N1 + 2N2 + sB − sA

× u2 −N1 +N2 − sA
u2 −N1 + 2N2 − sA − rB

,

(288)

⟨
χR(−p(1)k − v)χĂ(p

(1)
k − p

(2)
k )χB(p

(2)
k )
⟩

⟨
χR(−p(1)k − v)χA(p

(1)
k − p

(2)
k )χB(p

(2)
k )
⟩

= (N1 −N2 − rA)×
sA

rA + sA
× u1 +N1 −N2 − rA
v + u1 +N1 −N2 − rA

×

× v + u1 + 2N1 −N2 + rR − rA − sR
v + u1 + 2N1 −N2 + rR − rA

× v + u1 +N1 −N2 − rA
v + u1 + 2N1 −N2 − rA − sR

×

× u2 −N1 + 2N2 + sB + rA − rB
u2 −N1 + 2N2 + sB + rA

× u2 −N1 +N2 + rA
u2 −N1 + 2N2 + rA − rB

,

(289)
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⟨
χR(−p(1)k − v)χA(p

(1)
k − p

(2)
k )χB̂(p

(2)
k )
⟩

⟨
χR(−p(1)k − v)χA(p

(1)
k − p

(2)
k )χB(p

(2)
k )
⟩

= (N2 + sB)×
rB

rB + sB
× u1 + u2 +N2 + sB
v + u1 + u2 +N2 + sB

× u2 +N2 + sB
u2 −N1 +N2 + sB

× v + u1 + u2 +N1 +N2 + rR + sB − sR
v + u1 + u2 +N1 +N2 + rR + sB

× v + u1 + u2 +N2 + sB
v + u1 + u2 +N1 +N2 + sB − sR

×

× u2 −N1 + 2N2 + rA + sB − sA
u2 −N1 + 2N2 + rA + sB

× u2 −N1 +N2 + sB
u2 −N1 + 2N2 + sB − sA

,

(290)

and ⟨
χR(−p(1)k − v)χA(p

(1)
k − p

(2)
k )χB̆(p

(2)
k )
⟩

⟨
χR(−p(1)k − v)χA(p

(1)
k − p

(2)
k )χB(p

(2)
k )
⟩

= (N2 − rB)×
sB

rB + sB
× u1 + u2 +N2 − rB
v + u1 + u2 +N2 − rB

× u2 +N2 − rB
u2 −N1 +N2 − rB

× v + u1 + u2 +N1 +N2 + rR − rB − sR
v + u1 + u2 +N1 +N2 + rR − rB

× v + u1 + u2 +N2 − rB
v + u1 + u2 +N1 +N2 − rB − sR

×

× u2 −N1 + 2N2 + rA − rB − sA
u2 −N1 + 2N2 + rA − rB

× u2 −N1 +N2 − rB
u2 −N1 + 2N2 − rB − sA

.

(291)

Summing v and the above six expressions together, we obtain

v +

⟨
χR̂(−p

(1)
k − v)χA(p

(1)
k − p

(2)
k )χB(p

(2)
k )
⟩

⟨
χR(−p(1)k − v)χA(p

(1)
k − p

(2)
k )χB(p

(2)
k )
⟩ +

⟨
χR̆(−p

(1)
k − v)χA(p

(1)
k − p

(2)
k )χB(p

(2)
k )
⟩

⟨
χR(−p(1)k − v)χA(p

(1)
k − p

(2)
k )χB(p

(2)
k )
⟩

+

⟨
χR(−p(1)k − v)χÂ(p

(1)
k − p

(2)
k )χB(p

(2)
k )
⟩

⟨
χR(−p(1)k − v)χA(p

(1)
k − p

(2)
k )χB(p

(2)
k )
⟩ +

⟨
χR(−p(1)k − v)χĂ(p

(1)
k − p

(2)
k )χB(p

(2)
k )
⟩

⟨
χR(−p(1)k − v)χA(p

(1)
k − p

(2)
k )χB(p

(2)
k )
⟩

+

⟨
χR(−p(1)k − v)χA(p

(1)
k − p

(2)
k )χB̂(p

(2)
k )
⟩

⟨
χR(−p(1)k − v)χA(p

(1)
k − p

(2)
k )χB(p

(2)
k )
⟩ +

⟨
χR(−p(1)k − v)χA(p

(1)
k − p

(2)
k )χB̆(p

(2)
k )
⟩

⟨
χR(−p(1)k − v)χA(p

(1)
k − p

(2)
k )χB(p

(2)
k )
⟩ = 0 .

(292)

This reproduces (149), which serves as a quite nontrivial check of our conjecture (147).

D Proof of the lemmas

Lemma 1 ∏
1≤i<j≤N

((j − i+ 1)β)Bi−Bj

((j − i)β)Bi−Bj

=
[Nβ]B
GB,B(0)

(293)

Proof: Since (x)k = Γ(x+k)
Γ(x) , we obtain

((j − i+ 1)β)Bi−Bj

((j − i)β)Bi−Bj

=
Γ((j − i+ 1)β +Bi −Bj)

Γ((j − i+ 1)β)
× Γ((j − i)β)

Γ((j − i)β +Bi −Bj)
=

(Bi −Bj + (j − i)β)β
((j − i)β)β

. (294)
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So we only need to prove the following

∏
1≤i<j≤N

(Bi −Bj + (j − i)β)β
((j − i)β)β

=

∏
(i,j)∈B

(Nβ − β(i− 1) + j − 1)

∏
(i,j)∈B

[
β(B′

j − i) + (Bi − j) + β
] =

[Nβ]B
GB,B(0)

. (295)

Suppose the length of B to be m, The left hand side can be expressed as

∏
1≤i<j≤N

(Bi −Bj + (j − i)β)β
((j − i)β)β

=
m∏
i=1

N∏
j=m+1

(Bi + (j − i)β)β
((j − i)β)β

×
m−1∏
i=1

m∏
j=i+1

(Bi −Bj + (j − i)β)β
((j − i)β)β

, (296)

where

m∏
i=1

N∏
j=m+1

(Bi + (j − i)β)β
((j − i)β)β

=
m∏
i=1

N∏
j=m+1

(1 + (j − i)β)β
((j − i)β)β

(2 + (j − i)β)β
(1 + (j − i)β)β

· · · (Bi + (j − i)β)β
(Bi − 1 + (j − i)β)β

=

m∏
i=1

N∏
j=m+1

(j − i+ 1)β

(j − i)β

1 + (j − i+ 1)β

1 + (j − i)β
· · · Bi − 1 + (j − i+ 1)β

Bi − 1 + (j − i)β

=
m∏
i=1

N∏
j=m+1

Bi∏
k=1

k − 1 + (j − i+ 1)β

k − 1 + (j − i)β
=

m∏
i=1

Bi∏
j=1

N∏
k=m+1

j − 1 + (k − i+ 1)β

j − 1 + (k − i)β
=

=
∏

(i,j)∈B

N∏
k=m+1

j − 1 + (k − i+ 1)β

j − 1 + (k − i)β
=

∏
(i,j)∈B

j − 1 + (N − i+ 1)β

j − 1 + (m− i+ 1)β
.

(297)

So what is left is to prove the following equation:

m−1∏
i=1

m∏
j=i+1

(Bi −Bj + (j − i)β)β
((j − i)β)β

=

m∏
i=1

Bi∏
j=1

(mβ − β(i− 1) + j − 1)[
β(B′

j − i) + (Bi − j) + β
] . (298)

Notice when 1 ≤ j ≤ Bm, we have B′
j = m,

Bm∏
j=1

(mβ − β(m− 1) + j − 1)[
β(m−m) + (Bm − j) + β

] = 1 . (299)

Thus the sufficient condition of (298) is

m∏
j=i+1

(Bi −Bj + (j − i)β)β
((j − i)β)β

=

Bi∏
j=1

(mβ − β(i− 1) + j − 1)[
β(B′

j − i) + (Bi − j) + β
] , (300)

which becomes our new goal.

In Figure 6, we have

B′
j =



m1 Bm2 + 1 ≤ j ≤ Bm1

m2 Bm3 + 1 ≤ j ≤ Bm2

...
...

mn 1 ≤ j ≤ Bmn
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m1 m2 m3 mk mn-1 mn

(mt-1) (mt)

i

(m)

Bm3

Bmk

Bm1

Bm2Bi

Bmn-1

Bmn

B

Figure 6:

and if mt−1 + 1 ≤ i ≤ mt, we have Bi = Bmt . Besides, We define Bmn+1 = 0.

Now the denominator on the right hand side of (300) is

R1 =

Bi∏
j=1

[
β(B′

j − i) + (Bi − j) + β
]
=

n∏
k=t

Bmk∏
j=Bmk+1

+1

[
(Bi − j) + β(mk − i+ 1)

]
, (301)

and the left hand side of (300) is

L =
m∏

j=i+1

(Bi −Bj + (j − i)β)β
((j − i)β)β

=

m∏
j=mt+1

(Bi −Bj + (j − i)β)β
((j − i)β)β

=
m∏

j=mt+1

(j − i+ 1)β

(j − i)β

1 + (j − i+ 1)β

1 + (j − i)β
· · · Bi −Bj − 1 + (j − i+ 1)β

Bi −Bj − 1 + (j − i)β

=

∏m
j=mt+1[(j − i+ 1)β] [(1 + (j − i+ 1)β)] · · · [(Bi −Bj − 1 + (j − i+ 1)β)]∏m−1
k=mt

[(k − i+ 1)β] [(1 + (k − i+ 1)β)] · · · [(Bi −Bk+1 − 1 + (k − i+ 1)β)]

=
[(m− i+ 1)β] [(1 + (m− i+ 1)β)] · · · [(Bi −Bm − 1 + (m− i+ 1)β)]

[(mt − i+ 1)β] [(1 + (mt − i+ 1)β)] · · · [(Bi −Bmt+1 − 1 + (mt − i+ 1)β)]
×

×
m−1∏

j=mt+1

[(j − i+ 1)β] [(1 + (j − i+ 1)β)] · · · [(Bi −Bj − 1 + (j − i+ 1)β)]

[(j − i+ 1)β] [(1 + (j − i+ 1)β)] · · · [(Bi −Bj+1 − 1 + (j − i+ 1)β)]
.

(302)

Name the term in the last line to be H, we see H = 1 unless Bj ̸= Bj+1, (i.e.,primary rows j = mk). And notice

that Bmk+1 = Bmk+1
, we can count only over the primary rows.
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As a result, we find

H =

n−1∏
k=t+1

1

[(Bi −Bmk+1
− 1 + (mk − i+ 1)β)]

1

[(Bi −Bmk+1
+ (mk − i+ 1)β)]

· · · 1

[(Bi −Bmk
+ (mk − i+ 1)β)]

=
n−1∏
k=t+1

Bmk∏
j=Bmk+1

+1

1[
(Bi − j) + β(mk − i+ 1)

] .
(303)

Combine the above three equations, we obtain

R1 × L =

[(m− i+ 1)β] [(1 + (m− i+ 1)β)] · · · [(Bi −Bm − 1 + (m− i+ 1)β)]

[(mt − i+ 1)β] [(1 + (mt − i+ 1)β)] · · · [(Bi −Bmt+1 − 1 + (mt − i+ 1)β)]
×

×
Bm∏
j=1

[
(Bi − j) + β(m− i+ 1)

]
×

Bmt∏
j=Bmt+1

+1

[
(Bi − j) + β(mt − i+ 1)

]

=

Bi∏
j=1

[(Bi − j) + β(m− i+ 1)] =

Bi∏
j=1

[(mβ − β(i− 1) + j − 1)] .

(304)

This is equivalent to (300), thus complete the proof of lemma 1.

Lemma 2
N∏
i=1

(x− iβ)Bi =
[
x− β

]
B

(305)

Proof: Use (144), we find

N∏
i=1

(x− iβ)Bi

=
N∏
i=1

Γ(x− iβ +Bi)

Γ(x− iβ)
=

m∏
i=1

Γ(x− iβ +Bi)

Γ(x− iβ)
=

m∏
i=1

(x− iβ)(x− iβ + 1) . . . (x− iβ +Bi − 1) =

=
m∏
i=1

Bi∏
j=1

(x− iβ + j − 1) =
∏

(i,j)∈B

(x− β − β(i− 1) + j − 1) =
[
x− β

]
B
,

(306)

where m is the length of B.

Lemma 3

[x]B = (−1)|B|GB,∅(−x+ 1− β) (307)

Proof:

[x]B =

B1∏
j=1

B′
j∏

i=1

(x− β(i− 1) + j − 1) =

B1∏
j=1

B′
j∏

i=1

(x− β(B′
j − i) + j − 1) = (−1)|B|GB,∅(−x+ 1− β) . (308)

The second equivalence is based on the fact that when j is fixed, both i− 1 and B′
j − i count from 0 to B′

j − 1.
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Lemma 4a

N2∏
i=1

N1∏
j=1

x+ β(−i+ 1)− j

x+ β(A′
j − i+ 1) +Bi − j

=
∏

(i,j)∈A

x+ β(i−N2)− j

x+ β(A′
j − i+ 1) +Bi − j

∏
(i,j)∈B

x+ β(1− i)−N1 + j − 1

x− β(B′
j − i)−Ai + j − 1

. (309)

Proof: Step 1: Proof for B = ∅.
The left hand side of (309) is,

L0 =

N2∏
i=1

N1∏
j=1

x+ β(−i+ 1)− j

x+ β(A′
j − i+ 1)− j

=

N2∏
i=1

h∏
j=1

x+ β(−i+ 1)− j

x+ β(A′
j − i+ 1)− j

=

=

N2∏
i=1

h∏
j=1

A′
j∏

k=1

x+ β(−i+ k)− j

x+ β(k − i+ 1)− j
=

h∏
j=1

A′
j∏

k=1

x+ β(−N2 + k)− j

x+ βk − j
=

∏
(i,j)∈A

x+ β(−N2 + i)− j

x+ βi− j
,

(310)

where h is the hight of A.

On the other hand, the right hand side of (309) becomes,

R0 =
∏

(i,j)∈A

x+ β(i−N2)− j

x+ β(A′
j − i+ 1)− j

=
∏

(i,j)∈A

x+ β(−N2 + i)− j

x+ βi− j
. (311)

We see L0 = R0, the equation (309) holds with B = ∅.

Step 2: Induction for other cases. Suppose (309) is valid for B. As shown in Figure 7, let us construct C which

has only one cell difference from B: Cm = Bm + 1, B′
Bm+1 = m− 1, C ′

Bm+1 = m, with m the length of B. (Notice

that the special case Bm = 0 means Cm starts from a new column, thus we can build any diagram from zero).

m

Bm

Cm

Figure 7: Construction of C. The white cells stands for B , while C has one extra cell (marked in black) than B in

the last column.

so we just need to prove that

N2∏
i=1

N1∏
j=1

x+ β(−i+ 1)− j

x+ β(A′
j − i+ 1) + Ci − j

=
∏

(i,j)∈A

x+ β(i−N2)− j

x+ β(A′
j − i+ 1) + Ci − j

∏
(i,j)∈C

x+ β(1− i)−N1 + j − 1

x− β(C ′
j − i)−Ai + j − 1

. (312)
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The left hand side of (312) is

L =

N2∏
i=1

N1∏
j=1

x+ β(−i+ 1)− j

x+ β(A′
j − i+ 1) + Ci − j

=

N2∏
i=1

N1∏
j=1

x+ β(−i+ 1)− j

x+ β(A′
j − i+ 1) +Bi − j

N1∏
j=1

x+ β(A′
j −m+ 1) +Bm − j

x+ β(A′
j −m+ 1) +Bm + 1− j

.

(313)

The first term on the right hand side of (312) is

R1 =
∏

(i,j)∈A

x+ β(i−N2)− j

x+ β(A′
j − i+ 1) + Ci − j

=
∏

(i,j)∈A

x+ β(i−N2)− j

x+ β(A′
j − i+ 1) +Bi − j

Am∏
j=1

x+ β(A′
j −m+ 1) +Bm − j

x+ β(A′
j −m+ 1) +Bm + 1− j

.

(314)

And the second term becomes

R2 =
∏

(i,j)∈C

x+ β(1− i)−N1 + j − 1

x− β(C ′
j − i)−Ai + j − 1

=
∏

(i,j)∈B

x+ β(1− i)−N1 + j − 1

x− β(C ′
j − i)−Ai + j − 1

× x+ β(1−m)−N1 +Bm
x−Am +Bm

=
x+ β(1−m)−N1 +Bm

x−Am +Bm
×

∏
(i,j)∈B

x+ β(1− i)−N1 + j − 1

x− β(B′
j − i)−Ai + j − 1

m−1∏
i=1

x− β(m− 1− i)−Ai +Bm
x− β(m− i)−Ai +Bm

.

(315)

Since we have assumed the equation (309)is correct for B, we only need to proof

N1∏
j=1

x+ β(A′
j −m+ 1) +Bm − j

x+ β(A′
j −m+ 1) +Bm + 1− j

=

Am∏
j=1

x+ β(A′
j −m+ 1) +Bm − j

x+ β(A′
j −m+ 1) +Bm + 1− j

× x+ β(1−m)−N1 +Bm
x−Am +Bm

×
m−1∏
i=1

x− β(m− 1− i)−Ai +Bm
x− β(m− i)−Ai +Bm

,

(316)

which is equivalent to

N1∏
j=Am+1

x+ β(A′
j −m+ 1) +Bm − j

x+ β(A′
j −m+ 1) +Bm + 1− j

=
x+ β(1−m)−N1 +Bm

x−Am +Bm
×
m−1∏
i=1

x− β(m− 1− i)−Ai +Bm
x− β(m− i)−Ai +Bm

.

(317)

The left hand side of the above transforms to

L′ =

N1∏
j=Am+1

x+ β(A′
j −m+ 1) +Bm − j

x+ β(A′
j −m+ 1) +Bm + 1− j

=

N1∏
j=h+1

x+ β(−m+ 1) +Bm − j

x+ β(−m+ 1) +Bm + 1− j

h∏
j=Am+1

x+ β(A′
j −m+ 1) +Bm − j

x+ β(A′
j −m+ 1) +Bm + 1− j

=
x+ β(−m+ 1) +Bm −N1

x+ β(−m+ 1) +Bm − h

h∏
j=Am+1

x+ β(A′
j −m+ 1) +Bm − j

x+ β(A′
j −m+ 1) +Bm + 1− j

.

(318)
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Here h is again the hight of A. Name the second term of the last line as L′
1,

L′
1 =

h∏
j=Am+1

x+ β(A′
j −m+ 1) +Bm − j

x+ β(A′
j −m+ 1) +Bm + 1− j

=
h∏

j=Am+1

(
x+ β(−m+ 1) +Bm − j

x+ β(−m+ 1) +Bm + 1− j

x+ β(A′
j −m+ 1) +Bm − j

x+ β(−m+ 1) +Bm − j

x+ β(−m+ 1) +Bm + 1− j

x+ β(A′
j −m+ 1) +Bm + 1− j

)

=
h∏

j=Am+1

x+ β(−m+ 1) +Bm − j

x+ β(−m+ 1) +Bm + 1− j
×

×
h∏

j=Am+1

A′
j∏

i=1

(
x+ β(i−m+ 1) +Bm − j

x+ β(i−m) +Bm − j

x+ β(i−m) +Bm + 1− j

x+ β(i−m+ 1) +Bm + 1− j

)
,

(319)

This time we call the last term of the last line as L3.

The second term of the right hand side of (317) has the form

R′
2 =

m−1∏
i=1

x− β(m− 1− i)−Ai +Bm
x− β(m− i)−Ai +Bm

=

m−1∏
i=1

(
x− β(m− 1− i) +Bm
x− β(m− i) +Bm

x− β(m− 1− i)−Ai +Bm
x− β(m− 1− i) +Bm

x− β(m− i) +Bm
x− β(m− i)−Ai +Bm

)

=

m−1∏
i=1

x− β(m− 1− i) +Bm
x− β(m− i) +Bm

×

×
m−1∏
i=1

Ai∏
j=1

(
x+ β(i−m+ 1) +Bm − j

x+ β(i−m+ 1) +Bm + 1− j

x+ β(i−m) +Bm + 1− j

x+ β(i−m) +Bm − j

)
,

(320)

mm-1

AmAm

h

Am +1

Figure 8:
∏m−1
i=1

∏Ai

j=1 is represented by the area marked by grey and black, while
∏h
j=Am+1

∏A′
j

i=1 is represented only

by the black cells. Their difference, the grey cells, stands for
∏m−1
i=1

∏Am

j=1, which leads to the following equation.
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so we find (see Figure 8)

R′
2

L3
=
m−1∏
i=1

x− β(m− 1− i) +Bm
x− β(m− i) +Bm

×

×
m−1∏
i=1

Am∏
j=1

(
x+ β(i−m+ 1) +Bm − j

x+ β(i−m+ 1) +Bm + 1− j

x+ β(i−m) +Bm + 1− j

x+ β(i−m) +Bm − j

)

=

m−1∏
i=1

x+ β(i−m+ 1) +Bm −Am
x+ β(i−m) +Bm −Am

=
x+Bm −Am

x+ β(1−m) +Bm −Am
.

(321)

Combine (318), (319) and (321), it is straightforward to find that (317) is tenable, thus complete the proof.

Lemma 5

N1∏
i=1

N2∏
j=1

(
x+ 1− (i+ j)β

)
β(

x+ 1 +Bj − (i+ j)β
)
β

=
[x−N1β + 1− β]B

[x+ 1− β]B
,

N1∏
i=1

N2∏
j=1

(
x+ 1− (i+ j)β

)
β(

x+ 1 +A′
i − (i+ j)β

)
β

=
[x−N2β + 1− β]A′

[x+ 1− β]A′

(322)

These are actually the special case of Lemma 4, but hold for arbitrary β.

Proof: For the first statement, we have

L =

N1∏
i=1

N2∏
j=1

(
x+ 1− (i+ j)β

)
β(

x+ 1 +Bj − (i+ j)β
)
β

=

N1∏
i=1

m∏
j=1

(
x+ 1− (i+ j)β

)(
x+ 2− (i+ j)β

)
. . .
(
x− (i+ j − 1)β

)(
x+ 1 +Bj − (i+ j)β

)(
x+ 2 +Bj − (i+ j)β

)
. . .
(
x+Bj − (i+ j − 1)β

)
=

N1∏
i=1

m∏
j=1

Bj∏
k=1

x+ k − (i+ j)β

x+ k − (i+ j − 1)β
=

m∏
j=1

Bj∏
k=1

x−N1β + k − jβ

x+ k − jβ
=

=
∏

(i,j)∈B

x−N1β − iβ + j

x− iβ + j
=

[x−N1β + 1− β]B
[x+ 1− β]B

= R ,

(323)

where m is the length of B.

The second statement can be proved in totally the same way.

E More details about Eq.(183)

Let xI (I = 1, · · · , N) be arbitrary complex numbers. We first observe,

N∑
I=1

N∏
J (̸=I)

1

xI − xJ
= 0 . (324)
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If we apply it to a set of variables {x1, · · · , xn, ξ}, (ξ = xN+1) one derives,

N∑
I=1

1

ξ − xI

∏
J (̸=I)

1

xI − xJ
= −

N∑
I=1

N+1∏
J (̸=I)

1

xI − xJ
=

N∏
J=1

1

ξ − xJ
=:

1

ξN

∞∑
n=0

bn(x)

ξn
. (325)

The function bn(x) defined in the last line can be written as,

bn(x) =
∑

I1≤···≤In

xI1 · · ·xIn . (326)

The first part of this equality can be expanded as,
∑∞
n=0

∑
I

(xI)
n

ξn+1

∏
J (̸=I)

1
xI−xJ

. So we derived,

N∑
I=1

(xI)
n

N∏
J( ̸=I)

1

xI − xJ
=

{
0 n = 0, · · · , N − 2

bn−N+1(x) n ≥ N − 1
. (327)

If we write
∏M
I=1(ξ + yJ ) =

∑M
n=0 ξ

nfM−n(y) with

fn(x) =
∑

I1<···<In

xI1 · · ·xIn , (328)

Then we obtain,

N∑
I=1

∏M
I=1(xI + yJ)∏N
J( ̸=I)(xI − xJ)

=
M∑
n=0

fM−n(y)
N∑
I=1

(xI)
n∏N

J (̸=I)(xI − xJ )
=

M∑
n=N−1

fM−n(y)bn−N+1(x) . (329)

It is not difficult to show that the last quantity is the coefficient of ζM−N+1 of the function
∏M

J=1(ζ+yJ )∏N
I=1(ζ−xI)

.

F Variations of Nekrasov formula

We decompose Y,W into rectangles Y = (r1, · · · , rf ; s1, · · · , sf ) and W = (t1, · · · , tf̃ ;u1, · · · , uf̃ ). Also we use the

same notation such as Y (k,±) and W (k,±). For the variation of Y (resp. W ), P2, P3 (resp. P1, P3) remain the same.

Variation of P1 (resp. P2) produces a term which cancel the N2 (resp. N1) dependent term in the variation of Q.

We also uses a notation r0 = sf+1 = t0 = uf̃+1 = 0. After some computation, we obtain,

g̃Y (k,+),W (x)

g̃Y,W (x)
=

∏f̃+1
ℓ=1 (x+ β(rk−1 − tℓ−1 + 1) + uℓ − sk − 1)∏f̃
ℓ=1(x+ β(rk−1 − tℓ + 1) + uℓ − sk − 1)

, (330)

g̃Y (k,−),W (x)

g̃Y,W (x)
=

∏f̃
ℓ=1(x+ β(rk − tℓ) + uℓ − sk)∏f̃+1

ℓ=1 (x+ β(rk − tℓ−1) + uℓ − sk)
, (331)

g̃Y,W (ℓ,+)(x)

g̃Y,W (x)
=

∏f
k=0(−x+ β(tℓ−1 − rk)− uℓ + sk+1)∏f
k=1(−x+ β(tℓ−1 − rk)− uℓ + sk)

, (332)

g̃Y,W (ℓ,−)(x)

g̃Y,W (x)
=

∏f
k=1(−x+ β(tℓ − 1− rk)− uℓ + sk + 1)∏f
k=0(−x+ β(tℓ − rk − 1)− uℓ + sk+1 + 1)

. (333)
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These expressions becomes more compact by the use of the notation Ak(Yp), Bk(Yp) in (170,171),

g̃
Y

(k,+)
p Wq

(ap − bq − µ)

g̃YpWq (ap − bq − µ)
=

∏f̃q+1
ℓ=1 (ap − bq − µ+Ak(Yp)−Aℓ(Wq)− ξ)∏f̃q

ℓ=1(ap − bq − µ+Ak(Yp)−Bℓ(Wq))
, (334)

g̃
Y

(k,−)
p Wq

(ap − bq − µ)

g̃YpWq (ap − bq − µ)
=

∏f̃q
ℓ=1(ap − bq − µ+Bk(Yp)−Bℓ(Wq))∏f̃q+1

ℓ=1 (ap − bq − µ+Bk(Yp)−Aℓ(Wq)− ξ)
, (335)

g̃
YpW

(ℓ,+)
q

(ap − bq − µ)

g̃YpWq (ap − bq − µ)
=

∏fp+1
k=1 (bq − ap + µ+Aℓ(Wq)−Ak(Yp))∏fp

k=1(bq − ap + µ+Aℓ(Wq)−Bk(Yp) + ξ)
, (336)

g̃
YpW

(ℓ,−)
q

(ap − bq − µ)

g̃YpWq (ap − bq − µ)
=

∏fp
k=1(bq − ap + µ+Bℓ(Wq)−Bk(Yp) + ξ)∏fp+1
k=1 (bq − ap + µ+Bℓ(Wq)−Ak(Yp))

. (337)

These are sufficient to calculate variation of zbf in (32).

To derive the variation of zvect for p ̸= q, we need following formula which is obtained by putting Wq → Yq,

g̃YpYq (ap − aq)g̃YqYp(aq − ap)

g̃
Y

(k,+)
p Yq

(ap − aq)g̃YqY
(k,+)
p

(aq − ap)
=

∏fq
ℓ=1(ap − aq +Ak(Yp)−Bℓ(Yq))(ap − aq +Ak(Yp)−Bℓ(Yq) + ξ)∏fq+1

ℓ=1 (ap − aq +Ak(Yp)−Aℓ(Yq)− ξ)(ap − aq +Ak(Yp)−Aℓ(Yq))
, (338)

g̃YpYq (ap − aq)g̃YqYp(aq − ap)

g̃
Y

(k,−)
p Yq

(ap − aq)g̃YqY
(k,−)
p

(aq − ap)
=

∏fq+1

ℓ=1 (ap − aq +Bk(Yp)−Aℓ(Yq)− ξ)(ap − aq +Bk(Yp)−Aℓ(Yq))∏fq
ℓ=1(ap − aq +Bk(Yp)−Bℓ(Yq))(ap − aq +Bk(Yp)−Bℓ(Yq) + ξ)

. (339)

For the case p = q, we obtain,

g̃Yp,Yp(0)

g̃
Y

(k+)
p Y

(k+)
p

(0)
=

1

β

∏fq
ℓ=1(Ak(Yp)−Bℓ(Yp))(Ak(Yp)−Bℓ(Yp) + ξ)∏fq+1

ℓ=1,(̸=k)(Ak(Yp)−Aℓ(Yp)− ξ)(Ak(Yp)−Aℓ(Yp))
, (340)

g̃Yp,Yp(0)

g̃
Y

(k−)
p Y

(k−)
p

(0)
=

1

β

∏fp+1
ℓ=1 (Bk(Yp)−Aℓ(Yp)− ξ)(Bk(Yp)−Aℓ(Yp))∏fq
ℓ=1(Bk(Yp)−Bℓ(Yp))(Bk(Yp)−Bℓ(Yp) + ξ)

. (341)

These formulae are sufficient to derive the recursion relation (1).

G Recursive construction under β = 1 limit

G.1 Free fermions

We start from the definition of fermions,

ψ̄(p)(z) =
∑
n∈Z

ψ̄(p)
n z−n−λp−1 , ψ(p)(z) =

∑
n∈Z

ψ(p)
n z−n+λp , p = 1, · · · , N, z ∈ C (342)

with anti-commutation relation, {ψ̄(p)
n , ψ

(q)
m } = δp,qδn+m,0. We note that there are extra parameters λ⃗ ∈ RN which

represent the shift of the usual mode expansion of fermion. We define the vacuum as, |λ⃗⟩ = ⊗Np=1|λ(p)⟩,

ψ̄(p)
n |λ⃗⟩ = ψ(p)

m |λ⃗⟩ = 0 (n ≥ 0,m > 0), λ⃗ = (λ(1), · · · , λ(N)) . (343)

The parameters λ⃗ represent the fermion sea levels. Similarly, the bra vacuum ⟨λ⃗| = ⊗Np=1⟨λ(p)| is defined by

⟨λ⃗|ψ̄(p)
n = ⟨λ⃗|ψ(p)

m = 0 (n < 0,m ≤ 0), λ⃗ = (λ(1), · · · , λ(N)) . (344)

In formula (226), the bra state has different sea level (say µ⃗) in general. In such cases, we need redefine fermion

mode expansion as ψ(p)(z) =
∑
n∈Z ψ

(p)
n z−n+λp =

∑
n∈Z ψ̃

(p)
n z−n+µp and define the bra vacuum in terms of ψ̃. The
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Hermitian conjugate is defined as (|λ⃗⟩)† = ⟨λ⃗| and ψ†
n = ψ̄−n. This is consistent with the shift of label by the change

of vacuum.

With this preparation, the fermion basis is,

|λ⃗, Y⃗ ⟩ = ⊗Np=1

(
ψ̄
(p)

−r̄(p)1

ψ̄
(p)

−r̄(p)2

· · · ψ̄(p)

−r̄(p)s1

|λ(p),−s1⟩
)
, |λ(p),−s1⟩ = ψ

(p)
−s1+1 · · ·ψ

(p)
−1ψ

(p)
0 |λ(p)⟩ (345)

= (−1)|Y⃗ | ⊗Np=1

(
ψ
(p)

−s̄(p)1

ψ
(p)

−s̄(p)2

· · ·ψ(p)

−s̄(p)r1

|λ(p), rp⟩
)
, |λ(p), r1⟩ = ψ̄

(p)
−r1 · · · ψ̄

(p)
−1 |λ(p)⟩ (346)

⟨λ⃗, Y⃗ | = (|Y⃗ , λ⃗⟩)† (347)

Here we represent a Young diagram Yp by the number of each row r
(p)
σ = (TYp)σ or the number of each columns

s
(p)
σ = (Yp)σ. The parameters with bar are r̄

(p)
σ = r

(p)
σ − σ + 1 and s̄

(p)
σ = s

(p)
σ − σ. These states give a natural basis

of the Hilbert space with fixed fermion number. By construction, they are orthonormal ⟨Y⃗ , a⃗|W⃗ , b⃗⟩ = δY⃗ ,W⃗ δa⃗,⃗b .

We define the vertex operator Vκ in (226) by standard bozonization technique. We write,

ψ(p)(z) =: e−ϕp(z) :, ψ̄(p)(z) =: eϕp(z) : , (348)

with

ϕp(z) = xp + a0 log z −
∑
n̸=0

a
(p)
n

n
z−n , [a(p)n , a(q)m ] = nδp,qδn+m,0, [xp, a

(q)
0 ] = δp,q . (349)

The vacuum and the fermionic basis (345) is written in a form,

|λ⃗⟩ = lim
z→0

: e−
∑

p λpϕp(z) : |⃗0⟩, |Y⃗ , λ⃗⟩ =
∏
p

χY (p)(a
(p)
−n)|λ⃗⟩ . (350)

Here χY (p)(a
(p)
−n) is Schur polynomial expressed in terms of power sum pn =

∑
i(xi)

n and each pn is replaced by

a
(p)
−n. While the second expression is not used in the following, it is this expression that appeared in the literature

[24, 25, 70].

G.2 Action on bra and ket basis for β = 1 case

In order to evaluate the action of W (znexD) (n ̸= 0) on |λ⃗, Y⃗ ⟩, a graphic representation (Maya diagram) of |λ⃗, Y⃗ ⟩ is
useful. For the simplicity of argument, we take N = 1 and remove the the index p in (345,346). We take the first

expression (345) and rewrite it as,

|λ, Y ⟩ = ψ̄−r̄1 ψ̄−r̄2 · · · ψ̄−r̄s ψ̄sψ̄s+1 · · · ψ̄L| − L, λ⟩ . (351)

and take L→ ∞ limit. From this representation, we associate a Young diagram Y with a semi-inifinite sequence of

integers SY = {r̄1, r̄2, · · · , r̄s,−s,−s − 1, · · · }. We prepare an infinite strip of boxes with integer label and fill the

boxes with the integer in SY (Figure 9 left). It represents the occupation of fermion in each level. To understand the

correspondence with the Young diagram Y , we associate each black box with vertical up arrow and white box with

horizontal right arrow. We connect these arrows for each box from the left on SY . Then the Young diagram shows

up in the up/left corner (Figure 9 right). The generator W(znexD) =
∑
ℓ e
x(ℓ+λ) : ψ̄ℓ+nψ−ℓ : flips one black box at

ℓ to white and one white box at −ℓ − n to black (if wrong color was filled at each place, it vanishes). It amounts

to flipping vertical arrow by horizontal one and vice versa. By analyzing the effect of such flipping, the action of

W(znexD) on |λ, Y ⟩ can be summarized as,

• For n > 0 it erases a hook of length n and multiply (−1)v(h)−1ex(ℓ+λ) where v(h) is the height of the hook.

(Figure 10 up) If there are some hooks of length n, we sum over all such possibilities.
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Figure 9: Young diagram and fermion state

Figure 10: Action of W on |Y ⟩

• For n < 0 it adds a strip of length |n| and multiply (−1)v(h)−1ex(ℓ+λ) where v(h) is the height of the strip.

(Figure 10 down) As in n > 0 case, if there are some possibility, we need to add them.

H Derivation of commutation relations of SHc algebra

First we notice that

[D−1,k, D1,l]|⃗b, W⃗ > = (−1)k+l
N∑
q=1


f̃+1∑
t=1

(bq +At(Wq))
k+l(Λ(t,+)

q (⃗b, W⃗ ))2

−
f̃∑
t=1

(bq +Bt(Wq))
k+l(Λ(t,−)

q (⃗b, W⃗ ))2

 |⃗b, W⃗ > . (352)

We have to be careful that the off-diagonal terms, where the two generator modifies different Young diagrams or two

different box in the same Young diagram, cancels with each other. This can be checked as below.

H.1 Cancellation of off-diagonal terms

First, for a Yong diagram with one box removed W (k,−) (or added), we find the relation between At(W
(k,−)),

Bt(W
(k,−)) and their counterparts of the orignal yong diagram W .

At(W
(k,−)) =


At(W ) 1 ≤ t ≤ k

Bk(W ) t = k + 1

At−1(W ) k + 2 ≤ t ≤ f̃ + 2

, Bt(W
(k,−)) =


Bt(W ) 1 ≤ t ≤ k − 1

Bk(W )− β t = k

Bk(W ) + 1 t = k + 1

Bt−1(W ) k + 2 ≤ t ≤ f̃ + 1

,
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As(W
(k,+)) =


As(W ) 1 ≤ s ≤ k − 1

Ak(W )− 1 s = k

Ak(W ) + β s = k + 1

As−1(W ) k + 2 ≤ s ≤ f̃ + 2

, Bs(W
(k,+)) =


Bs(W ) 1 ≤ s ≤ k − 1

Ak(W ) s = k

Bs−1(W ) k + 1 ≤ t ≤ f̃ + 1

.

With the above relations, we obtain that (For simplicity, in the following we do not write bq explicitly, which

always comes together with At(Wq) and Bt(Wq). This choice do not effect the proof at all),

D−1,kD1,l |⃗b, W⃗ > =

N∑
q=1

f̃
(u,+),γ
q∑
t=1

(Bt(W⃗
(u,+),γ
q ))kΛ(t,−)

q (W⃗ (u,+),γ)

N∑
γ=1

f̃γ+1∑
u=1

(Au(Wγ))
lΛ(u,+)

γ (W⃗ )|⃗b, W⃗ (u,+),γ

(t,−),q > , (353)

D1,lD−1,k |⃗b, W⃗ > =

N∑
γ=1

f̃
(t,−),q
γ +1∑

u=1

(Au(W⃗
(t,−),q
γ ))lΛ(u,+)

γ (W⃗ (t,−),q)

N∑
q=1

f̃q∑
t=1

(Bt(Wk))
kΛ(t,−)

q (W⃗ )|⃗b, W⃗ (t,−),q

(u,+),γ > . (354)

For q = γ, t ≥ u,

(Aµ(W⃗
(t,−),q
γ ))l

−
N∏
δ=1

f̃
(t,−),q
δ∏
v=1

Au(W⃗
(t,−),q
γ )−Bv(W⃗

(t,−),q
δ + ξ

Au(W⃗
(t,−),q
γ )−Bv(W⃗

(t,−),q
δ )

∏′f̃(t,−),q
δ +1

δ=1

Au(W⃗
(t,−),q
γ )−Av(W⃗

(t,−),q
δ − ξ

Au(W⃗
(t,−),q
γ )−Av(W⃗

(t,−),q
δ

1/2

= common terms× Au(Wγ)− (Bt(Wγ)− 1)

Au(Wγ)− (Bt(Wγ)− β)
× Au(Wγ)− (Bt(Wγ) + β)

Au(Wγ)− (Bt(Wγ) + 1)
× Au(Wγ)− (Bt(Wγ) + ξ)

Au(Wγ)−Bt(Wγ)
,

(355)

(Bt+1(W⃗
(u,+),γ
q ))k

−
N∏

p=1

f̃
(u,+),γ
p +1∏

s=1

Bt+1(W⃗
(u,+),γ
q )−As(W⃗

(u,+),γ
p )− ξ

Bt+1(W⃗
(u,+),γ
q )−As(W⃗

(u,+),γ
p )

∏′f̃(u,+),γ
p

s=1

Bt+1(W⃗
(u,+),γ
q )−Bs(W⃗

(u,+),γ
p ) + ξ

Bt+1(W⃗
(u,+),γ
q )−Bs(W⃗

(u,+),γ
p )




1/2

= common terms× Bt(Wq)− (Au(Wq)− β)

Bt(Wq)− (Au(Wq)− 1)
× Bt(Wq)− (Au(Wq) + 1)

Bt(Wq)− (Au(Wq) + β)
× Bt(Wq)− (Au(Wq)− ξ)

Bt(Wq)−Au(Wq)
.

(356)

Thus we find that
∑(t,−),γ

(γ),u cancels with
∑(u,+),γ

(γ),t+1. For q = γ, t ≤ u − 2, we have the same result. For q = γ,

t = u− 1, we have the direct sum. For q ̸= γ, using a similar method, we also find that
∑
q

∑
γ cancels with

∑
γ

∑
q.

In total we show that all the off-diagonal terms are gone.

H.2 Evaluation of diagonal terms

Since the right hand side of (352) only depends on k + l, we have [D−1,k, D1,l] = [D−1,0, D1,l+k]. We need to define

the action of D0,l. For this purpose, we consider

X(s) =< b⃗, W⃗ |
∑
l≥0

[D−1,0, D1,l]s
l |⃗b, W⃗ > . (357)
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Then from the definition of algebra, we obtain

sξX(s) =

N∑
q=1


f̃+1∑
t=1

sξ

1 + s(bq +At(Wq))
(Λ(t,+)

q (⃗b, W⃗ ))2 −
f̃∑

t=1

sξ

1 + s(bq +Bt(Wq))
(Λ(t,−)

q (⃗b, W⃗ ))2


=

N∑
q=1

{ f̃+1∑
t=1

sξ

1 + s(bq +At(Wq))

N∏
p=1

{ f̃∏
k=1

bq − bp +At(Wq)−Bk(Wp) + ξ

bq − bp +At(Wq)−Bk(Wp)

f̃+1∏
k ̸=t

bq − bp +At(Wq)−Ak(Wp)− ξ

bq − bp +At(Wq)−Ak(Wp)

}

−
f̃∑

t=1

sξ

1 + s(bq +Bt(Wq))

N∏
p=1

{ f̃∏
(p),k ̸=(q),t

bq − bp +Bt(Wq)−Bk(Wp) + ξ

bq − bp +Bt(Wq)−Bk(Wp)

f̃+1∏
k=1

bq − bp +Bt(Wq)−Ak(Wp)− ξ

bq − bp +Bt(Wq)−Ak(Wp)

}}

= −1 +

N∏
q=1

f̃∏
t=1

1 + s(bq +Bt(Wq)− ξ)

1 + s(bq +Bt(Wq))

f̃+1∏
t=1

1 + s(bq +At(Wq) + ξ)

1 + s(bq +At(Wq))
.

(358)

The last equality holds because the both sides (i) are degree 0 rational function in s, (ii) have the same simple poles

and residues at s = −1/(bq +Bt(Wq)),−1/(bq +At(Wq)) and (iii) vanish at s = 0. We can rewrite (358) as

1 + sξX(s) =

N∏
q=1

f̃∏
t=1

1 + s(bq +Bt(Wq)− ξ)

1 + s(bq +Bt(Wq))

f̃+1∏
t=1

1 + s(bq +At(Wq) + ξ)

1 + s(bq +At(Wq))

= exp


N∑

q=1

∞∑
l=1

(−1)lsl

l
(

f̃∑
t=1

(pl(bq +Bt(Wq))− pl(bq +Bt(Wq)− ξ) +

˜f+1∑
t=1

(pl(bq +At(Wq))− pl(bq +At(Wq) + ξ))

 ,

(359)

where pl(xI) =
∑
I x

l.

We define Hl(Wq) :=
∑f̃
t=1(pl(bq+Bt(Wq))−pl(bq+Bt(Wq)−ξ)+

∑f̃+1
t=1 (pl(bq+At(Wq))−pl(bq+At(Wq)+ξ)).

Then we use a formula,

Hl(Wq) = (bq − ξ)l − (bq)
l −

∑
µ∈Wq

σl(cq(µ)) , (360)

where σl(x) = (x + 1)l − (x − 1)l + (x − β)l − (x + β)l + (x + β − 1)l − (x + 1 − β)l and cq(µ) = bq + βi − j for

µ = (i, j). It was proved in appendix B of [15]. Thus we can proceed as

1 + ξsX(s) = exp


N∑
q=1

∞∑
l=1

(−1)l
sl

l
((bq − ξ)l − (bq)

l)−
N∑
q=1

∑
µ∈Wq

∞∑
l=1

(−1)l
sl

l
σl((cq(µ))


= exp

{
N∑
q=1

∞∑
l=0

(−1)l+1(bq − ξ)lπl(s)

}
exp


N∑
q=1

∞∑
l=0

(
∑
µ∈Wq

(−1)lcq(µ)
l)ωl(s)

 . (361)

In the last equality of (361), we use the following formula

∞∑
l=1

(−1)l+1 s
l

l
{(a+ b)l − al} =

∞∑
l=0

(−1)l+1alslGl(1 + bs) , (362)

which can be proved by some computation. Comparing (361) with (188), the algebra (186) is proved once we set

(202, 206). The proof of the algebra for the action on the bra state is similar.

I Derivation of Virasoro algebra from SHc

Here we give a sample computation to give the Virasoro algebra from the definition of SHc (184–187) and (213). We

focus on the relation

[L2, L−2] = 4L0 +
c

2
(363)
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since it gives the simplest commutator to give the Virasoro central charge.

The definition of generators gives

[L2, L−2] =
1

4β2

{
[D−2,1, D2,1]− c0ξ[D−2,1, D2,0]− c0ξ[D−2,0, D2,1] + (c0ξ)

2[D−2,0, D2,0]
}
.

We express degree 2 generator as the commutator of degree 1 generator

D2,0 = [D1,1, D1,0] , D−2,0 = [D−1,0, D−1,1] ,

D2,1 = [D1,2, D1,0] , D−2,1 = [D−1,0, D−1,2] . (364)

The commutation relation between degree two operators is reduced to those for degree one operator. After some

computation we arrive at

[D−2,1, D2,1] = 8βE2 + 6c0βξE1 − c20βξ
2 + c30βξ

2 − 2c0c1βξ + 2c0β − 2c0βξ + 2c0βξ
2 , (365)

[D−2,0, D2,1] = −4c1β + 4c20βξ − 2c0βξ , (366)

[D−2,1, D2,0] = −4c1β + 4c20βξ − 2c0βξ , (367)

[D−2,0, D2,0] = 2c0β . (368)

It gives

[L2, L−2] =
4

2β
E2 +

1

2β

{
−c30ξ2 + c0 − c0ξ + c0ξ

2
}
. (369)

After identifying L0 = 1
2βE2, we can identify the Virasoro central charge (217).

J Calculation of the U(1) and Virasoro constraints

Calculation for U(1) The formulas offered in appendix F enable us to calculate the following,

⟨⃗a+ νe⃗, Y⃗ |J1V (1)|⃗b+ (ξ + ν + µ)e⃗, W⃗ ⟩
⟨⃗a+ νe⃗, Y⃗ |V (1)|⃗b+ (ξ + ν + µ)e⃗, W⃗ ⟩

= (−
√
β)−1

N∑
p=1

fp+1∑
k=1

⟨⃗a+ νe⃗, Y⃗ (k,+),p|V (1)|⃗b+ (ξ + ν + µ)e⃗, W⃗ ⟩
⟨⃗a+ νe⃗, Y⃗ |V (1)|⃗b+ (ξ + ν + µ)e⃗, W⃗ ⟩

Λ(k,+)
p (⃗a+ νe⃗, Y⃗ )

= (−
√
β)−1

N∑
p=1

fp+1∑
k=1

{ M∏
q=1

g̃
Y

(k,+)
p Wq

(ap − bq − µ)

g̃YpWq (ap − bq − µ)
×
( N∏
q ̸=p

g̃YpYq (ap − aq)g̃YqYp(aq − ap)

g̃
Y

(k,+)
p Yq

(ap − aq)g̃YqY
(k,+)
p

(aq − ap)

)1/2

×
(

g̃Y,Y (0)

g̃Y (k+)Y (k+)

)1/2

× Λ(k,+)
p (⃗a+ νe⃗, Y⃗ )

}

= β−1
N∑
p=1

fp+1∑
k=1

{∏N
q=1

∏f̃q+1
ℓ=1 (ap − bq − µ+Ak(Yp)−Aℓ(Wq)− ξ)∏N

q=1

∏f̃q
ℓ=1(ap − bq − µ+Ak(Yp)−Bℓ(Wq))

×
∏N
q=1

∏f̃q
ℓ=1(ap − aq +Ak(Yp)−Bℓ(Yq) + ξ)∏N

q=1

∏′fq+1
ℓ=1 (ap − aq +Ak(Yp)−Aℓ(Yq)

}
.

(370)

In the first equivalence we use the action of J−1 on the basis, and in the second equivalence we use the definition of

Nekrasov partition function.While in the third equivalence, the total plus sign comes from the sign choice inside the

square root, in accordance with β = 1 case.

Similarly, the variation on the ket side is evaluated as below,

⟨⃗a+ νe⃗, Y⃗ |V (1)J1 |⃗b+ (ξ + ν + µ)e⃗, W⃗ ⟩
⟨⃗a+ νe⃗, Y⃗ |V (1)|⃗b+ (ξ + ν + µ)e⃗, W⃗ ⟩

= −β−1
N∑
q=1

f̃p∑
ℓ=1

{ N∏
p=1

∏fp
k=1(bq + µ− ap +Bℓ(Wq)−Bk(Yp) + ξ)∏fp+1
k=1 (bq + µ− ap +Bℓ(Wq)−Ak(Yp))

×
N∏
p=1

∏f̃q+1
k=1 (bq − bp +Bℓ(Wq)−Ak(Wp)− ξ)∏′fq
k=1(bq − bp +Bℓ(Wq)−Bk(Wp))

}
.

(371)
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Then, by setting,

ap + ν +Ak(Yp), bq + ν + µ+Bℓ(Wq) ≡ xI , ap + ν +Bk(Yp)− ξ, bq + ν + µ+Aℓ(Wq) + ξ ≡ −yJ , (372)

we find that the difference of the above two equations satisfy the formula(182) we mentioned in section 3, thus

⟨⃗a+ νe⃗, Y⃗ |J1V (1)|⃗b+ (ξ + ν + µ)e⃗, W⃗ ⟩ − ⟨⃗a+ νe⃗, Y⃗ |V (1)J1 |⃗b+ (ξ + ν + µ)e⃗, W⃗ ⟩
⟨⃗a+ νe⃗, Y⃗ |V (1)|⃗b+ (ξ + ν + µ)e⃗, W⃗ ⟩

= β−1
N∑
I=1

∏N
J=1(xI − yJ )∏′
J (xI − xJ)

= β−1
N∑
I=1

(xI + yI) = β−1
N∑
p=1

(ap − bp − µ− ξ) .

(373)

The J−1 and L±1 cases can be illustrated in parallel.

Calculation for L1 The quantity to be evaluated is,

N∑
I=1

xI

∏N
J=1(xI + yJ )∏N
J ̸=I(xI − xJ)

=
N∑
I<J

yIyJ +
N∑
I,J

yIxJ +
N∑
I<J

xIxJ +
N∑
I

x2I . (374)

We rewrite it explicitly (here t, u are the conterparts of r s in the Young diagram W ),

N∑
I,J

yIxJ =
N∑
p

N∑
q

fp∑
k

fq+1∑
l

−(ap − ξ + ν − s
(p)
k + βr

(p)
k )(aq − ξ + ν − s

(q)
l + βr

(q)
l−1)

+

N∑
p

N∑
q

fp∑
k

f̄q∑
l

−(ap − ξ + ν − s
(p)
k + βr

(p)
k )(bq + ν + µ− u

(q)
l + βt

(q)
l )

+
N∑
p

N∑
q

f̄p+1∑
k

fq+1∑
l

−(bp + ν + µ− u
(p)
k + βt

(p)
k−1)(aq − ξ + ν − s

(q)
l + βr

(q)
l−1)

+
N∑
p

N∑
q

f̄p+1∑
k

f̄q∑
l

−(bp + ν + µ− u
(p)
k + βt

(p)
k−1)(bq + ν + µ− u

(q)
l + βt

(q)
l ) ,

(375)

N∑
I<J

xIxJ =
N∑
p<q

fp+1∑
k

fq+1∑
l

(ap − ξ + ν − s
(p)
k + βr

(p)
k−1)(aq − ξ + ν − s

(q)
l + βr

(q)
l−1)

+

N∑
p

fp+1∑
k<l

(ap − ξ + ν − s
(p)
k + βr

(p)
k−1)(ap − ξ + ν − s

(p)
l + βr

(p)
l−1)

+

N∑
p

N∑
q

fp+1∑
k

f̄q∑
l

(ap − ξ + ν − s
(p)
k + βr

(p)
k−1)(bq + ν + µ− u

(q)
l + βt

(q)
l )

+
N∑
p<q

f̄p∑
k

f̄q∑
l

(bp + ν + µ− u
(p)
k + βt

(p)
k )(bq + ν + µ− u

(q)
l + βt

(q)
l )

+
N∑
p

f̄p∑
k<l

(bp + ν + µ− u
(p)
k + βt

(p)
k )(bp + ν + µ− u

(p)
l + βt

(p)
l ) ,

(376)
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N∑
I<J

yIyJ =
N∑
p<q

fp∑
k

fq∑
l

(ap − ξ + ν − s
(p)
k + βr

(p)
k )(aq − ξ + ν − s

(q)
l + βr

(q)
l )

+
N∑
p

fp∑
k<l

(ap − ξ + ν − s
(p)
k + βr

(p)
k )(ap − ξ + ν − s

(p)
l + βr

(p)
l )

+
N∑
p

N∑
q

fp∑
k

f̄q+1∑
l

(ap − ξ + ν − s
(p)
k + βr

(p)
k )(bq + ν + µ− u

(q)
l + βt

(q)
l−1)

+

N∑
p<q

f̄p+1∑
k

f̄q+1∑
l

(bp + ν + µ− u
(p)
k + βt

(p)
k−1)(bq + ν + µ− u

(q)
l + βt

(q)
l−1)

+

N∑
p

f̄p+1∑
k<l

(bp + ν + µ− u
(p)
k + βt

(p)
k−1)(bp + ν + µ− u

(p)
l + βt

(p)
l−1) ,

(377)

N∑
I

x2I =
N∑
p

fp+1∑
k

(ap − ξ + ν − s
(p)
k + βr

(p)
k−1)

2 +
N∑
p

f̄p∑
k

(bp + ν + µ− u
(p)
k + βt

(p)
k )2 . (378)

Sum the above four equations together, we find most of the cross terms cancel with each other, and the remaining is

N∑
p

(ap − ξ + ν)2 +

N∑
p<q

(ap − ξ + ν)(aq − ξ + ν)−
N∑
p,q

(ap − ξ + ν)(bq + ν + µ)

+
N∑
p<q

(bp + ν + µ)(bq + ν + µ) +
N∑
p

fp∑
k

s
(p)
k (βr

(p)
k − βr

(p)
k−1)−

N∑
p

f̄p∑
k

u
(p)
k (βt

(p)
k − βt

(p)
k−1)

=
1

2

N∑
p=1

(ap + ν − ξ)2 − 1

2

N∑
p=1

(bp + ν + µ)2 +
1

2

( N∑
p=1

(ap − ξ − bp − µ)
)2

+ β|Y⃗ | − β|W⃗ | ,

(379)
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