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Abstract

Gauge theories are used to describe interactions between the elementary particles of the
standard model and beyond standard model theories. In the regime where interactions are
strong perturbative methods cannot be used. Thus the non-perturbative part is generally
studied by using lattice simulations and effective field theories. However a new method for
exploring the non-perturbative part is the AdS/CFT duality that relates a specific string
theory and a conformal field theory. In this thesis, the AdS/CFT duality is generalized to
non-conformal gauge theories and its implications are studied. In particular, a holographic
model for studying various large- N gauge theories is introduced.
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Chapter 1

Introduction

The interactions of the standard model of particle physics can be described by gauge theories.
The gauge group of the standard model is SU(3) x SU(2) x U(1) and the interactions between
elementary particles like electrons and quarks are mediated by gauge bosons. The gauge
bosons transform under the representations of the standard model gauge group.

The SU(3) part describes interactions between quarks and the gauge bosons (the gluons).
It is known as quantum chromodynamics (QCD) discovered in 1972. Since SU(3) is a non-
Abelian gauge group, the gauge bosons carry (color-)charge similar to the color charged
quarks. This non-Abelian structure implies that, even without quarks, the dynamics of pure
gauge theory is very interesting and challenging. Further, QCD is strongly coupled in the
infrared (IR) and, thus, the standard method for solving gauge field theories, i.e., perturbation
theory cannot be used to study it at low energies. Due to the non-Abelian structure and
strong coupling, QCD is hard to work with and still, after more than forty years, many
phenomena lack detailed explanation. For example. although it was first introduced to
explain some of the properties of low energy excitations, which are the hadrons seen by
particle detectors, explaining these from first principles is demanding. Luckily, the flow of
the QCD coupling makes the coupling weaker in the UV and, at very large energies, QCD
behaves as a free theory, i.e., it is asymptotically free. Although particle detectors can only see
the low energy excitations of QCD, asymptotic freedom makes it possible to use perturbation
theory at the point where energy density is very high. This condition is satisfied right after
the collisions in hadron colliders (RHIC and LHC) and the outcome of the experiments is
affected by the fundamental interactions between the high energy excitations i.e. quarks and
gluons. This is how one makes predictions and verifies that the hadrons and mesons are
made up by the quarks and the gluons whose dynamics are covered by QCD.

The problems with QCD can be more or less generalized to other non-Abelian gauge
theories, for example, to technicolor theories which may play a role beyond the standard
model physics. Thus, studying the non-perturbative part of QCD, or more generally Yang-
Mills theory with gauge group SU(N), is crucial for understanding the standard and beyond
the standard model physics. The non-perturbative part of QCD (or SU(NN)) can be studied
by different kinds of methods. One of the most powerful of these is the lattice QCD [1]. In
lattice QCD, spacetime is discretized and one uses computers to calculate various quantities
in the regime where perturbative calculations are not valid. Another way to attack strongly
coupled QCD is to use different types of effective theories. One example of such a theory is
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chiral perturbation theory |2|, where the dominant degrees of freedom of QCD at low energies
are small-mass (Goldstone bosons. In addition to these traditional methods, there is also quite
a new way to study non-perturbative QCD: AdS/CFT duality [3|. This connection between
gauge theory and string theory in Anti de Sitter (AdS) spacetime is the main subject of this
thesis and is made more precise in the following sections.

In the late sixties, string theory originated from attempts to understand the strong in-
teraction [4, 5|. By using string theory, some properties of hadrons can be explained easily
compared to QCD. For example, the linear dependence of the mass (squared) as a function
of their spin, i.e., the Regge trajectories [6], is easily explained by string theory. However,
the quantization of string theory leads to particles that have not been seen in experiments,
namely massless spin-2 particles. The massless spin-2 particle predicted by string theory was
recognized as a graviton i.e. the quantum of gravity interaction and this shifted string theory
from being a theory for strong interactions, to be a “theory of everything” which unifies all
interactions including gauge theories and Einsteins gravity.

After the seventies, QCD and string theory seemed to separate into two different frame-
works which did not have that much common. Then, in 1997, Juan Maldacena found sur-
prising and a far reaching connection between gauge and string theory [3|. He conjectured
a duality between the supersymmetric N' = 4 SU(N) gauge theory (M =4 SYM) in 3 + 1
dimensions and type IIB superstring theory on AdSs; x S°. This conjecture is known as
AdS/CFT duality, where CFT (conformal field theory) is the supersymmetric A" = 4 SU(N)
gauge theory which is conformally invariant, i.e., has a vanishing beta function. The dual-
ity was made more precis by Witten |7] and Klebanov, Gubser, Polyakov [8]. Further, this
conjecture has been confirmed by highly non-trivial tests and so far no exception has been
found. This remarkable duality between gauge theory and the string theory in a certain
background is non-trivial and can also be thought as a first realization of the holographic
principle introduced by 't Hooft [9] and Susskind [10] in the early nineties. The holographic
principle is thought to be a property of quantum gravity and it states that the degrees of
freedom of gravitating system bound to some D + 1 volume can be rewritten as a theory
acting on the D dimensional boundary of the volume. One of its implications is that the
information on the black hole should somehow be encoded into its event horizon. Thus, it
gives an explanation for the black hole entropy formula found by Bekenstein and Hawking.

Assuming that the AdS/CFT conjecture is true and exact, it can be viewed as a non-
perturbative definition of the quantum gravity (the string theory), since the non-perturbative
quantum mechanical definition of the N' =4 SYM is known and can be written as a path
integral.

It is interesting to study different limits of the duality. The N'= 4 SU(N) gauge theory
has two parameters; the rank of the gauge group N (or the number of the degrees of freedom)
and the 't Hooft coupling A = ¢g%,;N [11]. The duality relates the rank of the gauge group
to quantum effects in string theory. In more detail, in the limit N — oo the quantum
effects of string theory are suppressed and, thus, it reduces to its classical limit. The strong
't Hooft coupling limit (A — oo) of the gauge theory corresponds to string theory with
the fundamental string length taken to zero (lsying — 0). Hence in this limit string theory
reduces to (super)gravity. Altogether, taking the double limit N — oo and A — oo in
the gauge theory corresponds to the classical (super)gravity approximation of string theory.
This limit in the gauge theory is non-perturbative and is usually thought to be very hard to
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solve as explained above. Now, using the duality, the non-perturbative regime is related to
classical (super)gravity. Studies related to conjecture have been very active ever since it was
introduced and the conjecture is further explored in this thesis.

There are some key differences between N/ = 4 supersymmetric SU(N) gauge theory
and non-supersymmetric gauge theories, like SU(3) QCD or Technicolor theories [12, 13, 14].
First, the N'=4 SYM is a conformal field theory implying that its beta functions vanishes.
The conformality of the theory is a huge simplification, since some gauge invariant operators
are independent of the energy scale at which they are studied, which is in strong contradiction
compared to QCD. One important example of phenomena seen in nature, is color confinement,
which implies that the low energy excitations of QCD are not massless quarks and gluons,
but massive hadrons with dynamically generated mass scale Aqcp. This type of dynamically
generated scale cannot be seen in conformally invariant N' = 4 SYM and, thus, the low
energy excitations of the theory stay massless. Secondly, N'= 4 SYM contains quarks which
are superpartners of the gluon fields and, so, they transform as the adjoint representation
of SU(N). This is different from what is seen in nature, where the quarks transform under
the fundamental representation of SU(/N). In technicolor theories, the technifermions may
transform as adjoints of the gauge group and, thus, can be more close to N' =4 SYM than
QCD [15]. A third problem is related to the regime, where the conjecture and the relations
between the theories are well known. This is the classical string theory approximation, which
is valid when the number of gluonic fields is large (or N — oo). In nature, the rank of the
QCD gauge group is three (N = 3) which it is not quite infinite and the classical supergravity
approximation may not be valid for theories seen in nature. Luckily, there are studies that
point in the direction that, at least some of the properties of the gauge theory, are insensitive
to the rank of the gauge group when it is greater or equal to three (N > 3) [16].

After all of these differences between N' = 4 SYM and non-supersymmetric gauge theories,
one would thing that using the AdS/CFT duality to solve, for example the mass spectrum of
QCD mesons, would not be justified (there are not even QCD type massive mesons in SYM).
Fortunately, there still is hope, since slight modifications of AdS geometry will correspond
to different types of gauge theories that are not that far from those seen in nature. One
obvious thing to do is to study a gauge theory at finite temperature [7]. Finite temperature
breaks supersymmetry and what is left is quite close to non-supersymmetric SU(N) Yang-
Mills theory. Within the limit in which string theory reduces to classical gravity, adding finite
temperature to field theory corresponds to adding a black hole with Hawking temperature
Ty in to the AdS background. Thus, one has connection between a strongly coupled finite
temperature SU(N) gauge theory and a black hole in an asymptotically AdS space. Further,
this regime of the field theory is close to what is studied using hadron colliders, which can
produce a phase of the matter called quark-gluon plasma [17|. Interestingly, by using the
duality, one may get some hint about phenomena taking place in the collider by studying
classical black holes in asymptotically AdS spacetime.

Another way to get dual models for more realistic field theories is to add something
similar to the QCD scale, Aqcp, to the gravity setup. There are many different ways to do
this, but one of the simplest ways is to add a cut-off to AdS space (see [18]) that is dual to
gauge theory with a mass scale and, thus, is closer to SU(XN) QCD. These kinds of models
are called bottom-up approaches and generally go under the name of an AdS/QCD duality
(or a gauge/gravity duality). A review of these methods can be found in [19] and references
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therein. There are also so called top-down models, which lie on a slightly more solid ground
than bottom-up approaches. In the top-down models [20, 21], the starting point is usually
some known connection between a gauge and a string theory in higher dimensional spacetime.
Further, the compactification of string theory to some compact manifold gives rise to a mass
scale and leads to broken low energy supersymmetry. Thus one has exact duality between
four dimensional QCD type of theory and the gravity setup.

The model used in this thesis is called Improved Holographic QCD (THQCD) [22, 23, 24],
which can be thought to lie somewhere between the top-down and the bottom-up models. The
starting point of the model is a five dimensional (non-critical) string theory, where the running
of the QCD ’t Hooft coupling is taken care of by a dilaton field. This model dynamically
generates a scale dual to the QCD mass scale Aqcp and also the phase transition of QCD
has its counterpart. The bottom-up ingredients are connected to a choice of the dilaton
potential, so that the phenomena seen in nature or in lattice QCD can also be seen using this
dual picture. The problems of the model include the hostile environment of the non-critical
string theories which usually generate curvatures close to inverse string length. This leads to
a conclusion that the use of a two derivative action for gravity may not be justified. Still, this
method can hopefully be used to give at least a qualitative picture of gauge theory phenomena
and to calculate quantities that are very hard to find by using traditional methods of QCD.

1.1 Organization of the thesis

The thesis consists of four articles and of an introductory part, divided in four Chapters.
The introductory part is intended as an overview of some of the essential tools for studying
strongly interacting field theories using dualities between gauge theories and string theory.

In the second Chapter of the introductory part, the Maldacena conjecture is introduced
and its use to study field theory phenomena in the language of classical gravity is discussed.
Further, some extensions and modifications of the original duality are introduced.

In the third Chapter, the model used in four articles is introduced and some of the
results of [22, 23, 24] are reviewed. More precisely, the vacuum and the black hole solutions
are studied and criteria for a confined/deconfined phase transition and for a mass gap are
introduced. At the end of the Chapter, some comparison with lattice QCD data is also made.
Finally, Chapter four is the summary.

The four articles provide the core part of this thesis. In the first paper some modifications
of the IHQCD were presented, and analytic calculation of thermodynamics quantities were
done. In the second article, a gravity dual to field theory with a fixed point in the infrared
was studied and the phase structure of the theory was examined. In the third paper, a
generalization to IHQCD was presented and it was used to study quasi-conformal theories.
In the last article, the mass spectrum of the quasi-conformal theories was explored.



Chapter 2

Gauge/Gravity duality

The AdS/CFT duality was conjectured by Maldacena in 1997 [3] and has ever since been
one of the most studied branches of string theory. This duality between a gauge and gravity
theory is highly non-trivial and can be thought as a first realization of the holographic
principle introduced by ’t Hooft and Susskind in the early nineties [9, 10]. The holographic
principle is conjectured to be a general property of quantum gravity and it states that the
degrees of freedom (d.o.f) of a gravitating system bound to D + 1 dimensional volume can
be rewritten as gauge theory d.o.f living on D dimensional boundary. In the case of the
AdS/CFT duality, the gravitating system is a string theory in an asymptotically Anti de
Sitter (AdS) space and the gauge theory d.o.f are described by a conformal field theory on
the boundary of the AdS space. More precisely, Maldacena conjectured an exact duality
between type IIB superstring theory on AdSs x S° and A/ = 4 superconformal SU(N) Yang-
Mills theory in four dimensions.

String theory on curved manifolds is known to be a very challenging problem but one can
instead study a special limit to this duality, which is the large 't Hooft limit of the gauge
theory [11]. In this limit, the duality connects classical gravity (or classical supergravity) to
strongly coupled field theory. In particular, within this limit, the AdS/CFT correspondence,
or more generally the gauge/gravity duality introduces new tools for studying some funda-
mental problems of non-perturbative field theories. For example, the AdS/CFT duality can
be used to study the behavior of the strongly coupled quark-gluon plasma found in hadron
colliders like RHIC and recently in LHC [17].

The gauge/gravity duality can also be used to study phenomena linked to condensed
matter physics. For example, there are interesting applications to quantum Hall effect, high
temperature superconductivity and non-Fermi liquids. A recent review of these applications
can be found in [25].

2.1 Maldacena’s conjecture

Below we give a very brief introduction to Anti de Sitter space (AdS), conformal field theory
(CFT), supersymmetry (SUSY), string theory and D-branes. As one can notice, every one
of these subjects could be the topic of complete thesis and therefore we introduce only
necessary tools for understanding the conjecture. After introducing these tools, we formulate
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the conjecture and study of its properties. A more complete introduction to these subjects
can be found in [26, 27, 28, 29]. The discussion in this section follows closely the one made
in [30].

2.1.1 Anti de Sitter space

Anti de Sitter space (AdS) is a maximally symmetric solution to Einstein equations with a
negative cosmological constant. The Einstein-Hilbert action in D + 1 dimension is

1
167G piq

D(D -1

S (/ dPte/=g(R + %) - 2/ de\/—vK) : (2.1)
M L oM

where the second term is the Gibbons-Hawking term, which is relevant to spacetimes with a
boundary dM. The induced metric on the boundary is v,, and K = K*"v,, is the trace of
the second fundamental form K, and Gp,, is Newton’s constant. The boundary term does
not affect the equations of motion that are given by Einstein equations
D(D—1)

1
R — —Rgyn —
MN 9 9MN 5

A solution to these equations is anti de Sitter (AdS) space

2
ds? = gyndzMdzy = % (dz2 + nuydx“dx”) , (2.3)

where 7, is the D dimensional Minkowskian metric. Symmetries of the AdS solution become
more transparent if one considers an embedding of the D + 1 dimensional AdS space to the
D + 2 Minkowskian spacetime with two timelike coordinates. The metric of the flat D + 2
dimensional Minkowskian spacetime is

ds}, , = dz* + n,datdz” — dr?, (2.4)

which clearly has a Lorentz symmetry SO(D,2) and a translation symmetry. The AdS
embedding is given by the equation

L% =22+ et — 12 (2.5)

which is also invariant under SO(D,2) but breaks the translation invariance. Using this
equation, one can eliminate d7 from the D42 Minkowskian metric (2.4) from which, by using
specific coordinate transformations [30], one finds D + 1 dimensional AdS metric similar to
(2.3). The outcome of this analysis is that the global symmetry of the D + 1 dimensional
AdS space is SO(D,2). Furthermore, the group SO(D,2) has (D + 2)(D + 1)/2 generators
which is equal to the maximal number of Killing vector in D+ 1 dimensional space and, thus,
the AdS space is a maximally symmetric solution to Einstein equations. Other maximally
symmetric solutions are the flat space (L2 — oo) and the de Sitter space dS”™ (£2 — —L£2).
The metric (2.3) appears to be singular at z — 0, but since the curvature invariants

(D+1)D
JER

D DD +1
Ry, = _Eg!“” R, R = ¥ (2.6)

R=-— i
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are regular, it can be identified as a coordinate singularity. Further, the z — 0 regime
can be identified as the boundary of the AdS space. The boundary metric is conformal
to the (D — 1) + 1 dimensional flat Minkowskian metric. In the boundary, the symmetry
transformations of the AdS space are equivalent to conformal symmetry transformations
in the (D — 1) + 1 dimensional Minkowskian spacetime. The conformal group in D + 1
dimensions is SO(D + 1, 2) and it generates symmetries that are the Poincaré symmetries, a

scaling symmetry
at — At (2.7)

and a special conformal symmetry

xt — b2
m
i = 20 — i (2.8)

Implications of the conformal symmetry to field theories are discussed in the subsection 2.1.3.

2.1.2 Anti de Sitter black holes

Black holes in asymptotically AdS are static and spherical symmetric solutions to Einstein
equations (2.2) with a delta functional source of matter. The metric ansatz! for a static and
spherically symmetric solution is

ds* = —A(r)dt* + B(r)dr* + r2dQ3_,, (2.9)

which can be simplified by defining B(r) = 1/A(r). The Einstein equations for the compo-
nents Ry and R,, are?

1 24 +rA"] D
/(L 2.1
2A r L? A (2.10)
124" 4+ rA”] D
o el - 2.11
Ar EQA ’ (211)
which both are solved by
7“2 CQ
Thus, the black hole solution in asymptotically AdS space is
2 C r? Cy \
d52 = — <E + 01 + TD—iQ) dt2 + (E + Cl + 70—32) d7’2 + T'QdﬁzD_l, (2.13)

where the values for the coefficients C; can be found by considering a limit where £ — oo,
which corresponds to a spherical Schwarzschild solution in asymptotically flat space. The
limit £ — oo for the AdS black hole is

C cy, \ !
dshas = — <01 + =2 )dt2+ (01 + = ) dr? + 1202, (2.14)

rD—2 D=2

'Tn these coordinates the boundary of AdS space is at r — oo (r = £2/2).
2Qther components of the Riemann tensor are trivial.
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and the spherical Schwarzschild solution in flat space is [30]

167TGD 1 1 167TGD 1 1
2 =—(1= - 24 (1- +
A5t ( (D—-1)Qp_ rD—Q) di”+ ( (D—1)Qp_qrP2

) “dr? + TQdQ%_l.
(2.15)
Now the above solutions match when

]_67TGD+1

IR GRS i

= —apM. (2.16)
Thus, the metric of a spherical black hole in the asymptotically AdSp. space is

2 M 2 M\ !
ds? = - (% +1-35 ) de? + (% +1-35 > dr? + 1203,

. 167TGD+1
oap = ((D—l)QD_l) s (217)

where the parameter M is related to the mass of the black hole. Note that the solution is
characterized by two variables: the mass M and the AdS scale L.

2.1.2.1 Hawking temperature

In 1974, Hawking realized that black holes are not completely black but can radiate [32, 33].
Further, the radiation was found to be perfectly black body radiation and, thus, black holes
have well-defined temperature called a Hawking temperature. The existence of the Hawking
temperature implies that black holes can carry entropy. This entropy is called a Bekenstein-
Hawking entropy [34]. For a D 4 1 dimensional black hole the entropy is

Spn = (2.18)

where is Ap_; is the volume of the black hole horizon and Gp.; is Newton’s constant in
D + 1 dimensions.
For the general type of metrics

ds? = —f(r)dt* + g(r) 'dr* + ..., (2.19)

where the functions f(r) and g(r) vanish at the horizon r = 13, the Hawking temperature
can be found by considering euclidean time (7 = —it) and introducing a coordinate transfor-
mation, such that the metric near the horizon looks like a cylinder. To avoid the coordinate
singularity at horizon, the euclidean time must have period 27. This periodicity in the eu-
clidean time can be identified with inverse temperature which fixes the Hawking temperature
for the black hole [35].

A calculation of the Hawking temperature goes as follows. The near horizon expansion
for the metric (2.19) is

ds? & —f'(r0)(r — ro)dt® + (¢’ (ro)(r — 7o) *dr? + ... (2.20)

3More precisely it is the largest root of the functions f(r) and g(r).
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Next, consider a coordinate transformation dp = (¢/(ro)(r —70))~2dr for which the integrated
form is
- 4rog 4 ¢'(ro)p°

0 (2.21)

This transforms the above metric to

/ / 2
ds ~ f (To)i(ro)p_dTQ +dp® + ..., (2.22)

1
for which the identification d¢ = [w} * dr will take the metric to cylinder coordinates.

Now, since the period of the euclidean time is related to inverse temperature [35], one obtains
that

o = o) (o)} T =
Ty = LTIl /<T°)4€; (ro)]? (2.23)

Using the above formula, the Hawking temperature for the AdS black hole metric (2.17) is

L 120 (p_ g (2.24)

Ty = |—=
A | L2 rdt ]

which can be written in a slightly different form by using the equation f(rq) = 0:

1 Dri+ (D —2)L?

A roL? (2.25)

TBH =

Note that there are two scales entering to the temperature formula which are the horizon
position rg and the AdS scale L.

2.1.2.2 Planar limit

The euclidean metric (2.17) for which the corresponding Hawking temperature is (2.25) has a
topology S' x S~ at fixed r, by using a planar limit [36] this can be deformed to S* x RP~!.
Thus, taking the planar limit corresponds to identification

D-1

dQf, y ~ > (da')’ (2.26)

n=1

This limit is directly related to D-brane solutions found in string theory that will play a
crucial role in constructing the AdS/CFT duality.

The idea of the planar limit is to make the radius of S”~* sphere (rp_;) to be much larger
than the radius of euclidean time r,. Then

T

— 0, (2.27)
D-1

and the topology of the solution could be regarded as S' x RP~1,
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To obtain the above behavior, introduce a scaling [30]:

ro— ADr, (2.28)

t — ADt, (2.29)
where )

o OZDM D

Then the rescaled metric is

— _ -1
19 = — (a2 = E Y ae v (a2t B a2 2nran (2.31)
AdS — [2 rD—2 L2 rD—2 D-1- )

Taking a limit A — oo, which is obtained by taking M — oo, leads to the metric and the
Hawking temperature that are

T2 ED—2 7,,2 ED_Q -1
dsids = — (E — D2 ) dt2 + (E - m) d7"2 + 7"2>\2/DdQQD71, (232)
DT’O
T = — = L. 2.
BH Anl2 ro =L (2.33)

Now the ratio of the two radii near the boundary (r — oo) is

Ty 1
K [
o1 ALUD

— 0 when A — oo, (2.34)

that is exactly what is needed, since now one can regard r2A¥PdQ2, | as a sphere with a very
large radius, much larger than the AdS scale £. This implies that one make a identification

where )

PAYPA02 | — %dxidxi. (2.35)
Therefore, the topology of the black hole solution has “deformed”
S' x 8P~ = §'x RPL (2.36)

Finally, the planar limit for the AdS black hole solution is

1 r?
dr? + =
i e

7“2 ED
f(r) 2 (1 - r_D> )

which has the boundary at r — oo and the horizon at r = £. This solution corresponds
to euclidean space with the Hawking temperature Ty = 4172202 = ﬁ. Notice, that in the
planar limit, the metric is characterized only by the value £ and the explicit dependence on
the mass M has disappeared. Near the boundary (r — 00), the planar black hole metric can
be directly related to the empty AdS space (2.3) by introducing a coordinate transformation

r— L]z

ds? = —f(r)dt* +

planar

dzda’, (2.37)
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2.1.3 CFT

Conformal field theory (review [31]) is a field theory that is symmetric under conformal
transformations. In particular, the conformal field theory has in addition to the Poincaré
symmetry, a scaling symmetry and a special conformal symmetry so that the full symmetry
group of the theory is SO(D,2). The additional scaling symmetry implies that the theory
must be free of any dimensionful parameters such as gauge coupling g or mass m. Note that a
theory may be classically invariant under the conformal transformations but quantum effects
and self-interactions might break the symmetry by dynamically generating a mass scale to
the quantum theory. For example, quarkless QCD has a classical conformal symmetry but,
due to quantum effects, it dynamically generates a mass scale Agcp ~ 200 MeV so that the
conformal symmetry is absent in quantum theory.

Two classic examples of CFTs are the two dimensional string worldsheet theory and the
N = 4 superconformal Yang-Mills theory in four dimensions. In general, CFTs have great
simplifications compared to ordinary Yang-Mills theories. For example, in the worldsheet the-
ory, correlators such as (O(z)O(y)) can be obtained by just studying the scaling dimensions
of the operators

(O)06) = 7o

where h is the scaling dimension of the primary field (operator) O(z), which depends on its
mass dimension and spin. The coefficient C' is specific for a theory.

Note that global symmetry of the D + 1 dimensional AdS space (SO(D,2)) is the same
as the conformal group in D dimensional flat space.

(2.38)

2.1.4 SUSY

A theory is supersymmetric if it is invariant under supersymmetry transformations [37]. The
supersymmetry (SUSY) transformations act on the fields and change bosons to fermions and
vice versa:

bosons <« SUSY = fermions

In addition to the Poincaré generators, supersymmetric field theory has supersymmetry gener-
ators that are spinors (half integer), called supercharges. A supersymmetric theory containing
N supercharges has a global U(N)g symmetry. This symmetry acts on the supersymmetry
generators and is called a R-symmetry. Adding supersymmetry to a field theory can simplify
the theory, since it may prevent quantities like the gauge coupling from getting any quantum
corrections. Supersymmetry is one of the scenarios introduced to explain some of the physics
beyond the standard model and, in particular, it can be used to cure the hierarchy problem
related to the Higgs mechanism. The study of low energy supersymmetry is one of the main
goals of the LHC.

One can also take one step further and gauge the supersymmetry. (Gauging means that
one takes the symmetry transformation to be a function of the spacetime coordinates, so
that the transformation is different on each spacetime point. For example, gauging the U(1)
symmetry of the Dirac Lagrangian

Sbieae = / AP+ T(ir D, — m), (2.39)
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leads to QED, where the Dirac spinor (electron) has interactions with the gauge field (pho-
ton). Similarly, gauging supersymmetry leads to supergravity (SUGRA) [38|. Supergravity
contains spin-two particles that are identified with the gravitons and the low energy theory
of the supergravity should lead to (linearized) Einstein equations.

When one considers a theory that possesses both supersymmetry and conformal symme-
try, then the theory is said to be superconformal. A superconformal theory has ordinary
conformal and supersymmetric generators, but also new superconformal generators that are
needed to close the generator algebra.

2.1.5 Superconformal field theory, an example

A superconformal theory that has an important role in the AdS/CFT conjecture, is the four
dimensional N/ = 4 supersymmetric SU(N) Yang-Mills theory [26]. This theory possesses
conformal invariance even at the quantum level. The action for the theory can be found by
supersymmetrizing the SU(N) Yang-Mills theory, and its bosonic part takes a form

Sn—a,5YM = 2# d*z Tr [—EFWFW — EDH(I)]D“@I 1 (o], ®7]*| + ... (2.40)

IIMm 4 2 4
This action has the Poincaré and the scaling symmetry implying symmetry under the full
conformal group, which in four dimensions is SO(4, 2). However, the theory contains fermions
and hence the bosonic conformal group SO(4,2) must be enlarged to SU(2,2). In addition,
there is a global R-symmetry that acts to the four supercharges. This symmetry group is
SU(4)g for which the bosonic counterpart is SO(6)r. The product of two symmetry groups
SU(2,2) and SU(4)g is the superconformal symmetry group denoted by SU(2,2[4). Finally,
the symmetry group of the four dimensional N' = 4 supersymmetric SU(N) Yang-Mills theory
is given by [27]

SO(4,2) x SO(6)r ~ SU(2,2) x SU(4)x = SU(2,24), (2.41)

where the left hand side is the bosonic part and the right hand side is the fermionic coun-
terpart. Later, it is shown that the boundary of AdS; x S° has exactly the same symmetry
group as this theory. This will be the first consistency check of the AdS/CFT conjecture.

2.1.6 String theory and D-brane solutions

In (super)string theory [39, 40] elementary particles are identified with one dimensional
strings (with a length ;) living in a spacetime with ten or eleven dimensions. String theory
was built to describe the strong interactions between the quarks. However, this string model
of hadrons had some fatal problems. For example, it predicted spin 2 particles which were
not seen in experiments. However, this failure was not the end of string theory, but it was
reconsidered as a unifying theory for quantum field theories and gravity [41]. String theory
was found to cure some problems that appear in ordinary QFTs. In particular, divergences
at short distance are solved by considering particles as one-dimensional strings instead of just
dimensionless points as is done in QFT. In addition, string theory provides a way to quantize
the Einstein’s theory of gravity where the quantum that mediates the gravitation interaction
(the graviton) is a closed string with spin 2.
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There are two types of strings in superstring theory: closed strings and open strings. The
endpoints of the closed strings are attached to each other while the endpoints of the open
strings are free to move in spacetime. As mentioned, one example of a closed string is the
graviton and open strings can be considered as counterparts for the gauge bosons of ordinary
QFT. Therefore, considering string theory in the limit where energies and the string length
are small, the dynamics of the closed strings should be described by supergravity and open
strings should be described by a (supersymmetric) gauge theory.

limit: £, Vo' =1, — 0
Closed strings = Supergravity
Open strings = Supersymmetric gauge theory

In addition to the closed and the open strings, string theory contains extended objects
called D-branes which were introduced by Polchinski [42]. There are two separate ways
to study D-branes in string theory. One way, is to consider them as manifolds embedded in
some higher dimensional space and, since they are massive, the D-brane curves the spacetime
around them.

Another way is to consider D-branes as surfaces where the open string endpoints are
attached. The name “D-brane” comes from the Dirichlet boundary conditions that open
strings must satisfy on the surface of the brane. Hence, the endpoints of the open strings are
not free to move in ten dimensional space but are restricted to move on the lower dimensional
surface of the D-brane. More precisely, the Dp-branes have p+1 dimensions, thus, the number
of fixed Dirichlet boundary conditions for open strings is p+ 1. Clearly, closed strings cannot
have similar fixed boundary conditions on the D-brane and therefore are able to “leak” out
from the sourcing brane and, thus, can curve the spacetime geometry next to the D-branes.

Consider the closed string interpretation in more detail. Since the low energy and zero
string length approximation of the classical closed string theory is thought to be classical
supergravity, there should exist a solution to supergravity equations which describes massive
objects which can be identified with the D-branes. Actually, this is the case and the solution
is found by considering ten dimensional IIB supergravity action which in the Einstein frame
is [40]

SSUGRA =

1 10
167rG10/d I\/_<R__8H¢au¢ 25, F2+..). (2.42)

Here R is Ricci scalar, Gig = 87%(a/)%¢?, Fy is the field strength for the four form Cj, and
the dots denote fermionic terms, in addition to other Ramond-Ramond p-forms that are
irrelevant for the particular solution. A D3-brane solution is found by considering a metric
ansatz

w

Ashrane = —B(r)’d® + E(r)*) (dz r)2dr? + G(r)2r2dQ2, (2.43)

=1

where the coordinates (¢, z') describe points on the D-brane and the coordinate r is the trans-
verse distance from the D3-brane. The dQ? part describes the S° unit sphere in the transverse
space. The ansatz is clearly static and has a translation invariance in the coordinates (¢, x%).
The components of the field strength F5 = dC; and dilaton ¢ are assumed to depend only
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on transverse distance r. Further, for type IIB supergravity one has to impose a self-duality
condition Fy = xI75.
The D3-brane solution is [43]

ds?> = H(r): (—g(r)dt2 +Z(dxi)2> +H(r)? (g(r)'dr? 412402, (2.44)

) = 1= () =1+ (B) e [Laci=x (249

which has a horizon at ry. Interestingly, for N coincident branes, the parameter £ can be
related to the string length [; and to the string coupling gs with a relation [44]

L' = 4dmg liN. (2.46)

In the D3-brane solution the function H(r) or in particular the parameter £, divides the
spacetime into two separate regions. For r > L > ry the metric is asymptotically flat

3
ds? = <—dt2 4 Z(dxz)2> 4 (dr2 4 rdeg) ’ (2.47)
i=1

and for £ > r > ry the metric is

3 2
2 ("N 2 02 £ ~173,.2 2 102
ds? = (E) ( g(r)dt +;(dx) ) + <T> g(r)~dr? + £2d02. (2.48)
This can be also written as
ds* = —f(r)dt* + ! dr? + T—de-dxi + £2d02 (2.49)
f(r) IS " '
2 2

r T 70\ 4
1) = o) =z (1-(7)):
The first part of the above metric is the same as the planar limit of the asymptotically AdSs

black hole (2.37) with the AdS scale £. The second part (£2d)2) is the metric for the five
sphere S° with a radius £. Thus, the limit £ > r > r of the D3-brane metric is

AdS5(L) x S*(L). (2.50)

The D3-brane was a solution to classical IIB supergravity, which is the approximation of
IIB string theory. Next one should check that the approximation is valid for the particular
solution. To suppress stringy effects, one must demand the AdS scale to be much greater
than the string scale. In addition, quantum effects can be considered to be negligible if the
dimensionless combination of Newton’s constant and AdS scale

Gio/L% o< g2(a)*/ L% = 213/ P (2.51)

s



CHAPTER 2. GAUGE/GRAVITY DUALITY 15

is small enough. These together imply that the D3-brane solution must have

2( 14
g5(a)
L1, o<1, (2.52)
Further, using the relation (2.46), these conditions can be written as
1
Ags N > 1, v < 1, (2.53)

which are satisfied (at least) for N — oo and g; — O(1).

In the above, the D3-brane solution was introduced as an instanton type of solution to the
supergravity equations. Next consider the open string interpretation where the D3-branes
are identified as hypersurfaces where endpoints of open strings are stuck. In the perturbative
picture (gs < 1), the dynamics of single D3-brane are covered by a Dirac-Born-Infeld (DBI)
action whose bosonic part is

1
gs(2m)312
where the fields are pullbacks of the corresponding ten dimensional spacetime fields to D-

brane worldvolume [28, 45]. By choosing a particular gauge and assuming By, ¢ to vanish
and, finally, expanding in ¢/, this can be written as

1 1
S=—-———— [d% |20, XMO'X
oy | @ (e
This looks like a four dimensional U(1) (supersymmetric) gauge theory and in fact, it is the
bosonic part of the NV = 4 supersymmetric U(1) Yang-Mills theory with a gauge coupling

Gy = 27gs. (2.56)
The above discussion was made for a single D3-brane but it can be generalized to /N coincident

D3-branes for which the dynamics are covered by the action

1 1 1
/d% Tr [—ZFM,,FW — 5D Dl — ol @] L (2.57)

(2ma’)?

FWF“”) T (2.55)

Sbos =

2
Y M

where the dots include the fermionic degrees of freedom. This action is familiar from the
subsection 2.1.5 and it is the N' = 4 supersymmetric SU(N) Yang-Mills theory with a gauge
coupling
Gy = 27Gs. (2.58)
The regime where the perturbative open string interpretation is valid is simply gy < 1.
Statements about the validity of classical supergravity approximation (2.53) can now be
reconsidered by using the gauge theory variables (2.58). This leads to equations

1
Gy N> 1, v <UL (2.59)

where the first equation is so called large 't Hooft limit of the gauge theory, where the 't Hooft
coupling is defined as A = g%, N. The second condition implies that the number of degrees
of freedom in the gauge theory must be large. Since, the open string interpretation is valid
only when the coupling is small (A — 0) and the supergravity approximation is valid only
when the gauge coupling is strong (A — 00) it seems that two interpretations are completely
disconnected but surprisingly, as first recognized by Maldacena, this is not the case.
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2.2 AdS/CFT duality

At first look, two interpretations of the D3-branes did not have much to do with each other
but surprisingly, some calculations done in different interpretations seemed to match [29, 44,
46, 47|. Hence, there where hints that these two ways of studying D3-branes are related
more closely. In fact, in 1997 Juan Maldacena [3| conjectured that the interpretations are
equivalent. More precisely, the conjectured equivalence was between type IIB string theory
on AdSs; x S° and the four dimensional superconformal A" = 4 SU(N) Yang-Mills theory.
Maldacena conjectured that instead of being two different theories they are in fact dual
formulations of the same theory. In general, the Anti de Sitter factor forces the dual theory
to be a conformal field theory, and the form of the compact manifold tells how supersymmetry
is realized in the theory. Further, Maldacena conjectured dualities between string theory /M-
theory on a class of backgrounds AdS; x X?~? and conformal field theories at the boundary
of the Anti de Sitter space, where for string theory D = 10 and for M-theory D = 11
[3]. For D3-branes, the more precise conjectured equivalence between two theories and their
parameters is:

e Ten dimensional type IIB superstring theory on AdSs(£) x S®(£) with Newton’s con-
stant G1g = 87%(a/)*¢? and string length [,

e Four dimensional N' = 4 super Yang-Mills theory with gauge group SU(V) and coupling
gy M

e The relations between the parameters are g3, = 2mg, and L* = 4mwg,liN

The conjectured duality acts between full quantum theories and can be expressed by a fun-
damental relation |7, 8]:

Zn=a,5vm [Ji(2)] = Zup, ads, x s [Ji(®, Z)]Ji(m,zzo):Ji(x) : (2.60)

This relates the theories by their euclidean path integrals. The left hand side (Zy—4 sym)
is the generating functional of the CEF'T where the fields J;(z) act as sources for the gauge
invariant operators O(zx). The right hand side is the partition function for IIB string theory
in the AdS;s x S° background. On this side, the fields J;(x, z) have fixed value J;(z) at z — 0,
where z = 0 represents the conformal boundary of the AdSs space.

At this point one can make simple checks about the validity of the conjecture. One possible
way is to compare the symmetries of theories. In particular, the (bosonic) symmetry group
of the string theory on AdS; x S® background is simply SO(4,2) x SO(6). If the conjectured
equivalence between the theories is true, the symmetry group of the conformal YM theory
should be the same. Indeed, as it was found in subsection 2.1.5, for the four dimensional
superconformal ' = 4 SU(N) the symmetry group is the same SO(4,2) x SO(6). Although
the conjectured equivalence between the theories has passed all the tests done ever since it
was introduced, a rigorous mathematical proof of the conjecture is still lacking [48].

2.2.0.1 ’t Hooft limit

The equivalence between string theory and conformal SYM theory was conjectured between
complete quantum theories but there is also a non-trivial limit of the duality where many
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calculations can be done. This is the 't Hooft limit [11]. At the end of the subsection 2.1.6 it
was found out, that the large 't Hooft limit may create a link between classical supergravity
and strongly coupled gauge theory. Now let us consider this connection in more detail.

In the SU(N) gauge theory the 't Hooft limit corresponds to the topological expansion
in 1/N where the 't Hooft coupling A = g% ,,N is kept fixed while the number of degrees of
freedom is taken to infinity (N — o0). When considering the 't Hooft limit in the AdS side
of the duality, one obtains that the string coupling can be written as g; o A/N . Hence in
the limit N — oo, the string coupling vanishes (g; — 0) which corresponds to the classical
approximation of string theory.

One can still go one step further and take A — oo. This limit is the large 't Hooft coupling
limit and it corresponds to the strongly coupled gauge theory. In string theory, this limit takes
the AdS scale £ to be much greater than string length [;. This implies that the interesting
curvature scales are much greater than the string scale. Thus, together with g; — 0, one has
ls — 0 which reduces string theory to classical supergravity. To summarize:

e 't Hooft limit: A fixed and N — oo corresponds to classical string theory on AdS; x S°
and to the % -expansion of the gauge theory

e Large 't Hooft coupling limit: A — oo corresponds to classical supergravity on AdSs; xS®
and to the strongly coupled gauge theory.

In the large 't Hooft coupling limit, the partition function for string theory can be approxi-
mated by a equation [36]
Zyrp, Adss x 59 R € SUGRA, (2.61)

where Ssygra 18 the classical action of the IIB supergravity. Hence, the fundamental relation
(2.60) in this limit is given by a relation

-5
ZN:4, SYM, A—oo, N—oo — € SUGRA (262)

Now one can relate the scaling dimensions of the SYM operators (A) to masses of the
supergravity (scalar-)fields on AdSp,; by a relation [7]

D | D?

The AdS/CFT duality comes with a “dictionary” that tells how to map classical super-
gravity fields to the corresponding gauge invariant operators and what are the exact relations
between them [3, 7, 8]. For example, the holographic dictionary tells that the massless scalar
on AdS4.; is dual to the operator with a scaling dimension A = 4 that can be identified
with the gauge theory operator Tr [F*”F),, + ...]. Another important relation is the mapping
between the boundary metric g,, and the stress tensor 7, of the corresponding CFT.

In the next subsection a holographic method for calculating thermodynamics of the hot
strongly coupled gauge theory is shown.



CHAPTER 2. GAUGE/GRAVITY DUALITY 18

2.2.0.2 Thermodynamics

One way to test this duality is to try to use it to calculate the thermodynamical properties of
the strongly coupled NV = 4 SU(N) Yang-Mills theory. The holographic dictionary tells that
the thermal field theory corresponds to the AdS space with a black hole [36]. Further, the
thermodynamics of black hole are related to field theory thermodynamics. One simple way*
to calculate the entropy of strongly coupled SYM is to use the Bekenstein-Hawking formula
(2.18):

A
Sp = —. 2.64
o = (269
For D3-brane solutions [44] this is
Sppt = -2 (2.65)
BH — 4G10’ .

where

3 T2 L8
A= d’x dQ5 \ —")/|r:7~0 = TV} (266)
0

Here V3 is the volume of horizon. Substituting Newton’s constant (G1o = 87°(a’)?¢?) and
the Hawking temperature Tgy = ﬂ%ﬂ to the above formula gives

Son = (£ 2(T A% (2.67)
= e . .
BH (@29, BH) V3
Now the implication of the duality is that one is able to rewrite this formula using the dual
field theory variables. The holographic dictionary sets Tgy = Tyy = 1" and the entropy of
strongly coupled SYM is

2
™
SYM,strong = ENQ%T‘S (268)

In the other hand, the entropy of SYM can be found by counting the degrees of freedom of
asymptotically free theory. In particular, for N’ =4 SYM counting leads to entropy |29]
472 4

SYM, weak = §7N2%T3, SYM, weak = gSYM,strong. (2.69)
There is something very interesting in this result. The entropy of the field theory is calculated
using two totally different setups and the results are not equal but almost and, indeed, this
small difference between entropies can be understood. The holographic calculation was done
in the classical gravity approximation which is valid only for strong coupling (A > 1) and,
in the equation above, the is compared with entropy calculated in the limit of zero coupling
(A — 0). Therefore, the difference between the entropies is not a surprise °.

2.2.1 Generalizations of the AdS/CFT

Maldacena’s AdS5/CFT, conjecture had a large impact on theoretical physics. It was realized
that it or more generally its modifications, could be used to model various phenomena and,

4To do this properly one should calculate the on-shell action and regulate it. See [49, 50, 51].
®Corrections to entropy formulas can be found in [29].
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hence, it brought physicists from very different areas to study its possibilities. A “shortcom-
ing” of the original conjecture is that the dual field theory has a superconformal symmetry,
which is something not seen in nature. Thus, it became clear that the original duality must
be modified to be able to study more realistic field theories. For example, so far dualities
for theories with less supersymmetry, broken conformal symmetry, broken chiral symmetry,
spontaneous symmetry breaking, etc, have been studied. The different modifications and
extensions of the original duality generally go under the name of gauge/gravity duality.

The goal of this section is to study the large-N QCD-type theories by using the gauge/gravity
duality and, hence, only some basic properties of QCD-type theories and their holographic
counterparts are shortly introduced. Using gauge/gravity duality in slightly different setups
can be found in [53, 54, 55, 56, 57, 58] and references therein.

There are generally three ways to get something similar to QCD out from the gauge/gravity
duality. One way is to introduce small modifications to the original conjecture. One of such
modification was studied above and that was the addition of black hole to AdS space which
corresponded to thermal gauge theory [36]. Further, this temperature breaks supersymmetry
and so it is more close to QCD. As discussed in the introductory section, this can be used
to study quark-gluon plasma produced at RHIC and LHC, where the properties® of plasma
are approximated by the strongly coupled limit of thermal QCD, see [59] and references
therein. Still, there are major differences between thermal QCD and thermal A" = 4 SYM.
One such is the lack of particles which corresponds to the quarks in QCD. The QCD quark
is a particle transforming in the fundamental representation under the gauge group SU(N),
but the fermions of supersymmetric theory are just superpartners of gauge fields and, hence,
transform as an adjoint field.

One way’ to introduce fundamental quarks to AdS/CFT is to add D7-branes to the AdS
setup. The perturbative picture of the D3-D7 system includes, in addition to open strings
that have both endpoints on the D3-branes, also open strings that have one endpoint on the
D3-brane and another on D7-brane. Further, the endpoint of the open string which ends
on the stack of D3-branes, transforms under the fundamental representation of the gauge
group SU(N) and, hence, it can be identified with the QCD quark. The field theory dual
this system is A/ =2 SU(N) SYM [19]. The action for the D3-D7 system is

S = Sip, adss x 55 T Sp7 (2.70)
where the dynamics of the D7 brane(s)® is covered by DBI action
1 8
SD7 = —W /d C\/— det [Gab + 2ma’ ab} + Scs (271)

where S is a Chern-Simons action [45]. Unfortunately, solutions to the D3-D7 system are
found only when D7-branes are introduced as a small perturbation over the background
generated by the D3-branes. Thus, D7-branes do not change the AdS5 background geometry.
This perturbative limit to D3-D7 limit is called a probe limit [60] and it implies that the
number of D3 branes is assumed to be much greater than D7 branes (N3 > N;)°. Thus the

6Nearly conformal and strongly coupled. The holographic calculations are still done in the large N whereas
QCD have only N = 3.

See [19, 20, 21, 60, 61, 62].

8For multiple D7-branes one should consider the non-Abelian versions of DBI action.

9The number of gauge fields is much greater than the number of fundamental fermions.
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probe limit is in contradiction to QCD where these number are roughly the same. Altogether,
the above construction is quite far from QCD since there is nothing like the QCD scale (Agep)
in this setup.

Another way to get something similar to QCD is to start with a completely different setup
that does not include D3-branes at all but, instead use D4-branes as was done in [20, 21].
The D4-branes are classical solutions to type ITA string theory. For a D4-brane system the
background geometry is

3/2 3/2
1 = (5) wasrar g+ () (S +vrant). e

3/4 3
¢t — g, (%) B —dCy— 27%64, FU) =1 % (2.73)
Note that the geometry is not asymptotically AdS and the dual supersymmetric field theory
is five dimensional (2# = 2"...2% and 7). To get something like four dimensional QCD, one
must compactify one of five dimensions to circle (7), so that the boundary conditions in the
compactified dimension breaks supersymmetry. Further, the metric has a scale (Uxg) which
is analog to the QCD scale Agcp. Hence, at low energies, the dual gauge theory is similar
to the quarkless QCD and for example the masses of glueballs can be calculated, which are
found to roughly agree with those found in lattice QCD simulations, see [19] and references
therein.

Fundamental matter can be added to the system similarly to the D3-D7 setup. In this
case, one adds a small number of D8-branes and anti D8-branes to the background generated
by the D4-branes [20, 21]. In this setup one is able to study chiral symmetry breaking by
using classical gravity. Although this is closer to QCD than the D3-D7 system, there are still
many differences. In particular, one common problem in these type of “top-down” setups is
that the scale of the low energy excitations (glueballs, mesons and Kaluza-Klein masses) is
close to the length scale of the compactified dimensions and so the dual field theory cannot
really be considered as four dimensional.

There are also more phenomenological constructions. These are known as AdS/QCD or
bottom-up approaches. The logic in these models is inverse to top-down models, where the
gravity part was some string theory on a curved manifold which had a specific field theory
dual. In the AdS/QCD models, one starts with the known properties of QCD-type theories
and tries to figure out which are the corresponding fields in the gravity background. There
are two well know classes of AdS/QCD. One class is called hard-wall models [63] where the
gravity background has a “wall” where the space ends. This introduces a QCD-type scale
to the corresponding field theory. One of the simplest hard wall models has a following five
dimensional action:

1
S = /d% vV—gTr {—]D(I)I + 3|®| — 4—92(F§ + F7) (2.74)
5

where the gauge fields A7 and A% are dual to the QCD operators g, v"qr, and Gry*qr whereas
the scalar @ is dual to the operator grqr. The five dimensional background is

2
ds® = £_2 (nuwdztdz” + d2?) (2.75)
z
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where the range of the AdS coordinate is taken to be finite, i.e., 0 < 2z < z,,. The energy
scale of the dual field theory is now set by a condition z,, ~ Aqcp. This and its successors
encodes some properties of QCD surprisingly well [19].
In general, the problem with hard wall models is that the meson mass spectrum grows
with respect to excitation number a
M? ~n? (2.76)

which contradicts QCD where the dependence is linear (M2 ~ n). This problem can be
rather easily cured by “smoothening” the wall. This can be done by taking the conformal

factor 5—22 to be some smooth function
e?9?) (2.77)

which, with a certain profile, can reproduce the linear behavior for the meson mass spectrum.
These type of constructions are generally called a soft-wall models [64].

The major problem with a soft-wall models is that the gravity background is not a solution
to any Einstein equations. Thus, the background is not dynamical. One implication of this
fact, is that there is no clear way how to calculate the thermodynamics of corresponding field
theory. In the hard-wall models there is another contradiction with QCD, which is that in
these models the magnetic charges are screened instead of anti screened [23].

There is a way to solve many problems of with bottom-up approaches by making the
background dynamical. In the next section, we study a specific model called the 5D Improved
Holographic QCD (IHQCD) [22, 23, 24] which lies somewhere between the top-down and
bottom-up approaches.



Chapter 3

5D Einstein-Dilaton model

In the seventies, 't Hooft realized that gauge theories may be simpler within the limit where
the number of colors IV is large. In particular, this provides a new method of doing calcu-
lations, where the expansion parameter is not the naive Yang-Mills coupling constant gy,
but instead an expansion is performed in 1/N. The large-N limit [11] can be used to ex-
tract information about gauge theories in the regime where the original perturbation theory
fails. After Maldacena’s conjecture [3], the power of the large-N expansion has become even
more clear. The original conjecture has been generalized to gauge theories that are similar
to theories seen in nature. After over ten years of study, holographic counterparts for field
theory phenomena, where the strong IR dynamics are important, are quite well understood.
For example, dual models have been constructed for confinement, chiral symmetry breaking.

In this thesis, a specific holographic model used to study large-N gauge field theories,
is the 5D Improved Holographic QCD (IHQCD) model introduced by Kiritsis, Nitti and
Gursoy [22, 23, 24|. The starting point of the model is 5D non-critical string theory [65].
In non-critical string theories the background curvatures and other geometric invariants are
generally of the same order as the string scale. This implies that the two derivative effective
action for gravity is not a valid approximation and one should instead use a higher derivative
action!. Furthermore, an expansion in o’ is not a reliable approximation anymore. Although,
there are several unsolved issues in non-critical string theories there exist several attempts to
construct holographic models based on such theories. Further, some results indicates that,
although stringy effects can be important, some of the qualitative features of the system can
be reproduced in field theory approximations. ITHQCD is also based on this assumption [65].

The action of IHQCD contains only fields with two derivatives and the o’ corrections
leads to a non-trivial dilaton potential. Of course the dilaton potential cannot be calculated
to arbitrary order in /. Thus, in the phenomenological spirit of AdS/QCD, it is fixed by
requiring that it reproduces the holographic counterparts to some known phenomena present
in the large- N gauge field theories. This construction sets IHQCD to lie somewhere between
the bottom-up and the top-down approaches discussed in subsection 2.2.1.

The above problems lead to the conclusion that THQCD can be used to study the large-N
gauge theories only at the qualitative level. In particular, the model can explain some of the
qualitative features of the field theories but sharp predictions cannot be made. In spite of
the above reservations, the IHQCD model studied in [66] was able to give remarkably good

!Higher derivatives come from stringy corrections.

22
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fits for pure YM thermodynamics and also to glueball spectra compared to results found
in other holographic setups. The THQCD model gives some understanding of the transport
properties of strongly coupled YM plasma where no reliable calculations have been made
[67]. One example of the quantitative predictions of the model, is the observation that the
IR #-angle in large-N YM theory vanishes [23].

To construct holographic duals for more realistic field theories, for example QCD, one
must add fundamental matter (quarks) to the string setup. Like in the examples of subsection
2.2.1, in THQCD it can be done by adding D4-D4 branes to the system [23, 68, 69]. Using
this construction, one is able to study meson spectra and chiral symmetry breaking. Until
recently [70], it has been possible only in the limit where the number of flavor fields is much
smaller than N, i.e, in the probe limit.

In this thesis, the IHQCD model is extended to model, not only quarkless QCD (or pure
YM), but various field theories where the effects of the fermions are generally known to be
important?. Here, this is not achieved by adding the D4-D4 branes to the system, but the
effect of the fermions is assumed to lead to dilaton potentials that are different from the one
used to model the pure YM |73, 74, 75] (articles II, III, IV). The validity of this method has
not been carefully studied and, thus, the only criterion for its validity is the outcome of the
analysis which must be compared to the known phenomena and results of the corresponding
field theories.

In the section 3.1, IHQCD is introduced and some of its general properties are studied.
In particular, a criterion for confinement is worked out and a holographic calculation of the
glueball masses is presented. In the second section we concentrate to a specific IHQCD
construction that is related to quarkless QCD and review some properties found in [66, 76].
The discussion of sections follows closely that in [22, 23, 24, 66, 76]. A simplified version
of this specific IHQCD model was considered in the article I, in which we were able to
perform analytic calculations which lead to similar results found by Kiritsis et al. In the last
section 3.3 we study a generalization of THQCD to quasi-conformal theories and give a short
introduction to calculations performed in the articles IT, IIT and TV including a study of the
thermodynamics and the mass spectra of quasi-conformal theories.

3.1 Improved Holographic QCD (IHQCD)

The lowest-dimensional gauge invariant operators of quarkless QCD are the stress energy
tensor 1), = Ir [FWF;’ — Allnw,FQ] , the scalar operator Tr [F?] and the pseudo-scalar operator
Tr [F x F| . The holographic dictionary relates these operators to the fields of five dimensional
non-critical string theory. In particular, the corresponding fields are the metric g,,, the
dilaton ® and the axion® a. The two derivative effective string theory action that contains

2Examples of these type of theories, are QCD with a Banks-Zaks [71] fixed point, unparticle physics [72]
and technicolor theories [12, 13, 15].

3Higher dimensional operators in QCD correspond to other string theory fields. The comprehensive
discussion about the operators, the fields and the sourcing branes can be found in [22, 65]. These are not
considered further in this thesis.



CHAPTER 3. 5D EINSTEIN-DILATON MODEL 24
corresponding fields is the Einstein-Dilaton? action, which in the Einstein frame is
4
Sy = —MN? /d% e [R ~2(00) + v<q>)] + 2M5’Nf/d4x VIRK + Sl (3.1)
o

Here K is the extrinsic curvature of the boundary. The effective Newton’s constant is G5 =
1/(16m M2 N?) where N is related to the gauge d.o.f and M, is the five-dimensional Planck
scale.
For the Lorentz invariant YM vacuum, a five dimensional ansatz for the metric and the
dilaton is
ds® = b(2)* (gudada” +dz?), @(2) < In A(2) (3.2)

where the coordinates x* are identified with the 4D spacetime coordinates. The energy scale
of the dual field theory is identified with the conformal factor b(z) by a relation

E = Epb(2). (3.3)
Further, the coupling (A\s) of the dual field theory is related to the dilaton as
A =)= Ne® (3.4)

An interesting combination of the above parameters is a beta function that is defined by the

equation
dAs
BrA) = 3. 5 (3.5)

which tells how the coupling changes as a function of the energy scale. Similar function can
be defined in the gravity side and is given by the equation

d\
N = T

Further, this is identified with (3.5), i.e., Br(Af) = B(N).

The crucial part of the model is the non-trivial dilaton potential V' (®) = V(A), which
encodes the dynamics of the theory. The potential in the small-A limit is related to the UV
geometry (z — 0), whereas the large-\ regime is related to IR geometry. In addition, there is
a one to one mapping between the beta function (3.5) and the dilaton potential. Thus, one
can alternatively use the beta function to define the dynamics. In particular, the UV beta
function can be mapped to the UV dilaton potential.

(3.6)

3.1.1 UV solution

The dual large- N gauge theory is assumed to be asymptotically free and conformally invariant
in the UV. This implies that the UV geometry of the vacuum solution must be asymptotically
Anti de Sitter. The pure five dimensional AdS solution (2.1) is found by taking ®(z) = 0
and V(® = 0) = 12/L£2? for which b(z) = L/z. In THQCD, the pure AdS is generalized to a
asymptotically AdS space.

4The axion part of the action S[a] ~ N, does not change background solutions in the large-N, limit [65]
and is not considered further in this thesis.
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The Einstein equations for the vacuum ansatz (3.2) are®

» b )
6@ + 3[—) = bV(D),
»ooLb 4.
6 —3- = -d% 3.7
b? b 3 (37)
By defining a super-potential
b

the above equations can be rewritten as first order equations

b ,
125 -3 = vV (®), (3.9)
. 4.
b= 0%
9

Further, the beta function (3.5) with identifications (3.3) and (3.4) is given by the equation

dX
A) =b— 3.10
) =05 (310
which leads to a relation '
A= —=WbB(N). (3.11)

The reason for introducing the super-potential is that it gives an easy way to relate the beta
function to the dilaton potential. This is accomplished by noting that

dw 41 (d\\® 41 dX

- = (=) == - A2
’ dz 9 N2 (dz) 9 N2 WH5() dz’ (8.12)
dW 4 G(N)

- = _B\4 1

w 9 A\ dA (3:13)

from which one can integrate
4 A
W(A) = W(0)exp [—5 /d)\%} . (3.14)

Finally, the relation between the beta function and the dilaton potential can be found by
using the equation (3.9):

V(A) = 12W ()3 [1 — (%)1 : (3.15)

Thus, the potential can be fixed by specifying the beta function. Further, the beta function
of THQCD is identified with the beta function of the dual field theory with some minor

®The equation for the dilaton can be found combining these two. See [24].
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differences that are discussed later. One can also identify A with the corresponding 't Hooft
coupling As. In the UV, the dual field theory is taken to be asymptotically free (A\f — 0).
This implies that the beta function at the UV is

Br(Ap) = BA) = =FoX* = BN’ +..., A= 0. (3.16)

where [y and [3; are constants that depends on the details of the dual gauge theory. Using
equations (3.14) and (3.15) one finds the small-\ (UV) expansion for the dilaton potential is

V()) = 12W(0)? {1 + SW + (gﬁg + gﬁl) A2 1 . (3.17)

Comparing this with the pure five dimensional AdS space (2.1) fixes W (0) = 1/L.

After specifying the dilaton potential (or the beta function) at the UV, one is ready to
solve the UV asymptotics of b(z) and A(z). Experience from the four dimensional large-N
field theories suggest that the coupling has a logarithmic dependence on the energy scale
(A ~ 1/log FE). In the holographic picture, this would correspond to log-corrections in the
AdS conformal factor, ie., £ = Eyb(z) = L/2(1 4+ O(log 2)). Indeed, the UV solutions are
found by studying equations

A= —WbB(N) (3.18)
and .
b
W = 5 (3.19)
The first non-trivial order leads to
L
——d\ = —bd 3.20
B2 % (3.20)
1 4 1
14 = = —_db. 21
Ve { + 960)\} dz 72 db (3.21)

This pair of equations has a solution where the coupling is given by

1
N 3.22
Bo log Az (822)
and the AdS conformal factor is
L 4 1
b(z) == |14+ = 3.23
(2) z { * 9log Az} ’ ( )

which has the expected form. The integration constant A is identified with the QCD scale
Agep. Thus, IHQCD dynamically generates a mass scale in a way similar to large-N gauge
theories. Higher order solutions can be found in [24].
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3.1.1.1 Scheme dependence

The problem of scheme dependence is present in any attempts to solve the gauge field theory.
Any physical observables must be scheme independent but different parametrizations of the
coupling constant, or anything that is not scheme independent, leads to different descriptions.
In THQCD, the problem of various schemes is also present and is related to radial diffeomor-
phism. Possible schemes are reduced by picking up some specific frame for the metric. For
example, in the conformal coordinate frame used above (3.2), the radial diffeomorphisms are
reduced to the common scaling of the radial and boundary coordinates.

The scheme dependence of the field theory coupling can be understood as bulk field
redefinitions. First, the relation between the bulk 't Hooft coupling A and the field theory
coupling )\ is generally unknown®. This relation was studied in |22] where it was found that
different sources of o/ corrections have an effect on to the relation. In particular, in the UV

/\f:)\(1+01)\2+62)\4+...). (324)

Another definition that has similar vagueness as the coupling, is the relation between the
field theory energy scale F and the conformal factor b(z). In the UV, this relation is well
understood but, in general, has corrections as one moves to smaller energies. In general, the
relation can be written as a function of coupling

dlog £
dlogb

FO) =14+ AN+ o)+ ... (3.25)

where, to ensure monotonicity, one must have f; > 0 and the constant term in is fixed by
the standard AdS/CFT.

Next thing to ask is how the beta function is changed in the redefinitions. In field theory,
the relation between the field theory coupling and energy was given by the beta function

dA
Br(Ag) = dlnfE (3.26)

which was identified with the bulk beta function S(XA). This identification is clearly not true
anymore. Instead, it is interesting that, even after the bulk redefinitions, the identification
remains to be true up to first two terms in the UV expansion (3.16) [22]. In particular, this
means that

Br(Ag) = BA) =0+ O(A). (3.27)

Also in the gauge theory side, the first two terms 3, and (s in (3.16), are scheme inde-
pendent. So in both sides of the duality the first two terms are scheme independent, which
means that the gauge theory UV beta function can be used as an input for the UV dilaton
potential.

Identifications between field theory and bulk variables in the IR regime can be very
different from the UV identification done above. More comprehensive discussion about the
scheme dependence can be found in [22, 23, 76].

6Tn the above one used \ = Af.
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3.1.2 IR solutions

The TR dynamics of large-N field theories is generally far more demanding than the UV
asymptotics which can be studied by using perturbation theory. In the IR, the coupling is
large and some other method must be used. In IHQCD, the IR regime of the dual theory is
identified with IR geometry where A — oo.

In holographic models, a criterion for confinement is provided by the holographic Wilson
loops |77, 78]. In field theory, the Wilson loop gives the potential energy between two static
quarks and confinement appears when the potential energy increases linearly with distance,
in which case the Wilson loop is said to obey an area law. A quantity related to the area law
is the (QCD) string tension 7.

Holographically, the Wilson loop is computed by using the Nambu-Goto action of a clas-
sical string, embedded in five dimensional space, with a rectangular loop with sides (space)
L and (time) 7" on the AdS boundary |77, 78]. Then the Nambu-Goto action is proportional
to the separation 7" and the energy between particles E(L), i.e.,

TE(L) = Syg[XE. (0,7)]. (3.28)

This calculation must be done in the string frame |77, 78|. In IHQCD, the relation between
the Einstein frame and the string frame is

4 4
G = €3G = N3 g (3.29)

The Nambu-Goto action for a classical string is

Sne = Tf/dadr \/ — det g* (3.30)

where g7 5 is the pull-back of the string frame metric to the string world volume and «, § =
1, 2. The fundamental string tension is defined by the equation Ty = 1/27l2, where [ is the
fundamental string length.

The holographic Wilson loop calculation can be performed a follows. The end points of
the string are fixed to the AdS boundary and the string falls down from the UV to the IR
geometry. The separation between the endpoints of the string is given by [23]

L= 2/ dz : (3.31)
0 \/64(A5(z)—A§(zF)) —1

where z; is a turning point where the string turns from the IR back to the UV boundary.
The function A,(z) is a string frame scale factor, which is related to the Einstein frame scale
factor by an equation

b(2)2ei® = EAGTIRE) = 2440, (3.32)

To get area law for the potential energy F(L) the separation between the endpoints of the
string L must blow up at some point z. The potential infinity comes from the region near
the turning point z; which can be studied by expanding the integrand near the turning point

ZfZ
1

\/4A;(Zf)(2:f — Z) + 814;/(2]0)(2]0 - 2)2 +.. ..

(3.33)
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This leads to finite L for generic zy which cannot produce the area law, but grows indefinitely
if there exists a stationary point z, = zy where A (z,) = 0. The potential energy, in the limit
of large separations, is given by [23|

E(L — 00) ~ Tye*4:I ], (3.34)
and the confining (QCD) string tension is
Ty = Tye?As(), (3.35)

The outcome of the Wilson loop analysis is that the background geometry is confining if
there exist a stationary point where

A (z) = Al(2) + g@'(z*) ~0. (3.36)

Using the above criterion, one is ready to study which IR geometries give rise to the area
law. In the below, class of spacetimes for which the conformal factor has an asymptotic form

z

b(z) = e — ef(ﬁ)a*“, a>0 (3.37)
and the range of conformal coordinate is infinite z € (0, 00), is studied.

Assuming asymptotically AdS space leads to the conclusion that the string frame scale

factor behaves as
L -1

N
z Bolog zA
as z — 0. The geometry is confining with z € (0, 00) if it satisfies the condition (3.36). This
together with the UV asymptotics, implies that a necessary and sufficient condition for the
geometry to confine is that As(z) does not asymptote to —oo at the IR singularity z — oo
[22, 23].
To check for which « this condition is satisfied can use equation (3.7)

e15(2) = p(2)es® — 00 (3.38)

b 4.,
—Z (A - A2> = 2 (3.39)

which for the background (3.37) has an asymptotic solution

b ~ _;A(Z) + % log ‘A(z)‘ + . (3.40)

This equation, together with (3.36), solves (3.39) up to terms that are proportional to
(AJA)? ~ 1/z%. Further, the string frame scale factor in the IR is

1 - —1
Ay(2) — = log ‘A(z) Nl A (3.41)
2 R
and the string frame metric behaves as
a—1
ds? ~ <}%> (nuwdztdz” 4+ d2?). (3.42)
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The above results imply that a criterion for confinement for this type of geometries is
simply a > 1 for which A,(z) asymptotes to co and has a minimum at some finite z, leading
to non-zero confining string tension 7. Further, the IR behavior of the confining backgrounds
implies that the dilaton and the beta function in the IR behaves as

V) = (log \)& A5 +..., (3.43)
3 Ja—1 1

AN o= —Oa|1+2 44

BN 2 +4 o log)\+ ’ (3:44)

with o > 1.
The above discussion can be generalized to geometries with different IR asymptotics and
can be found in |23, 76].

3.1.3 Particle spectra

In confining gauge theories, the low energy particle spectrum is gapped. For QCD, this
means that in the IR, one does not see massless gluons and quarks but, instead, one sees
massive hadrons. For quarkless QCD, the low energy mass spectrum includes glueballs,
which are bound states of the gluons. As IHQCD is thought to model large- N gauge theories
that confine there should exist some way to calculate the masses of these particles using
holography. The holographic calculation of the bound state masses can be done by considering
fluctuations of fields around the background spacetime. Demanding these to satisfy specific
boundary conditions, leads to a gapped and discrete particle spectrum [36]. The spins of
the corresponding gauge theory particles are determined by studying how the fluctuations
¢(z,x") transform under SO(3) rotations.

A standard procedure for finding the field theory mass eigenstates is to write the fluctu-
ations as

¢z, 2) = ¢(2)¢V(x) (3.45)

where ¢ (z) solves the four dimensional Klein-Gordon equation for free particle with a mass
m:
;0 W (x) = m2pW (x). (3.46)

The differential equations for ¢(z) depends on m and the condition that the solution must
be normalizable leads to a discrete set of possible four dimensional masses m = m,,. These
masses correspond the low energy excitations of the dual field theory.

In THQCD, the background fields are ® and g,,. The spin-0 fluctuation is the gauge
invariant (radial diffeomorphism) combination of the metric and dilaton whereas the spin-2
fluctuations are related to metric fluctuations dg;; [79]. The equation for the scalar fluctuation
is

B(e).+305(2), - <§ + 32%) 8(2), + (=), =0, (3.47)
where
y = BA() (3.48)

3N(z)
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For tensor fluctuations (¢(2);) one simply removes the terms involving X |75]. The next step
is to transform the equation to the form of a one dimensional Schrodinger equation. The
transformation that takes it to the wanted form is

¥(z) = VP(2). (3.49)

The Schrodinger equations for the fluctuations are then

—r,5(2) + Vs (2)Y(2) = m*p(z) (3.50)
where
3b 32 X _bX
\% = ——4+-—-—= 4+ —=+3-—
sG) = ptiE Tty Ty
3b 302
In the UV, the potential behaves as
15
Vsr(z) = ot 27 0, (3.52)
which leads to the UV solution
Yrs(z) = Ci(m)z73% + Cy(m)2*? 2z — 0, (3.53)

A solution that corresponds to the mass eigenstates of the dual field theory must be
normalizable. This implies that the parameter m must be chosen so that the solution is
regular at the UV boundary, i.e., C1(m) = 0. Further, to obtain a discrete spectrum this
should be possible only for the discrete values of m. Experience with the Schrédinger potential
suggests, that the potential should first decrease from its UV value and then again start to
increase when approaching the IR singularity, forming a potential-well. This form for the
potential leads to a discrete spectrum.

Let us consider the background for which the conformal factor goes as

b(z) = e — 67(%)04'”, a>0 (3.54)

which implies that the coupling has the form [23]

)" (%)Z(a_l) , (3.55)

where R is some IR scale. The same form was found to be confining for o > 1. In the IR,
the potential (3.51) behaves as

T

Az) = esl

9 2\ 2(e—1)
Vsa(z) ~ R <E> , (3.56)

which is able to produce gapped and discrete states for « > 1. For a = 1, the spectrum is
gapped but continuous after m,, > Vsr(z — oo) = VJp. It is interesting that the study of
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backgrounds that have gapped states leads to the same condition for a as the criteria for the
backgrounds to confine. A more complete discussion on backgrounds and particle spectra
can be found in |23, 79.

It is interesting to study the effects of the parameter « on the field theory particle spectrum
[23]. For the lowest energy states, this must be done numerically but the higher modes can
be analyzed by the WKB approximation. The quantization condition for eigenvalues m,, is
approximately given by the quantization of the action integral

z2
nm = / dz\/m2 — Vsr(z) (3.57)

where the turning points are approximately z; = 0 and 2z, = R(Rm)ﬁ. To probe very
highly exited states, one takes m2 > Vg7 (2) for the intermediate region and fixes Vg r(2) to
its asymptotic value. Now the integral can be calculated as:

R(Rm)ﬁ 1 2\ a—1 2 e 1 .
~ — R J— — a—1 —
e~ m/o dz /1 {mR <R> } (mR) /0 de V1 — 22, (3.58)

From this, one obtains that the highly exited states behave as

a—1

me~n e . (3.59)

For QCD, the experiments and the lattice data suggest that m? ~ n, which is true for o = 2.

3.1.4 Thermodynamics

The equilibrium thermodynamics of a system can be described by the partition function.
The partition function can be calculated as a euclidean path integral on a manifold where
the imaginary time is periodic with a period § = 1/7. In the large-N limit, the canonical
partition function of the Einstein-Dilaton [24] model can be approximated by a sum over the
saddle points:

Z(8) = e 5B =528 4 (3.60)

where S;(3) are classical euclidean on-shell actions for the saddle-point solutions that share
common asymptotics and, in particular, the same inverse temperature § = 1/7. The field
theories of interest are assumed to have 3-dimensional rotational symmetry. In fact there are
two types of euclidean solutions that share this symmetry. One is a thermal gas solution [24]

ds? = by(2)? (A7 + dayda’ + dz?),  No(z) = Ne®®), (3.61)

which is a euclidean version of the vacuum solution (3.2) with the inverse temperature (.
This solution exists for all temperatures. Another finite temperature solution is given by a
black hole solution

1

ds” =" (f(z)

d7? + dz;da’ + f(z)dz2> , A(z) = Ne®®), (3.62)
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which has a horizon at z = z, where f(z,) = 0. What makes this interesting is that there
are different black hole solutions (with different temperatures) that can be characterized by
the values of A(z;) = A,. The Einstein equations for the black hole ansatz are

Boob bf b Boob 4.

- e S 2 97— P2

625 +35 +37 fv’ 65 =3, =39 (3.63)
foLb
Z+3.=0. 3.64
73 (3.64)

The thermal gas solution is related to the confining phase whereas the black hole solution
is identified with the deconfined phase of the matter [24]. A transition between these phases,
corresponds to a deconfinement phase transition in the dual field theory. To study the
transition, one must first calculate the free energies of the corresponding solutions and find
the solution which minimizes the free energy. Furthermore, the solution with the smallest
free energy is identified as the dominating phase.

The free energy of the system i is identified with the euclidean on-shell action, i.e,

S(B)=Fy=Ei— 'S, (3.65)

where F; is the energy and S, ; is the entropy and 3~! = T is the temperature of the system.
For example, in the black hole solution these are related to the mass and the entropy of the
black hole. All other thermodynamical quantities can be calculated from F. For example,
pressure, entropy, specific heat and the speed of sound are given by the relations

oF O*F 5 Se

il R =2, .
a7 C, c (3.66)

:—F Se:— R
b ! arz’ <~ ¢,

The on-shell action for the holographic constructions is generally divergent near the AdS
boundary and some renormalization produce for regulating the action must be used [24, 49,
50]. Another way to get around the divergences is to calculate the difference of the on-shell
actions between the different phases. More precisely, the divergent part of the action is
independent of the specific solution and thus, the difference between the phases leads to a
finite answer, i.e, the divergent parts cancel each other [30].

The UV solution for the black hole ansatz is [76|

4 4
b(z)zbo(z)[lJrQ%Jr--l? f(Z):l—%%+'--7 (3.67)
Az) = A(2)o [1+§Qz412—g3/\2+... , (3.68)

where by(z) and f(z) = 1 corresponds to the thermal gas phase [24]. The solutions differ at
the O(2?) and coefficients in the front of the terms can be related to the enthalpy (7'S) and
to the gluon condensate (Tr [F?]):

TS 22 (Tr[F%) gy — (Tr[F%),

=,
M3N?V; 3(4nm)? 240M3N?

(3.69)
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These quantities are related to the condition that the euclidean black hole metric must be
regular at the horizon [24]. This relation can be easily found for the enthalpy C' by integrating
the equation (3.64), which gives

z , 1
flz)=1- C’/O dz e (3.70)
The derivative of f(z) at the horizon z, is
: 1
f(Zh) - _Cb(Zh)?)J (371)

which can be related to the temperature and the entropy by noting that for the black hole
[34, 35]

_ | f(zn)] g — Ahorizon . b(Zh)SVza
Co4r T 4Gs 4GS
These results can be combined to give the enthalpy C. The gluon condensate € is similarly
related to horizon quantities but cannot be expressed in a simple analytic form [24, 76].

The thermal gas phase exists for all temperatures and is confining for specific dilaton
potentials. Thus, the experience in large-N field theories would suggest that the thermal gas
phase dominates at low temperatures, thus, corresponding to the IR phase of the dual field
theory.

The black-hole phase is more subtle. In fact, for dilaton potentials that lead to confine-
ment, one finds that the solutions exist only for temperatures above some minimum 7;,.
Further, these solutions have two (or more”) separate branches that are called the big and
the small black hole. The different branches are related to the position of the horizon zj,.
The different black hole branches can be also characterized by the value of the 't Hooft
coupling on the horizon, i.e., A(z;) = A,. More precisely, the horizon of the big black hole
with A\, < Ap(Tin) is closer to the UV boundary while the horizon of the small black hole
An > Ap(Thnin) s closer to the IR regime. In general, the temperature T'()\;) is a single valued
function where as A\, (7") can take multiple values.

The difference between the free energies was calculated in [24] and it takes a simple form:
AF FBH — FO C

- =150 — —. 3.73
MEN2Vs — M3N2V; 4 (3.73)

T (3.72)

As noted, for temperatures 0 < T < Ty, the only solution is the thermal gas. Thus, it is
dominates the partition function. For temperatures 7" > T,;, there is a competition between
the free energies and there exists a critical temperature T, after which the black hole phase
dominates, i.e., AF(T > T, > Tyim) < 0. At the critical temperature, there is a phase
transition from the thermal gas to the deconfined big black hole phase. The order of this
transition depends on the specifics of the dilaton potential [24], but for confining backgrounds
it is generally first order as is expected for large- N gauge theories .

In general, there can be more than two branches, and it is possible to have phase tran-
sitions between these branches. Black holes with more than two branches are considered in
the following sections and in the articles II, III and IV.

7This is considered later in section 3.3.2.
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3.2 Model for quarkless QCD

In this section, the model constructed in the articles [22, 23, 24| and its implications are
studied. The construction motivates the choice of a dilaton potential, that is assumed to lead
to the holographic dual for quarkless QCD, and specifies relations between the parameters
of the Einstein-Dilaton system and quarkless QCD. After a short introduction, the results
for thermodynamics, mass spectra and the transport properties are briefly discussed.

The basic properties of quarkless QCD that IHQCD is constructed to mimic, are asymp-
totic freedom at the UV and confinement at the IR. These properties are holographically
encoded in to the specific choice of the dilaton potential. More precisely, the UV beta func-
tion has a scheme independent® form up to the first two terms

BN) = —BoA* — BIA* + .. .. (3.74)
By using equations (3.14) and (3.15) this implies that the dilaton potential must behave as

120, 8 23 . 4\
V()\) = E |:1 + 550)\ + (gﬁo + §ﬁ1) AT+ } , A—0. (375)
Furthermore, the UV identifications of the five dimensional 't Hooft coupling (dilaton) and the
beta function with the corresponding dual field theory coupling and beta function, i.e.,A = \;
and B(A) = Fi(\), imply that the coefficients of the UV beta function are fixed to be the
same as for quarkless QCD [24], so that

22 51

60: 3(477')27 ﬁl

_ Y 2
— =62 (3.76)

The confinement criterion was studied in subsection 3.1.2. Confinement in the dual field
theory was found to imply that the dilaton potential must obey IR asymptotics of the form

V(A) ~ (log \)“= A3 (3.77)

where? @ > 1. Furthermore, to get linear confinement (m? ~ n for large n) one was led to
fix o = 2, which corresponds to the IR potential

V(A) = log A3 + ... (3.78)
A dilaton potential that produces the above asymptotics is [24]

12
T2

where the coefficients V{, V;, V5 are related to the UV beta function by identification

V(A) = 25 {14 VoA + ViX¥? [log (1+ Va0 +1333)] | (3.79)

8 23 4
Vo = 5507 VivVe = (8_168 + 551) ) (3.80)

8See 3.1.1.1.
9 A more general discussion can be found in [23].
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whereas V3 is related to the IR behavior. After fixing the UV and IR asymptotics, as was
done above, this potential has two free parameters, i.e., (V}, V3)'% which can be used to fit
the lattice data [76].

In addition to the parameters directly present in the dilaton potential, there are also more
fundamental ones which are the relations between the gauge and the gravity parameters.

In the original AdS/CFT conjecture, the mapping between the fundamental parameters
is clear and those are found by studying the D-brane solutions in different interpretations
[30] that leads to the relations

912/M = 27y, L= 47Tgsl;lN7 G = 87T6(O/)4g§- (3.81)

In THQCD and also in other phenomenological approaches, this mapping is more complicated.
More precisely, to find the relations between the parameters, one needs to use some additional
information which in general is a comparison between the calculations made on the both sides
of the duality.

The fundamental parameters in THQCD are

M,, L, and [ (3.82)

where the first two are the 5D Planck mass and the AdS scale which are both directly seen in
the THQCD action (3.1). The last one is the fundamental string length, that appears, in the
calculation of the confining (QCD) string tension (3.35). The 5D parameters A, and £ can
be related to the QCD parameters by studying the entropy of the system at the UV regime,
where QCD is asymptotically free. Entropy is calculated using equation (3.72), which in the
UV gives

Vs L

S=——= 3.83

4G5 22 ’ ( )

where the UV solution b(z) = £/z was used. In the UV, the relation between the black hole

horizon and temperature is given by

T = S (3.84)

TZh
which, by using the relation G5 = 1/(167M?N?), leads to the UV entropy

S = 47 (LM,)> N2T?Vj. (3.85)

On the other hand, calculating the d.o.f of quarkless QCD gives [24]

4
S = —m*N2TVs. (3.86)
45
Now, since there is an assumed duality between these setups, these two expressions for the
entropy should coincide which leads to the relation

1

3 _
(LM,) = 2.

(3.87)

10This choice was done in [24]. One could also take the combination (Vz, V3).
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The fundamental string length [, can be related to the confining string tension 7s. A
holographic calculation for confining string tension was considered in the subsection 3.1.2
and the result was

Ty = Type*A ) = Tyby(2,)? = Tyb(2,)?A(z,) 3 (3.88)
where z, is a point where b,(z,) = 0 and Ty = 52 . These equations lead to
ls 1 b(z)A(2,)%?

L \/2rTiL? V2orT. L2 (3:89)
The confining string tension cannot be related to any simple quantity at the UV, but
instead can be compared with result found in lattice simulations. In particular, one can
fix I,/L, by taking a lattice value of T, and use Einstein equations to find a value for'!
b(z)A(2,)?/3.
Interestingly, the ratio [,/ L is also related to the o’ expansion and its value tells how well
5D string theory is approximated by the two derivative action (3.1) [76].

3.2.1 Thermodynamics

The thermodynamics of quarkless QCD can be studied on a lattice and the results indicate
that some of the thermodynamical properties are almost identical for the different numbers
of colors. In the reference [16] the thermodynamics of quarkless QCD were studied for
N = 3...8. In particular, for quarkless QCD with N > 3 the thermodynamical quantities like
pressure and energy density, when normalized to its corresponding UV value (asymptotically
free theory), are almost independent of N. Furthermore, the phase structure seems to be
very similar and, for example, the confined/deconfined transition is first order for all N > 3.
These results indicate, that at least when the thermodynamics of the theory are studied,
the quarkless QCD with N = 3 can be considered approximately as a large-N gauge theory.
Furthermore, this leads to the conclusion that the holographic approach, which works only
with large enough N, offers a new and a reliable way to study thermodynamical properties
of the gauge theories.

In the references [16, 24| the authors compared the lattice data with the holographic
calculations and found a very good fit. IHQCD contains only two free parameters that have
effects on the shape of the thermodynamical quantities. These parameters are (7, V3) and
can be found from the dilaton potential

V() = % {14 VoA + VIXY? [log (14102 + 130?)] 7L (3.90)

The effects of the parameters can be summarized [76] as

1. V; controls how fast the thermodynamic quantities p(T)/T*, e(T)/T* and s(T)/T?
approach their asymptotically free values.

2. V3 changes the latent heat per unit volume, which is related to the first order phase
transition: L, = TAs ~ T,s(T,)

HThere are some subtleties in the value of /L that are related to the identification of the field theory ’t
Hooft coupling with a dilaton A(z) [76].
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According to the authors of articles |24, 76| the best fit to the lattice data is found with the
values

Vi =14, Vi =170. (3.91)
For these values, the latent heat is
Ly,

which matches with the lattice value for N — oo and is slightly larger than the value for
N = 3 where it is roughly L;,/(3)*T = 0.29 |76].

An interesting thermodynamical quantity is the interaction measure also known as the
trace anomaly:

e—3p

T

It is a dimensionless combination of the energy density and the pressure, and it roughly

tells how far away the system is from conformality. For the original AdS/CFT conjecture,

where the gauge theory is exactly conformal, the trace anomaly is always zero. Furthermore,

in the case of IHQCD, where the dual field theory is taken to be quarkless QCD, it is generally
non-zero and gets larger near the phase transition at the IR and vanishes at the UV.

After fixing the parameters (V1, V3) of the dilaton potential, the holographic calculation

of the interaction measure agrees with the results found in the lattice simulation [16]. This

is shown in Fig. 3.1.

(3.93)
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Figure 3.1: Lattice data [16] for the trace anomaly with N = 3...8. The solid line is
calculated using THQCD with the parameters V; = 14, V3 = 170. The value of the trace
anomaly is normalized to psg/T*, where psp is the Stefan-Boltzmann limit. Figure is taken
from [16].
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3.2.2 Mass spectra

The low energy spectrum of quarkless QCD contains various massive states. In this holo-
graphic construction one is able to study the glueballs with the quantum numbers J7¢ =
0*F, 0=, 27F. The operators related to these glueballs are Tr [F?], Tr [F x F| and the energy
momentum tensor 1), = Tr [FWFV“ — %nusz}. As explained in subsection 3.1.3, the holo-
graphic method for studying the dual field theory particle spectra is to consider the spectrum
of normalizable fluctuations around the confining background. In THQCD, the fluctuations
corresponding to various glueballs are the fluctuations of the metric dg,,, dilaton the & and
the axion'? da.

The fluctuations are specified by their properties under SO(3) transformations rotations
and parity P. In more detail, the 0~ glueballs correspond to the fluctuation of axion field
da, the 277 glueballs are related the tensor fluctuations of the metric dg;; . The 07" glueballs
correspond to the combined fluctuations of the dilaton and the scalar part of the metric [79]:

1

(=19 — SX—(z)(sCD’ (3.94)

where X (2) = B(A\(2))/3A(z) and ((z) is constructed so that it is invariant under the radial
diffeomorphism, i.e, it is gauge invariant.
The equation for the fluctuations is

—drs(2) + Ves(2)9(z) = m*y(2), (3.95)

where S is related to 071 and T is related to the tensor mode 27*. Further, the Schrodinger
potentials are

3b 32 X  bX

V5<2) = 2b+1ﬁ+y+3[_)}7 (396)
3b 302
Vr(2) = 5o+ 1w (3.97)

where X (z) and b(z) are solutions to the background equations (3.7) with the dilaton potential
(3.90) and the parameters (3.91). The glueball masses are found by studying the Schrédinger
equation (3.95) and its normalizable solutions.

The mass spectra and the thermodynamical properties calculated using IHQCD can be
compared with lattice data. This comparison is summarized in Table 3.1.

12The axion does not affect the background geometry in the limit where N — oo and is not considered
below. A discussion including the axion field can be found in [76].
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] \ THQCD \ lattice N =3 \ lattice N — oo \ parameter ‘
P/(NT4)|T:2TC 1.2 1.2 - ‘/1 =14
Ly/(NT2) 0.31 0.28 0.31 V3 =170
p/(NTY) 1= | m2/45 72 /45 72 /45 (LM,)? = 1/457>
mo++ /0 3.37 3.56 3.37 ls/L=0.15
T./mo++ 0.167 - 0.177(7)
Ma++ [Mo++ 1.36 1.40(4) 1.46(11)

Table 3.1: The upper half of the table contains the quantities used as input (the boldface
part) to IHQCD and the specific parameters in the 5D theory related to the fitting. In the
lower part, the comparison with existing lattice data is made. The critical temperature 7,
in physical units, is 247 MeV. In the context of IHQCD, one is able to calculate the masses
of exited glueballs. Further, comparing these with the lattice data indicates that the model
gives a good global fit to quarkless QCD. This table is part of the table shown in [76] where
similar comparisons related to the axion a is made.

3.3 Holographic Model for quasi-conformal theories

The first realization of the holographic principle was introduced by Maldacena in 1997. The
conjectured duality between the four dimensional supersymmetric gauge theory and string
theory on five dimensional AdS space was highly non-trivial and a great number of researchers
started to study its possibilities. The original duality has been extended to different setups
and some constructions are able to model non-supersymmetric QCD-like theories to high
accuracy. One interesting class of theories that have been studied are quasi-conformal theories
[12, 13, 15, 71, 72|. Quasi-conformal theories are nearly conformal at some energy scale and,
thus, are more close to the original AdS/CFT than the highly non-conformal quarkless QCD
studied in section 3.2.

Quasi-conformal theories and their holographic duals are the subjects of this section.
Furthermore, the holographic model for the (walking-) technicolor theory is constructed and
some results from the research articles at the end of this thesis are reviewed.

Technicolor theories are models for physics beyond the standard model, that address
the electroweak symmetry breaking, the mechanism through which the elementary particles
acquire masses. Early technicolor theories were modelled with scaled up quantum chromody-
namics (QCD) which also inspired their name. A more detailed introduction to the subject
can be found in [80].

Instead of introducing an elementary scalar particle (the Higgs boson) to explain the
masses of fundamental particles, the technicolor models break the electroweak symmetry and
generate masses for W and Z bosons through the dynamics of new gauge interactions between
new particles called technigluons and technifermions. In particular, it is often assumed that
the technicolor gauge group is SU(Nt¢) under which the massless technifermions transform in
the fundamental representation of the group. The gauge dynamics between the techniparticles
dynamically generates a scale Ap¢ similar to QCD. Therefore, if the tecnifermions transform
also under the electroweak gauge sector of the standard model this will lead to the electroweak
symmetry breaking and to massive W and Z bosons.
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Although technicolor is asymptotically free at very high energies, interactions between
techniparticles must become strong and confining (and hence unobservable) at higher energies
that have been experimentally probed. In particular, no tehcnihadrons have been seen in
particle colliders. This dynamical approach to the electroweak symmetry breaking is natural
and avoids the hierarchy problem of the standard model Higgs, but still has some other
problems that are discussed below.

In order to produce quark and lepton masses, which in the standard model is done by
Yukawa couplings, the technicolor has to be extended to larger gauge group which includes
interactions between new gauge bosons and the standard model matter. The overall picture
is that there is a large extended technicolor (ETC) gauge group in which technifermions,
quarks, and leptons live in the same representations. Then the ETC is broken down to TC'3,
and the standard model quarks and leptons emerge as the TC-singlet fermions. In more
detail, the masses for quarks and leptons are generated by the interactions

1 ~ _
A2 (QreQrc) e Gsmdsm (3.98)
where Agrc is the scale where the ETC is broken. The ETC gauge group where techniquarks
and the standard model particles live in the same representation has its challenges including
the experimental constraints on flavor-changing neutral currents due four Fermi interactions,

ie.,
1 _
Az dsmlsmdsmgsm (3.99)
ETC

and the precision electroweak measurements [81]. Further, it is not known what is the
extended technicolor dynamics.

In order to evade some of the above challenges in TC and ETC, much of the technicolor
research focuses on exploring strongly-interacting gauge theories other than the scaled up
versions of QCD . A particularly active framework is walking technicolor, which is able to
enhance the masses for the quarks and leptons to observed values simultaneously keeping
the ETC-scale large enough to avoid too large flavor-changing neutral currents and has also
other advantages over the scaled up QCD [80].

To get a walking type of theory one needs to have a large number of techniquarks which
is in contradiction to precision electroweak measurements [81]. This problem was recently
solved by Sannino and Tuominen who proposed technicolor models with technifermions living
in higher-dimensional representations of the technicolor gauge group [15, 80]. They argued
that these, more "minimal" models, required fewer flavors of technifermions in order to
exhibit walking behavior, making it easier to pass precision electroweak tests. For example,
SU(3) gauge theory may exhibit walking with as few as two Dirac flavors of fermions in the
adjoint or two-index symmetric representation. This is in contrast to a Banks-Zaks type of
fixed point [71] where at least eight flavors of fermions in the fundamental representation of
SU(3) are required to reach the near-conformal regime.

Whether walking can occur and lead to agreement with precision electroweak measure-
ments is being studied through non-perturbative lattice simulations [82|. At the time of

13In general, the breaking of ETC down to TC may contain intermediate gauge groups.
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writing the experiments at the Large Hadron Collider are expected to discover the mecha-
nism responsible for electroweak symmetry breaking, which will be critical for determining
whether the technicolor framework provides the correct description of nature.

3.3.1 Holographic model

Since the technifermions play an important role in the (walking-) technicolor theories, the
holographic model should, in addition to the gauge degrees of freedom, contain also the
fermionic degrees of freedom. In THQCD, this is done by adding D4-D4 branes to the gravity
background. Furthermore, this introduces a new field to five dimensional action that is
the tachyon field. This new field is mapped to the quark condensate via the holographic
dictionary. The back reaction of the branes to the gravity background has been studied in
the reference [70].

Instead of adding new fields (or D-branes) to the system, the model used in this section
contains only the fields found also from the standard IHQCD. These fields are the metric g,
and the dilaton ®. In this construction, the important effect of the fermions is directly fed
into the form of the dilaton potential V' (®). Thus, the analysis of the model stays identical
to THQCD but with a different dilaton potential.

In THQCD, one used the properties of QCD (asymptotic freedom, confinement and the
linear mass spectra) as an input to model, thus, these properties are also found from the
holographic construction. In particular, the field theory input fixed a specific form for the
dilaton potential at the UV and IR. In the holographic model of quasi-conformal theories (II,
IIT and IV) one uses the beta function

(1-X)?+e

a2
BA) = —eA 1+aX3

(3.100)
as an input. This beta function has specific properties including asymptotic freedom at the
UV, that correspond to the ETC scale, and quasi-conformality near A = 1. Further, the
conformality is approached for e — 0 and for e = 0 the theory has a Banks-Zaks type of fixed
point at A = 1 [71]. The parameter e is identified with e ~ Ny . — N, where Ny . denotes the
critical number of flavors where the dual SU(Ny¢) gauge theory develops an infrared stable
fixed point. Using the input beta function and the equations (3.14), (3.15)

W) = W(0) exp {—g d)\@} , (3.101)

and

V() = 12 (\)? [1 - (%)2] , (3.102)

one is able to construct the corresponding dilaton potential. In technicolor theories, confine-
ment at the IR introduces a scale (At¢), which breaks the electroweak symmetry and, thus,
one needs the potential to confine. The confining property was studied in section 3.1.2. The
IR asymptotics of the confining potential must be of the form

V(A) ~ (log \)7 A% (3.103)
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where!? . 5
P:O‘a L Q=3 azl (3.104)

The input beta function (3.100) leads to the IR behavior

V(A) ~ Asa, (3.105)

which by comparing with the confining property, fixes
c
- =—_. 3.106
- (3.106)

In addition, a logarithmic term in the IR potential (3.103) is needed. In the models considered
in this thesis, the logarithmic dependence is simply added to the dilaton potential

log (F'+ A*)

V) = Vo) |

(3.107)

where V(\) is the potential (3.102) with ¢/a = 3/2 fixed. The logarithmic term!® is con-
structed so that the UV behavior is unaffected and, furthermore, although there excited no
clear (lattice) data for highly existed glueball spectrum to compare with, the spectra of type
m? ~ n similar to QCD is obtained with o = 2. Here F is a parameter which sets the scale
at which confinement effects kick in.

Since the quasi-conformal effects operate, by construction, at A = 1 one certainly expect
F'* > 1 in order to have a large separation between ETC (UV) and TC (IR) scales'®. In
particular, in this thesis one sets F' = 1000.

Since the dilaton potential for quasi-conformal theory is now fixed, one can proceed
similarly to the ordinary IHQCD and calculate various physical quantities including thermo-

dynamics and the mass spectra.

3.3.2 Thermodynamics

In THQCD, thermodynamics can be obtained by adding a black hole to the five dimensional
background. The equations that must be solved are (3.63) and (3.64) which can only be done
numerically. In section 3.1.4 it was discussed, that black-hole can have different branches. In
particular, for the model of quarkless QCD there were two branches called the big and small
black hole. The different branches are characterized by the sign of

4T
_ 3.108
5 (3.108)

For stable branches (phases) this derivative is negative, which in the ordinary THQCD corre-
sponded to the big black hole. Furthermore, there was a single first order transition from the

1A more general discussion is found in [23].
15In the article III authors used a different ansatz.
16This was needed so that on would not get too large flavor changing neutral currents.
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big black hole phase to the vacuum phase, that corresponded to deconfiment/confinement
transition.

The phase structure can be studied by calculating pressure which is given by

1 [~ AT\ 4
= — _ : 1
P 4G5 ., d)\h ( d)\h) b ()\h) (3 09)

The thermodynamics of the quasi-conformal theory have not been studied on the lattice,
but using the above holographic construction one is able to get some information on the
phase structure. The analysis of the model done in III and TV, implies that are more than

two black hole branches and one confining vacuum phase.
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Figure 3.2: The function T'()\,) obtained for e = 0.1, ¢ = 13/(1 4+ ¢), F' = 1000. The
first minimum is at A\, = 0.218, T/A = 0.8 the second at A, = 20, T/A = 0.001. The

corresponding transitions are at 7//A = 0.653 and at 7//A = 0.00098 . The behavior at large
A (inset) can be fitted by 0.00050 log™*" X, .
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Figure 3.3: Left: The equation of state obtained for e = 0.1, ¢ = 13/(1 4+ ¢), F = 1000 for
the region around the first order ETC phase transition at Tyrc = 0.602A. Dotted lines are
unstable, dashed lines metastable (supercooled or -heated). Right: The boxed confinement

transition to the low T phase with p = 0 at Tre¢ = 0.000977A. Dotted lines are unstable,
dashed lines metastable (supercooled or -heated).

The black hole branches are shown in Fig. 3.2 [75] and the corresponding equation of
the state calculated from (3.109) is shown in Fig. 3.3 [75]. Now )\, is the value of 't Hooft
coupling at the horizon, which characterizes the different solutions to the equations (3.63)
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and (3.64). Fig. 3.2 shows that there is a new structure at A, < 1 that corresponds to
a new black hole branch. For A, 2 0.218 the derivative dT/d A is positive and, thus, the
black hole branch is unstable. For some critical A\, < 0.218 there is a phase transition from
the UV (big) black hole branch to another stable black hole branch which corresponds to
temperature Tgrc = 0.602A and A, = 1. This transition can be thought to correspond to
the ETC breaking where the asymptotically free theory gets to the quasi-conformal phase.
For some critical A, < 20, the pressure (3.109) becomes negative and the vacuum phase
starts to dominate. Further, this is identified as a deconfiment/confinement transition that
corresponds to TC transition with Tc = 0.000977A. For e = 0 the TC transition is absent
and the quasi-conformal phase continuous down to zero temperature, so the black hole phase
dominates all the way to T" = 0.

It will be interesting to see, whether the phase structure found in this thesis will coincide
with lattice results to be found in future studies. In this dual construction, the fermion
degrees of freedom were assumed to have an effect only to the form of the dilaton potential
which is clearly not a valid approximation. There is a recent study [70] where the holographic
construction lies on more solid ground. This model can be used to study thermodynamics in
more detail and check the validity of the method used in this thesis.

3.3.3 Mass spectra and quasi-normal modes

The mass spectrum can be found similarly as for IHQCD, but with the dilaton potential
corresponding to quasi-conformal theories (3.107). The equations for the gauge-invariant
scalar and the tensor fluctuations can be found in section 3.2.2. Note, that in those equations
the beta function is not (3.100) but must be calculated numerically from the dilaton potential
(3.107), which leads to logarithmic corrections in the input beta function (3.100). The result
of this analysis can be found in IV and the findings are reviewed in the Fig. 3.4.
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Figure 3.4: Left: The scalar (dashed line) and tensor (continuous line) potentials in the IR
large-z TC region for e = 0.1, ¢ = 13/(1+¢), F' = 1000 (note the logarithmic scale). The two
lowest scalar and tensor excitations are plotted and the ordering is Eg o < Er o < Eg1 <
Er 1. Right: The scalar and tensor potentials in the ETC (UV, small-z) region (note linear
scale). For z — 0 both potentials approach ~ 15/ (42?).
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The Schrédinger potential for both modes has similar structure which can be found in
the Fig. 3.4, where also the lowest energy levels are shown. These are the glueballs related
to the confining TC phase.

There is also a promising looking dip in the potentials near the ETC scale, which in
principle could confine (Fig. 3.4). In fact, it was found that the dip can only produce
metastable states and these states have tunneling actions of the order of O(1) (article IV).
Furthermore, the limit e — 0 was considered and its effect to the TC glueball mass was found

to reproduce a Miransky scaling [83]

szexp(—f%), D::(§4-%>w. (3.110)

The quasi-normal modes which are the finite temperature counterparts for glueballs, have
non-zero imaginary parts. These were also studied in the research article IV. As expected,
it was found that the imaginary part of the quasi-normal mode in the TC regime vanishes
when the temperature is taken to zero. Another interesting aspect is that near the ETC
scale, as can be seen from the Fig. 3.5, the peak in the potential “melts” away when the
temperature is increased. This implies that even the lowest metastable states of the ETC

region are almost entirely imaginary.
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Figure 3.5: The scalar potential Vf(s)(u, zp) for A, = 0.138, 0.329, 0.520, 0.711, 1.0, z, =
0.57, 0.719, 0.724, 0.92, 2.96, 7T ~ 1/z,. The peak disappears when approaching the UV

regime (when A, decreases).



Chapter 4

Summary

In this thesis, the AdS/CFT conjecture and its generalizations were studied. First, the ba-
sic blocks of the duality were introduced and some steps that lead to the conjecture were
discussed. Next generalizations of the duality were studied and dual models for some IR phe-
nomena in field theory were considered. After the general discussion, the specific model used
in the thesis, the Improved Holographic QCD (IHQCD), was introduced and its application
to quarkless QCD was studied. It was found that THQCD is able to fit the thermodynamics
of quarkless QCD computed with lattice simulations to very high accuracy. In addition, the
holographic construction was able to produce roughly the correct masses for QCD glueballs.
The THQCD model used in this thesis can also be used to study the transport properties of
a strongly coupled plasma, which makes it a very interesting theoretical laboratory to study
the quark-gluon plasma seen at RHIC and LHC [67, 84]. Finally, IHQCD can be extended
to model condensed matter physics as was done in [85].

After a short introduction to technicolor theories, the corresponding holographic model
was constructed. The construction did not contain fermions as explicit degrees of freedom
but, instead, the dilaton potential of ordinary IHQCD was modified to reflect their dynamics
(I, TIT and IV). It was done so that it reproduced the expected structure for the theory,
namely a new quasi-conformal regime at intermediate energies. Next, the phase structure of
the dual quasi-conformal theories was reviewed. It was found that it had tree distinct phases,
free ETC gluons at large temperatures, a quasi-conformal phase and the confining phase
at low temperatures. In addition, mass spectra and quasi-normal modes were considered.
Thermodynamics of technicolor theories has not been studied on the lattice, so it remains
to be seen whether the phase structure of concrete field theory will look similar to what was
found in this work.

In the (walking-) technicolor theories the fermionic degrees of freedom play a crucial role
and, thus, should be included in the holographic model too. This can be done by introducing
flavor branes to the system that modifies the background geometry. The vacuum of this
theory have recently been studied by Jarvinen and Kiritsis [70], in which they found the
Miransky scaling that indicates that the method used in this thesis shares some properties
with the setup including dynamical fermions. Their construction can be straightforwardly
generalized to finite temperatures and this remains to be done.
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