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Abstract
Quantum walks hold enormous potential applications in various areas such as quantum
computing and quantum simulation. Discrete-time quantum walks on a ladder offer greater
prospects compared to traditional quantum walks, especially in addressing physical problems in
higher-dimension coupled systems. Here we give an experimental proposal of quantum walks on a
two-leg ladder using linear optics, and further apply it to non-Hermitian systems by introducing
loss-based non-unitary evolutions. Non-Hermitian systems under nonreciprocity-induced
evolution present an exotic phenomenon, known as the non-Hermitian skin effect (NHSE). In a
two-leg non-Hermitian system with the same preferred direction of NHSE, the direction has
recently been found to reverse when interchain couplings are introduced. Based on quantum walks
on a ladder, we also propose an experimentally feasible scheme to demonstrate the direction
reversal of NHSE. Through the simulated results we show that particles on each chain accumulate
to the preferred boundary driven by nonreciprocal hopping, while particles are transported in the
opposite direction when interchain hopping is allowed, clearly demonstrating the existence of
reversed NHSE. Our work further expands the application of the quantum walk platform and
opens a door for the experimental investigation of reversed NHSE.

1. Introduction

Since quantum walks was proposed by Aharonov et al [1], relevant research has made significant progress,
primarily focusing on two major research areas. First, from the perspective of quantum computing, quantum
walks have been studied in solving quantum problems such as cellular automata [2], quantum search
algorithms [3, 4] and universal quantum computation [5]. Secondly, quantum walks have been explored as a
tool for quantum simulation in studying various physical problems, including topological phases [6, 7],
Anderson localization, decoherence [8–10] and others. In addition, experimental schemes for implementing
quantum walks have also been proposed, such as experiments with ions [11], atoms [12], and
photons [13–17].

The dynamics of quantum walks are described by iterating a unitary time-step operator, where the
dynamical process of quantum walk can be considered as the simulation of time evolution governed by the
effective Hamiltonian Heff, i.e. U= e−iHeff [16]. In this sense, quantum walks serve as an effective method of
simulating Hamiltonian Heff with a quantum flash simulator. This is a powerful theoretical concept that
allows for the application of many physical intuitions about lattice systems to quantum walks. Compared to
traditional one-dimension quantum walks, the quantum walks on a ladder need to connect two
one-dimension quantum walks and offer greater application prospects [18]. Indeed, it is an interesting
example of two-dimensional quantum walks. In this paper, we focus on a experimental scheme of quantum
walks on a two-leg ladder and its application in a coupled double-chain non-Hermitian lattice model by

© 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft

https://doi.org/10.1088/1367-2630/ad0c84
https://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/ad0c84&domain=pdf&date_stamp=2023-11-23
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-4272-2883
mailto:gnep.eux@gmail.com


New J. Phys. 25 (2023) 113039 X Wang et al

introducing loss-based non-unitary evolutions. Recently, two-dimensional quantum walks has been
implemented by different photonic platforms, including continuous-time quantum walks [19–21] and
discrete-time quantum walks [22–25]. Most of these methods are implemented using integrated photonics.
Their platforms are small in size and highly integrated. However, there are also some challenges, such as
complex manufacturing and limited adjustability due to their fixed structures. Compared to these methods,
our scheme is based on bulk optics implementations, which is composed of linear optical elements that are
easier to manipulate and expand. Therefore, the bulk optics we use can overcome these difficulties and has
the advantages of high flexibility and strong adjustability, which further expands its application scope and
can be applied to different optical fields. In fact, the two methods can also be organically combined and
converted [26]. Our method also provides a good reference for using integrated photonics to study
non-Hermitian physics via quantum walks on the two-leg ladder.

Following the discoveries of non-Hermitian Hamiltonians in physical systems [27–30], a wealth of
intriguing physical phenomena and applications have been explored [31–44]. In the non-Hermitian lattice
system with nonreciprocity, the non-Hermitian skin effect (NHSE) describes the phenomenon of
localization of eigenstates under the open boundary condition (OBC) [45]. These phenomena are not the
same as Hermitian topological systems thus have attracted much attention recently, such as new theories to
interpret NHSE and describe the related topological properties [46–54], extensions of NHSE from one
dimension to higher dimensions [55–58], and experimental demonstration of the NHSE [16, 59–63]. In
one-dimensional non-Hermitian lattice, the skin modes are generally localized in the preferred direction of
particle accumulation. The preferred direction is associated with nonreciprocal hopping. If the hopping
strength between the right and left is unequal, particles are ready to accumulate in the direction where the
hopping strength is greater. The directional transport caused by nonreciprocity-induced non-Hermiticity has
great application prospects for other dynamics. Recently, Li et al [64] proposed the reversed NHSE with the
opposite direction to the preferred direction in the Hatano–Nelson (HN) chains. In a double-chain HN
model with nonreciprocal hopping, the direction of the NHSE is reversed by introducing interchain
coupling. Studies of nonreciprocal transmission and reversed NHSE show theoretical interest and
application prospects [59, 65, 66]. As is well-known, the NHSE has been observed in some experimental
platforms, such as linear optical systems, optomechanical systems, superconducting circuits, and topolectric
circuits [16, 59–63, 67–71], which gives us a good inspiration to experimentally study reversed NHSE with a
quantum walk platform.

In this paper, unlike previous discussions in [64] that focused on the dynamics of quantum walks, we
primarily investigate the topic from the perspective of the effective Hamiltonian Heff of quantum walks,
which is a key factor for analyzing quantum dynamics. We compute and analyze the effective Hamiltonian
along with its corresponding topological phase diagram. Additionally, we introduce a more intuitive physical
quantity, the mean center of mass of the system, to characterize the degree of inversion. These further
enhance our understanding of topological property and the reversed behavior in quantum walks at its core.
Moreover, we provide the concrete and feasible experimental proposal based on the idea of the quantum
walk on a ladder, thereby making the study of reversed NHSE more practically significant. Here we propose a
specific scheme using linear optics to demonstrate the reverse NHSE via a non-unitary quantum walk on a
ladder. To simulate the non-Hermitian quasicrystal with interchain coupling, we consider a quantum walk
on a ladder governed by a 2× 2× n Floquet operator. Interchain coupling and nearest neighbor hopping can
be achieved by the walker changing the leg of the ladder. Without interchain hopping, the eigenmodes are
accumulated at the right boundary. Whereas, when interchain hopping is introduced, a reversal of direction
occurs, and the localization direction of eigenmodes is towards the left boundary. Our proposal is
experimentally feasible with the current technologies and can be extended in future studies of
non-Hermitian quasicrystals with coherent coupling.

2. Protocol of quantumwalks on a ladder and linear optical realization

Here we study the discrete-time quantum walk. For one-dimension quantum walk, the probability
distribution spreads at each step along a straight line. In higher dimensions, the distribution can further
expand in different directions depending on the predetermined protocol, such as quantum walks on a
cylinder [72] or on graphs [73]. Here, we focus on a specific type of quantum walks called quantum walks on
a ladder, which involves connecting two one-dimensional quantum walks together, as shown in figure 1(a).
The Hilbert space of the system can be expressed as the tensor product space of two legs, spatial sites and the
coinsH=Hleg ⊗Hsite ⊗Hcoin. The state of the walker is typically labeled by its leg position |y⟩, site position
|x⟩. The coin state |u⟩ denotes the state of the single qubit, which can choose the spin state (spin up, spin
down), vertical polarization, horizontal polarization or their mixture.
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Figure 1. (a) The diagram of quantum walks on a two-leg ladder. The particle moves up and down or left and right depending on
its coin state. (b) The normalized spatial probability distributions Pt(x) = Pat (x)+ Pbt (x). Insets: the spatial probability
distributions of different site position x on leg a or leg b: Pat (x) or P

b
t (x), respectively. The initial state of the walker is prepared as

|Φ0⟩=
∑

x,y=a,b,u=0,1ϕ
y,x,u
0 |y,x⟩⊗ |u⟩ with normalized factor ϕy,x,u

0 . Here we choose x= 0, u= 0 and ϕa,0,0
0 = ϕb,0,0

0 = 1/
√
2,

i.e. |Φ0⟩= (|a,0⟩⊗ |0⟩+ |b,0⟩⊗ |0⟩)/
√
2. Other parameters: θ = 0.25π and θ↑ = θ↓ = 0.5π.

First, we consider a conventional discrete-time quantum walk along a straight line in the x direction,
governed by the operator Uline

x = SxC(θ) with the shift operators

Sx =
∑
x

∑
y

|y,x+ 1⟩⟨y,x| ⊗ |0⟩⟨0|+ |y,x− 1⟩⟨y,x| ⊗ |1⟩⟨1|, (1)

and the coin operator

C(θ) =
∑
x

∑
y

|y,x⟩⟨y,x| ⊗ e−iθσ2/2.

Here σ1,2,3 are the standard Pauli matrices. The coin states |0⟩ and |1⟩ are the eigenstates of the Pauli matrix
σ3. For quantum walks on a ladder, we need special shift operators so that walkers can hop between the two
legs. The unitary evolution for hopping between the two legs is Uleg

y = S↑C(θ↑)S↓C(θ↓) with

S↓ =
∑
y

∑
x

|y,x⟩⟨y,x| ⊗ |1⟩⟨1|+ |y− 1,x⟩⟨y,x| ⊗ |0⟩⟨0|,

S↑ =
∑
y

∑
x

|y,x⟩⟨y,x| ⊗ |0⟩⟨0|+ |y+ 1,x⟩⟨y,x| ⊗ |1⟩⟨1|, (2)

The goal is to keep walkers on both sides of the ladder, hence we combine the two kinds of walking evolution,
one step evolution on the ladder are governed by this Floquet operator

U= Uleg
y Uline

x = S↑C(θ↑)S↓C(θ↓)SxC(θ) . (3)
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Figure 2. Schematic of experimental setup. The signal photon is injected into the subsequent interferometric network. The
parameters of the initial states are controlled via the setting angles of three half-wave plates (HWPs), two quarter-wave plates
(QWPs) and a beam displacer (BD) followed by a polarizing beam splitter (PBS). Here BD0 is used to stratify the leg into upper
and lower legs. We define the upper path as the leg a and the lower as the leg b, respectively. The unitary evolutions U are realized
by a set of wave plates and an interferometer involving two BDs. After state preparation, the solid lines inside BDs represent their
respective intrachain hopping for each leg, and dotted lines represent interchain hopping between two legs. The compensated
crystal (Cr) here is used to compensate the undesired optical path length difference between the different paths. The total time
step of quantum walks is taken t=N. Output photons are detected by the avalanche photodiodes (APDs).

The evolved state after t step is expressed as |Φt⟩= Ut · · ·U2 ·U1|Φ0⟩= Ut|Φ0⟩. In figure 1(a), we show a
simple two-leg ladder diagram (y= a,b) where walkers can stay on both sides of the ladder. In order to
ensure the unitary evolution, the boundary conditions are applied in the y direction. Here we specify that the
particles which will hop beyond the y boundary in the next step do not jump up or down, and they still stay
at the original site position. Consider this simple case of a quantum walker moving on a ladder, we obtain the
spatial probability distributions in figure 1(b). We find the probability amplitudes spread rapidly on two legs.
Compared with traditional quantum walks, using specific protocols for walking on the ladder provides the
walker with additional options for walking and extends the time and space resources available to walkers,
which will have greater application prospects.

In general, the lossless experimental setup can be described by a unitary operator, and here we present a
simple and general method for designing experimental implementations of quantum walks on the two-leg
ladder. We use the optical arrangement of BDs, polarization beam splitters, phase shifters and polarization
wave plates to move the heralded single photon to each location on the ladder according to the walking
protocol. It should be mentioned that it does not matter what field we use here. We chose photons here for
the convenience of discussion, because high-power sources, even entangled radiation, are available [74].
However, we note that it is equally possible to achieve optical circuits for electrons, atoms, or any other type
of radiation.

As shown in figure 2, the whole scheme is mainly composed of three parts: preparation of system initial
state, implementation of evolution operator, and measurement. The heralded single photons can be injected
into photonic circuits. Then one of these yielded pairs of photons is heralded as a signal photon into the
subsequent interferometric network, and the other serves as a trigger. For initial quantum state preparation,
the heralded single photons first pass through a polarizing beam splitter (PBS) and a half-wave plate (HWP).
The polarization states |H⟩= (1,0)T and |V⟩= (0,1)T can be arbitrarily rotated using a combination of two
quarter-wave plates (QWPs) at φ and an HWP at ϑ, where the rotation operator

C(θ) = RQWP (φ1) ·RHWP (ϑ) ·RQWP (φ2) (4)

with the unitary matrix forms

RQWP (φ) =

(
cos2φ+ i sin2φ (1− i) sinφcosφ
(1− i) sinφcosφ sin2φ+ icos2φ

)
,

and

RHWP (ϑ) =

(
cos2ϑ sin2ϑ
sin2ϑ −cos2ϑ

)
,

respectively. We can implement any rotation operator with three wave plates (QWP-HWP-QWP), only one
or two wave plates are generally required in practice. The optical axis of beam displacers (BDs) is cut so that
the vertically polarized photons are transmitted directly and the horizontally polarized photons are displaced
into a neighboring spatial mode. Then the photons are separated into two paths by a birefringent calcite
beam displacer (BD0). Here we define the upper path as leg a and the lower as leg b, and the site positions of
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the walker on both legs are initialized to x0 = 0. The initial state is |Φ0⟩=
∑

x,y=a,b,u=0,1ϕ
y,x,u
0 |y,x⟩⊗ |u⟩ with

normalized factor ϕy,x,u
0 determined by the angles of five wave plates close to (BD0), u= |H⟩, |V⟩ denoting

the polarized state.
To implement the operator Uline

x , the shift operator Sx can be realized by BDs, and the coin rotation
operator C(θ) can be realized by three wave plates (QWP-HWP-QWP). It should be noted that the optical
axes of the BDs realizing Sx should be perpendicular to that of the first BD0. After passing through these BDs
realizing Sx, the photons on each leg are independently divided into the front and back paths depending on
their polarization states, realizing photons’ hopping between site positions on respective leg where moving
forward x+ 1 corresponds to |H⟩ and moving backwards x− 1 corresponds to |V⟩.

The experimental implementation of the operator Uleg
y is similar to that of Uline

x except for interchain shift
operators S↑ and S↓, as shown in figure 2. The operators C(θ↑) and C(θ↓) are implemented as well as C(θ).
The operators S↑ and S↓ are introduced to couple the upper leg a and lower leg b. The optical axis of placed
BDs realizing S↑ and S↓ should be parallel to that of the BD0 originally used to generate leg layering.
Therefore, the photons of the same site position index x hop up and down from one leg to another controlled
by their polarization states, i.e. the photons hop up from |b,x⟩ to |a,x⟩ and down from |a,x⟩ to |b,x⟩. The
compensated crystals here are inserted on these appropriate paths to compensate the undesired optical path
length difference between the different paths [75], ensuring that all optical paths that need to interference are
of the same length.

To realize the mutual interchain hopping between two legs, we also need to consider the boundary
conditions. Two BDs are respectively needed to achieve S↑ and S↓, and the design of the optical path
combines with coin rotation operators C(θ↑) and C(θ↓). We first realize the hopping from leg a to leg b and
then realize the hopping from leg b to leg a. During this process, the operator T1 is used here, and its
expression is as follows

T1 =
∑
x

∑
y=a,b

|y,x⟩⟨y,x| ⊗
(
e−i(ξ+ζ)/2 cosϖ/2 −e−i(ξ−ζ)/2 sinϖ/2
ei(ξ−ζ)/2 sinϖ/2 ei(ξ+ζ)/2 cosϖ/2

)
, (5)

where the second term of equation (5) represents the general form of the SU(2) matrix with ξ,ζ,ϖ as Euler
angle parameters. The operator T1 can rotate any polarization state into another and C(θ) is just its
subgroup of SU(2) [76]. Similarly, the operator T1 is experimentally easy to be implemented by three wave
plates (QWP-HWP-QWP). We rotate these wave plates’ angles of the operator T1 to make the related
photons’ polarization states completely into |V⟩, ensuring that horizontally polarized photons on the leg b
cannot jump out of the boundary in the y direction while the shift operator S↓ acts. When there is a single
coin state |H⟩ on site positions, we only need to use a HWP at 45◦. After passing through two BDs, the
operator T2 is used to eliminate the effect of T1 transformation and the exchange of |H⟩ and |V⟩ on the
evolved states. If we consider their matrix forms, they satisfy the relation T1T2 = 1. The purpose of the T1

and T2 setting here is to ensure that the boundary conditions are met. Especially, when realizing the shift
operator S↑ which controls the hopping of photons only in a vertically polarized state, we can operate it by
using an HWP at 45◦ to turn |V⟩ into |H⟩, and then add the same HWP for transformation back for the leg b.
For the leg a we add three wave plates for transformation back into |V⟩. The theoretical angles of the wave
plates are mentioned above can also be calculated according to the preceding coin states. In addition,
operators T1 and T2 can also be used to adjust the hopping strength between the upper and lower leg
depending on the needs of the experiment.

Then the walkers iteratively evolve step by step. After every time step, photons are detected by the
detectors, recording photons coincidence events. Through measurement we can obtain the number of
photons of leg a and leg b at different positions nx,yt and their sum is the total number of photons nt after t
steps. Experimentally, we can obtain Pt(x) = (

∑
y=a,b n

x,y
t )/nt or other observable quantities, further

demonstrating the feasibility of the experimental scheme.
According to the above discussion and figure 2, when the site positions take x=−N . . .N, we can obtain

the expression between the number of BDs and the position of the walker after the whole evolution:
number (BD) = 3N, where the BD used for state preparation is not considered, and the quantitative relation
between the optical depth of cascade interferometers and the position of the walker

OD= 3N− 1. (6)

In fact, even if the lattice positions are not extended, the number of BDs implementing the one-step
evolution obeys a linear polynomial function due to the properties of quantum walks on a ladder and
experimental devices. We thus obtain that the number of BDs obeys a linear function with the positional
scale of the quantum system. In some experimental schemes, the similar relationship tends to change

5



New J. Phys. 25 (2023) 113039 X Wang et al

quadratically as function of N [77, 78]. Besides that, the relationship between the optical depth and the
positional scale of the quantum system also obeys a linear function in our scheme. These results confirm that
our proposed optical circuits have the low complexity of and is easier to implement.

3. Reversed NHSE in quantumwalks on a ladder

The NHSE is often related to nonreciprocity, and usually occurs in a system with on-site gain/loss. To
uncover the propagation mechanism of particle accumulation on the quantum dynamics level, we present a
proposal to observe and understand the reversed NHSE in the quantum-walk dynamics driven by a
non-unitary topological Floquet operator.

First, we consider a two-leg discrete-time quantum walk without hopping between legs, governed by this
Floquet operator

U0 = C(θ1)S2C(θ0)MC(θ0)S1C(θ1) (7)

with the shift operators

S1 =
∑
x

∑
y=a,b

|y,x⟩⟨y,x| ⊗ |1⟩⟨1|+ |y,x+ 1⟩⟨y,x| ⊗ |0⟩⟨0|,

S2 =
∑
x

∑
y=a,b

|y,x⟩⟨y,x| ⊗ |0⟩⟨0|+ |y,x− 1⟩⟨y,x| ⊗ |1⟩⟨1|,

and the coin rotation operator C(θ) =
∑

x

∑
y=a,b |y,x⟩⟨y,x| ⊗ e−iλyθσ2/2, where the walker’s position is

labeled by x, and y= a,b denotes the two legs of the ladder and λa =−λb = 1. Note that the form of this
operator U0 here slightly differs from the previous basic model because the various symmetries of the lattice
structure are considered. Particles jump in both directions at once driven by the shift operators Sx, but here
particles jump in one direction driven by the operators S1 and S2. Non-unitarity is introduced by the
gain-loss operator withM=

∑
x

∑
y=a,b |y,x⟩⟨y,x| ⊗ (|1⟩⟨1|+ e−η|0⟩⟨0|) .

To investigate the effect of interchain coupling on the direction of NHSE, we couple the two legs of the
ladder by introducing two specific shift operators S3 and S4 correlated with interchain hopping, where these
operators S3 and S4 are similar variations of operators S↑ and S↓. The new Floquet operator is then

U= C(θ1)S2C(θ2)S4C(θ3)MC(θ3)S3C(θ2)S1C(θ1) (8)

with

S3 =
∑
x

∑
y̸=y ′∈{a,b}

|y,x⟩⟨y ′,x| ⊗ |0⟩⟨0|+ |y,x⟩⟨y,x| ⊗ |1⟩⟨1|,

S4 =
∑
x

∑
y̸=y ′∈{a,b}

|y,x⟩⟨y ′,x| ⊗ |1⟩⟨1|+ |y,x⟩⟨y,x| ⊗ |0⟩⟨0|.

Note that S3 and S4 are different from S↑ and S↓ in that they make particles hop up and down between two
legs at the same time. Here we take θ2 + θ3 = θ0. Under the effect of the two operators, depending on the
coin state, the walker leaps from one leg to another and keeps the same site.

The dynamical process of quantum walk can be considered as the simulation of time evolution governed
by the effective Hamiltonian Heff, i.e. U= e−iHeff [16, 63]. Starting from the Floquet operator U0 without
interchain coupling in the momentum space, we obtain

U0 (k) =

(
Ua

0 (k) 0
0 Ub

0 (k)

)
, (9)

where Ua
0(k) and Ub

0(k) correspond to momentum operators of the walker on the legs a and b, respectively.
We first consider

Ua
0 (k) = d0σ0 + id1σ1 + id2σ2 + id3σ3, (10)

where

d0 = ω+ coskcos(θ1λa)cos(θ0λa)−ω+ sin(θ1λa) sin(θ0λa)+ iω− cos(θ1λa) sink,

d1 =0,

6
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d2 =−ω+ cosk sin(θ1λa)cos(θ0λa)−ω+ cos(θ1λa) sin(θ0λa)− iω− sin(θ1λa) sink,

d3 =−ω+ sinkcos(θ0λa)+ iω− cosk, (11)

and ω± = (1± e−η)/2. When k approaches 0, d3 is similar to the sink+ iη/2 term which appears in the
Su–Schrieffer–Heeger model with NHSE, which provides an intuitive understanding for NHSE [16, 45].

The effective Hamiltonian Heff(k) can be defined through Heff(k) = ilnU(k), the right- and
left-eigenvectors of Heff(k) are the same as those of U(k). Then we have Ua

0(k)|ϕ±(k)⟩= E±(k)|ϕ±(k)⟩ and
Ua†

0 (k)|χ±(k)⟩= E∗±(k)|χ±(k)⟩. Here E±(k) = d0 ±D with D= i
√
d21 + d22 + d23. We also have

|ϕ±⟩=
1√

−2D2 ± 2id3D

(
id1 + d2
±D− id3

)
,

|χ±⟩=
1√

−2D2 ± 2id3D

(
id∗1 + d∗2

∓D∗ − id∗3

)
. (12)

We can obtain

Ua
0 (k) = E+

|ϕ+⟩⟨χ+|
⟨χ+|ϕ+⟩

+ E−
|ϕ−⟩⟨χ−|
⟨χ−|ϕ−⟩

, (13)

and it follows that Ha
0−eff(k) can be written as

Ha
0−eff (k) = i

[
ln(E+)

|ϕ+⟩⟨χ+|
⟨χ+|ϕ+⟩

+ ln(E−)
|ϕ−⟩⟨χ−|
⟨χ−|ϕ−⟩

]
. (14)

For the leg b, since there is no interchain coupling, we just replace λa by λb and follow the same calculation.
Thus, we obtain the effective Hamiltonian of U0(k)

H0−eff (k) =

(
Ha

0−eff (k) 0
0 Hb

0−eff (k)

)
. (15)

Next, we consider the Floquet operator U in equation (8) with interchain coupling in the momentum space.
For the convenience of a more intuitive expression, the matrix decomposition is carried out according to
whether there is an interchain coupling term,

U(k) = G1 (k)V(k)G2 (k) , (16)

where the uncoupled terms G1(k) and G2(k) are

G1 (k) =

(
Ga
1 (k) 0
0 Gb

1 (k)

)
,G2 (k) =

(
Ga
2 (k) 0
0 Gb

2 (k)

)
, (17)

with

Ga(b)
1 (k) =

(
g111 g112
g121 g122

)
,Ga(b)

2 (k) =

(
g211 g212
g221 g222

)
, (18)

where

g111 = cosλa(b)θ1/2cosλa(b)θ2/2− eik sinλa(b)θ1/2sinλa(b)θ2/2,

g112 =−cosλa(b)θ1/2sinλa(b)θ2/2− eik sinλa(b)θ1/2cosλa(b)θ2/2,

g121 = sinλa(b)θ1/2cosλa(b)θ2/2+ eik cosλa(b)θ1/2sinλa(b)θ2/2,

g122 =− sinλa(b)θ1/2sinλa(b)θ2/2+ eik cosλa(b)θ1/2cosλa(b)θ2/2;

g211 = e−ik cosλa(b)θ1/2cosλa(b)θ2/2− sinλa(b)θ1/2sinλa(b)θ2/2,

g212 =−cosλa(b)θ1/2sinλa(b)θ2/2− e−ik sinλa(b)θ1/2cosλa(b)θ2/2,

g221 = sinλa(b)θ1/2cosλa(b)θ2/2+ e−ik cosλa(b)θ1/2sinλa(b)θ2/2,

g222 = cosλa(b)θ1/2cosλa(b)θ2/2− e−ik sinλa(b)θ1/2sinλa(b)θ2/2.
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Figure 3. Topological phase diagram driven by Heff(k). The blue and pink regions represent topological nontrivial regions with
opposite topological numbers, and the region along phase boundaries represents trivial topology. The star-shaped points with
different parameters θ2 = θ3 = 0.4π (red star), θ2 = 0.35π, θ3 = 0.5π (blue star) and θ2 = 0.2π, θ3 = 0.8π (black star),
respectively. Other parameters are λa =−λb = 1, η= 3 and θ1 = 0.2π.

The interchain coupling is contained in V(k), which can be expressed as

V(k) =


0 −ω+ sinλaθ3 −ω− +ω+ cosλaθ3 0

ω+ sinλbθ3 0 0 ω− +ω+ cosλbθ3
−ω− +ω+ cosλbθ3 0 0 −ω+ sinλbθ3

0 ω− +ω+ cosλaθ3 ω+ sinλaθ3 0

 . (19)

According to equations (16)–(19), we obtain the final Hamiltonian Heff(k) by Heff(k) = ilnU(k).
We focus on the Floquet operator U, which is the most commonly used one for investigating

discrete-time quantum walk dynamics. Despite the lack of a simple form, Heff(k) is a non-Hermitian
Hamiltonian, which features NHSE and reflects the breakdown of the conventional bulk-boundary
correspondence. When governed by the non-unitary operator, the quantum walk with the directional
hopping and the alternative gain–loss contributes to the nonreciprocal accumulation of population and
further generates NHSE. Especially, taking the interchain coupling into account, the direction of NHSE for
U0 and U becomes different.

According to the effective Hamiltonian calculated above, we can find that some energy spectra have
become complex spectra due to non-Hermiticity. Subsequently, the spectral winding number is defined
as [46]

w=
1

2π

ˆ 2π

0

d

dk
arg [H(k)− E0]dk (20)

whereH(k) denotes the effective Hamiltonian of U(k), and E0 denotes a point selected in the complex energy
plane. In figure 3, we show the topological phase diagram. Here the topology we refer to is the spectral
topology. For blue and pink regions in figure 3, energy spectra may form a closed loop as k traverses from 0
to 2π, indicating the system is topologically nontrivial. However, energy spectra cannot enclose any region
when along phase boundaries, indicating the system is topologically trivial with w= 0 and a vanishing NHSE
which will be confirmed in the following discussion.

3.1. Numerical simulation and analysis
In the above model, the system’s non-Hermiticity gradually increases the localization of the eigenstates to the
boundary direction, as expected in the NHSE regime. This behavior can be easily quantified by calculating
the average eigenstate localization in the form of the mean center of mass (MCOM) of the amplitude squared
of all eigenvectors [79], defined as

MCOM=

∑N
x=0 (x+ 1)A(x)∑N

x=0A(x)
, (21)

where A(x) = 1
N+1

∑N
n=0 |⟨x|ϕn⟩|2 indicates the mean eigenvector probability amplitude with eigenvector

|ϕn⟩ and x= 0, . . . ,N. Apparently, the MCOM can directly characterize the direction of NHSE, where the

8
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Figure 4. Spatial distribution of all eigenstates. (a)–(c) Eigenstate distributions (under OBC) of quantum walks without the
interchain hopping with θ2 = θ3 = 0.4π (red star), θ2 = 0.35π, θ3 = 0.5π (blue star) and θ2 = 0.2π, θ3 = 0.8π (black star),
respectively. (d)–(f) Eigenstate distributions (under OBC) of quantum walks with the interchain hopping. Insets: the mean
eigenvector amplitude A(x) (green lines) under OBC for the two quantum walks governed by U0 and U respectively. The vertical
dashed lines indicate the MCOM in each case. Other parameters: λa =−λb = 1, η= 3, θ1 = 0.2π and N= 180 .

MCOM approaching to N means eigenstates are mostly accumulated on the right boundary and the MCOM
approaching to 0 means eigenstates are accumulated on the left boundary. Then we plot the eigenstate
distributions and MCOM under OBC in figures 4(a)–(f).

The two legs are completely decoupled when the quantum walk is governed by U0. Since the probability
of the hopping to the right for each leg is higher than that to the left, the preferred direction of the
nonreciprocal hopping is right. As illustrated in figures 4(a)–(c), we can clearly see the MCOM is near the
right boundary, which displays the localization of the skin eigenmodes near the right edge.

Once the interchain coupling is turned on, both the complex spectra and the eigenmodes of the coupled
system behave differently from those of the uncoupled ones, as shown in figures 3 and 4. As the quantum
walk is governed by U, the direction of eigenmode accumulation is reversed, the MCOMmoves near the left
boundary and the eigenmodes are accumulated to the left boundary, as shown by the eigenmode
distributions in figure 4(d). As a comparison, eigenstate distributions corresponding to the other two cases
are also plotted in figures 4(e) and (f). There is no skin effect inversion in figure 4(f) and an absence of
NHSE in figure 4(e). However, we can see that once the interchain coupling is introduced, eigenstates
gradually begin to accumulate towards the boundary opposite to the preferred NHSE direction and the
MCOM starts moving from right to left, and even the disappearance of NHSE occurs during this process.
This further suggests that the reversed NHSE can be generated by introducing interchain couplings.
However, there is a limit to its strength. The direction of NHSE completely reverses only when coupling
strength exceeds the limit.

The evolved state after t step is expressed as |Φt⟩=
∑

x,y=a,b,u=0,1ϕ
x,y,u
t |y,x⟩⊗ |u⟩. To determine the

direction of photons accumulation, we consider the normalized spatial distributions

Pt (x) =
∑

y=a,b,u=0,1

∣∣∣ϕ̃x,y,u
t

∣∣∣2 = ∑
y=a,b,u=0,1

∣∣∣∣∣∣ ϕ
x,y,u
t |y,x⟩⊗ |u⟩√∑
x,y=a,b,u=0,1 |ϕ

x,y,u
t |2

∣∣∣∣∣∣
2

, (22)

where ϕ̃x,y,u
t is the normalized final state. We now numerically analyze the direction of particle accumulation

of the quantum walks governed by U0 and U, respectively. Subsequently, the normalized spatial probability
distribution Pt(x) for U0 or U is numerically shown in figures 5(a) and (b). The reversed NHSE can be
observed in the quantum walk with a finite number of steps, which is extremely friendly and convenient for
experimental realization. Next, we consider the quantum walk with two legs, whose position x only takes 0 or
1. To eliminate the effect of the oscillatory dynamics under a finite system size, we take a time average of the
spatial distribution here, Pt(x) =

1
t

∑t
τ=1Pτ (x). Through numerical simulations, we can obtain the

9
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Figure 5. Normalized spatial distribution. The normalized spatial probability distributions Pt(x) for U0 (a) and U (b),
respectively. (c)–(f) Numerical results of the normalized spatial distribution Pt(x) for a quantum walk scheme governed by U0

and U, with two lattice positions and total time steps t= 10, (i.e. x only takes 0 or 1). Different from (c), (d), for U
′
0 and U

′
we

switch the positions of S1 and S2 in U0 and U in (e), (f). The initial state of the system is prepared as |Φ0⟩= (|a,0⟩⊗ |H⟩+
|b,0⟩⊗ |H⟩)/

√
2. Other parameters: θ2 = θ3 = 0.4π, λa =−λb = 1, η= 3 and θ1 = 0.2π.

probabilities of the walker being at x= 0 and 1 for both legs. From figure 5(c), we can observe that the
nonreciprocal accumulation mostly localizes to the right boundary x= 1 which indicates the existence of
NHSE induced by U0. Compared with U0, the direction of this nonreciprocal accumulation is reversed when
the system is governed by U in figure 5(d). This clearly indicates the direction of the NHSE is reversed when
introducing the interchain coupling by S3 and S4. Meanwhile, over a longer evolution, we find the reversed
NHSE is consistently dominant, as depicted in figures 5(a) and (b). In such a small system under the OBC,
whether S1 or S2 acts first in the Floquet operator may also affect the results. To exclude the effect on the
reversal of NHSE, we can switch the positions of S1 and S2 in Floquet operators. Numerical simulation in
figures 5(e) and (f) shows that the reversal of NHSE still appears and has nothing to do with S1 and S2, which
further proves that it is indeed the result of interchain couplings.

For better characterizing the direction of particle accumulation, we further define the average position
occupation of the final state as x̄t =

∑
x,y=a,b,u=0,1 x |ϕ̃

x,y,u
t |2. By fixing θ1 = 0.2π and x= 0, after a long time

evolution, we calculate the deviation of the final average position for the two quantum walks governed by U0

and U under OBC

∆=
1

2N
|x̄U0 − x̄U|, (23)

which reflects the strength of reverse accumulation and visually displays the degree of reversed NHSE. A
phase diagram versus two rotation angles θ2 and θ3 is shown in figure 6. We find that θ2 and θ3 may
represent the coupling strength and further control the degree of particle reverse accumulation. The phase
boundary of this diagram is as same as that in figure 3, further indicating the topological phase diagram is
experimentally accessible by measuring∆.

3.2. Experimental proposal
Based on the idea of linear optical realization of quantum walks on a ladder in figure 2, the experimental
scheme for the demonstration of reversed NHSE via quantum walks is illustrated in figure 7. The walker’s
position x only takes 0 or 1. The whole scheme is mainly composed of three parts: preparation of system
initial state, implementation of non-unitary Floquet operator, and measurement. The heralded single
photons can be generated via type-I spontaneous parametric down-conversion in a β-barium-borate (BBO)
nonlinear crystal, pumped by a CW diode laser. As discussed above, we can also implement the required
rotation operator with one or two wave plates. Here we prepare the initial state |Φ0⟩= (|a,0⟩⊗ |H⟩+
|b,0⟩⊗ |H⟩)/

√
2. Taking this quantum walk driven by U0 and U with 2θ1 = θ2 = θ3 = 0.4π as an example,

we list the angles of the wave plates in figure 7.
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Figure 6. The deviation∆ of the final average position for the two quantum walks. Quantum walks governed by U0 and U,
respectively, under OBC at total time step t= 40 versus the two angles θ2 and θ3. Here the particle position starts at x= 0 and is
limited to hopping between x=N and x=−N. We can see that the darker the color, the more obvious the degree of reverse
accumulation. These dashed lines represent approximate boundaries. Other parameters: λa =−λb = 1, η= 3, θ1 = 0.2π and
N= 10.

Figure 7. Schematic of experimental setup for reversed NHSE. Photon pairs are generated via spontaneous parametric
down-conversion (SPDC). One of these yielded pairs of photons is heralded as a signal photon into the subsequent
interferometric network, the other serves as a trigger. Here BD0 is used to stratify the leg into upper and lower legs. We define the
upper path as the leg a and the lower as the leg b, respectively. Two non-unitary evolutionsU0 (a) and U (b) are realized by a set of
wave plates and an interferometer involving two BDs. After state preparation, the solid lines inside BDs represent their respective
intrachain hopping for each leg, and dotted lines represent interchain hopping between two legs. Photons beyond positions 0 and
1 and lost from the PPBS are collected by APDs (black boxes). Finally, output photons are detected by APDs after every time step.

For the Floquet operator U0, the coin rotation operator C(θ) can be realized by HWPs. It should be
noted that the optical axes of the BDs realizing the shift operators S1 and S2 should be perpendicular to that
of the first BD0. After passing through BD0, the photons on each leg are independently divided into the front
and back paths, realizing photons’ hopping between position 0 and 1 for each leg. Especially, when realizing
the shift operator S2 which controls the hopping of photons only in a vertically polarized state, we can
operate it by using an HWP at 45◦ to turn |V⟩ into |H⟩, and then add the same HWP for transformation
back. To distinguish the direction of particle propagation, the system must evolve under the OBC. Thus,
photons that hop out of the boundary escape from the systems. But we still need to collect these photons to
monitor the experimental efficiency.

The non-unitarity operatorM is implemented by a partially PBS (PPBS), whose effect is characterized
as a selective-loss operatorME =

∑
x

∑
y=a,b |y,x⟩⟨y,x| ⊗ (|H⟩⟨H|+

√
1− p|V⟩⟨V|) with 0⩽ p⩽ 1, realizing

a partial measurement at every time step. Thus, we obtain the mapM= QMEQ, with η =− 1
2 ln(1− p)

and the matrix Q=
∑

x

∑
y=a,b |y,x⟩⟨y,x| ⊗σ1. The Pauli matrix σ1 can be realized by an HWP at 45◦.

To have the complete quantum channel map, a second Kraus operator is present, specifically
MĒ =

∑
x

∑
y=a,b |y,x⟩⟨y,x| ⊗

√
p|V⟩⟨V|. In this way,M†

EME +M†
ĒMĒ = 1. Hence, to monitor non-unitarity

dynamics, one then can collect the photons lost due to the effect of operatorME and compare analytically
them with the photons that pass through at each time step.
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The experimental implementation of the Floquet operator U is similar to that of U0 except for interchain
shift operators S3 and S4, as shown in figure 7(b). The implementation of S3 or S4 needs to consider both S↑
and S↓. To realize the mutual interchain hopping between two legs, two BDs are respectively needed to
achieve S3 or S4, and the design of the optical path also needs to be combined with coin rotation operators C2

and C3. Here we consider step-by-step implementation. First, we realize the hopping from leg a to leg b and
then realize the hopping from leg b to leg a. During this process, we just rotate the related HWPs’ angles
corresponding to the operator T1 to make the photons’ polarization states completely into |V⟩. After passing
through two BDs the operator T2 is used to transform the polarization of the photons back to the original
polarization states. We find the setting angles of these wave plates to implement T2 and T1 are same. When
realizing the shift operator S2 and S4 which controls the hopping of photons only in a vertically polarized
state, we can operate it by using an HWP at 45◦ to turn |V⟩ into |H⟩, and finally add the same HWP for
transformation back. Through the operators S1 and S2, photons beyond positions 0 and 1 will be lost and
collected. Thus in such a small system under the OBC, whether S1 or S2 acts first in the Floquet operator may
affect the reversal of NHSE. To exclude their effect, we can switch the positions of S1 and S2, adjust the angles
of partial wave plates as needed and perform a contrast experiment.

Finally, after every time step photons are detected by four APDs, recording photons coincidence events.
Then we can obtain the number of photons at different positions, na,0t , na,1t , nb,0t , nb,1t and their sum is the
total number of photons nt after t steps. Experimentally, we can obtain Pt(x) = (

∑
y=a,b n

u,x
t )/nt and

x̄t = x(
∑

u=a,b n
u,x
t )/nt. Based on the two observable quantities, we can observe the accumulation direction

and inversion degree of particles, and simulate the phase diagram, further demonstrating the feasibility of
the experimental scheme. It needs to be emphasized that this experimental scheme can be easily extended to
higher lattice space, we can take advantage of the lattice position after the black boxes in figure 7 and the
design can be based on the quantum walks on a ladder at positions x=−N . . .N in figure 2.

4. Conclusion

In this paper, we propose an experimental scheme to demonstrate quantum walks on a ladder in optical
systems. This scheme is concrete and feasible because it is mainly based on linear optical elements which are
easily regulated. As an application, we also propose an experimental scheme to demonstrate the direction
reversal of NHSE using quantum walks on a two-leg ladder. Our approach is to use the photonic quantum
walk platform to simulate the quantum dynamics of a one-dimensional double-chain non-Hermitian
quasicrystal with interchain coupling. We calculate the effective Hamiltonian of the quantum walk and
corresponding mean center of mass of eigenmodes, which can intuitively characterize the evolution behavior
of quantum systems in nature. Through numerical simulations, we find that for the non-unitary quantum
walk on a ladder with two legs, the direction of photon accumulation is opposite to the preferred
nonreciprocal accumulation direction of previously decoupled both legs when the interchain hopping is
introduced. Due to the existence of loss in the system, this particle nonreciprocal accumulation is the
manifestation of NHSE. Our scheme thus unveils a physical phenomenon of direction reversal of NHSE
existing in non-Hermitian systems with interchain coupling. This may provide a feasible route for the
development and application of techniques from non-Hermitian and nonreciprocal physics.
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