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1 Introduction

One of the outstanding questions in string theory is how to compute string scattering in
the presence of Ramond-Ramond (RR) flux. This includes string theory in AdS, which is
famously dual to conformal field theories (CFTs) in one less dimension [1]. The textbook
RNS prescription for the string worldsheet does not work in this case, while the pure spinor
approach [2] has not been developed to the point where it can compute string scattering
in practice.
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Instead, progress has recently been made in [3–6] for tree level string scattering in type
IIB string theory in AdS5 × S5 by combining two ingredients. Recall that the stress tensor
multiplet correlator in SU(N) N = 4 super-Yang-Mills (SYM) is dual to graviton scattering
in AdS5 ×S5, where the flat space limit is given by a Borel transform defined in [7]. The first
assumption is that AdS curvature corrections can be obtained by applying this same Borel
transform to the CFT correlator, after suitably rescaling the Mellin space expression for this
correlator by λ ≡ g2YMN and expanding at large λ in the planar large N limit. In particular,
one can apply this AdS curvature expansion to the superblock expansion of the correlator,
which includes operators with large scaling dimensions that are dual to massive string states
in the bulk. The second assumption is that the AdS curvature corrections to the correlator are
given by a worldsheet ansatz in terms of single-valued multiple polylogarithms (SVMPLs).1
By combining these two assumptions, as well as crossing symmetry, the first AdS curvature
correction was completely fixed, and matched previous results from integrability [9–11] for
the scaling dimensions of massive string operators, as well as the low energy expansion at
finite AdS curvature as fixed from supersymmetric localization [12, 13]. By further inputting
results from integrability, the second AdS curvature correction was also fixed.2

In this paper, we extend this story to type IIA string scattering in AdS4 × CP3, which
is dual to the 3d ABJM CFT with gauge group U(N)k × U(N)−k [17]. In particular, the
string coupling gs, the string length ℓs =

√
α′, and the AdS radius R are related to CFT

parameters as [17–20]

ν ≡ R4

ℓ4s
= 2π2(N/k − 1/24) + . . . , g2s = 512(N/k)2

3cT
+ . . . , (1.1)

where cT ∼ N3/2. The type IIA limit is then given by large cT with ν fixed, such that the
string coupling gs is small in this expansion. We consider the stress tensor multiplet correlator
dual to graviton scattering in the planar limit to all orders in 1/ν, and in a small AdS
curvature expansion we define as follows. Starting from the Mellin space expression Mi(s, t)
for this correlator, we define the AdS amplitude using the flat space limit formula [7, 21]3

Ai(S, T ) =
√

π

4
√

ν

∫ κ+i∞

κ−i∞

dα

2πi
eαα− 1

2 Mi

(
2
√

ν

α
S + 4

3 ,
2
√

ν

α
T + 4

3

)
, (1.2)

where S, T are the flat space Mandelstam variables

S = −α′

4 (p1 + p2)2 , T = −α′

4 (p1 + p4)2 , U = −α′

4 (p1 + p3)2 , (1.3)

which satisfy S + T + U = 0. We consider the AdS amplitude in a small curvature expansion
in 1/

√
ν = α′/R2

A(S, T ) = A(0)(S, T ) + 1√
ν

A(1)(S, T ) + 1
ν

A(2)(S, T ) + . . . , (1.4)

1That curvature corrections to all orders can be expressed in terms of SVMPLs was also recently confirmed [8]
in a case where the worldsheet theory is under full control: string theory on AdS3 ×M with pure NSNS fluxes.

2A similar strategy was also applied to open string scattering in type IIB string theory in the presence of
D7 branes [14, 15], and type IIB string theory on AdS3 × S3 × M4 for M4 = K3, T 4 [16].

3We include the shifts by 4/3 since the Mellin variables satisfy s + t + u = 4, but the Mandelstam variables
should satisfy S + T + U = 0.
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where we are still sensitive to finite α′ effects via the Mandelstam variables, and the first
term is the flat space AdS Virasoro-Shapiro amplitude

A(0)(S, T ) = Γ(1− S)Γ(1− T )Γ(1− U)
Γ(1 + S)Γ(1 + T )Γ(1 + U)

(
TU

S
,
ST

U
,
SU

T
,
S

2 ,
U

2 ,
T

2

)
. (1.5)

We then apply the Borel transform (1.2) to the superblock expansion of the correlator [22],
and compare it to an ansatz for A(k)(S, T ) in terms of SVMPLs of weights up to 3k. We find
that A(1)(S, T ) is completely fixed and can be written with an integrand of uniform weight 3.
Our result can be checked against integrability results for massive string operators on the
leading Regge trajectory [23], as well as the R4 higher derivative correction at finite AdS
curvature as fixed by analytic bootstrap combined with localization [21]. We also find that
A(1)(S, T ) in the high energy limit matches the classical solution for the string scattering
problem in AdS [24], and in particular the high energy limit of the AdS5 × S5 [24] and
AdS3 × S3 × M4 [16] cases.

To completely fix the second curvature correction A(2)(S, T ) we have to make a few
more assumptions. We assume that the worldsheet integrand has uniform weight 6 and that
the leading Regge trajectories are non-degenerate. The superprimaries of exchanged long
multiplets can be distinguished by their conformal dimension and spin as well as their parity ±
under the Z2 symmetry Z described in [22], which is a symmetry of ABJM theory,4 so that we
denote the leading Regge trajectories as (odd spin)+, (even spin)+ and (even spin)−. We then
impose the dimension of the first operator on the (odd spin)+ trajectory from integrability,
and the R4 term known from localization. The consistency checks for the second curvature
correction include a match with integrability data where available, i.e. for all operators on
the (odd spin)+ trajectory [23] and the first operator on the (even spin)+ trajectory [25], a
match with localization for the D4R4 correction and a match with the classical high energy
limit which confirms the expected exponentiation property. Our result implies the following
conformal dimensions for spin ℓ operators with Z parity ± on the leading Regge trajectories5

∆odd ℓ
+ =− 3

2+
√
2(ℓ+1)ν

1
4

[
1+ 1√

ν

(6ℓ2+8ℓ+11
16(ℓ+1)

)
− 1
512ν

(84ℓ4+208ℓ3−12ℓ2−384ℓ−167
(ℓ+1)2 +288(ℓ+1)ζ(3)

)
+O(ν− 3

2 )
]

,

∆even ℓ
+ =− 3

2+
√
2(ℓ+2)ν

1
4

[
1+ 1√

ν

(6ℓ2+16ℓ+9
16(ℓ+2)

)
− 1
512ν

(84ℓ4+480ℓ3+940ℓ2+672ℓ+81
(ℓ+2)2 +288(ℓ+2)ζ(3)

)
+O(ν− 3

2 )
]

,

4We do not distinguish operators by their spacetime parity P, even though U(N)k ×U(N)−k ABJM theory
is parity invariant, because we are not sensitive to this parity in the planar limit.

5In order to compare to [23, 25] note that these references considered operators of dimension ∆+1 and spin
S = ℓ + 1 which are super-descendants of the superconformal primaries of spin ℓ considered here. Explicitly,
∆odd ℓ

+ and ∆even ℓ
+ match the scaling dimensions of operators within the sl(2) subsector [26, 27]. These

operators take the form tr DS
+(Y 1Y †

4 )L=1, where S is even or odd, respectively. Currently, no integrability
data is available for ∆even ℓ

− .
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∆even ℓ
− =− 3

2+
√
2(ℓ+2)ν

1
4

[
1+ 1√

ν

(6ℓ2+16ℓ+21
16(ℓ+2)

)
− 1
512ν

(84ℓ4+480ℓ3+796ℓ2−48ℓ−615
(ℓ+2)2 +288(ℓ+2)ζ(3)

)
+O(ν− 3

2 )
]

. (1.6)

The rest of the paper is organised as follows. Section 2 introduces the correlator of the
stress-tensor multiplet in ABJM theory. In section 3 we relate the superconformal OPE for
long supermultiplets to massive poles of the AdS amplitude and discuss the spectrum of
massive string operators. Section 4 describes our ansatz for curvature corrections to the AdS
amplitude as a worldsheet integral. In section 5 and 6 we fix the first two curvature corrections
and present resulting data and checks, namely OPE data, Wilson coefficients and the high
energy limit. We conclude in section 7. Four appendices contain further technical details.

2 Stress-tensor correlator

We study the four-point function of the superconformal primary S of the stress-tensor
multiplet, which is a ∆ = 1 scalar in the adjoint of the SO(6) R-symmetry. We can expand
this correlator as

⟨S(x⃗1, X1) · · ·S(x⃗4, X4)⟩ =
1

x2
12x

2
34

[
S1(U, V )A12A34 + S2(U, V )A13A24 + S3(U, V )A14A23

+ S4(U, V )B1423 + S5(U, V )B1234 + S6(U, V )B1342

]
, (2.1)

where we define the R-symmetry structures

Aij = Tr(XiXj) , Bijkl = Tr(XiXjXkXl) + Tr(XlXkXjXi) , (2.2)

and where Si are functions of the conformal cross-ratios

U ≡ x2
12x

2
34

x2
13x

2
24

, V ≡ x2
14x

2
23

x2
13x

2
24

. (2.3)

We will be interested in the connected part of this correlator

Sconn
i (U, V ) ≡ Si(U, V )− Sdisc

i (U, V ) , Sdisc
i =

(
1, U, U

V , 0, 0, 0
)

, (2.4)

for which we define the Mellin transform (where u = 4 − s − t)6

Sconn
i (U, V ) =

∫ i∞

−i∞

ds dt

(4πi)2 U
s
2 V

t
2−1Γ2

[
1− s

2

]
Γ2
[
1− t

2

]
Γ2
[
1− u

2

]
Mi(s, t) . (2.5)

The Mellin amplitudes satisfy the following crossing symmetry constraints, which imply that
all components are fixed in terms of M2(s, t) and M5(s, t)

M1(s, t) = M2(u, t) , M2(s, t) = M2(t, s) , M3(s, t) = M2(s, u) ,

M4(s, t) = M5(u, t) , M5(s, t) = M5(t, s) , M6(s, t) = M5(s, u) .
(2.6)

6Note that we switch t ↔ u relative to [21].
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2.1 Mellin amplitudes for the low energy effective theory

The Mellin amplitude can also be expanded at large N ∼ c
2/3
T and large ν ∼ λ as7

M = 1
cT

Mtree + O(c−2
T ) , (2.7)

with

Mtree = MSG + 3ζ(3)
32ν

3
2
[35M4,1 − 72M2] ,

+ 1
ν

5
2

[ 3∑
j=1

b6,jM6,j +
2∑

j=1
b5,jM5,j +

2∑
j=1

b4,jM4,j + b2M
2
]
+ O(ν−3) .

(2.8)

where the b’s are numbers that were not yet fixed. The supergravity term was fixed by
analytic bootstrap in [21, 28] to take the form

MSG
2 (s, t) = −(s − 2)(t − 2)

u(u + 2)

 4Γ
(
1−u
2

)
√

πΓ
(
1− u

2
) − (4 + u)

 ,

MSG
5 (s, t) = −u − 2

2st

 2tΓ
(
1−s
2

)
√

πΓ
(
1− s

2
) + 2sΓ

(
1−t
2

)
√

πΓ
(
1− t

2
) + 2u − st − 8

 ,

(2.9)

where the other coefficients can be obtained by crossing using (2.6). The ratio of gamma
functions Γ( 1−s

2 )
Γ(1− s

2)
has a large s expansion in terms of odd positive powers of 1/

√
s, for all of

which the Borel transform (1.2) vanishes exactly. As a result, the curvature corrections to
the supergravity AdS amplitude are all rational functions of the Mandelstams

ASG
2 (S, T ) = ST

U
+ 1√

ν

S2 + 3ST + T 2

6U2 − 1
ν

2S2 − 13ST + 2T 2

36U3 + O(ν− 3
2 ) ,

ASG
5 (S, T ) = U

2 − 1√
ν

3S2 + 7ST + 3T 2

12ST
+ 1

ν

U(2S2 − ST + 2T 2)
24S2T 2 + O(ν− 3

2 ) .

(2.10)

The other Mellin amplitudes in (2.8) correspond to higher derivative corrections to super-
gravity, and they are polynomials in s, t. For instance, the first correction shown in (2.8)
corresponds to the R4 correction to supergravity, whose coefficients were fixed using super-
symmetric localization in [21], where the Mellin amplitudes take the explicit form

M4,1
2 = 1

35(u − 2)(t − 2) (35ts + 100u − 112) ,

M4,1
5 = 1

70(u − 2)(35stu − 90(t2 + s2)− 280ts − 324u + 1072) ,

M2
2 = (s − 2)(t − 2), M2

5 = (u − 4/3)(u − 2) .

(2.11)

The corresponding AdS amplitude is given by

AR4
2 = ζ(3)

(
2S2T 2+23STU

3
√

ν
+80S2+221ST+80T 2

18ν
+ 53U

18ν
3
2
+ 13
108ν2

)
, (2.12)

AR4
5 = ζ(3)

(
STU2−U

41S2+105ST+41T 2

6
√

ν
+133S2+286ST+133T 2

9ν
− 647U

72ν
3
2
+ 20
27ν2

)
.

7We normalised our Mellin amplitude with an extra factor of 32/π2 relative to [21] to make various formulas
simpler. This overall normalisation is not important as we only consider tree level.
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Superconformal block normalisation P Z

Longn
∆,0

n = 1 : (a∆,0,1, a∆+1,0,20′) = (1, 0) + +

n = 2 : (a∆,0,1, a∆+1,0,20′) = (0, (∆ + 2)/(∆− 1)) − +

Long1∆,ℓ, ℓ ≥ 1 odd a∆+1,ℓ+1,15s = 1 + +

Longn
∆,ℓ, ℓ ≥ 2 even

n = 1 : (a∆,ℓ,1, a∆+1,ℓ,1, a∆+1,ℓ,15s) = (1, 0, 0) + +

n = 2 : (a∆,ℓ,1, a∆+1,ℓ,1, a∆+1,ℓ,15s) = (0, 1, 0) − +

n = 3 : (a∆,ℓ,1, a∆+1,ℓ,1, a∆+1,ℓ,15s) = (0, 0, 1) − −

Table 1. A summary of the long superconformal blocks and their normalisations in terms of a few
OPE coefficients. The values a∆′,ℓ′,r in this table correspond to an,∆,ℓ

∆′,ℓ′,r in (3.2). We omitted the
labels n,∆, ℓ for clarity.

The next correction corresponds to the D4R4 correction, and is written in terms of eight
unknown coefficients b. In appendix A, we describe how to derive the explicit polynomials
in s, t that appear at that order, and give explicit expressions for them. We will later fix
these coefficients using the curvature corrections we will next discuss, together with one
localization constraint.

3 OPE and AdS resonances

3.1 Superconformal block expansion

The correlator has the following expansion into N = 6 superconformal blocks

Si(U, V ) =
∑
n,τ,ℓ

C2
n,τ,ℓLongn

∆,ℓ,i(U, V ) + short multiplets , (3.1)

where τ ≡ ∆ − ℓ is the twist and n denotes the different possible long blocks that appear
for a given spin ℓ. We will only be interested in the contribution of long blocks, as these
are the only ones contributing to the massive poles of the AdS amplitude. The N = 6 long
superconformal blocks are given in terms of bosonic 3d blocks g∆,ℓ(U, V ) [22]

Longn
∆,ℓ,i(U, V ) =

∑
∆′,ℓ′,r

an,∆,ℓ
∆′,ℓ′,r(B

−1)r
ig∆′,ℓ′(U, V ) , (3.2)

where the matrix B implements a basis change from the irreducible representations r to the
basis (2.1). The relative coefficients an,∆,ℓ

∆′,ℓ′,r between bosonic blocks within the superblock
are completely fixed by supersymmetry, and given explicitly in [22].8 The index n refers
to the fact that there are different long blocks for even ℓ (unlike odd ℓ which has a unique
block), as shown in table 1. These different n correspond to different charges under the
discrete symmetries P and Z.

As discussed in appendix B.3 of [21], the stress-tensor multiplet forms a representation
not only of the superconformal group OSp(6|4), but also of a larger group (Z2×Z2)⋉OSp(6|4)

8For ℓ = 0, we normalise the n = 2 block differently than [22], see table 1.
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which includes both a parity transformation P and discrete R-symmetry transformation Z.
The parity transformation P extends the spacetime symmetries from Spin(3, 2) ∼= Sp(4,R)
to Pin(3, 2), while Z extends the R-symmetry group from SO(6) to O(6). The U(N)k ×
U(N + M)−k ABJ(M) theories are expected to preserve Z symmetry in general, and P for
M = 0, k/2. We can thus distinguish Z-even and Z-odd operators. However, since we are
not sensitive to M in the planar limit, we are not sensitive to P , so we expect that even spin,
Z-even long multiplets will contribute to both n = 1 and n = 2 in this limit.

We would like to understand how these superconformal blocks contribute to the massive S-
channel poles of the AdS amplitude. To this end, we have to perform the Mellin transform (2.5)
and the Borel transform (1.2) near the resonances of the AdS amplitude from massive string
operators with twists τ = 2ν

1
4 τ̃ , where τ̃ is finite at large ν. In fact, the identification of

Casimirs in the flat space limit

∆(∆− 3) = R2m2 = R2 4δ

α′ , as R → ∞ , (3.3)

fixes the leading term in the strong coupling expansion of the twists in terms of the string
mass levels δ = 1, 2, 3, . . .

τ̃n,δ,ℓ =
√

δ + O(ν− 1
4 ) . (3.4)

We proceed at the level of bosonic blocks g∆,ℓ(U, V ). Their Mellin transform is given by

g∆,ℓ(U,V )=
∫ i∞

−i∞

dsdt

(4πi)2 U
s
2 V

t
2−1Γ2

[
1− s

2

]
Γ2
[
1− t

2

]
Γ2
[
1−u

2

] ∞∑
m=0

Qτ,ℓ,m(t−2)
s−τ−2m

, (3.5)

where Qτ,ℓ,m(t − 2) is a Mack polynomial, defined in (B.2), and m labels descendants. We
show in appendix B that applying the Borel transform to the Mellin amplitude

Mτ,ℓ(s, t) =
∞∑

m=0

Qτ,ℓ,m(t − 2)
s − τ − 2m

, (3.6)

leads to the following expansion for the AdS amplitude at S ∼ τ̃2

Aτ,ℓ(S, T )
∣∣∣
S-poles

= 1
16π

5
2 ν

5
8
sin
(

πτ

2

)2 ∞∑
j=0

1
νj/4R

(j)
τ,ℓ(S, T ) , (3.7)

with

R
(0)
τ,ℓ (S, T ) = −

√
S
√

τ̃Pℓ

(
1 + 2T

S

)
√
2 (S − τ̃2)

,

R
(1)
τ,ℓ (S, T ) = −

√
S
(
(4ℓ − 1)S + (12ℓ − 23)τ̃2)Pℓ

(
1 + 2T

S

)
16
√
2
√

τ̃ (S − τ̃2)2
,

(3.8)

where Pℓ (x) is a Legendre polynomial, as appropriate for partial waves in 4-dimensional
flat space and the higher corrections R(2) etc. can also depend on ∂n

x Pℓ−n (x) and are given
explicitly in the attached Mathematica notebook.

In order to obtain the superconformal pole structure of Ai(S, T ), we have to replace each
bosonic block in (3.2) with (3.7), with the appropriate ∆′ and ℓ′. Since each superconformal

– 7 –
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Figure 1. Chew-Frautschi plot of the stringy operators.

block contains only bosonic blocks of the same twist modulo 2, the factor sin
(

πτ
2
)2 in (3.7)

can be factored out of the superconformal blocks. Cancelling this factor we write the OPE
coefficients as

C2
n=1,τ,ℓ =

16π
5
2
(
2
√

δν
1
4
) 5

2

sin
(

πτ
2
)2 fn=1,δ,ℓ , C2

n=2,3,τ,ℓ =
16π

5
2
(
2
√

δν
1
4
) 5

2

sin
(

π(τ+1)
2

)2 fn=2,3,δ,ℓ . (3.9)

3.2 OPE data at strong coupling

Next we expand the OPE data at strong coupling. The leading twists are given by (3.4) in
terms of the string mass level δ, which we will use to label the OPE data alongside the spin
ℓ and the superconformal block label n. We expand the twists as

τn,δ,ℓ = τ
(1)
n,δ,ℓ + 2

√
δ
√

ν

1 + τ
(2)
n,δ,ℓ

δ
√

ν
+

τ
(4)
n,δ,ℓ

(δ
√

ν)2 + O(ν− 3
2 )

 , (3.10)

and the OPE coefficients (3.9)

fn,δ,ℓ = f
(0)
n,δ,ℓ +

f
(1)
n,δ,ℓ

(δ
√

ν) 1
2
+

f
(2)
n,δ,ℓ

δ
√

ν
+

f
(3)
n,δ,ℓ

(δ
√

ν) 3
2
+

f
(4)
n,δ,ℓ

(δ
√

ν)2 + O(ν− 5
4 ) . (3.11)

By matching the OPE poles of A
(0)
i (S, T ) to the flat space Virasoro-Shapiro ampli-

tude (1.5), we find the spectrum of exchanged supermultiplets displayed in figure 1, and we
can also compute the leading OPE coefficients ⟨f (0)

n,δ,ℓ. While the amplitude fixes the OPE
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data for any n, δ, ℓ, the data organises itself into analytic Regge trajectories as indicated in
the figure. As familiar from flat space, the leading Regge trajectory determines the Regge
limit of the amplitude. This was also recently confirmed in the AdS5 × S5 context in [29].
We will merely use the Regge trajectories as a useful way to present OPE data and show
the data for the first few Regge trajectories. We define the angle brackets as a sum over
all operators that share the same n, δ and ℓ. Defining

rodd
j (δ) =

(−1)δδ2δ−2j+1Γ
(
j − 2δ − 1

2

)
4δ+4Γ(δ)Γ

(
j − δ − 1

2

) ,

reven
j (δ) =

(−1)δδ2δ−2j+1(4δ − 4j + 1)Γ
(
j − 2δ + 1

2

)
4δ+4Γ(δ)Γ

(
j − δ + 1

2

) ,

(3.12)

we have for the first few odd spin Regge trajectories

⟨f (0)
1,δ,2δ−1 = 4rodd

1 (δ) ,

⟨f (0)
1,δ,2δ−3 = 2

3
(
2δ3 + 6δ2 − 17δ + 6

)
rodd
2 (δ) ,

⟨f (0)
1,δ,2δ−5 = 2

45
(
5δ6 + 29δ5 − 58δ4 − 373δ3 + 722δ2 − 97δ − 210

)
rodd
3 (δ) ,

(3.13)

and for the even spin ones

⟨f (0)
1,δ,2δ−2 +

3
2⟨f

(0)
2,δ,2δ−2 = ⟨f (0)

3,δ,2δ−2 = 2
δ

reven
1 (δ) ,

⟨f (0)
1,δ,2δ−4 +

3
2⟨f

(0)
2,δ,2δ−4 = ⟨f (0)

3,δ,2δ−4 = 2
3
(
δ2+2δ−5

)
reven
2 (δ) , (3.14)

⟨f (0)
1,δ,2δ−6 +

3
2⟨f

(0)
2,δ,2δ−6 = ⟨f (0)

3,δ,2δ−6 = 1
45
(
5δ5+19δ4−29δ3−253δ2+249δ+189

)
reven
3 (δ) .

Note that only a combination of the n = 1 and n = 2 coefficients for even spins are fixed,
because the corresponding blocks are indistinguishable in the flat space limit. The individual
coefficients will only be fixed when determining A

(1)
i (S, T ).

As indicated in (1.4), we expect the AdS amplitude to have curvature corrections which
multiply integer powers of α′/R2 = 1/

√
ν. However, the OPE data is expanded in powers

of ν− 1
4 and imposing (1.4) fixes part of the OPE data. In particular, absence of an AdS

amplitude at order ν− 1
4 (and its OPE poles) fixes the OPE data

τ
(1)
1,δ,ℓ = −ℓ − 3

2 , ℓ odd ,

2τ
(1)
1,δ,ℓf

(0)
1,δ,ℓ + 3τ

(1)
2,δ,ℓf

(0)
2,δ,ℓ =

(
−ℓ − 3

2

)(
2f

(0)
1,δ,ℓ + 3f

(0)
2,δ,ℓ

)
, τ

(1)
3,δ,ℓ = −ℓ − 3

2 , ℓ even ,

(3.15)
as well as

f
(1)
1,δ,ℓ =

11
16f

(0)
1,δ,ℓ , ℓ odd ,

f
(1)
1,δ,ℓ +

3
2f

(1)
2,δ,ℓ =

27
16f

(0)
1,δ,ℓ −

15
32f

(0)
2,δ,ℓ , f

(1)
3,δ,ℓ =

11
16f

(0)
3,δ,ℓ , ℓ even .

(3.16)
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The remaining τ (1)’s and f (1)’s are fixed at order ν− 3
4 such that

τ
(1)
n,δ,ℓ = −ℓ − 3

2 ,

f
(1)
1,δ,ℓ =

27
16f

(0)
1,δ,ℓ , f

(1)
2,δ,ℓ = − 5

16f
(0)
2,δ,ℓ , ℓ even .

(3.17)

Similarly, absence of corrections of order ν− 3
4 and ν− 5

4 fixes all f (3)’s

f
(3)
1,δ,ℓ =

11
16(f

(2)
1,δ,ℓ − f

(0)
1,δ,ℓτ

(2)
1,δ,ℓ) +

3
(
256ℓ2 + 768ℓ + 557

)
f
(0)
1,δ,ℓ

4096 , ℓ odd ,

f
(3)
1,δ,ℓ =

27
16(f

(2)
1,δ,ℓ − f

(0)
1,δ,ℓτ

(2)
1,δ,ℓ) +

(
1280ℓ2 + 1280ℓ − 3849

)
f
(0)
1,δ,ℓ

4096 , ℓ even ,

f
(3)
2,δ,ℓ = − 5

16(f
(2)
2,δ,ℓ − f

(0)
2,δ,ℓτ

(2)
2,δ,ℓ) +

3
(
256ℓ2 + 256ℓ − 675

)
f
(0)
2,δ,ℓ

4096 ,

f
(3)
3,δ,ℓ =

11
16(f

(2)
3,δ,ℓ − f

(0)
3,δ,ℓτ

(2)
3,δ,ℓ) +

3
(
256ℓ2 + 256ℓ + 45

)
f
(0)
3,δ,ℓ

4096 .

(3.18)

We expect the relations determining τ
(1)
n,δ,ℓ, f

(1)
n,δ,ℓ and f

(3)
n,δ,ℓ to hold for each individual operator,

as indicated by the absence of angle brackets.

3.3 Degeneracies from flat space

Let us take this opportunity to discuss the degeneracy of operators with the labels δ, ℓ, n. We
can address this question in the strict flat space limit, by relating the massive spectrum of
type II string theory in 10 dimensions to the flat space limit of AdS4 × CP3. By continuity
of the degeneracies the result should then also hold at finite ν. An analogous analysis was
done in [30] for type IIB string theory in AdS5 × S5. In that case, several of the degeneracies
were confirmed to hold at finite ν by quantum spectral curve computations in [31]. Here
we will only discuss the leading odd and even Regge trajectories.

In the present case we have the additional complication of non-maximal supersymmetry.
However, the flat space amplitude (1.5) respects N = 8 supersymmetry, as one can check
by relating its massive poles to N = 8 superconformal blocks. These are given in terms
of the N = 6 superconformal blocks by [22]

LongN=8
∆,ℓ,i = Long1∆,ℓ,i +

4(ℓ − 1)2(−∆+ ℓ + 1)(∆ + ℓ)
(2ℓ − 1)(2ℓ + 1)(ℓ −∆)(∆ + ℓ + 1)Long∆+1,ℓ−1,i

+ 4∆(−∆+ ℓ + 1)(∆ + ℓ)
3(∆ + 2)(ℓ −∆)(∆ + ℓ + 1)Long2∆+1,ℓ,i +

4(−∆+ ℓ + 1)(∆ + ℓ)
(ℓ −∆)(∆ + ℓ + 1) Long3∆+1,ℓ,i

+ 4(ℓ + 1)(ℓ + 2)(∆ + ℓ)(∆ + ℓ + 2)
(2ℓ + 1)(2ℓ + 3)(∆ + ℓ + 1)(∆ + ℓ + 3)Long∆+1,ℓ+1,i

+ 4(∆ + 4)2(−∆+ ℓ + 1)(∆ + ℓ)
(2∆ + 5)(2∆ + 7)(ℓ −∆)(∆ + ℓ + 1)Long1∆+2,ℓ,i . (3.19)

We find that

Res
S=δ

A
(0)
i (S, T ) =

2δ−2∑
ℓ=0,2,...

(
CN=8
∆,ℓ

)2
LongN=8

∆,ℓ,i

∣∣∣
flat space limit

, (3.20)
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where we take the flat space limit as described in section 3.1. This means that we can do
the degeneracy analysis in two steps. We first relate the flat space spectrum to N = 8
superconformal multiplets. In a second step we decompose the N = 8 multiplets into N = 6
multiplets using (3.19).

The main result from the first step is that the operators on the leading N = 8 Regge
trajectory with superprimary spin ℓ = 2δ − 2 all have degeneracy 1. We then see from (3.19)
that N = 8 multiplets with ℓ = 2δ−2 contribute to N = 6 multiplets with odd spin ℓ = 2δ−1
or even spin ℓ = 2δ − 2 and n = 2, 3 only with a single term in (3.19), so these N = 6
trajectories should have degeneracy 1 as well.

We conclude that there should be three Regge trajectories of unique operators: one
for ℓ = 2δ − 1, one for ℓ = 2δ − 2 with Z-even operators and one for ℓ = 2δ − 2 with
Z-odd operators. Below we will find further evidence for this statement, as we will use
it as an assumption to fix the last few coefficients in the ansatz for the second curvature
correction. These coefficients will then be subject to non-trivial consistency checks against
integrability and localization results.

4 Worldsheet correlator

4.1 Ansatz

Next, we will try to determine the curvature corrections A(1)(S, T ) and A(2)(S, T ) in (1.4),
by making an ansatz for these functions in terms of a worldsheet integral. This is very much
analogous to the ansatz of [5, 6] for AdS5 × S5. It was argued there that the worldsheet
integral for the kth curvature correction should be of the form of the flat space Virasoro-
Shapiro amplitude, with the additional insertion of single-valued multiple polylogarithms
(SVMPLs) of maximal weight 3k.

We will construct an ansatz for the structures 2 and 5. To this end we take i = 2, 5
henceforth, and construct functions satisfying

Ai(S, T ) = Ai(T, S) , i = 2, 5 . (4.1)

The remaining structures are then fixed by (2.6)

A1(S, T ) = A2(U, T ) , A3(S, T ) = A2(S, U) ,

A4(S, T ) = A5(U, T ) , A6(S, T ) = A5(S, U) .
(4.2)

The ansatz takes the form

Ai(S,T )=Bi,1(S,T )+Bi,2(U,T )+Bi,2(S,U)+Bi,3(U,T )−Bi,3(S,U) , i=2,5 , (4.3)

where
Bi,1(S, T ) = Bi,1(T, S) ,

Bi,2(S, T ) = Bi,2(T, S) ,

Bi,3(S, T ) = −Bi,3(T, S) ,

(4.4)

and
Bi,j(S, T ) =

∫
d2z|z|−2S−2|1− z|−2T−2Gi,j(S, T, z) . (4.5)
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The integrand has an expansion analogous to (1.4)

Gi,j(S, T, z) = G
(0)
i,j (S, T, z) + 1√

ν
G

(1)
i,j (S, T, z) + 1

ν
G

(2)
i,j (S, T, z) + . . . (4.6)

The main idea behind the ansatz is that it is manifestly crossing symmetric (4.1), while at
the same time G

(k)
i,j (S, T, z) will depend on z only via SVMPLs. When we now write the

AdS amplitude as a single integral

A
(k)
i (S, T ) =

∫
d2z|z|−2S−2|1− z|−2T−2G

(k)
i,tot(S, T, z) , (4.7)

the necessary changes of variables introduce additional factors of |z|2 or |1 − z|2

G
(k)
i,tot(S, T, z) = G

(k)
i,1 (S, T, z) + |z|2

(
G

(k)
i,2 (U, T, 1/z) + G

(k)
i,3 (U, T, 1/z)

)
+ |1− z|2

(
G

(k)
i,2 (S, U, z

z−1)− G
(k)
i,3 (S, U, z

z−1)
)

, i = 2, 5 .
(4.8)

Using (4.2) we can also obtain the remaining integrands

G
(k)
i−1,tot(S, T, z) = |z|2G(k)

i,1 (U, T, 1/z) + G
(k)
i,2 (S, T, z) + G

(k)
i,3 (S, T, z)

+ |1− z|2
(
G

(k)
i,2 (S, U, z

z−1) + G
(k)
i,3 (S, U, z

z−1)
)

, i = 2, 5 ,

G
(k)
i+1,tot(S, T, z) = |1− z|2G(k)

i,1 (S, U, z
z−1) + |z|2

(
G

(k)
i,2 (U, T, 1/z)− G

(k)
i,3 (U, T, 1/z)

)
+ G

(k)
i,2 (S, T, z)− G

(k)
i,3 (S, T, z) , i = 2, 5 .

(4.9)

For the integrand for the kth curvature correction we propose the following ansatz, sat-
isfying (4.4)

G
(k)
i,j=1,2(S, T, z) =

3k∑
w=0

∑
b

(
P+,k,i,j

w,b (S, T )T+
w,b(z) + P−,k,i,j

w,b (S, T )T−
w,b(z)

)
,

G
(k)
i,3 (S, T, z) =

3k∑
w=0

∑
b

(
P+,k,i,3

w,b (S, T )T−
w,b(z) + P−,k,i,3

w,b (S, T )T+
w,b(z)

)
,

(4.10)

where P±
w,b(S, T ) are (anti-)symmetric homogeneous polynomials of degree 2 + w − k. The

degree of the polynomials is chosen such that for each k, the contribution to the supergravity
amplitude (2.10) will have transcendental weight 0. T±

w,b(w) are a basis of (anti-)symmetric
single-valued multiple polylogs (SVMPLs) of weight w, defined by

L±
W (z) = LW (z)± LW (1− z) + LW (z̄)± LW (1− z̄) , (4.11)

and single-valued multiple zeta values (SVMZVs). The SVMPLs LW (z) were introduced
in [32]. They depend on a word W made from the letters 0 and 1, the locations of the
singularities of the worldsheet integrand (along with ∞). They are single-valued in z and
satisfy the relation

∂zLσW (z) = 1
z − σ

LW (z) , σ ∈ {0, 1} . (4.12)
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w 0 1 2 3 4 5 6
P+

w,b(S, T ) ⌊4+w−k
2 ⌋

P−
w,b(S, T ) ⌊3+w−k

2 ⌋
T+

w,b(z) 1 1 2 4 7 13 25
T−

w,b(z) 0 1 1 3 5 11 20

Table 2. Number of independent (anti-)symmetric polynomials and SVMPLs for each w.

See [5, 6] for further details on SVMPLs in the same context and [33–35] for useful tools
for manipulating them. The explicit basis of SVMPLs we use is given in appendix C and
we give a counting of the basis elements in table 2.

It is instructive to rewrite the flat space amplitude (1.5) in terms of the proposed
ansatz. Noting that

Γ(1− S)Γ(1− T )Γ(1− U)
Γ(1 + S)Γ(1 + T )Γ(1 + U) = ST

U

∫
d2z|z|−2S−2|1− z|−2T−2

= UT

S

∫
d2z|z|−2U−2|1− z|−2T−2 = SU

T

∫
d2z|z|−2S−2|1− z|−2U−2 ,

(4.13)

we can write (1.5) in terms of integrands which are (anti-)symmetric polynomials of degree two

G
(0)
2,1(S, T ) = 0 , G

(0)
2,2(S, T ) = T 2 + S2

4 , G
(0)
2,3(S, T ) = T 2 − S2

4 ,

G
(0)
5,1(S, T ) = ST

2 , G
(0)
5,2(S, T ) = 0 , G

(0)
5,3(S, T ) = 0 .

(4.14)

Using (4.13), we see that this matches the corresponding components of (1.5)
S

UT

(
G

(0)
2,2(U, T ) + G

(0)
2,3(U, T )

)
+ T

SU

(
G

(0)
2,2(S, U)− G

(0)
2,3(S, U)

)
= ST

U
,

U

ST
G

(0)
5,1(S, T ) = U

2 .

(4.15)

4.2 Ambiguities

It turns out that the above ansatz contains a lot of ambiguities that integrate to 0. To give
an idea how these ambiguities look like, let us consider the simplest example, which contains
only weight 0 and 1 terms. It is given by (note that L0(z) = log |z|2 and L1(z) = log |1− z|2)

Gamb
2,1 (S, T, z) = Gamb

2,2 (S, T, z) = 2(S + T )− S2 log |z|2 − T 2 log |1− z|2 ,

Gamb
2,3 (S, T, z) = 0 , Gamb

5,j (S, T, z) = 0 .
(4.16)

Using
I(S, T ) =

∫
d2z|z|−2S−2|1− z|−2T−2 = Γ(−S)Γ(−T )Γ(1 + S + T )

Γ(1 + S)Γ(1 + T )Γ(−S − T ) , (4.17)

we can replace the logarithms in (4.16) by derivatives and check that

Aamb
2 (S, T ) =

(
2(S + T ) + S2∂S + T 2∂T

)
I(S, T ) + (S ↔ U) + (T ↔ U) = 0 . (4.18)

The presence of ambiguities means that we cannot provide a unique answer for the integrands.
However, the AdS amplitude corrections A(1)(S, T ) and A(2)(S, T ) will be uniquely determined.
Below we will display integrands with a choice of ambiguities, and provide the full results
with all ambiguities in an ancillary Mathematica file.
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5 First curvature correction

Let us now discuss the case k = 1. Here the ansatz (4.10) has 166 parameters and 84
ambiguities, so that 82 of the coefficients determine A(1)(S, T ). By matching the ansatz with
the pole structure dictated by the flat space limit (3.7) of the OPE (3.1), and the known
SUGRA term in (2.10), we can completely fix these 82 coefficients. Note that in order to
match all inequivalent poles, we consider the S-channel poles of the structures i = 1, 2, 4, 5.

In order to present the result, we make a choice for the 84 ambiguities. It is possible to
choose them in such a way that all the G

(1)
i,j (S, T, z) have homogeneous weight 3. This choice

fixes 60 of the ambiguities. We then fix the remaining 24 ambiguities arbitrarily and obtain

G
(1)
2,1(S,T,z)= 1

192
(
111S4−31S3T−31ST 3+111T 4)L+

000(z)

+ 1
192(S

2−T 2)
(
111S2−31ST+111T 2)L−

000(z),

G
(1)
2,2(S,T,z)= 1

192
(
−31S4+192S3T+247S2T 2+192ST 3−31T 4)L+

000(z)+
1
96
(
−58S4

−117S3T−129S2T 2−117ST 3−58T 4)L+
001(z)+

1
192

(
92S4−37S3T−37S2T 2−37ST 3

+92T 4)L+
010(z)+(S2−T 2)

(
−1
192

(
31S2−30ST+31T 2)L−

000(z)+
1
48
(
40S2+51ST

+40T 2)L−
001(z)+

1
96
(
11S2−ST+11T 2)L−

010(z)
)
−23

6
(
S2+T 2)(S+T )2ζ(3), (5.1)

G
(1)
2,3(S,T,z)=(S2−T 2)

(
1
192

(
142S2+61ST+142T 2)L+

000(z)+
1
96
(
58S2+117ST

+58T 2)L+
001(z)−

1
192

(
92S2−37ST+92T 2)L+

010(z)
)
+ 1
192

(
142S4+223S3T+247S2T 2

+223ST 3+142T 4)L−
000(z)+

1
96
(
−80S4−102S3T−129S2T 2−102ST 3−80T 4)L−

001(z)

+ 1
192

(
−22S4+2S3T−37S2T 2+2ST 3−22T 4)L−

010(z)+
23
6 (S2−T 2)(S+T )2ζ(3),

as well as

G
(1)
5,1(S,T,z)= 1

48
(
−S4+63S2T 2−T 4)L+

010(z)+
1
48
(
−5S4+28S3T+5S2T 2+28ST 3

−5T 4)L+
000(z)−

1
8(S+T )4L+

001(z)(S2−T 2)
(
−1
48
(
5S2−28ST+5T 2)L−

000(z)

−1
8(S+T )2L−

001(z)−
1
48(S+T )2L−

010(z)
)
−2
3(S+T )4ζ(3),

G
(1)
5,2(S,T,z)= 1

96
(
S2+ST+T 2)(S2+17ST+T 2)L+

010(z)+
1
96
(
14S4−14S3T

−5S2T 2−14ST 3+14T 4)L+
000(z)+

1
48
(
3S4−2S3T−28S2T 2−2ST 3+3T 4)L+

001(z)

+(S2−T 2)
(

7
48
(
S2−ST+T 2)L−

000(z)+
1
48
(
3S2−8ST+3T 2)L−

001(z) (5.2)

+ 1
96
(
S2+20ST+T 2)L−

010(z)
)
+1
3
(
S2−14ST+T 2)(S+T )2ζ(3),
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G
(1)
5,3(S,T,z)= S2−T 2

48

(
−
(
19S2+27ST+19T 2)L+

000(z)+
(
3S2+4ST+3T 2)L+

001(z)

+1
2
(
S2−18ST+T 2)L+

010(z)
)
+ 1
96
(
−38S4−54S3T+5S2T 2−54ST 3−38T 4)L−

000(z)

+ 1
48
(
3S4−2S3T−20S2T 2−2ST 3+3T 4)L−

001(z)+
1
96
(
S4−16S3T−77S2T 2

−16ST 3+T 4)L−
010(z)+

1
3(S

2−T 2)
(
S2+9ST+T 2)ζ(3).

The same result including all ambiguities can be found in an ancillary Mathematica notebook.

5.1 OPE data

Along with A(1)(S, T ) we can fix the following OPE data. First of all, the leading OPE
coefficients for the even spin, Z-even operators are now determined as

2⟨f (0)
1,δ,ℓ = 3⟨f (0)

2,δ,ℓ = ⟨f (0)
3,δ,ℓ , (5.3)

with ⟨f (0)
3,δ,ℓ as given in (3.14). For the first three odd spin Regge trajectories we find

⟨f (0)τ (2)
1,δ,2δ−1 =

rodd
1 (δ)
8

(
24δ2 − 8δ + 9

)
,

⟨f (0)τ (2)
1,δ,2δ−3 =

rodd
2 (δ)
144

(
144δ5 + 416δ4 − 1530δ3 + 1642δ2 − 1167δ + 306

)
,

⟨f (0)τ (2)
1,δ,2δ−5 =

rodd
3 (δ)
10800

(
1800δ8 + 10640δ7 − 27373δ6 − 120589δ5 + 383786δ4

− 548839δ3 + 543074δ2 − 164055δ − 78750
)

,

(5.4)

and

⟨f (2)
1,δ,2δ−1 = rodd

1 (δ)
384

(
−1792δ3 + 2880δ2 − 1856δ + 915

)
+ 8δ3ζ(3)rodd

1 (δ) ,

⟨f (2)
1,δ,2δ−3 = rodd

2 (δ)
6912

(
− 10752δ6 − 46208δ5 + 190080δ4 − 300046δ3 + 267798δ2

− 90153δ − 810
)
+ 4

3
(
2δ3 + 6δ2 − 17δ + 6

)
δ3ζ(3)rodd

2 (δ) ,

⟨f (2)
1,δ,2δ−5 = rodd

3 (δ)
2592000

(
− 672000δ9 − 6721600δ8 + 13264256δ7 + 78009173δ6 − 249639187δ5

+ 352701158δ4 − 214148773δ3 − 174091950δ2 + 184200975δ + 40020750
)

+ 4
45
(
5δ6 + 29δ5 − 58δ4 − 373δ3 + 722δ2 − 97δ − 210

)
δ3ζ(3)rodd

3 (δ) . (5.5)

In particular we can use that the leading odd spin Regge trajectory is non-degenerate to extract

τ
(2)
1,δ,2δ−1 =

24δ2 − 8δ + 9
32 , (5.6)
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which agrees with the integrability result [23]. For the first three even spin, Z-odd Regge
trajectories we find

⟨f (0)τ (2)
3,δ,2δ−2 =

reven
1 (δ)
16δ

(
24δ2 − 16δ + 13

)
,

⟨f (0)τ (2)
3,δ,2δ−4 =

reven
2 (δ)
144

(
72δ4 + 112δ3 − 421δ2 + 490δ − 435

)
,

⟨f (0)τ (2)
3,δ,2δ−6 =

reven
3 (δ)
21600

(
1800δ7 + 6440δ6 − 13313δ5 − 77327δ4 + 174881δ3 − 291183δ2

+ 260307δ + 127575
)

, (5.7)

and

⟨f (2)
3,δ,2δ−2 = − reven

1 (δ)
768δ

(
1792δ3 − 2880δ2 + 3584δ − 1395

)
+ 4δ2ζ(3)reven

1 (δ) ,

⟨f (2)
3,δ,2δ−4 = reven

2 (δ)
6912

(
− 5376δ5 − 17728δ4 + 54592δ3 − 80647δ2 + 93906δ − 32445

)
+ 4

3
(
δ2 + 2δ − 5

)
δ3ζ(3)reven

2 (δ) ,

⟨f (2)
3,δ,2δ−6 = reven

3 (δ)
5184000

(
− 672000δ8 − 5377600δ7 + 8510656δ6 + 49491829δ5 − 101562397δ4

+ 136928691δ3 − 81944109δ2 − 147586455δ + 19774125
)

+ 2
45
(
5δ5 + 19δ4 − 29δ3 − 253δ2 + 249δ + 189

)
δ3ζ(3)reven

3 (δ) . (5.8)

For the even spin, Z-even operators we can again only fix a combination, so we show here
the result for the leading Regge trajectory and present further results when we can resolve
the coefficients independently in section 6.1

⟨f (0)τ (2)
1,δ,2δ−2+

3
2⟨f

(0)τ (2)
2,δ,2δ−2=

reven
1 (δ)
16δ

(
24δ2−16δ+1

)
,

⟨f (2)
1,δ,2δ−2+

3
2⟨f

(2)
2,δ,2δ−2=− reven

1 (δ)
768δ

(
1792δ3−2880δ2+3584δ−1683

)
+4δ2ζ(3)reven

1 (δ) .

(5.9)

By assuming that there is a unique operator with (δ, ℓ) = (1, 0), we can extract its dimension
and again find a match with integrability [25]

τ
(2)
1,1,0 = τ

(2)
2,1,0 =

9
32 . (5.10)

5.2 Low energy expansion

We can directly compute the worldsheet integral in a low energy expansion around S ∼ T ∼ 0
using the method described in [5, 36]. The upshot is that an integral of the form

IW (S, T ) =
∫

d2z|z|−2S−2|1− z|−2T−2LW (z) , (5.11)

has the low energy expansion

IW (S, T ) = polar +
∞∑

p,q=0
(−S)p(−T )q

∑
W ′∈0p

�1q
�W

(L0W ′(1)− L1W ′(1)) , (5.12)
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where the calculation of the polar terms is detailed in [5] and � is the shuffle product. This
formula proves that terms of degree p+ q in S and T have coefficients which are single-valued
multiple zeta values of weight 1+p+q+ |W |, where |W | is the weight of the SVMPL in (5.11).
Using this, we get the following result for the low energy expansion

A
(1)
2 (S, T ) = S2 + 3ST + T 2

6U2 + 23
3 STUζ(3) + 1

12STU
(
118S2 + 253ST + 118T 2

)
ζ(5)

+ 1
3S2T 2

(
6S2 + 77ST + 6T 2

)
ζ(3)2 + 1

8STU
(
80S4 + 412S3T + 27S2T 2

+ 412ST 3 + 80T 4)ζ(7) + . . . ,

A
(1)
5 (S, T ) = − 3S2 + 7ST + 3T 2

12ST
− 1

6U
(
41S2 + 105ST + 41T 2

)
ζ(3) (5.13)

− 1
12U

(
194S4 + 671S3T + 910S2T 2 + 671ST 3 + 194T 4

)
ζ(5)

− 1
6STU2

(
181S2 + 359ST + 181T 2

)
ζ(3)2 − 1

16U
(
472S6 + 2080S5T

+ 4793S4T 2 + 6394S3T 3 + 4793S2T 4 + 2080ST 5 + 472T 6)ζ(7) + . . . .

For each of the two results, the leading term originates from supergravity and we used the
subleading terms in the supergravity amplitude (2.10) to fix a few of the coefficients of
the worldsheet ansatz. All other terms in (5.13) are predictions for parts of the derivative
interactions in the low energy effective action. We can immediately compare the terms ∼ ζ(3)
in (5.13) to the subleading terms in the R4 interaction (2.12) and see that they match perfectly.

Once we have fixed the second curvature correction, we will also use the terms ∼ ζ(5)
to fully fix the D4R4 interaction in section 6.2.

5.3 High energy limit

We can also compare our results in the fixed-angle high energy limit |S|, |T | ≫ 1 with
S/T fixed to the classical scattering computation of [24]. We start by noting that the flat
space amplitude (1.5) is

A(0)(S, T ) =
(

TU

S
,
ST

U
,
SU

T
,
S

2 ,
U

2 ,
T

2

)
STU

U2

∫
d2z|z|−2S−2|1− z|−2T−2 . (5.14)

The high energy limit is dominated by the saddle point z = S
S+T where the integral becomes

A
(0)
HE(S, T ) ∝

(
TU

S
,
ST

U
,
SU

T
,
S

2 ,
U

2 ,
T

2

)
STU

U2 e−2S log |S|−2T log |T |−2U log |U | . (5.15)

The high energy limit of the curvature corrections can be obtained in the same way, by
evaluating the integral (4.7) at the saddle point. In this case we find

A
(1)
HE(S, T ) = A

(0)
HE(S, T )S2W3(z0) , (5.16)

where z0 = S
S+T and

W3(z0) = L000 (z0)− L001 (z0)−
1
z0

L010 (z0)−
(z0 − 1) 2

z20
L011 (z0)

+ (z0 − 1)
z20

L101 (z0) +
(z0 − 1) 2

z20
L111 (z0) + 2ζ(3) .

(5.17)
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This is compatible with the main result of [24], which says that in the limit of large S, T

and R with S/T and S/R fixed, the amplitude is given by

AHE(S, T ) = A
(0)
HE(S, T )e−

α′
R2 (S(1)+2SF2(z0)S(0)) , (5.18)

where S(0) and S(1) are the leading and subleading contributions of the action evaluated on the
classical solution for the scattering problem in AdS. They are of weight 1 and 3 respectively.
F2(z0) is a function of weight 2 that could not be fixed by the classical computation. By
comparing W3(z0) to the expressions for S(0) and S(1) in [24]

S2W3(z0) = −S(1) − 2SF2(z0)S(0) , (5.19)

we see that

F2(z0) =
1
4

(
−L00 (z0) +

2
z0

L01 (z0) +
z0 − 1

z0
L11 (z0)

)
, (5.20)

which is exactly the same as obtained from the AdS Virasoro-Shapiro amplitude in AdS5×S5

and AdS3 × S3 × M4.

6 Second curvature correction

For k = 2 the ansatz (4.10) has 1692 parameters. We are not quite able to fix all these
parameters, so we make the further assumption that the ansatz has uniform weight, i.e. we only
include the terms with w = 6 in (4.10). As we will see, this will allow us to fix all parameters
and several non-trivial checks give us confidence that it is the right ansatz. The uniform
weight ansatz still has 950 parameters and 192 ambiguities. Of the remaining 758 parameters,
749 are fixed by matching the poles with the OPE and the supergravity terms (2.10).

To fix the remaining parameters, we impose that the leading odd and even Regge
trajectories are non-degenerate, i.e.

⟨f (0)(τ (2))2 1,δ,2δ−1 =
⟨f (0)τ (2) 2

1,δ,2δ−1
⟨f (0) 1,δ,2δ−1

,

⟨f (0)(τ (2))2 3,δ,2δ−2 =
⟨f (0)τ (2) 2

3,δ,2δ−2
⟨f (0) 3,δ,2δ−2

,

⟨f (0)(τ (2))2 1,δ,2δ−2 +
3
2⟨f

(0)(τ (2))2 2,δ,2δ−2 =
⟨f (0)τ (2) 2

1,δ,2δ−2
⟨f (0) 1,δ,2δ−2

+ 3
2
⟨f (0)τ (2) 2

2,δ,2δ−2
⟨f (0) 2,δ,2δ−2

.

(6.1)

This fixes 6 parameters. Next we insert the dimension of the first operator on the leading
odd spin Regge trajectory from [23]

τ
(4)
1,1,1 =

271
2048 − 9

8ζ(3) , (6.2)

which fixes 2 parameters. Finally, we find for the contribution of A(2)(S, T ) to the R4

interaction

A
(2),R4
2 (S, T ) = ζ(3)

18
(
80S2 + (221 + 2c(2))ST + 80T 2

)
,

A
(2),R4
5 (S, T ) = ζ(3)

9
(
(133 + c(2))S2 + (286 + 2c(2))ST + (133 + c(2))T 2

)
,

(6.3)

and comparing to (2.12) we fix the final coefficient c(2) to zero.
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With all parameters fixed, the worldsheet integrand for the second curvature correction
is still quite lengthy and depends on ambiguities, so we only provide it in the attached
Mathematica file.

6.1 OPE data

For the OPE data extracted from the second curvature correction, we mostly present the data
for the leading Regge trajectories with ℓ = 2δ − 1 and ℓ = 2δ − 2, and include all data for the
subleading Regge trajectories ℓ = 2δ−3 and ℓ = 2δ−4 in the attached Mathematica notebook.

With the second curvature correction fixed, we can resolve the OPE data for the even
spin, Z-even operators that was previously only partially fixed in (5.9)

2⟨f (0)τ (2)
1,δ,2δ−2 = 3⟨f (0)τ (2)

2,δ,2δ−2 =
reven
1 (δ)
16δ

(
24δ2 − 16δ + 1

)
,

2⟨f (0)τ (2)
1,δ,2δ−4 = 3⟨f (0)τ (2)

2,δ,2δ−4 =
reven
2 (δ)
144

(
72δ4 + 112δ3 − 457δ2 + 418δ − 255

)
,

2⟨f (0)τ (2)
1,δ,2δ−6 = 3⟨f (0)τ (2)

2,δ,2δ−6 =
reven
3 (δ)
21600

(
1800δ7 + 6440δ6 − 14213δ5 − 80747δ4

+ 180101δ3 − 245643δ2 + 215487δ + 93555
)

, (6.4)

and

2⟨f (2)
1,δ,2δ−2 =

reven
1 (δ)
768δ

(
− 1792δ3 + 2880δ2 − 3584δ + 3699

)
+ 4δ2ζ(3)reven

1 (δ) ,

2⟨f (2)
1,δ,2δ−4 =

reven
2 (δ)
6912

(
− 5376δ5 − 17728δ4 + 54592δ3 − 73735δ2 + 107730δ − 67005

)
+ 4

3
(
δ5 + 2δ4 − 5δ3

)
ζ(3)reven

2 (δ) ,

3⟨f (2)
2,δ,2δ−2 =

reven
1 (δ)
768δ

(
− 1792δ3 + 2880δ2 − 3584δ − 333

)
+ 4δ2ζ(3)reven

1 (δ) ,

3⟨f (2)
2,δ,2δ−4 =

reven
2 (δ)
6912

(
− 5376δ5 − 17728δ4 + 54592δ3 − 85831δ2 + 83538δ − 6525

)
+ 4

3
(
δ5 + 2δ4 − 5δ3

)
ζ(3)reven

2 (δ) . (6.5)

We also obtain for the leading odd spin Regge trajectory

⟨f (0)(τ (2))2 1,δ,2δ−1 =
rodd
1 (δ)
256

(
576δ4 − 384δ3 + 496δ2 − 144δ + 81

)
,

⟨f (0)τ (4) + f (2)τ (2)
1,δ,2δ−1 =

rodd
1 (δ)
12288

(
− 43008δ5 + 51200δ4 − 59136δ3 + 75400δ2

− 20568δ + 6291
)
+ 1

4
(
24δ5 − 8δ4 − 9δ3

)
ζ(3)rodd

1 (δ) ,

(6.6)

as well as

⟨f (4)
1,δ,2δ−1 =

( 1
5898240

(
16056320δ6 + 26247168δ5 − 56258560δ4 − 13570560δ3

+ 49159040δ2 − 137088δ + 886095
)
+ 1

192
(
− 1792δ6 + 576δ5

− 3392δ4 − 3165δ3
)
ζ(3)− 12δ5ζ(5) + 8δ6ζ(3)2

)
rodd
1 (δ) .

(6.7)
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From (6.6) we can extract the correction to the conformal dimensions

τ
(4)
1,δ,2δ−1 =

1
2048

(
− 1344δ4 + 1024δ3 + 528δ2 + 144δ − 81

)
− 9δ3

8 ζ(3) , (6.8)

which agrees with the integrability result of [23].
For the leading even spin, Z-odd trajectory we have

⟨f (0)(τ (2))2 3,δ,2δ−2 =
reven
1 (δ)
512δ

(
576δ4 − 768δ3 + 880δ2 − 416δ + 169

)
, (6.9)

⟨f (0)τ (4) + f (2)τ (2)
3,δ,2δ−2 =

reven
1 (δ)
24576δ

(
− 43008δ5 + 65536δ4 − 118528δ3 + 134792δ2

− 61232δ + 14079
)
+ 1

8
(
24δ2 − 16δ − 5

)
δ2ζ(3)reven

1 (δ) ,

and

⟨f (4)
3,δ,2δ−2 =

( 1
11796480δ

(
16056320δ6 + 26247168δ5 − 39055360δ4 − 46625280δ3

+ 104577920δ2 − 77058048δ + 14712975
)
− 1

384
(
1792δ3 − 576δ2 + 4352δ

+ 3069
)
δ2ζ(3)− 6δ4ζ(5) + 4δ5ζ(3)2

)
reven
1 (δ) . (6.10)

Finally, for the leading even spin, Z-even trajectory we find

2⟨f (0)(τ (2))2 1,δ,2δ−2 + 3⟨f (0)(τ (2))2 2,δ,2δ−2 =
reven
1 (δ)
256δ

(
576δ4 − 768δ3 + 304δ2 − 32δ + 1

)
,

2⟨f (0)τ (4) + f (2)τ (2)
1,δ,2δ−2 + 3⟨f (0)τ (4) + f (2)τ (2)

2,δ,2δ−2 =
reven
1 (δ)
12288δ

(
− 43008δ5 (6.11)

+ 65536δ4 − 97024δ3 + 93320δ2 − 29744δ + 1659
)
+ 1

4
(
24δ2 − 16δ − 17

)
δ2ζ(3)reven

1 (δ) ,

and

2⟨f (4)
1,δ,2δ−2 + 3⟨f (4)

2,δ,2δ−2 =
( 1
5898240δ

(
16056320δ6 + 26247168δ5 − 39055360δ4

− 41464320δ3 + 107342720δ2 − 129773568δ + 71434575
)
− 1

192
(
1792δ3 − 576δ2 + 4352δ

+ 3357
)
δ2ζ(3)− 12δ4ζ(5) + 8δ5ζ(3)2

)
reven
1 (δ) . (6.12)

Assuming uniqueness of the operator with (δ, ℓ) = (1, 0), we can extract its subleading
correction to the dimension from (6.11)

τ
(4)
1,1,0 = τ

(4)
2,1,0 = − 81

2048 − 9
8ζ(3) , (6.13)

and this matches with the result for the L = 1, S = 1 operator from [25].
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6.2 Low energy expansion and D4R4

We compute the low energy expansion of A(2)(S, T ) and find

A
(2)
2 (S, T ) = − 2S2 − 13ST + 2T 2

36U3 + 1
18
(
80S2 + 221ST + 80T 2

)
ζ(3)

+ 1
8
(
74S4 + 427S3T + 1008S2T 2 + 427ST 3 + 74T 4

)
ζ(5)

− 1
12STU

(
342S2 + 605ST + 342T 2

)
ζ(3)2 + 1

192
(
2080S6 + 15984S5T

+ 76386S4T 2 − 16463S3T 3 + 76386S2T 4 + 15984ST 5 + 2080T 6)ζ(7) + . . .

A
(2)
5 (S, T ) = U

(
2S2 − ST + 2T 2)

24S2T 2 + 1
9
(
133S2 + 286ST + 133T 2

)
ζ(3) (6.14)

+ 1
16
(
1918S4 + 7979S3T + 12078S2T 2 + 7979ST 3 + 1918T 4

)
ζ(5)

+ 1
36U

(
6290S4 + 26025S3T + 39218S2T 2 + 26025ST 3 + 6290T 4

)
ζ(3)2

+ 1
384

(
177952S6 + 1319955S5T + 3587403S4T 2 + 4889968S3T 3

+ 3587403S2T 4 + 1319955ST 5 + 177952T 6)ζ(7) + . . . .

As we have already matched the first two terms to (2.10) and (2.12) when we fixed our
ansatz, the new predictions start with the ζ(5) term. Recall from (2.8) that there are 8
polynomial Mellin amplitudes that can contribute to the D4R4 interaction. We can find
the coefficients b6,j , b5,j and b4,j of these polynomials by computing the corresponding AdS
amplitude using (1.2) and comparing with the ζ(5) terms in the low energy expansions of
A(0)(S, T ) (1.5), A(1)(S, T ) (5.13) and A(2)(S, T ) (6.14), giving

b6,1 =
6147225ζ(5)

2116 , b6,2 =−6054615ζ(5)
1058 , b6,3 =

5869395ζ(5)
1058 , (6.15)

b5,1 =−4201155ζ(5)
1088 , b5,2 =−1869525ζ(5)

1088 , b4,1 =−87255ζ(5)
128 , b4,2 =

6070365ζ(5)
8704 .

We also have two localization constraints, as reviewed in appendix D, that take the form

b2 = −1228b4,2
119 − 22347b5,1

37030 − 26548b5,2
18515 + 21937b6,1

21560 − 5941b6,2
258720 − 1811b6,3

2940 , (6.16)

b4,1 = −16b4,2
17 − 1651b5,1

12696 + 808b5,2
1587 − 955b6,1

7392 + 27355b6,2
88704 + 2567b6,3

5544 . (6.17)

We can use the first localization constraint to fix

b2 =
25021017ζ(5)

2176 . (6.18)

The second localization constraint is also satisfied with this solution, providing a non-trivial
consistency check on (6.14).
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6.3 High energy limit

As discussed in section 5.3, the high energy limit is fixed by (5.18) to all orders in S/R. The
high energy limit of the second curvature correction should be given by

A
(2)
HE(S, T ) = A

(0)
HE(S, T ) 12

(
S2W3(z0)

)2
, (6.19)

and this indeed matches with our result.

7 Conclusions

In this paper we computed the first two curvature corrections to the AdS Virasoro-Shapiro
amplitude in AdS4 × CP3 by combining a Borel transform of the superblock expansion, with
a worldsheet ansatz in terms of SVMPLs. The first correction was completely fixed by this,
and satisfied consistency checks against the high energy limit, the leading odd spin Regge
trajectory from integrability, and the R4 correction at finite AdS curvature as computed from
analytic bootstrap combined with localization. Our ansatz also fixed the second curvature
correction, after using additional inputs from integrability and localization, and also satisfied
several consistency checks.

Our result gives predictions for an infinite set of CFT data of massive string operators
that can be used to guide future integrability studies.9 For instance, we predict the dimensions
of operators on the leading Z-odd Regge trajectory, which have not yet been determined
from integrability. We also compute the OPE coefficients of these leading Regge trajectories
for the first time, which could be compared against future studies combining integrability
with numerical bootstrap, as recently done in the AdS5 × S5 case [47, 48].

For subleading Regge trajectories we can only provide averaged OPE data and it would
be interesting to unmix part of this data by combining it with integrability, as done in [49, 50]
for the case of AdS5×S5. This could lead to a better understanding of the recently described
Regge bridges in ABJM theory [51], which are spin reflected Regge trajectories that intersect
with other Regge trajectories. These Regge bridges have also been observed in [50], where the
OPE data on subleading Regge trajectories from the AdS5 × S5 Virasoro-Shapiro amplitude
was unmixed.

One curious result from our study is that the high energy limit does not only match
the classical computation of [24], but that also the subleading piece in (5.20) that is not
determined by the classical computation is precisely the same as in the case of AdS5 × S5

and AdS3 × S3 × M4. It would be interesting to understand why this is the case, and if this
should hold more generally in other spacetime dimensions. The fact that our approach works
at all is also further evidence that the Borel transform is the natural definition of the AdS
amplitude. It would be interesting to justify this more rigorously.

Lastly, in this work we computed the D4R4 correction at finite AdS curvature for the
first time, but only at genus zero, unlike the R4 term which was computed exactly (i.e.
including the genus one correction) in [21]. Like the R4 correction, the D4R4 correction

9The Quantum Spectral Curve, a state-of-the-art integrability method for computing spectra, see e.g. [37, 38]
for reviews, is already well-established for ABJM theory [25, 39–43]. In addition, there are some recent advances
in the study of three-point functions [44–46] by using integrability methods.
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is also protected and only receives finite genus corrections (up to genus two in this case),
so one might wonder if it should also be possible to compute it exactly. From the finite
AdS curvature analytic bootstrap perspective [21], there are 8 coefficients one must fix.
Three can be fixed from the known flat space limit, and two more from the localization
constraints derived in [21, 52]. This leaves three more coefficients, that could perhaps be
fixed from new integrated constraints coming from the squashed sphere or derivatives of
the third mass.10 The localization expression for the squashed sphere integrated constraint
is already known from [54, 55], but it is still necessary to derive the third mass derivative
expression in the type IIA limit.
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A Polynomial Mellin amplitudes

In this appendix, we discuss how to compute the basis of polynomial Mellin amplitudes
written in (2.8), which are fixed entirely by superconformal symmetry. The degree 2 and
4 Mellin amplitudes were originally computed in [21] by imposing crossing symmetry and
various superconformal Ward identities. Unlike the case of correlators of half-BPS multiplets
considered in [18], the polynomials are not fixed by just imposing the superconformal Ward
identity for the bottom component correlator. Instead, one in principle needs Ward identities
for correlators of all the operators in the multiplet. For M2 and M4, it turns out that
the subset of Ward identities derived in [21] are sufficient, but they are not for the higher
degree polynomials we now consider.

Instead, we will fix these polynomials by demanding that they have an expansion in
superconformal blocks, which encodes all the constraints of superconformal symmetry. In
particular, we start with the most generic degree 6 polynomial that is crossing symmetric
and satisfies the Ward identities of [21]

M6
2 = (s−2)(t−2)

(
− x1,0,2

64 s2t2− x1,2,0
16

(
s2+s(3t−10)+(t−10)t+28

)
(s+ t−4)2

− x1,0,1
256 st

(
7s2+s(19t−68)+ t(7t−68)+176

)
− x1,1,0

32
(
s3+s2(5t−14)+s(t(5t−38)+68)+(t−6)((t−8)t+20)

)
(s+ t−4)

− x1,0,0
64

(
s4+s3(7t−18)+s2(t(13t−82)+124)+s(t(t(7t−82)+316)−392)

+ t(t((t−18)t+124)−392)+496
)
− x1,4,0

4 (s+ t−4)4− x1,3,0
8 (s+ t−6)(s+ t−4)3

− x1,2,1
16 st(s+ t−4)2− x1,1,1

64 st(3s+3t−16)(s+ t−4)
)

, (A.1)

10There are three mass deformations in ABJM theory, but only quartic derivatives of two of those masses
have been computed in the type IIA limit [21, 53].
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where here we show just the second component. There are a total of 13 unknown coefficients,
given by:

x1,0,0, x1,0,1, x1,0,2, x1,1,0, x1,1,1, x1,2,0, x1,2,1, x1,3,0, x1,4,0, x4,0,0, x4,0,1, x4,0,2, x4,1,0. (A.2)

This is 5 more than the 8 unknowns expected from the flat space counting in table 3 of [21].
To expand in superblocks, we then convert the polynomial Mellin amplitude into D-

functions

Dr1,r2,r3,r4(U,V )≡
∫

ds

2πi

dt

2πi
U

s
2 V

t
2Γ
(
−s

2

)
Γ
(
− t

2

)
Γ
(1
2(−r1−r2+r3+r4)−

s

2

)
×Γ

(1
2(r1−r2−r3+r4)−

t

2

)
Γ
(

s+t

2 +r2

)
Γ
(

s+t

2 +1
2(r1+r2+r3−r4)

)
,

(A.3)

as discussed in appendix A of [21].
The next step is to verify the expansion of the position space Mellin amplitude in terms

of the N = 6 superconformal blocks. The superconformal blocks appearing in the stress
tensor four-point function includes both short and long blocks. In this analysis, we will
focus exclusively on the part of the expansion involving the long blocks, as they are the
least constrained by superconformal symmetry.

In practice, we focus on the logU term in the expansion of the long blocks. This term
is proportional to the tree-level OPE coefficient of the exchanged operator multiplied by
its anomalous dimension, as discussed in [56]. Since this logU term is absent in the short
blocks, it allows us to isolate the contribution of the long blocks.

To extract the logU term, it is convenient to work in the lightcone limit U → 0. In this
limit, the conformal block11 can be expanded as a power series in U

g∆,ℓ(U, V ) =
∞∑

n=0
U

∆−ℓ
2 +ng

[n]
∆,ℓ(1− V ), (A.4)

where the lightcone block g
[n]
∆,ℓ(1 − V ) is expressed as a double summation [57]. Since

g
[n]
∆,ℓ(1 − V ) is independent of U , the logU term can only arise from the expansion of the

anomalous dimension ∆ in the exponent U
∆−ℓ

2 +n around its generalised free theory value.
On the other hand, the expansion of the D-functions is also known and is given by [58]

Dr1,r2,r3,r4(U,V )
∣∣∣∣
logU

=−e
1
2 iπ(r1+r2−r3−r4)

∞∑
m,n=0

Um(1−V )n (A.5)

×
Γ(r1+m)Γ(r2+m+n)Γ

(
1
2 (r1+r2−r3+r4)+m

)
Γ
(

1
2 (r1+r2+r3−r4)+m+n

)
Γ(m+1)Γ(n+1)Γ(r1+r2+2m+n)Γ

(
1
2 (r1+r2−r3−r4+2)+m

) .

Using this expression, we can straightforwardly expand the position-space Mellin amplitude.
By comparing the position-space expansion with the N = 6 superconformal block expansion

11Recall that the superconformal block can be expressed as a linear combination of bosonic conformal blocks
g∆,ℓ(U, V ) with specific prefactors and shifted weights, see (3.2).
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in the small-U region, and by matching sufficiently many terms, we find the following five
constraints on the coefficients:

x1,4,0 =
149
280x1,0,0 −

169
210x1,0,2 +

263
105x1,1,0 +

1489
840 x1,1,1 +

93
140x1,2,0 +

17
10x1,2,1

− 89
35x1,3,0 −

1607
3360x1,0,1,

x4,0,0 = −242602x1,0,0
8085 + 3124981x1,0,1

97020 + 232810x1,0,2
4851 − 35132

385 x1,2,1 +
26136
245 x1,3,0

− 461936x1,2,0
8085 − 3550322x1,1,0

24255 − 2293169x1,1,1
24255 ,

x4,0,1 = −21179x1,0,0
2695 + 213137x1,0,1

32340 + 75706x1,0,2
8085 − 7268

385 x1,2,1 +
4192
245 x1,3,0

− 41196x1,2,0
2695 − 276004x1,1,0

8085 − 160429x1,1,1
8085 ,

x4,0,2 =
300871x1,0,0

10780 + 317033x1,1,0
2695 + 831727x1,1,1

10780 + 121431x1,2,0
2695 + 28473

385 x1,2,1

− 19472
245 x1,3,0 −

185359x1,0,2
5390 − 871771x1,0,1

43120 ,

x4,1,0 =
146317x1,0,0

1617 + 4181791x1,1,0
9702 + 27275167x1,1,1

97020 + 1333642x1,2,0
8085

+ 104201
385 x1,2,1 −

76626
245 x1,3,0 −

3342523x1,0,2
24255 − 6987613x1,0,1

77616 .

(A.6)

After imposing these five constraints, our M6 amplitude now depends on only eight unknowns:

x1,0,0, x1,0,1, x1,0,2, x1,1,0, x1,1,1, x1,2,0, x1,2,1, x1,3,0. (A.7)

These unknowns correspond to the polynomials of various degrees:

• 3 polynomials of degree 6,

• 2 polynomials of degree 5,

• 2 polynomials of degree 4,

• 1 polynomial of degree 2.

This matches the solutions listed in table 3 of [21]. Note that the f3 terms have one less
degree than indicated in the table, as they vanish in the flat-space limit. For instance, the
degree-7 f3 term in the table corresponds to a degree-6 polynomial in our case.

In the main text, we will use the i = 2, 5 components for all possible polynomials of each
degree up to 6. Denoting these polynomials by M

degree,k
i , where the lower index i labels the

R-symmetry basis and the superscript k labels the independent polynomials, we find12

12Recall that s + t + u = 4.
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• Degree 6:

M6,1
2 = − (s−2)(t−2)

26880
(
26916s2t2+17244(s3t+st3)+3996(s4+ t4)

−64776(s3+ t3)−206088(s2t+st2)+395376(s2+ t2)+819312st

−1080096(s+ t)+1123776
)
,

M6,1
5 = − (s+ t−2)

517440
(
76923(s5+ t5)+265188(s4t+st4)+344190(s3t2+s2t3)

−2305422s2t2−1591338(s3t+st3)−514878(s4+ t4)
+1519686(s3+ t3)+4773258(s2t+st2)−2820588(s2+ t2)−5837136st

+2496192(s+ t)−1312384
)
,

M6,2
2 = (s−2)(t−2)

26880
(
17289s2t2+12121(s3t+st3)+3214(s4+ t4)

−51424(s3+ t3)−147132(s2t+st2)+308544(s2+ t2)+598608st

−822784(s+ t)+822784
)
,

M6,2
5 = (s+ t−2)

3104640
(
1484868(s5+ t5)+5318313(s4t+st4)+8249010(s3t2+s2t3)

−43506792s2t2−27746208(s3t+st3)−9032898(s4+ t4)
+26161296(s3+ t3)+79787568(s2t+st2)−54349488(s2+ t2)−103063536st

+49854192(s+ t)−12232064
)
,

M6,3
2 = (s−2)(t−2)

(
5408(s+ t−4)4−420s2t2

)
26880 ,

M6,3
5 = (s+ t−2)

12418560
(
624624(s5+ t5)+2210439(s4t+st4)+3220140(s3t2+s2t3)

−18362736s2t2−12124224(s3t+st3)−3921414(s4+ t4)
+11104968(s3+ t3)+34792044(s2t+st2)−21347064(s2+ t2)−43540128st

+18773184(s+ t)−5491456
)
,

(A.8)

• Degree 5:

M5,1
2 = − 1

8464(s − 2)(t − 2)
(
232(s3 + t3) + 639(s2t + st2)− 3248(s2 + t2)− 6390st

+ 15776(s + t)− 32072
)
,

M5,1
5 = − 1

296240(s + t − 2)
(
20370s2t2 + 6125(s3t + st3)− 36960(s3 + t3)

− 129710(s2t + st2) + 163180(s2 + t2) + 234120st − 408864(s + t) + 721152
)
,

M5,2
2 = 1

4232(s − 2)(t − 2)
(
607(s3 + t3) + 1323(s2t + st2)− 8498(s2 + t2)− 14288st

+ 39160(s + t)− 60144
)
,
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M5,2
5 = 1

888720(s + t − 2)
(
173250s2t2 + 22890(s3t + st3)− 645330(s3 + t3)

− 1642620(s2t + st2) + 3071400(s2 + t2) + 3649560st − 3692760(s + t)

+ 1796800
)

. (A.9)

• Degree 4:

M4,1
2 = 1

35(s − 2)(t − 2) (35st − 100s − 100t + 288) ,

M4,1
5 = 1

70(s + t − 2)
(
224− 324(s + t) + (90s2 + 140st + 90t2) + 35(s2t + st2)

)
,

M4,2
2 = 1

34(s − 2)(t − 2)(17s2 + 49st − 174s + 17t2 − 174t + 756),

M4,2
5 = 1

510(s + t − 2)
(
255(s3 + t3) + 750(s2t + st2)− 840(s2 + t2)− 1080st

+ 6072(s + t)− 15296
)

.

(A.10)

• Degree 2:
M2,1

2 = (s − 2)(t − 2), M2,1
5 =

(
u − 4

3

)
(u − 2) . (A.11)

The degree-two polynomials and the first degree-four polynomials were already given in (2.11).
All polynomials can also be found in the Mathematica file.

B OPE poles of the AdS amplitude

In this appendix we apply the Borel transform (1.2) to the Mellin amplitude corresponding
to a bosonic conformal block

Mτ,ℓ(s, t) =
∞∑

m=0

Qτ,ℓ,m(t − 2)
s − τ − 2m

, (B.1)

where the numerators are Mack polynomials

Qτ,ℓ,m(t) =
Γ(ℓ + 1

2)
4τ+ℓ

√
πΓ(ℓ + 1)K(1, τ, ℓ, m, 3)Qτ,d=3

ℓ,m (t) , (B.2)

with Qτ,d
ℓ,m(t) as in [3] and

K(∆, τ, ℓ, m, d) = − 2(ℓ + τ − 1)ℓΓ(2ℓ + τ)
2ℓΓ

(
ℓ + τ

2 )
)4 Γ(m + 1)Γ

(
∆− τ

2 − m
)2 (

ℓ + τ − d
2 + 1

)
m

. (B.3)

The transform (1.2) of (B.1) is (where β ≡ 4/3 is the shift introduced in (1.2))

Aτ,ℓ(S, T ) =
√

π

4
√

ν

∫ κ+i∞

κ−i∞

dα

2πi
eαα− 1

2

∞∑
m=0

Qτ,ℓ,m(2
√

νT
α + 2− 2β)

2
√

νS
α + β − τ − 2m

. (B.4)
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We exchange the integral and summation and for each m pick the pole at

α = α∗ ≡
2
√

νS

τ + 2m − β
. (B.5)

We ignore any other poles in α, as we are only interested in S-channel poles. Next we have
to sum over m. The Mack polynomial for large τ has its maximum at m ∼ τ2, so we replace
the sum over m = xτ2 by an integral over x

Aτ,ℓ(S, T )
∣∣∣
S-poles

= −
√

π

4
√

ν

τ2

2
√

νS

∫ ∞

0
dx eα∗α

3
2∗Qτ,ℓ,xτ2

(
2
√

νT

α∗
+ 2− 2β

)
. (B.6)

We can now expand the integrand at large ν, using that τ ∼ ν1/4. The answer has the form

−
√

π

4
√

ν

τ2

2
√

νS
eα∗α

3
2∗Qτ,ℓ,xτ2

(
2
√

νT

α∗
+ 2− 2β

)
= e−

1
4x

+
√

νS

τ2x

x2

∞∑
i=0

1
ν

5
8+

i
4

P (i)
(
1
x

)
, (B.7)

where P (i)
(
1
x

)
are polynomials in 1

x with increasing degree (which also depend on τ, ℓ, S, T, ν).
We can now do the integrals in x using

∫ ∞

0
dx

e−
1

4x
+

√
νS

τ2x

x2 = −
τ2
√

ν

S − τ2

4
√

ν

= − 4δ

S − δ
+ O

(
ν− 1

4
)

. (B.8)

The effect of the polynomials P (i)
(
1
x

)
is that each additional power of 1

x increases the order
of the pole by one, as 1

x can be replaced by τ2
√

ν
∂S acting on both sides of (B.8). Next we

do the x integral and get the formula (3.7) used in the main text.

C Basis of single-valued multiple polylogarithms

Below we specify the basis of SVMPLs used in the ansatz (4.10)

T+
0 (z) = (1) , T+

1 (z) =
(
L+
0 (z)

)
, T−

1 (z) =
(
L−
0 (z)

)
,

T+
2 (z) =

(
L+
00(z),L+

01(z)
)

, T−
2 (z) =

(
L−
00(z)

)
,

T+
3 (z) =

(
L+
000(z),L+

001(z),L+
010(z), ζ(3)

)
,

T−
3 (z) =

(
L−
000(z),L−

001(z),L−
010(z)

)
,

T+
4 (z) =

(
L+
0000(z),L+

0001(z),L+
0010(z),L+

0011(z),L+
0101(z),L+

0110(z), ζ(3)L+
0 (z)

)
,

T−
4 (z) =

(
L−
0000(z),L−

0001(z),L−
0010(z),L−

0110(z), ζ(3)L−
0 (z)

)
,

T+
5 (z) =

(
L+
00000(z),L+

00001(z),L+
00010(z),L+

00011(z),L+
00100(z),L+

00101(z),

L+
00110(z),L+

01001(z),L+
01010(z),L+

01110(z), ζ(3)L+
00(z), ζ(3)L+

01(z), ζ(5)
)
, (C.1)

T−
5 (z) =

(
L−
00000(z),L−

00001(z),L−
00010(z),L−

00011(z),L−
00100(z),L−

00101(z),

L−
00110(z),L−

01001(z),L−
01010(z),L−

01110(z), ζ(3)L−
00(z)

)
,
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T+
6 (z) =

(
L+
000000(z),L+

000001(z),L+
000010(z),L+

000011(z),L+
000100(z),L+

000101(z),L+
000110(z),

L+
000111(z),L+

001001(z),L+
001010(z),L+

001011(z),L+
001100(z),L+

001101(z),L+
001110(z),

L+
010001(z),L+

010010(z),L+
010101(z),L+

010110(z),L+
011001(z),L+

011110(z),

ζ(3)L+
000(z), ζ(3)L+

001(z), ζ(3)L+
010(z), ζ(5)L+

0 (z), ζ(3)2
)
,

T−
6 (z) =

(
L−
000000(z),L−

000001(z),L−
000010(z),L−

000011(z),L−
000100(z),L−

000101(z),L−
000110(z),

L−
001001(z),L−

001010(z),L−
001100(z),L−

001101(z),L−
001110(z),L−

010001(z),L−
010010(z),

L−
010110(z),L−

011110(z), ζ(3)L−
000(z), ζ(3)L−

001(z), ζ(3)L−
010(z), ζ(5)L−

0 (z)
)
.

D Localization constraints

In this appendix we will discuss how the localization constraints of [21, 52] can be used to
constrain the D4R4 term in the low energy expansion. The two localization constraints are

1
c2T

∂ logZ

∂m4
+

= π4

213 (2λ2
2,0,84 − 4) ,

1
c2T

∂ logZ

∂m2
+∂m2

−
= π2

211 I+−[Si].
(D.1)

where the second constraint is given by the integral of the Mellin amplitude:

I+−[Si] =
∫

ds dt

(4πi)2
2
√

π

(2− t)(s + t − 2)M1(s, t)

× Γ
[
1− s

2

]
Γ
[

s + 1
2

]
Γ
[
1− t

2

]
Γ
[

t − 1
2

]
Γ
[

s + t − 2
2

]
Γ
[3− s − t

2

]
.

(D.2)

The OPE coefficient λ2
2,0,84 can be extracted by converting Mellin amplitudes to position

space as described in appendix A, and then expanding for the lowest twist 2 block in the
84 irrep of the R-symmetry.

The l.h.s. of these constraints were computed using localization in [21, 53] using the
Fermi gas formalism developed originally in [59], and at large cT and large ν take the form

1
c2T

∂4 logZ

∂m4
±

=
[
3π2

64 + 9ζ(3)π2

256
1

ν
3
2
+ 27ζ(3)2π2

1024
1
ν3 + O(ν− 9

2 )
]

1
cT

+ O(c−2
T ) ,

1
c2T

∂4 logZ

∂m2
+∂m2

−
=
[
−π2

64 − 3ζ(3)π2

256
1

ν
3
2
− 9ζ(3)2π2

1024
1
ν3 + O(ν− 9

2 )
]

1
cT

+ O(c−2
T ) .

(D.3)

In particular, they do not contain a ν−5/2 term corresponding to D4R4. We can then impose
these two constraints on the eight coefficients appearing in the ν−5/2 term in (2.8) to get
the constraints (6.16) and (6.17).

Data Availability Statement. This article has data included as electronic supplementary
material.

Code Availability Statement. This article has code included as electronic supplementary
material.
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