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Abstract
Generating and detecting genuinemultipartite entanglement (GME) of sizeable quantum states
prepared on physical devices is an important benchmark for highlighting the progress of near-term
quantumcomputers. A common approach to certify GME is to prepare aGreenberger-Horne-
Zeilinger (GHZ) state andmeasure aGHZfidelity of at least 0.5.Wemeasure thefidelities using
multiple quantum coherences of GHZ states on 11 to 27 qubits prepared on the IBMQuantum
ibmq_montreal device. Combinations of quantum readout errormitigation (QREM) and parity
verification error detection are applied to the states. Afidelity of 0.546±0.017was recorded for a 27-
qubit GHZ state whenQREMwas used, demonstratingGMEacross the full device with a confidence
level of 98.6%.We benchmarked the effect of parity verification onGHZ fidelity for twoGHZ state
preparation embeddings on the heavy-hexagon architecture. The results show that the effect of parity
verification, while relativelymodest, led to a detectable improvement of GHZ fidelity.

Introduction

In the race to scale-up quantum computers and demonstrate quantum advantage, an important technical
milestone is the generation of entanglement across a device. Entanglement—or the inability to factorise amulti-
qubit system into separable states—is typically seen as the essence of what differentiates quantumbehaviour
from classical. Indeed, it has been shown that quantum systemswith lowor no amounts of entanglement can be
simulated efficiently on a classical computer [1–3]. For this reason, the ability to generate andmaintain genuine
multipartite entanglement (GME) is fundamental for quantum information processors (QIPs) to outperform
classical computers.

There are various benchmarks that indicate the capabilities of a givenQIP. For example, quantumvolume
[4] is a holistic number that takes into account qubit number and error rates of a device. Although bipartite
entanglement can be rigorously quantified, it remains an open problem to do the same forGME. To
demonstrate and validateGME,we select a state that is known to be entangled acrossmultiple qubits and assess
howwell a device can construct that state. In particular, Greenberger-Horne-Zeilinger (GHZ) states are well
suited to this purpose—in that they areGME states whose fidelity on aQIP can be efficiently estimated. The
fidelity estimate comes from a combination ofmeasuring the populations of the qubit states as well as their
coherences. An approach used to detect GME is to useGMEwitness operators [5–7]. A negative expectation
valuewith respect to a target state is a sufficient but not necessary condition for the state containingGME. It has
been shown thatmeasuring aGHZ fidelity of at least 0.5 is equivalent tomeasuring a negativeGMEwitness
expectation value, hence implying that the state exhibits GME [8].

In this workwe create largeGHZ states up to 27 qubits on a physical device andmeasure their fidelities. The
experiments are performed on the IBMQuantum ibmq_montreal device, which consists of 27 superconducting
transmon qubits [9]. The device is from the series of IBMQuantumFalcon processors andwas recently
benchmarked at having a quantum volume of 64 [10].When constructing states onQIPs, the actual
entanglement of the states within the devicesmay be acceptably high, however the observed entanglement could
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be betrayed by erroneousmeasurement results. Using a quantumdetector tomography (QDT) technique,
measurement errors can be sufficiently understood and classically inverted to estimate the pre-measurement
states [11].We employ awell-known quantum readout errormitigation (QREM) technique to implement
measurement correctionwithin our experiments [12]which has previously been used in the certification of an
18-qubit GHZ state [13].We investigate and justify the assumptions of thismethodwhen applied to the
prepared noisyGHZ states to ensure that the correctionsmade do not inflate the actualfidelity of the states
within the device. GMEhas been demonstrated copiously in the literature acrossmany differentQIP
architectures. A plot summarising this history of results for state sizes N 3 qubits within gate-based quantum
systems is shown infigure 1.WithQREMapplied, we record afidelity of0.546±0.017with98.6% confidence
for being above the 0.5 threshold for a 27-qubit GHZ state, which appears to be the largest demonstration of
GME to-date [8, 13–41]. Error bars represent the standard error (of themean). Beyond implementation of
QREM,we investigate the use of parity verification on thefidelity of theGHZ states created. Parity verification is
a fundamental error detection protocol usedwithin quantum error correction schemes towards the realisation
of large-scale fault-tolerant quantum computing. Ancilla qubits are used tomeasure the parity of state qubits to
detect errors, enabling erroneous computations to be corrected or discarded.We benchmark the effects of parity
verification on entanglement generation for various sizedGHZ states prepared on the ibmq_montreal device.
This work highlights the technical achievement in quantumhardware and the positive progress towards the
realisation of practical quantum computers.

Results

Detecting genuinemultipartite entanglement inGHZ states
GHZ states are highly entangled states. They can be prepared in gate-based quantumdevices by initialising a
single primary qubit to the +ñ∣ state and the other qubits to the ñ0∣ state, thenCNOTgates are iteratively applied
from the primary qubit (or any other qubit that has already had aCNOTapplied in thismanner) to each other
qubit involved in the state, as shown infigure 2. AGHZ state can be expressed as

ñ =
ñ + ñÄ Ä

GHZ
0 1

2
, 1N

N N

∣
∣ ∣

( )

whereN is the number of qubits in the state. This state has a convenient structure for detecting genuine
multipartite entanglement since its densitymatrix only consists of non-zero entries in each of the the four
corners. TheGHZfidelity, F, can be calculated bymeasuring two observables population P and coherence C as

Figure 1.History of experimentally prepared quantum states exhibitingN-qubit GME,where N 3, with at least 95% confidence in
gate-based quantum systems. The year is the date offirst publication, to the best of our knowledge. The plot includes superconducting
[13–19], ion trap [8, 20–23], photonic (polarisation) [24–31], photonic (multiple degrees of freedom (DoF)) [32, 33], nitrogen-
vacancy (NV) centres in diamond [34], neutral atom [35, 36], and quantumdot [37] systems. The circledmarker forN=27 in 2021
refers to the results of this work.
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where r r= +¼ ¼ ¼ ¼P 00 0,00 0 11 1,11 1 can be directlymeasured as theGHZpopulations and
r r= +¼ ¼ ¼ ¼C 11 1,00 0 00 0,11 1∣ ∣ ∣ ∣can bemeasured through parity oscillations [8, 22], ormultiple quantum

coherences (MQC) [13, 42–44]. AGHZ fidelity greater than 0.5 is sufficient to demonstrate that the state exhibits
GME [8]. The following description of the process formeasuring the fidelity is adapted from the details
presented in appendix B. Tomeasure the coherence, we use themethod ofMQCdue to its promising robustness
to noise by using a refocusingπ-pulse similar to aHahn echo [45] to refocus low frequency noise and reduce
dephasing [13]. SinceX gates stabilise theGHZ state, this does not affectfidelity computations, and the usual
second pulse used to cancel thefirst in refocusing pulse sequences can be omitted. The coherence can be

calculated bymeasuring the overlap signals r r=f fS Tr( ), where r r=f
s s- å åf f

e ei ij z
j

j z
j

2 2 is produced by rotating
each qubit of the stateρ byf about theZ-axis. Essentially, Sf is the probability ofmeasuring the zero state after
encoding theGHZ state, applying thef phase rotations, then decoding theGHZ state. For an ideal GHZ state,
the phase produced by rotating each individual qubit accumulates and is equivalent to adding a phase of fN to
the state, i.e. ¼ ñ + ¼ ñf-e00 0 11 1iN1

2
(∣ ∣ ), which reduces the overlap signal to

Figure 2.Example preparation circuits for 7-qubit GHZ states.Whenever a CNOT is appliedwithin these circuits, theGHZ state
grows in size by 1 qubit. (a)An inefficient embedding where all CNOTs are applied from the primary qubit, resulting in aCNOTdepth
of 6. (b)Anoptimal embeddingwhere CNOTs are applied in parallel fromqubits that are already included in the growingGHZ state,
resulting in aCNOTdepth of 3.When constructingGHZ states, we aim to prepare themusing a similar embedding to this optimal one
modulo the qubit layout of the quantumdevice.
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f= +fS N
1

2
1 cos , 3ideal [ ( )] ( )

where the constant term corresponds to the diagonal elements of the densitymatrix and the cosine term
corresponds to the off-diagonal corner elements. By Fourier transforming Sfwe can obtain theMQC
amplitudes

å=
f

f
f

-I e S , 4q
iq1∣ ∣ ( )

where f = p
+
j

N 1
for = ¼ +j N0, 1, ,2 1 to detect up to frequency +N 1and = + N2 2 is the number of

anglesf in the summation. The coherence is then calculated as =C I2 N . There is a slow free rotation that
occurs in idle qubits throughout the computation. To help alleviate these drift effects, a refocusingπ-pulse
applied between theGHZ encoding and decoding steps is used. The procedure to compute each of the overlap
signals Sf consists of the following steps.

1. Encode theGHZ state by applying the preparation circuit over the desired qubits.

2. Apply a refocusingπ-pulse as anX gate on each qubit.

3. Apply the phase gate rotation off about theZ-basis.

4. Decode theGHZ state by applying the inverse of its preparation circuit.

5. The overlap signal Sf is then the probability ofmeasuring the zero state ¼ ñ00 0∣ .

Further details involved in expressing the fidelity concretely are presented in appendix B.

Quantumreadout-errormitigation (QREM)
Onnoisy intermediate-scale quantum (NISQ)hardware,measurement represents one of the largest single-
component error sources. This is especially significant in low-depth circuits where the number of qubit readouts
is comparable to the total number of gates applied. Typical readout error rates of a few percent per qubit can
quickly scramble the results of any quantum algorithm. In particular, theymay obfuscate the results of an
otherwise relatively well-performing device. Fortunately, however, readout error is farmore addressable than
other quantum errors onQIPs. First, excluding the case ofmid-circuitmeasurement, readout errors do not
propagate. Secondly, andmore importantly, readout error can be treated as classical error to a good
approximation for typical superconducting devices.We employ the quantum readout errormitigation (QREM)
procedure developed in [12] in our experiments.

Readout error can be difficult to characterise. Formally, laboratorymeasurements output estimates of the
object rE U UTr[ ( )]† , for some noisy state ρ, intermediate unitary circuitU, and positive operator-valued
measure (POVM) elements E. Typically, this POVM is the set ñá ñá0 0 , 1 1{∣ ∣ ∣ ∣}, i.e.measurement in theZ-basis.
Any deviation from the ideal case in this object cannot be narrowed down to any one of the three components
without further investigation. Evenwithout intermediate operations, it is impossible to tell where an error falls
on the continuumbetween a faulty state preparationwith a perfectmeasurement, and perfect state preparation
with a faultymeasurement.

This noise falls under a category termed state preparation andmeasurement (SPAM) error. There are
techniques equipped to self-consistently characterise SPAM [46], but are typically computationally costly.
Instead, it often suffices as a good approximation formodern hardware to assume the former end of the
spectrum: that is, a device capable of perfectly delivering a ñ0∣ state butwith some error inmeasuring it. The
magnitude of the different error sources are often two ormore orders ofmagnitude apart, justifying the
assumption. The benefit of this approximation is that the conditional probability distribution
p x ymeasure prepared( ∣ ) can be characterised simply by preparing all states y, and counting allmeasurements
x.Whilst the number of preparation states to consider grows exponentially in the number of qubits, it can
simplifymatters greatly to assume that each faulty POVMelement has a tensor product structure. That is, that
the readout errors are either local-only or have correlations with limited spatial extent. In the case of solely local
errors, the characterisation can be performed in a constant number of circuits—by preparing andmeasuring
both ñÄ0 n∣ and ñÄ1 n∣ . For limited local connections, this is constant with the number of qubits and exponential in
the extent of the correlations.

For this work, we operate under the first-order regime of local errors. Each state yñ∣ is transformed
according to y y¢ñ = ñAlocal∣ ∣ , where =A Ai

n
ilocal 1≔ ⨂ . Each stochasticmatrixAi, is called the calibrationmatrix

for qubit i and is defined as
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where the notation p x yi ( ∣ ) indicates the probability ofmeasuring the state ñx∣ given the prepared state ñy∣ for
qubit i. The calibrationmatricesAi are constructed using theQDT [11] technique. In principle, theQREM
procedure consists of collecting a vector ofmeasurement outcomes andmultiplying this by -Alocal

1 in order to
obtain the pre-readout state. In practice, however, imperfections in the calibration and themitigation—caused
at the very least by finite sampling error—can result in afinal probability vector with negative elements. To
combat this, a projectionmethod is usually used tofind the closest physical probability vector (on the unit
simplex, with positive elements summing to 1) [47]. To summarise: a stochastic calibrationmatrix is constructed
for each individual qubit; the tensor product of the inverse of each calibrationmatrix ismultiplied by the
measured results vector; finally, the closest probability vector is found, representing the best estimate of the
quantum state before readout error. In appendix A, we estimate the size of the approximationsmade in
performingQREMusing this simplified procedure. Themaximumdifference infindings is small when
compared to the error bars of our results.

The initialmeasured probability vector can only contain probability values that are at least as large as the
equivalent of a single shot, 1 (shot count), due to the finite number of shots, hence themaximumnumber of
states with non-zero probability is equal to the shot count.However, applying the -Alocal

1 to the probability vector
often results in a high number of states having very small non-zero probabilities (sometimesmuch less than 1/
100 of a shot). The amount ofmemory required to precisely store a single probability vector after applying -Alocal

1

no longer scales with the number of shots. Instead, thememory scales as 2N forN qubits, since sparse vectors are
no longer useful. To help alleviate this computational resource requirement, we apply the inverse calibration
matrices for each qubit -Ai

1 sequentially on the relevant elements of the probability vector. After every
application of -Ai

1, probability values withmagnitude below some small threshold are set to zero. A threshold
value of 1/10 of a shotwas used, which equates to a probability of just over ´ -1.2 10 5 for 8192 shot
experiments. This valuewas chosen because it was high enough to considerably reduce the overall computation
time, while the approximation remains close to the full calculation.When testing this approximation on a 19-
qubit state, the average computation time for each application ofQREMdropped from66 sec to 3.8 sec
(performed on a laptopwith 2.70 GHz Intel i7-7500UCPU and 16 GBRAM), and the fidelity was found to
match the full calculation by up tofive decimal places. The reduced computation time enabled each sample from
the 27-qubit GHZ state to be computedwithin two days.

ParityVerification
Weexamine the extent towhich the fidelity of GHZ states can be improved through error-detecting state
preparation techniques. In particular, we employ the parity-checking technique used in [48] for the 4, 2, 2[[ ]]
code. The goal here is to extract information about errors occurring within theGHZ state without disturbing the
state itself. This can be achievedwith a parity check between qubits of the state, where twoCNOTs (control (c)
target (t), denotedCNOTc

t) are performedwhich are controlled onGHZ state qubits and target a single ancilla
qubit initialised in the ground state. In the case of an even number of bit-flip errors, parity-checkingwill leave
the state of the ancilla qubit unchanged. Alternatively, for an oddnumber of bit-flips, the state of the ancilla will
flip, signalling a detectable errorwithin theGHZ state.More explicitly, a parity check on qubits q1 and q2 using
ancilla qubit awill result in the transformations

ñ ñ  ñ ñ

ñ ñ  ñ ñ

ñ ñ  ñ ñ

ñ ñ  ñ ñ

00 0 00 0 ,

01 0 01 1 ,

10 0 10 1 ,

11 0 11 0 .

q q a q q a

q q a q q a

q q a q q a

q q a q q a

,
CNOT CNOT

,

,
CNOT CNOT

,

,
CNOT CNOT

,

,
CNOT CNOT

,

a
q

a
q

a
q

a
q

a
q

a
q

a
q

a
q

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

∣ ∣ ∣ ∣

∣ ∣ ∣ ∣

∣ ∣ ∣ ∣

∣ ∣ ∣ ∣

Measuring the ancilla in the ñ1 a∣ state implies a bit-flip error has occurredwithin theGHZ state, allowing the
erroneous shotmeasurement to be discarded from the results. In the case ofmeasuring the ñ ñ11 0q q a,1 2

∣ ∣ state, the
two bit-flip errors are not detected.However, if p is the single-qubit probability of a bit-flip occurring for qubits
q1 and q2, then the probability of bit-flips occurring on both q1 and q2 is small p2. For example, assuming bit-flip
probabilities aremoderate at p=0.25, if ñ0 a∣ is alreadymeasured (assuming no readout errors), then there is a
probability of - - + =p p p1 1 0.92 2 2( ) (( ) ) that the state has no bit-flip errors ñ00 q q,1 2

∣ and a probability of
- + =p p p1 0.12 2 2(( ) ) that the state has two bit-flip errors ñ11 q q,1 2

∣ .
Under the typical framework of quantum error correction, the syndromemeasurement of an ancilla qubit

will be fed forward to correct the original state. Since error correction is not achievable within the current
restrictions of quantumhardware, we instead focus on detection so that runs can be post-selected. This is usually
seen as the condition under which fault-tolerance can be demonstrated on near-term quantumdevices [48].
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Fidelity of GHZ states with parity verification in the ibmq_montreal device
In this section, wemeasure the fidelity on a range ofGHZ state sizes prepared on the ibmq_montreal device and
observe the effects of using parity-checking qubits to verify them. The following experiments prepareGHZ states
and parity verification on ibmq_montrealʼs qubit layout via the diagrams shown infigure 3. The parity
verificationCNOTs are performed directly after preparing theGHZ states. In the case ofmeasuring the
coherence, these CNOTs are in themiddle of the circuit, since there is aGHZdecoding sequence of gates applied
afterwards. Ideally the parity qubits would bemeasured immediately after their correspondingCNOTs have
been applied to help reduce parity qubit error and abandon the computation as soon as possible in the case of an
error, however superconducting devices do not yet robustly support this functionality and hence the parity
qubits aremeasured at the end of the computation alongwith the other qubits. The population is calculated by
summing themeasured ¼00 0 and ¼11 1occupancies from the preparedGHZ states and the coherence is
calculated by using theMQCmethod. Additionally, QREMwas used onGHZ state qubits to reduce the effects of
noise due tomeasurement errors. The parity-checking qubit cannot haveQREMapplied because it is a single
shotmeasurement that directly affects whether the shot is discarded. For all of the experiments, the standard
errors were calculated from8 independent runs of the experiment where all circuits were performed using 8192
shots. All computations were performed on the Spartan high performance computing system [49]. The
correspondingCNOTcircuit depths and counts for each experiment are shown in table 1.

GHZ states of incrementally increasing sizes from11 to19 qubits were prepared using the embedding
shown infigure 3(a). The smallest state of 11 qubits is theminimum size required to include a parity-checker
qubit within the ibmq_montreal device’s layout. The initial Hadamard is performed on qubit 2 andCNOTs grow
the state in the up-right and down-right directions. The parity qubit is at location 13 andwas added to the
circuits by applying twoCNOTswith control qubits 12 and 14 and target qubit 13 directly after preparing the
GHZ states. The resulting fidelity, population and coherencemeasurements were obtainedwithin the same
device calibration and are shown infigure 4, the overlap signals for state sizes 11, 13, 15, and 17 for the
calculation of the coherences are shown infigure 6(a). Performing the parity-checking verification requires the
CNOTcircuit depth to increase by one for states of size 11 to 14, while the depth is unchanged for states of size 15
to 19 since the parity-checker CNOTs are performed in parallel to the preparation circuit.When using the parity
check, there is a noticeable improvement tofidelity for state sizes that do not require theCNOT circuit depth to
increase, namely for state sizes 15 to 19, where the average fidelity increases by 0.051±0.007withQREMand
0.031±0.004withoutQREM. The population values gain a consistent advantage through parity verification,
while the coherence values appearmostly unchanged for sizes 15 to 19 and slightly decrease for sizes 11 to 14.
The decrease in coherence is likely due to the inclusion of the additional CNOTs increasing theCNOT circuit
depth and introducing noise.Measurement error on the parity-checking qubit could also be a contributing
factor by resulting in a small number of thewrong circuits being discarded.We also observe that for these
prepared states, themeasured population and its change due toQREMaremuch larger than for the coherence.
These observations are expected because dephasing is the dominant error channel in superconducting qubits,
rather than population errors. Thereforewe expect the coherence to be the limiting factor in generating these
states to highfidelity. The effects ofQREMonpopulation are likelymore drastic in their improvement thanwith
the coherence because readout errors are significantlymore likely to occur from ñ1∣ to ñ0∣ compared to the other

Figure 3.Diagrams showing how theGHZ states are constructed on the ibmq_montreal device. Blue vertices represent qubits of the
GHZ state, green vertices represent parity checking qubits, and lighter beige vertices represent qubits that are not directly involved in
the experiment. Arrows represent the direction of CNOTs (control (c) target (t), denotedCNOTc

t). Dark blue arrows indicate
CNOTs used for constructing theGHZ state for all state sizes, light blue arrows indicate CNOTs growing theGHZ state, orange arrows
indicate CNOTs used for parity verification, dotted beige lines indicate that no two-qubit gates are applied. (a) Shows the construction
of the state sizes 11 to 19 beginning at qubit 2 and including the single parity checking qubit 13. TheCNOT2

1 gate is performed before
the CNOT2

3 gate. The states are incrementally grown from the initial 11 qubits by including qubits in the order: 15, 16, 18, 19, 21, 22,
23, and 25. (b) Shows the construction of the state sizes 19 to 25 beginning at qubit 13 and including the two parity checking qubits 2
and 24. The initial CNOTs are performed in the order CNOT 12

13, CNOT 14
13, CNOT 10

12, CNOT 15
12, CNOT 11

14, andCNOT 16
14. The states are

incrementally grown from the initial 19 qubits by including qubits in the order: 9, 6, 20, 17, 0 and 26. The 26 and27-qubit states do
not use qubits 2 and 24 as parity checking qubits, instead the 26-qubit GHZ state includes qubit 2with aCNOT 2

3 in its construction
while the27-qubit state additionally includes qubit 24with aCNOT 24

23 gate.
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way around. This leads to populationmeasurements being farmore sensitive tomeasurement error than the
coherence curve (since the occupancies of both ¼ ñ00 0∣ and ¼ ñ11 1∣ are required tomeasure the population
while only the occupancy of ¼ ñ00 0∣ is required for the coherence).

To further explore the effects of parity verification on larger states, GHZ states were prepared for
incrementally increasing sizes from19 to 25, with andwithout two parity-checking qubits. The ibmq_montreal
device has a convenient layout for preparing largerGHZ states, since it allows a relatively high number of
branches when constructing them, allowingmoreCNOTs to be computed in parallel as shown infigure 3(b).
The initialHadamard is performed on qubit 13 andCNOTs grow the state in the four directions up-left, up-
right, down-right, down-left. The parity-checking qubits are located at 2 and 24 andwere added to the circuits by
applying, directly after preparing theGHZ states, fourCNOTs, twowith control qubits 1 and 3 and target qubit
2, and twowith control qubits 23 and 25 and target qubit 24. Due to the parallel nature of this state embedding,
each of the preparation circuits for sizes 19 to 25 have equal CNOTcircuit depths, with depth increasing by one
when using parity verification for sizes 19 to 23 and increasing by two for sizes 24 and 25. The resultingfidelity,
population and coherencemeasurements were obtainedwithin the same device calibration and are shown in
figure 5, the overlap signals for state sizes 19, 22, and 25 are shown infigure 6(b).When using parity verification,
thefidelity over state sizes 19 to 25 increases on average by 0.072±0.009withQREMand 0.045±0.007
withoutQREM. In particular, for the 25-qubit GHZ states,fidelities of 0.664±0.016 and 0.601±0.015were
measured usingQREMwith andwithout parity verification respectively. Themeasured population values are
consistently higher for all state sizes, while themeasured coherence values showno increase in any of the state
sizes and in particular, the coherence values decrease slightly for state sizes 19 to 21 qubits.

To test the extent of possible GMEwithin the device, GHZ states of sizes 26 and 27 qubits were additionally
prepared on the device (with embedding shown infigure 3(b)). The experiments were performed on the same
calibration as the previous experiments relating to theGHZ state sizes of 19 to 25 and the results are shown in
figure 5, with corresponding overlap signals for the calculation of coherence shown infigure 6(b). Themeasured
fidelities usingQREMwere found to be 0.580±0.022 and 0.546±0.017 for the 26 and 27-qubit states
respectively. Thesefidelities are above the 0.5 thresholdwith confidence levels of 99.6% and 98.6% respectively,
thusGMEwas detected in both states.

We suspect it is possible to extend parity verification to consist of three ormore qubits withmajority rules,
instead of a single qubit, to reducemeasurement error. This could be beneficial because currentmeasurement
errormitigation techniques cannot be applied to parity qubits due to the parity being a single shotmeasurement.
However, itmay not beworth it due to introducedCNOT errors potentially being larger than the original
measurement error.

Table 1.CNOTcircuit depths and counts required to perform the corresponding experiments.

Population Population (parity) Coherence Coherence (parity)

State size (qubits) Depth Count Depth Count Depth Count Depth Count

Embedding 1—GHZ state sizes 11 to 19 (one parity-checker qubit)
11 6 10 7 12 12 20 13 22

12 6 11 7 13 12 22 13 24

13 7 12 8 14 14 24 15 26

14 7 13 8 15 14 26 15 28

15 8 14 8 16 16 28 16 30

16 8 15 8 17 16 30 16 32

17 9 16 9 18 18 32 18 34

18 9 17 9 19 18 34 18 36

19 10 18 10 20 20 36 20 38

Embedding 2—GHZ state sizes 19 to 27 (two parity-checker qubits)
19 7 18 8 22 14 36 15 40

20 7 19 8 23 14 38 15 42

21 7 20 8 24 14 40 15 44

22 7 21 8 25 14 42 15 46

23 7 22 8 26 14 44 15 48

24 7 23 9 27 14 46 16 50

25 7 24 9 28 14 48 16 52

26 7 25 L L 14 50 L L
27 7 26 L L 14 52 L L
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Discussion

Avariety of GHZ states were prepared on the 27-qubit ibmq_montreal device and theGHZ fidelities, populations
and coherences weremeasured.We report the preparation of a 27-qubit state with aGHZ fidelity of
0.546±0.017, demonstratingGME across the full devicewith a confidence level of 98.6%. This is currently the
largest state prepared on a quantum system that has been reported to exhibit GME.We further benchmarked the
effects of parity verification on thefidelity, population and coherence. TwoGHZ state preparation embeddings
on the physical qubit layoutwere used. Thefirst embedding generatedGHZ states of incrementally increasing
sizes from11 to 19 qubits while using a single parity-checking qubit.When the parity-checker qubits did not
require theCNOTdepth of the circuit to increase, whichwas the case for state sizes 15 to 19, thefidelity increased
by an average of 0.051±0.007withQREMand 0.031±0.004withoutQREM. Thefidelity wasmostly
unchanged for sizes 11 to 13 andwas higher for size 14. The lack offidelity improvement for state sizes 11 to 13
wasmost likely due to the noise introduced by theCNOTs of the parity-checking qubit and their
implementation resulting in theCNOT circuit depth increasing by one for state sizes 11 to 14. The population
values increased for all state sizes when the parity-checker qubit was used, while the coherence values appear
mostly unchanged for state sizes from15 to 19 and slightly decrease for sizes from11 to 14. The second
embedding generatedGHZ states of incrementally increasing sizes of 19 to 25 qubits while using two parity-
checker qubits. It utilised the layout of the ibmq_montreal device by performing asmanyCNOTs as possible in

Figure 4. Embedding 1.Measured observables for GHZ states varying in sizes from11 to 19 qubits on the ibmq_montreal device.
These states are prepared using the embedding shown infigure 3(a). Each plot compares combinations of applyingQREMand using
parity-checker qubit 13 to verify the equality of states of qubits 12 and 14. The parityΔ refers to the difference between using andnot
using parity verification. The parity-checking qubit requires the CNOTcircuit depth to increase by one for state sizes 11 to 14while the
depth is unchanged for state sizes 15 to 19 since the parity-checker CNOTs are performed in parallel. The standard errors were
calculated from 8 independent runs of the experimentwhere all circuits were performed using 8192 shots. The corresponding CNOT
circuit depths and counts are displayed in table 1. (a)The population is calculated as the summed occupancies ofmeasured states

¼ ñ00 0∣ and ¼ ñ11 1∣ from the prepared state. Parity verification is shown to significantly increase the population values for all state
sizes. (b)The coherence is calculated using theQMCmethod. The coherence appears to be significantly decreased by parity
verification for state sizes 11 to 13. This is likely due to the increased CNOTcircuit depth required for parity verification on states of
sizes 11 to 14. The coherence appears to bemostly unchanged for state sizes from14 to 19 qubits. (c)The fidelity is calculated as the
average over the population and coherence.When using the parity check, the average fidelity over qubit sizes 15 to 19 (where the
CNOTdepth is unchanged) increases by 0.051±0.007withQREMand 0.031±0.004withoutQREM.
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parallel tominimise theCNOTcircuit depth. The parity-checking qubits increased theCNOT circuit depth for
state sizes 19 to 23 by one and for sizes 24 and 25 by two.We observed that the parity-checking procedure with
two qubits increased the fidelity slightly for all state sizes resulting in an average increase of 0.072±0.009with
QREMand 0.045±0.007withoutQREM. In particular, the 25-qubit state, whichwas the largest state tested
using parity checkers, had its fidelity increase from0.601±0.015 to 0.664±0.016withQREM. The
population values consistently increased for all state sizes, while the coherence values decreased slightly for state
sizes 19, 20, 21 and 25 qubits andwere unchanged for state sizes 22, 23 and 24. The results show that the effect of
parity verification led to a detectable improvement ofGHZ fidelity, although relativelymodest on current IBM
Quantumhardware.
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Figure 5. Embedding 2.Measured observables for GHZ states varying in sizes from19 to 27 qubits on the ibmq_montreal device.
These states are prepared using themore efficient embedding shown infigure 3(b) loweringCNOT circuit depths resulting in higher
fidelity values for large states thanwhat is shown infigure 4. Each plot compares combinations of applying quantum readout-error
mitigation (QREM) and using parity-checker qubits 2 and 24 to verify the equality of states of qubits 1 and 3, and qubits 23 and 25
respectively. The parityΔ refers to the the difference between using and not using parity verification. The preparation of each state
without parity verification requires the sameCNOTcircuit depth since the additional qubits can be included by applyingCNOTgates
in parallel.When including the two parity-checking qubits, theCNOT circuit depth increases by one for sizes 19 to 23 and increase by
two for sizes 24 and 25. The standard errors were calculated from8 independent runs of the experiment where all circuits were
performed using 8192 shots. All corresponding CNOTcircuit depths and counts are displayed in table 1. (a)The population is
calculated as the probability of obtaining ¼ ñ00 0∣ or ¼ ñ11 1∣ uponmeasurement of the preparedGHZ state. Parity verification
using the two parity-checking qubits is shown to significantly increase the population values for all state sizes from19 to 25 qubits. (b)
The coherence is calculated using the quantummultiple coherences (QMC)method.No increase in coherence is observed using
parity verification for state sizes 19 to 25. For state sizes 19 to 21 in particular, themeasured coherence decreases slightly. (c)The
fidelity is calculated as the average over the population and coherence.Whenusing parity verification, thefidelity increases on average
by 0.072±0.009withQREMand 0.045±0.007withoutQREMover state sizes 19 to 25.
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Figure 6.MeasuredMQCoverlap signals for various size GHZ states prepared on the ibmq_montreal quantumdevice and corrected
usingQREM. The experimental results and standard errors were calculated from 8 independent runs of the experiment performed on
the same device calibrationwhere all circuits were executed using 8192 shots. The noisefiltered data are calculated by taking the
Fourier transformof the experimental results, zeroing frequencies that are not N0, , then inverting the Fourier transform. There is a
phase shift present in themeasured Sf values that is likely caused by free rotation in idle qubits. The refocusingπ-pulse is applied to the
encodedGHZ state before decoding to help nullify these qubit drift effects, however theGHZ encoding and decoding operations take
slightly different amounts of time to compute due to pulse alignment restrictions in the software. This phase shift ismore pronounced
when parity verification is applied since the parity-checkingCNOTs are performed before the refocusingπ-pulse, offsetting the
number of gates before and after refocusing. (a)GHZ state is implemented using embedding 1 shown infigure 3(a). Parity verification
uses qubit 13 as a single parity-checker (PC) qubit to verify the states of qubits 12 and 14. (b)GHZ state is implemented using
embedding 2 shown infigure 3(b). Parity verification for states of sizes 19 to 25 qubits uses qubits 2 and 24 as parity-checkers to verify
the equality of states of qubits 1 and 3, and qubits 23 and 25 respectively.
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AppendixA. ExaminingQREMassumptions on device hardware

In themain text, we briefly outlined some simplifying assumptionsmade in order to implement quantum error
mitigationmore efficiently. Respectively, thesewere:measurement error is significantly larger than preparation
error,measurement error is predominantly classical, andmeasurement error is uncorrelated between qubits.
Here, we examine these assumptions on chosen subsets of the device. To this end, we employ gate set
tomography (GST) for characterisation. GST is a self-consistent extension of regular quantumprocess
tomography (QPT)which includes the SPAMoperations in itsmaximum likelihood estimation. A
characterisation of the ith qubit is performed across an entire gate set, r E E G G, , , , ,i i i i i

0 0 1 0 1{ } , whereby the
preparation andmeasurement operators are also estimated. Importantly, this allows us to robustly evaluate the
effects of the liberties we have taken. For an overview ofGST and its implementation, see [46, 50, 51].We use the
well-known quantum characterisation, verification and validation (QCVV)Python packagePyGSTi for this
part of the implementation [52].

Testing these assumptions takes place in three parts. First, we performGST across a range of qubits to obtain
an estimate for ri

0, Ei
0, and Ei

1, where ri
0 is the initial densitymatrix, and Ei

m is the POVMelement corresponding
towhen the detector clicks with the resultm. Next, using these results, we compare themagnitudes of errors in
ri

0 withEi
m.We also determine the off-diagonals of E ;i

m non-zero values correspond to coherence in the POVM
effect, which is a strictly non-classical error. These values roughly represent the information discardedwhen the
decision ismade to use the stochastic calibrationmatrix (equation (5)) rather than the complete POVM. From
the POVM,we construct the calibrationmatrix Ai

POVM. This has the same definition asAi in equation (5), except
its values are obtainedwith amore comprehensive procedure.We compare thesematrices with the end result
obtained from the simplermethod in themain text. A similar investigation into the rigours ofQREMhas been
conducted in [53]. Ideally, theGST estimates for the noisy probeswould be used as the basis forQREM, however
for our purposes this would have greatly increased the experimental overhead. The number of experiments
required for the chosenGST characterisation of a single qubit is 550, whereas the prepare-and-measure path
takes only two circuits with no post-processing.

Finally, having validated the use of the simpler, cheaper stochasticmatrix, we examine the assumption of
locality of themeasurement error. To do this, we select sets of four qubits.We construct the full calibration
matrix across the four qubits—i.e. by preparing ñ =i i 0

15{∣ } andmeasuring.We then compare this to the tensor
product of the four local calibrationmatrices.We note in hindsight that there have been recent developments for
characterising correlatedmeasurement error in an efficientmanner [54]. Although our results do not suggest
that the tensor product structure significantly impacts the outcome, this could be amore desirablemethod in
future.

A.1. SPAMmagnitudes and the calibrationmatrix
Across the device, we performedGST on six different qubits. From this, we obtain estimates of the initial density
matrix ri

0, and the two-outcome POVM ñá ñá0 0 , 1 1{∣ ∣ ∣ ∣}.We also obtain estimates for the gates that comprise

the process, but these are not relevant to the discussion. Let Ei
m¯ denote one of the noisy two-outcome effect

operations for the ith qubit. Our aim is firstly to determine how classical the error on Ei
m¯ is, as well as estimating

the size of the errormade in assuming perfect state preparation. The latter is not necessarily as simple asfinding
the size of the preparation error. Rather, we use our estimates Ei

m¯ to determine the calibrationmatrix that we
would obtain if state preparationwere perfect. Using the Born rule, the elements of thismatrix Ai

POVM are:

= = ñá =

= = ñá =

= = ñá =

= = ñá =

A p E E

A p E E

A p E E

A p E E

0 0 Tr 0 0 ,

0 1 Tr 1 1 ,

1 0 Tr 0 0 ,

1 1 Tr 1 1 . A1

i i i i

i i i i

i i i i

i i i i

0,0
POVM 0

0,0
0

0,1
POVM 0

1,1
0

1,0
POVM 1

0,0
1

1,1
POVM 1

1,1
1

( ∣ ) [ ¯ ∣ ∣] ¯

( ∣ ) [ ¯ ∣ ∣] ¯

( ∣ ) [ ¯ ∣ ∣] ¯

( ∣ ) [ ¯ ∣ ∣] ¯ ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

A subtlety in this practice is that r0¯ and Ei
m¯ are not uniquely fixed by any possible experiment; a type of gauge

freedom exists in the estimate. Let L(·) be some error channel acting on either SPAMoperation, and letG be
some gate sequence. IfΛ commutes withG thenwe have
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r r= L = Lp G G E G G ETr Tr . A2
i
m

i i
m

i
m0

0[ ¯ · ( ¯ )] [ ( ¯ ) · ¯ ] ( )† †

That is, there is a class of estimates for ri
0 andEi

mwhich are completely physically equivalent under commuting
transformations. An errormapwhich fits this description is the depolarising channel  :p

r r= - + p
p

1
2

. A3p ( ) ( ) ( )

Therefore, in comparing theGST-produced calibrationmatrix Ai
POVM withAi, we search all variations of

r r

- +

- +

+ ñá -

E p E
p

E p E
p

p
p

1
2

,

1
2

, and

0 0
2

A4

i i i
i

i i i
i

i i i
i

0 0

1 1

0 0







( )

( )

∣ ∣ ( )







which preserve the positivity of ri
0. Since these representations of the SPAMoperations are physically

indistinguishable, we can determine the closest Ai
POVM toAi for each qubit i. The remaining difference between

the twowill estimate the error produced in constructing the calibrationmatrix using the simplermethods of the
main text. For qubits 1, 3, 12, 14, 23, and 25, we summarise the results of this process in table 2.

Thefirst three data columns respectively give direct estimates of the POVM0-effect, theGST-derived
calibrationmatrix, and the simplified calibrationmatrix. Thefinal two columns respectively quantify from these
the size of the approximationmade from assuming perfect preparation and from assuming classical errors. The
experiments were conductedwith 8192 shots. Each of these values are small, both compared to the sampling
error, and compared to the results in themain text.

We further examine these assumptions by conducting simulated experiments using the experimentally
characterised data.Here, we aim to replicate the conditions of our results asmuch as possible in order to
determine if there is any possibility of overestimating entanglement by usingQREM. The procedure for this is as
follows:

• Generate a set of possible 6-qubit lab states: r r r= - +p p1 GHZ noise( ) · · for a range of p and different
noise (in particular:maximalmixtures and random states),

• Simulate outMQCwithmeasurement error by using theGST estimates of themeasurement probes Ei{ } to
produce the complete coherence curve,

• Then, using themeasure-and-prepare calibrationmatrix Alocal, we applyQREMand invert the noise of the
measurement effects,

• Finally, determine the final error-mitigated fidelity, and compare to the actual state ρ.

We performed this across a variety of different rnoise and values for p, each sampled 500 times. Themaximum
average fidelity overestimate foundwithQREMwas ´ -6 10 4.We suspect that theMQCmethod of estimating
statefidelity is particularly robust to erroneousQREM. The reason for this is thatQREMcarries the possibility of
overestimating the number of ñÄ0 n∣ readouts. However,MQCcreates a curvemeasuring ñÄ0 n∣ amplitudes from
peak to trough and then estimates the fidelity from the frequency here, which ismore robust to translations of
the entire curve.

A.2. Correlation ofmeasurement error
Thefinal assumptionmade in the name of circuit reduction is that of locality of the errors. In the previous
subsection, we justified that single-qubitmeasurement errors can be accurately characterised for the purpose of
QREMon this hardware using only two circuits. An extrapolation to n qubits would still require 2n circuits to
create the full calibrationmatrix. Instead, if we assume thatmeasurement errors on different qubits are
uncorrelated, we can take = =A Ai

n
ilocal 1⨂ for the n qubit system.

To checkwhether this is valid, we collected calibrationmatrices for four sets of four qubits and compared
them to the tensor product of theirmarginals. Here, Afull is the calibrationmatrix for all 16 prepared and
measured states.Meanwhile, Alocal is the tensor product of local calibrationmatrices obtained from the
preparation andmeasurement of ñ0000∣ and ñ1111∣ . These results are summarised in figure 7.Here, we present
matrix plots of each calibrationmatrix with the ideal case subtracted off. Each construction presents an almost
identical depiction of the noise. One exception is the small occurrence of non-zero elements in Afull for the set
(15, 18, 17, 21)which is not present in Alocal—however we believe this is not large enough towarrant accounting
for. The difference between the local and full calibrationmatrices are quantified by their Frobenius distance. In
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Table 2.Experimentally determined values inQDT. This includes estimates for the ñá0 0∣ ∣measurement, a comparison of calibrationmatrices constructedwith bothGST and prepare-and-measuremethods, and an estimate of the
quantumness of themeasurement effect.

Qubit# Ei
0¯ Ai

POVM Ai -A Ai i
POVM

2  +E Ei i
1

2 0,1
0

1,0
0(∣ ¯ ∣ ∣ ¯ ∣)( ) ( )

1 - +
- -

i
i

0.9913 0.0046 0.0255
0.0046 0.0255 0.0630

⎛
⎝

⎞
⎠

0.9913 0.0630
0.0087 0.9370( ) 0.9803 0.0509

0.0197 0.9491( ) 0.0231 0.0046

3 - -
- +

i
i

0.9964 0.0002 0.0024
0.0002 0.0024 0.0093

⎛
⎝

⎞
⎠

0.9964 0.0093
0.0036 0.9907( ) 0.9945 0.0123

0.0055 0.9877( ) 0.0051 0.0002

12 - +
- -

i
i

0.9648 0.0012 0.0014
0.0012 0.0014 0.0612

⎛
⎝

⎞
⎠

0.9648 0.0612
0.0352 0.9388( ) 0.9683 0.0651

0.0317 0.9349( ) 0.0074 0.0012

14 +
-

i
i

0.9928 0.0004 0.0019
0.0004 0.0019 0.0170

⎛
⎝

⎞
⎠

0.9928 0.0170
0.0072 0.9830( ) 0.9915 0.0221

0.0085 0.9779( ) 0.0075 0.0004

23 - +
- -

i
i

0.9713 0.0003 0.0049
0.0003 0.0049 0.0407

⎛
⎝

⎞
⎠

0.9713 0.0407
0.0287 0.9593( ) 0.9752 0.0450

0.0248 0.9550( ) 0.0082 0.0003

25 +
-

i
i

0.9960 0.0038 0.0024
0.0038 0.0024 0.0146

⎛
⎝

⎞
⎠

0.9960 0.0146
0.0040 0.9854( ) 0.9961 0.0145

0.0039 0.9855( ) 0.0002 0.0038
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all cases, this difference (representing the difference between 256matrix elements) is small, andwe are confident
that results are not affected bymaking this simplifying assumption.

Appendix B.Usingmultiple quantum coherences to detect GMEwithin noisyGHZ states

GHZ states defined over arrays of qubits aremore susceptible to noise than graph states defined over the same
layout of qubits [55]. So to detect entanglement, the graph state is generally the preferred option.However the
GHZ state has a convenient structure that can be utilised for determining themore strict GMEproperty, by
calculating its fidelity. Thefidelity between a desired pure state rideal and the actual state ρ is a similaritymetric
which can bewritten as

r r rr=F , Tr . B1ideal ideal( ) ( ) ( )

When rideal is aGHZ state, afidelity value that is greater than or equal to 0.5 implies that ρ is GME. Thefidelity of
aGHZ state can bewritten as

=
+

F
P C

2
, B2( )

where the population r r= +¼ ¼ ¼ ¼P 00 0,00 0 11 1,11 1 can be directlymeasured as the sumof the ¼ ñ00 0∣ and
¼ ñ11 1∣ occupancies from theGHZ state and the coherence r r= +¼ ¼ ¼ ¼C 11 1,00 0 00 0,11 1∣ ∣ ∣ ∣can be indirectly

measured throughMultipleQuantumCoherences (MQC) [13] or parity oscillations [8, 22]. In this work, we use
MQC since a refocusingπ-pulse similar to aHahn echo [45] can be used to refocus low frequency noise and
reduce dephasing [13]. This is becauseMQC ismore robust to noise and scales better with respect to
measurement errormitigation.MQC is a technique that has been adapted from solid state nuclearmagnetic
resonance [42] tomany-body correlations and quantum information scrambling in trapped ions [43, 44].More
recently, it has been used to detect 18-qubit GME in the IBMQSystemOne quantumdevice [13].MQCworks by
utilising the amplified phase accumulatedwhen phase rotating individual qubits. To help properly understand
MQCand how it can be applied to calculate the fidelity, wewill go through, in detail, steps to express the fidelity
more concretely. The followingworking has been adapted fromWei et al [13] andGärttner et al [44].

We begin bywriting down the following expression for the densitymatrix

år r= ñá ¢
¢=

¢ m m , B3
m m

N

m m
, 0

, ∣ ∣ ( )

where the basis states ñm∣ are an equal superposition of eachN-qubit state where there arem qubits in the ñ1∣
state andN−m in the ñ0∣ state. The state ñm∣ satisfies

Figure 7.A comparison ofmeasurement calibrationmatrices across samples of four over the device.We compare the full calibration
matrix to that which is acquired by taking the tensor product of all local terms In thematrix plots, we subtract off the identitymatrix in
order to better resolve finer details.
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å
s

ñ = ñ
=

m A m
2

, B4
j

N
z
j

m
1

∣ ∣ ( )

where the eigenvalues = -A m N 2m form the set - - + ¼ -N N N N2, 2 1, , 2 1, 2{ }. The density
matrix can be expressed as a sumof different coherence sectors

år r=
=-

, B5
q N

N

q ( )

where

år r ñá -
=

- m m q , B6q
m

N

m m q
0

,≔ ∣ ∣ ( )

noting that r = 0i j, when <i j, 0 or >i j N, . The coherence sectors rq account for the coherence between

states ñm∣ and ¢ = - ñm m q∣ such that - =¢A A qm m . Note that ρ beingHermitian implies that r r= -q q
† , and

each rq being orthogonal to one another implies r r d r r= - -Tr Trq p q p q q( ) ( ). Although the states rq cannot be
directly observed, wewill show that themultiple quantum coherence amplitude defined as

r r r r= =- - -I ITr Tr , B7q q q q q q≔ ( ) ( ) ( )

can. Since the densitymatrix of an ideal GHZ state only has non-zero values on each corner, the fidelity can be
expanded as follows

rr=F Tr B8GHZ( ) ( )

r r r r r r= + +- -Tr Tr Tr . B9N N N N0 0
GHZ GHZ GHZ( ) ( ) ( ) ( )

Wewill nowwork towardsmodifying the expression to only consist of directlymeasurable observables. By
substituting values 0 andN for q in equation (B6), we get

r = ¼ ñá ¼ + ¼ ñá ¼
1

2
00 0 00 0 11 1 11 1 , B100

GHZ (∣ ∣ ∣ ∣) ( )

r = ¼ ñá ¼
1

2
11 1 00 0 , B11N

GHZ ∣ ∣ ( )

r r r= ¼ ñá ¼ + ¼ ñá ¼00 0 00 0 11 1 11 1 B12N N0 0,0 ,∣ ∣ ∣ ∣ ( )

r r= ¼ ñá ¼11 1 00 0 . B13N N ,0∣ ∣ ( )

From equation (B10), due to orthogonality of the basis states, observe that

r r r r= +¼ ¼ ¼ ¼Tr
1

2
, B140 0

GHZ
00 0,00 0 11 1,11 1( ) ( ) ( )

which is the half population term shown in equation (B2). The remaining two terms in equation (B9)will be
expressed in terms of the amplitude IN introduced in equation (B7). From equations (B11) and (B13)we can
write r kr=N N

GHZ for some complex constantκ. By substituting this into equation (B7), it can be shown that
r r k= =

k- I ITr N N N N
GHZ GHZ 1

*
( ) , where r r= =-I TrN N N

GHZ GHZ GHZ 1

4
( ) . Thus k = I2 N∣ ∣ , hence r r= I2N N N

GHZ

sinceκ can bemade real by rotating ρ. Therefore, with similar working for r r-Tr N N
GHZ( )noting that = -I IN N

from equation (B7), we have

r r r r+- -Tr Tr B15N N N N
GHZ GHZ( ) ( ) ( )

r r r r= +- -I2 Tr Tr B16N N N N N
GHZ GHZ GHZ GHZ( ( ) ( )) ( )

= I . B17N ( )

Finally, we can rewrite the fidelity as

r r= + +¼ ¼ ¼ ¼F I
1

2
, B18N00 0,00 0 11 1,11 1( ) ( )

with population r r= +¼ ¼ ¼ ¼P 00 0,00 0 11 1,11 1 and coherence =C I2 N .
Now that we have expressed the coherence with respect to the quantum coherence amplitude IN, wewill

showhow IN can bemeasured. It can be calculated from the overlap signals r rf fS Tr≔ ( ), which is a directly
measurable quantity where r rf

s s- å åf f
e ei ij z

j
j z

j
2 2≔ is produced by rotating each qubit of the state ρ byf about

theZ-basis. For an ideal GHZ state, this is equivalent to adding a phase of fN to the state, that is

¼ ñ + ¼ ñf-e00 0 11 1iN1

2
(∣ ∣ ), which has the overlap signal reduce to
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f= +fS N
1

2
1 cos , B19ideal [ ( )] ( )

where the constant term corresponds to the diagonal elements of the densitymatrix and the cosine term
corresponds to the off-diagonal corner elements. To see the behaviour of the overlap signal whenmore states are
included, we can consider the case of general pure states and express ρ as

å år ñ á ¢
¢

¢a m m a , B20
m

N

m
m

N

m
pure *≔ ∣ ∣ ( )

where am is the amplitude for the state ñm∣ where ñm∣ is defined as in equation (B3).With the help of
equation (B4), we canwrite

å år ñ á ¢
å å

f

s s-

= ¢=
¢

f f

e a m m a e B21
i

m

N

m
m

N

m

i
pure

0 0

j
z
j

j
z
j

2 2
*≔ ∣ ∣ ( )

å å= ñ á ¢f f

=

- -

¢=
¢

¢-a e m m a e B22
m

N

m
i m N

m

N

m
i m N

0

2

0

2*∣ ∣ ( )( ) ( )

å å= ñ á ¢f f

=

-

¢=
¢

¢a e m m a e . B23
m

N

m
i m

m

N

m
i m

0 0

*∣ ∣ ( )

The overlap signal can then be reduced to themagnitude square of a complex Fourier series as follows
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Whenwe substitute =a a N, 1N0 and ai=0 for ¹i N0, , the expression reduces down to the ideal case for
GHZ states shown in equation (B19). By including amplitudes of non-all-zero and non-all-one states, lower
frequencies are introduced into the behaviour and theN frequency component is dampened.

The amplitude IN can be derived from Sf as follows
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where equations (B4) and (B6) are used to help obtain equation (B30). Fourier transforming this result gives
= åf

f
f

-I e Sq
iq1∣ ∣where  is the number of anglesfwithin the summation. To ensure that the frequencyN

is detectable,measure Sf for f = p
+
j

N 1
, where = ¼ +j N0, 1, ,2 1which can detect up to frequency +N 1.

ORCID iDs

Gary JMooney https://orcid.org/0000-0002-3253-9815
Gregory A LWhite https://orcid.org/0000-0001-6673-6676

16

J. Phys. Commun. 5 (2021) 095004 G JMooney et al

https://orcid.org/0000-0002-3253-9815
https://orcid.org/0000-0002-3253-9815
https://orcid.org/0000-0002-3253-9815
https://orcid.org/0000-0002-3253-9815
https://orcid.org/0000-0001-6673-6676
https://orcid.org/0000-0001-6673-6676
https://orcid.org/0000-0001-6673-6676
https://orcid.org/0000-0001-6673-6676


CharlesDHill https://orcid.org/0000-0003-0185-8028
LloydC LHollenberg https://orcid.org/0000-0001-7672-6965

References

[1] Vidal G 2003Efficient classical simulation of slightly entangled quantum computationsPhys. Rev. Lett. 91 147902
[2] Verstraete F andCirac J I 2004Renormalization algorithms for quantum-many body systems in two and higher dimensions arXiv:

cond-mat/0407066
[3] Verstraete F,MurgV andCirac J I 2008Matrix product states, projected entangled pair states, and variational renormalization group

methods for quantum spin systemsAdv. Phys. 57 143–224
[4] Cross AW, Bishop L S, Sheldon S,Nation PD andGambetta JM2019Validating quantum computers using randomizedmodel

circuits Phys. Rev.A 100 032328
[5] TóthG andGühneO 2005 Entanglement detection in the stabilizer formalism Phys. Rev.A 72 022340
[6] LewensteinM,Kraus B, Cirac J I andHorodecki P 2000Optimization of entanglementwitnesses Phys. Rev.A 62 052310
[7] Terhal BM2000Bell inequalities and the separability criterionPhys. Lett.A 271 319–26
[8] LeibfriedD et al 2005Creation of a six-atom ‘Schrödinger cat’ stateNature 438 639–42
[9] Koch J, TerriMY,Gambetta J, HouckAA, SchusterD I,Majer J, Blais A, DevoretMH,Girvin SMand Schoelkopf R J 2007Charge-

insensitive qubit design derived from theCooper pair box Phys. Rev.A 76 042319
[10] Jurcevic P et al 2021Demonstration of quantumvolume 64 on a superconducting quantum computing systemQuantum Science and

Technology 6 (2) 025020
[11] Lundeen J S, FeitoA, Coldenstrodt-RongeH, Pregnell K L, SilberhornC, RalphTC, Eisert J, PlenioMB andWalmsley I A 2009

Tomography of quantumdetectorsNat. Phys. 5 27–30
[12] Maciejewski F B, Zimborás Z andOszmaniecM2020Mitigation of readout noise in near-termquantumdevices by classical post-

processing based on detector tomographyQuantum 4 257
[13] WeiKX, Lauer I, Srinivasan S, SundaresanN,McClureDT, Toyli D,McKayDC,Gambetta JM and Sheldon S 2020Verifying

multipartite entangledGreenberger-Horne-Zeilinger states viamultiple quantum coherences Phys. Rev.A 101 032343
[14] NeeleyM et al 2010Generation of three-qubit entangled states using superconducting phase qubitsNature 467 570–3
[15] DiCarlo L, ReedMD, Sun L, JohnsonBR, Chow JM,Gambetta JM, Frunzio L, Girvin SM,DevoretMHand Schoelkopf R J 2010

Preparation andmeasurement of three-qubit entanglement in a superconducting circuitNature 467 574–8
[16] Barends R et al 2014 Superconducting quantum circuits at the surface code threshold for fault toleranceNature 508 500–3
[17] SongC et al 2017 10-qubit entanglement and parallel logic operationswith a superconducting circuitPhys. Rev. Lett. 119 180511
[18] GongM et al 2019Genuine 12-qubit entanglement on a superconducting quantumprocessor Phys. Rev. Lett. 122 110501
[19] SongC et al 2019Generation ofmulticomponent atomic Schrödinger cat states of up to 20 qubits Science 365 574–7
[20] Sackett CA et al 2000 Experimental entanglement of four particlesNature 404 256–9
[21] HäffnerH et al 2005 Scalablemultiparticle entanglement of trapped ionsNature 438 643–6
[22] MonzT, Schindler P, Barreiro J T, ChwallaM,NiggD,CoishWA,HarlanderM,HänselW,HennrichMandBlatt R 2011 14-qubit

entanglement: Creation and coherence Phys. Rev. Lett. 106 130506
[23] Pogorelov I et al 2021Compact ion-trap quantum computing demonstrator PRXQuantum 2 020343
[24] BouwmeesterD, Pan J-W,DaniellM,WeinfurterH andZeilinger A 1999Observation of three-photon greenberger-horne-zeilinger

entanglement Phys. Rev. Lett. 82 1345
[25] Pan J-W,DaniellM,Gasparoni S,WeihsG andZeilinger A 2001 Experimental demonstration of four-photon entanglement and high-

fidelity teleportation Phys. Rev. Lett. 86 4435
[26] ZhaoZ, ChenY-A, ZhangA-N, YangT, Briegel H J and Pan J-W2004 Experimental demonstration offive-photon entanglement and

open-destination teleportationNature 430 54–8
[27] LuC-Y, ZhouX-Q, GühneO,GaoW-B, Zhang J, YuanZ-S, Goebel A, YangT andPan J-W2007 Experimental entanglement of six

photons in graph statesNat. Phys. 3 91–5
[28] YaoX-C,WangT-X, XuP, LuH, PanG-S, BaoX-H, PengC-Z, LuC-Y, Chen Y-A and Pan J-W2012Observation of eight-photon

entanglementNat. Photonics 6 225–8
[29] HuangY-F, Liu B-H, Peng L, Li Y-H, Li L, Li C-F andGuoG-C 2011 Experimental generation of an eight-photon greenberger-horne-

zeilinger stateNat. Commun. 2 1–6
[30] WangX-L et al 2016 Experimental ten-photon entanglement Phys. Rev. Lett. 117 210502
[31] ZhongH-S et al 2018 12-photon entanglement and scalable scattershot boson samplingwith optimal entangled-photon pairs from

parametric down-conversion Phys. Rev. Lett. 121 250505
[32] GaoW-B, LuC-Y, YaoX-C, XuP,GühneO,Goebel A, ChenY-A, PengC-Z, ChenZ-B and Pan J-W2010Experimental

demonstration of a hyper-entangled ten-qubit Schrödinger cat stateNat. Phys. 6 331–5
[33] WangX-L et al 2018 18-qubit entanglementwith six photons’ three degrees of freedom Phys. Rev. Lett. 120 260502
[34] Neumann P,MizuochiN, Rempp F,Hemmer P,WatanabeH, Yamasaki S, Jacques V,Gaebel T, Jelezko F andWrachtrup J 2008

Multipartite entanglement among single spins in diamond Science 320 1326–9
[35] Rauschenbeutel A,NoguesG,Osnaghi S, Bertet P, BruneM, Raimond J-M andHaroche S 2000 Step-by-step engineeredmultiparticle

entanglement Science 288 2024–8
[36] OmranA et al 2019Generation andmanipulation of Schrödinger cat states in Rydberg atomarrays Science 365 570–4
[37] TakedaK,Noiri A,NakajimaT, Yoneda J, Kobayashi T andTarucha S 2021Quantum tomography of an entangled three-spin state in

siliconNatureNanotechnology 1 1-5
[38] WangY, Li Y, Yin Z-Q andZengB 2018 16-qubit IBMuniversal quantum computer can be fully entangledNpjQuantum Information 4

1–6
[39] FriisN et al 2018Observation of entangled states of a fully controlled 20-qubit systemPhys. Rev.X 8 021012
[40] MooneyG J,Hill CD andHollenberg LCL 2019 Entanglement in a 20-qubit superconducting quantum computer Sci. Rep. 9 1–8
[41] PuY,WuY, JiangN, ChangW, Li C, Zhang S andDuan L 2018 Experimental entanglement of 25 individually accessible atomic

quantum interfaces Science Advances 4 eaar3931
[42] Baum J,MunowitzM,GarrowayAN and Pines A 1985Multiple-quantumdynamics in solid stateNMR J. Chem. Phys. 83 2015–25
[43] WeiKX, RamanathanC andCappellaro P 2018 Exploring localization in nuclear spin chains Phys. Rev. Lett. 120 070501

17

J. Phys. Commun. 5 (2021) 095004 G JMooney et al

https://orcid.org/0000-0003-0185-8028
https://orcid.org/0000-0003-0185-8028
https://orcid.org/0000-0003-0185-8028
https://orcid.org/0000-0003-0185-8028
https://orcid.org/0000-0001-7672-6965
https://orcid.org/0000-0001-7672-6965
https://orcid.org/0000-0001-7672-6965
https://orcid.org/0000-0001-7672-6965
https://doi.org/10.1103/PhysRevLett.91.147902
http://arxiv.org/abs/cond-mat/0407066
https://doi.org/10.1080/14789940801912366
https://doi.org/10.1080/14789940801912366
https://doi.org/10.1080/14789940801912366
https://doi.org/10.1103/PhysRevA.100.032328
https://doi.org/10.1103/PhysRevA.72.022340
https://doi.org/10.1103/PhysRevA.62.052310
https://doi.org/10.1016/S0375-9601(00)00401-1
https://doi.org/10.1016/S0375-9601(00)00401-1
https://doi.org/10.1016/S0375-9601(00)00401-1
https://doi.org/10.1038/nature04251
https://doi.org/10.1038/nature04251
https://doi.org/10.1038/nature04251
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1088/2058-9565/abe519
https://doi.org/10.1038/nphys1133
https://doi.org/10.1038/nphys1133
https://doi.org/10.1038/nphys1133
https://doi.org/10.22331/q-2020-04-24-257
https://doi.org/10.1103/PhysRevA.101.032343
https://doi.org/10.1038/nature09418
https://doi.org/10.1038/nature09418
https://doi.org/10.1038/nature09418
https://doi.org/10.1038/nature09416
https://doi.org/10.1038/nature09416
https://doi.org/10.1038/nature09416
https://doi.org/10.1038/nature13171
https://doi.org/10.1038/nature13171
https://doi.org/10.1038/nature13171
https://doi.org/10.1103/PhysRevLett.119.180511
https://doi.org/10.1103/PhysRevLett.122.110501
https://doi.org/10.1126/science.aay0600
https://doi.org/10.1126/science.aay0600
https://doi.org/10.1126/science.aay0600
https://doi.org/10.1038/35005011
https://doi.org/10.1038/35005011
https://doi.org/10.1038/35005011
https://doi.org/10.1038/nature04279
https://doi.org/10.1038/nature04279
https://doi.org/10.1038/nature04279
https://doi.org/10.1103/PhysRevLett.106.130506
https://doi.org/10.1103/PRXQuantum.2.020343
https://doi.org/10.1103/PhysRevLett.82.1345
https://doi.org/10.1103/PhysRevLett.86.4435
https://doi.org/10.1038/nature02643
https://doi.org/10.1038/nature02643
https://doi.org/10.1038/nature02643
https://doi.org/10.1038/nphys507
https://doi.org/10.1038/nphys507
https://doi.org/10.1038/nphys507
https://doi.org/10.1038/nphoton.2011.354
https://doi.org/10.1038/nphoton.2011.354
https://doi.org/10.1038/nphoton.2011.354
https://doi.org/10.1038/ncomms1556
https://doi.org/10.1038/ncomms1556
https://doi.org/10.1038/ncomms1556
https://doi.org/10.1103/PhysRevLett.117.210502
https://doi.org/10.1103/PhysRevLett.121.250505
https://doi.org/10.1038/nphys1603
https://doi.org/10.1038/nphys1603
https://doi.org/10.1038/nphys1603
https://doi.org/10.1103/PhysRevLett.120.260502
https://doi.org/10.1126/science.1157233
https://doi.org/10.1126/science.1157233
https://doi.org/10.1126/science.1157233
https://doi.org/10.1126/science.288.5473.2024
https://doi.org/10.1126/science.288.5473.2024
https://doi.org/10.1126/science.288.5473.2024
https://doi.org/10.1126/science.aax9743
https://doi.org/10.1126/science.aax9743
https://doi.org/10.1126/science.aax9743
https://doi.org/10.1038/s41565-021-00925-0
https://doi.org/10.1038/s41534-018-0095-x
https://doi.org/10.1038/s41534-018-0095-x
https://doi.org/10.1038/s41534-018-0095-x
https://doi.org/10.1038/s41534-018-0095-x
https://doi.org/10.1103/PhysRevX.8.021012
https://doi.org/10.1038/s41598-019-49805-7
https://doi.org/10.1038/s41598-019-49805-7
https://doi.org/10.1038/s41598-019-49805-7
https://doi.org/10.1126/sciadv.aar3931
https://doi.org/10.1063/1.449344
https://doi.org/10.1063/1.449344
https://doi.org/10.1063/1.449344
https://doi.org/10.1103/PhysRevLett.120.070501


[44] GärttnerM, Bohnet J G, Safavi-Naini A,WallML, Bollinger J J andReyAM2017Measuring out-of-time-order correlations and
multiple quantum spectra in a trapped-ion quantummagnetNat. Phys. 13 781–6

[45] HahnEL 1950 Spin echoes Phys. Rev. 80 580
[46] Blume-Kohout R, Gamble J K,Nielsen E, Rudinger K,Mizrahi J, Fortier K andMaunz P 2017Demonstration of qubit operations below

a rigorous fault tolerance thresholdwith gate set tomographyNat. Commun. 8 1–13
[47] Smolin J A, Gambetta JM and SmithG 2012 Efficientmethod for computing themaximum-likelihood quantum state from

measurements with additive gaussian noisePhys. Rev. Lett. 108 070502
[48] GottesmanD2016Quantum fault tolerance in small experiments arXiv:1610.03507
[49] Meade B, Lafayette L, Sauter G andToselloD 2017 SpartanHPC-CloudHybrid: Delivering Performance and Flexibility (TheUniversity

ofMelbourne) (https://doi.org/10.4225/49/58ead90dceaaa)
[50] WhiteGAL,Hill CD andHollenberg LCL 2021 Performance optimization for drift-robust fidelity improvement of two-qubit gates

Phys. Rev. Applied 15 014023
[51] GreenbaumD2015 Introduction to quantumgate set tomography arXiv:1509.02921
[52] Nielsen E, Rudinger K, Proctor T, RussoA, YoungK andBlume-Kohout R 2020 Probing quantumprocessor performancewith pyGSTi

QuantumScience and Technology 5 044002
[53] GellerMR2020Rigorousmeasurement error correctionQuantumScience and Technology 5 03LT01
[54] GellerMR and SunM2020Towards efficient correction ofmultiqubitmeasurement errors: Pair correlationmethodQuantum Science

andTechnology 6 025009
[55] BriegelH J andRaussendorf R 2001 Persistent entanglement in arrays of interacting particles Phys. Rev. Lett. 86 910

18

J. Phys. Commun. 5 (2021) 095004 G JMooney et al

https://doi.org/10.1038/nphys4119
https://doi.org/10.1038/nphys4119
https://doi.org/10.1038/nphys4119
https://doi.org/10.1103/PhysRev.80.580
https://doi.org/10.1038/ncomms14485
https://doi.org/10.1038/ncomms14485
https://doi.org/10.1038/ncomms14485
https://doi.org/10.1103/PhysRevLett.108.070502
http://arxiv.org/abs/1610.03507
https://doi.org/10.4225/49/58ead90dceaaa
https://doi.org/10.1103/PhysRevApplied.15.014023
http://arxiv.org/abs/1509.02921
https://doi.org/10.1088/2058-9565/ab8aa4
https://doi.org/10.1088/2058-9565/ab9591
https://doi.org/10.1088/2058-9565/abd5c9
https://doi.org/10.1103/PhysRevLett.86.910

	Introduction
	Results
	Detecting genuine multipartite entanglement in GHZ states
	Quantum readout-error mitigation (QREM)
	Parity Verification
	Fidelity of GHZ states with parity verification in the ibmqmontreal device

	Discussion
	Acknowledgments
	Data availability statement
	Author contributions statement
	Additional information
	Appendix A.
	A.1. SPAM magnitudes and the calibration matrix
	A.2. Correlation of measurement error

	Appendix B.
	References



