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Abstract
In an accelerator facility, it is crucial to have a particle

beam with high intensity and small emittance in a timely
manner. The main challenges restraining the availability
of the beam to the user and limiting the beam intensity in
storage rings are a lengthy optimization process, and the
injection losses. The setup of the Injection Beam Line (IBL)
depends on a large number of configurations in a complex,
non-linear, and time-dependent way. Reinforcement Learn-
ing (RL) methods have shown great potential in optimizing
various complex systems. However, unlike other optimiza-
tion methods, RL agents are sample inefficient and have to
be to be trained in simulation before running them on the
real IBL. In this research, we train RL agents to learn the
optimal injection strategy of the IBL for the Cooler Syn-
chrotron (COSY) at Forschungszentrum Jülich. We address
the challenge of sim-to-real transfer, where the RL agent
trained in simulation does not perform well in the real world,
by incorporating domain randomization. The goal is to in-
crease the beam intensity inside COSY while decreasing
the setup time required. This method has the potential to be
applied in future accelerators like the FAIR facility.

THE COSY INJECTION BEAM LINE IBL

Figure 1: The COSY facility at the research centre in Jülich
(FZJ), depicted are the cyclotron (right), the cooler syn-
chrotron COSY (left), and the interconnecting injection
beam line IBL. For the latter its division in sections is indi-
cated with colors and numerals.
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The topical injection beam line IBL is a single transfer
beam line of the accelerator facility at the Research Centre
in Jülich, Germany. Here preaccelerated negatively charged
hydrogen- and deuteron ions from the cyclotron are trans-
ported to the Cooler Synchrotron COSY [1,2], where they
are accumulated and accelerated after being injected with
multi-turn stripping foil (charge exchange) injection. An
overview over the facility is given in Fig. 1. The beam line
is 94 m long and the transported hydrogen (deuteron) ions
have a kinetic energy of 45 MeV (76 MeV). The IBL can
be subdivided into eight sections where bent sections alter-
nate with straight sections. At the beginning of each section
profile grids can be applied to measure the beam profile in
horizontal and vertical directions. At the beginning of the
sections 1, 2 and 8, a Faraday cup can be inserted to measure
the intensity of the beam at these locations. Additionally, at
the beginning and the end of the IBL a viewer screen can be
inserted to record an image of the beam cross section.

Our efforts to optimise the whole IBL with a Bayesian
Optimiser have been described recently [3]. In contrast in
this work we focus on the optimisation of the injection with
manipulation of section 8 only with Reinforcement Learning
RL. Section 8 consists of 4 quadrupoles and 7 steerers that
the reinforcement agent can manipulate autonomously. Its
purpose is to match the transferred beam from the previous
sections to the acceptance of COSY.

REINFORCEMENT LEARNING
A standard reinforcement learning (RL) problem involves

an agent interacting with an environment by following a pol-
icy to maximize a reward. The state of the environment
at each time step is denoted by 𝑠𝑡 ∈ 𝑆. For simplicity,
we assume that the state is fully observable. The policy
𝜋(𝑎 |𝑠) defines a probability distribution over actions given
a state, where each query to the policy samples an action
𝑎 ∈ 𝐴 from the conditional distribution. The reward func-
tion 𝑟 : 𝑆 × 𝐴 → R provides a scalar value that reflects the
desirability of performing an action at a given state. For
convenience, we denote 𝑟𝑡 = 𝑟 (𝑠𝑡 , 𝑎𝑡 ). Figure 2 shows the
standard RL agent learning cycle. The goal of the agent is
to find an optimal policy that maximizes the expected return
over a horizon. The expected return is the sum of discounted
rewards obtained during an episode starting from a fixed
initial state. The multi-step return is given by:

𝑅𝑡 =
∑𝑇

𝑡 ′=𝑡 𝛾
𝑡 ′−𝑡𝑟𝑡 ′

where 𝛾 ∈ [0, 1] is a discount factor and 𝑇 is the horizon of
each episode. The state value function is the expected return
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Figure 2: At each time step, the agent observes the current
state 𝑠𝑡 of the environment, selects an action 𝑎𝑡 based on
its current policy 𝜋, receives a reward signal 𝑟𝑡+1 from the
environment, and transitions to the next state 𝑠𝑡+1.

over the horizon 𝑉 (𝑠𝑡 ) = E[𝑅𝑡 |𝑆 = 𝑠𝑡 ]. If each episode
starts in a fixed initial state, the expected return of following
a given policy can be rewritten as the expected return starting
at the first step:

𝐽 (𝜋) = E[𝑅0 |𝜋] = E𝜏∼𝑝 (𝜏 | 𝜋 )
[∑𝑇−1

𝑡=0 𝑟 (𝑠𝑡 , 𝑎𝑡 )
]

where 𝑝(𝜏 |𝜋) represents the likelihood of a trajectory 𝜏 =

(𝑠0, 𝑎0, 𝑠1, ..., 𝑎𝑇−1, 𝑠𝑇 ) under the policy 𝜋, and the state
transition model 𝑝(𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ) is determined by the dynam-
ics of the environment [4]. The objective during learning
is to find an optimal policy 𝜋∗ that maximizes the expected
return of the agent 𝐽 (𝜋):

𝜋∗ = arg max𝜋 𝐽 (𝜋)

In the domain of accelerators and many other real-world
applications, it is difficult or expensive to obtain a large and
diverse dataset of real-world examples to train an agent. In
such cases, domain randomization in simulation can be used
to generate a large number of simulated environments with
different variations of the task, and use these environments
to train the agent. This technique can help the agent to learn
to adapt to different situations and generalize well to new, un-
seen environments. Additionally, domain randomization can
also help to overcome the issue of overfitting, where an agent
may memorize specific details of the training environments
rather than learning to generalize to new environments [5].

REINFORCEMENT LEARNING AT COSY
The current injection optimization process at COSY is

performed manually by adjusting the last section of the IBL,
specifically section 8, which consists of 4 quadrupoles and
7 steerers. This optimization is carried out directly against
the beam current inside COSY. However, this approach is

time-consuming and does not guarantee consistent beam
characteristics inside the storage ring.

An alternative approach involves optimizing the phase
space of the beam at the injection point, rather than the beam
current inside the storage ring. To achieve a high-intensity
beam, the phase space of the injected beam should intersect
with the acceptance of the storage ring and the strip foil. By
ensuring a consistent phase space at the injection point, the
beam characteristics inside COSY remains consistent. To
implement this approach, a camera is deployed at the end of
the IBL, and optimization is performed directly towards the
camera outputs. The operator sets the target of the beam as
𝜇𝑥 , 𝜇𝑦 and 𝜎𝑥 , 𝜎𝑦 . 𝜇𝑥,𝑦 , 𝜎𝑥,𝑦 correspond to the center and
focus of the desired beam respectively. The optimization is
performed consequently to match the beam at the camera
with the desired beam. By setting the right parameters, a
consistent beam with high intensity inside the storage ring
can be obtained.

To incorporate this process, we consider the reward to de-
pend not only on the state and action but also on a stochastic
goal 𝑔. The reward function subsequently becomes 𝑟 (𝑠, 𝑎, 𝑔)
and the agent’s policy is then modified to incorporate the
goal, resulting in 𝜋(𝑎 |𝑠, 𝑔) [6]. This allows the agent to learn
a policy that is adaptable to various goals at the injection
point.

Domain Randomization Training a policy under a sin-
gle dynamics model may limit its performance when applied
to real-world scenarios with different dynamics. To address
this, we incorporate a range of dynamics variations in the
training process, allowing the policy to adapt and perform
well under different conditions.

These variations in the environment dynamics are man-
aged using a set of parameters, denoted by 𝜌. At the be-
ginning of each training episode, 𝜌 is randomly sampled
and remains constant throughout the episode. The tran-
sition dynamics of the environment are then defined as
𝑃(𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 , 𝜌). By training the policy to adapt to different
variations in the environment dynamics, the resulting policy
can better generalize to the dynamics of the real world.

Agent Training Process To optimize the injection pro-
cess at the COSY accelerator, we employ a soft actor-critic
(SAC) agent [7], which is an extension of the actor-critic
method particularly suited for continuous action spaces. The
SAC algorithm is a model-free, off-policy algorithm that
optimizes a stochastic policy in an online setting. The key
components of the algorithm are the actor neural network
and the critic neural network. The actor network is responsi-
ble for generating the policy distribution, which defines the
probability of selecting each action given a state. The critic
network, on the other hand, estimates the expected return
for each state-action pair. SAC is chosen for its sample effi-
ciency and its ability to optimize the action entropy, which
leads to better generalization and exploration in continuous
action spaces.
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Figure 3: An optimization instance for the agent in simula-
tion. The blue dots are the simulated particles and the red
dot is the target. Both images resembles the state of the IBL
at the injection point into COSY. The left figure illustrates
the beam before the optimization and the right figure after
the optimization by the RL agent.

The training process for the soft actor-critic agent involves
the following steps:

1. Randomly sample the dynamic parameters 𝜌 and the
goal 𝑔𝑡 at the beginning of each episode.

2. The agent observes the current state 𝑠𝑡 and the goal 𝑔𝑡 .
3. The agent selects an action 𝑎𝑡 based on its current policy

𝜋(𝑎 |𝑠𝑡 , 𝑔𝑡 ), which is optimized for continuous action
spaces.

4. The agent receives a reward signal 𝑟𝑡 = 𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝑔𝑡 )
from the environment, which incorporates the goal and
the dynamic parameters.

5. The agent transitions to the next state 𝑠𝑡+1, determined
by the environment dynamics 𝑃(𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 , 𝜌).

6. Update the critic by optimizing the Q-function
𝑞(𝑠, 𝑎, 𝑔, 𝜌).

7. Update the actor by gradient ascent to increase the ex-
pected reward from the Q-function. The soft actor-critic
agent also optimizes the action entropy to encourage
better exploration and generalization.

8. Repeat steps 2-7 until convergence.
This approach allows the agent to effectively learn a policy

that adapts to a continuous action space, achieves sample
efficiency, and promotes exploration and generalization. Fig-
ure 3 displays a trained agent optimizing the beam at the
injection point to match a dictated target in simulation. Incor-
porating domain randomization with this approach allows
the agent to optimize the injection process for COSY, while
accounting for the continuous nature of the action space and
the complex dynamics of the environment.

PREPARATIONS FOR APPLICATION
AT COSY

To demonstrate the transfer from simulation to real world
a dedicated beam time at the COSY IBL has been requested
and was granted by the COSY beam-time advisory com-
mittee CBAC [8]. The beam time benefits from the EPICS
control system [9], which allows for automated control and
read-out of accelerator parameters not only by operators but
as well by algorithms. The EPICS control system for the
IBL was introduced in late 2021.

To enable the topical Reinforcement Studies the hard-
and software of the viewer at the end of the IBL have been
modernised recently:

In order to record the beam cross section at the location
of the charge exchange foil, the foil has to be moved out
and instead a viewer screen has to be inserted at the same
location. This process had to be performed manually at
the location of the viewer. After the mentioned hardware
upgrade this can now be triggered by the EPICS system and is
then carried out automatically by a drive belt system. So both
the image at the screen and influence of the manipulations
of the agent on the injected beam at COSY can be measured
successively without timely manual interactions in the COSY
tunnel. Additionally the viewer image is now read by EPICS
and directly analysed: As a result the centre of gravity as
well as the width of the beam are now accessible to the user
and hence the algorithms.
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