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Deep learning of quantum entanglement from
incomplete measurements
Dominik Koutný1*, Laia Ginés2, Magdalena Moczała-Dusanowska3, Sven Höfling4,
Christian Schneider5, Ana Predojević2, Miroslav Ježek1*

The quantification of the entanglement present in a physical system is of paramount importance for fundamen-
tal research andmany cutting-edge applications. Now, achieving this goal requires either a priori knowledge on
the system or very demanding experimental procedures such as full state tomography or collective measure-
ments. Here, we demonstrate that, by using neural networks, we can quantify the degree of entanglement
without the need to know the full description of the quantum state. Our method allows for direct quantification
of the quantum correlations using an incomplete set of local measurements. Despite using undersampled mea-
surements, we achieve a quantification error of up to an order of magnitude lower than the state-of-the-art
quantum tomography. Furthermore, we achieve this result using networks trained using exclusively simulated
data. Last, we derive a method based on a convolutional network input that can accept data from various mea-
surement scenarios and perform, to some extent, independently of the measurement device.
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INTRODUCTION
Physical measurements performed on individual parties of an en-
tangled system reveal strong correlations (1), which give rise to non-
classical and nonlocal effects (2, 3). Aforesaid effects are the
essential element of fundamental tests of quantum mechanics, in-
cluding direct experimental verification of quantum nonlocality (4–
6). The critical role of entanglement was demonstrated also on the
opposite scale of the complexity spectra in macroscopic phase tran-
sitions (7–9). Besides the fundamental aspects, entanglement is an
essential tool for quantum information processing, and it allows for
reaching the quantum advantage (10, 11). Modern quantum com-
munication networks rely crucially on entanglement sources (12–
15). Consequently, the characterization of entanglement is para-
mount for both fundamental research and quantum applications
(16, 17).
Here, we adopt methods of deep learning to tackle the long-

standing problem of efficient and accurate entanglement quantifi-
cation. Our approach determines the degree of entanglement of a
generic quantum state directly from an arbitrary set of local mea-
surements. Despite the deep learning models being trained on sim-
ulated measurements, they excel when applied to real-world
measurement data. We quantify photonic entanglement generated
by two distinct systems: a nonlinear parametric process and a semi-
conductor quantum dot.
Reliable entanglement quantification represents an open

problem in quantum physics. Direct measurement of entanglement
can be achieved by exploiting quantum interference of two (or
more) identical copies of a physical system (18–22). This multicopy
approach roots in measuring nonlinear functions of quantum states

(23, 24). However, such measurements are experimentally highly
demanding, which has spurred the research of single-copy entan-
glement detection using only local measurements, such as
quantum tomography.
Quantum tomography provides the full description of a

quantum state including the degree of entanglement (25, 26).
However, the total number of measurements required for
quantum tomography increases exponentially with the number of
qubits or quantum degrees of freedom, which renders the approach
inherently not scalable (27–29). Several methods have been devel-
oped to make this scaling more favorable, nevertheless, by imposing
an a priori structure or symmetry to the system (30–33). When a
few-parameter model of quantum state is assumed, quantum esti-
mation can be used for optimal inferring of the state entanglement
(34–36). Another approach to emulate quantum correlations (37)
with fewer resources relies on neural network quantum states
(38–42). However, this method suffers from the sign problem,
solving of which requires further assumptions about the state (43,
44). The neural network quantum state approach was used for
quantum tomography under nonideal experimental conditions
(45–49). However, how much information is needed for represent-
ing a generic quantum state at a given level of accuracy remains an
open question (50, 51).
Instead of characterizing thewhole system, onemight target only

mean values of a set of selected observables, which substantially
reduces the required number of measurements. This approach,
termed shadow tomography (52), can also be applied to estimate
entanglement entropy of a small subsystem, basically reconstructing
its reduced quantum state (53, 54). An alternative method uses
random measurements to estimate the second-order Rényi
entropy of a subsystem (55–58). However, quantification of entan-
glement distributed over the whole system lies beyond the scope of
such methods.
Entanglement witnessing seems to be a viable alternative to the

tomographic methods, when we only aim at distinguishing between
entangled and nonentangled states (or between entanglement
classes) without quantifying the degree of entanglement and its
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detailed structure. Nevertheless, the witnessing may still require the
full knowledge of the underlying quantum state, as is the case of the
positive partial transpose criterion (1). The witness cannot be di-
rectly measured; however, it can be approximated using a complete-
ly positive map (59), which is equivalent to the full quantum state
tomography (60, 61). Other witnessing methods are based on the
minimum local decomposition (62, 63), semidefinite programming
(SDP) (64, 65), entanglement polytopes (66), or correlations in
random measurements (67, 68). Entanglement witnessing can
also be facilitated by using neural networks classifiers (69–71).
Despite the success of the entanglement witnessing, it provides
only witnesses or lower bounds and often requires some a priori in-
formation about the state.
In summary, the connection between the entanglement present

in a physical system and the measurements of the correlations of its
subsystems is highly nontrivial (72, 73). It seems that full entangle-
ment characterization using single-copy local measurements can
only be accomplished with the complete quantum state tomography

and, consequently, with exponential scaling of the number of re-
quired measurements (60, 61, 74, 75). The open question remains
what one can learn about entanglement from an incomplete
observation.
In this work, we use deep neural networks (DNNs) to tackle the

problem of entanglement characterization. We develop a method
that allows us to quantify the degree of entanglement and
quantum correlations in a generic partially mixed state using a set
of informationally incomplete measurements. The entanglement
quantifiers that we obtain using DNN approach are substantially
more accurate compared with the values attainable using the
state-of-the-art quantum tomography methods. In addition, we
demonstrate a measurement-independent quantification of entan-
glement by developing a deep convolutional network that accepts
an arbitrary set of projective measurements without retraining.
The DNN-based approaches that we introduce here can be imme-
diately applied for certification and benchmarking of entanglement
sources, which we demonstrate by using photonic sources of entan-
gled photons based on spontaneous parametric downconversion
and a semiconductor quantum dot.

RESULTS
Even in a well-understood system, such as a pair of qubits, a reliable
quantification of entanglement requires full state tomography (74).
In other words, to infer the degree of entanglement, we need to de-
termine the quantum state. A common approach to implement
photonic qubit tomography is to measure the full basis of three
Pauli operators. Such a measurement for a two-qubit state consist
of 62 = 36 local projectors (26). Omitting randomly some projectors
in this measurement scheme decreases the accuracy of the quantum
tomography and, consequently, the entanglement evaluation. Here,
we show that this problem can be overcome by using DNNs that
allow us to gain knowledge on the degree of entanglement
without the need to know the quantum state.
To demonstrate the advantage of the DNN approach, we use two

quantifiers: the concurrence (1) and the mutual information (76)
for a two-qubit and a three-qubit system, respectively. The concur-
rence is widely used in experiments for characterization of entan-
gled photon pair sources. Its value is bounded from below by 0
for separable states and from above by 1 for maximally entangled
states. On the other hand, the concurrence cannot be easily gener-
alized to higher-dimensional quantum systems and systems of more
than two parties. Therefore, the second quantifier that we use is the
mutual information, which can be generalized to multipartite
systems of qudits, and its value reflects the information shared
between the parties of a larger system.
We use three different approaches to determine the concurrence

and the mutual information from an incomplete set of data. We
show them schematically in Fig. 1. We use the maximum likelihood
algorithm (MaxLik) (Fig. 1A, red), measurement-specific DNNs
(Fig. 1B, green), and a measurement-independent DNN (Fig. 1C,
blue). The maximum likelihood is an algorithm that finds the
quantum state (ρ) iteratively, starting from an initial guess (ρinit),
which is typically set to maximally mixed state (77). Having at
hand the quantum state ρ allows us to quantify the entanglement
(see Materials and Methods). In contrast, the approaches based
on DNN learn the concurrence and mutual information directly
from the measured data. While the measurement-specific DNN is

Fig. 1. Schematics of the three methods that we used to infer the quantum
correlations. (A) The maximum likelihood algorithm (MaxLik) finds the most likely
quantum state ρ based on the measured data and an initial guess ρinit. (B) Green
DNN represents a fully connected neural network that infers directly the concur-
rence and the mutual information from specific measurements (specific measure-
ment projectors), whereas (C) the blue DNN works with an arbitrary measurement
projectors. The input for the former is the measured data. The measurement-inde-
pendent DNN has a first layer convolutional, and it inputs both the data and the
measurement description.
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designed for a predefined set of measurement projectors Mm, the
measurement-independent DNN relaxes the condition on measur-
ing the a priori known projectors and predicts concurrence and
mutual information independently on the measurement settings.
This approach has a convolutional first layer, and it inputs the mea-
sured data together with the description of the respective projectors.
During the training, the DNNs are provided with the theoretical
probabilities Tr{ρMm} and, in the case of the measurement-inde-
pendent DNN, also the description of the measurement Mm. For
the detailed information about the structure of the DNNs, the
dataset, and the training procedure, see Materials and Methods.
We compare the three approaches on the basis of how accurately

they can infer the concurrence (mutual information) from an in-
complete set of data. Here, the MaxLik serves as a benchmark to
the other two methods that are DNN-based. We chose to evaluate
the performance of all three approaches by computing the mean ab-
solute error (MAE). TheMAE is calculated as 〈∣xi − yi∣〉with xi being
the true value and yi being the predicted value of the concurrence
(mutual information). To make our comparison universal, the
average is taken over a set of states and several combinations of mea-
surement projectors, i.e., a test set. The total number of combina-
tions of k projectors from the maximum of 36 is 36!

k!ð36� kÞ!. As this
number can be excessively high, we randomly selected a smaller
subset of combinations. Therefore, to evaluate the performance of
a measurement-specific DNN, we train 12 randomly selected net-
works for each k-projector measurement and evaluate the average
and SD of their MAEs. For the MaxLik and measurement-indepen-
dent DNN, the averaging is performed over hundreds of randomly
selected measurements.
The performance of the three approaches is presented in Fig. 2,

where we show how MAE depends on the number of measurement
projectors that we used to obtain the result. Figure 2 (A and B)
shows the MAE for the concurrence and the mutual information,
respectively, while Fig. 2C addresses the MAE of the three-qubit
mutual information matrix. The MaxLik approach is presented
using the red triangles in all panels. For the informationally com-
plete data, i.e., when all 36 projectors are measured, the MaxLik
MAE is on the order of 10−5 to 10−4. In this scenario, MaxLik con-
verges to the true quantum state, and the error only reflects the nu-
merical errors caused by the computing precision. As we can see in
Fig. 2 (A and B), the MAE of the MaxLik starts increasing if only a

few out of the 36 projectors are absent. In contrast to the MaxLik,
DNNs perform well even for a severely reduced number of projec-
tors. The measurement-specific DNNs (shown in green circles)
predict the concurrence and mutual information with the MAE
of approximately 0.01 even when only 24 projectors are used. For
the same number of projectors, MaxLik MAE is 0.1. Consequently,
measurement-specific DNNs result in a precision that is, on
average, 10 times higher. If we further reduce the number of projec-
tors, then the MAE for the measurement-specific DNNs starts to
increase; however, it keeps being substantially smaller compared
to the MAE of the MaxLik. The uncertainty region of MAE also
remains at least two times smaller (up to 10 times while working
with more than 18 projectors). The measurement-independent
DNN error is shown in Fig. 2 using the blue squares. Compared
to the performance of the MaxLik, the measurement-independent
DNN quantifies the concurrence and themutual information with a
lower MAE however worse than using the measurement-specific
strategy. In practice, one can resource to the measurement-indepen-
dent DNN for preliminary detecting the entanglement in the
system, even changing the measurement on the fly, and improve
the entanglement quantification by training a particular measure-
ment-specific DNN later.
To further validate our approach, we compare the values of the

concurrence determined by MaxLik, measurement-specific DNNs,
and measurement-independent DNN using a state that the network
has never seen before, the Werner state ρWðpÞ ¼ pρψ� þ

1� p
4 1,

where ρψ− is a projector into maximally entangled Bell state span-
ning the asymmetric subspace of two qubits. The parameter p runs
from 0 (mixed state) to 1 (maximally entangled state). The concur-
rence for the Werner state is a piecewise linear function of the pa-
rameter p, and it takes the exact form C(ρW) = max [0, (3p − 1)/2].
The results are shown in Fig. 3. In the panels (A to D), we show the
concurrence and the corresponding uncertainty regions for 36, 28,
18, and 8 projective measurements, respectively. For 28 and 18 mea-
surement projectors, both the DNN approaches follow the ideal
concurrence values, while the MaxLik deviates substantially. The
measurement-specific DNNs yield nontrivial results even in the
case of only 8 measurement projections.
As mentioned previously, the mutual information can be gener-

alized to the systems of more than two qubits. To show that we can
also generalize the DNN-based approach to larger quantum

Fig. 2. Entanglement quantification error for the two- and three-qubit systems. Themean absolute error (MAE) versus the number of measurement projectors for (A)
two-qubit concurrence, (B) two-qubit mutual information, and (C) three-qubit mutual informationmatrix. Red triangles depict MAE for the MaxLik, blue squares stand for
the values of MAE computed from measurement-independent DNN, and, lastly, green circles represent the values of MAE computed from measurement-specific DNNs.
The uncertainty regions are depicted in the corresponding colors and may overlap. The DNNs outperform the MaxLik approach in terms of entanglement quantification
accuracy and its consistency, given by smaller errors and uncertainty intervals, even for substantially incomplete measurements.
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systems, we apply our method to a three-qubit system. In such a
system, the mutual information matrix has three independent
entries ℐ ≡ {ℐAB, ℐAC, ℐBC}, with subscripts referring to the
three different ways of partition. To determine all three numbers
ℐ simultaneously, we have to perform a full tomographic measure-
ment on each qubit, which leave us with 63 = 216 projections. Fol-
lowing the procedure introduced for the two-qubit case, we built
measurement-specific DNNs, each mapping measurement data to

the three-component vectorℐ. Deep layers have the same structure
as for quantification of mutual information in the two-qubit case.
Final results are shown in Fig. 2C. The MAE ofℐ is averaged over
its three independent elements and over randomly generated
quantum states. DNN predictions are, on average, akin to the
MaxLik ones in the regime close to the complete data. However,
with only about a third of all projections, measurement-specific
DNNs predict the full mutual information matrix on average with
a five times smaller error than the MaxLik.
Our approach needs modest computational resources. In partic-

ular, the two- and three-qubit measurement-specific networks (for
one-fourth of all Pauli projectors compared to the complete mea-
surement) have approximately 37,000 and 42,000 parameters, re-
spectively. The optimal performance of networks for three qubits
does not require substantially more parameters than for two-qubit
networks. We further verified this optimistic scaling by training
four- and five-qubit measurement-specific networks (for one-
fourth of all possible Pauli projectors in each case). These networks
require 69,000 and 231,000 parameters, respectively, and outper-
form the MaxLik even more than two-qubit and three-qubit net-
works; see Table 1. Namely, the measurement specific networks
reach 2.2, 3.0, 3.8, and 4.3 times lower MAE of mutual information
matrix than the MaxLik for two, three, four, and five qubits, respec-
tively. On the basis of this finding, we expect that, by keeping the
ratio of the MaxLik accuracy and the DNN accuracy constant, the
required fraction of the projectors with respect to the full tomogra-
phy will decrease.
Last, we demonstrate the performance of DNN-based entangle-

ment quantification using experimental data acquired under non-
ideal conditions and with limited statistical sampling. We study
two distinct entanglement sources. The first one is based on contin-
uously pumped spontaneous parametric downconversion. The
photon pair generation process is inherently random, and the re-
sulting entangled state depends on the choice of the temporal coin-
cidence window and other experimental conditions such as
background noise. Adjusting of the experimental parameters
affects the degree of entanglement in the produced state. We quan-
tify concurrence using the DNNs and the MaxLik approach for
various experimental settings ranging from the maximally entan-
gled singlet Bell state to a noisy state with a negligible concurrence.
Figure 4 (A and B) shows the results for an almost pure entangled
state and a partially mixed state with the concurrence of 0.985 ±
0.001 and 0.201 ± 0.002, respectively. In both cases, DNN approach-
es outperform the MaxLik approach. The measurement-specific
DNNs remain very accurate (MAE <0.04) all the way down to 14
projections. Even the measurement-independent DNN outper-
forms the MaxLik in the generic case of partially mixed state for
any number of measurement projectors. The maximally entangled
state represents the only case where the MaxLik performs slightly
better than the measurement-independent DNN (but worse than
measurement-specific DNNs). This behavior results from high
purity and sparsity of the state and, consequently, from the sparsity
of the measurement data. When randomly selecting a subset of pro-
jectors, there is a high possibility of having a majority or even all the
measurements with a negligible number of detection counts. It
seems that the predictive strength of the measurement-independent
DNN is limited for such a scenario. However, the MaxLik approach
is biased toward pure states in the case of heavily undersampled data
(78, 79), and the positivity constraint tends to a sparse (low-rank)

Fig. 3. Entanglement quantification error for the Werner state. The depen-
dence of values of concurrence for the two-qubit Werner state ρW(p) characterized
by the parameter p ∈ [0,1]. Values of the concurrence determined from (A) 36, (B)
28, (C) 18, and (D) 8 measurement settings. In each panel, the red triangles depict
the average values of the concurrence determined by theMaxLik with correspond-
ing uncertainty region, the blue squares stand for the measurement-independent
DNN predictions, and the green circles represent predictions given by measure-
ment-specific DNNs. The brown line shows the theoretical values of the concur-
rence for the Werner state. Both measurement-independent DNN and
measurement-specific DNNs outperform the MaxLik in entanglement quantifica-
tion of the Werner state.

Table 1. The summary of the mutual information quantification from
incomplete measurements consisting of one-fourth of all possible
Pauli projectors in each case. The MaxLik and the measurement-specific
DNNs are compared up to five-qubit quantum systems. The ratio of the
mean absolute errors (MAEs) of the methods shows an increasing
improvement in the performance of the DNN approach for entanglement
quantification in higher-dimensional systems.

Number
of qubits

MAE Ratio of MaxLik and
DNN MAEsMaxLik DNN

2 0.20 ± 0.16 0.09 ± 0.09 2.2

3 0.068
± 0.055

0.023
± 0.020

3.0

4 0.019
± 0.014

0.005
± 0.001

3.8

5 0.039
± 0.032

0.009
± 0.001

4.3
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states (80). This bias artificially increases the resulting concurrence
and reduces its error.
The second experimental system consists of a semiconductor

quantum dot resonantly pumped by picosecond pulses. The biexci-
ton-exciton cascade emission produces pairs of photons in a partial-
ly polarization entangled state. The degree of entanglement is
reduced by the presence of the fine-structure splitting, reaching
the concurrence of 0.18 ± 0.01. Figure 4C shows the MAE for
such a mixed quantum state. As for the source based on spontane-
ous downconversion, both DNN approaches beat, on average, the
MaxLik method in accuracy. Let us point out that the DNN-based
approaches were trained to predict quantum correlations from the
theoretical probabilities computed from the ideal quantum states
and measurement. Figure 3 thus demonstrates the robustness of
our approaches to noisy experimental data.

DISCUSSION
We demonstrated that, by exploiting novel methods of neural net-
works and deep learning, we can outperform the traditional and
commonly used techniques for quantification of quantum correla-
tions such as state tomography. For the systems of two qubits, we
built two different neural network–based approaches, namely, mea-
surement-specific and measurement-independent DNNs. Both ap-
proaches predict concurrence and mutual information from data
with a higher accuracy than the commonly used quantum state to-
mography. The best performing approach is the measurement-spe-
cific DNNs, which are trained to predict the concurrence or mutual
information from a fixed set of projectors. Furthermore, we gener-
alized to the system of three qubits, where we show that the mea-
surement-specific DNNs represent a more accurate method to

quantify the mutual information matrix than the maximum likeli-
hood one.We demonstrated the feasibility of the measurement-spe-
cific DNNs training up to five qubits. Our approaches not only
benefit from a high accuracy when working with fewer measure-
ment projectors but also are substantially faster compared to the
standard tomography–based methods. Furthermore, we demon-
strate the robustness of our approach using two experimental
systems: a nonlinear parametric process and a semiconductor
quantum dot. The DNN approaches can be further studied and
modified to adaptively find a minimal set of projectors that infer
the entanglement accurately.

MATERIALS AND METHODS
Quantifying quantum correlations
To quantify the quantum correlation, we use the concurrence and
the mutual information, for the two- and three-qubit cases, respec-
tively. The concurrence is a two-qubit monotone entanglement
measure (1) widely used for the characterization of bipartite entan-
glement commonly present in sources of entangled photon pairs.
Knowing the quantum state the concurrence is defined as

CðρÞ ; maxf0; λ1 � λ2 � λ3 � λ4g ð1Þ

with λ1, …, λ4 being the eigenvalues (sorted in decreasing order) of
the Hermitian matrix T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiρp ~ρ ffiffiffiρp
p

, here ~ρ ¼ σy � σyρ�σy � σy,
where ρsup>/sup> standing for complex conjugate and σy is one
of the Pauli matrices represented in a computational basis as
σy = i(∣1〉〈0∣−∣0〉〈1∣). For an arbitrary mixed state, the value of con-
currence is saturated from below by 0 (1) for the separable states
ρAB ¼

P
iγiρiA � ρ

i
B and from above by 1 for the maximally entan-

gled states of two-qubits.
Mutual information is a quantum correlationmeasure common-

ly used in quantum cryptography or for quantifying complexity in
many-body systems. For an n-qubit quantum system, mutual infor-
mation matrix reads

Iij ¼
1
2
½SðρiÞ þSðρjÞ � SðρijÞ� ð2Þ

and is constructed from the one and two point von Neumann en-
tropies (76), SðρiÞ ¼ � Trfρilogdρig and
SðρijÞ ¼ � Trfρijlogdρijg, with ρi and ρij standing for reduced
density matrices, ρi = Trk ≠ i{ρ} and ρij = Trk ≠ ij{ρ} respectively.

Quantum state tomography
Quantum state tomography is a method to solve the inverse
problem of reconstruction of an unknown quantum state. It uses
the set of measurement operators (projectors) and relative frequen-
cies { fi} acquired in a measurement. To obtain an informationally
complete measurement, we need the relative frequencies for at least
D2 − 1 independent projectors fMig

N
i¼0. Quantum state is recon-

structed by maximizing the log-likelihood functional
LðρÞ/

PN
j¼1f jlogpjðρÞ, which can be written (77, 81, 82) as the it-

erative map ρ(k+1) ← μkRρ(k)R, where μ is the normalization cons-
tant and R is an operator defined as R =

P
i fi/piMi. Here, fi are the

measured frequencies and pi are the theoretical probabilities given
by the Born’s rule pi = Tr{ρMi}. In the Results section of this paper,
we address how the measurement being incomplete affects the
quantification accuracy of the concurrence and the mutual

Fig. 4. Performance of MaxLik and DNN-based approaches for an experimen-
tal datasets. We show the dependence of the MAE on the number of projectors.
(A and B) Spontaneous parametric downconversion sources and (C) semiconduc-
tor quantum dot source. The concurrence of experimentally prepared quantum
states was determined from the full MaxLik tomography to (A) 0.985 ± 0.001, (B)
0.201 ± 0.002, and (C) 0.18 ± 0.01. The MAE for the measurement-specific DNNs is
depicted in green circles, for measurement-independent DNN in blue squares, and
for the MaxLik approach in red triangles.
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information. In such a case, the closure relation,
P

i Mi = 1, is no
longer fulfilled. The optimal strategy is to map the set of projectors
{Mi} into a new set {Mi0} via Mi0 = G−1/2MiG−1/2 with G =

P
i Mi.

One can easily check that the {Mi0} now fulfill the completeness re-
lation,

P
i Mi0 = 1. The iterative map then updates to

ρðkþ1Þ  μkG� 1=2RρðkÞRG� 1=2 ð3Þ

and represents a procedure that we follow in the main text. We con-
sider measurement settings to be the Pauli projectors, i.e., projectors
into eigenstates of Pauli operators {σx, σy, σz}. TheMaxLik estimator
ρMaxLik is defined as a fixed point of the iterative map (Eq. 3). The
iteration process starts from the completely mixed state ρinit = 1/D
and is stopped when the Hilbert-Schmidt distance between the
subsequent iterations reaches 10−16. In the case of encoding qubit
states into the polarization degrees of freedom, Pauli measurement
consists of projectors onto three mutually unbiased basis sets
{∣H〉〈H∣, ∣V〉〈V∣, ∣D〉〈D∣, ∣A〉〈A∣, ∣R〉〈R∣, ∣L〉〈L∣}.
There are other methods for quantum state tomography such as

maximum likelihood–maximum entropy (83), SDP (84), or com-
pressed sensing (30). These methods and their comparison to
MaxLik and DNNs are presented in the Supplementary Materials.

DNN methods
Neural networks are machine learning models that learn to perform
tasks by analyzing data. A DNNmodel consists of multiple layers of
interconnected artificial neurons and acts as a highly nonlinear
transformation parameterized by a large number of trainable pa-
rameters (85). DNNs have the ability to generalize from learning
stage, i.e., once trained they can perform unexpectedly well even
for inputs that were not observed during the learning stage. The
basic principles of DNNs operation are well known, but the full
span of their generalization ability is the subject of current research
(86, 87). In science and technology, neural networks have been suc-
cessfully applied to a wide range of problems, including predicting
the behavior of complex systems and analyzing large datasets from
experiments and simulations (88, 89).
Let us first consider the DNN quantification of entanglement in

a two-qubit system. The measurement-specific DNNs are fully con-
nected networks. The network has seven fully connected layers with
a few dozens of thousands trainable parameters in total. The exact
number of the free parameters differs between the networks that
have different length of the input vector, dependent on the
number of projectors measured. We trained 193 measurement-spe-
cific DNNs (12 per point except of full 36 projectors) with varying
length of the input layer, starting with the full 36 input neurons
down to 4 (with increment of 2).
We construct a set of quantum states as follows: We generate 106

random quantum states ρ of which four-fifths are randomly distrib-
uted according to the Bures measure induced by the Bures metric
(90)

ρ ¼
ð1þ UyÞGGyð1þ UÞ
Trð1þ UyÞGGyð1þ UÞ

ð4Þ

To achieve this, we generate a Ginibre matrix G with complex
entries sampled from the standard normal distribution,
Gij ≏Nð0; 1Þ þ iNð0; 1Þ, together with a random unitary U dis-
tributed according to the Haar measure (91). The remaining one-
fifth of the set consists of randomHaar pure states mixed with white

noise. The generation of the set aims at the most uniform and
broadest coverage of partially mixed quantum states. The set of
quantum states is randomly shuffled and split to two parts, i.e.,
the training and validation sets containing 800,000 and 200,000
samples, respectively. The test set has 5000 states generated accord-
ing to the Eq. 4.
For the quantum states, we prepare the corresponding datasets

by computing the probability distribution with elements pi ≡
Tr{ρMi} and evaluate the quantum correlation measure (concur-
rence or mutual information) using Eqs. 1 and 2. We trained the
measurement-specific DNNs to predict the quantum correlations
from the probability distribution p. The training and validation da-
tasets have the following structures

Dinput ¼ fTrfρM1g; . . .;TrfρM36gg
Doutput ¼ fQðρÞg ð5Þ

where the length of the input vector Dinput is different for various
measurement-specific neural networks, ranging from full 36 projec-
tors down to 4. The output QðρÞ stands for either the concurrence
or the mutual information.
We achieve the learning of the neural networks by backpropagat-

ing the error through the use of chain rule of derivation. It minimiz-
es the loss function defined as the mean absolute difference between
the true values of the quantum correlations measure Qtrue and the
values Qθpredicted predicted by the networks. The loss function thus
takes a form

L ¼jQtrue � Qθpredictedj ð6Þ

and the minimum is found by minimizing the ℒover all compo-
nents of a training dataset to update weights and biases {θ} using
the Nesterov-accelerated adaptive moment estimation (NAdam) al-
gorithm. At the step t, the NAdam procedure updates parameters

θt  θt� 1 � η
mt
ffiffiffiffiffi
n̂t
p
þ ɛ

ð7Þ

with

gt  rθt� 1Lðθt� 1Þ;
ĝ gt

1�
Yt

j¼1
μj

;

mt  μmt� 1 þ ð1 � μÞgt;
m̂t  

mt

1�
Ytþ1

j¼1
μj

;

nt  νnt� 1 þ ð1 � νÞg2t ;
n̂t  nt

1� νt ;

mt  ð1 � μtÞĝt þ μtþ1m̂t

ð8Þ

The parameter η represents the learning rate, parameter μ repre-
sents the exponential decay rate for the first moment estimates m̂,
the parameter ν is the exponential decay rate for the weighted norm
g2t , and ε is a parameter that ensures the numerical stability of the
NAdam optimization procedure. In our work, we set the numerical
values of parameters {η, μ, ν, ε} to {0.001,0.9,0.999,10−7}. The train-
ing takes over 2000 epochs with data further divided into 100
batches to optimize the learning time and accuracy of the
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predictions on the validation dataset. All above is implemented
using Keras and Tensorflow libraries for Python.
The measurement-independent DNN is a generalization to the

measurement-specific DNNs, and, therefore, it consists of single
network that predicts the concurrence and the mutual information
from any set of projectors that we chose towork with. This function-
ality is accomplished by a restructuralization of the input layer that
inputs not only the vector of probabilities p but also the description
of the measurement {Mi} itself

Dinput ¼ fM1;TrfρM1g; . . .;M36;TrfρM36gg ð9Þ

The kernel of the first convolutional layer has a stride length
equal to the length of the pair {Mi, Tr{ρMi}} to prevent the
network to see cross-talk between the adjacent input pairs. Each
projector Mi is vectorized using d2 trace orthonormal basis opera-
tors {Γi∣Γi ≥ 0, Tr{ΓiΓj} = δij ∀ i, j}. For incomplete measurements
containing less that 36 projectors, we set the values of missing mea-
surement probabilities and projectors to zero.
For the three-, four-, and five-qubit systems, the structure, the

loss function, and the optimization procedure of the measure-
ment-specific DNNs are the same as for the systems of two
qubits. We trained 44 measurement-specific DNNs for three
qubits. The length of the input vector is different for each measure-
ment-specific neural network, ranging from 63 = 216 down to 5. We
also trained two specific networks for the four- and five-qubit
systems with 325 and 1944 input measurements, respectively. The
training and validation datasets are divided in a ratio of 4:1. They
contain 100,000 measurement probability distributions (input)
and values of the mutual information (output) computed from
100,000 quantum states generated using the same process as for
the two-qubit states. The number of training points in the dataset
is lower than that in the two-qubit case due to memory limitations.
For this reason, we adopted the incremental learning method (92).
After the loss function on the validation dataset reaches minimum,
which is not updated in the next 200 epochs, the training is stopped,
and the best model is saved. Next, we generate different 100,000 data
points and continue training. The test set consists of 500 states gen-
erated according to Eq. 4.
The complexity of the developed DNNs is rather low, and their

scaling to higher-dimensional systems is feasible. The largest
network presented (two-qubit device-independent DNN) has
almost 460,000 trainable parameters. The five-qubit DNN has
slightly more than 230,000 trainable parameters. Its training on 2
million data samples takes 45 hours on a single consumer-grade
graphics processing unit. With larger computational resources
(available today), we believe that training the networks for entangle-
ment quantification in systems with dozens of qubits should be fea-
sible. The conventional methods, such as MaxLik, are also
computationally demanding and have to be evaluated for every
new data. In contrast, our approach is computationally demanding
only in the training stage. The forward evaluation (from data to en-
tanglement) is computationally easy. Specifically, the DNN entan-
glement quantification is, on average, four orders of magnitude
faster than the MaxLik and two orders of magnitude faster than
the SDP.

Experiment
The spontaneous parametric downconversion source consists of a
beta barium borate (BBO) crystal cut for type II colinear generation
of two correlated orthogonally polarized photons with the central
wavelength of 810 nm. The BBO crystal was pumped by a continu-
ous laser. An entangled singlet polarization state was conditionally
generated by interfering the correlated photons at a balanced
beamsplitter.
To achieve the complete set of data, we performed the full

quantum state tomography. This was performed by measuring all
36 projective measurements as combinations of local projections
to horizontal, vertical, diagonal, anti-diagonal, right-hand, and
left-hand circular polarizations. The polarization analyzer consists
of a sequence of half-wave and quarter-wave plates followed by a
polarizer, single-mode fiber coupling, and a single-photon detector.
The detection events from the two detectors were taken in coinci-
dence basis. To obtain the datasets where the entanglement was
reduced by noise, one of the pair photons was propagated
through a noisy channel. The noise was implemented by injecting
a weak classical signal from an attenuated laser diode. The concur-
rence of the entangled state reached 0.98 for a short coincidence
window and no injected noise. However, for larger coincidence
windows and higher levels of injected noise, the concurrence of
the detected state decreased. The experimental data for the entan-
gled states with the concurrence of 0.985 ± 0.001 and 0.201 ± 0.002
used in this work were acquired in (93).
Semiconductor quantum dot source consists of a quantum dot

embedded in a circular Bragg grating cavity (94) that enables high
photon collection efficiency. The quantum dot was excited via two-
photon resonant excitation of the biexciton (95). The excitation
pulses were derived from a pulsed 80-MHz repetition rate Ti:Sap-
phire laser. The laser scattering was spectrally filtered, and the
exciton and biexciton emission were separated ahead of single-
mode fiber coupling. The polarization state of the generated entan-
gled state was analyzed using two polarization analyzers in the
process of full quantum state tomography in the same way as it
was performed for the parametric downconversion source. The ob-
servable degree of entanglement was predominantly limited by the
nonzero fine structure splitting.

Supplementary Materials
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Supplementary Text
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