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Abstract

In this thesis, we explore several aspects of compactification and holography in open
and closed string theories. We begin by reviewing the necessary background, tools
and motivation for studying brane-worlds and noncommutative open string theory.
We then give a short review of a large class of warped string geometries obtained
via F-theory compactified on Calabi-Yau fourfolds. These theories upon reduction
to 5 dimensions give consistent supersymmetric realizations of the Randall-Sundrum
compactification scenario for brane-worlds. We also show how the AdS/CFT corre-
spondence can be applied within the context of warped compactification to give a
new perspective on the physics of gravitational collapse. Next, we construct chiral
N =1 gauge theories in 4D by compactifying the 6D Blum-Intriligator (1,0) theo-
ries of 5-branes at A, singularities on T2 with a nontrivial bundle of the global U(1)
symmetry of these theories. We end by investigating the complete phase diagram
of the decoupled world-sheet theory of (P, Q) strings. These theories include 1+1
dimensional super Yang-Mills theory and non-commutative open string theory. We
find that the system exhibits a rich fractal phase structure, including a cascade of

alternating supergravity, gauge theory, and matrix string theory phases.
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Chapter 1

Introduction

In the pursuit of understanding quantum gravity, string theory has emerged as the
leading candidate. It removes some divergences that emerge from applying quantum
field theory to gravity by replacing fundamental point particles with one dimensional
strings. All fundamental particles we observe today are manifestations of the different
vibrational modes of the string. By quantizing the string, we have found five pertur-
bative string theories which are labeled type I, type IIA, type IIB, heterotic SO(32),
and heterotic Eg x Eg. Moreover, the five theories are consistent for ten spacetime
dimensions only.

As it turns out, strings are not the only fundamental objects in string theory.
There are solitonic objects called D-p branes which are p+1 dimensional membranes
on which open strings ends with Dirichlet boundary condition. D-branes were not
discovered earlier because they are non-perturbative objects.

The picture that has emerged is that there is a theory whose moduli space is such
that at five cusps, the theory is defined asymptotically by the five known perturbative
string theories and at another cusp, it is defined by a mysterious theory, called M-
theory, whose low energy limit is 11-d supergravity. All theories on this theory space

are related to each other through dualities. For example, M-theory is S-dual to type

1
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Stack of D-branes

Figure 1.1: Two equivalent views of a stack of N D-branes in IIB string theory leading
to the AdS/CFT correspondence. One view is through perturbative excitations. The
other view is through backreaction on geometry.

IIA string theory. Type IIA string theory is only defined asymptotically for the string
coupling constant going to zero. By S-duality, M-theory is type IIA string theory
when the string coupling goes to infinity. The string coupling behaves as another
dimension and in going from zero to infinity, it takes a ten dimensional theory into a
eleven dimensional theory.

Each point on the theory space can have many solutions depending on the choice
of compactification, sources, and fluxes. Due to duality, two different points on the
theory space can also have some of the same solutions. Therefore, the solution space
is very large and complex with solutions ranging from having 32 supercharges to
non-supersymmetric solutions. The solution space is very likely to be made of many
disjoint components of different dimensions.

The ultimate goal in string theory is to understand which point in the theory space
and which solution of that theory leads to a description of our universe. This is a truly
daunting task, but for a theory that purports to unify and explain all fundamental
forces and more, we should expect nothing less.

Nevertheless, some progress have been made. One seminal work which has shaped
much of recent activity in string theory is the discovery of the correspondence be-

tween gravity and gauge theory in one lower spacetime dimension. The AdS/CFT
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correspondence as conjectured by Maldacena [1] [2] [3] states that Type IIB string
theory on AdSs x S° is equivalent to ' = 4 supersymmetric Yang-Mills theory. Many
evidence has since been found to corroborate this conjecture {4]. The motivation for
the correspondence comes from considering IIB string theory in 10-d Minkowski space
with a stack of N D3 branes. This system can be viewed in two ways as shown in
Fig. 1.1. It can be studied through perturbative excitations. There are two types of
perturbative excitations. Excitations of the closed strings which propagate through
empty space correspond to excitations of the bulk. Excitations of the open strings
which must end on the branes correspond to excitations of the branes. Now, consider
the case when the energy of the system is less than the string tension, &, where [,
is the characteristic size of the string. Only massless string states are then excited.

The effective action can be decomposed as
S = Sputk + Stranes + Sint (1.1)

where

e Spuik is the action for IIB supergravity with gravity supermultiplet in 10-d plus

higher derivative corrections.

 Siranes is the action for N = 4 U(N) super Yang-Mills theory with N = 4 vector

supermultiplet in 3+1 d plus higher derivative corrections.
e S;,. is the action for interactions between the brane and bulk modes.

We now take the limit as [, — 0 with all dimensionless parameters such as g, and
N fixed. It can be shown that S;,. vanishes as well as the higher derivative corrections
in Spur and Sirane. We are thus left with a decoupled system of a IIB supergravity

in the bulk and a 4d gauge theory.
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We will now study the system of a stack of N D3 branes in IIB string theory in
10-d Minkowski space in a different way. The D3 branes are massive, charged objects
and will back-react on the geometry of the 10-d Minkowski space.

The D3 brane solution of supergravity has been worked out to be

ds® = f~¥(—df? + d2? + dz? + dz? + dz2) + f3(dr? + r2d02) (1.2)
with
f=1+ g , R*=4rg,d®N (1.3)

where o/ = 2. Forr > R, f = 1 and the metric becomes asymptotic to 10d
Minkowski space. Forr < R, f — ;R:? and the metric becomes asymptotic to AdSs x
S°. The energy of an object measured by an observer at infinity is related to the

energy of the same object as measured by an observer at constant r via
Ew = f%E,. (1.4)

Thus an excitation of high energy as measured by a local observer at r will be seen by
an observer at infinity to be a low energy excitation for r sufficiently small. We will
now take the perspective of an observer at infinity and consider the system at low
energy. Low energy excitations in the bulk (large r) cannot enter the throat region
(small ) because the scattering cross section goes as ¢ = w®R8 where w is the energy
of the excitation. An intuitive way of seeing that is noticing that R is roughly the
gravitational size of the brane and 1/w > R is the wavelength of the excitation so
the excitation cannot enter the throat. The excitations deep in the throat region
(small ) which are not neccesarily of low energy as measured locally, cannot climb
the gravitational potential to enter the bulk. As we take the limit of w — 0, we are
again left with a decoupled system of IIB supergravity in the bulk and IIB string

theory in the throat.
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We thus have two descriptions of a stack of N D3 branes in IIB string theory in
10-d Minkowski space studied in the same low energy limit. Both descriptions lead
to a decoupled system where one of the decoupled theory is IIB supergravity in 10-d
Minkowski space. The AdS/CFT conjecture is then the identification of the other
decoupled theories from these two descriptions, namely, the identification of IIB string
theory on AdSs x S° with A" = 4 super Yang-Mills theory in Minkowski space.

The AdS/CFT correspondence is the first realization of holography in string the-
ory. The idea of holography [5][6] loosely stated is that in a quantum gravitational
system, the number of degrees of freedom of a region is bounded by the area of the
boundary of the region. This is very different from what is expected in an ordinary
quantum field theory where the number of degrees of freedom of a region scales as
the volume of the region.

The motivation for the holographic principle comes from the entropy formula for a
black hole, S = %, where the entropy is proportional to the area of its event horizon
and G is Newton’s gravitational constant. Consider a region of space with boundary,
B. Throw energy into this region of space until a black hole forms whose event horizon
grows to become the boundary, B. In the process of throwing energy into the region,
the entropy of the region is non-decreasing. Therefore, the entropy of the region must
at all times be less than or equal to the entropy of the black hole whose event horizon
is B.

In chapters 2 and 3, we will study warped compactifications using the ideas of
the gravity/gauge theory correspondence coming from AdS/CFT and holography.
Some phenomenological motivations for studying warped compactification comes from
scenarios proposed in [7] which shed some light on 4-d localization of gravity and mass
hierachy. The scenarios assume that we live on a 4-d submanifold such as a domain

wall in higher dimensional space.
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To set up the model, we assume that there is a 4-d domain wall called the Planck
brane located at z5 = 0 where gravity is localized. We also assume there is another
domain wall located at z5 = r called the matter brane where the Standard Model

fields are localized. The action for this system can be written as
S = /ds.‘tv —G(R-A) +/d4$\/ —gm(Lry — V) +/d4$\/ —gpi(Lp1— Vpy) (1.5)

where g)r and gp; are the metrics of the domain walls induced by the 5-d metric, G.
The most general ansatz for the 5-d metric preserving 4-d Poincare symmetry and

thus permitting flat 4-d domain walls is the warped metric

ds? = A3y, dzhdr” + dz?. (1.6)
Choosing A < 0, we find the solution

ds? = e 2*l=sly , dr#dz” + dr? (1.7)

where k£ = :{7“, Vet = —Vir = 12k. Note that the tensions of the domain walls
must be adjusted to keep them flat. The warped factor, e~2¥1%s!, is sharply peaked at
z5 = 0. This leads to localization of gravity at the Planck brane at z5 = 0. Also note

that the 4-d Newton’s constant
M3
M:= Ts(l — e~ 2n) (1.8)

is finite so observers on the matter brane will see an effective 4-d gravity. If we

compare the metric at the two branes, gp; and gy, we get

Gu' =g, (L9)
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so an object of energy E at the Planck brane will be seen by an observer at the matter
brane to have energy, Ee~*". The mass hierarchy between the Planck and TeV physics
become much more reasonable. Of course, this does not solve the problem. However,
instead of explaining a discrepancy of 10! we have to explain 16 which is much more
natural.

The model presented above is unphysical as it stands. The Planck and matter
branes are placed in an ad hoc fashion with nothing to stabilize their positions. The
warped factor having an absolute value sign has a cusp-like singularity and we don’t
know what those domain walls are. In chapter 2, we will show how this scenario can
be realized in string theory following the work in [9]. In string theory, D-branes are
natural candidates for the domain walls also known as braneworlds because gauge
theory is confined to D-branes as excitations of open strings. In addition, a stack of
D-branes exhibit non-abelian gauge symmetry which encompass that of the Standard
Model.

In chapter 3, we will show how the AdS/CFT correspondence, when applied within
the context of a warped compactification, can be used to give an interesting new
perspective on the physics of gravitational collapse. We want to emphasize that
in the original AdS/CFT correspondence, the bulk space is infinite and thus the
boundary theory does not contain gravity. In the context of warped compactification,
we introduce the Planck brane to make the bulk space finite and thus the boundary
theory does include gravity as well. The 5-d dynamics in the bulk space will now tell
us about the 4-d quantum field theory plus gravity. We will study the case of the
gravitational collapse of colored star from a five dimensional perspective.

Any realistic model of our world must also contain chiral fermions. This is because
our world appears asymmetric in left-handed and right-handed interactions. If we

indeed live on a brane, that brane much exhibit chiral gauge symmetry. In chapter
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4, we will show how to obtain a chiral gauge theory from compactification of a six
dimensional conformal field theory. Although we are not working with string theory,
this six dimensional theory can be imbedded in string theory as it comes from a
decoupling limit of NS-5 branes. In short, we will construct chiral fermions from
geometry.

The NS-5 brane is a solitonic brane of type IIB string theory. It is a magnetic
source of the NS-NS 2-form. It was pointed out in [8] that by taking the decoupling
limit of g, — 0 with M, (mass of fundamental string) held fixed, the world-volume
of the 5-brane results in a 6D theory which includes stringy excitations but without
gravity. This theory has N = (1,1) supersymmetry. The infrared limit of this the-
ory, with energies small compared to M, appear to be local quantum field theories.
However, the full theory being stringy is not a local quantum field theory.

It was further pointed out in [39] that by starting with a stack of N NS-5 branes
on an orbifold singularity and taking the same decoupling limit, one will obtain from
the world-volumes of the 5-branes a stringy non-gravitational theory with A" = (1, 0)
supersymmetry. Locally, the singularities of Calabi-Yau spaces look like ALE spaces
of the form, C?/T. T is a discrete subgroup of SU(2) and is classified by its cor-
respondence with the simply-laced groups A, Dy, Es, E;, and Eg. We will take the
orbifold to be, C?/A_;. In the infrared limit, one obtains a d=6 A" = (1,0) super-
symmetric Yang-Mills theory whose gauge group is U(N); x ... x U(N)g. In chapter
4, we will show how to obtain a chiral A =1 gauge theory in four dimensions by

compactification in this framework. It follows the work in [10].

Another “principle” that we think is intrinsic to string theory is the breakdown of
the notion of spacetime. Non-commutativity of spatial coordinates have been studied
through non-commutative Yang-Mills theory. It can be obtained from the study of

D-branes in a background magnetic field. By extension, we can ask about space-time
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non-commutativity, [X°, X*] # 0. This is a more radical idea because of problems
with quantum mechanics. In quantum mechanics, time is a coordinate used to label
evolution while spatial coordinates are operators. Nevertheless, the study of space-
time non-commutativity can be obtained by studying string theory in a background
electric field.

More specifically, consider a system of a bound state of a fundamental string
with a D-string. The fundamental string dissolves into a unit of electric flux in the
D-string. The open strings on the D-string have endpoints which are electrically
charged. There is a competing force between the tension of the open string and the
force exerted on the endpoints of the open string by the electric flux. Now, take the
limit of string tension to infinity (o’ — 0) and electric field to infinity (E — o0),
such that 'E is held fixed. What results is a residual effective string tension. In the
limiting process, Gy vanishes and gravity decouples. We are left with a theory of open
strings without gravity. Moreover, the scale associated with the non-commutativity
is the effective open string scale so space-time non-commutativity is intimately tied
to stringy non-locality.

Because the non-commutative open string theory (NCOS) are non-gravitational,
we can study its thermodynamics without worring about instabilites associated with
gravitational systems in the infinite volume limit. By studying the thermodynamics
of NCOS, we may have a better insight into its microscopic physics from criticalities
such as phase transitions.

In chapter 5, we will use SL(2, Z) S-duality and the AdS /CFT correspondence to
map out the phase space of the decoupled worldsheet theory of a system of funda-

mental strings and D-strings. It follows the work in [11].
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Chapter 2

Warped Compactification

2.1 Introduction

This chapter is intended to clarify the realization and interpretation of the Randall-
Sundrum compactification scenario within string theory. In the model of [7], our
4-d world is extended with an extra direction r to a 5-d space-time with the warped

metric

ds? = 9" p,, dr*dz” + dr? (2.1)

with o(r) = —k|r|. Even while the range of r is infinite, the warped form of the
metric ensures that the effective volume of the extra direction is finite. As a result,
matter particles sufficiently close to the domain wall region near r = 0 will experience
ordinary 4-d gravity at long distances [7].

At first sight, this proposal seems like a rather drastic departure from the more
conventional Kaluza-Klein framework. Indeed, in most works on string compactifi-
cations thus far, the four uncompactified directions and the compact manifold are
assumed to form a simple direct product. Although it was realized for a long time

that this basic KK set-up can be generalized to include the possibility of warped

10
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products, the physics of these more general scenarios is still largely unexplored.

A second important ingredient of the RS-scenario is that part or all of the ob-
servable matter may be thought of as confined to a 4-d sub-manifold of the higher
dimensional space-time. A concrete theoretical realization of such world-branes are
the D3-branes of IIB string theory, which confine open strings to their world-volume.
D3-branes, however, do not bind 4-d gravity. Possible supersymmetric realizations of
the Planck-brane, located around r = 0 in (2.1), are therefore rather expected to be
found in the form of domain wall type configurations, or possible stringy generaliza-
tions thereof. Various attempts have been made to find smooth domain wall solutions
of this type within 5-d gauged supergravity, but thus far without real success [12] [13].

There are several reasons for why this is indeed a hard problem. Even for a
given compactification from 10 dimensions, it is an elaborate task to derive the di-
mensionally reduced theory. Thus far this has been done only for reductions over
rather special symmetric 5-manifolds K such as S5 or S5 /Za, etc, and/or for special
theories with extended supersymmetry. However, while it seems feasible to classify
the possible types of supersymmetric solutions for each of these special dimensional
reductions, there is no guarantee that they provide a general enough framework.

Instead of following the above procedure of (1) performing some special dimen-
sional reduction to 5 dimensions and (2) looking for RS domain wall type solutions,
it seems more practical to reverse the two steps. Since the scalar fields @° arise
as moduli of some internal 5-d compact space K5, any domain wall solution in 5-d
gauged supergravity describes (upon lifting it back up to 10-dimensions) some specific
warped compactification of the 10-d theory. It will therefore be much more general —
and also easier - to first (a) identify a general class of warped compactifications of the
10-dimensional theory, and then (b) perform the same type of dimensional reduction

from 10 to 5 dimensions. In the end, one can then hope to identify a class of 10-d
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find solution Waxped Compactification

10-D IIB Supergravity _— o R'x Kg
® ds? =% + arl+ as?
Dim. Dim.
reduction 1 © @ reduction
5-D Gauged Supergravity © Supersymmetric
with # of matter multiplets find solution RS-domain wall

Figure 2.1: To identify supersymmetric RS-type geometries, we will follow the route
IIB —> (a) —> (b) ~> RS. It is still an open problem to find a direct construction of
these geometries via the other route.

geometries for which the resulting dimensionally reduced solution has all the required
properties.

As will be described below, such a class of warped IIB geometries indeed exists
in the form of quite generic F-theory compactifications on Calabi-Yau four-folds.!
These have been studied in some detail in the recent literature ~ a list of references
include [15] [16][17][18] and [19] - and indeed none of our equations will be new.
Given the current interest in the subject, however, it seems useful to collect some
of the known facts about these compactifications, since it has not been generally
appreciated that supersymmetric RS-geometries indeed exist in string theory, and
furthermore that they are in fact quite generic.

Since all derivations are contained in existing papers, we will here only present the
general form of the compactification geometry without any proof that it is really a
supersymmetric solution to the 10-d equations of motion. This proof can however be
quite directly extracted from the literature, in particular from the very clear discussion

by Becker and Becker [15]. Their analysis was done in the context of M-theory

! Another special realisation of an RS geometry in terms of a toroidal type IIB orientifold com-
pactification has been described in [14].
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compactifications on C-Y four-folds. It can however be straightforwardly translated
to the F-theory context by performing the T-duality transformation outlined in (17].
An explicit example of this T-duality transformation is discussed in [16].

Although the 10-d perspective will allow us to identify a large class of RS-type
compactification geometries, their geometrical structure is rather involved. It is there-
fore not easy to ezplicitly perform the dimensional reduction of these solutions to 5-
dimensions. We will nonetheless attempt to make this 5-d perspective as transparent
as possible. In particular we will show that they indeed give rise to a 5-d metric of

the generic form (2.1).

2.2 Warped Compactification in F-theory

In the papers of [24] [25], it was shown that for general conditions, supergravity does
not permit warped compactification to Minkowski or deSitter space. As with all no-go
theorems, one must examine their assumptions carefully to find a way to circumvent
them. It was found that if one allowed for negative tension objects, one can evade
the no-go theorem and indeed find warped compactifications of the Randall-Sundrum
type. While pure supergravity does not have negative tension objects, they do exist
in string theory. We will examine this in more detail below.

Let’s begin with the IIB low energy effective action in the Einstein frame

OnT0™F H-H F? 1 [CiAHAH

E = 10, /—~ _Ym _ _ 5 = e NN
Stis /d ’ g{R 2(Im7)2  12ImT 4-5!}+4i/ Imt  Slee
(2.2)
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where
T = $+ie? (2.3)
HR = dc, (2.4)
HYS = 4B, (2.5)
H = HR_rHNS (2.6)
A = Fs-%CgAHNS-i-%BgAHR (2.7)

and the fields are listed below

(i) the dilaton field é
(ii) the RR-scalar or axion field 5
(iii) the NSNS 3-form field strength HNS
(iv) the RR 3-form field strength H?
(v) the RR 5-form field strength Fy

Stoc is the action of localized objects and we need to further impose the self-duality

constraint

F5 = *F5 (2-8)

on the equations of motion.
We want to study the general warped metric with the four dimensional transverse

space having constant curvature, k, so we begin with the metric ansatz
ds}y = e*Wh,, dztdr” + e~22W) g, dy™dy" (2.9)

where z* are the 4-dimensional coordinates of the constant curvature space and y™

are the coordinates on the compact manifold K.

j - . . .
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The axion and dilaton will be allowed to vary over Ks. To maintain maximal

symmetry of the transverse space with constant curvature, we must have

H = g—m;f—(y)dym Ady™ A dy® (2.10)
Ps = amﬁ(y)(l + *)dym A d’UOl4 (211)

where dvoly is the volume element of the transverse space and Fj explicitly satisfies
the self duality condition and the Bianchi identity.

From the equation of motion and using the metric ansatz, one can show a con-
straint for flux/brane configurations that can give rise to warped solutions on compact

manifolds [22]

- 2a [ymnp
Vet = Sm T | ot (g, p5mG + Gmeteamet)
+1e? (T — Ty 4 ghe?™ (2.12)

4

where the tilde refers to the metric gm» and the third term comes from the energy-
momentum tensor of the localized source. The integral of the LHS over the compact
manifold K¢ vanishes whereas all the terms excluding the localized sources and curva-
ture term are non-negative. Thus, in pure supergravity where there are no localized
sources, only warped solutions with negative constant curvature transverse space are
possible. However, if localized sources exist and have negative tension then we can
have warped solutions with transverse spaces having non-negative constant curvature
as we will now show.

Consider a p-brane that fills the four dimensional transverse space and is wrapped
on a p — 3 cycle, ¥, of manifold K. Assuming no fluxes along the brane, to leading

order in o', the source action is

See= T, [ @v=gtm [ Cpn (2.13)
RixZ RixZ
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where T, is the tension of the p-brane and lyp is the coupling to the p + 1 form RR
potential, C,1;. We will find that

(Tm = T)'* = (7 - p)T,4(Z). (2.14)

So for p < 7, we require negative tension to give negative stress as required for warped
compactification with transverse space having non-negative constant curvature. An
example of such an object is the O3 plane which have a tension equal to —i-T;;.

The D7 brane can also give rise to warped compactification even though the stress
contribution is zero according to (2.14). This is because the Chern-Simons term in
the action gives an induced D3 charge on the wrapped D7 brane. The induced charge
will depend on the geometry of the compact manifold and it is more natural to study
that using F-theory.

F-theory is a geometric language for describing compactifications of type IIB string
theory, in which the expectation values of the dilaton and axion fields are allowed to
vary non-trivially along the compactification manifold [20]. Compactifications of F-
theory down to four-dimensions are specified by means of a Calabi-Yau four-fold that
admit an elliptic fibration with a section. In other words, these are 8 dimensional
compact manifolds Ky that locally look like a product of a complex three-fold K
times a two-torus T2. The two-torus will be taken to shrink to zero size. It can
however be taken to change its shape when moving along the base Kg. In particular,
it can have non-trivial monodromies around singular co-dimension 2 loci inside the
K, where the elliptic fiber degenerates.

The four-fold Kj is not the actual compactification geometry; rather it gives an
economical way to characterize the compactification geometry as well as the expec-
tation values of other fields. Moreover, due to the special geometric properties of

the Calabi-Yau four-fold K ~ vanishing first Chern class and SU (4) holonomy - the

i . . .
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associated IIB background by construction will preserve 4-d supersymmetry, at least
at the classical and perturbative level.

The warped geometry of this type of F-theory compactifications has been derived
in [16], by direct translation of the M-theory analysis of [15]. The full solution for the
10-dimensional IIB string metric, in the Einstein frame, takes the form (2.9). The
shape of the warp-factor e?* will depend on the detailed geometry of the CY four-fold
Kj, as well as on other data such as the possible non-zero expectation values of other
fields and the locations of the possible D-branes.

Besides the ten-dimensional space-time metric, the fields that can take non-trivial
expectation values are the following: ¢, , H¥S, HR, and Fs. The expectation values
of all these fields can be conveniently characterized in terms of the geometry of K.

In F-theory, T becomes the modulus of the elliptic fibration. It parameterize the
shape of the two-torus inside the K3, describing the variation along the 6-d base man-
ifold K of the dilaton and axion fields, ¢ and 5 As mentioned above, a key feature
of F-theory is that this modulus in general has non-trivial monodromies around 4-d
submanifolds inside K. These 4-d sub-manifolds are associated with the locations of
D7-branes, of which the remaining 3+1-dimensions span the uncompactified space-
time directions. In going around one of the D7-branes, the modulus field 7 can pick

up an SL(2,Z) monodromy

at + b
CT——:d, (2.15)
which leaves the geometric shape of the two-torus fibre inside Kj invariant, but
nonetheless via (2.3) amounts to a non-trivial duality transformation of the IIB string
theory. We thus notice that the dilaton and axion field are not smooth single-valued
functions, but instead are multi-valued with branch cut singularities at the locations

of the D7-branes. The full non-perturbative string theory, however, is expected to be

well-behaved everywhere.

i
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For the following, it will be convenient to combine the NSNS and RR three-from
field strengths, HYS and HR, of the IIB supergravity into a single four-form field-
strength G on K3y as follows [19]. Let z and Z denote the coordinates along the T2

fiber. Then we can write

G = %(HAdZ—ﬁ/\dz) (2.16)
2
H = HR_ rHNS H = HR—7HNS, (2.17)

For supersymmetric configurations, H defines an integral harmonic (1,2)-form on
K¢ satisfying H A k = 0 with k the Kahler class of K5 [19]. It transforms under
the SL(2, Z) monodromy transformations (2.15) around the seven-branes as H —
H/(ct + d). The field-strength G is invariant under these transformations.

An important aspect of F-theory compactifications is that they typically carry,
via their non-trivial topology, an effective total D3-brane charge. The value of this
charge is proportional to the Euler characteristic x(Kj) of the original Calabi-Yau
four-fold Ks. Here x(K3) is defined via

X0 = [ 1) (218)
where
L(R) = %(trﬁ‘* - i(uR?)z) (2.19)

with R the curvature two-form on Kj. Global tadpole cancellation, or conservation
of the RR 5-form flux, requires that this charge must be canceled by other sources.
These other sources come from possible non-zero fluxes of the NSNS or RR. two-form
fields, or from the explicit insertion of N D3-brane world branes, that is, D3-branes

that span the 3+1-d uncompactified world but are localized as point-like objects
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inside the K. The number of such D3-branes is therefore not free, but completely

determined via charge conservation. This global tadpole cancellation relation reads

1 1
N = éZX(Ks) - 8? . GAG. (220)

Depending on the topology of K5, N can reach values of up to 10° or larger. An
example with N = 972, mentioned in [18], is provided by an elliptically fibered CY
four-fold over P®. The Euler number x(K3) can be non-zero only if Ks has a non-
vanishing first Chern class, that is, provided the F-theory compactification makes use
of a non-zero number of D7-branes.

The equation of motion for the warp factor e® obtained in [15] and [16] reads as

follows

N
- 1
AB) g™ = 42 {Is(R) - S?G AG - Z(S‘”(y—y,-) } (2.21)

i=1
where A(®) denotes the Laplacian and * the Hodge star on K. The points y = y;
correspond to the location of the N D3-branes. Here, following [16], we have written
the equation on the full 8-d manifold K3, even though in F-theory the elliptic fiber T2
inside K3 has been shrunk to zero size. In this limit, the solution for « obtained via
(2.21) only depends on the 6 coordinates y™ on Kjs. Alternatively, using the analysis
of [18], one may also first reduce the right-hand side to K, via integration over the
T? fiber, and then solve the reduced equation to obtain the function e~*® directly on
Ks.
Finally, there is also an non-trivial expectation value for the self-dual RR five-form
field strength, equal to [15] [16]

FpuAaM = fuuAaaM e, (222)

We note that via (2.21) the D3-branes indeed form a source for this field strength,

but that via (2.20) the total charge adds up to zero.
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X = D7 brane

€ = D3 branes
O = 5d slice with r = const
—~— =5d slices of constant &

Figure 2.2: The contours with constant warp factor €2° define a particular slicing of
the 6-dimensional compactification manifold Kg, which can be used to represent Kg
as a one parameter flow along r of five-manifolds K5. Upon dimensional reduction to
5 dimension, this geometry describes a one-sided RS-domain wall solution.

2.3 Shape of the warp factor

Let us summarize. Starting from the elliptically fibered CY four-fold Kz we can
extract a complete characterization of the warped compactification. First, since Kz ~
K¢ xT?, we obtain the metric gu~ on the base Kg, as well as the dilaton and axion via
(2.3). We then deduce the form of the warp factor e2® from (2.21), which incorporates
the complete backreaction due to the G-flux and D3-branes. Finally from (2.9), we
obtain the actual compactification geometry. Note that, as indicated in fig 2.2, the
rescaling by e=2® of gun in (2.9) may have a drastic effect on the shape of the
compactification manifold, which indeed may look quite different from that of the
original K. In particular, it is possible that near the locations of the D3-branes one
of the internal directions may become non-compact.

We may formally solve the equation (2.21) via

N
o) = &4y 4x? [y /T6(0,) [ W(RW)) - gG NG~ 360~ )]
=1
(2.23)

where G(y,y’) denotes the Green function for A®). The term e~*® parametrizes the
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constant zero mode of e~*®, which is not fixed by eqn (2.21). Note that for e—**
to be everywhere positive, this constant e~*®*® can not be arbitrarily small, since the
second term on the r.h.s. of (2.23) can become negative. This implies that the warped
6-geometry automatically has a minimal volume? .

An interesting limiting case is when all D3 branes are concentrated in one point,

say y = yo. Close to this point, the warp function a(y) reduces to
a(y) ~ log |y — yo| + const. (2.24)

Via (2.9) this describes the familiar semi-infinite near-horizon geometry of N D3-
branes: AdSs x S® with radius R = {/4wNg,. (See fig 2.2.) Although the radial AdS;
coordinate r ~ —Rlog|y — yo| runs over semi-infinite range, the compactification
geometry (2.9) still gives rise to a 4-d Einstein action with a finite 4-d Newton constant
1/2 equal to

O (41)8 A (2.25)

with 4o the 10-d Planck length.

2.4 Fixing of the moduli

Calabi-Yau compactification has a large number of moduli corresponding to defor-
mations of the compact manifold consistent with CY conditions. These massless
fields are the complex moduli, Kahler moduli, and axion-dilaton. However, the fluxes
present in warped compactification fix many of these moduli. It should be noted that
not all moduli can be fixed by the fluxes. The necessary and sufficient conditions

leading to warped compactification are invariant under the rescaling,

Gmn = A2 Gmn. (2.26)

2We thank Sav Sethi for bringing this feature to our attention.
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Thus, there will be at least one moduli that can not be fixed, namely the volume of
the compact manifold.
We will proceed to fix the moduli by first fixing the flux in accord with the Dirac

quantization,

1 1
—— | HRe27Z, — NS e orZ 2.27
o Jo, ' €Y Gra C,H € er (2:27)

where C form a homology basis for 3-cycles on K. The moduli will then adjust to

minimize the F-terms arising from the Gukov-Vafa-Witten superpotential
W = /Q A H. (2.28)

We will first work out the kinetic term for the moduli. They can be extracted
from the quadratic order terms in the expansion of the Einstein-Hilbert term in (2.2)
using a decomposition of the metric that displays the fluctuations of the geometrical

moduli fields following [23]
ds? = e?*We=Cg,, dztdzr” + e~ W (G (y) + T' (2)0g1mn(y)dy™dy™) (2.29)

where §™"dgimn = 0 so that only the fluctuations of e?* scale the total volume. T7
are volume preserving and include the Kahler and complex structure moduli. If we

define a complex field p such that Imp = e*¥, then we find

o1 Oup0¥p O, TO*T
Skmet:c - "32 /d4xV 94( 3lp _ ﬁ|2 |T _ 7—.|2
—glvc?,,T‘r T’ / dy gse“‘“é'g;mndg}"-“) (2.30)

where V,, = [d®\/Gee*®. These kinetic terms can be obtained from the Kahler
potential

& = =3log(—i(p — p)) — log(—i(T — 7))
—log(—i/dﬁye“‘“\/gg) - log(—i/e'“‘Q A Q) (2.31)
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where §(Z,y) = Gmn(y) + T7(2)0gmn(¥)-

To find the moduli potential, we look for the dependence of the IIB supergravity
action on the Calabi-Yau metric and the dilaton. We use the metric decomposition
of (2.29) but setting u = 0 and T = 0 so that there are no dependence on z. The

effective potential is computed from the R, H - H and F? terms. The Einstein-Hilbert

term gives
/ d’z\/=gR = / d*z\/—g4 / d°y/96[—8(Va)2e]. (2.32)
The F2 term gives
F2 -da
[t = [dovg [evmS @ s

Use the relation e** = 8 and the Bianchi identity dF; = 0 in the form

iH pnp * ™

24—
VA = AST T (2.34)
to write the action for the effective potential as
e4a - .
Spotentia.l = /d4\/ —g4 / %H/\ (*5.H + ZH) (235)
If we use the imaginary self and anti-self dual parts of the flux H,
H* = -;:(H:i:i*s H), *gH* = FiH* (2.36)
we can rewrite the potential as
4
Spotential = /d“xv —04 / I:n‘rH+ A*H*. (2.37)

By minimizing the potential, we can fix the moduli corresponding to the fields,

7, HR, HNS and F;5. We can check that this potential is indeed correct by showing it
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small resolution
———
2-sphere 2-sphere
3-sphere 3-sphere
deformation
3-sphere A-cycle
B-cycle
B e
2.
3-sphere

Figure 2.3: The conifold is a cone over S® x S2. The singularity at the apex can be
resolved by small resolution or deformation by blowing up the S? or S3 respectively.
The deformed conifold has an A-cycle which is the blown-up S3 and its dual B-cycle
(shaded area) which intersects the A-cycle exactly once.

to be equivalent to the A = 1 supergravity potential

V= 2Lzen(c:""'u.,wz)bw — 3w (2.38)

Ko

where D,W = 0,W + W9,k and G; = 3,0;« and the indices a, b are summed over
superfields. The superpotential, W = J QA H, is unmodified by the warped factor.
It can also be shown [22] that |D,W|? — 3|W|? = 0. This is indicative of a no-scale
potential. The potential is then positive semi-definite and the minimum occurs when
D;W =0, where i is a superfield moduli not including p.

To work out a specific example where we can obtain a large and stable hierarchy,
we will follow [22]. Klebanov and Strassler [26] found smooth supergravity solutions
with large relative warpings in the local vicinity of conifold points with fluxes. We'll
examine their solution in some detail. A Calabi-Yau 3-fold is generally smooth with

possibly some singularities that are generically conifolds. A conifold is a cone over
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a base which is S% x S?, see figure 2.3. The S3 and S? cycles of the base shrink to
zero size at the apex of the conifold which is the singular point. The equation of the

conifold can be described as a locus in C*,
w?+wl+wl+w?=0. (2.39)

The singularity is located at the point, (w1, wo, w3, wy) = 0. The conifold singularity
can be resolved in two ways. One way is to blow up the S? at the singularity and
is called the small resolution. The other way is to blow up the S? at the singularity
and is called a deformation. The latter will be relevant to us. The deformation of the

conifold can be described as the locus,
witwi+witwl=c (2.40)

where € parameterize the size of the blown-up S3 at what used to be the singularity.

We now introduce fluxes and see how they generate a potential to fix some of
the moduli. There are two 3-cycles on the deformed conifold that are relevant to
us. They are the blown-up 3-sphere, called the A-cycle, and its dual 3-cycle, called
the B-cycle, which intersects the A-cycle exactly once, see figure 2.3. The Klebanov-
Strassler solution corresponds to having M units of HE® flux on the A-cycle and
—K units of H¥S flux on the B-cycle. M and K are not independent since they are
related through the requirement of D3 charge conservation. The superpotential can

be computed [22]

W=/Q/\H~KT/Q—M/Q (2.41)
A B

where

//;Q =€ (2.42)
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measures the size of the collapsing A-cycle. The dual B-cycle has the standard result
€ .
/L; Q= 37 In € + holomorphic. (2.43)

The potential is minimized when D.W = 0. For a large hierarchy, we need to have

K/Mg, > 1 thus fixing

2x K

€~ e M, (2.44)

The warped factor can be computed by solving the differential equation (2.21). The

hierarchy of the energy scale can also be estimated to be [22]

. 1 _2xK
€3min ~ €3 ~ g M, (2.45)

This result can be shown to be consistent with the holographic view.

The Klebanov-Strassler supergravity solution is holographically dual to a non-
conformal A =1 gauge theory with gauge group SUMK + M) x SU (MK). The
renormalization group flow towards the infrared involves a cascade that takes place in
steps with a ratio of energy scale e~ . Each step has a strong coupling transition
involving a Seiberg duality which lowers the rank of the larger of the two gauge groups
by 2M. The maximum number of such dualities is K so the full range of energy scales
that takes place in the cascade is e~ SHos |

The analysis of this section can also be carried out in F-theory compactification.
One needs to embed the Klebanov-Strassler solution into an F-theory compactification

by finding an elliptically fibered Calabi-Yau fourfold that admits a conifold singularity

in its base. This is worked out in [22].
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2.5 Reduction to 5 dimensions.

We would now like to show that these F-theory compactifications, upon performing
a suitable dimensional reduction to five dimensions, reduce to supersymmetric RS

domain wall solutions. To this end we will look for a specific coordinate system

M

vy =@"r) (2.46)

where m now runs over 5 values, such that the 10-d metric takes the following form
ds%s = e2(r) Nuw A2#dT” + dr? + hopp (y, ) dy™dy™ (2.47)
where ds%g is related to the original IIB string metric (2.9) via the rescaling

1
ds?e = e??(V5)1/4 ds? Vo=—— | Vh. 2.48
RS (Vs) - 5= or J. (2.48)

Here the prefactor in (2.48) is chosen such that ds% is the metric in the 5-d Einstein
frame (where we have taken the 5-d Planck length /5 equal to the 10-d one). The 5-d
slices of constant r define 5-d submanifolds K3, on which 2a(y) + ¢(y)/2 = constant;
this correspondence guarantees that the warp-factor €% in ds%¢ just depends on r
and not on the remaining y™’s.

In this way we indeed obtain a solution that from the 5-d perspective looks just
like an RS-type warped geometry. For large negative r, close to the D3-branes, the
warp factor behaves like e ~ e~2"l/R with R the AdS-radius of the N D3-brane
solution. On the other end, somewhere outside the throat region of the AdS-tube,
near the ‘equator’ of the K, the warp factor e**(") reaches some maximal value.
Eventually, there is a boundary value for the coordinate r, which we can take to be
r = 0, at which the transverse 5-manifold K shrinks to zero size. However, as is

clear from fig 2.2, this does not correspond to any singularity, but just to a smooth
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@~

r

Figure 2.4: An RS domain wall in between two AdS-type regions can be obtained by
starting with a Z, symmetric 6-manifold K, in which the D3-branes are located at
opposite image points under the Z,.

cap closing off the 6-d manifold K. This fact that r takes a maximal value r = 0
implies that the AdS-space is indeed compactified, in the sense that, relative to the

4-d space-time, it has a finite volume. It therefore produces to a finite 4-d Newton

constant equal to (cf {7])

0

1 _ 1 20(r)

@) =)y /dre . (2.49)
—00

It is easily verified that via (2.48) and (2.47), this result coincides with the value
(2.25) found via direct reduction from 10 dimensions.

Upon dimensional reduction, the metric h,,, of the internal K5, as well as other
fields such as the dilaton, all reduce to scalar fields that provide the matter multiplets
of the 5-d supergravity. All these fields vary with the radial coordinate r, and since
this radial flow is supersymmetric, it should in principle be described as some gradient
flow driven by some appropriate superpotential. However, due to the rather complex
geometrical structure of the typical F-theory compactification, it unfortunately seems

impossibly hard to find the explicit form of this potential.
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2.6 Discussion

In this note we have summarized the geometrical description of warped F-theory
compactifications, and shown they can be used to obtain geometries very analogous
to the RS-scenario. Due to the presence of the D7-branes in the F-theory geometry,
the solutions are not completely smooth: the dilaton and axion field have isolated
branch cut singularities at the D7-brane loci around which 7 is multi-valued. The
string theory, however, is well-defined in this background.

Our description of the solutions makes clear that the internal structure of the RS
Planck brane is not that of an actual brane, but rather that of a compactification
geometry (which however also contains the D7-branes). Consequently, the localized
graviton zero mode of [7] is just the standard KK zero mode of the 10-d metric;
because its wave-function is sharply peaked near the wall region, where the warp
factor €29 is maximal, the 4-d graviton indeed looks like some bound state. From the
higher dimensional viewpoint, however, this RS-localization of gravity is not a new
phenomenon.

The most interesting aspect of these warped string compactifications, is that there
is no clear distinction between the low energy and extra dimensional physics. Kaluza-
Klein excitations, when localized far inside the AdS region can describe particles with
masses much smaller than the inverse size of the original Ks. While these particles
naively look like new degrees of freedom arising from the presence of extra dimensions,
the holographic AdS/CFT correspondence [1] tells us that they are in fact localized
excitations of the low energy gauge theory. The same holds for string excited modes in
this region. Hence via the holographic identification of the RG scale with a real extra
dimension, the two usually separate stages of dimensional and low energy reduction
should now be combined into one single procedure.

Finally, as a closely related point, we need to emphasize that the solutions as
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given here are generically unstable against small perturbations. The best way to
understand this instability is via the RG language: in general there will exist relevant
operators whose couplings, once turned on in the UV region, will quickly grow and
typically produce some singularity that effectively closes off the AdS-tube [21}. In
our way of obtaining the solutions, we did not immediately notice this instability,
because we required that the original K geometry and all other fields, except for the
warp-factor and the 5-form flux, are smooth at the locations of the D3-branes. This
requirement is special, however, and we should allow for deformations that may spoil
this property.

In order to ensure that the perturbed geometry contains a substantial intermediate
AdS-like region, we either need to fine-tune the UV initial conditions or introduce a
symmetry that eliminates these unstable modes. In RG language, this means that the
dual 4-d field theory should be made approximately conformal invariant over a large
range of scales, separating the Planck scale from the scale set by the non-trivial gauge
dynamics. Via the AdS/CFT dictionary, the problem of realizing an RS-geometry
in string theory therefore is reduced back to the original problem it was designed to
solve, namely how to generate a large gauge hierarchy. Or stated in more positive
terms, in searching for realistic string compactification scenarios, the observed gauge
hierarchy can be viewed as an indication that warped geometries of this type deserve

serious attention.
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Chapter 3

Gravitational Collapse via

AdS/CFT

3.1 Introduction

In this chapter we show how the AdS/CFT correspondence, when applied within
the context of a warped compactification, can be used to give an interesting new
perspective on the physics of gravitational collapse.

Consider a 3+1-dimensional world in which all matter consists of some strongly
coupled large N gauge theory with an AdS/CFT dual description. The gauge theory
can be coupled to 3+1-d gravity, by assuming that it arises from a warped string
compactification of the type described in the previous chapter, with a compact slice
of the dual AdS space-time as part of its compactification geometry. The total 10-d
target space ¥,o can be thought of as obtained by gluing together two parts

Lo =XirUZyv (3.1)

31
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of the form

213 = M5 X K5, EUV = R4 X (Ks— BG) (32)

with OM;s = R* and 0Bs = K;, where Mj is a compact slice of AdSs and K5 is a
compact 5-manifold with the topology of a 5-sphere. Since both X;z and yv have a
common boundary, R*x K5, we can glue them together into one geodesically complete
10-d manifold ;5. We will assume that, by means of an appropriate set of fluxes
and/or by other means, all compactification moduli are fixed and all moduli fields
have become massive. In this case it is appropriate to call £yy the ”Planck brane”
region, although it does not represent a proper string theoretic brane.

With a judicious choice of coordinates, the metric on ;5 takes the form of a

trajectory of 9-d geometries
ds® = dr? + a®(r)g,,dT*dz” + Ry (r, y)dy™dy™. (3.3)

The r evolution has the holographic interpretation of an RG flow, and the cut in the
10-manifold thus corresponds to a separation of the effective 4-d degrees of freedom
into a high and low energy sector separated by a cut-off scale set by the location r of
the cut.

One of the most interesting aspect of this type of compactifications is that the clas-
sical higher dimensional theory incorporates several quantum effects of the effective
4-d theory:

(i) Via the open/closed string duality, all planar diagrams of the boundary gauge
theory are included via classical effects in the bulk. In particular, the effective 4-d
stress energy tensor that appears in the low energy 4-d Einstein equations includes a
term that can be recognized as the contribution of the 4-d conformal anomaly.

(ii) The holographic correspondence identifies the warped extra dimension with 4-d

energy scale, and the radial evolution in this direction thus represents a 4-d renor-

3
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malization group flow. In a warped compactification, however, the extra dimension is
truncated at a finite UV value of the warp-factor. This truncation is the holographic
representation of the fact that the boundary theory possesses a UV cut-off at the 4-d
Planck scale, the shortest possible 4-d distance scale. In a certain sense, the classical
5-d dynamics thus “knows” about (aspects of) 4-d quantum gravity!

Conversely, the boundary gauge theory also knows about aspects of quantum
gravity in the higher dimensional bulk geometry. Namely when we heat up the 4-d
gauge theory matter, its holographic dual takes the form of a 5-d AdS black hole,
with Hawking temperature and Bekenstein-Hawking entropy in precise accordance
with that of the 4-d matter. The 4-d dimensional reduction of the 5-d black hole thus
gives the first explicit realization of the holographic principle of ’t Hooft and Susskind,
albeit within 5-d AdS space-time. It also partly demystifies it: one could simply view
the thermal atmosphere surrounding the 5-d black hole as a direct spectral image of
the 4-d thermal matter, where the radial location of each matter excitation determined
its 4-d energy scale. The deepest statement of the AdS/CFT correspondence is not
the kinematical representation of a 4-d theory as living in a 5-d AdS space-time, but
rather the dynamical equivalence between the strongly coupled 4-d gauge theory and
the 5-d gravitational dynamics.

In a warped compactification, the 4-d theory includes dynamical gravity. So it is
natural to study the formation and behavior of 4-d black holes in this context. From
the phenomenological viewpoint of the brane world model, these are 5-d black holes
whose horizon intersects with the 4-d Planck bane.

These brane world black holes have been studied quite extensively in [27][28].
Rather than studying these black holes as static objects, we will instead focus our
attention on the transition that takes place during the process of 4-d gravitational

collapse, i.e. the transition from a bulk black hole to a brane world black hole. This
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transition is particularly fascinating, because it provides a direct link between the
relatively well-understood holography of 5-d AdS bulk black holes and the much less
well understood holography of black holes in 4-d flat space.

In outline, our plan is as follows. First we review how 4-d effective field theory
arises from a holographic dimensional reduction of the higher dimensional theory
inside the warped geometry. We then study the 4-d stress-energy distribution of a
collapsing cloud, as the holographic dual of a 5-d (or in fact 10-d) black hole, localized
inside the infrared part of the warped geometry, following a geodesic motion towards
the “Planck brane”. We then show how the presence of the Planck brane affects
this motion, by inducing an effective 4-d gravitational force. We end with a number
of qualitative and semi-quantitative remarks about how one may start to study the

process of gravitational collapse from this higher dimensional perspective.

3.2 Stress Energy in a Warped compactification

Corresponding to the decomposition (3.2) of the 10-d geometry, we can write the 4-d
low energy effective action S.g as a sum of two terms, given by the integral of the

10-d supergravity lagrangian L,,qr, over the two respective submanifolds:

Sest(g) = Suv(g) + Sir(g) (3.4)

with
Sir = Lsugra, Syv = Lsugra- (3.5)
Zrr Zyv
Here g denotes the metric on the boundary R* x K® that connects yv and £;g; both
action functionals are evaluated over the unique classical solution of the supergravity
equations of motion as specified by the boundary condition g. (Recall here that

the internal geometries of Lyy and £;p are both compact manifolds with only one

TR A B 4 fmt o ee wees sea e .
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boundary, and therefore it is sufficient to specify the boundary values only; the normal
derivatives are (uniquely) determined by integrating the classical equations of motion
inwards.)

Since in the following we will be mostly interested in the 4-d effective gravitational
dynamics, we will concentrate on the metric dependence of S and ignore all possible
matter and moduli fields. In addition, we assume that the metric depends on the 4-d
space-time coordinates only. At low energies compared to the size of Kz, the Tyv
part of the effective action reduces to a local 4-d action functional, and therefore takes

the general form

&wm=f%§@m+my (3.6)

This local action gives the leading contribution to the 4-d Einstein action. In the
terminology of the brane world scenario, Syy can be thought of as the action on the
Planck brane; by, in particular, represents the brane tension.

The other contribution S;g represents the quantum effective action of the con-
formal matter dual to the AdS bulk gravity. It can be split into a local term and a

non-local term:

St = Sioe +T (3.7)

with
&x=[f§mR+m. (3.8)

The holographic interpretation of this local term is that it represents the renormal-
ization of the Newton and cosmological constant due to the quantum fluctuations of
the conformal matter. As we will see shortly, the constants ¢, and ¢, are uniquely
determined by the 5-d bulk Newton and cosmological constants.

For the field on the boundaries of the two halves to join smoothly, we need the
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condition [29]

85 _,

5o =" (3.9)

This equation expresses the fact that the normal derivative of the metric must be
continuous along the boundary that joins Lyy and X;r. Inserting (3.6) and (3.7)-

(3.8), this condition can be written in the form of a conventional 4-d Einstein equation

1 1
(Ruw — §9uvR) - §A49:w = 167G 4(Tw) (3.10)

Here G4 and A4 are the 4-d Newton and cosmological constants

1 =b+c Aq
167G, ' 167G,

= cg + by (3.11)

and we defined the expectation value of the stress energy tensor via

1 or

For the Planck brane to be flat for 7,, = 0, we must fine-tune the brane tension bg
to cancel the bulk contribution cg, so that A4 = 0.
We will use the Hamilton-Jacobi formalism to study the 5-d gravity equations of

motion in ADM form. The ADM metric can be written as
ds? = N%dr? + g,,(z,7)(dz" + N*dr)(dz* + N*dr) (3.13)

where N is the lapse function and N* is the shift function. We are working in
Euclidean signature and r plays the role of a euclidean time. The flow in the radial
direction, r, will correspond to the holographic renormalization group flow. We can

use diffeomorphism invariance to choose the gauge, N = 1 and N* = 0. The canonical
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momentum dual to the 4-d metric is given by

T = _L %5k = cog"’ + 1 (R* — %Rg"‘”) + T (3.14)

vV—9069.
where we used eqns (3.7), (3.8) and (3.12). Geometrically, T is expressed in terms

of the extrinsic curvature K*” via

™ = K" — Kg
K" = VAR 4+ Vak (3.15)

with 7# the normal vector to the Planck brane.
We still need to impose the constraints from the equations of motion. The equa-
tions of motion for N* give the diffeomorphism constraints and the equation of motion

for N gives the Hamilton constraint which provide the Hamilton-Jacobi equation.

Let us introduce the notation

PR AV TN

The Hamilton-Jacobi equation for the 5-d bulk gravity can then be written in the

compact form,

{S[R, S[R} + vV —g(R + A) =0. (3.17)
We now separate Sy, into terms with different scaling dimensions
© @
Se=a [v=3, Soe=ci [V=aR (3.18)

and impose the condition that all terms of a given scaling dimension sum to zero in

the Hamilton-Jacobi equation. We get

Stoer St} = —V=gA => A——gc0 (3.19)
252,59} = — /=GR = c1=—%. (3.20)
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The next order relation

2{Sioer T} + {Stoes Sicc} = 0 (3.21)
gives the conformal anomaly equation

V3

0 ="tam

(R*-3R*"™R,,). (3:22)

The conformal anomaly is a quantum effect in the 4-d gauge theory coming from
a one loop diagram. Here we have reproduced the result from the 5-d perspective
using classical dynamics. This illustrates how the classical 5-d dynamics in fact knows
about the quantum effects of the 4-d system.

Summarizing, we see that the 4-d effective Einstein equations of motion (3.10)
involve a stress-energy contribution that arises from “integrating out” the degrees of
freedom that reside in £;z. In most studies thus far, this stress-energy distribution
was taken to be static. In the following section, we will consider a time-dependent
solution to the 5-d equations of motion that in 4-d corresponds to a contracting cloud

of matter.

3.3 5-d Perspective on a Contracting Cloud

Here we will describe how one can use the global conformal symmetry to obtain an
explicit solution for a collapsing stress-energy distribution, as well as for the dual 5-d

geometry. We will assume that the boundary has the topology of S3 x R, with metric
ds® = —dr? + R*(d§? + sin® 9 dQ2). (3.23)
To introduce a finite stress energy, we begin with heating up the gauge theory

matter, so that the dual 4+1-d geometry becomes that of an AdS-Schwarzschild
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black hole with metric

d32=—(1+u2——‘i)d1'2+ —duz—-f-uz(dﬂz-ksinzOsz) (3.24)
u? 1+ u?—pfu? 2" )
Here the radius of curvature of AdS space has been set to 1 and the parameter 4 is

related to the mass M of the black hole via

_ 8GsM
p=—— (3.25)

The temperature of the 3+1-d gauge theory matter, in units of the radius R of S3, is

given by
27y,

aithe N 2 1_H _
AT vy +1- 5 =0, (3.26)

0

B =

Here u, denotes the location of the 5-d black hole horizon. The boundary stress-
energy distribution corresponding to this solution can be calculated by using the

holographic prescription discussed in the previous section [30]
T, = diag [ p, p, psin®f, psin®dsin’], p=p/3 (3.27)

where a,b = {7,6, 9,9} and

M 3

p = pO + pua.c Po = -271'_2R§’ p'ua,c = m (3-28)

Here pyqc is a non-zero Casimir energy that arises from the finite curvature of the S3.

We will now perform a conformal boost on the thermal plasma, setting it into a
specific converging motion, so that all matter eventually gets concentrated inside a
small region, say at 8 = 0. To find the appropriate form of the conformal boost, we

note that after the coordinate transformation t +r = tan("f—a), the metric becomes
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Figure 3.1: The amplitude of the energy density T;: is plotted as a function of time
7 and angle §. We have set py = 0 and [a| = 10.

conformal to Minkowski space. In Minkowski space coordinates, the special conformal

transformations on the four vector [ = (t,7) is given by

g i+be
1+2b-1+b22

(3.29)

We will choose b = (a,0,0,0). If we now go back to the metric on S2, this special

conformal transformation implies
- 1
cot Ty = cot Ty + a, Ty = 5(7‘ +6). (3.30)

To obtain the transformed stress tensor, we apply this conformal transformation on
the classical part (proportional to py) only, and not on the extra Casimir energy
density pyec. To see that this is the right prescription, recall that the transformation
we are performing is in fact a combined coordinate and Weyl transformation, with

the combined effect that the new metric is again the standard metric (3.23) on S3.
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Unlike the classical part, the Casimir energy contribution is not Weyl invariant, and
in precisely such a way that the compensating Weyl transformation cancels the effect
of the coordinate transformation. Concentrating on the classical part, we find that it

takes the following form:

4
T= Wi +3W2),  Ti=3aWil., Tg=mGWi+W2), (331
F(7 )£ F(7 - 1
ARELGIELIC0 N N pp— 2 . (332
2 sin?(7¢) + (cos(7+) — asin(7))

It is easily verified that the energy density T;; indeed oscillates via a subsequent
contracting and expanding motion towards the two poles, § =0 and 8 = , see figure
3.1. We will mostly be interested in the moment of maximal compression in the limit
that a becomes large. Note that the energy density is quite highly concentrated in
an annular form as it oscillates between the poles.

From the 5-d perspective, applying the conformal boost amounts to giving the
AdS black hole an initial radial velocity towards the Planck brane. To write the
isometry of AdSs that corresponds to the above special conformal transformation, we

introduce the matrix

Xo+X:1 Xo—-X;3

= (3.33)
Xo+ X3 X+ X,
Xo = V1+u2cosT, X1 =u cosf
Xe = V1+u?sinT, X3 =usinf
on which the above special conformal transformation acts via
la
M' = AMAT, A= (3.34)
01
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Figure 3.2: Location and shape of 5-d black hole horizon at times, 7 = 0.2,0.3,0.9.
We have set u, = 1 and a = 10. The plot is in spherical polar coordinates where

the right horizontal axis corresponds to § = 0 and the vertical axis corresponds to
=m/2.

In principle we can apply this transformation to the full black hole solution (3.24)
and obtain a time-dependent metric describing a 5-d black hole oscillating back and
forth towards the boundary. We will restrict our attention to the time-dependent

location (i, ¢, 0) of the horizon of this solution. Using the above characterization of
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the isometry, we obtain

2
w=|U|, U=%(uoc080+,/1+u§cosr) (3.35)

1+
§+ Tosinr (3.36)

where we assumed that a >> 1. See figure 3.2 for an evolution of the black hole

. o._uosine
WETT

R tanT =

horizon. When the black hole is at the center of the bulk space, it is moving at its
fastest towards one of the poles and is shaped like a pancake. This is consistent with
Lorentz contraction in its direction of motion as well as with the energy density of the
boundary theory being concentrated in a ring around the equator of the boundary. As
the black hole moves in towards the pole, the edge of the “pancake” black hole starts to
curl inward pointing to the annular region on the boundary where the energy density
has moved to. When the black hole is near its closest approach to the boundary, it is
shaped like an elongated ellipsoid pointing at the pole where the energy density on
the boundary is now concentrated.

It should be straightforward to extract the CFT stress-energy tensor from the time
dependent bulk geometry, using the formalism of [30]. One expects to find the exact
same stress-energy contribution as described above, plus the extra Casimir energy
contribution coming from the conformal anomaly. We will not explicitly perform this

calculation here.

3.4 5-d Perspective on 4-d Gravitational Collapse

We have described a 5-d black hole in pure AdS space in an oscillating trajectory, such
that at the moment of maximal amplitude it represents a maximally compressed cloud
of matter on the boundary. Due to the negative curvature of the AdS space-time,

the black hole feels a force that pulls it away from the boundary. This corresponds
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to the tendency of the 4-d CFT cloud to disperse. Now what happens when we add
4-d gravity, that is, compactify the AdS-geometry with an effective Planck brane at
some radial location u = u,? We will see that an interesting 5-d picture emerges:
as we show in the Appendix, the presence of the Planck brane produces a new 5-
d gravitational force on the black hole that will counteract the acceleration due to
the AdS curvature, and pulls it towards the Planck brane. This force is the 5-d
manifestation of 4-d gravity, that will try to compress the cloud. Intuitively, we can
view this new force as the attraction due to a “mirror mass” located at the opposite
side of the Planck brane. Which of the two forces wins, the AdS acceleration or the
4-d gravity, or whether by chance they may balance each other, depends on the mass
and distance of the black hole to the boundary, or equivalently, the mass and size of
the cloud.

So we have set up a situation in which in principle we can start to study 4-d
gravitational collapse from a higher dimensional perspective. In practice, however,
this is a very complicated task, because the full dynamical equations of motion one
would need to solve are highly non-linear. In the following we will contend ourselves

with making a number of qualitative and semi-quantitative remarks.

(i) Before addressing the time-dependent problem, it is useful to first contemplate
which possible time-independent solutions may exist. In principle we can imagine
three different situations as indicated in fig 3.3.

First, it could happen that a bulk black hole feels a net zero force, due to cancella-
tion of the AdS acceleration with the gravitational pull of the Planck brane. Assuming
the black hole horizon does not intersect the Planck brane, this corresponds to a static
cloud: a star made from CFT matter! Note however, that it is an unstable star: since
(relative to the constant AdS acceleration) the 4-d gravitational pull gets stronger

near the Plank brane, any perturbation of the center of mass will result in a falling

i
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Figure 3.3: There are three static solutions where the gravitational attraction of the
Planck brane is balanced by the acceleration of AdS space. If the 5d black hole
doesn’t intersect the Plank brane, an unstable 4d colored star forms. If the 5d black
hole intersect the Planck brane but its center of mass still lies in the bulk, then a 4d
colored black hole forms. The last solution is a collapse of the 5d black hole onto the
Planck brane forming a 4d black hole.

motion either away or towards the Planck brane. In 4-d language: the CFT star is
unstable against dispersion or gravitational collapse. Apart from this instability, it is
clear that the 5-d black hole, though deformed by the presence of the Planck brane,
will otherwise remain intact. The possible existence of these CFT stars is further
supported by the known existence of classical colored stars [32], which are similar
unstable solutions to the classical Yang-Mills-Einstein equations (which classically is
also a conformally invariant interacting theory coupled to gravity).

As a second type of static situation, it is conceivable that the two forces balance
for a 5-d black hole, with a center of mass still in the 5-d bulk, but with a horizon
that already intersects the Planck brane. This is an unstable colored black hole: on
the outside it looks like a star of CFT matter, while its center in fact contains a
(potentially very) small black hole. Again, such solutions to classical YME equations
are known to exist [34].

Finally, the 5-d black hole can collapse to a brane-world black hole. From the 4-d

perspective this is just a 4-d black hole.

1
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(ii) To decide conclusively whether one or more of the three situations depicted in
fig 3.3 is actually realizable as an exact solution, one would need to solve the bulk
5-d Einstein equations in combination with the full non-linear equation of motion for
the Planck brane. This last equation can be obtained from the effective 4-d Einstein
equation (3.10), which can be recast, using (3.14)(3.15), as a condition that relates

the intrinsic and extrinsic brane geometry as follows:
bog™ + by(R™ — %Rg“”) — K™ — Ko, (3.37)

One possible procedure for trying to find exact solutions, which was followed with
success in [28] to find a brane-world black hole in 3+1-d AdS, is to start with a static
5-d geometry of an accelerating black hole at a constant AdS radial position (held
at a fixed distance from the boundary by means of a string), and then try to find
a suitable trajectory for the Planck brane solving (3.37). For another approach see
[36]. An interesting aspect of this situation, as emphasized in [31], is that it in fact
describes a solution to the 4-d effective Einstein equations with a stress-energy source

that includes the quantum corrections due to the conformal anomaly.

(iii) From the full 10-d perspective, the transition between the bulk and brane-world
black hole is topologically described as follows. The bulk black hole dual to the

thermal cloud has an 8-dimensional horizon with topology
Hg = 53 X Ks. (338)

It is entirely contained inside X;p. During the gravitational collapse, the black hole
horizon extends into the UV part of the compactification manifold, and eventually

fully wraps Zyv. The horizon of the collapsed black hole has the topology

Hg = Hip U Hyy (339)
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with
Hip = B3 x Ks, Hyv = S* x (Ks — Bs). (3.40)

Both components are glued together at the common boundary S2x K. The transition
from (3.38) to (3.39)-(3.40) is a higher dimensional version of the inverse Gregory-
Laflamme transition.

The entropy of both the bulk black hole and the collapsed black hole is in complete
accordance with the 4-d interpretation. The 10-d Planck area of (3.38) is the 5-d
Planck area of the S3, which is known to match with the standard extensive entropy
of the corresponding thermal 4-d CFT cloud. The leading contribution to the 10-
d Planck area of the collapsed black hole horizon (3.39)-(3.40), on the other hand,
comes from Hyy which essentially equals the 4-d Planck area of the S2.

(iv) Turning to the time-dependent evolution, we can similarly imagine three basic
types of dynamical behavior, separated by the static solutions described above. All
these three types of behavior have indeed been found in numerical studies of the
classical Einstein-Yang-Mills equations [32] [33] [34]-

Firstly, the 5-d black hole may stay far enough away from the Planck brane so
that the effective 4-d gravity remains too weak to counter-act the AdS acceleration.
The 5-d black hole, and the corresponding CFT cloud, essentially follow the same
trajectory as described in the previous section. Only now, they are slightly deformed
by the presence of 4-d gravity. We call this the dispersion regime.

Secondly, the 5-d black hole can have a large enough initial velocity, so that it
comes so close to the Planck brane that it collapses to a brane-world black hole. We
will call this the regime of type I gravitational collapse: in the boundary theory, it
represents the 4-d black hole formation in which almost all of the CFT matter ends
up inside the horizon. This regime is separated from the dispersion regime by the

process of unstable star formation.

T 54 67 A e e
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Finally, one can imagine an intermediate regime in which the center of mass of
the 5-d black hole is far enough from the boundary to be pulled away from it by
the AdS acceleration, while the horizon still extends far enough to intersect with the
Planck brane. From the 4-d perspective, this intersection looks like the formation
of a small black hole inside of a CFT cloud. The cloud eventually disperses, leaving
behind a small black hole. This type of phenomenon is indeed known to occur in
classical Einstein-Yang-Mills theory, and is known as type II gravitational collapse.
It is separated from the type I collapse regime by the formation of a colored black
hole.

(v) We can make some rough estimates on the range of parameters in which these
three types of behavior can occur. The motion described in the previous section
is parametrized by two basic parameters: the mass density py of the initial static
background, and the boost parameter a. Let us first determine in which regime
we expect type I collapse. For this it is sufficient to consider the linearized gravity
equations.

At the moment of maximal contraction and for small 6, the energy density takes

the form

48ppa?

and the total energy at this moment equals (here R is the radius of the three sphere)

24m2po R3

In the Newtonian approximation, the gravitational self-energy of this mass distribu-
tion is

n3p8 R®

2 (3.43)

Vyraw =~ — 288G

This result is accurate for as long as the energy density and its backreaction on the

geometry remain small. This assumption clearly breaks down when pg is taken so
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large that V4, becomes of the same order as E,,:. This happens around

1 1

Pt = TorG R2 ~ BR? (3.44)

At this point the system becomes unstable against type I gravitational collapse. Note
that this criterion of type I collapse is in fact, in leading order, independent of the
conformal boost parameter a. This is somewhat counter-intuitive. The reason is
that, although the cloud is highly compressed for large g, the total energy also scales
inversely with a2. Still it is clear that if a gets too large, the center of mass of the 5-d
black hole will inevitably reach the Planck brane.

Type II collapse occurs when the 5-d black hole horizon reaches the Planck brane.
In principle the location of Planck brane is dynamical, and reacts to the stress energy
of the 5-d black hole. As a first approximation, however, we can assume that, for
small enough 4-d density, it stays fixed at its vacuum location. To determine this
location, we first note that the location ug of the original 5-d black hole (the one at
rest at the AdS origin) is related to pg via

3ug
Po =
16w G5

(3.45)

where we used that ug >> 1. This uf scaling reflects that po has dimension 1/ (lenght)*.
Now it seems reasonable to identify the radial location uy of the Planck brane with
the location of the horizon of a 5-d black hole corresponding to a 4-d CFT thermal
gas with the 4-d Planck density. This gives

Uo
~—— 3.46
upl (po) l/4£pl ( )

Next, from (3.35) we see that, at the moment of maximal amplitude, the horizon of

the boosted 5-d black hole reaches radial location umax = a®uo. Thus the horizon will

|
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Figure 3.4: The phase diagram for gravitational collapse of 4d gauge field.
start to intersect the Planck brane around the critical value

2 1

crit = (p0)1/4epl . (3.47)

a

Assuming that pp is (sufficiently) below the critical value (3.44) for type I collapse,
this critical value a;; separates dispersion from type II collapse. It is interesting to
note that the transition to type II collapse seems to occur while the maximal density
at the center of the CFT cloud is pmax =~ poaZs = (p0)%*/€p, which is still much
smaller than the Planck density. Hence our approximation of treating the Planck

brane location as fixed should still be reasonably accurate in this regime.

(vi) Thus we arrive at an interesting phase diagram for gravitational collapse as
indicated in fig 3.4. This phase diagram has the same structure as the one found
from numerical study of the classical Einstein-Yang-Mills equations. Although a full
analysis of the non-linear dynamics will produce some modification of the diagram,
we expect that this will not change the main characteristic properties. The most
interesting point of the phase diagram is the tri-critical point where all the three

possible regimes meet: it corresponds to a 5-d static black hole solution whose horizon

]
i
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just barely touches the Planck brane. It is specified by py = po e and @ = @erie, and
represents the beginning point of type II collapse. When a slightly exceeds its critical
value, the collapse and subsequent dispersion is expected to produce a small 4-d black

hole with a mass that scales with a = a;; with a universal exponent

men ~ (@ = Gcrit)”- (3.48)

This is known as Choptuik scaling. Perhaps the 5-d perspective provides some new
insight into the origin of this behavior. It is tempting to speculate that the exponent
v may be related to the cusp like shape of the 5-d horizon when it touches the Planck

brane.
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Chapter 4

Chiral Compactifications of 6D

Conformal Theories

4.1 Introduction

! In recent years it has been realized that many 3+1D gauge theories can be obtained
as special low-energy limits of compactified 5+1D superconformal theories. Some of
{ the known 5+1D theories are the N’ = (2, 0) theory [37], the Eg N = (1, 0) theory [38]
and the Blum-Intriligator (BI) [39] theories of N M5-branes at an Ag_; singularity.

Indeed, part of the appeal of these theories is that by compactification on T2 we
can get various gauge theories in 3+1D at low-energy. Thus, N’ = 4 SYM is obtained
from the (2,0)-theory [37] and N'= 2 SYM with various matter content is obtained
from the Eg N = (1,0) theory [40, 41].

Starting with the 5+1D BI theories we can compactify on S! to get, at low-
energies, the N = 2 quiver gauge theories with gauge group SU(N)* and bi-fundamental
matter hypermultiplets [42]. One can also realize a mass to the hypermultiplets by

using the global U(1) symmetry of the BI theories. Turning on a small background

52
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Wilson line for that U(1) corresponds at low energy to turning on the mass [43].

In this chapter we will construct chiral 3+1D theories from the BI theories. As an
intermediate step, we start with a 4+1D hypermultiplet. Given a hypermultiplet in
441D we can construct a low-energy chiral multiplet as follows. Let us take an infinite
5% direction and let us give the fermions of the hypermultiplet a mass m(zs) that
varies along the 5% direction from m = —oo at z5 = —00 to m = 0o at z5 = 0o (see
[44]). As we shall review below, if we also let the scalar fields have masses \/;z;_ig";
then in the remaining 4 dimensions N’ = 1 supersymmetry is preserved and at low
energies we get a chiral multiplet localized near the point where m(zs) = 0. Thus, by
varying the mass of the hypermultiplets in a 5D gauge theory along the 5** direction,
we can obtain, at low-energies, a chiral gauge theory in 4D.

A 5D gauge theory is only defined as a low-energy effective action. However,
we can realize it as a 6D theory compactified on a circle. We would like to elevate
the construction of chiral gauge theories to 6D. One motivation for that is that a 6D
realization often provides insight into the strong coupling behavior of the theory. The
6D theories that we will use are the BI theories and the construction of chiral gauge
theories from their compactifications is the purpose of this chapter.

The chapter is organized as follows. In section (2) we review the example of a
4+1D hypermultiplet. In section (3) we study the compactification of a general 5+1D

theory. In section (4) we discuss the BI theories and their compactification.

4.2 A free hypermultiplet

In this section we will study a free hypermultiplet in 541D and 4+41D. The reason
for studying this simple system is that it gives us an explicit realization of the mech-
anism which produces chiral matter in 3+1D. We will later apply the same type of

compactification to obtain chiral matter in 3+1D starting from 5+1D theories.
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We will show that a 4+1D hypermultiplet with a mass that varies along the 5th
direction preserves A’ =1 SUSY in 3+1D and gives rise to chiral multiplets. The
4+1D hypermultiplet with a varying mass can be obtained from a 5+1D hypermul-
tiplet compactified on a circle and coupled to a background field.

1 A 541D chiral hypermultiplet

A convenient way of getting the quantum numbers of a 5+1D bypermultiplet is to
start from 9+1D super Yang-Mills reduced to 5+1D. This theory comprises of a single
multiplet under the A" = (1,1) SUSY. However, under an N = (1, 0) subgroup of the
supersymmetry algebra it decomposes into a vector-multiplet and a hypermultiplet.
The statements below follow easily by thinking about the system in this way.

A hypermultiplet in 541D (with A" = (1,0) supersymmetry) contains 4 real scalars
and one chiral fermion. It is convenient to decompose the components under the
Lorentz group SO(5, 1), the R-symmetry group SU(2) and the global flavor Ssymme-
try SU(2)r. Under SO(5,1) x SU(2)g x SU(2)F the SUSY generators @, transform
as (4,2,1). Note that both 4 and 2 are pseudo-real representations so one can add a
reality condition to have 8 real SUSY generators. Here i = 1,2 is an index of the 2
of SU(2)r and a = 1...4 is an index of the 4 of SO(5,1). We will assume that the
hypermultiplet is charged under SU(2)r. The fermions of the hypermultiplet trans-
form as (4,1,2) with an added reality condition. We will denote them by 92 with
a = 1,2 an index of SU(2)r. The bosons transform as (1,2,2) and will be denoted
by ¢*. Recall that the Dirac matrices, I"Zﬂ (b =0...5), of SO(5,1) can be chosen
to be anti-symmetric. In the rest of the chapter they will be anti-symmetric. We
will also use the anti-symmetric ¢;; of the 2 of SU(2)x to lower and raise the indices

i,j=12.
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The reality conditions are,
(¢ia)f = CbaCji¢'i61 (¢,’§)f = Cabcﬁa :1 (41)

where C,?, C;* and Cs” are the charge conjugation matrices of (respectively) 2 of
SU(2)p, 2 of SU(2)g and 4 of SO(5,1).

The action is
1 . . 1
S = /dez (—Zeijeaba,,cﬁ'“a“(ﬁ’b + §€ab¢:FMﬁau¢g) .

Our sign conventions are €5 = €!2 = 1. The equations of motion derived from this

action are

0¢“ =0, I“%g,y%=0.
The supersymmetry transformations are:

547 = S, Syl = eynP ;8,47

2 A 441D massive hypermultiplet

Now we will consider a massive hypermultiplet in 4+1D. The quantum numbers,
action and supersymmetry transformations of this can easily be obtained from the

5+1D case. We consider a 5+1D hypermultiplet with a specific z° dependence.

¢*(z,2%) = ()€™,

Y4 (z,3°) = P(z)(e™T)e, (4.2)
Here z stands for z°, z!, 22, 23, z* and
S_ 1o
0 -1

is inserted to give the right sign in the exponential. ¢' and ¢*> must have different

signs because of the reality condition (4.1). The quantum numbers are the same as
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S0(4,1) x SU(2)r x SU(2)F, where SO(4, 1) is the Lorentz group and SU(2)g and

in 5+1D. A 4+1D massive hypermultiplet contains 4 bosons ¢* in the (1,2,2) of

SU(2)F are the R-symmetry and flavor symmetry, respectively. It also has fermions
¥ in the (4,1,2). Recall that the representation 4 of SO(4,1) has an invariant
anti-symmetric form €, which we will use to lower and raise indices. From the 5+1D
point of view that is just ['° which commutes with SO(4, 1) transformations. The

action in 4+1D is obtained simply by plugging the fields in (4.2) into the 541D action.
1 ) i o
S = [ - Jesca@s 06” + migig®) + S CastTH00,4

+§ime,.,.(r3):¢;r5°ﬂas¢g)

The equations of motion follow:
(O+m?)¢™ =0, PG +im(r), Ty = 0.

The reality conditions on the fields are the same as in 5+1D, as is obvious from
the way we obtained them. The SUSY transformations are obtained from the 5+1D

transformations:

8¢ = ™y,

s = e’ Thgdud™® + imeijn® Tas(m’)5e”. (4.3)

3 Variable mass

We will now discuss a reduction of the 4+1D massive hypermultiplet to 3+1D in a way
that preserves half the supersymmetry (i.e. A" =1 in 3+1D) and can produce chiral
multiplets. This reduction was also discussed in [44]. We pick a spatial direction z*
and let the mass vary as a function of z* only. Let this function be m(z?). In the
previous subsection we wrote down the action and supersymmetry transformations

for a massive hypermultiplet. The mass, m, was constant. The question is what
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action should we use when m is not constant. The only condition the new action
must fulfill is that it reduces to the usual one when m is constant. However that
only determines the action up to terms involving derivatives of m. Since we are
interested in preserving some supersymmetry we will impose the condition that the
action should be invariant under the transformations (4.3) for some 7. Varying the

above action, now with m(z*) a function, gives:
5(S) = / 452 1 (%) (7%) 2T (TATS) 2.
Here m/(z4) = dm/dz*. Let us try adding the following term to the Lagrangian:
Loy = :lim'(x“) eab(,rs)cbe‘_j(rs)kj piagke.
The supersymmetry variation of this term is:

1' o, ai,a tkc
5(Lnew) = 5’ (@)eas(r?). ey (") 2005 6"

We see that this term cancels 6(S) if
()i 1™ = g7 (), (44)
This equation breaks half the supersymmetry and leaves N’ =1 in 3+1D.
We thus conclude that a sensible action for a hypermultiplet with a varying mass
is:
1 . ) . .
S = /dsz( _ Zeijfab(ap¢'aa“¢1b + m2¢:a¢)b — ml(l.tt)(T3)cb(,r3)k1¢m¢kc)
1 1. a c
+eaVaT 0,05 + 5zmem,,(#)c"w‘,rsmf’as,zpﬂ). (4.5)
It preserves the supersymmetry transformations (4.3) when 7 solves (4.4). The equa-

tions of motion are:

(O +m(z)?) ¢ — m'(z*)()i(r)se” = 0O, (4.6)

#8998 + im(z*) (r%), Ty} = 0.
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4 Chiral zero modes

As usual one can reduce the fields along the z* direction and find the modes seen
from a 3+1D point of view. The z* direction is noncompact here. Later we will
consider the compactified case. Let us find the massless modes in 3+1D. Since N =1
is preserved in 3+1D we know that the fields have to come in chiral multiplets. The

f bosons will have a 3+1D massless mode for every solution of (setting y = z*):
(— 57 +m0?) 6 =m0 =0
The fermions will have zero modes for every solution of:
(iT*0%),” %w; +m(r3) Y = 0.

We see that the bosonic equation is the square of the fermionic one in a certain sense
and that the term proportional to m'(y) is essential for this. The solution to the

fermionic equation is:

Ply) =TT R g,

Here we use matrix notation and suppress indices. Both matrices (i['*I'°) and 72 have
eigenvalues +1 and —1. For the solution to be normalizable it is thus necessary that

either:

y
/ m(y')dy’ = o for y — oo.
0
or
v
/ m(y')dy' = —o0 for y = +o0.
0

In the former case the solution is normalizable if 4, has the same eigenvalue as (i[*I)
and 73 and in the latter case the eigenvalues must be opposite. In both cases we end
up with two chiral spinors in 3+1D which are related by the reality condition (4.1)

leaving one independent chiral spinor.
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The solution to the bosonic equation is:

O(y) = e REI MWW g

where again we suppress indices. The 73 matrices are written with a subindex to dis-
tinguish the R-symmetry and the flavor-symmetry. There is a normalizable solution
exactly in the same two cases of [ m(y)dy’ as above. In both cases there are two
solutions which are related by the reality condition. So there is one massless complex
boson in both cases. This one pairs up with the chiral fermion to give a massless
N =1 chiral multiplet as we expect. (For a similar mechanism, see [45].)

The condition on m(y) stated above implies in particular that m(y) crosses zerc
at some point. A particular example of an m(y) that obeys the condition is a function

that goes to —mg for y — —oo, crosses zero and goes to my for y — co.

5 Flavor current multiplet

In subsection (2) above, we generated a 4+1D mass by reduction from 5+1D requiring
that the fields have a specific z° behavior (4.2). If one just compactifies on a circle,
the 441D theory will have a tower of Kaluza-Klein states with the lowest one being
massless. The massless mode is the constant mode on the circle. The theory has a
current, J,, associated with the U(1)r symmetry. We can introduce a background
gauge field, A,,, that couples to this current. Creatinga Wilson line for the background
gauge field, A,, around the circle is equivalent to changing the periodicity condition
of the 5+1D hypermultiplet fields. They will be identified with themselves up to
a U(1)r rotation. This gives them exactly the z° behavior of (4.2). In a circle
compactification with a Wilson line for 4, there will still be a Kaluza-Klein tower of
states in 4+1D but their masses will be shifted with an amount proportional to the
Wilson line. The U(1)f is part of an SU(2)r symmetry. The 5+1D hypermultiplet
has a current J* (A = 1,2,3 is an index of the 3 of SU(2)) associated with the
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SU(2)r flavor symmetry. This Noether-current is easily found from the action. By
applying supersymmetry transformations to the current one finds that it is part of

the following supermultiplet:

1 . . . : 1 a a,/C
A = igesealr) ($08" — 0,6767) — izea(r?) TPULY;,

SIA = iy (Th) PO,
DA = %ie,,,,(rf‘)c”ﬂcq&f“. (4.7)

Note that D4 is symmetric in 7 and j. The SUSY transformations of these operators

are:
S = en™(*).28,55%,
8S3t = 0%, J2 + en™ T8, D94,
§DUA = geigiA 4 poigid
In the transformation of J;f the equation of motion for vy, was used.
Since a mass in 4+1D comes from the component As along the circle, a mass
varying in the z* direction comes from an As which varies along z*. In other words,

there is a nonzero field strength Fys. The usual way of coupling A, to a theory is by

adding
/ d°zJ, A*

to the action plus a term proportional to A? in order to preserve gauge invariance. In
the action (4.5) the terms proportional to m and m? come from this coupling. What
about the extra term needed for supersymmetry? We see that it is proportional to

D'4=)3_ Since m/(z*) is Fy5 we see that the extra term is just proportional to
/d62F45D12(A=)3.

We will apply these observations to more general systems in the next section. The

important point is that the deformation of the Lagrangian can be expressed in terms
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of the current J, and its superpartner D without referring to the specific fields of the

theory.

4.3 Construction from 6D

We wish to analyze the situation starting from a general 5+1D theory. We start with
a 5+1D theory with A = (1,0) supersymmetry and a global U(1) symmetry and we
compactify it on T?. We wish to put a background gauge field A, that is associated
to the U(1) symmetry along T? such that the first Chern class will be ¢; = n. The

question is how do we do it while preserving half the supersymmetry.

1 The current multiplet
The 541D theory has a current J), associated with the U(1) symmetry. The current is
a member of an N = (1,0) multiplet which also contains a fermionic partner S, and a
bosonic “D-term” partner DY as we saw in subsection (5) for the free hypermultiplet.
Here, ¢, = 1,2 are SU(2)g symmetry indices and DV is symmetric. They satisfy:
§J* = en™(I*)."8,5}
JSf,' = ni"Fg,,J,, + ekm"kl‘g.,a,,(D"j ) (4.8)
6DY = n=SI +nS:
We claim that compactifying on T? and adding:

S =- /(A4J4 + AsJs + iF45D12 +--) (4.9)

to the action gives a supersymmetric theory with A" = 1 in the uncompactified 3+1D.

The 7 in the second term is necessary to make the action real, since D'? is imaginary.
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The (---) represent O(A2) terms that are dictated by U(1) gauge invariance. For

example, if under a local U(1) transformation
0J, = 0,€0,
we have to add }A,A*O to the Lagrangian.
In order to see that N =1 is unbroken we calculate the supersymmetry variation
of S; using (4.8).
881 = [ Auesn™(T")20,5}) +iFis(n™ Sk +153)
- / (Fis(T*) 1% + iFisnf?)Sh + (= Fus(T*%)a"n®! + iFysn) S5
which is equal to zero if
(Imts)aﬂnal = infl, (F45)aﬂna2 = —inf2,
These two equations are complex conjugate of each other. We see that we are left

with A =1 in 3+1D.

2 Example — a free hypermultipet

After compactification on a T2 to 3+1D we would like to know the masses of the
fields. There will be a Kaluze-Klein tower of fields. In the low energy limit we are, of
course, only interested in the massless fields. Let us go back to the free hypermultiplet
and calculate the Kaluza-Klein masses. We need only do it for the fermions because

of N = 1. The Dirac equation for the fermions reads
V=0

where V, = 0, + 1A, is the covariant derivative with respect to the U(1) symmetry.
In our case the only nonzero components of A, are A4 and As. In reducing to 3+1D

% can be written as

Y =199 + YrOr
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where %r,vYr are left- and righthanded spinors in 3+1D and ¢;,@r are left- and
righthanded spinors on T2. Plugging into the Dirac equation we get the following

formula for the mass m in 3+1D.

(ViL4+VsDs)gr = moL
(VL4 +VsIs)gr = —m*og (4-10)

The mass m is a complex number. The physical mass is the absolute value of m. The
phase can be transformed away by redefining ¢., say. The phase would then show
up in the couplings. In the free theory there is no meaning to them. We will just
rotate the phase away for now and let m be real. We see that for m # 0, ¢, and ¢r
come in pairs. This implies that in 3+1D 1, and 1&g come in pairs of the same mass.
This is as it should be, since a chiral spinor that is charged under a U(1) symmetry
cannot be massive. Both a lefthanded and a righthanded spinor are needed for a mass
term. However for m = 0 there is no relation between a lefthanded solution and a

righthanded one. For each solution of
(Vals + VsIs)gpr =0

there is a massless righthanded fermion in 3+1D and for each solution of
(Vil'y + VsIs)gr =0

there is a massless lefthanded fermion in 3+1D.

Eq. (4.10) implies second order differential equations for ¢; and ¢z:

(Vi+Vi-Fg)p = —mi¢y

(Vi+Vi+Fis)pp = —-mPer (4.11)

These equations are the same as the ones determining the boson masses. It had to be

so due to the supersymmetry. In these equations A, is a connection in a U(1)-bundle
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over T? and ¢ g are sections of this circle-bundle. The setup here is the same as a
charged particle on a torus moving in a background magnetic field (Landau levels).
For a general A, the eigenvalues m are not known, to our knowledge.

We can say more about the case of m = 0. Here we find the zero modes of the
Dirac equation in 2 dimensions for respectively lefthanded and righthanded spinors.
The number of those will depend on the gauge field A, but the difference between
the number of lefthanded and righthanded zero modes is known as the index of the

Dirac operator. It is equal to the first chern class, ¢;, of the circle-bundle.

1
—— — F
it 27 T2 4

For a generic gauge field there will be |c;| solutions of one kind and 0 of the other
kind. But for special gauge fields it could be different. An example of a special case
is the case of A, = 0. Here ¢; = 0. There is one zero mode of each chirality, namely
the constant function. We thus conclude that in the theories under consideration the
hypermultiplets will give rise to ¢; massless chiral multiplets. Even in the special
cases mentioned above this will also be the case, since the couplings generically will
lift the accidental pairs and still leave us with ¢, massless chiral multiplets.

Now we will consider the special case of constant Fys, where the problem has an
explicit solution. Let the first chern class be ¢, = n. We will take the fields to obey

the following boundary conditions.

¢(1’4,$5 + 27I'R5) = ¢(I41 175)
¢(z4 + 27 Ry, z5) = e-in%¢($4,$s)

Here ¢ denotes both ¢r and ¢,. The gauge field can be gauge transformed to the

following form:

A4(I4,I5) = a4

nc
As(z4,25) = 27rR:R5+a5
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Here a4,as5 are constants. On the plane they could be gauged to zero, but on the

torus they are there in general. The eigenvalue equations (4.11) now read

2
[(64 + ia4)2 + (65 +1 + 20.5) + F45} o = —m2¢,

R4R5
where the + refers to ¢ and ¢, respectively. The periodicity conditions above imply

that we can write ¢ as:

banzs)= D *Bau(z) 0z < 2Ry, (4.12)
k=-00
with the boundary condition:
¢x(2TRs) = Pr+n(0). (4.13)

The equation for ¢ for 0 < z4, < 27 R4 becomes

k 2
[(34 + ia«t) (ZE; + 12;24}25 + ias) + F45] Br(z4) = —mPPi(z4). (4.14)

Using the boundary condition (4.13) we can define n functions, fi,k =0,1,...,n—1

on the real line:
fi(z4) = Orin(z4 — 2w R4l) for 2Ryl < z4 < 2wR4(l +1).

It follows from (4.14) that f; for —oo < z4 < 0o obeys

2
[(34 +iag)? + (Zﬁkg + z27rR4R5 + ws) + F45} fi(za) = —m? fi(z4). (4.15)

Here £k =0,1,...,n—1 and = still refers to the two chiralities. We are only interested
in normalizable solutions. The norm square of a field ¢ in (4.12) is equal to the sum
of the norm squares of the n functions on the real line, fy. This means that the

eigenvalues and eigenfunctions are exactly the normalizable solutions to (4.15).
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To solve (4.15) we first redefine f; by a phase to set a4 to zero. This can now be
done since z4 runs over the real line. The equation becomes the eigenvalue problem

for a one dimensional harmonic oscillator. The eigenvalues are:

m? = (j+%q:%);ﬁ j=0,1,2,...
for each k£ = 0,1,...,n — 1. We see that there is a n-fold degeneracy of all masses.
There are n massless modes of one chirality and zero of the other. For the massive
levels there is an equal number of solutions of each chirality. These features were
general as discussed above and it is nice to see how it works in the special case of
constant Fjs.

We thus conclude that the free hypermuitiplet compactified in this way produces
n chiral multiplets with zero mass as well as a tower of nonchiral (double) multiplets
Qf'i (J=1,... and £=0,1,...,n — 1) with masses,

n
m = — 1;4 B

The superpotential therefore contains a term,

- — jn 12 k,+ 3.k, ~
ZZ(W&Rs) &

k=1 j=1

3 o-models

The previous example can be generalized to ¢ hypermultiplets describing a low-energy
o-model with a hyper-Kahler target space, M, of dimension 4q. Let us also assume
that M has a U(1) isometry that is related to a hyper-Kahler moment map. Re-
call that a hyper-Kihler manifold has a CP!-family of complex structures and each
complex structure has its own Kahler class. The collection of Kahler 2-forms can be

written as:

3
= 2 _
w= E CaWa, E c, = 1.

a=1
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Here, the w,’s are (real) 2-forms and the ¢,’s are real coefficients. They satisfy,

IJ KL 1] KL JL
Grxw, Wy + grxwy Wy -~ = 20a69” ",

where g;s is the metric (I,J,K = 1...4q). A hyper-Kahler moment map is a CPl-
family of functions on M:

3
B = Z Calla-
e=1

They satisfy,
w,{"axm, + w{’ajua = 25,,(,5’,

where &/ is the Killing vector for the U(1) isometry.
Now, let us consider a 5+1D o-model with target space M (the hypermultiplet

moduli space). (See [46] and [47].) The U(1) current is given by:
Ju =& a[l¢['

The role of the triplet of operators D¥ from (4.8) is played by the triplet of moment
maps y, (a =1...3). When we compactify on T?, (4.9) becomes:

S =- /(A4J4 + AsJs + tFyspy + -+ +) (4.16)

Let us discuss the low-energy description of this model. We wish to find the dimension
of the moduli space of solutions to the scalar equations of motion. The kinetic part

of the o-model:
[ 9069865 + [ 45(6.9)2699
leads to the following equations of motion:
0 = -8(g;0¢) — B(9;506") + 059.£09 &' + 35906 04"

We use the Kahler condition:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



68

and obtain:
(DD¢) =0, DD§ =0.

Here D is the covariant derivative:
(D¢)' =8¢,  (DD¢)' = 304" + T 0¢70¢".
This implies:
36=0, 9F =0.

The zero modes are thus holomorphic curves from T? into the target space, as is well
known. To incorporate the gauge field A, we replace d and 8 with the U(1)-covariant

derivative:
(5¢)j = 5z¢j - iAsfj-
Now let us fix the complex structure that corresponds to w; (out of the 3 w,’s). We

can then express the Killing vector, &, in terms of y; as:
& = g*opm. (4.17)
The zero modes corresponding to (4.16) are easily seen to satisfy:
0=0;¢ —iAs£. (4.18)

How many zero modes do we get? Let us assume that ¢’ is a solution and study the

linearized equation:
0 = B:6¢7 — iA:0,E960" — iA:0:6768 .

Using (4.17) we see that:
& = 9xs
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but since £ is assumed to be a Killing vector it must satisfy:

Oty + i = it

SO
Ot = F‘Ii:l 7
! Also,
&g = g Fgmag™ = —¢""TL,
Therefore,

g’ =0.
The linearized equations of motion are therefore:
0 = 0:0¢° — iA;0:E76¢".
To solve this we write the 2g x 2¢ matrix with elements A;5;&’ as:
—iA:0:8 = (07)}8:9,
where Q(z, Z) € GL(2¢,C). We find that:
9:(sg*) = 0.

Thus 20¢ is a holomorphic section of a vector-bundle. Moreover, from the Killing

vector equation:

& + A& = 20 & + 200 €; = 0.
We therefore find:
o' = agte + g*ag = ~Tit* - 5* 5
Using (4.18) we can write:

(9_1)2529{ = - iﬁﬂﬁl +iAzg’° ral'fk
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Now 8¢’ is a section of the pullback ¢*TM of the tangent-bundle T M of M under
the map ¢ : T? — M. This vector-bundle has the connection ,8:¢'. Thus, the
vector-bundle V, of which Q20¢ is a holomorphic section can be described as follows.
Find @ € GL(2g, C) such that:

QLY = iA: 07Ok = iA: g BBk

Then, € is a section of a principal bundle with the same structure group as V. This

means the following: Let T? be described by z, as we did, with
z~z41, Z~ZH+T.

If s is a section of V' then the boundary conditions on s are that €)(z, Z)~ s should
be continuous.

The eigenvalues of the GL(2q, C) matrix with elements ¢/'8;¢; pulled back to T2
are constants, and therefore also integers. The fact that the invariant polynomial
P()) = det(¢7'0& — Ad2) is constant follows from ¢! = 0. It implies that 8; P(\) =
0. Thus P(2) is a holomorphic function. If M were compact this is enough. Even if
it is not compact, it still follows that the pullback of P()) to T? is holomorphic and
therefore constant. Thus, the vector-bundle V splits into a product: ®fil O(nAX;)

where ); are the eigenvalues of P()). They must therefore be integers.

4 Coupling to a vector multiplet

Now let us start with a 54+1D hypermultiplet in the representation N (N) of SU(N)
and couple it to a 5+1D SU(N) vector-multiplet. Although this is a nonrenormaliz-
able interaction, we can think of it as the low-energy description of a sector of one of
the little-string theories of [48]. The 5+1D coupling of the vector-multiplet to the hy-
permultiplet preserves SU(2)r x U(1)r. Out of the two chiral fermions 2 (a = 1, 2)
one transforms in the N of SU(N) and the other transforms in the N of SU(N).
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Let us classically reduce, as before, on T? with a global U(1) background field
with first Chern class ¢c; = n. The hypermultiplet gives rise to n chiral multiplets
Q((,k) ¥ (k=1...n) in the N of SU(N) as well as a tower of massive multiplets <I>(k) -
(j =1...) where <I>§- " is in the N of SU(N) and <I>§-k)' is in the N. Their masses
are given by the superpotential,

Z Z ( )1/2 pE)+ gk,
14 \TR4Bs 7
The 5+1D vector-multiplet gives rise to an A’ =1 vector-multiplet in 3+1D and a
chiral multiplet ®,4 in the adjoint representation of SU(N). There is also a Yukawa

coupling of the fields ®q, ;™ and 6.

4.4 Compactifying the BI theory

We will now construct a specific example that produces chiral matter in 3+1D by

compactifying the Blum-Intriligator (BI) theories [39].

1 Preliminaries

Compactifying the BI theory of N M5-branes at an A;_, singularity on S! of radius

R one obtains a low-energy description given by a gauge theory with gauge group
SU(N); x SU(N)2 x -+- x SU(N);.

The sub-indices are added for purposes of identification. There are also hypermulti-
plets in the (N;, N;11) representation (with k+1 = 1). On top of that there are (k— 1)
more U(1) vector multiplets. The scalar components set the coupling constants of

the £ SU(N) gauge groups. These coupling constants, g;, (i =1...k) satisfy
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If we compactify on another S* of radius R’ we obtain a 3+1D gauge theory at low-
energies. The (k—1) U(1) vector multiplets that set the gauge couplings decouple and
the gauge couplings become background parameters. The interacting gauge theory
has a gauge group SU(N)* and (N;, N;;;) hypermultiplets. The coupling constants
and #-angles are set by (k — 1) background parameters (originating from the original
; (k — 1) U(1) vector multiplets) and subject to the condition that
i = zg T = —0'— + _8_7r_z
R’ T2 g2

i=1

2 Adding the background U(1) field

Now we take a specific 5+1D theory — the BI theory. Also, let the complex structure
7 of T? become very large. We can take T? = S! x S! with one S! of radius Ry
and the other with radius Rs < R4. We can first reduce the theory along Rs. The
holonomy W(z,) = jg"R’ As(z4,z5)dzs varies from 0 to 27n as 4 varies from 0 to
2T Ry.

For a fixed z,, the reduction of the BI theory along S! with Wilson line W (z,)
was studied in [49, 43]. For small W(z4) and at low energies 0 < E < Rj' the
theory is described by an effective 4+1D Lagrangian which is the quiver theory of
[42] of N D4-branes at an A,_, singularity but such that the hypermultiplets have a
mass m = W(zs)R;*. For generic z4 the mass is of the order of R;'. There are n
values of z4 for which W(z4) is a multiple of 27 and in the vicinity of those points
the mass m varies from a small negative to a small positive value. According to
the discussion in subsection (3), the 3+1D low-energy description contains a chiral
multiplet for every time the mass crosses zero. Note that the term Fs¢D' in (4.9)
becomes the term proportional to dm/dz* in (4.6). In subsection (3) the 4‘* direction
(counting from 0...4) was infinite and there was a continuum of massive modes with

arbitrarily low mass. In our case the 4** direction is compact and therefore we expect
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a discrete spectrum with the first level of order R;'. The chiral mode is likely to
remain massless because of arguments similar to those of [50].

The low-energy description in 3+1D will therefore contain n chiral multiplets for
each hypermultiplet of the quiver theory. We obtain an SU (N)* vector multiplets of
N =2 supersymmetry together with n copies of chiral multiplets (of N =1 super-
symmetry) in the (N;, N;;) representations, for each i = 1...k. The N = 2 vector
multiplets should be decomposed into A" = 1 vector multiplets and chiral multiplets
in the adjoint representation of the fields.

Let us now discuss the issue of whether the adjoint multiplets have a superpotential
or not. On the face of it, the adjoint mutliplets can receive a mass term. In the
limit that we have been using, Ry > R;, the mass term, if it exists, might be of
the order of R;'. However, the 6D origin of the expectation value of the chiral
multiplets is the expectation values for the k(N — 1) tensor multiplets of the 6D
theory. Specifically, let ® be the scalar of one of those tensor multiplets and let Bys
be the component of the anti-self-dual tensor field corresponding to it. We can set
¢ = 47%(® + iBys) Ry Rs. In the limit that ®R4Rs is large, we can trust the 6D low-
energy description of the Coulomb branch of the BI theory and dimensionally reduce
the 6D low-energy effective action to 4D on T? with twists. Because of the periodicity
¢ ~ ¢ + 2mi, a superpotential for ¢ has to have the form 3" aqe ™. We recognize
this as the contribution of instantons made from strings of the 6D BlI-theory wrapped
on T2. To determine whether such instantons contribute to the superpotential we
have to count the zero modes of the fermions in the low-energy effective action that
describes the world-sheet of the string. The world-sheet theory that lives on the
string of the BI theory can be deduced by dimensionally reducing the theory that
lives on the M2-brane and an A, singularity on a segment between two MS5-branes,

setting the boundary conditions appropriately. It seems that the 1+1D effective
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theory always has a supermultiplet of N = (2,2) supersymmetry which comprises
of 4 scalars (describing transverse motion of the string inside the 5+1D space) and
fermions that are uncharged under U(1). Because they are uncharged, and because
it is only the interaction with this global U(1) that breaks the supersymmetry into
N =1 in 3+1D, the instanton will have twice as many fermionic zero modes than

required for a superpotential. It will therefore not contribute to a superpotential.

4.5 Discussion

We argued that chiral gauge theories can be realized as a low-energy limit of certain
compactifications of 6D conformal field theories. There are several issues that we
have not addressed in this chapter. In section (2) we argued that the particular
compactification of the BI theory that we studied gives an SU(N)* gauge vector
multiplets of N’ = 2 supersymmetry together with n copies of chiral multiplets (of
N =1 supersymmetry) in the (N;, Ni,) representations, for each i = 1...k. Some

questions for further study would be:
e Do the adjoint chiral multiplets get a mass term?

e Can we realize the compactifications in an M-theory setting? That is, can we
find a supergravity solution with M5-brane whose low-energy is described by

the compactifications we considered?

e In that case, are these models dual to other chiral gauge field constructions
similar to those in [51, 52, 53] or chiral F-theory compactifications [54] (and
see also [55] and refs. therein)? Are they dual to the new compactifications

discovered in [16]?

)
4
)
%
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Chapter 5

Duality Cascade and Oblique
Phases in NCOS

5.1 Introduction

Duality is a powerful tool for analyzing dynamical aspects of field theories and string
theories. Some dualities are exact. They assert that two seemingly different theories
are physically equivalent. String theory with sufficiently many unbroken supersym-
metries are believed to exhibit such exact duality relations, in the form of discrete
symmetry relations acting on the space of couplings. These symmetries, and the fact
that a large class of field theories can be formulated as decoupling limits of string
theories, have been used to derive many examples of field theory dualities, as well as
dual correspondences between field theories and supergravity theories. Similar con-
siderations led to the understanding of duality relations among less familiar theories
such as non-commutative gauge theories, non-commutative open string theories, and
little string theories.

In this article, we consider the duality relations of non-commutative open string

75
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theories [56, 57, 58] in 1+1 dimensions with 16 supercharges. These theories can be
formulated as a decoupling limit of bound states of D-strings and fundamental strings
in type IIB string theory. The relevant duality relations follow from the SL(2,Z)
S-duality symmetry of type IIB string theory and the gauge theory/supergravity cor-
respondence applied to (P, Q) strings. Our aim is to use a combination of both these
dualities to gain insight into the thermodynamic properties of the theory. Various
authors have also considered aspects of S-duality in the context of NCOS theories
[59, 60, 61, 62, 63] and their supergravity duals [64, 65).

NCOS theory is closely related to ordinary 1+1-d super Yang-Mills theory in at
least two different ways. First, for rational value of its string coupling G?, it’s known
to be S-dual to ordinary SYM theory with a non-zero electric flux, which therefore
provides the proper ultraviolet definition of the theory. On the other hand, like any
other known open string theory, NCOS theory reduces, at scales sufficiently below
its string scale, to an effective low energy gauge theory. Near the NCOS string scale,
however, this gauge theory description breaks down, and the system undergoes a
phase transition into an effective matrix string theory phase [66, 67]. The formation
of the matrix strings can be viewed as an ionization process of the non-commutative
open strings, that escape via the Coulomb branch from the bound state with the
D-strings.

On general grounds, different dual descriptions are never simultaneously weakly
coupled, since two distinct weakly coupled theories are manifestly inequivalent. This
means that for given temperature and couplings, one can expect that, among the set
of theories related by duality, there typically exists one preferred description which is
most weakly coupled. In this chapter, we will use this intuition to map out the com-
plete phase diagram of the 1+1-dimensional NCOS theory. The main new conclusions

of our study are the following:
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e In most studies done so far of the thermodynamics of 1+1-dimensional NCOS
theory, the effective open string coupling constant was assumed to be fixed at
some rational value G2 = P/Q. We will find, however, that G? can be any
real positive number. This allows us to view NCOS theory as a continuous

non-commutative deformation of ordinary gauge theory.

e Upon systematic consideration of the role of full SL(2, Z) duality structure and
the AdS/CFT correspondence, a remarkably elaborate phase structure emerges.
Various SL(2,Z) dual descriptions become preferred in disjoint regions of the
phase diagram parameterized by temperature T and the NCOS coupling con-

stant G2. These regions form a complicated fractal pattern.

e As a function of T, the theory can go through a cascade of alternating super-
gravity, gauge theory, and matrix string theory phases. The cascade proceeds
via a series of SL(2,Z) S-duality transformations, and depends sensitively on
P and Q. In particular, we find that the system may undergo a sequence of

successive ionization and recombination transitions.

The fractal pattern seen in the phase diagram closely resembles the phase structure
found for the supergravity duals of non-commutative Yang-Mills theories on a torus
(68, 69]. There, the role of SL(2,Z) was played by the Morita/T-duality group. The
duality cascade, which involved only the supergravity descriptions, were found not
to give rise to any observable thermodynamic effects, simply because the area of the
horizon in Einstein frame is invariant under T-duality transformations. Here, the
duality cascade will act among the gauge theory, matrix theory, and supergravity
phases, giving rise to thermodynamically observable cross-over effects.

The organization of this chapter is as follows. In section 2, we collect various

preliminary facts regarding NCOS theory as decoupling limit of string theory and the
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form of the SL(2,Z) S-duality transformations. In section 3, we analyze the role of
supergravity dual and the Hagedorn transition for the theory corresponding to a given
set of charges P and Q. In section 4, we describe how the various dual descriptions fit
together to form a continuous, though fractal, phase diagram. We conclude in section

5.

5.2 Preliminaries

1 Parameters of 1+1-d NCOS theory

In this subsection we introduce the parameter space of 1+1-d non-commutative open
string theory.

Since 14+1-d NCOS theory is an interacting theory of open strings, it is specified
by an open string coupling constant, G,, and by the string tension, o/, ¢ In addition,
we can introduce U(Q) Chan-Paton factors, as well as turn on a discrete electric flux.

In two dimensions, this flux behaves like a discrete § parameter [70]

9= 2P (5.1)

Q

where P is an integer ranging from zero to @ — 1. In the language of the underlying
IIB string theory, P and Q count the number of fundamental and Dirichlet strings,
respectively, that make up the bound state [71].

Just as in ordinary open string theory, we can expect that, in a suitable low energy
regime, NCOS theory reduces to 1+1-d super Yang-Mills theory with U(Q) gauge
symmetry. The dimensionful gauge coupling g,,, is related to the NCOS coupling
and string length vial

G

2
g9 = . (5.2)
YM a;ff

'Here and hereafter, we will ignore constant numerical factors of order one.
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This infrared gauge theory should not be confused with the S-dual Yang-Mills theory
in the ultraviolet of NCOS frequently discussed in the literature [72, 73, 74].

Since g2, aj, and G are related by (5.2), any two out of the three can be
taken as the parameters defining the theory. For our purposes it will be convenient to
think of NCOS theory as a modification of super Yang-Mills theory in the ultraviolet,
induced by an irrelevant space-time non-commutativity perturbation. To emphasize
this point of view, we will choose our parameters to be ¢2,, and G?. We will see
later that, contrary to some claims in the literature [73, 74], G2 can in fact take on
arbitrary positive real values, which from the gauge theory perspective sets the scale
of the non-commutativity parameter, in units set by gf,M. Ordinary super Yang-Mills
theory is recovered in the limit G2 —0, with g,,, held fixed.

To summarize, the set of independent parameters that we will use to parameterize

non-commutative open strings in 1+1 dimensions are the following:
{, G3 P Q}. (5.3)

For the purpose of studying the action of SL(2, Z) duality group on these parameters,

it will sometimes be useful to separate the factor NV which is the greatest common

divisor of P and @ and write
P=Np, Q=Ng (5.4)

where p and q are relatively prime integers.

2 SYM Decoupling limit of (P,Q) strings

Here we recall the decoupling limit of the (P, Q) string theory that produces 1+1-
dimensional SYM theory, and introduce its supergravity dual.
Starting from the world sheet theory of a (P, Q) string bound state in IIB string
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theory, we can consider the limit
gs =0 (5.5)

while focusing on physics taking place at energy scale or temperature of order

2 2 g
T ~ gYM = j - (5'6)

In this limit, the world sheet theory reduces to 14+1 dimensional super Yang-Mills
theory with gauge coupling g,,,, gauge group U(Q) and P units of electric flux.

To formulate the corresponding near horizon supergravity geometry, we can start
from the full IIB supergravity solution of the (P, Q) string obtained by Schwarz in
[75]. This solution is parameterized by the asymptotic values of the string coupling
and axion field, and by the two quantized charges P and Q. Applying the scaling limit
(5.5), while focusing on the range of radial coordinates parameterized by U = r/d/

with 7 as in [75], gives

ds® = o ( U\s/a(—dt2 +dz?) + %(d[jz + Uzdai)) (5.7)

9vu
3 V@
e = gmUs (5.8)
P
= = 5.9
b% 0 (5.9)
Bys = 0 (5.10)
o'U®
Brp = . 5.11

The metric, the dilaton, and the two-form fields are exactly the same as the near
horizon limit of the (0,Q) string [76]. The effect of the non-vanishing electric flux
manifests itself only in the constant axion background (5.9).

The dual supergravity description of the (P, Q) gauge theory is valid in the regime
of couplings and scales where both the string coupling e® and the curvature of the

near-horizon geometry, measured in string units, remain small.
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3 The NCOS decoupling limit of (P,Q) strings

Here we describe the decoupling limit of (P, Q) string theory that produces 1+1-
dimensional NCOS theory, and introduce its supergravity dual. A new element in
our discussion is that, as a result of including the IIB axion field, the NCOS coupling
G? is incorporated as a continuous free parameter.

1+1-dimensional NCOS theory arises from the world-sheet theory on the (P, Q)
string bound state in IIB theory upon taking the decoupling limit

gs — 00, g2a’ fixed. (5.12)

This limit is S-dual to the SYM limit (5.5). The NCOS parameters o, and G? are

related to the IIB parameters via

c!I

(4 b
2a, ff

gid =Gy, a'trF =1-— (5.13)
where F' = €% Fy, is the U(Q) Yang-Mills field strength on the D-string worldsheet. In
the limit (5.12), trF is automatically tuned to approach its critical value o/trF = 1, at
precisely such a rate that its electrostatic force counteracts the infinite fundamental
open string tension, so as to produce a finite effective tension o/ s of the NCOS
strings.

To see this explicitly, consider the Born-Infeld effective lagrangian of the D-string

bound state (omitting all fields except the 1+1-d gauge field)

L= - /T = (@F)) + xtrF. (5.14)

gso!

Here we included the topological term associated with the constant axion field .

The compactness of the gauge group implies that the U(1) part of the electric field

[ R U VRSO
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P = trE where E, defined as the canonical conjugate to the gauge field £ = g—ﬁ',

takes on integer values only. Inverting the relation

a'trF

P-xe= e

reveals that the field strength indeed becomes near-critical in the NCOS limit (5.12)

(5.15)

Q2
trF o~ 1 —— . (5.16)
2g3(P-xQ)*
Furthermore, from the relations (5.13) defining the NCOS parameters, we read off
that

2_ @ _ 5.17
% = Poxal 10

As claimed, the effective coupling G? can thus indeed attain arbitrary real, positive
values. As we will see shortly, the existence of more general NCOS theories with a
continuously varying coupling also naturally arises from S-duality symmetry of the
underlying IIB string theory.

The full supergravity solution dual to the 1+1-d non-commutative open string
theory, for arbitrary values of the parameters {gm, G., P, @ }, follows from the
general expression obtained by Schwarz in [75], by applying the NCOS scaling limit
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(5.12). One finds

U6G4 1/2 U3 g \/Q
ds® = (1 +—2 ) ( —dz? + dz Y” dU? + U%dQ? ) ,
gYMQ gm\/a( 0 l) ( 7)
(5.18)
3 6,4
e® = 1+ , 5.19
e #.Q (5.19)
ngQ + G%(G*P + Q)U®
= , 5.20
X Q(es,,Q + GiUP) (520
a'G2US
B = ——e 5.21
NS 7.Q (5.21)
o' (Q + GEP)U®
Brr = o (5.22)
gYM

Here, relative to the notation used in {75], we made the identifications

gs a,gaM 7 o0 Q 031 gYM

(5.23)

This dual supergravity description of (P,Q) NCOS theory is valid in the regime of
couplings and scales where both e? and the curvature of the near-horizon geometry

remain small.

4 SL(2,Z) duality of NCOS theory

In this subsection, we describe how SL(2,Z) S-duality transformations act on the
NCOS data g2,,, GZ, P, and Q, and write the supergravity data in a more manifestly
S-duality covariant form.

Before taking any decoupling limit, the (P, Q) strings are permuted by the SL(2, Z)
S-duality symmetry of the IIB theory, via

(g)z(zz)(g)’ (524
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which leaves N =gcd(P, Q) invariant. The string coupling g, and axion x transform
via

al+b
A+

, A=x+—. (5.25)

gs

A=

o
QL

Evidently, S-duality does not preserve the super Yang-Mills decoupling limit; instead
it is mapped onto the NCOS limit.
The NCOS limit, on the other hand, is in general preserved. The axion field X

transforms like
. _ GXotb
Xoo CXoo +d

in the scaling limit. For generic values of o, the SL(2,Z) transformed value is

(5.26)

again finite, and thus the transformed theory is also a regular NCOS theory. Using
the relations (5.13) and (5.17) with the IIB parameters, a straightforward calculation

shows that the SL(2, Z) transformation law for the NCOS parameters reads

(g) ) (2)(2) 2)

2 gi,,(d;:d@)ﬂ 6528

These formulas closely resemble the Morita duality transformations of the parameters
of non-commutative Yang-Mills theory [68, 77].

Note that, in the special case that x and G? are rational, there is always one
particular SL(2, Z) transformation for which the denominator in (5.26) vanishes,
which implies that the transformed theory has G2=0. Hence in this case the NCOS
theory can be mapped back onto a commutative SYM theory. Conversely, this means
that any NCOS theory with rational G? has a precise field theoretic definition via this

equivalent SYM gauge theory. NCOS theories with irrational G2, on the other hand,
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do not have such a UV definition; they need to be defined via the corresponding IIB
decoupling limit (5.12).

In order to make the SL(2,Z) multiplet structure of the supergravity background
more manifest, it is convenient to go to the Einstein frame, where the metric becomes

v\ 90 V@
— ]2 2 2 YM -1 2 2102
ds®* =12 (.flm\/Q) ( \/Q( f(U)dzg + dz3) + =2=—(f~(U)dU +U?Q )?
5.30

Here we have included the thermal factor
fU)=1-=—. (5.31)

This solution describes a non-extremal black string with a horizon located at U = U.
It should therefore be interpreted as the supergravity dual of generic NCOS theory
at a finite temperature Ty. The relation between Uy and T can be determined by
analytically continuing the solution to Euclidean signature ¢t = 7 and looking at the

metric in the U and 7 coordinates near U = U,. Introducing the coordinate

UG

pPP~1- fj_ﬁ (5.32)
the metric near p = 0 take the form
ds? ~ (dp® + 92U p*dr?) (5.33)
YMQ
from which we infer that (up to factors of order one), the temperature T equals
U2
To ~ °o__. (5.34)
*” 0 V@

This is the standard UV/IR relation for D1-branes [78].

Since temperature is a physical notion independent of the S-duality orbit, let us

now choose to parameterize the radial coordinate by

U‘2

™k (5.35)

T=
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and introduce the SL(2,Z) invariant combination
= I (5.36)
Replacing gf,M and U by 72 and T, the supergravity solution in Einstein frame becomes

ds? = P2 Z) v (Tz(—dtz )+ —dT? +d02)  (5.37)
P\ vy 4T? 7 :

Bys \ -G} i
() - #(%) @

Bgrr

Y’ +GoT°
YPQ* + G%(G2P + Q)T®
X QP +GiTY)

As expected, we see that the Einstein frame metric is S-duality invariant. The two-

(5.40)

form fluxes and the axion and dilaton fields, on the other hand, transform covariantly.

In the following, we will identify the dilaton profile (5.39) as a function of the radial
coordinate T with the actual effective string coupling, in the given (P, Q) frame, as a
function of the physical temperature. The justification for this identification is that,
at temperature T, most of the degrees of freedom of the supergravity can be thought
of as being localized near the black string horizon at T = T;. Indeed, provided
we are in a regime where the supergravity description is valid, we can identify the
thermodynamic entropy density of the NCOS theory with the Bekenstein-Hawking
entropy of the black string

S _Ag _ T?

s=o =282 (5.41)
v BV o~

This confirms that the NCOS matter can be thought of as forming the thermal at-
mosphere of the black string, and that the strength of interactions is governed by the

effective string coupling e? close to the horizon at T = Tg.
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5.3 Phases of NCOS theory

In the previous section, we formulated NCOS both as a decoupled theory on a brane
and as a supergravity dual. As we emphasized in the introduction, these two formula-
tions of the same theory should complement one another, in the sense that depending
on the circumstances, one or the other should single itself out as the preferred de-
scription of the system. Let us address this issue concretely by first fixing all of the
parameters g2, , G2, P and Q, while varying the temperature.

For starters, the value of the dilaton needs to stay small in order for the theory
to be weakly coupled. From the form of the dilaton given in (5.39), we find that this
restricts the temperature to take value in the range e? < 1, or

- Y Tal 3/ — 4
Q2(1 V1 4G,,)<<(T) 2<<Q2(1+\/1 4Go) ' (5.42)

2G4 ¥ 2G?

It is clear that G2 must be less than 1/2 for this region to exist, and that the region
is bounded below at T3/2 = 43/2Q?. We will analyze what happens outside this range
of temperatures in the following section.

Let us now explore the full range of validity of the (P, Q) supergravity description.
The general criteria for the effectiveness of supergravity description [76] dictate that
the curvature radius as measured in the string frame metric should be large compared
to the string length. The curvature radius of the background (5.37) can be estimated
from the radius of the 7-sphere forming the black string horizon. Comparing this
radius with the string length, we thus deduce that the supergravity approximation

breaks down in the region

2 1/4
% = (g) ekl (5.43)

It can be seen that this region is completely contained inside of the range (5.42).

Both regions are indicated in figure 5.1, for values of G? ranging from —1/2 to 1/2.
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0.2 0.4 Go

=0.4-0.2

Figure 5.1: This figure indicates the regimes of validity of the three possible phases
of NCOS theory, for given charges P and Q: (i) the supergravity phase, inside the
black dashed circle, outside the red line, (ii) the gauge theory phase, inside the red
line, and (iii) the matrix string phase, the green shaded region.

For the vertical coordinate in the figure we have chosen T-3/2, so that the e® =1
boundary (5.42) takes the form of a circle, indicated by the black dashed line. The
regime (5.43) is bounded by the red solid line, so that the supergravity description
is valid in the region inside the black dotted line and outside the red solid line. Note
that the ultraviolet is at the lower end of the figure.

Since the curvature radius of the supergravity is small inside the red circle, we can
expect that the dual gauge theory description may take over in this region. This is
most easily verified at the special vertical line at G2 = 0, where the non-commutativity
parameter is turned off. This line corresponds to ordinary 141 dimensional super
Yang-Mills theory. The red line intersects the G3 = 0 axis at T? = g2, /Q, which is
indeed exactly the point where the 't Hooft coupling of the gauge theory is of order
one. Moreover, since SYM theory in 141 dimensions is super-renormalizable, the
gauge theory description remains valid for arbitrarily high energies; this is indicated
in the figure 5.1 by the fact that the red circle is touching the abscissa.

Away from G? = 0, the effect of non-commutativity should manifest itself. Specifi-
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cally, when starting from the infra-red (from above in the figure), we expect that when
the temperature T reaches the scale set by the NCOS string tension

2
T=— =[P (5.44)
V A7 °

the theory must undergo a Hagedorn transition. Beyond this temperature, the system

is most accurately described by a matrix string theory (MST) phase [66], that is a
sigma model on R8/Sy describing the eigenvalue dynamics of the matrix scalar fields
of the SYM model. These matrix strings can be thought of as ionized NCOS strings,
that due to the thermal fluctuations have managed to escape the D-string bound
state via the Coulomb branch. A concrete quantitative check of this physical picture
is provided by the fact that the effective tension of a long fundamental string that
escapes to infinity in the supergravity geometry (5.18) coincides with the tension of
the NCOS strings:

1 1 g2
—_ = fas o = XM 4

The range of temperatures in which this phase dominates is illustrated by the green
shaded region in figure 5.1.

At even higher temperatures, one hits the boundary of the red region where the
supergravity description again becomes valid. At that temperature, the long NCOS
strings recombine with the D-string due to the strong gravitational attraction caused

by the black hole geometry of the supergravity dual [79]. The sequence of phases

SUGRA — NCOS - MST - SUGRA (5.46)

going up in temperature was also described in [66].
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5.4 SL(2,Z) duality cascades

Our remaining task now is to describe what happens outside the black circle in figure
5.1. Clearly, since the effective string coupling is getting large there, we can expect
that the system goes over into another S-dual regime. A small subtlety is that,
because of the non-trivial axion background, a simple inversion will not necessarily
map strong coupling to weak coupling. More general SL(2,Z) transformations may
be needed.

To address this issue in a systematic way, we will take advantage of the survey
of SL(2,Z) duality transformations of NCOS theory given in section 2. To begin, it
will turn out to be convenient to exploit the S-duality equivalence and combine all
theories into one single parameterization. The most convenient choice is to take as

the base theory, the system with charges
P =0, Q=N (5.47)

and couplings
g G (5.48)

and parameterize all the dual theories by the element

a b
A= € SL(2,Z) (5.49)
c d

which maps it to the system with couplings and charges
g, =dg%,, Gi=d(c+dG), P=bN, Q=dN. (5.50)

In other words, we can use g2, to set the scale, and G2 as the data parameterizing
the SL(2,Z) equivalence class, and ¢ and d as the data parameterizing the specific
elements of the SL(2, Z) orbit.
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In terms of these data, the dilaton profile (5.39) as a function of temperature takes

the following form

T3/2 /2 N2
e = (c+dG?)? (szz) +a (7;/2 ) , (5.51)
At this point, it is convenient to introduce the dimensionless parameters
3/2 N2
r=G: y= "Tm— (5.52)

to quantify the coupling and the temperature, respectively. Note, as we did in section
4, that y scales like T—3/2 so small y corresponds to large temperature. In terms of z
and y, the dilaton profile (5.52) becomes

e? = (c+da)’ +d%y . (5.53)
y

Our task is to determine, for given value of the parameters z and y, which effective
theory provides the best description of the system. As a first step in this procedure,
we will identify the pair of integers (c,d) which minimizes the string coupling (5.53)
at each given point in the (z, y)-plane. For this purpose, it is helpful to first draw the
locus on the (z,y)-plane for which e? = 1 for all possible integers (c,d). These loci
are circles and are illustrated in figure 5.2.a.

The circle corresponding to (c,d) = (0,1) is the one drawn earlier in figure 5.1;
the rest are its generalizations to other values of (c,d). Inside each of the circles, the
corresponding string coupling g, = e is smaller than 1. None of the circles overlap,
so if a point (z, y) happens to be inside a (c, d) circle, the most weakly coupled theory
is the one labeled by (c,d). There are some points, however, which are not covered
by the circles. Here we can not apply SL(2,Z) duality to make the string coupling
less than one. However, since we are only interested in identifying the dual theory

which minimizes the dilaton, we can take the freedom to extend the circular regions

in such a way that adjoining (c,d) cells have the same value of the dilaton along
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Figure 5.2: In the left figure, we have indicated the circles in the (z, y) plane inside of
which e® < 1 for some integers (c,d). In the right figure, these regions are extended,
such that the adjoining (c,d) cells have the same value for the dilaton along the
boundary. Inside each cell, one unique (c, d) description minimizes the dilaton.
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the boundary. The resulting (c,d) cells, which now fill the entire (z,y) plane, are
illustrated in figure 5.2.b.

These (c, d) regions on the phase diagram have an identical structure to that found
in [69] in the context of non-commutative gauge theory on a torus, where the role of
SL(2,Z) was played by the Morita equivalence relation. As was emphasized in [69],
these phase structures also bear very interesting resemblance to the phase structure
of lattice spin models with § parameters considered in [80, 81]. Similar structures
have also appeared in the context of dissipative Hofstadter model [82] and quantum
Hall systems [83].

The analysis of the phase structure in each of the (c,d) cells will closely parallel
our earlier discussion in section 3. In particular, we expect that within each of the
cells, we can identify three different regions, corresponding to the effective gauge
theory phase, matrix string phase, and the supergravity phase. The respective ranges
of validity of these different phases are summarized in the phase diagram displayed
in figure 5.3.

Let us highlight some of the features of this phase diagram.

e The vertical axis is proportional to T-3/2, so that the ultraviolet corresponds
to the bottom, and the infrared to the upper end of the figure. Each vertical
slice corresponds to the (0, N) NCOS theory with given G2.

e For every rational value of G2, there is a (c, d) cell touching the horizontal axis
at y = 0. At this point
G? = d(c+dG?) =0, (5.54)

it corresponds to an ordinary super Yang-Mills theory, with gauge group U(dN)
and electric flux P = bN.

e Starting from a given SYM gauge theory with E-flux, one can flow upwards in y
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Figure 5.3: The phase diagram that combines all possible phases of SYM/NCOS the-
ory in 1+1 dimensions for fixed N = ged(P, Q). A unique (P, Q) theory provides the
most weakly coupled description inside each fundamental domain. Each fundamental
domain is further divided into the supergravity phase (outside the red circle), the field
theory phase (inside the red circle), and the coexisting matrix string phase (shaded
green region).
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toward the infrared. It is possible that the system then crosses over into another
(c,d) cell, and reaches another effective gauge theory phase. This effective
gauge theory is deformed with an irrelevant non-commutative perturbation,
proportional to the effective tension of the corresponding NCOS phase. This
sequence of phases has been described in [66]. What we see here, however, is
that the sequence of phases does not necessarily stop here: by going further
toward the infrared, one can potentially cross many more (c,d) cells before

reaching the deep infrared region at y = oo.

e The number of SL(2, Z) transformations involved in the flow from the UV to the
IR depends sensitively on the rationality of G2. Irrational values of G? require
infinitely many SL(2,Z) transformation in the ultraviolet region, as indicated

by the fractal phase pattern illustrated in figure 5.3.

e Since the ionization/recombination phase transition associated with the Hage-
dorn scale takes place in each of the (c,d) cells, the system can undergo these

transitions multiple times as the temperature is varied monotonically.

As a concrete illustration of this type of duality cascade, let us consider a given

theory with parameters

1

1
nl—;

P=0, Q=N, G’= (5.55)

corresponding in the ultra-violet to a U(N(ning — 1)) super Yang-Mills theory with
Nn; units of electric flux. The SYM degrees of freedom, however, are weakly coupled
in the far UV only. In particular, since electric flux creates a mass gap in two dimen-
sions, one expects that towards the infra-red, the U(Q) gauge symmetry gets broken
to U(N). Ultimately, the system will flow towards U(N) matrix string theory.

It is instructive to trace all the intermediate phases between the UV gauge theory

phase and the IR matrix string phase. They are listed in figure 5.4, where we have

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



96

also indicated the behavior of the entropy in all different phases. It will turn out that
the phases are well separated provided that n, > Nn; > N2> 1.

Starting from the infra-red, flowing down towards the UV, the system first follows
the successive phases outlined in [66] and [76]. Continuing further towards the UV,
however, the theory again enters a supergravity phase. At the point where e® = 1,

we now need to apply the S-duality transformation

0 1
(5.56)

-1 n;

connecting to an NCOS theory with charges (IV, Nn;). Then, after a similar sequence
of supergravity, gauge theory, and matrix string theory phases, the duality cascade

continues via the S-duality transformation

0 1
(5.57)

-1 ne

which finally takes us to a commutative theory with charges (P, Q) = (Nn;, N(niny—
1)).

5.5 Conclusions

In this article, we investigated the full phase structure of non-commutative open string
theories in 141 dimensions and found a rich fractal structure closely resembling the
phase structure of non-commutative gauge theory on a torus. The most striking
conclusion of our analysis is that, with increasing temperature, the system can un-
dergo multiple transitions between alternating gauge theory, matrix string theory,
and supergravity phases.

A comment is in order regarding the nature of the thermodynamic transitions

at the various phase boundaries. Since we are working in 141 dimensions, strictly
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Figure 5.4: An overview of the duality cascade and a.ll the intermediate phases for
the special case of a (0, N) NCOS theory with G2 = ——r- with np > Nn; > N2 >

1. We have also given the qualitative behavior of the entropy, and the transition
temperatures. The entropy is maximal in the ultraviolet (bottom of the figure), and
decreases monotonically towards the infrared (top of the figure).
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speaking there should not be any phase transition, unless possibly when we take the
large N limit. At large but finite N, it is more appropriate to refer to the transitions
between the different phases as “crossovers.” It is conceivable, however, that in the
N — oo limit, some of the crossovers (in particular the Hagedorn transition) may
actually become true phase transitions. Even without sharp transitions, however, the
duality cascade described in this article should have many observable consequences.

For rational values of G2, the thermodynamics described here is that of ordinary
super Yang-Mills theory with some electric flux. It would be interesting to see if
it is possible to reproduce some of our results more directly via other techniques.
For example, it may be possible to find signatures of these phase transitions in the
behavior of the thermal partition function of the gauge theory or of the two-point
function of the stress energy tensor [84]. Perhaps a computation on the lattice or
DLCQ methods [85, 86] can provide some useful insights.

Much of the SL(2,2Z) structure of NCOS theory in 1+1 dimension can rather
straightforwardly be generalized to higher dimensions. There are several important
differences, however. In 3+1 dimensions, for example, 92, is a freely adjustable
dimensionless quantity. Therefore, the full phase diagram will be three dimensional,
parameterized by g2, , GZ, and T (measured in units of the NCOS string length).
A preliminary study indicates that the cross sections with constant gf,M display an
analogous structure as describe here, whereas the cross sections for constant G3 look
similar to the phase diagram described in [79] for the case of small G2. It should be
instructive to map out the full multi-dimensional phase structure also for these higher
dimensional cases.

Another interesting open question about the 1+1-dimensional case is what hap-
pens in the case of irrational G2. In this case the system does not have any known UV

definition. Nonetheless, at any finite temperature, it can be approximated to arbi-
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trary precision by a sequence of rational G2 theories, which do have a UV description.
It would be very interesting to find out whether the irrational theory allows for an

independent UV fixed point description.
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Appendix A

3-d View of 4-d Linearized Gravity

It is instructive to see how the presence of the 4-d gravitational force is reproduced
from the holographic 5-d point of view. In the linearized approximation, it is useful
to think of the 5-d black hole as a collection of mass points, so that we can compute
the 5-d curvature by superposing all the small metric deformations due to the pres-
ence of each separate mass point. In this appendix, we show how, in this linearized
approximation, the 5-d black hole will feel an effective 4-d gravitational force. Our
analysis will be somewhat schematic; a more cdmplete treatment of the linearized
equations of motion in the RS model, that includes a careful discussion on the gauge
fixing as well as the contribution of the different polarizations of huy, is given in [35].

Consider the minimal RS model with the AdS metric
ds® = dr? + e~ ¥ dzr*dz, (A1)

with 7 > 0; here r = 0 is the location of the Planck brane with action (3.6), with
fine-tuned tension so that the vacuum solution is 4-d Poincare invariant. Introduce a

stress-energy source localized at some location r = r, in the bulk. The linearized 5-d

100
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Einstein equation then looks like (suppressing the indices)
1 1 2r 72
(—563 +2+ 26"V )h(z,r) = Ksdr—r,)T(z), (A.2)

with ks = 167G5s. The presence of the localized stress-energy source at r = r, leads

to the following (dis)continuity equations for the metric fluctuation h(z,r):
h(ro+) = h(r,-) O-h(ry+) = B:h(r,-) — 2xsT. (A-3)

Working in the low energy regime p?> << e~%", we can write the general solution to

(A.2) in the region r > rg as
h(z,r) ~ e~ h,(z) - i-vﬂh+(x) (A.4)
with h.(z) to be determined. Similarly we find for r < rg
h(z,r) ~ e~Th_(z) — ivzh_(z) + R FVh_(2). (A.5)

Here the last term on the right-hand side, though seemingly subleading, is needed to
be able to satisfy the boundary condition at the Planck brane (using the fine-tuned

value of the brane tension)

0Syv

-h(0) = = —2h(0) + b; V2h(0). (A.6)
Solving this boundary condition fixes
1
2K4 = 5 + 5. (AT)

Having the solutions for r > r¢ and r < ry, we can match them via the (dis)continuity

conditions (A.3) at the location of the stress-energy source. Keeping only leading
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terms, this gives
- - K
e o, = e Toh_ + ?462T°V2h_

e ¥oh, = e Oh_ — % o V2h_ + ksT. (A.8)

Subtracting the two equations results in
ke €V2h_(z) = ks T(z) (A.9)

which we recognize as the 4-d linearized Einstein equation for the reflected wave, with
4-d Newton constant 167Gy = ks/ks. It explicitly shows that a 5-d stress energy
source T'(z) located at distance r = rq from the Planck brane acts as an effective
4-d stress energy source e~2°T(z), as expected from the relative red-shift between its
location and that of the Planck brane. Plugging the solution to eqn (A.9) into the
above expressions for h(z,r) gives the complete 5-d linearized back-reaction due to
the source T'(z). The perturbation h(z,r) represents a new (relative to that in pure
AdS space) component to the 5-d gravitational force, equal to that of the effective
4-d gravity, that pulls the mass distribution towards the Planck brane.
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