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Abstract. Machine learning tools are commonly used in modern high energy physics (HEP)
experiments. Different models, such as boosted decision trees (BDT) and artificial neural
networks (ANN), are widely used in analyses and even in the software triggers [1J.

In most cases, these are classification models used to select the “signal” events from data.
Monte Carlo simulated events typically take part in training of these models. While the results
of the simulation are expected to be close to real data, in practical cases there is notable
disagreement between simulated and observed data. In order to use available simulation
in training, corrections must be introduced to generated data. One common approach is
reweighting — assigning weights to the simulated events.

We present a novel method of event reweighting based on boosted decision trees. The
problem of checking the quality of reweighting step in analyses is also discussed.

1. Introduction

Reweighting distributions (also known as event reweighting or importance weighting) is a general
procedure, but its major use-case for particle physics is to modify the output of the Monte Carlo
(MC) simulation to reduce disagreement with real data (RD) collected at a collider.

There are many applications in HEP including searching for rare decays (decays with an
extremely low probability in the standard model of elementary particles), when a classifier is
trained on MC data to discriminate signal decays from background. However, the simulation is
often imperfect (see [2] for more details) and corrections should be introduced. To calibrate the
reweighting a similar physics process is considered, for which both real data and simulation can
be obtained. For instance, in rare decays a normalization channel is selected — a decay with
the similar kinematic characteristics (see [3] for an example)]

Reweighting techniques have applications outside HEP: i.e. in sociology a survey reweighting
is used to reduce a non-response bias [5]. In what follows HEP terminology is used, but
approaches discussed in the paper are applicable to any reweighting.

Mathematically, the problem is equivalent to estimating the density ratio frp(z)/fmc(x) as
a function of the variables participating in reweighting. A density ratio estimation is a general

problem in machine learning (ML) with numerous applications (see [0]).
! Data-MC inconsistencies can also be taken into account by the calibration of subdetector response, Monte
Carlo generator tunes [4] or discarding regions, where disagreement is the worst.
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2. Basic approach to event reweighting
An approach widely used in High Energy Physics is reweighting with bins. The space of variables
is split into bins, in each bin the weights of the simulated events are multiplied by

Whin, RD

multipliery;, =
Whin, MC

to compensate the difference (whpin, Rp and wpin, Mc — total weight of events in a bin for RD

and MC distributions). In other words, both densities frp(x) and fumc(x) are estimated using

histograms and then divided (this gives another name of this approach — “histogram division”).
Reweighting using bins is intuitive and easy-to-use, however, has very strong limitations:

e very few variables can be reweighted in practice, typically one or two;

e choosing which variable(s) to use in reweighting is complex: reweighting one variable often
brings disagreement in others;

e the amount of data needed to reliably estimate a density function with a histogram grows
exponentially with the number of variables, which is commonly referred to as the “curse of
dimensionality”.

To fight the last problem, one can reduce the number of bins along each variable, but this drives
to a rough reweighting rule, insufficient to cover discrepancies.

3. Reusing classification ML techniques to reweight distribution
Density estimation is a complex problem and it should be avoided in cases when only the ratio
is of interest. A general and natural method of density ratio estimation is based on reusing
general-purpose ML techniques. In [2] this method was proposed and was successfully applied
to particle physics problems.

Some general-purpose classification techniques (i.e. BDT and ANN) trained to discriminate
MC and RD can provide probabilities pyc(x), prp(x) that a given event x belongs to MC or
RD. The probabilities can be used to estimate required density ratio:

fep(z)  prp(2)
fve(z)  pume(z)

This approach successfully overcomes the curse of dimensionality, but provides inaccurate
predictions when density ratio is high. One possible explanation is as follows: while regions with
the high ratio are significant for reweighting, those are not of high importance for classification
task: guessing correct class within regions with high / low ratio is easier, since most of the events
belong to one class, and classification algorithms focus on the other regions. For example, when
training ANN or GBDT, these regions provide smaller contribution to the loss function, thus
are given less attention.

4. BDT reweighter
In this section a machine learning algorithm is proposed to solve the specific problem of
reweighting. To address the problems of the histogram reweighting approach, the space of
variables is split into a few large regions. These regions are not obtained by a simple splitting
of each variable into several bins, but in correspondence with the problem.

A decision tree is used to split the regions. Recall that decision trees split the space of
variables into the regions by checking simple conditions. Each region is associated with some
leaf of the tree.
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To find the regions that are suitable for reweighting, the symmetrized 2 is greedily
optimizedﬂ

2= Z (Wieat, MC — Wieat, RD)Q_ (1)

Weaf, MC T Wleaf, RD
leaf

This metric is maximized to find the regions important for reweighting. If in some leaf (region)
the amount of MC events wieaf, Mc is much higher than the amount wiear, Rp of RD events, the
MC weights in this region must be decreased. The corresponding summand in the x? will be
high reflecting the importance of this region for reweighting.

The BDT reweighter makes use of many such trees which are trained one-by-one by repeating
the following steps many times:

(i) build a shallow tree to maximize the symmetrized 2

Wieaf, MC

Wieaf, RD

(iii) reweight the MC distribution (compare this step with AdaBoost [9]):

(ii) compute predictions in the leaves: leaf_pred = log

(2)

w, if event from RD distribution
w =
w x el if event from MC distribution

For each event pred is equal to the prediction of a leaf containing this event.

The last two steps work in the same way as reweighting with bins, the distinction being that
the bins are selected differently. Also, since logarithm is taken, the predictions of the different
trees are summed up, as is usually done in the boosting.

In the BDT reweighter, each tree in the sequence is trying to cover the discrepancies that
were not resolved on the previous iterations. The complexity of a decision tree can be adjusted
by varying the depth and the minimal number of samples in the leaf, making this approach
highly tunable.

5. Comparison of multidimensional distributions
The goal of reweighting is to have the MC distribution coincide with the RD distribution.

Comparing one-dimensional distributions is simple and can be done either by looking at the
distributions or by computing one of well-known two-sample tests like Kolmogorov-Smirnov,
Anderson-Darling or Cramer—von Mises. However, in the applications all the distributions are
multidimensional. Comparing only projections is obviously not enough to be sure that the
distributions are identical.

At the same time, there are no useful multidimensional two-sample tests. Given the whole
pipeline of our analysis, two-samples tests are not necessary, because the question of interest is
not whether the MC and RD distributions are different (those are different). The question is
whether an ML technique used later in the analysis (i.e. to detect signal decay, typically it is
BDT or ANN) is able to use the discrepancy between RD and MC. Thus it is only needed to
check that after reweighting a classifier used in the analysis is not able to find the difference
between the distributions. For this purpose a classifier is trained to discriminate RD and MCE|
Its quality is checked by inspecting the ROC curves on a holdout sampleﬁ

2 For comparison: in the gradient boosting algorithm decision trees are built by greedily minimizing mean squared
error.

3 This also gives another perspective of reweighting as an adversarial process, involving discriminator and
reweighter. Training of adversarial neural networks is actively studied now, see [§].

4 See also [7] for an alternative ML-based approach to compare multidimensional distributions.
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Figure 1. Comparison of real data (blue) and simulated (green) distributions before and after
using the BDT reweighter.

Overfitting is an issue that becomes obvious when using advanced methods of reweighting.
One should measure the quality of the classification on a holdout (data sample that was not
participating in training) to get unbiased estimations. The same approach works for reweighting:
the quality of reweighting should be checked on the data that did not participate in training of
the reweighting rule. The different cross-validation techniques like folding are also applicable.

6. Case study

As an example the 11-dimensional distribution is taken (simulated and real data). Figure
demonstrates how the distribution of different features (variables) has changed after reweighting
with the new method.

In table [2] the Kolmogorov-Smirnov distances are provided. Reweighting with bins is done
for last two variables, while two other approaches use all 11 variables. Finally, the quality of
reweighting is checked as it was proposed earlier and the ROC curves are built on a holdout
(figure [3)).

7. Conclusion
Two problems are discussed in the paper:

(i) event reweighting for multidimensional distributions
(ii) the comparison of multidimensional distributions

It is demonstrated that both problems are effectively addressed by means of machine learning,
while typically these steps in the analysis are considered outside of the scope of ML.

Also, the novel method of reweighting is proposed: a modification of BDT algorithm, which
alters the procedures of boosting and decision tree building. This method outperforms known
reweighting approaches and makes it possible to reweight dozen of variables. When compared
on the same problems, it requires less data to achieve the same quality.

Ready-to-use implementation of introduced algorithm is available in the hep_ml package [10].
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Feature name original | bins reweight | reuse ML | BDT reweighter
Bplus IPCHI2_.OWNPV 0.0796 0.0642 0.0463 0.0028
Bplus . ENDVERTEX_CHI2 0.0094 0.0175 0.0490 0.0021
Bplus PT 0.0586 0.0679 0.0126 0.0053
Bplus_P 0.1093 0.1126 0.0044 0.0047
Bplus_ TAU 0.0037 0.0060 0.0324 0.0044
mu_min_PT 0.0623 0.0604 0.0017 0.0036
mu_max_PT 0.0483 0.0561 0.0053 0.0035
mu_max_P 0.0906 0.0941 0.0084 0.0036
mu_min_P 0.0845 0.0858 0.0058 0.0043
mu_max_TRACK_CHI2NDOF | 0.0956 0.0042 0.0128 0.0043
nSPDHits 0.2478 0.0098 0.0180 0.0075
Figure 2. Kolmogorov-Smirnov distances for each variable before reweighting and after

applying different reweighting techniques.

Only the last two variables are used during

reweighting with bins.

TPR (true positive rate)

original
bins
reuse ML

BDT reweighter
random guessing

ws w6
FPR (false positive rate)

Figure 3. Checking the quality of
reweighting with ML. The ROC curves for
the classifier trained to discriminate RD and
MC are computed on a holdout. Reweighting
with bins significantly reduces initially high
discrepancy, but the classifier still can easily
find the difference. ML-based solutions provide
significantly better results, though reusing ML
approach has minor issues in the left bottom

n COTrner.
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