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Abstract

Many perturbative expansions in quantum field theories are believed to be
plagued by factorial divergences. This can be seen as a reflection of the fact
that an all-order perturbative computation cannot give a complete description
of the theory, as it misses all the nonperturbative features. In some cases the
divergence is related to the existence of condensates, and being able to keep the
asymptotic behaviour of the series under control is necessary to provide a sound
definition of the condensates themselves.

The goal of this work is to investigate the large-order behaviour of perturbative
expansions in gauge theories. In order to achieve that, we employ Numerical
Stochastic Perturbation Theory (NSPT), a numerical technique that allows for
perturbative computations in quantum field theory. We present an implemen-
tation of NSPT that is able to yield results for high orders in the perturbative
expansion of lattice gauge theories coupled to fermions. Performing calculations
with fermions requires to overcome some challenges, due for example to the lack
of chiral symmetry, or to the presence of doublers. Moreover, twisted boundary
conditions (TBC), used to remove the gauge zero-momentum mode that spoils
the convergence of the stochastic process, cannot accommodate easily fermions
in all representations. In particular, we are forced to introduce a smell degree
of freedom in order to include fermions in the fundamental representation with
TBC.

As a first application, we compute with NSPT the critical mass of two flavours of
Wilson fermions up to order O(β−7) in a SU(3) gauge theory. We also implement,
for the first time, staggered fermions in NSPT. The residual chiral symmetry of
staggered fermions protects the theory from an additive mass renormalisation.
We compute the perturbative expansion of the plaquette with two flavours of
massless staggered fermions up to order O(β−35) in a SU(3) gauge theory, and
investigate the renormalon behaviour of such series. We are able to subtract the
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power divergence in the Operator Product Expansion (OPE) for the plaquette
and estimate the gluon condensate in massless QCD. Our results confirm that
NSPT provides a viable way to probe systematically the asymptotic behaviour
of perturbative series in QCD and, eventually, gauge theories with fermions in
higher representations.
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Lay summary

The Standard Model of particle physics is able to describe three of the four known
fundamental interactions in the universe. Quantum chromodynamics (QCD), the
theory that deals with the strong force, is one of the pillars of the Standard
Model: for example, QCD describes how quarks, elementary particles among
the fundamental constituents of matter, are kept together and form protons and
neutrons; it is also responsible for binding protons and neutrons in atomic nuclei.

This theory provides a challenging field for theoretical investigations, as many
of its properties still elude our current understanding. The main reason for
this is that the strong coupling constant, which regulates the strength of the
interaction, is not constant after all. The coupling changes with the energy
scale: it is large at low energy, and decreases at the energies probed by particle
accelerators. This feature causes perturbation theory, the main tool used to
compute analytical predictions in particle physics, to break down at the scale
we live in. In perturbation theory, the interaction between particles is modelled
by an exchange of force carriers, called gluons in QCD; such exchange happens
with a probability proportional to the strength of the interaction. If the coupling
is small, the involvement of many mediators would happen with such a small
probability that can be safely neglected. Considering only the contribution from
a small number of mediator exchanges, which correspond to a small number
of perturbative orders, provides therefore a good approximation of a physical
process. This approach works very well for computing QCD predictions in high-
energy collisions, but it cannot be used to describe large-coupling interactions
like QCD at low energies: so far, no one has been even able to explain from first
principles how quarks are confined into protons. In this respect, many results
have been achieved thanks to numerical simulations.

QCD must be defined on a discrete spacetime, called lattice, in order to be
simulated on a computer. The goal of this work is to exploit this lattice
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formulation and develop tools that perform numerically perturbative calculations
at high orders in QCD (and a large class of similar theories). In particular, we
will focus on Numerical Stochastic Perturbation Theory (NSPT), a numerical
technique that allows handling perturbation theory in an automated way. Since
we know that in QCD perturbation theory is not the full story, probing many
perturbative orders is particularly interesting: it turns out that the magnitude of
the perturbative predictions grows extremely fast with the order. From the study
of this behaviour, it is possible to learn characteristics of the nonperturbative
nature of QCD.
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Chapter 1

Introduction

Quantum Chromodynamics (QCD) is the theory that describes the strong
interaction. A perturbative approach fails to describe the observed spectrum
of hadrons due to asymptotic freedom: as the coupling constant increases at
low energies, the dynamics becomes nonperturbative. This is the reason that
makes so hard to understand from first principles how confinement arises in such
a theory. At the same time, field correlators at short distances are reliably
approximated by perturbative expansions in the running coupling at a large
momentum scale. However, remnants of nonperturbative effects are still present:
perturbative expansions in QCD are expected to be divergent for all values of the
coupling, and the asymptotic behaviour can be related to the nonperturbative
structure. Thanks to Numerical Stochastic Perturbation Theory (NSPT), a
numerical technique that allows for perturbative computations in quantum field
theory, it is possible to probe by means of computer simulations the large-order
perturbative behaviour of gauge theories regularised on a lattice. This will be the
subject of this work.

In this first chapter we introduce gauge theories in the continuum and on the
lattice, mainly to fix our notation. In Chapter 2 we present a survey of the
standard arguments supporting the divergence of perturbative series, and examine
the relationship between renormalons and condensates. Numerical Stochastic
Perturbation theory is introduced in Chapter 3 and Chapter 4, together with the
techniques required to include fermions in perturbative simulations. Our results
for the critical mass of Wilson fermions and the plaquette in massless QCD are
presented respectively in Chapter 5 and Chapter 6. We draw our conclusions in
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Chapter 7.

1.1 Gauge theories

Gauge theories are the building blocks of the Standard Model: we now describe
how these theories are defined, and set our conventions. We remark that we
will always deal with Euclidean theories, obtained from a Wick rotation of the
corresponding theories in Minkowski space. The time x0

M in Minkowski space
is rotated in the complex plane to a new x0

E = ix0
M , turning in this way the

Minkowski metric into the Euclidean metric. We refer to Appendix A for group
theory notation, and use µ, ν = 1, . . . , 4 for Lorentz indices.

The Euclidean action for a SU(Nc) gauge theory coupled with fermions in the
representation R is

S[A,ψ, ψ̄] = SG[A] + SF [A,ψ, ψ̄] , (1.1)

where

SG[A] =
1

4g2

∫
d4x

∑
a,µ,ν

F a
µν(x)F a

µν(x) (1.2a)

SF [A,ψ, ψ̄] =

Nf∑
f=0

∫
d4x ψ̄f (x)

(∑
µ

γµ(DR)µ −mf

)
ψf (x) . (1.2b)

The integer Nc stands for the number of colours of the theory. The gauge field
Aaµ(x) is a vector boson field transforming in the adjoint representation of the
gauge group; the field-strength tensor is

F a
µν = ∂µA

a
ν − ∂νAaµ −

∑
b,c

fabcAbµA
c
ν . (1.3)

The factor g is the coupling, and determines the strength of the interaction; the
combination

α =
g2

4π
(1.4)

is a quantity analogous to the fine-structure constant in Quantum Electrodynam-
ics (QED). The fermion fields ψ(x), ψ̄(x) are Grassmann-valued Dirac spinors
transforming in the representation R of SU(Nc). We are assuming to have Nf

flavours, each with mass mf . The Euclidean gamma matrices γµ are Hermitian
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matrices satisfying

{γµ, γν} = 2δµν1 , γ5 = γ1γ2γ3γ4 , (1.5)

and the covariant derivative acts as

(DR)µ = ∂µ + i(AR)µ , with (AR)µ =
∑
a

T aRA
a
µ . (1.6)

The action built in this way is symmetric under the following local gauge
transformation Ω(x) ∈ SU(Nc), i.e. a colour rotation different for each spacetime
point,

Aµ → AΩ
µ = ΩAµΩ† + i(∂µΩ)Ω† (1.7a)

ψ → ΩRψ ψ̄ → ψ̄(ΩR)† , (1.7b)

where ΩR is the matrix Ω in the representation R. If fermions are degenerate,
we are free to perform rotations in flavour space that result in an additional
global vector symmetry U(Nf ). Another significant symmetry, called chiral (or
axial) symmetry, arises when all fermions are massless: in this case, the action is
invariant under transformations like

ψ → eiεγ5 ψ , ψ̄ → ψ̄ eiεγ5 , (1.8)

and the global flavour symmetry group is enlarged to U(Nf )× U(Nf ).

Any physical observable can be extracted from correlators: the expectation value
of an operator O[A,ψ, ψ̄] is defined (for simplicity, in the case of Nf degenerate
fermions of mass mf = m) via the path integral

〈
O[A,ψ, ψ̄]

〉
=

∫
D[A,ψ, ψ̄] e−S[A,ψ,ψ̄] O[A,ψ, ψ̄]∫

D[A,ψ, ψ̄] e−S[A,ψ,ψ̄]
=

=

∫
D[A] e−SG[A]

[
det
(∑

µ γµ(DR)µ −m
)]Nf

OWick[A]∫
D[A] e−SG[A]

[
det
(∑

µ γµ(DR)µ −m
)]Nf . (1.9)

In the second line, the integral over the fermion field resulted in the determinant
of the Dirac operator, and OWick is the operator O after Wick contractions
have been performed1. For physical gauge-invariant observables, the invariance

1 In the space generated by the complex Grassmann variables {θi, θ̄i}Ni=1, the following
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of the integrand and the measure under gauge transformations poses clearly
a convergence issue. This is resolved by the Faddeev-Popov procedure, which
amounts to replacing

e−SG[A] → e−SG[A]− 1
2α

∫
d4xG(A)2

det
(
∇ΩG(AΩ)

)
(1.10)

in Eq. (1.9). G(A) defines a gauge-fixing hypersurface, α is an arbitrary gauge-
fixing parameter, and the determinant can be written in terms of ghost fields. The
Lie derivative ∇ΩG(AΩ) of G is defined in Eq. (A.14). The function G should be
ideally such that a unique Ω is fixed from G(AΩ) = 0: when this is not the case,
Gribov copies are present. These multiple solutions add additional complexity in
the nonperturbative definition of the path integral.

Nevertheless, the technique of gauge fixing provides a solid framework for
perturbation theory. To perform a perturbative expansion in gauge theories,
we need to rescale the gauge field A = gA′ first: this gives Fµν = g Gµν with

Ga
µν = ∂µ(A′)aν − ∂ν(A′)aµ − g

∑
b,c

fabc(A′)bµ(A′)cν , (1.11)

and allows getting rid of the nonlinear term in the field-strength of the free theory.
The integrand is then expanded in g, and correlators are expressed as power series
in the coupling whose coefficients can be computed essentially by solving Gaussian
integrals. The exchange of summation and integration in this procedure could be
done only under some regularity conditions, that usually are not satisfied. Some
implications of this matter will be described in Chapter 2.

The presence of many infinities in quantum field theory requires the theory to be
first regularised, and then renormalised: the couplings and normalisations of the
fields are rescaled in order to fix the values of some correlators at an energy scale
µ; if the theory is renormalisable, at the end of the procedure the regularisation
can be removed. Renormalised parameters depend on the renormalisation scale

Gaussian integral holds

∫ ( N∏
k=1

dθkdθ̄k

)
exp

 N∑
l,m=1

θ̄lMlmθm

 θ̄i1θj1 . . . θ̄inθjn =

= detM
∑
P

sign(P )(M−1)jP (1)i1 . . . (M
−1)jP (n)in ,

whereM is an arbitrary N×N matrix and the sum runs over all the permutations P of 1, . . . , n.
We call

∑
P sign(P )(M−1)jP (1)i1 . . . (M

−1)jP (n)in the Wick contraction of θ̄i1θj1 . . . θ̄inθjn .
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µ: from the renormalised coupling gR(µ), one can define the β-function as

β(gR) =
dgR
d log µ

= −
[
β0

g3
R

16π2
+ β1

g5
R

(16π2)2
+ . . .

]
=

= −(b0g
3
R + b1g

5
R + . . . ) (1.12)

or
β(αR) =

dαR
d log µ

= −2αR

[
β0
αR
4π

+ β1

(αR
4π

)2

+ . . .

]
, (1.13)

with the first two scheme-independent perturbative coefficients

β0 =
11

3
C2(G)− 4

3
T (R)Nf (1.14a)

β1 =
34

3
C2(G)2 −

[
20

3
C2(G) + 4C2(R)

]
T (R)Nf (1.14b)

bn =
βn

(16π2)n+1
, (1.14c)

and G is the gauge bosons representation (the adjoint representation). For
fermions in the fundamental representation these coefficients are

β0 =
11

3
Nc −

2

3
Nf (1.15a)

β1 =
34

3
N2
c −

(
13

3
Nc −

1

Nc

)
Nf , (1.15b)

and asymptotic freedom (i.e. β0 > 0) is realised whenever Nf < 11Nc/2. We
note also that the scale

Λ = µ [gR(µ)]−b1/b
2
0 e−1/(2b0gR(µ)2) exp

[
−
∫ gR(µ)

0

dg

(
1

β(g)
+

1

b0g3
− b1

b2
0g

)]
(1.16)

arises naturally as a dimensionful renormalisation group invariant quantity.

The one-loop running coupling can be determined by integrating Eq. (1.12) with
all the coefficients of the β-function, except for b0, set to zero,

αR(k) =
αR(Q)

1 + αR(Q) β0

2π
log k

Q

=
αR(Q)

log k
Λ

. (1.17)

The theories we will deal with are asymptotically free theories, i.e. they have
β0 > 0: the running coupling is small at high energies, implying that in this
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regime perturbation theory can be trusted. On the other hand, the coupling
grows at low energies and, in particular, αR(k) diverges at the Landau pole k = Λ;
of course the divergence in the running is not physical, since perturbation theory
ceases to be applicable as soon as the coupling starts to grow.

We will refer to massless QCD as the gauge theory with Nc = 3 colours, and
Nf = 2 massless flavours in the fundamental representation.

1.2 Lattice gauge theories

Lattice gauge theories are gauge theories defined on a discrete spacetime. The
lattice spacing is denoted by a; if the size of the lattice is finite, with N4 points,
then the physical volume is L4 = a4N4 (we assume hypercubic symmetry for
simplicity). A SU(Nc) matrix Uµ(x) is associated to each link joining the points
x and x + aµ̂: these link variables are the fundamental degrees of freedom, and
are related to the gauge potential via

Uµ(x) = eiagAµ(x) . (1.18)

The basic ingredient for developing a lattice action is the product of link variables
around the 1× 1 plaquette �,

U� = Uµν(x) = Uµ(x)Uν(x+ aµ̂)Uµ(x+ aν̂)†Uν(x)† . (1.19)

In the limit of small lattice spacing, the plaquette operator

Pµν(x) =
1

Nc

Re Tr(1− Uµν(x)) =
a4g2

4Nc

∑
c

Gc
µν(x)Gc

µν(x) +O(a6) (1.20)

approximates the field strength: this means that the action SG[A] can be
recovered in the naive limit a → 0 by summing over all the plaquettes of the
lattice. In particular, we will make use of the Wilson action [4]

SG [U ] = − β

2Nc

∑
�

Tr
(
U� + U�

†) = − β

Nc

∑
�

Re TrU� , (1.21)

where the lattice coupling is

β =
2Nc

g2
. (1.22)
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A fundamental property that all lattice actions must preserve is invariance under
gauge transformations, with Ω(x) ∈ SU(Nc),

Uµ(x)→ Ω(x)Uµ(x)Ω(x+ aµ̂)† , (1.23)

which is a transformation analogous to the one in Eq. (1.7a).

Expectation values in a pure gauge theory are computed from

〈O[U ]〉 =

∫
D[U ] e−SG[U ] O[U ]∫
D[U ] e−SG[U ]

. (1.24)

The advantage of this formulation is twofold. First, the lattice spacing a

provides a natural ultraviolet cutoff, so that the regularised theory preserves
gauge invariance. Second, the path integral measure is the measure on the
compact group SU(Nc), and is not a formal measure as in the continuum case;
if the number of lattice points is finite, Eq. (1.24) consists of a finite number of
integrals. The lattice serves as a nonperturbative definition of gauge theories.
Moreover, in this framework the theory is ready to be simulated numerically, and
expectation values can estimated from Monte Carlo simulations.

The outcome of a lattice computation clearly depends on the lattice spacing:
after renormalisation, the regulator must be removed to obtain results in the
continuum limit. This implies that the bare parameters must be adjusted as the
lattice spacing goes to zero to keep physical quantities constant. For example,
given the renormalised coupling defined by g = Zg(g, aµ)gR(µ), if we want to send
a→ 0 and keep gR constant we are forced to tune the bare coupling accordingly.
The lattice bare β-function,

βL(g) = −adg
da

∣∣∣∣ physical
quantities

, (1.25)

describes how to adjust the bare coupling in order to reach the continuum
limit. The shape of βL(g) determines whether this limit can be reached: in
asymptotically free theories, a→ 0 corresponds to g → 0.
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1.3 Fermions on the lattice

So far we neglected the presence of fermions. A naive lattice version of the fermion
action amounts to replacing ordinary derivatives with finite differences,

∂µψ(x) → 1

2

(
δµ + δ∗µ

)
ψ(x) =

1

2a
[ψ(x+ aµ̂)− ψ(x− aµ̂)] , (1.26)

where

δµψ(x) =
1

a
[ψ(x+ aµ̂)− ψ(x)] and δ∗µψ(x) =

1

a
[ψ(x)− ψ(x− aµ̂)] , (1.27)

and writing an interaction invariant under the gauge transformation in Eqs. (1.23)
and (1.7b),

(DR)µψ(x) =
1

2a

[
(UR)µ(x)ψ(x+ aµ̂)− (UR)µ(x− aµ̂)† ψ(x− aµ̂)

]
, (1.28)

where (UR)µ(x) is the link Uµ(x) in the representation R. These particular
choices of discretisation are made so that derivative and covariant derivative are
antihermitian. Therefore, for one flavour, the naive fermion action is

SF [U, ψ, ψ̄] = a4
∑
x

ψ̄(x)

(∑
µ

γµ(DR)µ −m

)
ψ(x) . (1.29)

Unfortunately, it turns out that this action describes 16 fermions in the continuum
limit, as it can be shown by looking at the poles of the free propagator in
momentum space: this phenomenon is known as species doubling.

In general, the Nielsen-Ninomiya theorem [5, 6] prevents us from building a
discretisation of the four-dimensional Dirac operator which at the same time is
local, has the correct continuum limit without any doublers, and does not break
chiral symmetry in the massless case. All the possible lattice fermion actions must
necessarily give up at least one of these conditions. Among the many proposed
discretisations, we will focus on those that will be needed in the following: Wilson
fermions and staggered (or Kogut-Susskind) fermions.
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Wilson fermions

Wilson’s strategy [7] for removing doublers consists in adding a new term to the
naive action so that doublers acquire a mass proportional to 1/a, and decouple
in the continuum limit. Wilson’s fermion action reads

SF [U, ψ, ψ̄] = a4
∑
x

ψ̄(x)

(∑
µ

γµ(DR)µ −m−
ar

2
δ∗µδµ

)
ψ(x) , (1.30)

where r is an arbitrary parameter, which from now on we will take equal to 1.
In momentum space, it is easy to see that the new term does not affect the zero
momentum component of ψ, which is indeed related to the physical fermion that
remains after removing the lattice spacing. The downside of this approach reveals
itself when dealing with the quantum theory: since Wilson’s term is not invariant
under Eq. (1.8), chiral symmetry gets explicitly broken, causing renormalisation
to become more involved. For example, the mass must be additively renormalised,
as it will be explained in detail in Chapter 5.

Staggered fermions

A way to preserve chiral symmetry and reduce the number of doublers has been
proposed in Refs. [8, 9] with the introduction of staggered fermions. The key idea
is noting that thanks to the unitary space-dependent transformation

ψ(x) → γn1
1 γn2

2 γn3
3 γn4

4 ψ(x) , (1.31)

where n = x/a is the site index vector, we can trade the gamma matrices in the
Dirac operator for a space-dependent phase,

γµψ(x± aµ̂) → αµ(x) γn1
1 γn2

2 γn3
3 γn4

4 ψ(x± aµ̂) , (1.32)

with αµ(x)=(−1)
∑µ−1
ν=1 nν , that is

α1(x) = 1 (1.33a)

α2(x) = (−1)n1 (1.33b)

α3(x) = (−1)n1+n2 (1.33c)

α4(x) = (−1)n1+n2+n3 . (1.33d)

9



If ψ̄(x) is then transformed analogously

ψ̄(x) → ψ̄(x) γn4
4 γn3

3 γn2
2 γn1

1 , (1.34)

the naive fermion action becomes simply

SF [U, ψ, ψ̄] = a4
∑
x

ψ̄(x) (DR −m)ψ(x) . (1.35)

with

DRψ(x) =
1

2a

∑
µ

αµ(x)
[
(UR)µ(x)ψ(x+ aµ̂)− (UR)µ(x− aµ̂)† ψ(x− aµ̂)

]
.

(1.36)
The resulting Dirac operator is proportional to the identity in Dirac space, and
the four spinor components of ψ will be just copies of each other: keeping just
one of these, we can expect that the number of doublers is reduced by a factor
of four, leading to 16/4 = 4 physical fermions in the continuum limit. This is
indeed the case, and the four doublers are referred to as tastes of the staggered
fermion. The staggered action is thus

SF [U, χ, χ̄] = a4
∑
x

χ̄(x) (DR −m)χ(x) , (1.37)

where the fields χ, χ̄ have no spinor structure and the Dirac operator is as in
Eq. (1.36). It is now worth to have a look at the symmetries of such action. The
transformations in Eqs. (1.31) and (1.34) induce

ψ̄(x)γ5ψ(x) → (−1)n1+n2+n3+n4 ψ̄(x)ψ(x) , (1.38)

and let relate the matrix γ5 to the phase α5(x) = (−1)n1+n2+n3+n4 . Indeed, in the
massless case, the action is invariant under

χ→ eiεα5(x) χ , χ̄→ χ̄ eiεα5(x) , (1.39)

which corresponds to the global chiral symmetry of the staggered theory; no
additive mass renormalisation emerges. We also note that, due to the staggered
phase, the action in Eq. (1.37) is only invariant under shifts of two lattice spacings,
x→ x+ 2aµ̂.

In Monte Carlo simulations, one often relies on the trick of rooting in order to
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remove three out of four tastes. The method consists in replacing the fermion
determinant in Eq. (1.9) with its fourth root. Whether rooting represents a
legitimate procedure at finite lattice spacing is still debated in the literature; the
reader is referred to Ref. [10] for a review on this matter. We just point out that, in
perturbation theory, as long as the counterterms required for renormalisation are
polynomials in Nf , rooted staggered fermions correctly reproduce order by order
renormalised correlation functions in the continuum theory with Nf flavours.
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Chapter 2

Renormalons and OPE

It is almost always the case in physics that, as soon as real and interesting features
of a system are taken into account, it is not possible to find exact solutions:
in order to make predictions from a theory, one often relies on some kind of
approximation. Perturbation theory is surely one of the most common, and it
proves to be useful each time a small parameter can be identified.

The goal of this section is to study perturbative series in quantum field theories.
We will argue that these expansions are typically divergent, and that the pattern
of divergence might be related to nonperturbative physics: for example, we could
learn about the presence of condensates by looking at high orders in perturbation
theory. We remark that many results in this section are not supported by
mathematically rigorous arguments. They are based on physical intuition, study
of toy models, analysis of specific limits of theories (e.g. large Nc, large Nf ),
numerical simulations. Even if in gauge theories there is general consensus on
the divergence of perturbative series, that can be inferred just by looking at the
growth of the number of diagrams, analytical evidences are still lacking in the
case of some sources of divergence that we will discuss in the following.
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2.1 The divergence of perturbative series

Generally, we have the problem of estimating some unknown function of the
coupling R(α) as a power series

Rpert(α) =
∞∑
n=0

rnα
n+1 . (2.1)

We assume, without loss of generality, that R(0) = 0, and we also define the
remainder

RN(α) = R(α)−
N∑
n=0

rnα
n+1 . (2.2)

It would be ideal to know how well Rpert approximates R when only a finite
number of rn are known, or if there is room for improving our knowledge of R
by computing more coefficients of its perturbative series. In this section we wish
to discuss what is possible to tell about the relation between R and Rpert, and
under which circumstances a resummed value for Rpert can be defined.

First, it is worthwhile to recall some mathematical properties of power series. Let
D be a simply connected compact domain in the complex plane containing the
origin. Rpert is said to be uniformly convergent, from now on just convergent, to R
in D if, given an arbitrary ε > 0, we can always find an N such that |Rn(α)| < ε

for all n > N and α ∈ D. This situation is realised if and only if R(α) is analytic
in D, in which case Rpert is nothing but the Taylor series of R: one usually writes
simply that R = Rpert.

More often, R(α) is not analytic in any neighbourhood of the origin, and Rpert,
if it exists, is not equal to R. It is worth summarising the original heuristic
argument of Dyson [11] about the analyticity of observables in QED. The energy
of a system consisting of a large number N of interacting particles, each one with
charge e ∼

√
α, is

E ∼ NK +
N2

2
αV , (2.3)

where K and V are respectively the mean kinetic and Coulomb energy, and(
N
2

)
∼ N2

2
is the number of interacting pairs. If α > 0, then the energy increases

as more particle are considered, and the system is stable and protected against
pair production from the vacuum; on the other hand, in a universe where α < 0

(i.e. equal/opposite charges attract/repel each other), for large enough N the
system decreases its energy every time new particles are created: the Hamiltonian
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is unbounded from below, and no ground state exists. As a consequence of this
different behaviour reversing the sign of the coupling, physical quantities cannot
be analytic functions of α.

The possibilities left are that either Rpert diverges or Rpert exists but differs from
R by some non-analytic function. If we want to discard the situation in which
Rpert does not provide any form of approximation to R, so that R and Rpert would
be completely unrelated to each other, we must hope that Rpert is an asymptotic
approximation of R: Rpert is asymptotic to R if, given some N > N0 and an
arbitrary ε > 0, we can always find a neighbourhood A of the origin such that
|RN(α)| < ε |αN+1| for all α ∈ A. By this definition, a series may be asymptotic
to a function without being convergent. A convergent series has a remainder
that, for fixed α, vanishes as N →∞; an asymptotic series has a remainder that,
for fixed N , is much smaller that the last retained term as α → 0. Even though
R has a unique asymptotic power expansion around α = 0, there are infinitely
many functions, differing by subleading non-analytic terms, that share the same
asymptotic power expansion.

It is widely believed that power series in quantum field theory are factorially
divergent (unless symmetries are invoked). Let us focus again on Dyson’s
argument. When α < 0, the critical number of particles that determines when the
energy starts decreasing is Nc = −K/(αV ). It is reasonable to expect that the
power series Rpert converges up to an order k ∼ Nc, since it is only at orderNc that
diagrams allowing the creation of Nc particles from the vacuum come into play.
When Rpert starts diverging, rkαk ∼ rk+1α

k+1 implies rk+1/rk ∼ 1/α ∼ Nc ∼ k,
or rk ∼ k!. We will present concrete evidences supporting the factorial divergence
in the following sections.

Starting from a divergent series Rpert, one might think of defining a new object

B[Rpert](z) =
∞∑
n=0

rn
n!
zn , (2.4)

which clearly has higher chances to converge. We call B[Rpert] the Borel transform
of Rpert. If the Borel transform has a non-vanishing radius of convergence, the
integral

R̃(α) =

∫ ∞
0

dz e−z/αB[Rpert](z) , (2.5)
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defines the Borel sum of the series for α > 01. If R̃ exists, the series is said to
be Borel summable. The definition of the Borel sum is trivial if Rpert converges:
indeed, in that case we are entitled to exchange summation and integration, and
it is easy to show that R̃ = Rpert. When a Borel summable Rpert diverges, then
R̃ serves as a possible definition of the sum of the series. The conditions that
guarantee R̃ = R are given by the Watson-Nevanlinna-Sokal theorem [12], and
are not satisfied for QCD. This is another signal that perturbation theory is not
enough to describe such a theory2.

Nevertheless, the Borel transform is a useful tool for investigating factorially
divergent patterns. The Borel transform computed from rn = KanΓ(n + 1 + γ)

with γ > 0 is

B[Rpert](z) =
K Γ(1 + γ)

(1− az)1+γ
. (2.6)

The factorial growth is mapped to the pole (possibly a branch point as well,
depending on γ) at z = 1/a in the Borel plane: this pole is called renormalon [14].
It is worth mentioning that in the literature the term renormalon is reserved
only for the kind of singularities that will be described in Sect. 2.4. Stronger
divergences lead to poles closer to the origin: in particular, if Rpert is an
alternating series (a < 0), the singularity lies on the negative z-axis, and the
series is Borel summable; if Rpert is a fixed-sign series (a > 0), the singularity lies
on the positive z-axis, and the integral in Eq. (2.5) is ill-defined. In the latter
case, one could still give a prescription to move the contour above or below the
pole. The finite value for R̃ obtained in this way is then affected by an intrinsic
ambiguity related to the prescription used: a measure of this ambiguity is the

1 For α < 0 we could equally define

R̂(α) = −
∫ 0

−∞
dz e−z/αB[Rpert](z) .

2 Because of the shape of the analyticity region in QCD, other types of resummation suffer
from the same problem, as explained in Ref. [13].
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spurious imaginary part gained by R̃,

Im R̃ = K Γ(1 + γ)
α e−1/(aα)

(−aα)1+γ
Im

∫ +∞

−1/(aα)

dt
e−t

t1+γ
=

= K Γ(1 + γ)
α e−1/(aα)

(−aα)1+γ

(
∓2π

2
Res
t=0

e−t

t1+γ

)
=

= K Γ(1 + γ)
α e−1/(aα)

(−aα)1+γ

(
∓π

(−1)γΓ(1 + γ)

)
=

= ± πK
a

e−1/(aα)

(aα)γ
. (2.7)

It is interesting to note that the ambiguity is non-analytic in the variable α, which
later will be identified with the coupling constant.

We will argue that singularities in the Borel plane might arise in field theory
from stationary solutions of the action, and from the large- and small-momentum
behaviour of loop integrals at high perturbative orders. The position of these
singularities, and therefore Borel summability, depends on the theory under study.
The interested reader can find a more complete survey about the divergence of
perturbative expansions in quantum field theories in Refs. [13, 15, 16].

2.2 The role of instantons

One of the first methods for calculating high-order terms in perturbative series
was proposed by Lipatov in Ref. [17]. The underlying idea can be explained by
looking at a zero-dimensional version of the φ4 theory: the partition function is

Z =

∫
dφ e−φ

2−gφ4

=
+∞∑
n=0

Zng
n , (2.8)

and Zn are the coefficients of its perturbative expansion. Even though in this toy
model it would be possible to compute the Zn analytically, we seek only a way to
have access to their asymptotic behaviour. Therefore, we express each coefficient
with the residue formula,

Zn =

∫
C

dg

2πign+1
Z =

∫
C

dg

2πig

∫
dφ e−φ

2−gφ4−n log g , (2.9)

where C is a contour in the complex plane that goes around the origin in the
anticlockwise direction, and then study the large-n limit of the integral. In the
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saddle point approximation, we can look at the stationary points of the exponent:
non-trivial saddle points, φ̄, ḡ, satisfy

φ̄2 = − 1

2ḡ
, ḡ = − n

φ̄4
= − 1

4n
, (2.10)

and we get readily (neglecting prefactors) the factorial divergence of the series,

Zn ∼ e−n−n log(− 1
4n) ∼ (−4)nn! . (2.11)

This is a first hint that classical solutions (with finite and non-zero action) of
the equations of motion, i.e. instantons, are related to factorial divergences. A
formal way to understand this connection is provided by ’t Hooft [14]: starting
from the partition function

Z =

∫
Dφ e−S[φ] =

∫ +∞

0

dt e−tB(t) , (2.12)

we define the Borel transform

B(t) =

∫
Dφ δ(t− S[φ]) =

∫
S[φ]=t

Dσ
|∇S[φ]|

, (2.13)

where in the last equality the simple layer formula3 was used to turn the functional
integral into a surface integral on the hypersurface (embedded in the functional
space of all possible field configurations) defined implicitly by the level set S[φ] =

t. At the denominator we find the norm of the gradient of the action |∇S[φ]| =∥∥ δS[φ]
δφ(x)

∥∥. It is evident that the Borel transform develops a pole (in general, a
branch point) whenever φ is a classical solution of the equations of motion. Close
to the singularity, the Borel transform can be approximated with

B(t) '
∫
t=t̄+ 1

2
vTHv

Dσ√
vTH2v

, (2.14)

where we switched to a handier notation,

Hx,y =
δ2S[φ]

δφ(x)δφ(y)

∣∣∣∣
φ̄

, vx = φ(x)− φ̄(x) , (2.15)

and φ̄ is a stationary solution with action S[φ̄] = t̄. If U is the unitary
transformation that diagonalises H, then it is easy to see that field configurations

3 See Theorem 6.1.5 in Ref. [18].
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of the form vx ∝ Ux,x0 lead to a square root branch point contribution,

TrH−1/2√
2(t− t̄ )

. (2.16)

As it was shown in Sect. 2.1, a pole in the Borel representation corresponds to a
factorial divergence in perturbation theory: if B(t) ∼ (1− t/t̄ )−α, then4

∫ +∞

0

dt e−t (1− t/t̄ )−α =

∫ +∞

0

dt e−t
+∞∑
n=0

Γ(n+ α)

Γ(α)

1

n!

(
t

t̄

)n
=

=
+∞∑
n=0

Γ(n+ α)

Γ(α)
(t̄ )−n . (2.17)

The leading divergence of the perturbative series is associated to the pole closest
to the origin. For example, in Yang-Mills theory we expect singularities associated
to BPST instantons [19]: since the action of a single instanton is S = 8π2/g2, we
expect an infinite series of poles on the positive real axis at t = 8Nπ2/g2 (N is the
instanton winding number). These singularities make the integral in Eq. (2.17)
ill-defined, confirming that QCD is not a Borel resummable theory.

A final remark is in order: when the number of degrees of freedom is finite,
’t Hooft argument in Eq. (2.13) provides a necessary and sufficient condition for
having singularities in the Borel transform of the partition function. This means
that there would be no room for the singularities at t = βz0 = σ

b0g2 that we will
study in Sect. 2.4. These latter singularities can arise only in the limit of infinite
number of degrees of freedom. Some authors have argued that, even in that case,
their existence is controversial [20, 21].

2.3 Nonperturbative corrections to the OPE

The Operator Product Expansion (OPE) is a technique introduced by Wilson [22]
to evaluate the product of local operators at short distances in perturbation
theory. If A(x) and B(y) are local operators, we can factorise their product at

4 The saddle points have an action proportional to the inverse of the coupling, thus the
expansion must be performed in t̄−1.
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short distance, |x− y| → 0, as

A(x)B(y) = C1(x− y)1 +
∑
n

Cn(x− y)On(x, y) , (2.18)

where the coefficients C1, Cn are called Wilson coefficients (singular functions as
x→ y), and On(x, y) are bilocal normal-ordered operators (regular as x→ y). By
definition, normal-ordered operators have a vanishing vacuum expectation value,
implying that

〈0|A(x)B(y)|0〉 = C1(x− y) . (2.19)

It is useful to order the right-hand side of Eq. (2.18) according to the operator
dimensions: then, by dimensional analysis, the Wilson coefficients will be less and
less singular as n increases. In this way, the first few terms of the OPE capture
the leading behaviour as x→ y, while the operators On(x, y) can be safely Taylor
expanded in terms of local operators. The fundamental characteristic of the
OPE is that it holds as an operator identity, i.e. when A(x)B(x) is inserted in
any correlator: the Wilson coefficients needs to be computed only once, and they
will be the same for all physical processes.

The OPE has been rigorously proved in perturbation theory only [23–25].
Nevertheless, it is interesting to make use of this tool a little bit outside of its
original scope, and examine how nonperturbative effects modify the perturbative
predictions at short distances. The idea proposed in QCD by Shifman, Vainshtein
and Zakharov [26, 27] is to consider the role of the physical vacuum in the OPE.
It might be the case that Eq. (2.19) holds only in the perturbative vacuum; in
the physical nonperturbative vacuum, composite local operators appearing in the
OPE might develop a non-zero expectation value. Indeed, the physical vacuum
in QCD exhibits characteristics, like chiral symmetry breaking and confinement,
that cannot be inferred from a perturbative analysis. The implications for
Eq. (2.19) are more transparent in momentum space, where instead of short
distances we deal with high momentum Q: it can be postulated that the Fourier
transform of the vacuum expectation value of the product of two operators has
the following expansion,

i

∫
d4x eiQ·x〈A(x)B(0)〉 = C1(Q)〈1〉+

∑
n

Cn(Q)〈On〉 . (2.20)

Since the On are ordered according to their dimension, the coefficients Cn(Q)

will appear with increasing powers of 1/Q: the effect of nonperturbative physics
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is encoded in these power corrections. The quantities 〈On〉 are the condensates :
they are fundamental quantities, which are in principle supposed to parametrise
power corrections in a universal way. While the explicit form of the functions
Cn(Q) depends on the operators A, B, under study, by determining the value of
a condensate in one context, one gains insight into different physical processes.
We stress again that condensates are chosen to vanish in perturbation theory
or, in other words, they are normal ordered in the perturbative vacuum5. This
definition is somehow natural in dimensional regularisation, where

∫
dDp (p2)λ =

0 is assumed for all complex D, λ [29].

In asymptotically free theories, perturbation theory can be applied at short
distances, where the coupling is small. In this respect, Eq. (2.20) disentangles
in a physical process the short-distance contribution, which is computed in
perturbation theory, from the long-distance contribution, which is dominated
by nonperturbative effects. The separation between these two regimes must be
set at some scale µ (with Λ < µ < Q). In other words, this factorisation is
realised by integrating the high-frequency contributions down to the scale µ: in
the new effective description, the operators On and the Wilson coefficients encode
respectively long- and short-distance physics.

Since the separation of scales in the OPE does not correspond completely to
a separation between perturbative and nonperturbative physics, defining the
condensate as a purely nonperturbative object might lead to ambiguities (see
the interesting discussions in Refs. [30, 31]). This is not always the case: for
example, the fermion condensate is well defined since, being the order parameter
of chiral symmetry breaking, it must vanish in perturbation theory. On the other
hand, the gluon condensate OG is not the order parameter of any spontaneously
broken symmetry, and the above definition is ambiguous [32]. One could also
notice that OG, in its renormalisation group invariant form, is proportional to the
β-function, and could then be related to the breaking of scale invariance due to
quantum effects. The fact that scale symmetry breaking appears in perturbation
theory tells us that a purely nonperturbative definition of OG cannot lead to
a sound OPE. This ambiguity is reflected in the fixed-sign factorial growth of
the perturbative series for C1: the choice of a prescription to sum such divergent
series turns out to have an ambiguity that cancels exactly the one associated with
OG. The divergence in the Wilson coefficient goes under the name of infrared

5 It is useful to keep in mind that other definitions of condensates are possible, see e.g.
Ref. [28].
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renormalon [14, 33–36]. We point out that renormalons would not be present
if the OPE were evaluated strictly in Wilson’s spirit, embedding in the Wilson
coefficients only contributions from momenta k > µ, as it will be shown in detail
at the end of Sect. 2.4. Renormalons arise because such rigid cutoff is clearly
unpractical in real calculations, with dimensional or lattice regularisations, and
arbitrary small momenta are always included in the Wilson coefficients instead.

2.4 Renormalons

Following Refs. [37, 38], the renormalisation group invariant form of the
expectation value of a dimension-2σ correlator is

W =

∫ Q2

0

dk2

k2

(
k2

Q2

)σ
f(k) , (2.21)

where f(k) = f
(
k
Q
, αR(Q)

)
is some dimensionless renormalisation group

invariant function, and Q is a hard scale6. Here we do not wish to consider
what happens for momenta greater than Q. In that case, new sources of factorial
divergence would be present: these are called ultraviolet renormalons. In an
asymptotically free theory, ultraviolet renormalons do not lead to ambiguities
when resumming the divergent series. They can be removed by adding higher-
dimensional operators to the Lagrangian, and are completely understood as a
renormalisation effect [34].

The function f(k) is given at first order by one-gluon exchange diagrams, so
it must be proportional to αR(k). Therefore, we can take f(k) = αR(k), as
it can be argued that having higher powers of αR(k) in Eq. (2.21) would lead
to the same conclusions we will obtain in the following. Clearly the running
coupling in Eq. (1.17) makes W divergent due to the Landau pole in the domain
of integration: this signals that the small-momentum behaviour is influenced by
nonperturbative physics, i.e. the theory is strongly coupled in the infrared. We
will see that the perturbative expansion of αR(k) will turn the small momentum
behaviour into a factorial divergence.

To understand the structure of W , we try to recast Eq. (2.21) in the form of a
Borel representation. By integrating exactly the two-loop running coupling in

6On the lattice one has naturally Q ∼ 1/a.
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Eq. (1.12), we obtain

log
k

Q
= − 1

2b0gR(Q)2

[
1− gR(Q)2

gR(k)2

]
+

+ log

(
gR(k)

gR(Q)

)b1/b20
+ log

(
1 + b1

b0
gR(k)2

1 + b1
b0
gR(Q)2

)−b1/(2b20)

, (2.22)

or (
k2

Q2

)σ
= e−zβ

(
αR(Q)

αR(k)

)−γ ( 1 + 4πb1
b0

αR(k)

1 + 4πb1
b0

αR(Q)

)−γ

= e−zβ
(

1− z

z0

)−γ1 + b1
b0

2Nc
β

1
1− z

z0

1 + b1
b0

2Nc
β

−γ , (2.23)

where we introduced the new variables

z = z0

(
1− αR(Q)

αR(k)

)
, z0 =

σ

2Ncb0

, γ =
σb1

b2
0

, (2.24)

and β = 2Nc/gR(Q)2 corresponds to a Wilson action coupling. It is useful now to
change the integration variable in Eq. (2.21) from k to the z defined in Eq. (2.24):
even though the original domain of integration includes the Landau pole, where
αR(k) diverges, the variable z is formally well defined and monotonic, as shown
in Figure 2.1. Using again the two-loop running coupling, we have that

dk2

k2
αR(k) = −dz

z0

1

4πb0

(
αR(Q)

αR(k)

)−1
1

1 + 4πb1
b0

αR(k)
=

= −dz
z0

1

4πb0

(
1− z

z0

)−1
1

1 + b1
b0

2Nc
β

1
1− z

z0

. (2.25)

Thanks to the change of variable, W has been reshaped in a form resembling a
Borel representation,

W =

∫ +∞

0

dz

4πb0z0

e−βz(
1− z

z0

)1+γ

(
1 + b1

b0
2Nc
β

)γ
(

1 + b1
b0

2Nc
β

1
1− z

z0

)1+γ =

=
1

4πb0z0

∫ +∞

0

dz

1 + b1
b0

2Nc
β

e−βz(
1− 1

1+
b1
b0

2Nc
β

z
z0

)1+γ . (2.26)
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Figure 2.1 One-loop running coupling αR(k), compared to the corresponding
variable z defined in Eq. (2.24) (both axes are in arbitrary units). The
vertical asymptote in red is the leading-order evaluation of Λ. Even
though the coupling diverges at the Landau pole, the new variable z
is well defined at all scales.

So far, the perturbative expansion in the coupling has not been performed yet,
and this expression is exact in the limit of switching off all the coefficients of the
β-function higher than b1.

Setting b1 = 0 as well, i.e. considering the one-loop β-function only, we indeed
recover the Borel integral

W =
1

4πb0z0

∫ +∞

0

dz
e−βz

1− z
z0

. (2.27)

The result of the integration is still divergent, because of the pole at t = βz0:
this is the infrared renormalon. As usual, the renormalon in the Borel transform
implies the factorial divergence of the perturbative evaluation of W : expanding
the integrand in β and exchanging summation with integration, it is

Wren =
1

4πb0z0β

+∞∑
n=0

∫ +∞

0

dt e−t
(

t

βz0

)n
=

+∞∑
n=0

cn
βn+1

, with cn =
Γ(n+ 1)

4πb0

1

zn+1
0

. (2.28)

The divergence of the original integral is reflected in the fixed-sign factorial growth
of its perturbative expansion.

On the other hand, it is striking that a simple rescaling of z is enough to compute
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exactly the Borel transform at two loops [39]: if we define z̃ = z/(1 + b1
b0

2Nc
β

),
then Eq. (2.26) leads to an exact Borel representation in the shifted coupling
β̃ = β + 2Ncb1

b0
,

W =
1

4πb0z0

∫ +∞

0

dz̃
e−β̃z̃(

1− z̃
z0

)1+γ . (2.29)

The position of the pole is not modified, but b1 6= 0 unveils the branch-point
nature of z̃ = z0. An expansion in β leads to

Wren =
+∞∑
n=0

Γ(n+ 1 + γ)

4πb0Γ(1 + γ)

1

β̃n+1
=

+∞∑
n=0

c′n
βn+1

(2.30)

with

c′n =
Γ(n+ 1 + γ)

4πb0Γ(1 + γ)

1

zn+1
0

n∑
k=0

(
n

k

)
Γ(k + 1 + γ)

Γ(n+ 1 + γ)
(−γ)n−k , (2.31)

and the relation between β̃−1 and β−1 is given by the binomial series

1

β̃n+1
=

1

βn+1

+∞∑
k=0

(
n+ k

n

)(
−b1

b0

2Nc

β

)k
. (2.32)

Collecting in some constant C all the higher-order corrections that contribute to
the same singularity, the contribution due to the leading renormalon reads

Wren =
+∞∑
n=0

crenn
βn+1

with crenn =
C

zn+1
0

Γ(n+ 1 + γ) . (2.33)

It is interesting to try and define the integral in Eq. (2.26) by avoiding the pole
in the domain of integration. For any prescription, we know from Eq. (2.7) that
the integral acquires an imaginary part proportional to the residue at the pole:
the imaginary part turns out exactly equal to

πC (z0β)γ e−βz0 = πC (2Ncz0)γ
(

Λ

Q

)2σ

. (2.34)

Such ambiguity is nonperturbative in the coupling, and corresponds to a power
correction in Λ, as defined from Eq. (1.16). It is a common belief that the
ambiguity is going to be cancelled exactly by the corresponding ambiguity in the
definition of the condensate: therefore the renormalon is by itself a signal that
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power corrections ought to be added in the OPE,

W = Wren +O(e−βz0) . (2.35)

We can also adopt another point of view and consider the high-frequency
contributions of Eq. (2.21), as in Refs. [38, 40]. In the spirit of the OPE, we
might want to adhere to a strict scale separation paradigm, and include in W

only momenta above µ = rΛ for some r > 1,

W0 =

∫ Q2

r2Λ2

dk2

k2

(
k2

Q2

)σ
αR(k) . (2.36)

Now the domain of integration avoids the Landau pole, and W0 is expected to
converge. To understand how this can happen, we can retrace the same steps as
before to compute the Borel transform of W0 (with b1 = 0, for simplicity). With
the same change of variable from k to z, the new domain of integration becomes

0 < z < zIR = z0

(
1− αR(Q)

αR(rΛ)

)
, (2.37)

and since zIR < z0, the quantity

W0 = −e
−βzIR

4πb0

∫ −β(z0−zIR)

−βz0
dt
e−t

t
(2.38)

is not affected by any singularity. W0 can be expressed in terms of incomplete
Gamma functions7,

W0 = −e
−βz0

4πb0

[Γ (0,−βz0)− Γ (0,−β(z0 − zIR))] , (2.40)

7 The incomplete gamma function is defined as

Γ(s, z) =

∫ +∞

z

dt e−t ts−1 = zs−1 e−z
+∞∑
k=0

Γ(k + 1− s)
Γ(1− s)

(−z)−k , (2.39)

where the last equality holds for |z| → +∞ and |arg z| < 3π/2 (see e.g.
http://dlmf.nist.gov/8.11.E2).
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and expanded in β−1 as

W0 =
1

4πb0βz0

+∞∑
n=0

Γ(n+ 1)

(βz0)n

1− e−βzIR(
1− zIR

z0

)n+1

 =

=
+∞∑
n=0

cn
βn+1

1− e−βzIR(
1− zIR

z0

)n+1

 . (2.41)

From the one-loop running coupling it is straightforward to compute

zIR = −2σ

β
log

rΛ

Q
, (2.42)

and obtain

W0 =
+∞∑
n=0

cn
βn+1

1−

(
rΛ
Q

)2σ

(
1 + 4Ncb0

β
log rΛ

Q

)n+1


=

+∞∑
n=0

cn
βn+1

[
1−

(
rΛ

Q

)2σ

dn

]
=

+∞∑
n=0

fn
βn+1

(2.43)

with

dn =
n∑
k=0

(
n

k

)
ck
cn

(
−4Ncb0 log

rΛ

Q

)n−k
=

n∑
k=0

1

k!

(
2σ log

Q

rΛ

)k
. (2.44)

The renormalon growth is explicitly modified by a power correction with the
same dimension as W . This power correction is essential for the convergence of
W0: indeed, as n → +∞, the sum in Eq. (2.44) approximates an exponential
series, dn ∼

(
Q
rΛ

)2σ
, and the factorial growth is exactly cancelled, as shown in

Figure 2.2. This mechanism is analogous to the one described in Ref. [41] for
the exponentiation of finite-volume effects. It must also be said that higher
perturbative orders are more sensitive to higher coefficients of the β-function: an
analysis of the behaviour of the series at large (not infinite) values of n should
take this fact into account.
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Figure 2.2 Comparison between the coefficients cn, defined in Eq. (2.33), and fn,
defined in Eq. (2.43) (both axes are in arbitrary units). The series
associated to W0 does not display a factorial growth thanks to the
introduction of the infrared cutoff rΛ.

2.5 How to determine condensates from lattice

simulations

So far, we did not put emphasis on the fact that condensates are composite
operators: we will address now the problem of their renormalisation, and of how
they can be extracted from lattice simulations [42–45].

Let us consider a theory regularised by a cutoff 1/a, and let O(a) be a bare
composite operator of dimension d. It is possible to define a renormalised operator
through

OR(µ) = ZO(g, aµ)

[
O(a)−

d−1∑
k=0

Z̃Ok(g)

ad−k
Ok(a)

]
. (2.45)

ZO(g, aµ) represents the multiplicative renormalisation of O, and depends on the
bare coupling g and the renormalisation scale µ. In perturbation theory, it can be
expressed as a power series in g where the coefficient of the term gk is a polynomial
in log aµ of order k−1. We are assuming for simplicity that O does not mix with
operators of the same dimension (otherwise ZO would be a matrix). The second
term in the square brackets represents mixing with lower-dimensional operators
and acts as an additive renormalisation to eliminate power divergences. We can
call

Osub =
d−1∑
k=0

Z̃Ok(g) ak Ok(a) =
d−1∑
k=0

Z̃Ok(g)OL,k . (2.46)
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The operator Ok(a) = a−kOL,k has dimension k, and the coefficient Z̃Ok(g) does
not depend on the scale (in perturbation theory, it is a power series in g without
any logarithm) [46]. In particular, we note that O0 = 1: the contribution
emerging from the perturbative evaluation of 〈O(a)〉 corresponds to the expansion
in g of Z̃1(g). The renormalisation procedure assures that, in any correlation
function, we can take safely the limit a → 0 in the right-hand side to obtain a
finite result.

Evaluating the renormalisation factors in perturbation theory defines a scheme to
subtract power divergences8: 〈OR(µ)〉 vanishes in perturbation theory or, in other
words, condensates are normal ordered in the perturbative vacuum. In a common
jargon, in order to extract a condensate one must isolate a nonperturbative residue
from the perturbative background, i.e. one must subtract a perturbative tail.

It is evident that this procedure is not well defined: if the series for Z̃1(g) is
truncated at some fixed order, then the unsubtracted residue would still scale
as a−d, and diverge in the continuum limit. Moreover, it is not possible to sum
all the terms of the series for Z̃1(g) as, from the discussion in Sect. 2.3, it is a
divergent series affected by renormalons. The only chance to save this scheme is
to impose a prescription to resum the divergent series: clearly this has a price,
and any prescription comes with an intrinsic ambiguity associated to the sum.
Thus, a corresponding ambiguity must be assigned to the condensate itself. For
example, a possible prescription is to stop the series for Z̃1(g) at its minimum
term, so that the order of truncation grows as the continuum limit (g → 0) is
approached. We will talk in detail about this prescription in Sect. 6.4.

After having defined a scheme to deal with the objects in Eq. (2.45), we can
go on and study the renormalisation group properties of OR(µ), encoded in the
evolution equation

µ
d

dµ
OR(µ) = γO(gR)OR(µ) , (2.47)

with the anomalous dimension

γO(gR) = µ
d

dµ
logZO(g, aµ) . (2.48)

As it is evident from Eq. (2.47), the anomalous dimension and the renormalised
operator cannot depend on the cutoff: they must be functions of the running

8 It is worth mentioning the existence of other schemes in which power divergences are
subtracted nonperturbatively, see e.g. Ref. [47].
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coupling only, which is defined through g = gR(µ)Zg(g, aµ). This observation
allows expanding the anomalous dimension as

γO(gR) = γO,1 gR(µ)2 + γO,2 gR(µ)4 + . . . , (2.49)

and to write Eq. (2.47) as

β(gR)
d

dgR
OR(µ) = γO(gR)OR(µ) . (2.50)

The renormalisation group equation is solved exactly by

OR(µ) = OR(µ̄) exp

[∫ gR(µ)

gR(µ̄)

dg′
γO(g′)

β(g′)

]
=

= OR(µ̄) exp

[(∫ 0

gR(µ̄)

+

∫ gR(µ)

0

)
dg′
(
γO(g′)

β(g′)
+
γO,1
b0g′

)](
gR(µ)

gR(µ̄)

)−γO,1/b0
=

=
ΓO(µ̄)

ΓO(µ)
OR(µ̄) , (2.51)

where we introduced the quantity

ΓO(µ) = gR(µ)γO,1/b0 exp

[
−
∫ gR(µ)

0

dg′
(
γO(g′)

β(g′)
+
γO,1
b0g′

)]
. (2.52)

Subtracting the one-loop anomalous dimension term allowed extending to zero
the lower limit of the domain of integration. We realise soon that the combination

ORGI = ΓO(µ)OR(µ) = ΓO(µ̄)OR(µ̄) (2.53)

is renormalisation group invariant. Having found a renormalisation group
invariant combination turns out particularly useful, as the renormalisation of
ORGI reads

ORGI = ΓO(µ)ZO(g, aµ)
[
O(a)− a−dOsub

]
=

= ΓO(1/a)ZO(g, 1)
[
O(a)− a−dOsub

]
, (2.54)

where we could set µ = 1/a in the last step thanks to scale invariance. Considering
that only the dimensionless product

〈OL〉 = ad〈O(a)〉 (2.55)
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can be accessed in a Monte Carlo lattice simulation, and that the lattice size is
determined with respect to some reference length scale r0, then

rd0 〈ORGI〉 = ΓO(1/a)ZO(g, 1)
(r0

a

)d
[〈OL〉 − 〈Osub〉] =

= ΓO(1/a)ZO(g, 1)
(r0

a

)d [
〈OL〉 −

d−1∑
k=0

Z̃Ok(g) 〈OL,k〉

]
. (2.56)

This is the equation that allows extracting condensates from lattice simulations.

A few remarks are now in order. The quantity ZO(g, 1) is free of any logarithm,
and represents a finite renormalisation which goes to 1 in the continuum limit.
A similar comment9 holds for ΓO(1/a), apart from the overall factor gγO,1/b0 . It
is striking that an equation like

O(a) = a−dOsub +
1

ΓO(µ)ZO(g, aµ)
ORGI =

= a−dOsub + g−γO,1/b0
(
1 + C1g

2 + . . .
)
ORGI (2.57)

can be seen as an OPE with Q ∼ 1/a, where irrelevant operators in the right-hand
side would correspond to higher-dimensional terms in the OPE.

2.6 The gluon condensate

The idea of determining the gluon condensate from nonperturbative measure-
ments in lattice gauge theories dates back to the eighties and early nineties [48–
54]. These attempts are based on comparing perturbative computations of Wilson
loops with the corresponding Monte Carlo determinations. In order to define the
gluon condensate, we need to address the problem of renormalising the operator
F 2. We will describe the renormalisation properties of F 2 with the background
field method, introduced in the next sections.

2.6.1 The background field method

The renormalisation of gauge-invariant operators can be conveniently studied
with the background field method. We will show that the effective action of a

9 We note that the relation g = Zg(1/a, 1)gR(1/a) is also equivalent to a finite
renormalisation of the coupling.
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theory can be related to the vacuum effective action of the same theory in a
classical background. This is an extremely useful property, because in gauge
theories it will be possible to preserve gauge invariance with respect to the
background field, greatly simplifying the renormalisation procedure. The reader
is referred to Refs. [55–58] for some reviews and applications of this method, and
for references to the original works. We will now briefly summarise the main
aspects of this approach.

The generating functional Z[J ] and the connected generating functionalW [J ] are
defined by10

Z[J ] = eW [J ] =

∫
DAe−S[A]+JA . (2.59)

The derivatives of Z[J ] with respect to J generate insertions of A in a correlator,

1

Z[0]

δ

δJ(x1)
. . .

δ

δJ(xn)
Z[J ]

∣∣∣∣
J=0

= 〈A(x1) . . . A(xn)〉 . (2.60)

The effective action generates the one-particle irreducible vertices, and is defined
as the Legendre transform respect to the source,

Γ[Q̄] = W [JQ̄]− JQ̄ Q̄ , (2.61)

where the inverse of the relation

Q̄ =
δW [J ]

δJ

∣∣∣∣
J=JQ̄

=
1

Z[J ]

δZ[J ]

δJ

∣∣∣∣
J=JQ̄

= 〈A〉JQ̄ (2.62)

defines the source JQ̄ as a function of the conjugated variable. In particular, JQ̄
is the source that induces an expectation value of A equal to Q̄.

The renormalisation theorem ensures that it is possible to rescale the fields (Q̄ =

Z
1/2

Q̄
Q̄R) and coupling (g = ZggR) so that the renormalised effective action

ΓR[Q̄R; gR] = Γ[Z
1/2

Q̄
Q̄R;ZggR] (2.63)

is finite.
10 The contraction of all indices (including spacetime indices) is understood: if A is the gauge

potential, then

JA =

∫
d4x

∑
a,µ

Aaµ(x)Jaµ(x) = 2

∫
d4x

∑
µ

TrAµ(x)Jµ(x) . (2.58)
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We consider the partition function obtained by shifting the quantum field with a
classical background B, and define

ZB[J ] = eWB [J ] =

∫
DQe−S[B+Q]+JQ , (2.64)

where we choose not to couple the background field with the source. It is useful
to switch to a new variable A = B+Q to understand the relation between WB[J ]

and W [J ],

eWB [J ] =

∫
DAe−S[A]+J(A−B) = eW [J ]−JB . (2.65)

The Legendre transform of WB[J ] reads

ΓB[Q̃] = WB[JQ̃]− JQ̃ Q̃ , (2.66)

where the source JQ̃ is fixed from

Q̃ =
δWB[J ]

δJ

∣∣∣∣
J=JQ̃

=
δW [J ]

δJ

∣∣∣∣
J=JQ̃

−B . (2.67)

We emphasise that JQ̄ and JQ̃ are used to indicate two different functions: as it
can be seen from

δW [J ]

δJ

∣∣∣∣
J=JQ̄

= Q̄ and
δW [J ]

δJ

∣∣∣∣
J=JQ̃

= Q̃+B , (2.68)

they are related one to the other by

JQ̄+B = JQ̄ . (2.69)

Putting together Eqs. (2.61), (2.65), (2.66), (2.69), it is now straightforward to
relate the effective actions with and without background,

ΓB[Q̃] = WB[JQ̃+B]− JQ̃+B Q̃ = W [JQ̃+B]− JQ̃+B (B + Q̃) = Γ[Q̃+B] . (2.70)

This is the fundamental equation we were looking for: the original effective action
can be computed by summing all vacuum graphs in the theory with background,

Γ[B] = ΓB[0] . (2.71)

It is clear that the renormalisation theorem for ΓB[Q̃] requires the background
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field to be renormalised as well11.

A useful property holds for the derivatives of the effective action with background
field. Suppose that λ is some parameter (for example a coupling, or even another
source) in the action: the derivative with respect to λ of the vacuum effective
action with background is related to the derivative of the connected generating
functional,

dΓB[0]

dλ
=
dWB[JQ̃=0]

dλ
=

=
dW [JB]

dλ
− dJB

dλ
B =

=
∂W [JB]

∂λ
+
δW [J ]

δJ

∣∣∣∣
J=JB

dJB
dλ
− dJB

dλ
B =

=
∂W [JB]

∂λ
. (2.72)

In this derivation, we had to take into account that the function JB inherits a
dependence on λ from inverting Eq. (2.62).

2.6.2 Gauge theory effective action with the background

field method

One of the most valuable application of the background field method is to gauge
theories: indeed, in a gauge theory with background, it is possible to make clever
choices for the gauge fixing function in order to retain gauge invariance with
respect to the background field12. These gauges go under the name of background
field gauges [55, 57–60]. Having a gauge invariant effective action simplifies
incredibly the renormalisation procedure. We will consider a pure gauge theory
first, postponing the discussion of the role of fermions to the end of Sect. 2.6.3.
A possible renormalisation of the gauge-fixing parameter and of the ghost field
can also be neglected in this discussion.

11 In order to compute ΓB [0], one option is to treat the background field perturbatively. Only
diagrams with B in the external legs would be considered: the renormalisation of Q̃ becomes
irrelevant, as it appears only in loops.

12 For example, the action in Eq. (2.64) can be supplied with G = Dadj(B)Q or G =
Dadj(B)(Q−B).
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Let us focus on the field strength for the background field,

Fµν = Z
1/2
B

(
∂µ(BR)ν − ∂ν(BR)µ + iZ

1/2
B [(BR)µ, (BR)ν ]

)
, (2.73)

where we rescaled B = Z
1/2
B BR. Since, in a background gauge, gauge invariance

is not broken, Eq. (2.73) will take the gauge-covariant form of a constant times
Fµν only if Z1/2

B = 1: the field B does not renormalise13.

The non-renormalisability of the background field has advantageous implications
for ΓB[0; g]. The bare effective action can be expanded as the integral of a
gauge-invariant and parity-conserving Lagrangian density (with possibly nonlocal
terms). Renormalisability implies that the divergent part of such Lagrangian is a
local polynomial in the background field and its derivatives. By power counting,
in Yang-Mills theory the local counterterms needed to cancel the divergences have
dimension less or equal to 4 (i.e. no primitive divergence arises from diagrams
with 5 or more external legs): since F 2 is the only operator with the correct
dimension and symmetries, we can write

ΓB[0; g] = −C(g)

4g2

∫
d4xF 2(x) + finite terms , (2.74)

where C(g) is some divergent constant14, and

F 2(x) =
∑
a,µ,ν

F a
µν(x)F a

µν(x) . (2.75)

The overall normalisation is a convention: at tree level the effective action is
simply the action with opposite sign, so with our choice C(g) = 1+O(g), and the
finite terms are also O(g). In case a dimensionful regulator is used, then power
divergences should also be considered: these will be dealt with in Sect. 2.6.4.
Since B does not renormalise, the renormalisation theorem tells us that

(ΓR)B[0; gR] = ΓB[0;ZggR] = − C(g)

4Z2
gg

2
R

∫
d4xF 2(x) + finite terms (2.76)

is finite and hence C(g) = Z2
g must hold, up to finite terms. This is consistent

13 As a side remark, if we used for B the normalisation required for perturbation theory,
we would find that the renormalisation constant of the background field is related to Zg. This
allows computing conveniently the β-function of the theory from two-point diagrams only.

14 It should be always kept in mind that the theory has been somehow regularised. Therefore,
C(g) depends on the ultraviolet cutoff, which has to be put in a way to preserve gauge invariance
(like in lattice gauge theories). In dimensional regularisation, C(g) is a polynomial in 1/ε, where
ε goes to zero as the number of dimensions approaches 4.

34



with the result of Ref. [59].

2.6.3 Renormalisation of F 2

In order to find the renormalisation properties of F 2 [57, 61], it is useful to add a
new source JF 2 to the generating functional, so that derivatives with respect to
JF 2 produce insertions of F 2,

Z[J, JF 2 ] = eW [J,JF2 ] =

∫
DAe−S[A]+JA+JF2F 2

. (2.77)

With a background field, we define

ZB[J, JF 2 ] = eWB [J,JF2 ] =

∫
DQe−S[B+Q]+JQ+JF2F 2

B+Q , (2.78)

where F 2
B+Q stands for the field strength of the field B + Q. If only one

insertion of F 2 is allowed (with one insertion there is no distinction between
connected/disconnected and reducible/irreducible Green functions), the effective
action can be defined without taking the Legendre transform with respect to
JF 2 : thus, the discussion in Sect. 2.6.1 carries on in an analogous way, with the
only difference that all functions are decorated with a dependence on JF 2 . The
quantity we are interested in is the effective action with one insertion of F 2,
ΓF 2 [B]: it is related to the connected generating functional thanks to Eq. (2.72),

ΓF 2 [B] =
δ

δJF 2

Γ[B, JF 2 ]

∣∣∣∣
JF2=0

=
δ

δJF 2

ΓB[0, JF 2 ]

∣∣∣∣
JF2=0

=

=
δW [JB, JF 2 ]

δJF 2

∣∣∣∣
JF2=0

. (2.79)

The renormalisation theorem and the non-renormalisability of the background
field imply that

(ΓR)F 2 [B; gR] = ZF 2ΓF 2 [B;Zgg] , (2.80)

where the renormalised operator is defined as (F 2)R = ZF 2F 2.

The arguments presented so far are quite general, and apply to any operator.
What is special in our case is that F 2 appears in the action, and we can trade
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the derivative with respect to JF 2 with a derivative with respect to the coupling,∫
dx4 δW [JB, JF 2 ; g]

δJF 2(x)

∣∣∣∣
JF2=0

= −4
∂W [JB; g]

∂g−2
= −4

dΓB[0; g]

dg−2
, (2.81)

where in the last step we made use of Eq. (2.72) again. Since the bare effective
action for the background field has been already computed in Eq. (2.74), by
comparing∫

dx4 ΓF 2(x)[B; g] =
d

dg−2

(
Zg
g2

)∫
d4xF 2(x) + finite terms . (2.82)

with Eq. (2.80) we finally obtain

ZF 2 =

(
d

dg−2

Zg
g2

)−1

+ finite terms , (2.83)

with the corresponding anomalous dimension

γF 2 = − 1

Z−1
F 2

dZ−1
F 2

d log µ
= −

d
d logµ

(
d

dg−2

Z2
g

g2

)
d

dg−2

Z2
g

g2

. (2.84)

Because Zg is the only term depending on the renormalisation scale, with the
help of

dZg
d log µ

= −Zg
gR

β(gR) (2.85)

we obtain

γF 2(gR) = −
d

dg−2

2Zg
g2

(
−Zg
gR
β(gR)

)
d

dg−2

Z2
g

g2

= 2

d
dg−2

β(gR)

g3
R

d
dg−2

1
g2
R

= 2

d
dgR

β(gR)

g3
R

d
dgR

1
g2
R

= −g3
R

d

dgR

β(gR)

g3
R

.

(2.86)
We could change variables in the derivatives because the Jacobian simplifies
between numerator and denominator. Note that this relation implies that:

• the anomalous dimension of F 2 vanishes at one loop

• the ratio between the anomalous dimension and the β-function is an exact
differential,

γF 2(gR)

β(gR)
= − d

dgR
log

β(gR)

g3
R

(2.87)
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• β(gR)

g3
R

(F 2)R is renormalisation group invariant,

d

d log µ

β(gR)

g3
R

(F 2)R =

(
d

d log µ

β(gR)

g3
R

)
(F 2)R +

β(gR)

g3
R

d logZF 2

d log µ
(F 2)R =

= β(gR)

(
d

dgR

β(gR)

g3
R

)
(F 2)R +

β(gR)

g3
R

γF 2(gR)(F 2)R =

= 0 , (2.88)

and matches, apart from an overall constant, the renormalisation group
invariant operator one would get from Eq. (2.53),

ΓF 2(µ)(F 2)R = exp

(
−
∫ gR(µ)

0

dg′
γF 2(g′)

β(g′)

)
(F 2)R =

= exp

(
log

β(g)

g3

∣∣∣∣gR(µ)

0

)
(F 2)R = − 1

b0

β(gR)

g3
R

(F 2)R . (2.89)

The renormalisation group invariant quantity that we found is the trace of the
energy-momentum tensor [62, 63]. In order to get a normalisation suitable for
perturbation theory, the field strength must be rescaled as Fµν = g Gµν . It is
customary to call

OG = − 1

4π2b0

β(gR)

g3
R

(F 2)R = − 1

4π2b0

β(gR)

gR
(G2)R = − 2

β0

β(αR)

αR
(G2)R (2.90)

the gluon condensate.

In a theory with fermions, the operator F 2 is not the only gauge-invariant parity-
conserving operator with dimension 4. In principle, mixing can happen with

• mψ̄ψ, which vanishes in the massless case,

• ψ̄(i
∑

µ γµDµ−m)ψ, which vanishes when the equation of motion are used,

•
∑

µ ∂µ(ψ̄γµψ), which vanishes at zero momentum.

In general, our discussion has to be rephrased in order to take this mixing into
account [57, 61]; it turns out that OG is not even a renormalisation group invariant
operator, and it must be combined with mψ̄ψ to give a renormalisation group
invariant quantity. Since our goal is to investigate theories with massless fermions,
such complications do not arise when studying condensates.
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2.6.4 F 2 and the gluon condensate on the lattice

To begin, we need to define a renormalised coupling on the lattice. A possible
definition is in the minimal subtraction (MS) scheme: on the lattice, this scheme
amounts to subtracting only powers of logarithms in the lattice cutoff. The
resulting MS lattice coupling glatt is

glatt = gR(µ) = Zg(g, aµ) g with gR(1/a) = g , (2.91)

and satisfies β(gR) = βL(gR) (see Appendix B).

The analysis in Sect. 2.6.3 applies if the discretisation of the F 2 operator coincides
with the corresponding discretisation used in the gauge action. Therefore, for the
Wilson action we have to deal with the plaquette operator P , see Eq. (1.20). In
the same spirit as the lattice coupling, the finite terms in Eq. (2.83) can be fixed
by choosing minimal subtraction, i.e.

ZP (g, aµ)
∣∣
µ=1/a

= 1 . (2.92)

This choice determines the scheme for renormalising the operator. Moreover,
thanks to Eq. (2.87) and the vanishing of the anomalous dimension at one loop,
we can readily compute

ΓP (1/a) = − 1

b0

β(g)

g3
. (2.93)

We can now move on and study the relevant power divergences. It is easy to
relate the gluon condensate and the plaquette in the naive continuum limit,

a−4P
a→0−−→ π2

12Nc

OG =
F 2

48Nc

=
π2

12Nc

(α
π
G2
)
, (2.94a)

OG =
α

π
G2 [1 +O(α)] . (2.94b)

In the interacting theory, mixing with operators of lower or equal dimension
occurs. In our case, only the identity operator must be considered, since it is the
only operator with the same quantum number as F 2. In the limit a−1 � Λ it is
possible to build the OPE as in Eq. (2.57), and write

a−4P = a−4Z̃1(g)1 +
π2

12Nc

CG(g)OG +O(a2Λ6) , (2.95)
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or, for the expectation values,

〈P 〉 = Z̃1(g) +
π2

12Nc

CG(g)a4〈OG〉+O(a6Λ6) , (2.96)

where Z̃1(0) = 0, and the normalisation has been chosen so that CG(0) = 1. By
comparing Eqs. (2.57) and (2.95), we can read the Wilson coefficient

CG(g) = ΓP (1/a)−1 = − b0g
3

β(g)
= − β0α

2

2πβ(α)
. (2.97)

Finally, Eq. (2.56) allows the determination of the gluon condensate,

r4
0 〈OG〉 =

12Nc

π2
ΓP (1/a)ZP (g, 1)

(r0

a

)4 [
〈P 〉 − Z̃1(g)〈1〉

]
=

=
12Nc

π2

(
− 1

b0

β(g)

g3

) (r0

a

)4 [
〈P 〉 − Z̃1(g)〈1〉

]
=

=
12Nc

π2
CG(g)−1

(r0

a

)4 [
〈P 〉 − Z̃1(g)〈1〉

]
. (2.98)

We stress again that in this framework the Wilson coefficients are defined in
perturbation theory,

Z̃1(β) =
∑
n=0

pnβ
−(n+1) , CG(β) = 1 +

∑
n=0

cnβ
−(n+1) , (2.99)

and the condensate is affected by the ambiguity discussed in Sect. 2.3.
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Chapter 3

Lattice perturbation theory on
the computer

The Faddeev-Popov procedure is required for a perturbative approach to non-
abelian gauge theories. When a nonperturbative definition is indispensable,
one usually relies on lattice gauge theories. Another possibility is provided
by the method of stochastic quantisation, whose original goal was exactly to
overcome the necessity of gauge fixing in perturbation theory, and at the same
time to accomplish a nonperturbative definition of non-abelian gauge theories.
Indeed Gribov ambiguities, when present, can be seen in all respects as artefacts
of a quantisation procedure. As a side effect, it turns out that stochastic
quantisation provides also a favourable ground for performing perturbative
calculations numerically on a computer.

For many more details about stochastic quantisation and its numerical application
to perturbation theory, the reader is referred respectively to the reviews in
Ref. [64] and Ref. [65].

3.1 Stochastic quantisation

Stochastic quantisation provides a new way of quantising physical systems which
is equivalent to canonical or path integral quantisation. The idea, proposed in
Ref. [66], is to introduce a stochastic time t and setup a stochastic process in this
new dimension, such that averages performed when the process is at equilibrium
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correspond to quantum expectation values. To be more concrete: a generic field
φ(x) is promoted to φ(x; t), and the evolution in t is given by the Langevin
equation

dφ(x; t)

dt
= − δS[φ]

δφ(x; t)
+ η(x; t) , (3.1)

where S[φ] is the action of the theory, and η(x; t) is a Gaussian noise satisfying

〈η(x; t)〉η = 0 , 〈η(x; t)η(x′; t′)〉η = 2δ(x− x′)δ(t− t′) . (3.2)

The average of a generic observable O[φ] must be understood as an average on
the noise,

〈O[φ]〉η =

∫
Dη P [η]O[φ] with P [η] =

e−
1
4

∫
d4x dt η2(x;t)∫

Dη′ e− 1
4

∫
d4x′ dt′ η′2(x′;t′)

. (3.3)

In the absence of noise, only the first term on the right-hand side of Eq. (3.1),
called drift or force term, would contribute, and the field would be driven towards
a stationary point of the action, i.e. on the classical equations of motion. The
role of η is to mimic quantum fluctuations: when the stochastic process is in
equilibrium, stochastic averages correspond to quantum expectation values,

lim
t→+∞

〈φ(x1; t) . . . φ(xn; t)〉η = 〈φ(x1) . . . φ(xn)〉 . (3.4)

It is now essential to study and give some motivation to Eq. (3.4), which is the
core of stochastic quantisation. From now on we will drop the subscript η in the
averages as it will be clear from the context when a quantum or noise average is
intended.

Stochastic differential equations

From a realistic point of view, Eq. (3.2) is pathological since the noise has infinite
variance. In order to put the Langevin equation on a more solid ground, it is now
convenient to introduce briefly stochastic differential equations. Neglecting the
spacetime index and focusing on one degree of freedom, we define the integral of
the noise

ω(t) =
1√
2

∫ t

0

ds η(s) . (3.5)
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It is easy to see that this function satisfies

〈ω(t)〉 = 0 , 〈ω(t)ω(t′)〉 = min(t, t′) . (3.6)

The variance of this process is now finite; in fact, it can be shown that ω(t) is
a well-defined stochastic process1. Therefore, starting from a generic Langevin
equation

dφ(t)

dt
= a(φ, t) + b(φ, t)η(t) , (3.7)

it is possible to take its integral form

φ(t)− φ(0) =

∫ t

0

ds a(φ, s) +
√

2

∫ t

0

dω(s) b(φ, s) (3.8)

as the definition of the stochastic equation. Still, the interpretation of the
stochastic integration on the right-hand side of Eq. (3.8) requires some care.
If we partition the interval [0, t], and define the stochastic integral as the limit of
a Riemann sum, we soon realise that the final result depends on the intermediate
points τn ∈ [tn−1, tn] chosen for evaluating the integrand. For example,〈∫ t

0

dω(s)ω(s)

〉
=
∑
n

〈[ω(tn)− ω(tn−1)]ω(τn)〉 =
∑
n

(τn − ti−1) = αt , (3.9)

where τn = αtn+(1−α)tn−1 and α ∈ [0, 1]. The prescription α = 0 defines the Itô
stochastic integral, while the midpoint prescription α = 1

2
defines the Stratonovich

stochastic integral. It is important to note that the usual rules of calculus lead
naturally to the Stratonovich definition: in the previous example,〈∫ t

0

dω(s)ω(s)

〉
=

1

2

〈
ω(t)2 − ω(0)2

〉
=
t

2
. (3.10)

The Stratonovich integral also allows for the usual integration by parts. Even
though in principle all the choices of α are on the same footing, we will adopt the
Stratonovich definition. Indeed, in physical cases Eq. (3.2) is just an idealisation,
and the autocorrelation function is not singular. For instance, if time is discretised
with a time step ε, then one would have

〈η(t)〉 = 0 , 〈η(t)η(t′)〉 =
2

ε
δtt′ . (3.11)

1 In particular, it is a Wiener process.
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It can be proved that when ε → 0 the Stratonovich solution of the stochastic
equation is recovered [67] (and clearly this holds independently of the way the
Dirac delta is regularised).

Interestingly, the Stratonovich prescription fixes the value of the Heaviside step
function

Θ(t) =

∫ t

−∞
ds δ(s) (3.12)

when the argument is zero. From Eq. (3.9) it is possible to make the noise explicit

1

2

〈∫ t

0

ds ξ(s)

∫ s

0

ds′ ξ(s′)

〉
=

∫ t

0

ds

∫ s

0

ds′ δ(s− s′) =
t

2
(3.13)

so that the identity ∫ s

0

ds′ δ(s− s′) =
1

2
(3.14)

implies Θ(0) = 1
2
.

Fokker-Planck equation

We are now in the position to derive the Fokker-Planck equation associated to
Eq. (3.1), and prove the assertion of stochastic quantisation. The change in time
of the average in Eq. (3.3) is

d

dt
〈O[φ]〉 =

∫
d4x

〈
δO[φ]

δφ(x; t)

(
− δS[φ]

δφ(x; t)
+ η(x; t)

)〉
. (3.15)

Using the explicit form of P [η] and integrating by parts we obtain〈
δO[φ]

δφ(x; t)
η(x; t)

〉
= −2

∫
Dη δO[φ]

δφ(x; t)

δP [η]

δη(x; t)
=

= 2

∫
d4y

〈
δ2O[φ]

δφ(x; t)δφ(y; t)

δφ(y; t)

δη(x; t)

〉
. (3.16)

In order to compute the derivative of the field with respect to the noise, it is
useful to transform Eq. (3.1) into an integral equation

φ(y; t) = φ(y; 0) +

∫ +∞

0

dsΘ(t− s)
[
− δS[φ]

δφ(y; s)
+ η(y; s)

]
, (3.17)
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from which it is simple to read

δφ(y; t)

δη(x; t)
= Θ(0)δ(x− y) =

1

2
δ(x− y) . (3.18)

Clearly the drift term does not participate in the derivative since it depends only
on the noise at times s < t. Putting everything together, we have found that the
time derivative of the stochastic average is

d

dt
〈O[φ]〉 =

∫
d4x

〈
− δO[φ]

δφ(x; t)

δS[φ]

δφ(x; t)
+

δ2O[φ]

δφ(x; t)2

〉
. (3.19)

Defining the probability of having the field configuration φ(x) at time t

P [φ; t] =

∫
Dη P [η]

∏
y

δ(φ(y; t)− φ(y)) , (3.20)

allows expressing stochastic averages as

〈O[φ]〉 =

∫
DφP [φ; t]O[φ] . (3.21)

This equation can be used for evaluating the averages in Eq. (3.19). It is
straightforward to integrate by parts and move on P [φ; t] all the derivatives acting
on the observable. The Fokker-Planck equation that describes the time evolution
of the probability density function P [φ, t] is then

dP [φ; t]

dt
=

∫
d4x

δ

δφ(x)

[(
δS[φ]

δφ(x)
+

δ

δφ(x)

)
P [φ; t]

]
, (3.22)

and it is evident that a stationary solution is provided by Peq[φ] ∼ e−S[φ].
Whenever

lim
t→+∞

P [φ, t] = Peq[φ] =
e−S[φ]∫
Dφ′ e−S[φ′]

, (3.23)

then stochastic quantisation is realised: the stochastic average reconstructs the
Euclidean path integral. The limit in Eq. (3.23) must be understood in the weak
sense, i.e. the limit is done on correlation functions as in Eq. (3.4). The reaching
of the correct equilibrium distribution has been proved for several systems; for
example, it is not hard to show that it holds when the number of degrees of
freedom is finite and e−S[φ] is integrable. When an infinite number of degrees
of freedom is considered, the right-hand side of Eq. (3.22) must be suitably
regularised. In the case of gauge theories, it can be argued that the limit in
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Eq. (3.23) exists only for gauge-invariant correlation functions.

3.2 Stochastic perturbation theory and NSPT

Before describing stochastic perturbation theory, it is beneficial to make some
general consideration. Let us consider a differential equation

Lφ = f + λNLφ (3.24)

where f is some nonhomogeneous term, L is a linear differential operator and
NL is a nonlinear operator, whose significance is controlled by a small parameter
λ. Let G be the inverse of L with appropriate boundary conditions, i.e. G is
a linear integral operator satisfying LG = 1. We also assume that φ has been
redefined so that the solution of the homogeneous equation vanishes. If G is
known2, the differential equation (3.24) is suited to a perturbative treatment:
first the differential equation is traded for an integral equation,

φ = G(f + λNLφ) (3.25)

and then φ is recursively substituted into the right-hand side of Eq. (3.25). As a
simple example, if NLφ = φ2 we have

φ = Gf + λG(Gf)2 + 2λ2G
{

(Gf)
[
G(Gf)2

]}
+O(λ3) . (3.26)

The same approach works for a generic NLφ, that is a combination of monomials
in φ, derivatives of φ and λ. It is also convenient to have a diagrammatic
representation of Eq. (3.26), where the kernel of G is the propagator and NL
generates vertices; it is easy to see that only tree diagrams are involved, i.e. there
cannot be any loop.

It is interesting to note that the same perturbative expansion can be obtained
from another perspective: if we plug a formal expansion of the field, φ =∑

n φ
(n)λn, into Eq. (3.24), the result is a set of recursive equation that can

be solved iteratively. Once the lowest order is found, that solution is used as
input for the following equation and so on; only the knowledge of G is necessary.
The process can be consistently truncated at an arbitrary order. Going back to

2 In principle our discussion holds irrespectively of L (NL) being linear (nonlinear), all that
matters is knowing how to compute G.
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our example NLφ = φ2, up to λ2 we have

Lφ(0) = f (3.27a)

Lφ(1) = (φ(0))2 (3.27b)

Lφ(2) = 2φ(0)φ(1) . (3.27c)

The system of equations is solved iteratively by applying G to both sides: the
final result reconstructs exactly Eq. (3.26),

φ(0) = Gf (3.28a)

φ(1) = G(φ(0))2 = G(Gf)2 (3.28b)

φ(2) = 2G(φ(0)φ(1)) = 2G
{

(Gf)
[
G(Gf)2

]}
. (3.28c)

This technology can be applied straightforwardly to Eq. (3.1): the idea is to
consider

Lφ =
dφ

dt
+
δSfree[φ]

δφ(x; t)
, f = η , NLφ = − δSint[φ]

δφ(x; t)
, (3.29)

where the action has been split into a free and interaction part, S[φ] = Sfree[φ] +

Sint[φ], so that we know how to compute G. Stochastic perturbation theory [66]
consists in adopting the recipe in Eq. (3.4) to compute correlators, which in
turn are computed in perturbation theory with the technique developed so far.
First, with an expansion analogous to Eq. (3.26), we write all the diagrams that
contribute at a certain order; the Gaussian nature of η entitles to perform Wick
contractions and get rid of the noise3. Finally, the limit t→ +∞ gives the sought
result. For a scalar theory, the contribution of the standard Feynman diagrams
is indeed recovered [68]. A complete proof of equivalence between stochastic
perturbation theory and the usual perturbative approach from field theory can
be accomplished in the Fokker-Planck formalism [69]. We will deal with the
complications arising from gauge theories in Sect. 3.4.

Stochastic perturbation theory, written in the form of Eq. (3.27), is appropriate
to be handled on a computer. Each of the Langevin equations can be integrated
numerically in order to evolve all the φ(n); the lowest order φ(0) depends explicitly

3 In a classical framework, where for example f is some source and L, NL are respectively
the free and interaction terms of a field equation, only tree level diagrams can be built. In this
respect, the noise is providing quantum fluctuations: it is reassuring that because of the Wick
contractions loops can and will appear in the diagrams.
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on the noise, while higher φ(n) depend only on φ(m) with m < n. Under this point
of view, the stochastic time t corresponds to the simulation time. Any observable
O[φ] inherits a formal perturbative expansion from φ. Performing the Monte
Carlo average over the Langevin history of O[φ], once the stochastic process
is at equilibrium, returns the perturbative expansion of 〈O[φ]〉. This approach
goes under the name of Numerical Stochastic Perturbation Theory (NSPT) [70].
Particular attention has to be paid to the field configurations φzm such that

δSfree[φ]

δφ(x)

∣∣∣∣
φzm

= 0 . (3.30)

We call φzm a zero mode. Such configuration is not affected by the drift: it is
clear from Eq. (3.27a) that φ(0)

zm is just the integral of the noise and behaves like a
random walk. This kind of fluctuation is zero on average, but its magnitude grows
with time, see Eq. (3.6). Given the recursive nature of Eq. (3.28), similar effects
are expected in all the perturbative components. In analytical computations this
is not a problem, but diverging fluctuations prevent from extracting statistically
meaningful signals in numerical applications.

We also mention that the idea of studying the convergence properties of a
stochastic process order by order after an expansion in the coupling is actually
quite general. In this spirit, we refer to Refs. [71, 72] for the description of other
NSPT schemes based on stochastic differential equations different from Langevin.

3.3 NSPT for lattice gauge theories

The Langevin equation can be used to perform Monte Carlo simulations and
compute correlation functions [73]. It is also a starting point for simulating lattice
gauge theories both nonperturbatively [74, 75] and in perturbation theory [70].
Because the degrees of freedom are the link variables, the Langevin equation must
be reformulated for compact Lie groups [76–78]: if ∇xµ is the Lie derivative4 with
respect to Uµ(x), then the desired equation is

d

dt
Uµ(x; t) = i [−∇xµS[U ] + η(x; t)]Uµ(x; t) , (3.31)

4 The group theory conventions are explained in detail in Appendix A.
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where the Gaussian noise ηµ(x; t) = T aηaµ(x; t) satisfies

〈
ηaµ(x; t)

〉
= 0 ,

〈
ηaµ(x; t)ηbν(x

′; t′)
〉

= 2δabδµνδxx′δ(t− t′) . (3.32)

Rather than motivating such result, we will study a discrete Langevin process
(suitable for computer simulations) modelled on Eq. (3.31), and check if stochastic
quantisation is realised. If stochastic time is discretised as tn = nε, with n ∈ N
and time step ε, we can integrate numerically Eq. (3.31). A possible choice of an
Euler scheme is

Uµ(x; tn+1) = e−Fµ(x;tn) Uµ(x; tn) (3.33)

with
Fµ(x; tn) = i

[
ε∇xµS[U(tn)]−

√
ε ηµ(x; tn)

]
(3.34)

and

〈
ηaµ(x; tn)

〉
= 0 ,

〈
ηaµ(x; tn)ηbν(x

′; tm)
〉

= 2δabδµνδxx′δnm . (3.35)

Even though in a first-order scheme all powers higher than ε1 should be negligible,
having the full exponential in Eq. (3.33) guarantees that the links stay within the
group. The factor

√
ε in front of the noise arises because η must be rescaled with

ε to become dimensionless, as it is evident from Eq. (3.11).

Instead of considering Eq. (3.33) just as a numerical approximation, the discrete
process can be raised to a higher status: indeed, we will show that the associated
probability distribution obeys to Eq. (3.23), but the equilibrium action is modified
by O(ε) effects. Therefore, such discrete process can be used to compute
expectation values, but O(ε) effects are expected. In order to correct for this
systematic error, observables must be computed for several values of ε and then
extrapolated to vanishing time step5.

In the discrete process, the probability of having the configuration U ′ at time
tn+1 can be computed from the probability of having a generic U at time tn and
the probability of the transition U → U ′, namely

P [U ′; tn+1] =

∫
DU P [U ; tn]

〈∏
x,µ

δ
(
U ′µ(x)− e−Fµ(x;tn)Uµ(x; tn)

)〉
. (3.36)

Having in mind that the interesting regime is when ε is small, we can Taylor
5 Clearly the extrapolation is linear for small enough values of ε.
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expand in Fµ(x; tn) = iT aF a
µ (x; tn) the delta function,

δ
(
U ′ − e−F (tn)U(tn)

)
= δ (U ′ − U(tn)) +

+
∞∑
n=1

∑
a1,...,an

(−1)n

n!
F a1(tn) . . . F an(tn) ·

· ∇a1

U(tn) . . .∇
an
U(tn)δ (U ′ − U(tn)) , (3.37)

and integrate by parts the Lie derivatives (the space and Lorentz indices have
been temporarily suppressed for clarity). The remaining delta function allows
integrating over U , forcing U ′µ(x) = Uµ(x; tn). Dropping the prime, the
probability of having the configuration U at time tn changes at time tn+1 by

P [U ; tn+1]− P [U ; tn] =

=
∞∑
n=1

∑
a1,...,an
x1,...,xn
µ1,...,µn

1

n!
∇a1
x1µ1

. . .∇an
xnµn

[〈
F a1
µ1

(x1) . . . F an
µn (xn)

〉
P [U ; tn]

]
.

(3.38)

Such expansion is a discrete version of the Kramers–Moyal expansion [79, 80].
For t→ +∞ the process reaches equilibrium and the left-hand side vanishes; this
means that the equilibrium distribution satisfies

∞∑
n=1

∑
a1,...,an
x1,...,xn
µ1,...,µn

1

n!
∇a1
x1µ1

. . .∇an
xnµn

[〈
F a1
µ1

(x1) . . . F an
µn (xn)

〉
Peq[U ]

]
= 0 . (3.39)

From Eq. (3.39) it is possible to determine Peq order by order in ε. In order to
see the O(ε) effect, we need

〈Fi〉 = ε∇iS (3.40a)

〈FiFj〉 = ε2∇iS∇jS + 2εδij (3.40b)

〈FiFjFj〉 = 2ε2(δij∇kS + δik∇jS + δjk∇iS) +O(ε3) (3.40c)

〈FiFjFkFl〉 = 4ε2(δijδkl + δikδjl + δilδjk) +O(ε3) , (3.40d)

where i, j, k, l are multi-indices, each one collecting position, Lorentz and colour
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indices. The Fokker-Planck equation at equilibrium then reads

0 =
∑
i,j

∇i [(∇iS +∇i)Peq] +

+ ε
∑
i,j

[
1

2
∇i∇j(∇iS∇jS Peq) +∇i∇2(∇iS Peq) +

1

2
∇2∇2Peq+

− 1

3
∇i[∇i,∇j](∇jS Peq) +

1

6
[∇i,∇j]∇i∇jPeq

]
+O(ε2) . (3.41)

At the lowest order, we recognise exactly the right-hand side of Eq. (3.22): this
implies that

∇iPeq = −∇iSPeq +O(ε) (3.42)

and that Peq ∝ e−S + O(ε) is the desired distribution. The full solution of
Eq. (3.41) is needed to understand the impact of a non-zero ε. After some
algebra6, it is possible to show that the Fokker-Planck equation can be rewritten
as

0 =
∑
i,j

∇i

[
(∇iS̄ +∇i)Peq

]
+O(ε2) , (3.43)

with a modified action

S̄[U ] =
(

1 +
ε

12
CA

)
S[U ] +

ε

4

∑
axµ

(
2∇a

xµ∇a
xµS[U ]−∇a

xµS[U ]∇a
xµS[U ]

)
. (3.44)

The equilibrium distribution Peq ∝ e−S̄+O(ε2) yields quantum expectation values
in a theory where the action differs by O(ε) from the original one. This is the
reason why the extrapolation to ε = 0 becomes necessary.

From the early stages of the Langevin technique, it was soon realised that it is
possible to reduce the impact of the finite time step, so that S̄ = S + O(ε2):
this can be done thanks to a Runge-Kutta integration scheme for non-abelian
theories [74, 75]. Recently, this algorithm has been further improved in Ref. [41].
The basic idea is to perform a first Euler step that updates the original
configuration and produces a tentative gauge configuration; then the Runge-
Kutta step is made of a drift which is computed both from the original and the
tentative configurations. The terms proportional to ε in Eq. (3.44) are exactly
cancelled, whatever the action S is. We will not describe this algorithm in detail,
since we will stick with a first-order integration scheme in the following. Even if

6 Essentially the idea is to substitute Eq. (3.42) into the O(ε) part of Eq. (3.41), in order to
move on S the derivatives acting on Peq. The commutators can be simplified with [∇axµ,∇byν ] =

−fabc∇cxµδxyδµν and
∑
ab f

abcfabd = CAδ
cd.

50



second-order schemes prove themselves to be very useful in pure gauge theories,
subtleties arise when fermions are considered, as we will explain in Sect. 4.4.

NSPT can be applied to this whole procedure in order to perform perturbative
calculations in gauge theories. The idea is always the same: we have to expand
formally the links around the vacuum, and then plug the expansion into Eq. (3.33)
to integrate numerically the Langevin equations governing each perturbative
component. Because in lattice gauge theory the action is proportional to the
coupling β, a straightforward application of this procedure would lead to an
inconsistent solution of Eq. (3.33), as the lowest order would be controlled only
by the noise. An easy solution is rescaling the time step with the coupling, τ = εβ,
so that both the noise and the drift contributions start from the same order β−1/2.
Explicitly, the formal series reads

Uµ(x) = 1 +
∞∑
n=1

U (n)
µ (x) β−n/2 , (3.45)

where 1 corresponds to the vacuum and the rescaling ε → τ requires expanding
in β−1/2 instead of β−1. From this, all the operations are done order by order in
perturbation theory: for example, the gauge potential is defined as the logarithm
of the link field, and it reads

Aµ(x) =
∞∑
n=1

A(n)
µ (x) β−n/2 =

= −i logUµ(x) = −iU (1)
µ (x)β−1/2 − i

[
U (2)
µ (x)− 1

2

(
U (1)
µ (x)

)2
]
β−1 + . . . .

(3.46)

All the components A(n)
µ (x) must be Hermitian and traceless. On the other hand,

it is interesting to note that the unitarity requirement on Uµ(x) leads to nonlinear
relations between the U (n)

µ (x). The force inherits a similar expansion, Fµ(x) =∑
n=1 F

(n)
µ (x)β−1/2. From Eq. (3.33), a chain of recursive equations follows, the

first few of which are

U (1)
µ (x; tn+1) = U (1)

µ (x; tn)− F (1)
µ (x; tn) (3.47a)

U (2)
µ (x; tn+1) = U (2)

µ (x; tn)− F (2)
µ (x; tn)− F (1)

µ (x; tn)U (1)
µ (x; tn)+

+
1

2

(
F (1)
µ (x; tn)

)2
, (3.47b)

and so on. The noise enters explicitly only in F (1).
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µ̂

Uµ(x)

Figure 3.1 Staples around the link Uµ(x) needed to evaluate the derivative of the
Wilson action.

The exact form of the drift in the case of the Wilson action of Eq. (1.21) can be
derived easily from the Lie derivative of the action, which reads

∇xµSG[U ] =
−iβ
2Nc

Πg

(
Uµ(x)

∑
ν 6=µ

Hµν(x)

)
, (3.48)

with

Hµν(x) = Uν(x+ aµ̂)Uµ(x+ aν̂)†Uν(x)†+

+ Uν(x− aµ̂+ aν̂)†Uµ(x− aν̂)†Uν(x− aν̂) . (3.49)

The sum in the Lie derivative is pictured in Figure 3.1, and is known as the sum
over the staples.

It must also be emphasised that lattice gauge theories exhibit two sources of zero
modes that spoil the numerical convergence of the stochastic process. We will
deal with the gauge zero mode in the following Sect. 3.4; Sect. 4.3 is dedicated
to the zero-momentum mode.
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3.4 Stochastic gauge fixing

Gauge invariance of the action causes troubles in quantising physical systems:
in the path integral formalism, the Faddeev-Popov procedure is needed to factor
the integral on the gauge orbits, where the action is constant. The price that is
paid is the introduction of a gauge-fixing term and, if the theory is non-abelian,
ghosts. From the point of view of perturbation theory, where the Faddeev-Popov
procedure is fully consistent, gauge fixing makes the quadratic part of the action
invertible. Indeed, without gauge fixing, the longitudinal modes of the gauge
field would be unconstrained by the equations of motion; in the language of
stochastic quantisation, the force would act only on the transverse components.
The longitudinal modes of the gauge field are zero modes: as explained at the end
of Sect. 3.1, they are not a problem for gauge-invariant observables in stochastic
quantisation (the original goal of the method is precisely to overcome gauge fixing
in perturbation theory), but compromise the usefulness of NSPT.

Stochastic gauge fixing [81] provides a nonperturbative procedure for gauge fixing.
It consists in adding to the drift a new term which does not affect gauge-invariant
quantities but provides a force that keeps limited the norm of the gauge field.
In this way, Eq. (3.23) holds not only for gauge-invariant observables, but for
a generic correlator: the equivalence with canonical quantisation can then be
proved [69].

Evidently, in NSPT the absence of a force for longitudinal Aµ affects the links as
well, as Uµ and Aµ are equal at the lowest order. Stochastic gauge fixing can be
obtained by exploiting the following freedom in the discrete stochastic process.
Let us suppose that after each Langevin step a generic gauge transformation
Ω(x; tn) is performed: thus Eq. (3.33) is replaced by

Ũµ(x; tn+1) = Ω(x; tn) e−Fµ[U(tn),η(tn)](x) Uµ(x; tn) Ω†(x+ µ̂; tn) =

= Ω(x; tn)Uµ(x; tn+1) Ω†(x+ µ̂; tn) , (3.50)

where it was made explicit that the force is computed from the configuration
U(tn) and the noise realisation η(tn). How does this new evolution scheme affect
observables? Using the gauge covariance of the force7, it is clear that

Fµ[Ũ(tn+1), η(tn+1)](x) = Ω(x; tn)Fµ[U(tn+1), ηΩ(tn+1)](x) Ω†(x; tn) , (3.51)
7 The deterministic part of F is made of Wilson loops.
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with the new noise

ηΩ
µ (x; tn+1) = Ω†(x; tn)ηµ(x; tn+1)Ω(x; tn) . (3.52)

The next Langevin step is equivalent to

Ũµ(x; tn+2) = Ω(x; tn+1) e−Fµ[Ũ(tn+1),η(tn+1)](x) Ũµ(x; tn+1) Ω†(x+ µ̂; tn+1) =

= Ω(x; tn+1) Ω(x; tn) e−Fµ[U(tn+1),ηΩ(tn+1)](x) ·

· Uµ(x; tn+1) Ω†(x+ µ̂; tn) Ω†(x+ µ̂; tn+1) , (3.53)

and so on. The new evolution scheme leads to gauge-transformed configurations
that have evolved with a noise ηΩ. Still, ηΩ is again a Gaussian noise and realises
a valid Langevin history with the correct asymptotic distribution: therefore,
gauge-invariant observables are not affected, and Eq. (3.50) provides a legitimate
integration scheme. It is natural to expect that choosing

Ω(x; tn) = eω[U(tn+1)](x) with ω[U ](x) = −αΠg

(∑
µ

δ∗µAµ(x)

)
, (3.54)

with α ∈ (0, 1), is effectively providing a force acting on the longitudinal
components of the gauge field. Indeed, Eq. (3.54) is a gauge transformation
that, if iterated, leads to the Landau gauge, as explained in Sect. 5.2.

Finally, we can present the discrete stochastic process that we are going to
adopt [70]:

U ′µ(x; tn) = e−Fµ(x;tn) Uµ(x; tn) , (3.55a)

Uµ(x; tn+1) = ew[U ′(tn)](x)U ′µ(x; tn)e−w[U ′(tn)](x+µ̂) , (3.55b)

with

ω[U ](x) = −αΠg

(∑
µ

δ∗µUµ(x)

)
. (3.56)

The chosen gauge transformation is different from the one in Eq. (3.54), and
would not lead to the Landau gauge if iterated: however, it guarantees a force
on the longitudinal components of the gauge field (Uµ and Aµ are equal at the
lowest order), and it is cheaper to evaluate numerically (the logarithm needed to
compute Aµ from the links is avoided).
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Chapter 4

Twisted boundary conditions and
fermions in NSPT

A perturbative approach for lattice gauge theories defined in a finite volume with
periodic boundary condition (PBC) is not completely well defined. The Wilson
action has several minima around which a perturbative expansion can be defined:
these are called torons. It can be shown that not all of these vacua are equivalent,
but there are some singular toron configurations around which the weak coupling
expansion of the partition function is non-analytic [82–84]. On the other hand,
it has been found that clever choices of boundary conditions allow overcoming
this problem: in particular, twisted boundary conditions (TBC) admit a vacuum
which is unique up to similarity transformations and multiplication by an element
in the centre of SU (Nc) [85, 86], thus putting a perturbative expansion in finite
volume on a solid ground.

TBC have been introduced in pure gauge NSPT for the first time in Refs. [87,
88]. In NSPT the introduction of such boundary conditions has another major
motivation: they remove naturally the zero-momentum mode from the theory.
We are going to study TBC and their compatibility with fermions; then, we will
focus on the implementation of Wilson and staggered fermions in NSPT.

In this chapter a = 1.
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4.1 Twisted boundary conditions

The usual choice of PBC implies defining the theory on a 4-dimensional torus.
In fact, this premise can be relaxed. While the action and observables must
be single-valued, the fields have additional freedom. In other words, when
a theory is defined in finite volume, in order to avoid boundary terms, the
fields can be required to satisfy any boundary conditions that are compatible
with the symmetries of the action: since gauge field configurations related by a
gauge transformation are physically equivalent, we can actually impose the gauge
field to be periodic up to a gauge transformation. These are twisted boundary
conditions [89].

Even though it is interesting to consider the general case [86], we will restrict
ourselves to constant gauge transformations: TBC in direction ν̂ are

Uµ(x+ Lν̂) = ΩνUµ(x)Ω†ν , (4.1)

where Ων ∈ SU(Nc) are the twist matrices. The gauge group has to transform
accordingly: given a gauge transformation Λ(x), then

Λ(x+ Lν̂) = ΩνΛ(x)Ω†ν (4.2)

so that a gauge transformed link at the boundary can be evaluated without
ambiguity,

Λ(x+ Lν̂)Uµ(x+ Lν̂)Λ(x+ Lν̂ + µ̂)† = ΩνΛ(x)Ω†νΩνUµ(x)Ω†νΩνΛ(x+ µ̂)†Ω†ν =

= ΩνΛ(x)Uµ(x)Λ(x+ µ̂)†Ω†ν . (4.3)

Let us assume that directions 1̂ and 2̂ are twisted: since

Uµ(x+ L1̂ + L2̂) = Ω1Uµ(x+ L2̂)Ω†1 = Ω1Ω2Uµ(x)Ω†2Ω†1 (4.4a)

Uµ(x+ L1̂ + L2̂) = Ω2Uµ(x+ L1̂)Ω†2 = Ω2Ω1Uµ(x)Ω†1Ω†2 , (4.4b)

consistency requires that

Uµ(x)(Ω1Ω2)†Ω2Ω1 = (Ω1Ω2)†Ω2Ω1Uµ(x) . (4.5)

This means that the matrix (Ω1Ω2)†Ω2Ω1 must commute with all the elements of
SU(Nc), i.e. must be in the centre ZNc . Therefore, the twist matrices cannot be
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arbitrary matrices: they must satisfy

Ω2Ω1 = zΩ1Ω2 (4.6)

for some z = ei
2π
Nc
n with n = 0, . . . , Nc − 1. For a general number of twisted

directions, the same condition reads

ΩνΩµ = zµνΩµΩν , (4.7)

with zµν = ei
2π
N
nµν . The antisymmetric tensor nµν is called the twist tensor,

and its components are integers modulo Nc. The elements Ωµ, Ων , z generate
the twist group. If only two directions are twisted and nµν and Nc are coprime
integers, it can be proved that the twist matrices are unique up to similarity
transformations and multiplication by an element of the centre, i.e. they form an
irreducible representation of the twist group (see Ref. [86] and references therein).
Moreover, thanks to Schur’s lemma, we have that ΩNc

µ is an element of the centre
times the identity, since it commutes with all the elements of the twist group.

4.1.1 Twisted action

It is possible to show that the Wilson action with TBC is related by a change
of variable to a modified twisted action with PBC. We will present the argument
here in pure gauge, and we will study later to which extent the equivalence holds
in presence of fermions.

The partition function for pure Yang-Mills theory on the lattice is

Z =

∫
DU e−SG[U ] , (4.8)

where we adopt the Wilson action of Eq. (1.21). TBC affect plaquette Uµν(x)

only when x is on the edge of the lattice in a twisted direction (i.e. xµ = L − 1

for a twisted direction µ̂). Two different cases arise.

x on the edge in one twisted direction: let µ̂, ν̂ be respectively twisted and
periodic directions, and x such that xµ = L− 1. Then

Uµν(x) = Uµ(x)ΩµUν (x− (L− 1)µ̂) Ω†µUµ(x+ ν̂)†Uν(x)† . (4.9)
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x on the edge in two twisted directions: let µ̂, ν̂ be two twisted directions,
and x such that xµ = xν = L− 1. Then

Uµν(x) = Uµ(x)ΩµUν (x− (L− 1)µ̂) Ω†µΩνUµ (x− (L− 1)ν̂)†Ω†νUν(x)† . (4.10)

We can now perform a unitary change of variable in the path integral in order to
absorb the twist matrices in the plaquette. As explicitly shown in Refs. [82, 90,
91], new links Ũµ(x) can be defined according to1Uµ(x) = Ũµ(x)Ω†µ if µ̂ is a twisted direction and xµ = L− 1

Uµ(x) = Ũµ(x) otherwise
. (4.11)

The effect of the change of variable in the evaluation of the action is the following.

x on the edge in one twisted direction: in this case the plaquette is the same
as if new variables obeyed PBC,

Uµν(x) = Ũµ(x)Ω†µΩµŨν (x− (L− 1)µ̂) Ω†µΩµŨµ(x+ ν̂)†Ũν(x)† =

= Ũµ(x)Ũν (x− (L− 1)µ̂) Ũµ(x+ ν̂)†Ũν(x)† . (4.12)

x on the edge in two twisted directions: in this case the plaquette is the
same, apart from an overall phase, as if new variables obeyed PBC,

Uµν(x) = Ũµ(x)Ω†µΩµŨν (x− (L− 1)µ̂) Ω†νΩ
†
µΩνΩµŨµ (x− (L− 1)ν̂)† ·

· Ω†νΩνŨν(x)† =

= zµνŨµ(x)Ũν (x− (L− 1)µ̂) Ũµ(x+ ν̂)†Ũν(x)† . (4.13)

All things considered, the partition function reduces to

ZTEK =

∫
DU exp

(
− β

Nc

∑
x

∑
µ<ν

Re Tr (zµν(x)Uµν(x))

)
, (4.14)

where we dropped the tilde over the new links. The link variables now are assumed
to be periodic. The phase zµν(x) is always equal to 1, except when xµ = xν =

L − 1: in that case, zµν(x) = zµν corresponds to the phase in the twist group.
For the plaquettes that have zµν(x) 6= 1, the action corresponds to the one of the

1 Introducing the ladders Λµ = {Uµ(x) : xµ = L − 1}, we see that the change of variable
affects only the gauge links attached to a ladder in a twisted direction.
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twisted Eguchi-Kawai model (TEK) [92, 93].

In conclusion, it can be stated that using explicit TBC is equivalent to have PBC
and a twisted action. From the very same argument, other interesting properties
follow:

• when zµν = 1 (e.g. when only one direction is twisted, or when commuting
twist matrices are used), TBC are not realised

• the vacuum of the TEK action (twist eater) can be obtained by setting
Uµ(x) = 1 in Eq. (4.11)

• sets of twist matrices with the same twist tensor are equivalent, and the
corresponding partition functions are related to each other via the change
of variable in Eq. (4.11).

4.2 Fermions with twisted boundary conditions

The partition function for a gauge theory coupled with fermions is

Z =

∫
D[U, ψ, ψ̄] e−SG[U ]−SF [U,ψ,ψ̄] , (4.15)

where, in addition to the lattice gauge action, we are considering a Wilson or
staggered fermion action as in Eqs. (1.30) and (1.37) (for simplicity, only one
flavour is considered).

4.2.1 Adjoint representation

Dealing with fermions in the adjoint representation and TBC does not pose any
particular issue, because in this case fermions share the same transformation law
as the gauge links. In this representation, it is more convenient to describe the
fermion field with a Nc × Nc traceless matrix ψ(x) defined by ψ = ψaT a, see
Appendix A. Using

((Uadj)µ(x))ab = 2 Tr
(
T aUµ(x)T bUµ(x)†

)
, (4.16)
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it is easy to rewrite the fermion action as a trace: for example, focusing on the
colour structure only,

ψ̄a(x)
(
Uadj
µ (x)

)
ab
ψb(x+ µ̂) = 2 Tr

(
ψ̄(x)Uµ(x)ψ(x+ µ̂)Uµ(x)†

)
. (4.17)

Imposing that the field configurations are periodic up to a gauge transformation
requires care, because gauge invariance holds only if the fermions undergo a gauge
transformation as well. This means that, in addition to Eq. (4.1), we require (in
the matrix representation of the field)

ψ(x+ Lν̂) = Ωνψ(x)Ω†ν . (4.18)

Note that Eq. (4.7) is sufficient to make the twist well defined.

We can now try to build a twisted action. Since bothWilson and staggered actions
have nearest neighbours interactions, like in Eq. (4.17), TBC have an effect only
when x is on the edge of the lattice (xµ = L−1) and µ is a twisted direction: but
that is also the only case in which the change of variable of Eq. (4.11) is switched
on, therefore

ψ̄(x)Uµ(x)ψ(x+ µ̂)Uµ(x)† = ψ̄(x)Uµ(x)Ωµψ(x− (L− 1)µ̂)Ω†µUµ(x)† =

= ψ̄(x)Ũµ(x)Ω†µΩµψ(x− (L− 1)µ̂)Ω†µΩµŨµ(x)† .

(4.19)

After taking the trace it is evident that the new link variables absorb the twist
in the fermion sector; in the new variables, the fermion field can be considered
periodic2. We have found that a lattice gauge theory with Wilson or staggered
fermions in the adjoint representation and TBC is equivalent to a theory with
PBC and a twisted action for the gauge sector.

4.2.2 Fundamental representation

The inclusion of fermions in the fundamental representation is not straightfor-
ward; indeed, the gauge transformation for the fermions when translated by a

2 Periodic is in the sense that it does not undergo a gauge transformation after L sites. If
the field had other constraints (for example antiperiodicity in the time direction), those will
stay.
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multiple of the lattice size reads

ψ(x+ Lν̂) = Ωνψ(x) , (4.20)

leading to an ambiguous definition of ψ(x + Lµ̂ + Lν̂). An idea to overcome
this problem, proposed in Ref. [94, 95] and implemented e.g. in Ref. [96], is
to introduce a new quantum number so that fermions exist in different copies,
or smells, which transform into each other according to the antifundamental
representation of SU(Nc). The theory has a new global symmetry, but physical
observables are singlets under the smell group. Thus, configurations related by a
smell transformations are equivalent, and in finite volume we are free to substitute
Eq. (4.20) with

ψ(x+ Lν̂)ir =
∑
j,s

(
Ων

)
ij
ψ(x)js

(
Λ†ν
)
sr
, (4.21)

where Λν ∈ SU(Nc). It is useful to think of the fermion field as a matrix in
colour-smell space. If the transformation matrices in smell space satisfy the same
relations as in Eq. (4.7), then twisted boundary conditions are well defined. In
particular, we will always choose Λµ = Ωµ.

It is worth pointing out that the change of variable in Eq. (4.11) does not allow
formulating a twisted action. If x is on the edge of the lattice and µ is a twisted
direction, then the action has a contribution that goes like

ψ̄(x)Uµ(x)ψ(x+ µ̂) = ψ̄(x)Uµ(x)Ωµψ(x− (L− 1)µ̂)Ω†µ =

= ψ̄(x)Ũµ(x)Ω†µΩµψ(x− (L− 1)µ̂)Ω†µ , (4.22)

where the field ψ(x) is regarded as a matrix in colour-smell space. Since only
one link participate in Eq. (4.22), not all the twist matrices are absorbed, even
after taking the trace. A redefinition of ψ(x) would spoil other contributions to
the action in the inner region of the lattice. Thus, the explicit transformation
of Eq. (4.21) is required when fermions in the fundamental representation with
smell are considered.

4.3 Zero-momentum mode in NSPT

When dealing with gauge theories in NSPT, we have already mentioned the
existence of zero-mode sources. The problem of the gauge zero mode has been
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already tackled in Sect. 3.4. Here we want to study the zero-momentum mode:
indeed, it is evident that the Fourier mode of the gauge potential with k = 0 is not
affected by the Langevin drift, and satisfies Eq. (3.30). In other words, the force
originating from the gauge action does not act on constant gauge configurations
(the free field strength in Eq. (1.11) is made of derivatives acting on the gauge
potential). This issue survives in the lattice formulation, since the link field
and the gauge potential are equal at the lowest order; the diverging fluctuations
propagate to higher perturbative orders as well. The zero-momentum problem
can also be seen in finite-volume lattice perturbation theory: the gluon propagator
has a pole at k = 0, and gives a divergent contribution when a quantised gluon
momenta with PBC is summed over. A quick solution amounts to neglecting
such mode [97]: in NSPT this means that, at each evolution step, the condition∑

x

A(n)
µ (x) = 0 (4.23)

must be enforced at all orders. The theory simulated in this way is nonlocal,
as it is a gauge theory with an additional constraint which becomes irrelevant
in the infinite-volume limit only. New nonperturbative effects due to the lack of
this mode are introduced: these invalidate the finite-volume OPE developed in
Ref. [98].

On the other hand, TBC can be used in finite-volume lattice perturbation
theory to remove the zero-momentum mode without imposing any additional
constraint. To understand why this happens, first we have to work out the Fourier
decomposition with TBC. Such decomposition will turn out to be useful also when
simulating fermions in NSPT.

If f(x) is a periodic function defined on the L4 lattice, its Fourier transform and
inverse are

f(x) =
1

L4

∑
p‖

eip‖xf̃(p‖) , f̃(p‖) =
∑
x

e−ip‖xf(x) , (4.24)

where p‖ is the quantised vector p‖ = 2π
L

(n1, n2, n3, n4), and the sum is to be
read

∑
p‖

=
∑L−1

n1,n2,n3,n4=0. Antiperiodicity in the direction ν̂ would lead again to
Eq. (4.24) but with a quantised momentum (p‖)µ = 2π

L
nµ + π

L
δµν .
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Twisted boundary conditions on a plane

Let us consider some Nc×Nc matrixM(x) (which for example can be a gauge link
or the vector potential seen as matrices in colour space, or a fundamental fermion
field seen as a matrix in colour-smell). We impose twisted boundary condition in
the 1̂, 2̂ plane so that

M(x+ L1̂) = Ω1M(x)Ω†1 , M(x+ L2̂) = Ω2M(x)Ω†2 , (4.25)

with Ω2Ω1 = zΩ1Ω2, z = z12 ∈ ZNc . If we had just (anti)periodic boundary
conditions, we would treat the matrix as N2

c independent scalar functions; twisted
boundary conditions actually couple the different components, therefore in order
to expandM(x) in plane waves we need to find a good basis for the matrix space.
It can be proved (see Refs. [91, 93, 99]) that the Fourier transform and its inverse
are

M(x) =
1

NcL4

∑
p‖,p⊥

eipx Γp⊥M̃(p‖)p⊥ , M̃(p‖)p⊥ =
∑
x

e−ipx Tr Γ†p⊥M(x) ,

(4.26)
where p = p‖+ p⊥, p⊥ is the quantised vector p⊥ = 2π

NcL
(ñ1, ñ2, 0, 0), and the sum

is to be read
∑

p⊥
=
∑Nc−1

ñ1,ñ2=0. The matrices Γp⊥ form the sought basis in the
matrix space: assuming a twist with z = exp(2πi/Nc), we can choose for example

Γp⊥ = Ωñ2
1 Ω−ñ1

2 . (4.27)

A different choice for z would have somehow reshuffled the exponents in
Eq. (4.27). We see that the Fourier transform of M(x) is a scalar function
M̃(p‖)p⊥ , but momentum has a finer resolution compared to (anti)periodic
boundary conditions: spatial and colour degrees of freedom mix in momentum
space. We can now see that traceless matrices naturally do not have a zero mode,
because

M̃(p‖)p⊥=0 =
∑
x

e−ip‖x TrM(x) . (4.28)

Therefore the gauge potential does not have any zero-momentum component.

It is also useful to report a few properties satisfied by the matrices defined in
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Eq. (4.27),

Tr Γp⊥ = Nc δp⊥,0 (4.29a)

Γ†p⊥ = f(p⊥, p⊥)Γ−p⊥ (4.29b)

Γp⊥Γp′⊥ = f(p⊥, p
′
⊥)Γp⊥+p′⊥

, (4.29c)

where we defined the phase

f(p⊥, p
′
⊥) = z−ñ1ñ′2 . (4.30)

Twisted boundary conditions in three directions

The conditions in Eq. (4.25) are supplemented by

M(x+ L3̂) = Ω3M(x)Ω†3 , (4.31)

with Ω3 = Ωρ
1Ωσ

2 and ρ, σ span all the possible twist choices. It can be shown
that Eq. (4.26) still holds, but with a fine momentum p⊥ = 2π

NcL
(ñ1, ñ2, ñ3, 0).

The component ñ3 is not a new degree of freedom but depends on the values of
ñ1, ñ2. For example, in the case z = exp(2πi/Nc), ρ = σ = 1, then ñ3 = (ñ1 + ñ2)

mod Nc. Other choices of z, ρ, σ just give a new relation between ñ3 and z, ñ1, ñ2.

Numerical implementation

The Fast Fourier Transform (FFT) algorithm encodes Eq. (4.24), FFT[f(x)] =

f̃(p). It is not possible to apply the FFT directly to each matrix element of
M(x), because the Fourier expansion has a dependence on p⊥x. First, we need
to project onto one of the p⊥,

M̂(x)p⊥ = e−ip⊥x Tr Γ†p⊥M(x) =
1

L4

∑
p‖

eip‖xM̃(p‖)p⊥ , (4.32)

and then to each of these we apply the FFT,

M̃(p‖)p⊥ = FFT[M̂(x)p⊥ ] . (4.33)
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At the end, N2
c projections and N2

c FFTs have been performed. The inverse
transform will be simply

M̂(x)p⊥ = FFT−1[M̃(p‖)p⊥ ] (4.34)

followed by

M(x) =
1

Nc

∑
p⊥

eip⊥x Γp⊥M̂(x)p⊥ . (4.35)

Note that M̃(p‖)p⊥ is a scalar function but the dependence on p⊥ is through
ñ1, ñ2, where each integer runs from 0 to Nc − 1: this allows a representation of
the Fourier transform again with a Nc ×Nc matrix field,

(
M(p‖)

)
ñ1ñ2

. Of course
this has to be understood only as a useful representation of the momentum degrees
of freedom, not as a matrix in colour space.

4.4 Fermion drift in NSPT

If SF [U, ψ, ψ̄] =
∑

x,y ψ̄(x)M [U ]x,yψ(y) is the action of a single fermion, then
dynamical fermions can be included in NSPT thanks to a new term in the drift,
as shown in Refs. [75, 100]. The determinant arising from Nf degenerate fermions
can be rewritten as

det(M)Nf = exp (Nf Tr logM) , (4.36)

and can be taken into account by considering the effective action

Seff[U ] = SG[U ]−Nf Tr logM . (4.37)

From the Lie derivative of the additional term, and recalling that a rescaled time
step τ = ε/β is used in the Euler update, we obtain the new contribution

F f
µ (x) = −i τNf

β

∑
a

T a Tr(∇a
xµM)M−1 (4.38)

to be added to the pure gauge drift of Eq. (3.34). It is important to note that the
coefficient of iT a is purely real because the Wilson operator is γ5-Hermitian and
the staggered operator is antihermitian: this is consistent with the drift being an
element of the algebra. The trace can be evaluated stochastically: Eq. (4.38) is
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replaced by

F f
µ (x) = −iτNf

β

∑
a

T a Re ξ∗(∇a
xµM)M−1ξ (4.39)

thanks to the introduction of a new complex Gaussian noise ξ satisfying3

〈ξ∗(y)βirξ(z)γjs〉 = δyzδβγδijδrs . (4.40)

The real part must be enforced, otherwise the drift would be guaranteed to be
in the algebra only on average, and the dynamics would lead the links out of the
group.

The stochastic process defined in this way is driven by two random sources, η
and ξ: retracing the same steps presented in Sect. 3.3, it is easy to see that the
equilibrium distribution is the desired one up to O(ε). The pure-gauge Runge-
Kutta algorithms developed in Refs. [41, 75] are able to remove O(ε) effects only
if the fermion contribution is evaluated exactly; this is because it would hold,
trivially,

〈
F f
µ (x)F f

ν (y)
〉

=
〈
F f
µ (x)

〉〈
F f
ν (y)

〉
. Since the drift originating from the

fermion action is evaluated stochastically, higher-order integration schemes need
to take into account the presence of two random sources: this means that, calling
Re ξ∗(∇xµM)M−1ξ = ξ∗Axµξ, it is〈

F f
µ (x)F f

ν (y)
〉

= −ε2N2
f 〈ξ∗Axµξ ξ∗Ayνξ〉 =

= −ε2N2
f (TrAxµ TrAyν + TrAxµAyν) =

=
〈
F f
µ (x)

〉〈
F f
ν (y)

〉
− ε2N2

f TrAxµAyν . (4.41)

The additional term in Eq. (4.41) is a non-integrable term that prevents from
defining an equilibrium distribution for the Fokker-Planck equation. Such term
arises from the connected contribution of the four-point Gaussian correlator4.
Even though it is possible to build more sophisticated Runge-Kutta schemes
where the non-integrable terms are removed [101, 102], they turn out to be
computational expensive and not practical [103]. Having this in mind, the choices
in the literature have been either to remove the O(ε) effects partially, by adopting
a naive Runge-Kutta integrator and leaving the non-integrable terms, or to use
simply an Euler scheme; we will always stick to the latter option in the following.

3 Obviously ξ does not have any Dirac structure in the staggered case. The noise can be
built from the independent generation of real and imaginary part with zero mean and variance
1/2.

4 An additional non-integrable term would be present in the case of a non-Gaussian fermion
noise, see Sect. 4.4.5.
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In NSPT, the Dirac operator inherits a formal perturbative expansion from the
links, M =

∑∞
n=0 β

−nM (n), so the inverse ψ = M−1ξ can be computed efficiently
from the knowledge of the inverse free operator via the recursive formula

ψ(0) = M (0)−1
ξ (4.42a)

ψ(n) = −M (0)−1
n−1∑
j=0

M (n−j)ψ(j) . (4.42b)

The inverse of the free operator is conveniently applied in Fourier space. It
is important to remember that the massless fermion propagator has a pole
for vanishing momentum, and one must be careful when applying M (0)−1:
the component with zero momentum must be excluded from the Fourier
decomposition of ξ. Clearly this is only a matter of existence of the inverse Dirac
operator, and is a problem unrelated to the issue of convergence of the stochastic
process. Indeed, a fundamental fermion with smell (seen as matrix in colour-smell
space) is not required to be traceless, thus its Fourier zero-mode does not vanish.
Therefore, fermions are always required to have antiperiodic boundary conditions
in time direction. Twisted boundary conditions in time direction are also avoided
because, in the massless case, it might happen for the free fermion propagator to
develop a pole at some particular momenta.

If fermions have smell, then the rescaling Nf → Nf/Nc is required in order to
have Nf flavours in the infinite-volume limit. In other words, this is the same
as considering the Ncth root of the determinant of the fermion operator. In
principle such rooted determinant could come from a nonlocal action, because
twisted boundary conditions break the invariance under smell transformations.
Nevertheless, this rooting procedure is sound since we know in advance that in the
infinite-volume limit all the dependence on boundary conditions will be lost, and
the determinant will factorise as the fermion determinant of a single smell times
the identity in smell space. It is also possible to show with arguments similar to
those presented in Ref. [10] that, if the theory without smell is renormalisable, this
operation leads to a perturbatively renormalisable theory as well. Below, when
describing Wilson and staggered fermions in the fundamental representation, we
explicitly rescale Nf → Nf/Nc.
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4.4.1 Wilson fermions

The Wilson Dirac operator and its Lie derivative are

Myβir,zγjs = (m+ 4)δrsδyzδβγδij +
∑
µ

[
D(µ) + γ5D(µ)†γ5

]
yβir,zγjs

(4.43a)

∇a
xµMyβir,zγjs = iδxy[T

aD(µ)]yβir,zγjs − iδxz[γ5D(µ)†γ5T
a]yβir,zγjs , (4.43b)

where the non-diagonal term has been expressed through

D(µ)yβir,zγjs = −1

2
δrsδy,z−µ̂(1− γµ)βγUµ(y)ij . (4.44)

It is easy to see that this operator reconstructs the action in Eq. (1.30). We must
give a perturbative structure to the mass m =

∑∞
n=0 β

−nm(n) to account for an
additive mass renormalisation, see Sect. 5.1. The stochastic evaluation of the
trace leads to

ξ∗(∇a
xµM)M−1ξ = iTrT a

∑
β

(
ϕ(µ)(x)β ξ(x)†β − ψ(x)β ϕ̃

(µ)(x)†β

)
, (4.45)

where ϕ(µ) = D(µ)ψ, ϕ̃(µ) = γ5D(µ)γ5ξ and the fermion fields have been
represented as matrices in colour-smell space. After taking the real part, the
fermion drift can be finally written as

F f
µ (x)ij =

1

2

Nf

Nc

τ

β

∑
a

T aij TrT a
∑
β

[(
ϕ(µ)(x)β ξ(x)†β − ψ(x)β ϕ̃

(µ)(x)†β

)
− h.c.

]
=

=
1

2

Nf

Nc

τ

β
Πg

[∑
β

(
ϕ(µ)(x)β ξ(x)†β + ϕ̃(µ)(x)β ψ(x)†β

)]
ij

. (4.46)

In Sect. 4.4.3 the actual implementation of the fermion drift is described (only
one of the two terms in Eq. (4.46) is actually needed).

With the Fourier transform described in Sect. 4.3, the inverse free Wilson operator
with twisted boundary conditions is diagonal in momentum space and can be
expressed as

M (0)−1

k,p = δk‖p‖δk⊥p⊥
2
∑

µ sin2 kµ
2

+m(0) − i
∑

µ γµ sin kµ(
2
∑

µ sin2 kµ
2

+m(0)
)2

+
∑

µ sin2 kµ

. (4.47)
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4.4.2 Staggered fermions

We implemented for the first time staggered fermions in NSPT. The staggered
field has no Dirac structure and describes four physical fermions in the continuum
limit. Therefore, we rescale Nf → Nf/4 and the staggered operator is understood
to be rooted when the number of flavour is not a multiple of four5. The staggered
Dirac operator and its Lie derivative are

Myir,zjs = mδrsδyzδij +
∑
µ

[
D(µ)−D(µ)†

]
yir,zjs

(4.48a)

∇a
xµMyir,zjs = iδxy[T

aD(µ)]yir,zjs + iδxz[D(µ)†T a]yir,zjs , (4.48b)

where the non-diagonal term has been expressed through

D(µ)yir,zjs =
1

2
αµ(y)δrsδy,z−µ̂Uµ(y)ij . (4.49)

This operator reconstructs the staggered action in Eq. (1.37). The stochastic
evaluation of the trace is analogous to the Wilson fermion case and Eq. (4.45)
becomes

ξ∗(∇a
xµM)M−1ξ = iTrT a

(
ϕ(µ)(x) ξ(x)† − ψ(x) ϕ̃(µ)(x)†

)
, (4.50)

with ϕ(µ) = D(µ)ψ and ϕ̃(µ) = −D(µ)ξ, leading to the final expression

F f
µ (x)ij =

1

2

Nf

4Nc

τ

β
Πg

(
ϕ(µ)(x) ξ(x)† + ϕ̃(µ)(x)ψ(x)†

)
ij
. (4.51)

Again, the actual implementation of the staggered drift is shown in Sect. 4.4.3.

With the Fourier transform described in Sect. 4.3, the inverse free staggered
operator with twisted boundary conditions is found to be

M (0)−1

k,p = δk⊥p⊥
mδk‖p‖ − i

∑
µ sin kµ δ̄(k‖ + πµ̄− p‖)∑
µ sin2 kµ +m2

, (4.52)

where 1̄ = 0, µ+ 1 = µ̄ + µ̂ and δ̄ is the periodic Kronecker delta, with support
in 0 mod 2π. The propagator is not diagonal in momentum space because the

5 As rooting does not pose any issue in perturbation theory, the use of naive fermions would
have been acceptable as well. However, staggered fermions are the choice to be preferred because
they are cheaper to simulate and because, in order to compare perturbative and nonperturbative
physics, we can exploit results of several nonperturbative simulations performed in the past.
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action depends explicitly on the position through αµ(x), but it is simple enough
to avoid a complete matrix multiplication over all the degrees of freedom. If
we aim to compute M (0)−1

v for some field v in momentum space, it is useful
to represent v(p‖)p⊥ as matrices Nc × Nc with indices ñ1, ñ2 defined at each p‖

site (n1, n2, n3, n4). Then the non-diagonal terms become diagonal when shifting
iteratively v by L/2 in the p‖ space. Incidentally, we must consider L to be even so
that at the same time L/2 is well defined and (in the massless case) no spurious
pole is hit when Eq. (4.52) is evaluated in finite volume: this stems from the
fact that the staggered action is only invariant under translation of two lattice
spacings, therefore twisted boundary conditions would be inconsistent for L odd.

4.4.3 Drift optimisation

A useful optimisation consists in improving on Eqs. (4.46) and (4.51) so that
it becomes numerically cheaper to evaluate the fermion drift. Considering for
example Wilson fermions, we notice that it is possible to simplify the trace

Tr(∇a
xµM)M−1 = iT̃r

[(
T aD(µ)M−1

)
x,x
−
(
γ5D(µ)†γ5T

aM−1
)
x,x

]
=

= i
∑
y,β,i,r

(
δx,y[T

aD(µ)M−1]yβir,yβir − h.c.
)
, (4.53)

where T̃r is tracing all indices but the position one, and we used the fact that the
inverse Wilson operator is γ5-Hermitian. For staggered fermions the simplification
is analogous because the inverse staggered operator is antihermitian. The step
must be done before the stochastic evaluation of the trace: once the random
sources are introduced, cyclic invariance gets broken and will be restored only on
average. Using Eq. (4.53) as a starting point, we obtain a drift which is already
in the algebra (no need of taking the real part),

F f
µ (x)ij =

Nf

Nc

τ

β
Πg

(∑
β

ϕ(µ)(x)β ξ(x)†β

)
ij

(Wilson fermions) (4.54a)

F f
µ (x)ij =

Nf

4Nc

τ

β
Πg

(
ϕ(µ)(x) ξ(x)†

)
ij

(staggered fermions) . (4.54b)
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In a similar fashion, it could be possible to show that also

F f
µ (x)ij =

Nf

Nc

τ

β
Πg

(∑
β

ϕ̃(µ)(x)β ψ(x)†β

)
ij

(Wilson fermions) (4.55a)

F f
µ (x)ij =

Nf

4Nc

τ

β
Πg

(
ϕ̃(µ)(x)ψ(x)†

)
ij

(staggered fermions) (4.55b)

are legitimate expressions for the drift. Even though all these new formulae are
numerically different from those in Eqs. (4.46) and (4.51), they lead to the same
results on average; clearly the advantage is that only half of the Lie derivative
has to be computed.

4.4.4 Adjoint representation

The whole construction presented so far can be adapted to the case of fermions in
the adjoint representation. Thanks to Eq. (4.16), the Lie derivative of a link in the
adjoint representation can be recast as a trace involving links in the fundamental
representation,

∇a
xµ((Uadj)µ(x))bc = 2iTrT a[Uµ(x)T cUµ(x)†, T b] . (4.56)

A Gaussian noise satisfying

〈
ξ∗(y)aβ ξ(z)bγ

〉
= δyzδβγδ

ab (4.57)

is introduced for the stochastic evaluation of the fermion trace (no Dirac structure
is given to ξ in the staggered case). The matrix representation ξ =

∑
a ξ

aT a can
be conveniently used. The previous calculations carry on in an analogous way,
with the following minor modifications:

• an overall factor of 2, due to the different normalisation that arises from
using the matrix representation for the field

• the outer products ϕ ξ and ϕ̃ ψ are replaced by commutators

• the operator D(µ) acts in the adjoint representation, e.g. for staggered
fermions D(µ)ψ(x) = 1

2
αµ(x)Uµ(x)ψ(x+ µ̂)Uµ(x)†.
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Eqs. (4.46) and (4.51) become respectively

F f
µ (x)ij =

Nf

Nc

τ

β
Πg

[∑
β

(
[ϕ(µ)(x)β, ξ(x)†β] + [ϕ̃(µ)(x)β, ψ(x)†β]

)]
ij

(4.58)

and
F f
µ (x)ij =

Nf

4Nc

τ

β
Πg

(
[ϕ(µ)(x), ξ(x)†] + [ϕ̃(µ)(x), ψ(x)†]

)
ij
. (4.59)

In this formulation, it must also be emphasised that the Dirac operator is not
linear in the links, as link multiplication Uψ is replaced by UψU †; the perturbative
structure of the Dirac operator is found by expanding in the coupling both U and
U †, and thus becomes slightly more involved.

4.4.5 A better estimator of the trace

It was assumed that the white noise employed to evaluate stochastically the
fermion trace was coming from a normal distribution. In fact, this hypothesis
can be relaxed. We will prove now that when ξ is drawn from a Z2 distribution,
the variance of the estimator in Eq. (4.39) is minimum. Even though we have
ascertained numerically that the use of a Z2 estimator reduces the variances of
signals in NSPT, this is still a topic that has not been investigated thoroughly.
In the results we present in Chapter 5 and Chapter 6, a Gaussian ξ is still used.
Definitely, using a Z2 noise represents a promising feature to be added in future
simulations.

A small summary on random variables

Let a be a real random variable, then 〈f(a)〉 =
∫
P (a)f(a)da, where P (a) is

the probability density6 associated to a. For some n ∈ N, the moments of the
probability distribution are defined as

σ̂n =

∫
P (a)anda . (4.60)

P (a) is chosen to be even, so that all odd moments vanish (in particular, the
expectation value of a is zero). Without loss of generality, we also take σ̂2 = 1,

6Thus P (a) ≥ 0,
∫
P (a)da = 1. If a is discrete, then P (a) is some linear combination of

delta functions and the integral becomes a sum.
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which corresponds to a choice for the normalisation of the random variable. If
a1, a2 are two such variables, then it is possible to define a new complex random
variable

ξ =
1√
2

(a1 + ia2) . (4.61)

We can restrict ourselves to expectation values of |ξ|, because averages 〈(ξ∗)i(ξ)j〉
with i 6= j vanish. The moments are defined as

σn = 〈|ξ|n〉 , (4.62)

and our previous choice of normalisation fixes σ2 = 1. Note that, given some
function f(a), Lyapunov’s inequality

〈|f(a)|s〉1/s ≤ 〈|f(a)|t〉1/t with 0 < s ≤ t (4.63)

implies
〈|f(a)|t〉 ≥ 〈|f(a)|s〉t/s with 0 < s ≤ t , (4.64)

and gives the moment monotonicity

〈|ξ|t〉 ≥ 〈|ξ|s〉t/s with 0 < s ≤ t . (4.65)

In particular σ2n ≥ σ2
n. When having a vector of independent complex random

variables, it always possible to split the expectation value 〈ξ∗i . . . ξ∗j ξk . . . ξl〉 in
connected and disconnected components. For example,

〈ξ∗i ξj〉 = σ2δij = δij (4.66a)

〈ξ∗i ξ∗j ξkξl〉 = 〈ξ∗i ξk〉〈ξ∗j ξl〉+ 〈ξ∗i ξl〉〈ξ∗j ξk〉+

+ [〈ξ∗i ξ∗i ξiξi〉 − 〈ξ∗i ξk〉〈ξ∗j ξl〉 − 〈ξ∗i ξl〉〈ξ∗j ξk〉]δijδjkδkl =

= δikδjl + δilδjk + (σ4 − 2)δijδjkδkl . (4.66b)

In the case of Gaussian variables, P (a) = 1√
2π
e−

a2

2 , the moments are σ2n = n! and
σ2n+1 = (2n+1)!!

2n+1

√
π. The four-point function can be written in terms of two-point

function,
〈ξ∗i ξ∗j ξkξl〉 = δikδjl + δilδjk . (4.67)

This is true also for all expectation values (Wick theorem).

In the case of Z2 variables, it is P (a) = 1
2
[δ(a− 1) + δ(a + 1)], therefore a = ±1
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with equal probability. Here obviously |ξ| = 1 implies σn = 1. This distribution
is saturating all the bounds set by moment monotonicity: therefore Eq. (4.65) is
the strongest bound that can be put on the moments of a generic distribution.

Stochastic estimation of a trace

The goal is to estimate TrA for some matrix A. It is possible to use a complex
vector of independent random variable ξ to evaluate stochastically the trace,

〈ξ∗Aξ〉 = TrA . (4.68)

The variance of such estimator is

Var(ξ†Aξ) =
〈 (
ξ†Aξ − TrA

) (
ξ†Aξ − TrA

)∗ 〉
=

= 〈ξ†Aξ ξ†A†ξ〉 − |TrA|2 =

=
∑
ijkl

AikA
†
jl〈ξ

∗
i ξ
∗
j ξkξl〉 − |TrA|2 . (4.69)

From Eq. (4.66b), we see that

Var(ξ†Aξ) = |TrA|2 + TrAA† + (σ4 − 2)
∑
i

|Aii|2 − |TrA|2 =

= TrAA† + (σ4 − 2)
∑
i

|Aii|2 , (4.70)

and with σ4 ≥ σ2
2 = 1 we set the bound

Var(ξ†Aξ) ≥ TrAA† −
∑
i

|Aii|2 . (4.71)

For Gaussian noise, the variance is Var(ξ†Aξ) = TrAA†; on the other hand, for
Z2 noise the bound is saturated, Var(ξ†Aξ) = TrAA† −

∑
i |Aii|2. The estimator

with Z2 noise is called Hutchinson’s estimator [104], and minimises the variance
of ξ†Aξ: this means that any other noise can have at best the same variance as
Z2. In order to further reduce the variance, it is therefore needed to improve the
estimator itself.
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Chapter 5

The critical mass of Wilson
fermions

We have seen in Sect. 1.3 that in order to simulate fermions on the lattice one is
forced to give up some properties at finite lattice spacing: in the case of Wilson
fermions, this property is chiral symmetry. To keep the fermion mass under
control, an additive renormalisation of the mass is required. In this chapter
we describe how NSPT can be used to determine such renormalisation constant
order by order in perturbation theory. Some results presented here are published
in Refs. [1, 2].

5.1 Critical mass in lattice perturbation theory

The inverse of the Wilson fermion propagator in momentum space can be
expressed as

aΓ(ap, am, β−1) = aS(ap, am, β−1)−1 =

= i
∑
µ

γµ(apµ) +
1

2
(̂ap)

2
+ am− aΣ(ap, am, β−1) , (5.1)

where v̄µ = sin vµ, v̂µ = 2 sin(vµ
2

) and Σ(ap, am, β−1) is the self energy. Wilson
fermions are not equipped with chiral symmetry when the bare mass m vanishes:
the self energy at zero momentum is affected by a power divergence a−1, which
has to be cured by an additive renormalisation. In an on-shell renormalisation
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scheme, the critical value of the bare mass, mc, for which the lattice theory
describes massless fermions, is given by the solution of

amc − aΣ(ap = 0, amc, β
−1) = 0 . (5.2)

As observed in Ref. [105], this prescription matches the one obtained by requiring
the chiral Ward identity to hold in the continuum limit. Expanding Eq. (5.2)
defines the critical mass order by order in perturbation theory. The perturbative
expansion of the inverse propagator is

aΓ(ap, am, β−1) =
∑
n=0

Γ(n) (ap, am) β−n , (5.3)

where we have indicated explicitly the dependence of the coefficients on the bare
mass am. The functions Γ(n)(ap, am) are matrices in Dirac space; since we are
interested in the small momentum region and Γ(n)(0, am) is proportional to the
identity, we consider Γ(n)(ap, am) as scalar functions: when ap 6= 0 a projection
onto the identity is understood. Plugging the perturbative expansion of the
critical mass

amc =
∑
n=1

m(n)
c β−n (5.4)

into Eq. (5.3) results in

aΓ(ap, amc, β
−1) =

∑
n=0

γ(n) (ap) β−n =
∑
n=0

[
m(n)
c + χ(n) (ap)

]
β−n , (5.5)

where the dependence of γ(n) on m(n)
c has been made explicit and χ(n) depends

only on m
(0)
c , . . . ,m

(n−1)
c . Therefore, the renormalisation condition in Eq. (5.2)

becomes order by order

γ(n)(0) = 0 or m(n)
c = −χ(n)(0) . (5.6)

For illustration, we can compute the recursive solution of Eq. (5.2). By virtue of
a Taylor expansion in the mass, the renormalisation condition can be written as

∑
n=0

Γ(n) (0, amc) β
−n =

∑
n=0

∑
k=0

1

k!

∂kΓ(n) (0, am)

∂(am)k

∣∣∣∣
am=0

(amc)
k β−n = 0 , (5.7)
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Figure 5.1 Feynman diagrams contributing to the fermion self energy at order
β−1.

where mc needs to be further expanded as in Eq. (5.4) and

∂kΓ(0) (0, am)

∂(am)k

∣∣∣∣
am=0

= δk,1 . (5.8)

For the first two non-trivial orders, this condition yields

γ(1)(0) = Γ(1)(0, 0) +m(1)
c = 0 (5.9a)

γ(2)(0) = m(1)
c

∂Γ(1)

∂(am)

∣∣∣∣
ap=0,am=0

+ Γ(2)(0, 0) +m(2)
c = 0 . (5.9b)

Both results are familiar from analytical calculations of the critical mass. The first
equation encodes the fact that the mass counterterm at first order in perturbation
theory is given by the one-loop diagrams computed at zero bare mass. The
second equation states that the second-order correction is given by summing two-
loop diagrams evaluated at vanishing bare mass, and one-loop diagrams with the
insertion of the O (β−1) counterterm1, see e.g. Ref. [106].

Critical masses have been computed analytically up to two loops [106, 107], and in
NSPT at three and four loops [108, 109]. We computed the one-loop critical mass
at finite volume in twisted lattice perturbation theory. The Feynman diagrams
involved are shown in Figure 5.1, and they have to be computed according to
the Feynman rules described in Appendix C. It should also be noted that, when
working in finite volume, momenta are quantised. Unless periodic boundary
conditions are used, p = 0 is not an allowed value for the momentum of the states
in a box. If the computation is performed analytically, the condition in Eq. (5.2)
can be imposed by setting artificially the external momentum to zero; when trying

1 Derivatives with respect to the mass generate counterterm insertions: for example, for a
scalar propagator,

−m2 ∂

∂m2

1

k2 +m2
=

1

k2 +m2
m2 1

k2 +m2
. (5.10)
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to determine the critical mass numerically from NSPT, we will have to measure
the inverse propagator at some non-vanishing momenta and then extrapolate to
p = 0. The detailed implementation is discussed below in Sect. 5.3.

5.2 Gauge fixing in NSPT

Even though the critical mass is gauge-independent at all orders [110], the inverse
propagator Γ depends on the gauge when ap 6= 0. If we want to measure the
perturbative expansion of Γ from NSPT, the problem of how to fix a gauge must
be addressed.

In the continuum, the Landau gauge is defined by the condition
∑

µ ∂µAµ(x) = 0.
On the lattice, it is possible to fix a discretised version of this gauge by applying
iteratively a clever choice of gauge transformation [111].

The absolute value of the trace of a SU(Nc) matrix lies always between 0 and
Nc; in particular, the trace of a SU(Nc) matrix is equal to Nc if and only if the
matrix is the identity. Given some configuration Uµ(x), we can study how to
move within the gauge orbit in order to maximise the real part of the trace of the
field: in this way, the configuration can be considered as “perturbative”, since it
is brought as close as possible to the identity. To achieve this, the functional

F [Ω] = 2
∑
xµ

Re Tr Ω(x)Uµ(x)Ω(x+ µ̂)† (5.11)

must be maximised. For gauge transformations Ω(x) = eiω(x) not far from the
identity, it is possible to perform a Taylor expansion

F
[
eiω
]

= F [1] +
∑
ax

ωa(x)∇a
Ω(x)F [Ω]

∣∣
Ω=1

+O(ω2) , (5.12)

where the Lie derivative is

∇a
Ω(x)F [Ω]

∣∣
Ω=1

= 2
∑
µ

Re Tr
[
iT aΩ(x)Uµ(x)Ω(x+ µ̂)†+

− Ω(x− µ̂)Uµ(x− µ̂)Ω(x)†iT a
]∣∣∣

Ω=1
=

= −2
∑
µ

Im TrT aδ∗µUµ(x) = i
∑
µ

TrT aδ∗µ
[
Uµ(x)− Uµ(x)†

]
.

(5.13)
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With the particular choice

ω(x) = iα
∑
aµ

T a TrT aδ∗µ
(
Uµ(x)− Uµ(x)†

)
= iα

∑
µ

Πg

(
δ∗µUµ(x)

)
, (5.14)

where α > 0 is a small parameter, we see that the functional F is driven towards
larger values2,

F
[
eiω
]
− F [1] = α

∑
axµ

∣∣TrT aδ∗µ
(
Uµ(x)− Uµ(x)†

)∣∣2 +O(ω2) . (5.15)

Therefore, by iterating the gauge transformation built from Eq. (5.14), the func-
tional F follows a steepest descent path towards a local maximum characterised
by

∇a
Ω(x)F [Ω]

∣∣
Ω=1

= i
∑
µ

TrT aδ∗µ
[
Uµ(x)− Uµ(x)†

]
= 0 . (5.16)

This stationary condition corresponds to fixing the Landau gauge: indeed,
expanding perturbatively Uµ = eiAµ ,

i
∑
µ

TrT aδ∗µ
[
Uµ(x)− Uµ(x)†

]
= −2

∑
µ

TrT aδ∗µAµ(x) +O(A3) , (5.17)

and the minimum is realised when
∑

µ δ
∗
µAµ = 0.

This algorithm can be used in a nonperturbative formulation of lattice gauge
theories, and leads to the correct result in the continuum limit. In NSPT
this is not enough, and we need to adapt the technique in order to have the
Landau condition fixed at each perturbative order (i.e. at all values of the lattice
spacing) [112]. Since, in the continuum limit, the Landau gauge is the gauge
where the potential has minimum norm, we can try to look in the gauge orbit for
a configuration that minimises the norm of the potential, instead of maximising
the trace of the links. Because Aµ(x) = −i logUµ(x), the minimisation of the
norm of Aµ(x) is realised when the new functional

F ′[Ω] =
∑
xµ

Tr log
(
Ω(x)Uµ(x)Ω(x+ µ̂)†

) [
log
(
Ω(x)Uµ(x)Ω(x+ µ̂)†

)]† (5.18)

is minimum. To understand the structure of F ′ for gauge transformations close
to the identity, we define Ω(x) = eiω(x) and expand in ω. Thanks to the

2 It is important to remind that Eq. (5.13) gives a purely real number.
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Baker–Campbell–Hausdorff formula, we have

log Ω(x)Uµ(x)Ω(x+ µ̂)† = log eiω(x)eiAµ(x)e−iω(x+µ̂) =

= iAµ(x) + iω(x)− iω(x+ µ̂) + · · ·+O(ω2) , (5.19)

where the dots represent terms involving commutators of one ω with one or more
A. With this in hand, it is possible to expand F ′,

F ′[Ω] =
∑
xµ

Tr
(
iAµ(x) + iω(x)− iω(x+ µ̂) + · · ·+O(ω2)

)
·

·
(
iAµ(x) + iω(x)− iω(x+ µ̂) + · · ·+O(ω2)

)†
=

=
∑
xµ

TrAµ(x)Aµ(x) + 2
∑
xµ

Trω(x)δ∗µAµ(x) +O(ω2) , (5.20)

and read the Lie derivative

∇a
Ω(x)F

′[Ω]
∣∣
Ω=1

= 2
∑
µ

TrT aδ∗µAµ(x) =
∑
µ

δ∗µA
a
µ(x) . (5.21)

The terms in the dots do not contribute: they have to be necessarily combined
with Aµ(x) to give an O(ω) contribution, and thus the trace of Aµ(x) times a
commutator involving Aµ(x) and a single ω vanishes thanks to the cyclic property
of the trace. With the particular choice

ω(x) = −α
∑
µ

δ∗µAµ(x) = iα
∑
µ

δ∗µ logUµ(x) , (5.22)

where α > 0 is a small parameter, we see that F ′ is driven towards smaller values,

F ′
[
eiω
]
− F ′[1] = −2α

∑
xµ

Tr
(
δ∗µAµ(x)

)2
+O(ω2) . (5.23)

Therefore, by iterating the gauge transformation built from Eq. (5.22), the func-
tional F ′ follows a steepest descent path towards a local minimum corresponding
exactly to the Landau gauge,

∇a
Ω(x)F

′[Ω]
∣∣
Ω=1

=
∑
µ

δ∗µA
a
µ(x) = 0 . (5.24)

Since the Landau condition is realised without perturbative corrections, this result
holds in NSPT as well: the matrix ω inherits a perturbative structure from the
links and, for each perturbative order, the iterated gauge transformation leads to
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a vanishing divergence for each perturbative order. In particular, by expanding
the first variation of F ′,

2
∑
xµ

Trω(x)δ∗µAµ(x) = 2
∑
xµ

+∞∑
n=1

β−n/2
n−1∑
l=1

Trω(l)(x)δ∗µA
(n−l)
µ (x) , (5.25)

we see that the order by order stationary condition amounts to

n−1∑
l=1

∑
µ

δ∗µA
a
µ

(n−l)(x) = 0 . (5.26)

With the choice ω(n) = −α
∑

µ δ
∗
µA

(n)
µ , the Landau gauge propagates in cascade

from the lowest to the highest order.

The techniques described so far suffer by critical slowing-down: the number of
iterations needed to reach the Landau gauge grows with the number of lattice
sites. To avoid this issue, we also implemented a Fourier accelerated version of
this algorithm [113]. The underlying idea can be exposed more clearly by studying
the Landau gauge fixing in the continuum for an abelian theory. The potential
is updated with the rule

(n+1)Aµ = (n)Aµ + α
∑
ν

∂µ∂ν
(n)Aµ , (5.27)

where (n)Aµ is the potential after n iterations of the gauge transformation defined
in Eq. (5.22), and has a divergence equal to∑

µ

∂µ
(n+1)Aµ = (1 + α∂2)

∑
µ

∂µ
(n)Aµ = (1 + α∂2)n

∑
µ

∂µ
(0)Aµ . (5.28)

Denoting a Fourier transform with FT[ · ], we see that for a large number of
iterations we can write

FT

[∑
µ

∂µ
(n+1)Aµ

]
= (1− αp2)n FT

[∑
µ

∂µ
(0)Aµ

]
' e−αp

2n FT

[∑
µ

∂µ
(0)Aµ

]
.

(5.29)
The convergence is slower for smaller momenta: the idea of the Fourier accelera-
tion is to correct for this behaviour by compensating the slower convergence with
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a larger step size α. With the choice

ω(x) = −FT−1

[
α

p2
FT

[∑
µ

δ∗µAµ(x)

]]
, (5.30)

all the momentum components of the divergence of the potential converge with
the same rate, and the number of iterations is independent of the volume. Clearly
there is an additional burden introduced by the Fourier transform: nevertheless,
the dependence of the cost of a FFT on the number of lattice points is found
to be mild. With TBC, the Fourier transform is understood to be performed as
explained in Sect. 4.3.

5.3 Critical mass in NSPT: zero-momentum

extrapolation and valence twist

High-order perturbation theory with massless Wilson fermions requires the tuning
of the critical mass at the same order in β−1, and it is possible to determine this
renormalisation using NSPT. Let us illustrate the strategy in detail. We begin
by collecting configurations for different time steps τ of the stochastic process;
for each configuration the gauge is fixed to the Landau gauge [111–113]. The
propagator at momentum p is computed by applying the inverse Dirac operator
to a point source in momentum space,

S(p)αβ =
∑
qγ

M [U ]−1
pq,αγ δqpδγβ . (5.31)

The average over all the configurations gives the Monte Carlo estimate of S(p).
For each simulation at a given value of τ , the error bars are computed as detailed
in Appendix D. The propagator with periodic boundary conditions is a (diagonal)
matrix in colour and momentum space and has a Dirac structure; it is important
to stress again that with TBC there is not a colour structure any more and the
momentum has a finer quantisation. We can now extrapolate the stochastic
time step to zero and invert the propagator to obtain S(p)−1. Finally, the
inverse propagator is projected onto the identity in Dirac space. The errors
can be estimated by bootstrapping the whole procedure. All these operations
are performed order by order in perturbation theory keeping in mind that, after
the measure of the propagator, all perturbative orders β−k/2 with an odd k are
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discarded, since the expansion in powers of β−1/2 is an artefact of NSPT. We
check that these odd orders give contributions that are zero on average, with a
variance that increases with the perturbative order.

The legacy of this process is the measure of the functions γ(n)(ap), as it is clear
from Eq. (5.5). The renormalisation condition in Eq. (5.6) must then be imposed:
this can be done iteratively one order after the other. When all the coefficients
up to some m(n)

c are included in the simulation, all the γ functions up to γ(n)(ap)

extrapolate to zero; on the other hand, from γ(n+1)(0) we can read −m(n+1)
c . In

order to move on and compute the following coefficient of the critical mass, a new
set of configurations where m(n+1)

c is taken into account must be generated.

The procedure we described is well defined and even theoretically clean, since it
enlightens the status of our mc as a perturbative additive renormalisation: once
it is plugged in at a given order, the renormalised mass turns out to be zero
at the prescribed order. On the other hand, it is not at all the only possible
procedure. The prescription of the authors of Ref. [72] is to expand the solution
of the stochastic process both in the coupling and in the mass counterterm. This
is in the same spirit of Ref. [114]: the solution of the stochastic process can be
expanded in more than one parameter and once a precise power counting is in
place, the resulting hierarchy of equations can be exactly truncated at any given
order. There are pros and contras for both approaches, i.e. the one we followed
and the double expansion. The latter can provide a better handle on estimating
errors due to the critical mass value; however, it is expected to be numerical
more demanding. All in all, we did not push Wilson fermions to very high orders:
moving to the staggered formulation was by far the most natural option for the
purpose of this work.

Since in finite volume it is possible to measure Γ(ap) only for discretised non-zero
momenta, the data need to be extrapolated to zero momentum using a suitable
functional form. The strategy adopted in the literature – see for example Eqs. (13)
and (14) in Ref. [109] – is based on expanding the quantities of interest in powers
of ap. In the infinite-volume limit, such an expansion leads to a hypercubic
symmetric Taylor expansion composed of invariants in ap, logarithms of ap and
ratios of invariants; an explicit one-loop computation to order a2 is shown e.g.
in Eq. (24) of Ref. [115]. The ratios and the logarithms arise because we are
expanding a non-analytic function of the lattice spacing: infrared divergences
appear when expanding the integrands in ap. On the other hand, thanks to TBC
we can work consistently in finite volume, where no infrared divergences arise:
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expressions for γ(n)(ap) will be just sums of ratios of trigonometric functions,
which we can expand in ap obtaining simply a combination of polynomial lattice
invariants3.

Still, this is not enough for a reliable extrapolation to vanishing momenta,
with a reasonable χ2 value. In order to understand better the range of
momenta that allow a safe extrapolation, we computed γ(1)(ap) in twisted lattice
perturbation theory (see Appendix C). As a cross-check of our calculation we
verified that γ(1)(0), which correspond to the one-loop critical mass, is gauge-
independent [110]. From the analytic expansion of γ(1)(ap), it can be seen
that even the lowest momentum allowed on our finite-size lattices, ap1,2,3 = 0,
ap4 = π/L, is far from the convergence region of this series. This happens even
for reasonably big lattices, L . 32. In order to increase the range of available
momenta, we use θ-boundary conditions [116] for the valence fermions,

ψ(x+ L4̂) = eiθψ(x) , (5.32)

thereby reaching momenta p4 = θ/L which are within the convergence radius of
the ap-expansion. The hypercubic series becomes just a polynomial in (ap4)2 by
setting all the other components to zero.

The agreement between data and the analytic finite-volume calculations for
Nc = 2, Nf = 2 can be seen in Figure 5.2. It is worthwhile to emphasise that
measuring such low momenta requires a careful analysis of the thermalisation.
At the lowest order we can check directly when the measures agree with the
theoretical predictions. At higher orders, it is necessary to wait until the
statistical average has clearly stabilised, as shown in Figure 5.3. This kind of
analysis is computationally intensive: in the case at hand, we performed up to
5 · 106 lattice sweeps, saving one propagator every 103 sweeps. The first 2 · 103

configurations have been discarded in the analysis.

5.4 An attempt for SU(3) with Nf = 2

We determined the first 7 coefficients of the critical mass for Nc = 3 and Nf = 2

on a 164 lattice with twisted boundary conditions on a plane. The twist matrices
3Expanding in ap and sending the lattice size to infinity are operations that do not commute;

in particular this gives rise to different series in the finite- and infinite-volume cases.
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Figure 5.2 Measure of γ(1)(ap) (left panel) and γ(2)(ap) (right panel) for a
124 lattice with TBC on a plane, Nc = 2 and Nf = 2 Wilson
fermions. The analytic finite-volume critical mass m(1)

c is included in
the simulation. A second-order polynomial in (ap)2 is used for fitting.
Most analytic finite-volume predictions have been drawn as lines to
help the eye in the comparison. The difference with the prediction in
the right panel is to be ascribed to the fact that we are able to resolve
finite-volume effects.
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Figure 5.3 Same as Figure 5.2 with data drawn as a function of the number of
configurations included in the analysis. Each colour corresponds to a
different momentum. Horizontal lines are the analytical predictions.
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are

Ω1 =

e
−i 2π

3 0 0

0 1 0

0 0 ei
2π
3

 Ω2 =

0 1 0

0 0 1

1 0 0

 , (5.33)

corresponding to z12 = exp
(
i2π

3

)
. Configurations are collected at three different

time steps, τ = 0.005, 0.008, 0.01. Because the volume and the number of
colours are large compared to the former test in Figure 5.2, it is computationally
too expensive to replicate the same statistics at all orders: we settled for 5 · 105

sweeps at the smallest τ , measuring the propagator every r = 103 sweeps. At
larger time steps, we rescale these numbers to keep the product r · τ constant.
The propagator is measured at the smallest available momentum, which has θ/L
in the time component and vanishes elsewhere; we choose three different values
for the phase of the valence twist, θ = π/2, 2π/3, 4π/5. Extrapolations to zero
momentum are performed using a linear fit in (ap)2. The analysis is performed
on different subsets of the data4 to estimate systematic errors. The total error
is the sum in quadrature of half the spread around the central value among the
different fits and the largest error from the fits.

The procedure described in Sect. 5.3, even though well-defined, is found to be
numerically unstable at high orders. The number of propagators required to
reach a clear plateau, like the ones shown in Figure 5.3, is beyond what it can
be reasonably collected with the current NSPT implementations. Therefore,
we decided to proceed with a smaller statistics and to add a new systematic
uncertainty for the extrapolated coefficients, as explained below. It has to be
emphasised that once a coefficient of the critical mass is determined, only the
central value is used as input for the following runs: even if we could collect
enough statistics and manage to reduce the error, that is not included in the
simulations. This makes the impact of the uncertainty of m(n)

c on m
(n+1)
c and

higher hard to assess; also, performing simulations for several values of each
coefficient is not feasible. To be conservative, we adopted the following strategy.
Once a critical mass m(n)

c is determined and put in the next-order simulation,
the corresponding γ(n)(ap) should extrapolate to zero. If it extrapolates to εn,
we take |εn/m(n)

c | as an estimate of the relative systematic error to be added in
quadrature to the determination of all the higher-order critical masses.

Despite these instabilities, the lower-order results are close to the known
4 The different subsets are built by varying the number of initial configurations that are

excluded in the analysis and by rejecting data at different rates.
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Figure 5.4 Determination of the coefficient m(4)
c . Although γ(1)(ap) does not

extrapolate to zero, the extrapolation of γ(4)(ap) is compatible with
the value known from Ref. [109]. Notation as in Figure 5.2.
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Figure 5.5 Determination of the coefficient m(8)
c . The errors overshadow the

value of the critical mass, which is compatible with zero. Notation as
in Figure 5.2.

coefficients (keeping in mind that we might resolve finite-volume effects), as it can
be seen for example in Figure 5.4. We stopped the procedure at m(8)

c , when the
errors started dominating over the central value of the coefficient, see Figure 5.5.
Our results are summarised in Table 5.1. A comparison between the critical mass
obtained by summing the first n orders of its finite-volume perturbative series
and the nonperturbative Monte Carlo determination is presented in Table 5.2 for
two particular values of the coupling β.

87



Table 5.1 Critical masses for Nc = 3, Nf = 2 Wilson fermions determined
with NSPT on a 164 lattice with twisted boundary condition on a
plane, compared with the known values in infinite volume. The
n = 1 coefficient has been determined analytically in twisted lattice
perturbation theory; many digits have been used in the actual
simulation.

n −m(n)
c on 164 −m(n)

c in infinite volume Refs.

1 2.61083 . . . 2.60571 . . . -
2 4.32(3) 4.293(1) [106, 107]
3 1.21(1) · 101 1.178(5) · 101 [108, 109]
4 3.9(2) · 101 3.96(4) · 101 [109]
5 1.7(2) · 102 - -
6 5(1) · 102 - -
7 2(1) · 103 - -

Table 5.2 Critical mass determined by summing the first n orders of its finite-
volume perturbative series, compared to the nonperturbative Monte
Carlo value [106, 117, 118].

n mc at β = 5.5 mc at β = 5.6

2 -0.618(1) -0.604(1)
3 -0.690(1) -0.673(1)
4 -0.733(2) -0.713(2)
5 -0.767(5) -0.743(4)
6 -0.785(6) -0.760(5)
7 -0.798(9) -0.771(8)

Monte Carlo -0.8975 -0.8446
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Chapter 6

Perturbative expansion of the
plaquette

A nonperturbative determination of the gluon condensate from lattice gauge
theories has been a long-standing challenge, begun with the attempts of Refs. [48–
54]. The adopted strategy is always to study the OPE for the plaquette, and
try to disentangle the contribution of the identity operator from the one of the
condensate. The contribution associated to the identity operator turns out to be
ill-defined: it can be computed in perturbation theory, but such series diverges,
as discussed in Sect. 2. The prescription chosen to define the sum of the series
produces an intrinsic ambiguity in the definition of the condensate itself. There
is no need to say that the whole procedure requires to have the asymptotic
behaviour of the series of the plaquette well under control. This is why only
after the development of NSPT it was possible to systematically address the
issue: one can subtract from a nonperturbative (Monte Carlo) measurement of
the plaquette the sum of the perturbative series computed in NSPT, and repeat
the procedure at different values of the coupling in order to find the signature
of a quantity of mass dimension four. Thanks to NSPT, many studies aimed to
determine the perturbative expansion of the plaquette and the gluon condensate
were prompted [37, 38, 40, 119–125]. The first conclusions were contrasting, since
some results suggested the existence of an unexpected dimension-2 operator. Only
the computation of really high orders allowed keeping the asymptotic behaviour
under control and settle this issue. The first evidence of renormalons were
presented in Refs. [41, 88], followed by the determination of the gluon condensate
in pure gluodynamics in Refs. [98, 126]. NSPT has also been recently applied
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with success for the computation of Wilson loops in the TEK model [127], and
high-order results could come also from this direction.

In this chapter we provide a first estimate from NSPT of the perturbative
expansion of the plaquette and of the gluon condensate in massless QCD, i.e.
in a gauge theory with two massless fermions in the fundamental representation.
Some results presented here are published in Refs. [2, 3].

6.1 Analytical results and gluon chain in finite

volume

On a finite lattice, from Eq. (1.20) it is useful to define the average plaquette

P =
1

6NcL4

∑
�

Re Tr (1− U�) , (6.1)

whose value ranges between 0, when all link variables are equal to the identity,
and 1. From Eq. (2.99), the plaquette expectation value has the perturbative
expansion

〈P 〉pert = Z̃1(β) =
∞∑
n=0

pn β
−(n+1) . (6.2)

We will now inspect how the lowest orders of this series arise in perturbation the-
ory, with a special focus on finite-volume effects from twisted lattice perturbation
theory [128], see Appendix C for the conventions adopted here. A possible way
to proceed is to write

Wµν(x) =
1

Nc

〈
Re TrUµ(x)Uν(x+ µ̂)Uµ(x+ ν̂)†Uν(x)†

〉
, (6.3)

expand Uµ(x) = eigAµ(x+ µ̂
2 ), and then evaluate the correlators in perturbation

theory; the result is a sum of gluon n-point Green functions1. We remark that,
when doing perturbative calculations, it is customary to define the potential at
the midpoint of the link, in order to simplify the Feynman rules for the vertices2.
Wµν(x) is obviously invariant under translations; on the other hand, different

1 The free energy is related to the derivative of the partition function with respect to the
coupling: to simplify the calculation, it would be actually easier to compute the sum of all the
connected vacuum diagrams, see e.g. Ref. [54]. In our discussion we can avoid using this trick,
as we will focus on a very small number of diagrams.

2 This choice has also a nice graphical interpretation, see e.g. Figure 6.1.
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orientations of the plaquette are not equivalent because of TBC. From the average
over all the plaquette orientations,

W =
1

6

∑
µ>ν

Wµν =
∞∑
n=0

W (n) β−n = 1−
∞∑
n=0

pn β
−(n+1) , (6.4)

one can define the coefficients pn in finite volume. For p0, it is enough to expand
Wµν(x) in terms of tree-level 2-point functions. For p1, contributions come from
3- and 4-point functions at tree level, and from 2-point functions at one loop; the
contribution of the fermions falls in the latter category.

The terms involving 2-point functions only are, for a plaquette with orientation
µν,

W 2-point
µν (x) =

(ig)2

Nc

Re Tr

{
1

2

〈
Aµ

(
x+

µ̂

2

)
Aµ

(
x+

µ̂

2

)〉
+

+
1

2

〈
Aν

(
x+

ν̂

2
+ µ̂

)
Aν

(
x+

ν̂

2
+ µ̂

)〉
+

+
1

2

〈
Aµ

(
x+

µ̂

2
+ ν̂

)
Aµ

(
x+

µ̂

2
+ ν̂

)〉
+

+
1

2

〈
Aν

(
x+

ν̂

2

)
Aν

(
x+

ν̂

2

)〉
+

−
〈
Aµ

(
x+

µ̂

2

)
Aµ

(
x+

µ̂

2
+ ν̂

)〉
+

−
〈
Aν

(
x+

ν̂

2
+ µ̂

)
Aν

(
x+

ν̂

2

)〉
+

+

〈
Aµ

(
x+

µ̂

2

)
Aν

(
x+

ν̂

2
+ µ̂

)〉
+

−
〈
Aµ

(
x+

µ̂

2

)
Aν

(
x+

ν̂

2

)〉
+

−
〈
Aν

(
x+

ν̂

2
+ µ̂

)
Aµ

(
x+

µ̂

2
+ ν̂

)〉
+

+

〈
Aµ

(
x+

µ̂

2
+ ν̂

)
Aν

(
x+

ν̂

2

)〉}
. (6.5)

Momentum conservation implies that 〈Aµ(p)Aν(q)〉 ∝ δp,−q, as shown in
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Figure 6.1 Feynman diagrams contributing to p0 in Feynman gauge.

Eq. (C.5), thus it is possible to simplify

〈Aµ(x)Aν(y)〉 =

�
�
��

∑
p

ei(x−y)p Γp⊥Γ−p⊥
NcL4

〈Aµ(p)Aν(−p)〉 =

=

�
�
��

∑
p

ei(x−y)p f(p⊥, p⊥)∗

NcL4
〈Aµ(p)Aν(−p)〉1 , (6.6)

and obtain

W 2-point
µν (x) = −g

2

2
�
�
��

∑
p

f(p⊥, p⊥)∗

NcL4

{
p̂2
ν

〈
Aµ
(
p
)
Aµ(−p)

〉
+ p̂2

µ〈Aν(p)Aν(−p)〉+

− 2p̂µp̂ν〈Aµ(p)Aν(−p)〉
}
. (6.7)

Plugging in the tree-level gluon propagator, one obtains the leading-order
correction to the plaquette,

p0 = −W (1) =
1

6

∑
µ>ν

Nc

2
�
�
��

∑
p

(1− δp⊥,0)
p̂2
µ + p̂2

ν

p̂2
=
N2
c − 1

4
. (6.8)

In Feynman gauge, the lowest-order evaluation of Eq. (6.7) can be pictured with
the diagrams in Figure 6.1. Remarkably, the average over all the orientations
is volume independent [128]. Different orientations have nonetheless different
expectation values, as we explicitly verified in NSPT (see Figure 6.2). It is worth
to note that, as shown in Appendix C, on general grounds 〈Aµ(p)Aν(q)〉 ∝
NcL

4f(p⊥, p⊥), so the corresponding factor in Eq. (6.7) is always cancelled;
indeed, such phase depends on the convention chosen and in principle could be
eliminated.

The lowest-order fermion contribution comes from considering the vacuum
polarisation correction of the free gluon propagator; this is made of the two
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Figure 6.2 Measure of Wµν at order β−1 for a 24 lattice with triple TBC at
three different time-steps τ of the stochastic process, and Nc = 3.
The lower measures correspond to the average of the plaquette in
the three planes identified by two twisted directions, the upper ones
correspond to the average in the three planes identified by one twisted
direction and one periodic direction; the size of the lattice has been
chosen to enhance the difference of the plaquette value between these
two groups of planes. The finite-volume prediction is taken from
Eq. (6.8), without averaging over all planes.

diagrams pictured in Figure 6.3,

Πµν(p) = Πµν(p)vac. pol. + Πµν,tadpole . (6.9)

In the infinite-volume limit, the tadpole diagram cancels the divergence
arising from the vacuum polarisation at zero momentum (one expects that as
a consequence of renormalisability); in finite volume we cannot rely on such
simplification, because the cancellation does not happen. Both diagrams must be
considered explicitly. We can also be more general and consider the insertion of
n fermion bubbles Πµν(p) into the gluon propagator (gluon chain), which gives
the leading contribution in the large-Nf limit. The n bubbles are joined by n+ 1

propagators: in Feynman gauge, it is

〈Aµ(p)Aν(−p)〉n bubbles =
NcL

4

2
f(p⊥, p⊥)(1− δp⊥,0)

1

p̂2

(
−g2Nf

1

2p̂2

)n
[Π(p)n]µν .

(6.10)
Note that each propagator attached to a bubble would come with a phase factor
f(p⊥, p⊥): that phase is cancelled exactly by the phase from the diagrams, which
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Figure 6.3 Fermion contribution to the first-order correction of the gluon
propagator.

is f(p⊥, p⊥)∗. Moreover, the minus sign for the fermionic loop has been factored
out. The final result reads

W 2-point
µν,n bubbles = −g

2

2
�
�
��

∑
p

(1− δp⊥,0)
1

2p̂2

(
−g2Nf

1

2p̂2

)n
·

·
{
p̂2
ν [Π(p)n]µµ + p̂2

µ [Π(p)n]νν − 2p̂µp̂ν [Π(p)n]µν

}
=

=
Nn
f

2

(
−Nc

β

)n+1

�
�
��

∑
p

(1− δp⊥,0)
1

(p̂2)n+1 ·

·
{
p̂2
ν [Π(p)n]µµ + p̂2

µ [Π(p)n]νν − 2p̂µp̂ν [Π(p)n]µν

}
,

(6.11)

and must be averaged over all the orientations of the Wilson loop,

W 2-point
n bubbles =

1

6

∑
µ>ν

W 2-point
µν,n bubbles . (6.12)

In the case of staggered fermions, it must be rescaled Nf → Nf/4 in order for Nf

to represent the number of physical flavours; if fermions have smell, the further
rescaling Nf → Nf/Nc is understood. For completeness, the explicit form of the
Πµν(p) in the staggered case can be found in Ref. [129]. In Figure 6.4, it is shown
the ratio pn/pn−1, where the finite-volume coefficients pn have been computed
numerically in the gluon-chain approximation, i.e. from W 2-point

n bubbles. It is evident
that an exponential behaviour is exhibited, in agreement with the phenomenon
described in Sect. 2.4.
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Figure 6.4 Ratio pn/pn−1 computed in the gluon-chain approximation in finite
volume, L4 = 184, for two flavours of staggered fermions in the
fundamental representation. It is understood that the Nf dependence
is trivial, and influences the scale of vertical axis only.

6.2 The plaquette in massless QCD

We run NSPT simulations of an SU(3) gauge theory with Nf = 2 massless
staggered fermions in the fundamental representation, measuring the average
plaquette after each Langevin update. Twisted boundary conditions are imposed
on a plane, with twist matrices chosen as in Eq. (5.33). These simulations have
been mostly run with the GridNSPT code on KNL and Skylake nodes provided
by the Cambridge Service for Data Driven Discovery (CSD3); simulations on
the smallest lattice have been run on the Skylake nodes on the Marconi system
provided by CINECA in Bologna. The main features of our code are described
in Appendix E. We simulate 244, 284, 324, 484 volumes up to order β−40 in the
expansion of the links. We gradually switch on higher orders when the plaquette
at lower orders is thermalised. Because of the instabilities discussed in Sect. 6.2.1,
results are presented only up to the order shown in Table 6.1. All simulations
are run independently at three different time steps, and we have at least 5 · 103

measures for the largest order at the smallest time step. The length of the runs
at larger time steps is rescaled to have approximately the same Langevin time
history for all τ .
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Table 6.1 Summary of the ensembles collected for Nc = 3 and Nf = 2 staggered
fermions. The order nmax is the highest order at which the plaquette
pn has been measured.

L τ nmax

24
0.005 35
0.0075 35
0.01 35

28
0.005 29
0.008 35
0.01 35

32
0.005 33
0.008 35
0.01 35

48
0.005 35
0.008 35
0.01 35

6.2.1 Numerical instabilities

The study of the NSPT hierarchy of stochastic processes is not trivial. While
there are general results for the convergence of the generic correlation function of
a finite number of perturbative components of the fields [65, 130], the study of
variances is more involved, and many results can only come from direct inspection
of the outcome of numerical simulations. In particular, one should keep in mind
that in the context of (any formulation of) NSPT, variances are not an intrinsic
property of the theory under study; in other words, they are not obtained as field
correlators of the underlying theory. Big fluctuations and correspondingly huge
variances were observed at (terrifically) high orders in toy models [130]: signals
are plagued by several spikes and it is found by inspection that a fluctuation at
a given order is reflected and amplified at higher orders. All in all, variances
increase with the perturbative order (not surprisingly, given the recursive nature
of the equations of motion). Moving to more realistic theories, a robust rule of
thumb is that, as expected on general grounds, the larger the number of degrees
of freedom, the less severe the problems with fluctuations are. In particular, we
have not yet found (nor has anyone else reported) big problems with fluctuations
in the computation of high orders in pure Yang-Mills theory.

We now found that the introduction of fermions indeed causes instabilities at

96



0 2 4 6 8 10 12 14 16
t

4000−

3000−

2000−

1000−

0

1000

2000

3000

2410×

39p

quenched, L=8

=2 Wilson fermions, L=8fN

0 1 2 3 4 5 6 7 8 9
t

10000−

5000−

0

5000

10000

2110×

36p

=2 staggered fermions, L=32fN

=2 staggered fermions, L=48fN

Figure 6.5 In the left panel, signal samples of the coefficient p39 taken from a 84

lattice with TBC in three directions. The simulation with Wilson
fermions has been performed for illustrative reasons and the bare
mass has been set to zero. In the right panel, signal samples of the
coefficient p36 with TBC on a plane and staggered fermions. In both
panels τ = 0.005 and the origin of t is set arbitrarily. It is evident
that in the quenched case we could extract the plaquette coefficient
even from a small volume, while fermions introduce instabilities
that can be mitigated by considering bigger lattices. While we have
chosen these two particular examples for illustration purposes, the
appearance of spikes is a general phenomenon that we observe for
orders approximately ≥ 30 on the volumes under study.

orders as high as the ones we are considering in this work. Once again, this effect
can be tamed by working on increasingly large volumes. Once a fluctuation takes
place, the restoring force would eventually take the signal back around its average
value but in practice this mechanism is not always effective. At high orders the
instabilities can be so frequent and large that the signal is actually lost, and
the average value of the plaquette becomes negligible compared to its standard
deviation, as it is illustrated in Figure 6.5. The order at which the signal is lost
is pushed to higher values by increasing the volume, but eventually uncontrolled
fluctuations will dominate. Moreover, we find that spikes tend to happen more
frequently at smaller τ . Roughly speaking, this does not come as a surprise, since
at smaller time steps one has to live with a larger number of sweeps, thereby
increasing the chances of generating large fluctuations when computing the force
fields. In Table 6.1 the orders available at each volume and time step are shown
in detail.
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6.2.2 Extracting the pn

The lowest coefficients have already been computed analytically. In particular, we
remind that, from lattice perturbation theory, p0 = 2 is volume independent [128].
The infinite-volume value of p1 can be obtained adding to the pure gauge
contribution [131],

p1,g = 4N2
c (N2

c − 1)

(
0.0051069297− 1

128N2
c

)
, (6.13)

the contribution due to staggered fermions [132],

p1,f = −1.2258(7) · 10−3 (N2
c − 1)2NcNf . (6.14)

For the specific case Nc = 3, Nf = 2, we find p1 = 1.10312(7). We also computed
the fermion contribution to p1 in twisted lattice perturbation theory3. The finite-
volume result is p1 = 1.10317022 . . . at L = 8, therefore we expect finite volume
effects to be negligible in the lattices we are employing. In particular, we improved
the determination of p1,f in Eq. (6.14) using the finite volume calculations at
L = 16 as the central value, and the variation between L = 16 and L = 14 as
an estimate of its uncertainty, leading to p1,f = −0.0587909(3)Nf for Nc = 3,
and hence p1 = 1.1032139(6) for Nf = 2. Trying to extract p0 and p1 from our
data at L = 48, we realise that even τ 2 effects in the extrapolation must be
considered because of the very high precision of the measurements. For these two
coefficients, a dedicated study with additional simulations at time steps τ = 0.004

and τ = 0.0065 has been performed; the agreement with the analytic calculations
is found to be excellent, see Figure 6.6.

Therefore, p0 and p1 are set to their infinite-volume values and excluded from the
analysis of the numerical simulations. The remaining orders are obtained from
NSPT. The value pn,τ for the plaquette at order n and time step τ is computed
from the average of the fields generated by the stochastic process, after discarding
a number of thermalisation steps. The moving averages result to be stable, as can
be seen in the two examples of Figure 6.7. In order to exploit all the available data,
the thermalisation is set differently at different orders. The covariance Cov(n,m)τ

between pn,τ and pm,τ is computed taking into account autocorrelations and cross-
correlations, as explained in detail in Appendix D. Clearly there is no correlation

3We are grateful to M. García Pérez and A. González-Arroyo for providing us the gluon
contribution in finite volume.
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Figure 6.6 Determination of p0, p1 at L = 48. Dedicated simulations for these
two coefficients have been performed at τ = 0.004 and τ = 0.0065.
We extrapolate to zero time step with a second order polynomial in
τ . The extrapolated values are p0 = 1.9999(1) and p1 = 1.1031(4)
with reduced χ2 respectively equal to 1.710 and 1.477.
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Figure 6.7 Average of two plaquette coefficients at L = 48 as a function of the
number of configurations. The error band corresponds to the standard
deviation of the sample.
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between different τ . In order to estimate the covariance when two orders have
different thermalisation, we take into account only the largest set of common
values where both are thermalised. This pairwise estimation of the covariance
matrix does not guarantee positive definiteness, therefore we rely on Higham’s
algorithm, which we describe in Appendix F, to find the nearest positive definite
covariance matrix; the procedure introduces some dependence on a tolerance δ.
The extrapolation to vanishing time step is performed by minimising

χ2 =
nmax∑
n,m

∑
τ

(pn,τ − anτ − pn)Cov−1(n,m)τ (pm,τ − amτ − pm) , (6.15)

where the coefficients an are the slopes of the combined linear fits. The
interesting fit results are the values of the extrapolated plaquettes pn and their
covariance matrix Cov(n,m). In general, because of the available statistics and
the intrinsic fluctuations of the observable, the lower-order values are measured
more accurately compared to the higher-order ones; the same holds for the
estimate of the entries the covariance matrix. Since, in principle, the plaquette at
a certain order could be extracted without any knowledge about its higher-order
values, we can get the best estimate for a pn by implementing the fit iteratively,
increasing nmax from 0 to the maximum available order. At each iteration, we
determine the order with the minimum number of measures Nmin and rescale
the entries of the covariance matrix so that there is a common normalisation
(N = Nmin in Eq. (D.3)) for all the matrix elements. In this way, all the data
are exploited for the determination of the covariance of the process, and the non-
positive definiteness of the covariance of the averages arises only from the presence
of autocorrelations and cross-correlations. Higham’s algorithm is then applied to
Cov(n,m)τ restricted to nmax orders. At this stage, minimising the χ2 allows us
to extract pnmax with Cov(nmax,m) for m ≤ nmax. The tolerance of Higham’s
algorithm is tuned so that the covariance matrix is able to represent our data, i.e.
so that the reduced chi-squared is close to 1. The combined fit determines also
the plaquettes at orders lower than nmax, which are always checked and found
to be in agreement, within errors, with their previous determination at smaller
nmax. An example of a correlation matrix extracted with this procedure is in
Figure 6.8, where clear structures of correlated and anticorrelated coefficients are
visible. The results of the combined extrapolations are summarised in Table 6.2.

In the following, we are going to study the asymptotic behaviour of the coefficients
pn determined in the previous section and discuss the implications for the
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Table 6.2 Plaquette coefficients from the combined fit for L = 24, 28, 32, 48.
The tolerance δ is given only when the covariance matrix is found not
to be positive definite.

L = 24
n pn χ2/dof δ

2 2.536(1) 2.178 −
3 7.622(6) 1.079 0.1
4 2.626(3) · 101 0.735 0.1
5 9.84(1) · 101 0.615 0.1
6 3.906(6) · 102 0.828 0.01
7 1.615(3) · 103 0.529 0.01
8 6.89(2) · 103 0.581 0.01
9 3.021(9) · 104 0.421 0.01
10 1.357(5) · 105 0.861 0.01
11 6.09(3) · 105 0.940 0.01
12 2.80(2) · 106 0.753 0.01
13 1.302(9) · 107 0.690 0.01
14 6.14(4) · 107 0.570 0.01
15 2.94(2) · 108 0.652 0.01
16 1.41(1) · 109 0.797 0.01
17 6.79(6) · 109 0.758 0.01
18 3.31(3) · 1010 0.730 0.01
19 1.65(2) · 1011 0.678 0.01
20 8.3(1) · 1011 0.732 0.01
21 4.15(7) · 1012 0.755 0.01
22 2.08(5) · 1013 0.590 0.1
23 10.0(4) · 1013 0.569 0.1
24 5.0(2) · 1014 0.543 0.1
25 2.5(1) · 1015 0.485 0.1
26 1.34(4) · 1016 1.140 0.01
27 6.6(2) · 1016 1.054 0.01
28 3.2(2) · 1017 0.479 0.1
29 1.6(1) · 1018 1.124 0.01
30 7.6(7) · 1018 0.836 0.01
31 3.6(6) · 1019 0.456 0.01
32 1.8(4) · 1020 0.443 0.01
33 9(3) · 1020 0.445 0.01
34 5(2) · 1021 0.432 0.01
35 3(1) · 1022 0.425 0.01

L = 28
n pn χ2/dof δ

2 2.537(1) 0.032 −
3 7.639(7) 1.136 0.625
4 2.636(3) · 101 0.648 0.5
5 9.89(2) · 101 0.853 0.1
6 3.934(7) · 102 0.593 0.1
7 1.630(4) · 103 0.480 0.1
8 6.97(2) · 103 0.707 0.1
9 3.05(1) · 104 0.927 0.1
10 1.366(5) · 105 0.753 0.1
11 6.21(3) · 105 0.599 0.1
12 2.87(1) · 106 0.512 0.1
13 1.338(7) · 107 0.443 0.1
14 6.31(4) · 107 0.401 0.1
15 3.01(2) · 108 0.360 0.1
16 1.44(1) · 109 1.012 0.01
17 6.96(7) · 109 0.998 0.01
18 3.36(3) · 1010 0.972 0.01
19 1.63(2) · 1011 0.953 0.01
20 8.0(1) · 1011 0.884 0.01
21 3.89(6) · 1012 0.829 0.01
22 1.91(3) · 1013 0.821 0.01
23 9.5(2) · 1013 0.873 0.01
24 4.7(1) · 1014 0.851 0.01
25 2.34(6) · 1015 0.764 0.01
26 1.14(3) · 1016 0.695 0.01
27 5.7(2) · 1016 0.687 0.01
28 2.8(1) · 1017 0.671 0.01
29 1.5(1) · 1018 0.462 0.01
30 7.1(7) · 1018 0.855 0.001
31 4.2(7) · 1019 0.663 0.001
32 2.0(4) · 1020 0.661 0.001
33 10(3) · 1020 0.651 0.001
34 4(2) · 1021 0.516 0.001
35 2(1) · 1022 0.519 0.001
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L = 32
n pn χ2/dof δ

2 2.5370(8) 0.249 −
3 7.627(4) 1.182 −
4 2.633(2) · 101 2.412 −
5 9.882(9) · 101 1.378 0.5
6 3.926(5) · 102 1.015 0.1
7 1.626(2) · 103 0.730 0.1
8 6.96(1) · 103 0.929 0.01
9 3.050(6) · 104 0.772 0.01
10 1.367(4) · 105 0.638 0.01
11 6.22(2) · 105 0.963 0.01
12 2.86(1) · 106 0.645 0.1
13 1.337(6) · 107 0.771 0.1
14 6.29(3) · 107 0.861 0.1
15 3.00(2) · 108 0.952 0.1
16 1.438(9) · 109 1.012 0.1
17 6.94(5) · 109 0.996 0.1
18 3.34(3) · 1010 1.000 0.1
19 1.63(2) · 1011 0.965 0.1
20 7.90(8) · 1011 1.053 0.01
21 3.86(4) · 1012 0.995 0.01
22 1.90(2) · 1013 0.957 0.01
23 9.4(1) · 1013 0.949 0.01
24 4.74(9) · 1014 0.979 0.01
25 2.39(5) · 1015 0.967 0.01
26 1.22(3) · 1016 0.921 0.01
27 6.3(2) · 1016 0.871 0.01
28 3.2(1) · 1017 0.849 0.01
29 1.63(9) · 1018 0.812 0.01
30 8.6(7) · 1018 0.779 0.01
31 4.5(9) · 1019 0.743 0.01
32 1.9(3) · 1020 0.723 0.01
33 9(2) · 1020 0.723 0.01
34 5(1) · 1021 0.702 0.01
35 1(1) · 1022 0.663 0.01

L = 48
n pn χ2/dof δ

2 2.5354(7) 2.745 −
3 7.615(3) 1.454 0.01
4 2.623(1) · 101 1.428 0.1
5 9.826(6) · 101 1.673 0.1
6 3.897(3) · 102 1.653 0.1
7 1.613(2) · 103 1.338 0.1
8 6.88(1) · 103 1.194 0.1
9 3.007(6) · 104 1.079 0.1
10 1.341(3) · 105 0.998 0.1
11 6.08(1) · 105 0.925 0.1
12 2.793(6) · 106 1.108 0.01
13 1.297(3) · 107 0.978 0.01
14 6.08(2) · 107 0.883 0.01
15 2.87(1) · 108 1.067 0.01
16 1.370(5) · 109 1.013 0.01
17 6.57(3) · 109 0.951 0.01
18 3.16(1) · 1010 0.930 0.01
19 1.530(6) · 1011 0.938 0.01
20 7.45(3) · 1011 0.890 0.01
21 3.65(1) · 1012 0.824 0.01
22 1.796(9) · 1013 0.748 0.01
23 8.88(5) · 1013 0.691 0.01
24 4.41(3) · 1014 0.636 0.01
25 2.19(2) · 1015 0.575 0.01
26 1.09(1) · 1016 0.548 0.01
27 5.46(9) · 1016 0.538 0.01
28 2.74(6) · 1017 0.523 0.01
29 1.38(4) · 1018 0.511 0.01
30 7.0(3) · 1018 0.492 0.01
31 3.5(2) · 1019 0.494 0.01
32 1.7(1) · 1020 0.503 0.01
33 8.3(7) · 1020 1.062 0.001
34 5.2(6) · 1021 1.090 0.001
35 2.3(6) · 1022 0.486 0.01
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Figure 6.8 In the left panel, correlation matrix between the coefficients
p2, . . . , p35 at L = 48 extracted from the combined fit procedure. The
entrances can be bigger than 1 because the matrix is not positive
definite. In the right panel, the nearest correlation matrix obtained
with Higham’s algorithm (δ = 10−10).

definition of the gluon condensate in massless QCD.

6.2.3 Growth of the coefficients

From the analysis in Sect. 2.4 (in the hypothesis of using the Wilson action with
Nc = 3), assuming that the plaquette series has a fixed-sign factorial divergence
whose corresponding singularity in the Borel plane is the source of an ambiguity
that can be absorbed by redefining the condensate, it is possible to predict that
for large n it is pn = C z−n−1

0 Γ(n+ 1 +γ) with z0 = 16π2/(3β0), γ = 2β1/β
2
0 , and

that the ratio pn/(npn−1) behaves as

pn
npn−1

=
3β0

16π2

[
1 +

2β1

β2
0

1

n
+O

(
1

n2

)]
. (6.16)

The scheme-dependent coefficient β2, not known for staggered fermions, would
be needed to go further in the 1/n expansion.

In Figure 6.9 and Figure 6.10, the comparison between Eq. (6.16) and our data at
different volumes is shown. How finite-volume effects influence the values of the
coefficients pn has already been studied in the literature [40, 98]. From a standard
renormalon-based analysis, the value of the loop momenta that contribute the
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Figure 6.10 Same as Figure 6.9, but the region at large n is enlarged.

most to pn decreases exponentially with n. Since the finite size of the lattice
provides a natural infrared cutoff, we expect finite-volume effects to be larger at
larger perturbative orders. The dependence of pn on the lattice size N can be
modelled with a finite-volume OPE, exploiting the separation of scales a−1 �
(Na)−1: the leading correction is [98]

∑
n=0

pn(N)β−(n+1) =
∑
n=0

pnβ
−(n+1) − 1

N4
CG(β)

∑
n=0

fnα((Na)−1)n+1 +O

(
1

N6

)
,

(6.17)
where α((Na)−1) must be expressed in terms of the coupling β at the scale a−1

using Eq. (1.13). We do not attempt to take into account 1/N4 effects, as our
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data do not allow performing a reliable combined fit. Apparently no significant
finite-volume effects are visible where they would be expected the most, i.e. at
larger n. This is shown in the two examples of Figure 6.11. A similar behaviour
has been observed in Ref. [98], where the data points computed on comparable
volumes show little dependence on the lattice size. In that study, a detailed
analysis with a large number of volumes was needed in order to be able to fit
the finite-volume corrections. The overall effect is found to be an increase of
the ratio pn/(npn−1), see e.g. Figure 6 in Ref. [98]. In our case, data in finite
volume do cross the theoretical expectation; still, considering the spread between
points at different volumes in Figure 6.10 as a source of systematic error, we could
consider our measurements to be compatible with the asymptotic behaviour of
Eq. (6.16). We also ascertain the existence of an inversion point when resumming
the perturbative series, as explained in Sect. 6.4. Despite this encouraging
behaviour, any definite conclusion about the existence of the expected renormalon
can only be drawn after performing an appropriate infinite-volume study. We
emphasise that in this work the discrepancies in the determination of the pn from
different volumes must be interpreted as part of our systematic uncertainty, being
this an exploratory study. A precise assessment of the finite-volume effects will
be sought for a precise determination of the gluon condensate; we are currently
planning a set of dedicated simulations in the near future to settle this issue.
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Figure 6.11 Coefficients p31 and p35 drawn as a function of the volume.
No significant finite-volume effects are observed at our level of
precision.
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6.3 Chiral extrapolation of the nonperturbative

values of the plaquette

Nonperturbative values for the SU(3) plaquette with Nf = 2 (rooted) staggered
fermions can be found in Ref. [132], where data are collected from Refs. [133, 134].
For each value of the bare coupling, the physical scale is provided via the Sommer
parameter r0 [135]. The data are given for several values of the fermion bare mass,
and need to be extrapolated to the chiral limit for our purposes. A reasonable
assumption (for example adopted and verified also in Ref. [136] for the ratio
r0/a) is that the plaquette and the ratio r0/a have a polynomial behaviour at
small masses. We performed fits with linear to cubic polynomials and varied the
fit ranges to exclude points at larger values of the masses, but in many cases the
fits did not return a satisfactory description of the data with sensible values of
χ2/dof. Because we are using results from past simulations, it is difficult to track
accurately the systematic errors in the data. For this reason, we decided to choose
the fit with smaller χ2/dof among those we tried and if χ2/dof > 1 the errors in
the data were rescaled by a common factor in order to have a reduced chi-squared
equal to 1. The fits resulting from this approach are shown in Figure 6.12; the
extrapolated values for plaquettes and r0/a are in Table 6.3. Another approach
consists in considering the average between the largest and smallest extrapolated
values among all the different fits we tried (without rescaled errors and with
reduced chi-squared smaller than some reasonable threshold) and assigning an
error equal to the sum in quadrature between the largest error from the fits
and half the difference between the largest and smallest extrapolated values. In
this way we obtain results compatible (both for central values and errors) with
those in Table 6.3, confirming that the chiral extrapolation is sound and the
error bars conservative enough. Note that in this work we do not aim at a precise
determination of the condensate, and therefore we can be satisfied with an inflated
error on the Monte Carlo data points.
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Figure 6.12 Chiral extrapolation of the nonperturbative plaquette (left panel) and
the ratio r0/a (right panel) at five different values of β. The grey
points are available from Ref. [132] but are excluded because of our
fit procedure. In most cases the error bar is smaller than the symbol.
The orders of the polynomials used in the fits are in Table 6.3.

Table 6.3 Results of the chiral extrapolation for the plaquette and the scale. The
order of the polynomials used in the fits is indicated.

β 〈1− P 〉MC pol. ord. r0/a pol. ord.

5.3 0.4951(4) 2 2.11(7) 3
5.35 0.5152(9) 3 2.47(3) 1
5.415 0.5350(3) 3 3.30(3) 3
5.5 0.55128(3) 1 4.17(2) 1
5.6 0.56526(5) 1 5.14(1) 1

6.4 Optimal truncation and the gluon

condensate

The optimal truncation prescription, that consists in summing a series up to the
order of its minimal term, can be adopted to define the perturbative contribution
associated to the plaquette [126]. The ambiguity in doing so is of the same order
of the ambiguity associated to a Borel resummation.

Let us go back to the example of Sect. 2.1, where a series Rpert(α) =
∑∞

n=0 rnα
n+1

has factorially divergent positive coefficients rn = KanΓ(n + 1 + γ). In order to
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find n̄ such that rn̄αn̄+1 is minimum, we look for a zero of the derivative

∂

∂n

(
rnα

n+1
)
' Kα

√
2π

∂

∂n

(
(aα)n n

1
2

+n+γ e−n
)

=

= Kα
√

2π (aα)n n
1
2

+n+γ e−n
( 1

2
+ γ

n
+ log aαn

)
. (6.18)

If n̄ is large, which we have already assumed when using Stirling’s approximation
for the gamma function, the minimum term is obtained approximately when n̄ is
the integer closest to 1/(aα): we write simply n̄ ∼ 1/(aα). Comparing the size
of the minimum term,

rn̄α
n̄+1 ' Kα

√
2π (aα)n̄ n̄

1
2

+n̄+γ e−n̄ =

√
2

n̄π

πK

a

e−1/(aα)

(aα)γ
, (6.19)

with Eq. (2.7), we see that the ambiguity of the Borel sum is exactly equal to√
n̄π/2 rn̄α

n̄+1.

Since the ambiguity in the case of renormalons has been already computed
explicitly in Eq. (2.34), in this case we can read directly the smallest term

crenn̄
βn̄+1

=

√
2

n̄π
πC (2Ncz0)γ

(
Λ

Q

)2σ

. (6.20)

It is interesting to examine this equation under the lattice perspective, where
the continuum limit must be reached for β → +∞, or Q ∼ 1/a → +∞. In
the case of optimal truncation, as the coupling β increases the inversion point n̄
increases as well, and more and more terms are included in the sum: eventually,
it is evident from Eq. (6.20) that the reminder a−2σcrenn̄ β−n̄−1 is bound to vanish.
This is the feature that allows a consistent, even though limited to a specific
prescription, definition of the condensate; we recall that, on the other hand, if
the series were truncated sharply at some fixed order, the reminder would diverge
in the continuum limit.

We can now apply this prescription to our numerical data. The determination of
the minimal term and the summation of the series are performed separately for
each volume. According to the optimal truncation, we define Z̃1(β) by performing
the sum up to the order n̄ such that the term pnβ

−n−1 is minimum,

Z̃1(β) =
n̄∑
n=0

pnβ
−(n+1) . (6.21)
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Table 6.4 Summation up to the minimal term of the perturbative series of the
plaquette.

β L SP (β) n̄ pn̄β
−(n̄+1)

5.3

24 0.47515(9) 25 3.70 · 10−4

28 0.4767(1) 30 2.52 · 10−4

32 0.4775(4) 35 5.23 · 10−5

48 0.47665(7) 33 1.97 · 10−4

5.35

24 0.46718(8) 25 2.90 · 10−4

28 0.46843(9) 30 1.88 · 10−4

32 0.4690(3) 35 3.73 · 10−5

48 0.46826(5) 33 1.43 · 10−4

5.415

24 0.4587(1) 33 1.06 · 10−4

28 0.45844(7) 30 1.29 · 10−4

32 0.4588(2) 35 2.42 · 10−5

48 0.45822(4) 33 9.51 · 10−5

5.5

24 0.44663(9) 33 6.22 · 10−5

28 0.44651(6) 30 7.98 · 10−5

32 0.4466(1) 35 1.38 · 10−5

48 0.44627(4) 33 5.60 · 10−5

5.6

24 0.43384(6) 34 3.32 · 10−5

28 0.43380(5) 30 4.57 · 10−5

32 0.43383(6) 35 7.21 · 10−6

48 0.43357(3) 33 3.03 · 10−5

Our results for all combinations of L and β are summarised in Table 6.4. The
order n̄ at which the series starts to diverge depends only on the central value of
the coefficients pn and not on their errors: in order to check that the inversion
point determined by our procedure is stable, we bootstrapped the procedure by
generating an ensemble of sets of coefficients {pn}. For each set, the coefficients
pn are drawn from a Gaussian probability, whose mean and covariance are taken
from the fit procedure described in Sect. 6.2.2. We then determine n̄ for each of
these sets. The inversion point turns out to be stable, as shown in Figure 6.13
for the case L = 48, and β = 5.3. This particular case is shown for illustration
purposes, and the same features are seen in all other combinations of L and β.

The gluon condensate is then determined from Eq. (2.98): for Nc = 3, it is

r4
0 〈OG〉 =

36

π2
CG(g)−1

(r0

a

)4 [
〈P 〉 − Z̃1(β)

]
, (6.22)

with the Wilson coefficient defined in Eq. (2.97) and computed in perturbation
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Figure 6.13 Normalised distributions, over 105 bootstrap samples, of n̄ (left
panel) and SP (β) (right panel) for L = 48, β = 5.3.

theory,

C−1
G (β) = 1 +

3

8π2

β1

β0

1

β
+O

(
1

β2

)
. (6.23)

The coefficient β2 is not universal, and is actually unknown for the discretisation
used in this work. Not knowing β2 prevents us from going further in the expansion
of CG; since the correction due to the Wilson coefficient falls between 5% and 6%

for the values of β considered, a 6% systematic uncertainty is added in quadrature
after the subtraction.

The result of the subtraction is shown in the left panel of Figure 6.14, for the
largest volume. Since only a few values of β are available, it is hard to assess
unambiguously the presence of a plateau. We decided to discard from the analysis
the two values of the coupling corresponding to the coarser lattices, and define our
best estimate of the condensate as the weighted average of the values obtained
at the remaining βs. Our final results are summarised in the first column of
Table 6.5.

In order to put the choice of fit range on more solid ground, we studied the
scaling of a4〈OG〉 as a function of a4, as shown in Figure 6.14. The slope of a
linear fit of the three finest lattice spacings should give a determination of the
condensate compatible with the value extracted from the weighted average. The
spread between these two determinations and among the different volumes gives
an idea of the magnitude of the systematic uncertainties involved. We also tried
to include in the analysis all the available values of β and add a a6 correction,
in the attempt to model the deviations at large values of the lattice spacing; this
procedure gives again consistent results (despite a larger χ2).
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Figure 6.14 In the left panel, determination of the gluon condensate from
Eq. (6.22). The line corresponds to the weighted average of the three
largest values of β. In the right panel, scaling of the condensate
with a4 (solid red line, grey points are excluded), with possibly a a6

correction (dashed blue line, grey points are included). Both panels
refer to L = 48.

Table 6.5 Estimate of the gluon condensate at different volumes. The
determination labelled with 1 is obtained from the weighted average of
the values at the three largest values of β. The determinations labelled
with 2 and 3 are obtained by studying the scaling of a4〈OG〉 with a4,
as in the right panel of Figure 6.14; they correspond respectively to the
fit without and with a6 correction (see text for the details).

L r4
0〈OG〉1 r4

0〈OG〉2 r4
0〈OG〉3

24 2.6(1) 2.9(2) 3.1(4)
28 2.8(1) 3.1(2) 3.4(4)
32 2.4(1) 2.9(2) 3.2(4)
48 3.1(1) 3.1(2) 3.4(4)

Truncating the sum up to the minimal term is one of the possible prescriptions to
define the sum of a divergent series. The intrinsic ambiguity associated to Z̃1(β)

can be defined as the imaginary part of the Borel integral, which at leading order
in 1/n is

√
πn̄/2 pn̄ β

−n̄−1. In Table 6.6, the ambiguity associated to the gluon
condensate

δ〈OG〉 =
36

π2
C−1
G (β) a−4

√
πn̄

2
pn̄β

−n̄−1 (6.24)

is summarised4.

4 Our definition of the ambiguity differs from the one in Ref. [98] by a factor
√
π/2.
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Table 6.6 Ambiguity of the gluon condensate determined from Eq. (6.24) at the
three largest values of β.

r4
0δ〈OG〉

L β = 5.415 β = 5.5 β = 5.6

24 0.4(2) 0.5(4) 0.7(5)
28 0.4(3) 0.7(4) 0.9(5)
32 0.3(2) 0.5(3) 0.3(3)
48 0.3(2) 0.5(3) 0.6(4)
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Chapter 7

Conclusions

We used NSPT to perform for the first time large-order computations in lattice
gauge theories coupled to massless fermions. Twisted boundary conditions for
the gauge field, needed for the removal of the zero-momentum mode, required
the introduction of a smell degree of freedom for fermions in the fundamental
representation. Both Wilson and (for the first time in NSPT) staggered fermions
have been implemented. While for the former we performed an exploratory study
of the critical mass up to order O(β−7), the latter are ultimately the best choice
to reach very high orders, due to their residual chiral symmetry that bypasses
the need of an additive mass renormalisation. We computed the perturbative
expansion of the plaquette up to order O(β−35) for Nc = 3 and Nf = 2: under the
assumption of considering finite-volume effects as a source of systematic errors,
the observed growth of the coefficients in the expansion could be compatible with
the leading infrared renormalon; nevertheless, the large uncertainties and the lack
of a study of finite-volume effects prevent us from drawing any definite conclusion.
By choosing the prescription of summing the perturbative series up to its minimal
term, we gave an estimate for the value of the gluon condensate. In this context,
NSPT is crucial, being actually the only tool enabling this procedure, which asks
for having the asymptotic behaviour of such series under control.

This project must be regarded as a first exploratory study. We could confirm both
that the infrared renormalon can be directly inspected, and that the series can
be computed up to orders where the inversion point beyond which the expansion
starts to diverge (at values of the coupling which are the typical ones in lattice
simulations) is clearly visible. We performed our simulations at different lattice
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extents, in order to have a first estimate of finite-size effects (again, in both the
study of renormalon behaviour and in the truncation of the series). This is the
point which has to be better investigated in the future. At the moment, finite-size
effects are still to be considered as a systematic source of errors in our procedure.

In this respect, investigating the source of the numerical instabilities would
certainly help. So far, the violent fluctuations that we reported in lattice gauge
theories with fermions at high orders were noticed in NSPT only in the study of
simple models. It would be worth exploring different estimators for the fermion
drift, like the already mentioned Hutchinson’s estimator, or even considering
stochastic processes governed by equations different from the Langevin one, since
a higher-order integrator for the Langevin equation would probably turn out to
be unpractical, as it was previously discussed. Implementing improved actions,
new observables, or other fermion discretisations would represent also viable
possibilities. Moreover, with a sound finite-volume extrapolation in place, it
would prove to be useful having the nonperturbative plaquette at many more
values of the coupling than those that were currently available for unimproved
staggered fermions.

An intriguing prospect would be to perform a perturbative expansion both in
the coupling and in the number of flavours. Such double expansion could be
truncated consistently, as the coefficient of β−k is a finite polynomial in Nf of
order smaller than k. Double series have been already implemented in the past in
NSPT; however, they face technical challenges, limiting the sizes of the lattices
that can be simulated (to give an idea, the size of a standard NSPT configuration
withNc = 3, L = 48 and order up to α40 is already roughly 250 GB). Nevertheless,
this study would allow analysing how the growth of the coefficients is influenced
by the number of fermion flavours.

On top of the follow-ups we have already discussed, it would be interesting
to extend our study to different number of colours, number of flavours and
other fermionic representations. It would be of the utmost importance to assess
the high-order behaviour of perturbative coefficients in gauge theories different
from QCD: by looking at the asymptotic behaviour and by comparing with
nonperturbative simulations, one could probe regions in the space of theories
in which a (quasi-)conformal window can be present. This could be a powerful,
alternative method to look for candidate theories for physics beyond the Standard
Model.
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Appendix A

Group theory conventions

The conventions used for group theoretical manipulations are summarised here.
We consider the group G = SU(Nc), i.e. the group of unitary matrices with unit
determinant.

The indices a, b, c = 1, . . . , N2
c − 1 are assumed to be indices in the adjoint

representation, i, j, k, l = 1, . . . , Nc in the fundamental representation, r, s =

1, . . . , Nc in the antifundamental representation.

The generators of the group are denoted by T a; they are defined to be Hermitian,
and satisfy the commutation relations

[
T a, T b

]
=
∑
c

ifabcT c , (A.1)

where fabc are the group structure constants. The normalisation of the generators
is chosen to be such that

Tr
(
T aT b

)
=

1

2
δab . (A.2)

It is useful to introduce the operator Πg that projects on the algebra g of the
group,

Πg(X) =
1

2

(
X −X† − 1

Nc

Tr
(
X −X†

))
. (A.3)

From the property of the generators

∑
a

T aijT
a
kl =

1

2

(
δilδjk −

1

Nc

δijδkl

)
, (A.4)
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it is easy to see that∑
a

T a TrT a(X −X†) = −2i
∑
a

T a Re(iTrT aX) = Πg(X) . (A.5)

Representations

The matrices T a are the generators in the fundamental representation, whose
dimension is Nc. Since we are dealing with matrix groups, the action of g =

ei
∑
a ω

aTa ∈ G on a vector v is simply the matrix multiplication gv. The matrices
T̄ a = −(T a)∗ generate the antifundamental representation; the action of g∗ =

ei
∑
a ω

aT̄a is given by g∗v = vg†. The adjoint representation is generated by
(T aadj)bc = −ifabc, and therefore has dimension N2

c − 1. For every vector in the
adjoint representation wadj, we can define its matrix representation as a Nc ×Nc

Hermitian traceless matrix w = waadjT
a. If gadj = ei

∑
a ω

aTaadj acts as w′adj =

gadjwadj, in the matrix representation it holds w′ = gwg†. In particular, it is very
useful the relation

(gadj)ab = 2 TrT agT bg† . (A.6)

We define the trace normalisation factor T (R) and the quadratic Casimir C2(R)

from

TrT aRT
b
R = T (R)δab (A.7a)∑

a

T aRT
a
R = C2(R)1 . (A.7b)

They are related by T (R) dim(A) = C2(R) dim(R). For the group SU(Nc) it is

T (F ) =
1

2
, C2(F ) =

N2
c − 1

2Nc

, T (A) = C2(A) = Nc . (A.8)

Lie derivative

The component a of the (left) Lie derivative of an analytic function f : G → R
is given by

∇a
gf(g) = lim

α→0

1

α

[
f
(
eiαT

a

g
)
− f(g)

]
=

d

dα
f(eiαT

a

g)

∣∣∣∣
α=0

. (A.9)
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From this definition, it follows that the function f admits a Taylor series
expansion

f(ei
∑
a ω

aTag) = f(g) +
∑
a

ωa∇a
gf(g) +

1

2

∑
a,b

ωaωb∇a
g∇b

gf(g) + . . . =

= f(g) +
∞∑
n=1

1

n!

∑
a1,...,an

ωa1 . . . ωan∇a1
g . . .∇an

g f(g) , (A.10)

and that the derivative of a product obeys Leibniz’s rule,

∇a
g [f(g)h(g)] =

d

dα

[
f(eiαT

a

g)h(eiαT
a

g)
] ∣∣∣∣
α=0

=

= ∇a
gf(g)h(g) + f(g)∇a

gh(g) . (A.11)

It is interesting to note that the Lie derivatives do not commute, but rather
inherit the commutation relation from the group algebra,

[∇a
g,∇b

g] = −
∑
c

fabc∇c
g . (A.12)

For example, the relation in Eq. (A.12) can be verified when f(g) = Tr g,
using ∇a

g Tr g = iTrT ag and ∇a
g∇b

g Tr g = −TrT bT ag. We will often use the
abbreviations ∇a

xµ = ∇a
Uµ(x) and ∇xµ =

∑
a T

a∇a
xµ when deriving with respect to

a link variable.

If the function f(g) has values in the algebra, then for g = ei
∑
a ω

aTa we can
Taylor expand the component a of f(g) as

2 TrT af(g) = 2 TrT af(1) +
∑
b

2 TrT a[∇b
gf(g)|g=1]ωb + . . . , (A.13)

and build the matrix

[∇gf(g)]ab = 2 TrT a[∇b
gf(g)|g=1] . (A.14)

For example, if f(g) = gρg† with ρ ∈ g, then ∇g(gρg
†) = −iρadj.
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Group integration

The Haar measure dg is used to define integration over G. In particular, such
measure is invariant under the group multiplication,∫

dg f(g′g) =

∫
dg f(g) . (A.15)

Putting together Eqs. (A.10), (A.11) and (A.15), we see that the integral of a
derivative vanishes, ∫

dg∇a
gf(g) = 0 , (A.16)

and that it is possible to integrate by parts without any boundary term,∫
dg∇a

gf(g)h(g) = −
∫
dg f(g)∇a

gh(g) . (A.17)

For more details, the reader is referred to any standard textbooks on group theory,
e.g. Ref. [137].
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Appendix B

The MS lattice coupling

The lattice bare β-function is defined as

βL(g) = −adg
da

∣∣∣∣ physical
quantities

, (B.1)

and describes how the bare coupling must be changed to keep physical quantities
constant as the continuum limit (a→ 0) is approached. On the other hand, given
some renormalised coupling gR, the β-function

β(gR) = µ
dgR
dµ

∣∣∣∣ bare
quantities

(B.2)

describes how the running coupling changes with the renormalisation scale. The
relation between bare and renormalised coupling is

g = Z(gR, aµ) gR (B.3a)

gR = W (g, aµ) g , (B.3b)

where
Z(gR, aµ)W (Z(gR, aµ)gR, aµ) = 1 . (B.4)

In perturbation theory, the renormalisation constant can be expressed as a power
series in the coupling and log aµ,

Z(gR, aµ) = 1 +
∞∑
n=1

n∑
k=0

Znk g
n
R (log aµ)k =

∞∑
k=0

Zk(gR) (log aµ)k , (B.5)
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where we defined Zk(gR) as the polynomial in gR (whose lowest monomial is gkR)
collecting all the terms that multiply (log aµ)k. Since the bare coupling does not
depend on µ, we can differentiate Eq. (B.3a) to obtain

0 = µ
dg

dµ
=

(
µ
∂

∂µ
+ β(gR)

∂

∂gR

)
gRZ(gR, aµ) =

=
∞∑
k=0

[
(k + 1)gRZk+1 + β(gR)

∂

∂gR
(gRZk)

]
(log aµ)k . (B.6)

The quantity in square brackets must vanish for all values of k, so there are
constraints among the functions Zk. For example, the β-function can be extracted
from k = 0,

β(gR) = − gRZ1

∂
∂gR

(gRZ0)
. (B.7)

Analogously, using the perturbative expansion

W (g, aµ) = 1 +
∞∑
n=1

n∑
k=0

Wnk g
n (log aµ)k =

∞∑
k=0

Wk(g) (log aµ)k (B.8)

and the fact that the renormalised coupling does not depend on the lattice
spacing, one can get similar constraints on Wk from Eq. (B.3b). In particular,
the lattice β-function can be expressed as

βL(g) =
gW1

∂
∂g

(gW0)
. (B.9)

On the lattice, a perturbative definition of a renormalised coupling is in the
minimal subtraction (MS) scheme: the MS lattice coupling is defined subtracting
only powers of logarithms in the lattice cutoff. In other words, it is defined by
the condition

Z(gR, 1) = Z0(gR) = 1 or gR(1/a) = g . (B.10)

By setting µ = 1/a in Eq. (B.4), it follows that W0(gR) = 1. The β-function in
this scheme can be read just by looking at the terms with one power of log aµ in
the renormalisation constant,

β(gR) = −gR Z1(gR) and βL(g) = gW1(g) . (B.11)

Moreover, by applying a d
da

to Eq. (B.4) and then setting µ = 1/a it follows
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that W1(gR) = −Z1(gR). This result implies that the lattice β-function and the
β-function for the MS lattice coupling are the same,

β(gR) = βL(gR) . (B.12)

Thus, the MS lattice coupling can be thought to represent simply the bare lattice
coupling interpreted as a function of the lattice spacing.
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Appendix C

Twisted lattice perturbation
theory

Twisted lattice perturbation theory for a pure gauge theory was introduced in
Ref. [93] (see also Ref. [138]). Recently, the computation of Wilson loops has been
treated in detail in Ref. [128]. Here we focus on two vertices, introducing Wilson
and staggered fermions with smell in the fundamental representation. Feynman
rules are fairly similar to those of lattice perturbation theory, apart from phases
in propagators and vertices; all phases cancel in the first-order computations we
considered. We recall also that the sum over momenta is inherited from the
Fourier transform in Sect. 4.3,

�
�
�

∑
k

=
1

NcL4

∑
k‖,k⊥

, (C.1)

and each fermion loop has to be divided by Nc, i.e. by the numbers of smells
running in the loop. The gluon propagator is

〈
Ãµ(p)Ãν(−p)

〉
free

=
NcL

4

2
(1− δp⊥,0)f(p⊥, p⊥) ·

· 1

4
∑

ρ sin2
(pρ

2

) [δµν − (1− ξ)
sin
(pµ

2

)
sin
(
pν
2

)∑
σ sin2

(
pσ
2

) ]
,

(C.2)

where ξ is the gauge fixing parameter; note that the traceless property of the
gauge field forces the propagator to vanish for p⊥ = 0. The Wilson and staggered
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propagators are defined respectively in Eqs. (4.47) and (4.52). Below we write the
fermion-fermion-gluon and fermion-fermion-gluon-gluon vertices in the Wilson
and staggered case; p1, p2 are respectively the incoming and outgoing momenta
of the fermions, k1, k2 are the outgoing momenta of the gluons.

Wilson fermions

Vffg(p1, p2, k1⊥)µ = −g f(k1⊥, p2⊥)

[
iγµ cos

1

2
(p1 + p2)µ + sin

1

2
(p1 + p2)µ

]
(C.3a)

Vffgg(p1, p2, k1⊥, k2⊥)µν = −g2δµνf(k1⊥ + k2⊥, p2⊥)
1

2
[f(k1⊥, k2⊥) + f(k2⊥, k1⊥)] ·

·
[
cos

1

2
(p1 + p2)µ − iγµ sin

1

2
(p1 + p2)µ

]
(C.3b)

Staggered fermions Here momentum conservation is made explicit, because
the vertices are not diagonal in momentum space.

Vffg(p1, p2, k1)µ = −ig f(k1⊥, p2⊥) cos

(
p2 +

k1

2

)
µ

·

· δ̄(−p1‖ + k1‖ + p2‖ + πµ̄)δ−p1⊥+k1⊥+p2⊥,0 (C.4a)

Vffgg(p1, p2, k1, k2)µν = ig2 f(k1⊥ + k2⊥, p2⊥)
1

2
[f(k1⊥, k2⊥) + f(k2⊥, k1⊥)] ·

· sin

(
p2 +

k1

2
+
k2

2

)
µ

·

· δµν δ̄(−p1‖ + k1‖ + k2‖ + p2‖ + πµ̄)δk1⊥−p1⊥+k2⊥+p2⊥,0

(C.4b)

It is also interesting to examine how the momentum conservation is implied by
translation invariance in this formalism. Since

〈
Aa(x)Ab(y)

〉
= δabg(x − y) is a

function of the distance x− y only, then with the Fourier expansion in Eq. (4.26)
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we have〈
Ã(p)Ã(q)

〉
=
∑
xy

∑
ij

∑
lm

e−ixp e−iyq (Γ†p⊥)ij(Γ
†
q⊥

)lm 〈A(x)jiA(y)ml〉 =

=
∑
xy

∑
ij

∑
lm

∑
ab

e−ixp e−iyq (Γ†p⊥)ij(Γ
†
q⊥

)lm T
a
jiT

b
ml δ

abg(x− y) =

=
1

2

∑
xy

e−ixp e−iyq g(x− y)

(
Tr Γ†p⊥Γ†q⊥ −

1

Nc

Tr Γ†p⊥ Tr Γ†q⊥

)
=

=
Nc

2
f(p⊥, p⊥)(1− δp⊥,0)

∑
xy

e−ixp‖e−iyq‖e−i(x−y)p⊥ δp⊥,−q⊥ g(x− y) =

=
Nc

2
f(p⊥, p⊥)(1− δp⊥,0)

∑
yz

e−izp‖e−iy(p‖+q‖)e−izp⊥ δp⊥,−q⊥ g(z) =

=
NcL

4

2
f(p⊥, p⊥)(1− δp⊥,0)δp,−q

∑
z

eizp g(z) . (C.5)

Momentum is conserved, p = −q, and modes with p⊥ = 0 are absent. Moreover,
compared to the PBC case, there is an additional factor 1/2 playing the role of
the normalisation of the generators, and an additional (convention-dependent)
phase f(p⊥, p⊥).
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Appendix D

Autocorrelations and
cross-correlations

We consider a sample {ai, bi}Ni=1 of measures of two observables A, B taken from
the stochastic process at equilibrium. Let 〈A〉 = a, 〈B〉 = b be the expectation
values of the observables A, B. The cross-correlation function is defined as

ΓAB(t) = 〈(ai − a)(bi+t − a)〉 = 〈aibi+t〉 − ab , (D.1)

where we used the fact that the expectation value is not dependent on i because
the equilibrium distribution is time-independent. The cross-correlation function
is not an even function, ΓAB(−t) = ΓBA(t). In particular, ΓAB(0) = Cov(A,B)
is the covariance between A and B. The average ā = 1

N

∑N
i=1 ai is a stochastic

variable that satisfies 〈ā〉 = a. The covariance between the estimators ā and b̄ is

Cov(ā, b̄) =
〈
(ā− a)(b̄− b)

〉
=

1

N2

N∑
i,j=1

ΓAB(i− j) =

=
Cov(A,B)

N

[
1 +

N−1∑
r=1

(
1− r

N

) ΓAB(r)

ΓAB(0)
+

N−1∑
r=1

(
1− r

N

) ΓAB(−r)
ΓAB(0)

]
(D.2)

but since the cross-correlation function is expected to drop exponentially at large
times, it is possible to approximate

Cov(ā, b̄) ' Cov(A,B)
N

(τ intAB + τ intBA) (D.3)
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with the integrated cross-correlation time

τ intAB =
1

2
+
∞∑
r=1

ΓAB(r)

ΓAB(0)
. (D.4)

We expect τ intAB 6= 1
2
when the observable B has some dependence on A. If B is

independent of A, we can assume τ intAB = 1
2
. An estimator for the cross-correlation

function is

Γ̄AB(t) =
1

N − t

N−t∑
i=1

(ai − ā)(bi+t − b̄) . (D.5)

and the integrated cross-correlation time can be extracted in the Madras-
Sokal approximation [139, 140]. Note that when A = B then ΓAA(t) is the
autocorrelation function and Eq. (D.3) becomes Var(ā) = 2τ intAAVar(ā)/N , where
τ intAA is the integrated autocorrelation time.
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Appendix E

Code development

We developed two independent NSPT codes in order to cross-check and improve
our implementation.

PRlgt1 stems from the first NSPT codes developed by the Parma lattice
gauge theory group, allowing for SU(3) simulations with Wilson fermions. We
implemented twisted boundary conditions, smell for Wilson fermions and added
support for SU(2) simulations. The code is tailored for perturbation theory. The
underlying idea is to have base classes ptSU2 and ptSU3 that describe perturbative
matrices. The operator * is overloaded with the Cauchy product, so that it
is possible to write the product of two series in a natural way. This is one
of the operations that, especially at high orders, becomes very time-consuming:
thus, having perturbative matrices as base classes allows keeping the perturbative
orders close in memory to speed up the multiplication of series. In particular,
the perturbative expansion is hardcoded to start from 1 for an element of the
group and from 0 for an element of the algebra, in order to avoid multiplying
by the identity or zero matrix; this choice also improves numerical stability in
keeping the series within the group or algebra. All the other structures are built
from the base classes by adding Lorentz, Dirac or lattice degrees of freedom. The
fermion field too is described by matrices in colour-smell space. The update of the
configuration is done one link at a time: this is possible, faster and less memory
consuming for the first order integrator we are using; indeed the staples around
a link can be computed also if the neighbour links have already been updated,
since the effect of doing so gives higher-order effects in the time step. Twisted

1 For recent developments of the code see Ref. [141].
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1̂

2̂

1̂

2̂

Figure E.1 Sketch of the PRlgt auxiliary links in a plane of a 2× 2 lattice.
Physical links are in black and sites identified by the same symbol
represent the same physical site. Dashed lines highlight links that
are allocated but do not participate in the update. In the left panel
direction 1̂ is twisted, 2̂ is not: in red there are the auxiliary sites (two
forward, three backward) and the red links beginning there correspond
to physical links twisted according to the matrix Ω1. In the right panel
both 1̂ and 2̂ are twisted directions: in blue there are auxiliary sites
whose links are twisted according to the matrix Ω2. In the latter case
there are sites which pass the boundary in two twisted directions: the
green links undergo both the Ω1 and the Ω2 twist (the two operations
commute by definition).

boundary conditions are implemented ad hoc for the Wilson action, as shown in
Figure E.1: a system of twisted copies of the links on the boundary is updated
at each Langevin step. The code makes heavy use of multithreading in all loops
over lattice sites. Even though the performance of PRlgt is extremely good for
small lattices, it is hard to scale to large volumes due to the scalar nature of the
code.

We have also developed the GridNSPT code2, based on the Grid library [142].
GridNSPT has been debugged against PRlgt, and we are able to obtain the
very same outputs from these two completely different implementations (but
staggered fermions have been implemented in GridNSPT only). The Grid library
provides an environment where message passing, multithreading and vector
parallelism are fully exploited: the lattice is geometrically decomposed into MPI
domains, each one mapped to a set of processors; it is also overdecomposed over
virtual nodes in order to fill a SIMD vector, assuring very high vectorisation

2Available at https://github.com/gfilaci/GridNSPT.
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efficiency. For example, on KNL and Skylake machines we can exploit the AVX-
512 instruction set and a SIMD vector has room for 4 complex numbers in double
precision; the virtual node decomposition results in the layout 1.1.2.2, where
we are referring respectively to the coordinates x.y.z.t. Within the MPI task,
multithreading is automatic because it is included in the closure of Grid lattice
object expression templates. Grid incorporates C++11 internal template classes
representing scalars, vector or matrices. We introduced a new template class
representing a perturbative series, that embeds the overloading of the * operator.

template<class vtype, int Np> class iPert

{

vtype _internal[Np];

};

All the structures are tensors built from these templates: for example, the gauge
field is Lattice<iVector<iScalar<iPert<iMatrix<vComplexD,Nc>,Np>>,Nd>>,
where (starting from the outer template) we have the lattice, Lorentz, spin,
perturbative, colour structure and the base type is a vectorised complex number
in double precision. With this in place, every operation in Grid is performed
consistently with almost no modification. We rely on the Grid library for the
optimal implementation of the gauge action and for the Wilson and staggered
fermion kernel. Twisted boundary conditions have been implemented modifying
the covariant circular shifts. Even though GridNSPT lacks of many optimisations
compared to PRlgt (for example the Langevin update is not performed one link
at a time, but all operations and shifts are performed on the lattice as whole),
its flexible environment allows scaling easily and very efficiently to large volumes.
We also point out that it might be worth investigating in the future if a significant
speed-up could be achieved at high orders by performing the Cauchy product as
a multiplication of Fourier modes (with the Fourier transform computed in the
perturbative order), instead of the usual convolution.
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Appendix F

The nearest covariance matrix

If C is a covariance matrix, the corresponding correlation matrix is defined as

Ĉ = S−1/2C S−1/2 , (F.1)

where S is the matrix which is equal to C on the diagonal and vanishes everywhere
else. Ĉ has 1 on the diagonal by construction; it might have some negative or
zero eigenvalue if the estimator used in the determination of the covariance does
not guarantee positive definiteness. Given Ĉ, Higham’s algorithm [143] allows
finding the nearest (in a weighted Frobenius norm) positive semidefinite matrix
with unit diagonal. The core of the procedure is alternating a projection PS onto
the space of positive semidefinite matrices and a projection PU onto the matrices
with unit diagonal. The projection PS(X) = Y consists in

• diagonalising X = UT ΛU , where U is an orthogonal matrix and Λ is a
diagonal matrix with the eigenvalues of X on the diagonal

• setting to zero all the negative elements in Λ, obtaining Λ̃

• returning Y = UT Λ̃U .

The projection PU(X) consists simply in putting 1 on the diagonal of X. We refer
to the original work for the presentation and proof of the complete algorithm:
after some iterations, the algorithm converges and returns a matrix ĈH which is
positive semidefinite and has 1 on the diagonal.

However, the algorithm allows ĈH to have some zero (within machine precision)
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eigenvalue, preventing the inversion of the covariance matrix. If this is the case,
we additionally project ĈH onto the space of positive definite matrices. This
projection consists in

• diagonalising ĈH = V T ΓV , where V is an orthogonal matrix and Γ is a
diagonal matrix with the eigenvalues of ĈH on the diagonal

• identifying ε = δλmax, where λmax is the maximum eigenvalue and δ is the
tolerance of the projection

• setting to ε all the diagonal elements of Γ whose absolute value is smaller
than ε, obtaining Γ̃

• returning ĈP = V T Γ̃V .

In conclusion, the nearest covariance matrix is

CP = S1/2 ĈP S
1/2 . (F.2)
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