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We present a complete analytical solution to the quantum problem of a particle in the Yukawa potential, 
using supersymmetry and a systematic expansion of the corresponding super-potentials. Results for the 
critical screening of the ground state improve in several figures existing results based on both numerical 
solutions and approximation methods. Our calculation to order (a0/D)2 for the squared ground state 
wavefunction at the origin, which enter in darkonium transitions, yields a correction of π4/216 to results 
based on variational techniques.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
The Yukawa potential, given by

V (r) = −α
e−r/D

r
, (1)

was proposed in Ref. [1] by H. Yukawa as an effective non-
relativistic description of the strong interactions between nucle-
ons. It appears in many areas in physics and chemistry like 
atomic physics, plasma physics, electrolytes, colloids, and solid 
state physics [2] [3][4] [5], [6], [7]. It is known as Debye-Huckel 
potential in plasma physics, Thomas-Fermi potential in solid state 
physics or generically as screened Coulomb potential.

The quantum Yukawa potential has a long history, in spite of 
which, to the best of our knowledge, there is no complete analyt-
ical solution, either in closed form or as a perturbative expansion. 
It is well known that for a finite screening there is a finite number 
of bound states [6] [8]. The corresponding energy levels depend 
on the value of the screening distance D , and approximate calcu-
lations for some of them are available in the literature, based on 
variational methods at different sophistication level [5] [9][10][11], 
perturbation theory using the Coulomb potential [6] [12][13] [14]
[15] or closely related potentials like the Hulthén potential [16]
[17] as the unperturbed system, or the so-called logarithmic per-
turbation theory [18] [19] and other methods [20][21] [22][23][24]
[25][26].

More recently, the Yukawa potential regained interest as a pos-
sibility to solve the core-cusp problem of dark matter density pro-
files [27][28][29]. Also, the formation of darkonium is possible for 
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some gauge theories of dark matter [30][31] [32][33][34]. Our own 
interest in this problem arose in the study of a U (1)D gauge theory 
for tensor dark matter [35][36]. The corresponding phenomenology 
requires to deeply understand the Yukawa potential and to cal-
culate the bound state wave function and their derivatives at the 
origin.

The intractability of the Yukawa potential and its importance in 
different fields of physics triggered the numerical studies of this 
problem [37][38][39], which shows that Coulomb degeneracy is 
broken and for a given n, states with higher l have a higher energy 
than lower l states. At some point, there is a crossing of levels i.e., 
states of a given n, l have a higher energy than states with n + 1, l′ . 
The critical screening values (those for which a given state goes to 
the continuous) have been also estimated numerically solving the 
Yukawa potential for n = 0 to n = 9 [37].

In this work, we present a complete analytical solution to the 
quantum Yukawa problem. The solution is based on the hidden 
supersymmetry of this potential and on a perturbative expansion 
of the superpotentials.

The radial Schrodinger equation for the Yukawa potential[
− h̄2

2μ

(
1

r2

d

dr
(r2 d

dr
) − l(l + 1)

r2

)
+ V (r)

]
R(r) = E R(r), (2)

can be reduced to

Hlul =
[
− d2

dx2
+ vl(x)

]
ul(x) = εlul, (3)

with the effective potential

vl(x) = l(l + 1)

2
− 2

e−δx, (4)

x x
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where x = r/a0, R(r) = u(x)/x and δ = a0/D , with the Bohr radius, 
a0 = h̄

μcα . The energy levels are given by

El = 1

2
μc2α2εl, (5)

where μ is the reduced mass of the system. We factorize the 
Yukawa Hamiltonian as

Hl = ala
†
l + C(l, δ), (6)

where

al = − d

dx
+ Wl(x), a†

l = d

dx
+ Wl(x). (7)

The superpotential Wl must satisfy

W 2
l (x, δ) − W ′

l (x, δ) + C(l, δ) = l(l + 1)

x2
− 2

x
e−δx, (8)

where W ′
l ≡ dWl

dx . If we succeed in solving the Ricatti equation (8)
we also generate a factorization for the partner Hamiltonian de-
fined as

H̃l = a†
l al + C(l, δ) = − d2

dx2
+ ṽl(x), (9)

where

ṽl(x) = W 2
l (x) + W ′

l (x) + C(l, δ) = vl(x) + 2W ′
l (x). (10)

The two-component Hamiltonian

H =
(

a†
l al 0

0 ala
†
l

)
, (11)

can be written in terms of the charges

Q 1 =
(

0 −ial

ia†
l 0

)
, Q 2 =

(
0 al

a†
l 0

)
. (12)

These operators satisfy the N = 2 supersymmetry algebra [40][41]

{Q i, Q j} = 2δi j H, [Q i, H] = 0. (13)

Explicitly, the Hamiltonian is given by

H =
(

− d2

dx2 + U+(x, l) 0

0 − d2

dx2 + U−(x, l)

)
, (14)

with the associated potentials

U±(x, l) = W 2
l (x) ± W ′

l (x). (15)

Expanding the effective potential in powers of δ we get

W 2
l (x, δ) − W ′

l (x, δ) + C(l, δ) = l(l + 1)

x2
− 2

x

+ 2δ − δ2x + 1

3
δ3x2 + .... (16)

The expansion on the right hand side (r.h.s.) of this equation is 
also an expansion in powers of x. The δ-independent terms cor-
respond to the Coulomb potential. The O(δk) term on the r.h.s. is 
O(xk−1). Working to O(δk), we find polynomial solution in x for 
Wl(x, δ), with the advantage that powers of δ and x are correlated. 
The general solution can be written as

Wl(x, δ) = wc(x, l) + a1δ + (a2δ
2 + a3δ

3 + a4δ
4...)x

+ (b3δ
3 + b4δ

4 + b5δ
5 + ...)x2

+ (c4δ
4 + c5δ

5 + c6δ
6 + ...)x3 + ..., (17)

C(l, δ) = c(l) + y1(l)δ + y2(l)δ
2 + y3(l)δ

3 + ... (18)
2

Here, wc(x, l) is the δ-independent part which corresponds to the 
Coulomb problem. The coefficients required to a given order in δ, 
can be fixed matching powers of x on both sides of this equation.

We find that to O(δ2), the Yukawa problem is factorizable in 
the sense of Ref. [42]. A family of supersymmetric Hamiltonians 
{H0(l) ≡ Hl, H1

l , H2
l .., Hr

l } with “shape invariant” potentials as de-
scribed in [43] can be built and the spectrum can be straightfor-
wardly obtained as

εr,l = − 1

(l + r + 1)2
+ 2δ

− [(l + 1)(l + 3

2
) + 3r(r + 2(l + 1))]δ2, (19)

which when written in terms of the principal quantum number 
n = l + r + 1 reads

εn,l = − 1

n2
+ 2δ − 1

2
[3n2 − l(l + 1)]δ2. (20)

The angular momentum quantum number takes the values l =
n − 1,n − 2, ..., 1, 0. The eigenstate un,n−1(x) satisfies a†

n−1un,n−1 =
0, a condition that can be used to obtain its explicit form as

un,n−1(x, δ) = Nn,n−1e− ∫
Wn−1(x,δ)dx

= Nn,n−1xne− x
n + 1

4 nδ2x2
. (21)

States with lower values of l can be obtained iteratively with the 
aid of the operator al

un,n−s(x) = Nn,n−san−sun,n−s+1, (22)

where s = 2, ..., n, and Nn,n−s are δ-dependent normalization fac-
tors.

To O(δ3) and beyond we loose shape invariance. However, su-
persymmetry is always present and can be used to solve the prob-
lem. First, we expect the condition a†

n−1un,n−1 = 0 to be satisfied, 
which yields

un,n−1(x, δ) = Nn,n−1e− ∫
Wn−1(x,δ)dx

= Nn,n−1xne− x
n e[ n

2 δ2− n
6 (n+1)δ3] x2

2 − n
6 δ3 x3

3 . (23)

Using this function in Eq. (3) we can check that it is indeed an 
eigenfunction with eigenvalue

εn,n−1 = − 1

n2
+ 2δ − n(n + 1

2
)δ2

+ 1

3
n2(n + 1)(n + 1

2
)δ3. (24)

Since Hl and Hl−1 are not longer supersymmetry partners, states 
with lower l cannot be obtained simply applying the lowering op-
erator al . In order to surmount this difficulty, we solve the super-
symmetric partner

H̃l ≡ H̃ (1)

l ≡ a†
l al + C(l, δ) = − d2

dx2
+ ṽ(1)

l (x), (25)

following the same procedure used to solve Hl for l = n − 1. First 
we re-factorize H̃ (1)

l as

H̃ (1)

l = ã(1)

l (ã(1)

l )† + C̃ (1)(l, δ), (26)

where

ã(1)

l = − d

dx
+ W̃ (1)

l (x), (ã(1)

l )† = d

dx
+ W̃ (1)

l (x). (27)
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The new superpotential W̃ (1)

l (x) must satisfy an equation similar 
to Eq. (16), but with ṽ(1)

l on the right hand side. Solving this equa-
tion we obtain the solution of this potential for l = n − 2 as

ũ(1)
n,n−2(x) = e

∫
W̃ (1)

n−2(x)dx = xne− x
n

× e
1
2 nδ2− 1

12 n(n2+3n−2)δ3x2− 1
18 nδ3x3

. (28)

The corresponding energy is

ε̃
(1)
n,n−2 = − 1

n2
+ 2δ − (n − 1

2
)(n + 2)δ2

+ 1

3
(n − 1

2
)n2(n + 5)δ3 = C̃ (1)(n − 2, δ). (29)

Now we can find the eigenstate of Hl for l = n − 2 using super-
symmetry and the double factorization

H̃ (1)
n−2 = ã(1)

n−2(ã
(1)
n−2)

† + C̃ (1)(n − 2, δ),

= a†
n−2an−2 + C(n − 2, δ). (30)

The state ũ(1)
n,n−2(x) satisfy

[a†
n−2an−2 + C(n − 2, δ)]ũ(1)

n,n−2 = ε̃
(1)
n,n−2ũ(1)

n,n−2. (31)

Acting on the last equation with an−2 we realize that

un,n−2 = Nn,n−2 an−2ũ(1)
n,n−2 (32)

is an eigenstate of Hl with eigenvalue

εn,n−2 = ε̃
(1)
n,n−2. (33)

Eigenstates and eigenvalues for l = n −3 can be calculated applying 
now this procedure to the superpartner of H̃ (1)

l . Continuing this 
process we will eventually reach the lowest l = 0 level, completely 
solving the Yukawa problem to order O(δ3). The complete set of 
eigenvalues to O(δ3) is given by

εn,l(δ) = − 1

n2
+ 2δ − 1

2
[3n2 − l(l + 1)]δ2

+ n2

6
(5n2 + 1 − 3l(l + 1))δ3. (34)

The algorithm used to order δ3 can be applied to any order of 
the expansion of the Yukawa potential. We find that the energy 
levels depend in general of n2 and L2 ≡ l(l +1) and to order δk can 
be written as

εn,l(δ) =
k∑

i=0

εi(n
2, L2)δi . (35)

The coefficients εi(n2, L2) for i = 0, 1, 2, 3 are given in Eq. (34). The 
next four coefficients in the series are

ε4(a,b) = − a

96
(77a2 + 55a − 30ab − 15b2 − 6b),

ε5(a,b) = a2

160
(171a2 + 245a − 70ab − 45b2 − 50b + 4),

ε6(a,b) = − a2

2880
(4763a3 − 2070a2b + 11580a2 − 945ab2

−2940ab + 1057a − 340b3 − 205b2 − 30b),

ε7(a,b) = a3

8064
(22763a3 − 10857a2b + 84700a2

−4095ab2 − 26145ab + 19677a − 2163b3

−3843b2 − 2058b + 36). (36)
3

Fig. 1. Ground state energy of the Yukawa potential calculated with the Taylor series 
to order δk with k = 3, 6, 9 and the reconstruction of the function ε10(δ) with the 
Padé approximant [5/5](δ).

Our formalism yields the numerical factors in the coefficients 
of the Taylor series given in Eq. (36), but not the i-dependence 
of these coefficients, which would allow us to estimate the con-
vergence radius of the series from the limit of the ratio εi/εi−1

when i → ∞. However, even in the case of divergent series, we 
can use the information contained in the partial sum to a given 
order k, to reconstruct the complete function εn,l(δ). Indeed, the 
appearance of divergent Taylor series is an old problem in quan-
tum mechanics and quantum field theory [44] [45][46][47] [48], 
and several methods are available to sum them up, i.e., to recon-
struct the function whose Taylor expansion yields the series [49]. 
These methods apply to convergent or divergent series and the re-
construction is more precise as we take more terms in the Taylor 
series. We choose to work with the Padé approximants method 
[50], which is by now a standard technique to analytically con-
tinue Taylor series beyond their convergence radii. For the series 
in Eq. (35), to a given order k = M + N we can always find a ratio-
nal function

[M/N](δ) = P M(δ)

Q N(δ)
, (37)

where P M(δ) and Q N(δ) are polynomials of order M and N re-
spectively, such that its Taylor expansion coincides with the Taylor 
expansion of εnl(δ) to order k = M + N . The coefficients of these 
polynomials are fixed by the coefficients εi(n2, L2) in Eq. (36).

In Fig. 1 we show the results for the ground state energy as 
calculated with the Taylor series in Eq. (35) to order k = 3, 6, 9
as well as the reconstruction of the function ε10(δ) with the Padé 
approximant [5/5](δ). We use the Padé approximants built in the 
Mathematica package for the calculations in this paper.

The actual value of ε10(δ) is bounded from above and below by 
the values of the [(N + 1)/N] and [N/N] approximants [49], and 
this fact can be used to estimate the precision in the calculation 
of the energy levels for a given δ. The required precision dictates 
the order k = 2N + 1 at which is necessary to calculate the Taylor 
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Fig. 2. Ground state energy of the Yukawa potential near the critical value of δ, 
reconstructed with the Padé approximants [(N + 1)/N](δ) and [N/N](δ) with N =
10 and N = 15.

series in order to construct the [(N + 1)/N] and [N/N] approxi-
mants. For N = 10 the energy levels εnl have an uncertainty of the 
order of 10−7 near the critical screening and higher precision in 
the small δ region. Results based on the numerical solution in [37]
are improved in several figures at this stage.

One of the most important physical parameters of the Yukawa 
potential for practical applications is the ground state critical 
screening δ10, the value of δ for which ε10(δ) = 0. The numerical 
solution to the Yukawa problem yields δ10 = 1.1906 [37], a value 
in the large δ region.

In order to calculate this parameter we need to reconstruct 
ε10(δ) in the whole rank of physical values of δ (those for which 
bound states exist). First, we check numerically that the [(N +
1)/N] and [N/N] approximants converge, i.e. that for all values 
of δ, the difference [(N + 1)/N](δ) − [N/N](δ) reduces as we in-
crease N . In Fig. 2 we plot the [(N + 1)/N](δ) and [N/N](δ) ap-
proximants of the ground state energy in the region near the crit-
ical value for N = 10 and N = 15, which shows that this is indeed 
the case. Then we find numerically the values δ(N+1) and δ(N) for 
which [(N + 1)/N](δ(N+1)) = 0 and [N/N](δ(N)) = 0. These values 
coincide up to a given figure, which yields the value of δ10. The un-
certainty in the calculation is given by the difference δ(N+1) − δ(N) . 
We find that for the [N/N] approximant of the ground state en-
ergy, we need to go at least to N = 20 in order to reach the 
continuum. Using N = 21 (which requires a calculation of the Tay-
lor series for the ground state energy to order k = 43) we obtain 
the value

δ10 = 1.1906124207(2), (38)

where the last digit is the uncertainty in the calculation.
Another important parameter of the quantum Yukawa poten-

tial is the value of the wavefunction at the origin. It appears in 
the phenomenology of darkonium (non-relativistic bound states 
of dark matter-dark matter interacting through a Yukawa poten-
tial [30][31][34]). In our formalism it can be confidently calculated 
since the r = 0 limit is well behaved. Using the expansion to or-
der δ3 is enough for this purpose. For the ground state, the wave 
function at this order is given by
4

ψ10(r) = e−x+ 1
12 δ2(3−2δ)x2− δ3

18 x3√
πa3

0(1 + 3
2 δ2 − 11

6 δ3)

. (39)

The systematic calculation of the wave function to order δ3 re-
quires to expand this expression to this order. Performing the ex-
pansion we find that, at the origin, its square has the value

|ψ10(0)|2 = 1

πa3
0

(1 − 3

2
δ2 + 11

6
δ3). (40)

Comparing this result with estimates from variational calculations 
in [16] [34] we see that variational techniques yield the right sign 
in the corrections to the Coulomb result but, to order δ2, screening 
effects in this observable are underestimated by a factor π4/216.

Details of the calculations and a thorough study of the phe-
nomenology of the Yukawa potential based on the present solution 
will be published elsewhere.
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