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Introduction

Le 20ème siècle marque une période importante pour la physique. La première révolution concep-
tuelle vient de la relativité restreinte. Cette théorie bouleverse notre perception du temps et de l’espace
en remettant en cause les notions de simultanéité et d’espace absolu. Le temps et l’espace deviennent
indéfectiblement liés. S’ensuivent des conséquences essentielles parmi lesquelles l’impossibilité d’inter-
actions instantanées à distance, l’équivalence masse-énergie, l’interdiction pour une particule massive
d’atteindre la vitesse de la lumière et l’existence de l’antimatière. À la suite de l’établissement de ce
nouveau paradigme, deux grandes théories émergent. L’une de façon indépendante, l’autre de façon
corrélative.

D’une part, la physique quantique voit le jour. Les particules décrites jusqu’ici seulement par
leur aspect corpusculaire, sont désormais décrites également par un aspect ondulatoire. La dualité
onde-corpuscule est indispensables dès lors qu’on veut dépeindre les caractéristiques exhaustives
d’une particule. Cet aspect ondulatoire donne lieu à des propriétés de délocalisation et à une facette
probabiliste. C’est une importante avancée dans notre conception du monde physique. En effet, le
principe déterministe ancré dans les lois les plus fondamentales s’en trouve partiellement déconstruit.
Et, de façon très remarquable, le phénomène d’intrication quantique – dans lequel les particules
enchevêtrées forment un système lié – montre que la théorie est, en un sens, non-locale.

Le formalisme contemporain utilise abondamment la notion de champ et le concept (dont nous
verrons qu’il est en réalité non-trivial) de base d’ondes planes. De façon générique, la quantification
s’effectue en appliquant des relations de commutation canoniques aux champs considérés et en les
promouvant au rang d’opérateurs. La procédure dite de “quantification de Dirac" permet de généraliser
la méthode à partir de la structure symplectique de la théorie considérée.

La théorie quantique des champs (TQC) permet de concilier efficacement le principe de la relativité
restreinte avec les prescriptions de la mécanique quantique. La dynamique des champs est décrite par
des équations différentes qui dépendent de leurs spins. Un champ scalaire, un tenseur de type (0, 0), de
spin entier 0, est soumis à l’équation de Klein-Gordon. Un champ électromagnétique, un tenseur de
type (0, 1), de spin 1, est soumis aux équations de Maxwell. D’un point de vue théorique, si on associe
une particule d’interaction liée à la gravité, cette particule, appelée graviton, serait un tenseur de type
(0, 2), de spin 2. Pour compléter ce panel de champs, il existe également le champ fermionique, de
spin 1/2. Ce dernier est non plus décrit par un tenseur mais par un spineur qui se transforme en son
opposé sous rotation de 2π. Un champ fermionique est soumis à l’équation de Dirac et une partie de
cette thèse y sera consacrée à quelques considérations originales autour des propriétés de ces solutions.

Du point de vue de la physique des particules élémentaires, le formalisme se fonde sur les théories
jauge. Celles-ci utilisent des groupes de symétrie locale (groupes de Lie complexes) : U(1), SU(2),
SU(3), SU(2)XSU(3), etc. Seule la gravitation fait défaut dans ce paradigme par ailleurs très cohérent,
quoique non exempt de difficultés.
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10 Introduction

D’autre part, en parallèle, la théorie de la relativité générale (RG) s’est imposée. L’espace-temps est
courbé par l’énergie. Ainsi, un objet massif va modifier l’écoulement du temps et infléchir les distances
à ses alentours. Cela décrit une quatrième force fondamentale conceptuellement très différentes des
trois précédentes. En effet, les forces électromagnétiques, faible et forte décrivent la dynamique des
particules et pour cela on utilise comme référence l’espace-temps dans lequel elles sont plongées. En
gravité, on décrit la dynamique de l’espace-temps lui-même. Il n’y a plus de référence immuable sur
laquelle s’appuyer, de structure figée : c’est ce qu’on nomme l’invariance de fond. Mathématiquement,
il est possible de décrire la dynamique d’un espace à quatre dimensions en le plongeant dans un
espace à cinq dimensions. Mais il est également possible de décrire sa courbure, par exemple, en
demeurant dans l’espace-temps lui-même. Pour décrire la propagation des champs du modèle standard
des particules en présence de gravitation, on peut utiliser la TQC en espace courbe. Cependant, lorsque
l’on veut quantifier l’espace-temps lui même il faut faire appel à la gravité quantique. Il n’existe pas à
ce jour une unique théorie de gravité quantique consensuelle. Nous sommes encore à un stade précoce
car aucune expérience n’a sondé directement des effets de gravité quantique.

Dans ce manuscrit, nous verrons différents aspects théoriques et phénoménologiques associés à
la gravité quantique. Dans un premier temps, nous étudierons la phénoménologie de la cosmologie
quantique à boucles (LQC). Ce modèle cosmologique s’inspire des travaux effectués dans le cadre de
la gravitation quantique à boucles (LQG). Cette théorie tente de quantifier l’espace-temps de façon
invariante de fond. En LQC, le Big-Bang est remplacé par un rebond, précédé d’une phase où l’univers
se contracte. Il est alors possible d’étudier les conséquences de cet univers pré-rebond dans l’univers
actuel. Nous étudierons ensuite la phénoménologie associée aux trous noirs dans le cadre de la gravité
quantique. Nous verrons les éventuels signaux émis par les trous noirs en rebond et les conséquences
de la discrétisation de l’espace-temps sur le rayonnement de Hawking. Plusieurs de mes travaux
portent sur les modes quasi-normaux (QNMs). Ces derniers décrivent les fréquences propres des ondes
gravitationnelles émises lorsqu’un trou noir se trouve dans la phase dite de relaxation. Nous étudierons
d’abord les aspects théoriques liés à l’isospectralité, puis nous verrons comment la valeur des QNMs
varie en fonction des paramètres de différents modèles au-delà de la RG. Enfin, nous étudierons le
formalisme polaire, qui décrit le théorie quantique des spineurs dans une plus grande généralité que la
TQC. Dans cette approche, l’unique hypothèse est la validité de l’équation de Dirac. Nous verrons que
ce formalisme est apte à décrire l’effet Aharonov-Bohm gravitationnel ainsi que la section efficace de
diffusion pour des particules en interaction. Il semble que des effets non-triviaux échappant à la TQC
puissent être ainsi décrits.



CHAPITRE 1

La théorie quantique des champs et la

relativité générale

Sommaire

1.1 La relativité restreinte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 La relativité générale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 La théorie quantique des champs . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4 La théorie quantique des champs en espace courbe . . . . . . . . . . . . . . . 26

1.5 La gravité quantique à boucles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Dans ce chapitre, je vais introduire la relativité générale (RG) et la théorie quantique des champs
(TQC). La première étend le concept de la relativité restreinte à des espaces-temps courbes. La
deuxième permet d’avoir une description relativiste (au sens restreint) de la mécanique quantique.
Ainsi avant de présenter ces deux théories, j’énoncerai quelques aspects de la relativité restreinte. Puis
je présenterai la gravitation quantique à boucles. Cette théorie tente de quantifier la gravité. Dans ce
manuscrit nous utilisons le système d’unités naturelles, mais parfois nous écrirons explicitement la
longueur de Planck lPl. Les vecteurs, et plus généralement les tenseurs, sont notés en gras. Cepen-
dant, par abus de langage, on écrit parfois un tenseur avec ses indices sans que l’on fasse référence
spécifiquement à une de ses composantes.

1.1 La relativité restreinte

Cette section et la section 1.3 sont inspirées du livre [1].

D’après le principe de relativité, il n’existe pas d’observateur inertiel privilégié. Pour décrire cette
propriété, nous introduisons le groupe de Lorentz - le groupe orthogonal O(1, 3). Il est défini par

ηab = ηcdΛ
c
aΛ

d
b, (1.1)

avec Λa
b

une transformation de Lorentz
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12 Chapitre 1. La théorie quantique des champs et la relativité générale

x′a = Λa
bxb, (1.2)

et ηab la métrique de Minkowski, dans la notation index. L’intervalle d’espace-temps

ds2 = ηabdxadxb = dt2 − dx2 − dy2 − dz2. (1.3)

est invariant sous transformation de Lorentz. Le sous-groupe orthochrone (Λ0
0 ≥ 0) et propre (detΛ =

1), SO+(1, 3), est appelé le groupe de Lorentz restreint.
Une transformation infinitésimale est décrite par

Λa
b = δ

a
b + ω

a
b. (1.4)

L’équation (1.1) montre que ω est antisymétrique, le groupe de Lorentz possède donc six paramètres.
Il décrit trois rotations dans l’espace et trois boosts. Les générateurs des rotations sont notés Ji et ceux
des boosts Ki. Nous explicitons par leur forme ici, mais l’algèbre de Lie du groupe de Lorentz so(3, 1)
s’obtient par commutation des générateurs. L’algèbre de Lorentz s’écrit

[Ji, J j] = ǫ i jkJk, (1.5)

[Ji,K j] = ǫ i jkKk, (1.6)

[Ki,K j] = −ǫ i jkJk. (1.7)

En introduisant θi = (1/2)ǫ i jkω jk et ηi = ηi0, les transformations de Lorentz s’écrivent

Λ = e−iθa Ja+iηaKa

. (1.8)

On défini Jab tel que Λ = 1 − iωabJab/2 quand ωab → 0. On peut montrer que (Jab)c
d
= i(ηacδb

d
−

ηbcδa
d
). On a J0i = Ki et Ji j = ǫi jkJk. En notation covariante, l’algèbre de Lorentz se lit

[Jab, Jcd] = i(−ηacJbd − ηbd Jac + ηbcJad + ηad Jbc), (1.9)

et un élément de l’algèbre de Lorentz s’écrit

Λ = e−
i
2ωab Jab

. (1.10)

En définissant

J± =
J ± iK

2
, (1.11)

l’algèbre s’écrit

[J+,i, J+, j] = iǫ i jkJ+,k, (1.12)

[J−,i, J−, j] = iǫ i jkJ−,k, (1.13)

[J+,i, J−, j] = 0. (1.14)

On a so(3, 1) = su(2)
⊕

su(2). Les représentations de su(2)
⊕

su(2) sont étiquetées par deux nombres
demi-entiers ( j−, j+). (0, 0) est la représentation scalaire, de dimension 1, J = 0, K = 0. Les repré-
sentations (1/2, 0) et (0, 1/2) sont les représentations spinorielles, de dimension 2. Un spineur dans
la représentation (1/2, 0) est appelé spineur de Weyl gauche et est dénoté par ψL et un spineur dans
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(0, 1/2) est un spineur de Weyl droit ψR. Dans la représentation (1/2, 0), J− est représenté en termes
de matrices 2 × 2 telles que J− = σ

2 et J+ = 0. Avec l’équation (1.8), on peut montrer que sous
transformations de Lorentz un spineur gauche va se transformer selon :

ψL → ΛLψL = exp
(
(−iθ − η) · σ

2

)
ψL. (1.15)

Et dans la représentation (0, 1/2), un spineur droit se transforme selon

ψR → ΛRψR = exp
(
(−iθ + η) · σ

2

)
ψR. (1.16)

Les représentations irréductibles (1/2, 0) et (0, 1/2) sont échangées sous parité tel qu’un spineur
gauche devient un spineur droit et vice-versa.

Nous définissons un champ de Dirac tel que

ψ =


ψL

ψR

 . (1.17)

Il possède quatre composantes complexes et fournit une base pour les transformations de Lorentz et de
parité. Il se transforme selon

ψ→ ΛDψ =


ΛL 0

0 ΛR

ψ, (1.18)

sous transformation de Lorentz. Sous parité, il se tranforme selon ψ′ = γ0ψ. Nous renvoyons le lecteur
au cours [2] pour plus de détails sur les différentes représentations du groupe de Lorentz.

1.2 La relativité générale

Cette section s’inspire des livres [3, 4].

En relativité restreinte, un observateur libre se déplace selon les géodésiques de la métrique de
l’espace-temps qui est plat. En relativité générale (RG), un observateur libre se déplace selon les
géodésiques mais cette fois l’espace-temps est courbe.

La relativité est invariante par difféomorphisme (sous une transformation générale de coordonnées).
On peut alors procéder de deux façons différentes ce qui va amener à décrire la RG avec différents
formalismes [5]. Un premier formalisme consiste à garder les points de la variété fixes mais à changer
le système de coordonnées dans l’espace R4. On fait un changement des vecteurs de base (qui vivent
dans R4) d’un même quadrivecteur (qui vit dans M). C’est le formalisme passif (formalisme de
coordonnées). Une autre façon de procéder est de garder la base de R4 fixe mais de faire bouger les
points sur la variété. On change de quadrivecteur mais on garde les même vecteurs de base. C’est le
formalisme actif (formalisme des tétrades).

Dans la suite, les indices grecques sont des indices d’espace-temps alors que les indices latins
sont des indices de Lorentz, vivant dans l’espace de Minkowski tangent à l’espace-temps. Dans ce
manuscrit nous considérons la RG sans torsion.
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1.2.1 Les différents formalismes

Le formalisme de coordonnées, passif

L’espace-temps en représenté par la métrique g qui est un tenseur de type (0,2), symétrique et non
dégénéré. Une dérivée covariante (ou connexion) est un opérateur d’ordre 1 qui respecte la règle de
Leibniz. Soit u un vecteur de l’espace tangent, la dérivée covariante ∇ est définie par

∇µuα = ∂µtα + Γαµβuβ. (1.19)

Soit une courbe C de vecteur tangent u, un vecteur 3 suit le transport parallèle sur C si

uµ∇µ3α = 0. (1.20)

Une courbe C est une géodésique si le vecteur vitesse dx/dt suit le transport parallèle, c’est-à-dire

d2xµ

dt2
+ Γ

µ

αβ

dxα

dt

dxβ

dt
. (1.21)

Une fois la métrique donnée, il existe un choix naturel et unique pour définir la dérivée covariante,
provenant du transport parallèle. Si on transporte parallèlement deux vecteurs 3 et w sur une courbe, il
faut que leur produit scalaire reste inchangé, c’est-à-dire

uµ∇µ(gαβ3αwβ) = 0, (1.22)

avec 3 et w satisfaisant l’équation (1.20). La règle de Leibniz nous permet d’obtenir

uµ3αwβ∇µgαβ = 0. (1.23)

Cette équation (1.23) est satisfaite pour toutes les courbes et tous les vecteurs transportés parallèlement
si et seulement si

∇µgαβ = ∂µgαβ − gρβΓ
ρ
αµ − gαρΓ

ρ

βµ
= 0. (1.24)

C’est une condition additionelle, dite condition de métricité, qui permet de définir la dérivée covariante
de manière unique [3]. Cette dernière est appelée connexion de Levi-Civita et ses composantes sont les
symboles de Christoffel :

Γ
µ

αβ
=

1
2

gµν(∂αgβν + ∂βgαν − ∂νgαβ). (1.25)

La RG nous indique que l’espace-temps est courbé lorsqu’il y a un contenu en matière. La courbure F

de la connexion de Levi-Civita s’écrit

F(u, 3)w = ∇u∇3w − ∇3∇uw − ∇[u,3]w. (1.26)

On peut alors définir le tenseur de Riemann R. C’est un tenseur de type (1,3) défini tel que

Rρ
σµν = dxρ(F(∂µ, ∂ν)∂σ (1.27)

= ∂µΓ
ρ
νσ − ∂νΓρµσ + Γ

ρ

µλ
Γλνσ − Γ

ρ

νλ
Γλµσ. (1.28)

En le contractant on obtient le tenseur de Ricci
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Rσν = Rρ
σρν. (1.29)

Puis une deuxième contraction nous permet de définir le scalaire de Ricci

R = Rν
ν. (1.30)

Le tenseur de Weyl C est la partie sans trace du tenseur de Riemann. En quatre dimensions on a

Cρσµν = Rρσµν − 1
2 (gρµRσν + gσνRρµ − gσµRρν − gρνRσµ) + 1

6 (gρµgσν − gρνgσµ)R. (1.31)

La matière courbe l’espace-temps et cette interaction est décrite par l’équation d’Einstein

Gµν + Λgµν = κTµν, (1.32)

avec Gµν ≡ Rµν − 1
2gµνR le tenseur d’Einstein, Λ la constante cosmologique, T µν le tenseur énergie-

impulsion et κ = 8π en unités naturelles. Cette équation (1.32) peut être retrouvée à partir de l’action
donnée par

S =

∫ [ 1
2κ

(R[g] − 2Λ) +Lmat

]
d4x

√
− det g, (1.33)

avec Lmat la densité Lagrangienne de la matière et R le scalaire de Ricci. Le tenseur énergie-impulsion
est donné par

Tµν = −
1

2π
1√
− det g

δS mat

δgµν
(1.34)

La partie gravitationnelle de l’équation (1.33) est appelée action d’Einstein-Hilbert

S EH =
1
2κ

∫
d4x

√
− det gR[g]. (1.35)

Ainsi, l’espace-temps est décrit par une variété Riemannienne, qui se courbe selon le contenu
en matière et cela est décrit par l’équation d’Einstein (1.32). Ce formalisme de tenseurs est celui
qui est le plus utilisé. Il a l’avantage d’expliciter l’interprétation physique des équations de façon
naturelle. Il est notamment utilisé pour décrire la RG sous le formalisme Hamiltonien qui sera utilisé
en gravité quantique à boucles (voir la section 1.5). Mais d’autres formalismes sont également utilisés
et possèdent d’autres avantages. Les formalismes suivants sont actifs.

Le formalisme des tétrades, actif, réel

Les coefficients de connexion affine Γµ
αβ

sont remplacés par des coefficients de connexion de spin
Ωa

bµ
. Dans le formalisme des tétrades, on associe à chaque point de l’espace-temps une base de quatre

vecteurs contravariants ea
α. Ces derniers permettent de passer de l’espace-temps à l’espace de Lorentz,

ils sont définis tels que

gαβ = ea
αeb

βηab. (1.36)

La matrice inverse e
β

a est définie par
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ea
αe β

a = δ
β
α et ea

αe α
b = δ

a
b. (1.37)

Une transformation de coordonnées est décrite par

ea
µ = ea

α

∂xα

∂x′µ
, (1.38)

et une transformation de Lorentz par

ea
µ = eb

µΛ
a
b. (1.39)

Dans ce formalisme, la condition de métricité s’écrit

∇µea
ρ = ∂ µe

a
ρ − Γβρµea

β + Ω
a

b µe
b
ρ = 0, (1.40)

avec Ω a
b µ

la connexion de spin donnée par Ω a
b µ
= ea

νΓ
ν
σµe

σ
b
+ ea

ν∂µe
ν

b
. On peut définir les coefficients

de rotation de Ricci

γabc = e µ
a ebµ;νe

ν
c . (1.41)

Ils sont antisymétriques par changement des deux premiers indices. Le tenseur de Riemann en indices
de Lorentz s’écrit

Rabcd = Rρσµνe
ρ

a e σ
b e µ

c e ν
d (1.42)

= −γabc,d + γabd,c + γba f [γ
f

c d
− γ f

d c
] + γ f acγ

f

b d
− γ f adγ

f

b c
. (1.43)

Le formalisme de Newman-Penrose, actif, complexe

Le formalisme de Newman-Penrose est un formalisme des tétrades, avec un choix spécifique de
vecteurs : l et n sont réels, m et m sont complexes conjugués. Les quatre vecteurs sont nuls

l.l = n.n = m.m = m.m = 0. (1.44)

Ils satisfont à la condition d’orthogonalité

l.m = l.m = n.m = n.m = 0. (1.45)

On impose également la condition de normalisation

l.n = 1 et m.m = −1. (1.46)

Les dérivées directionnelles sont définies par des symboles spéciaux

D = lα∂α; ∆ = nα∂α; δ = mα∂α; et δ∗ = m
α
∂α. (1.47)

On associe également des symboles à certains coefficients de rotation de Ricci. Ils sont appelés
coefficients de spin
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κ = γ311 ρ = γ314 ǫ =
1
2

(γ211 + γ341)

σ = γ313 µ = γ243 τ =
1
2

(γ212 + γ342)

λ = γ244 τ = γ312 α =
1
2

(γ214 + γ344)

ν = γ242 π = γ241 β =
1
2

(γ213 + γ343)

Dans ce formalisme, les dix composantes indépendantes du tenseur de Weyl sont représentées par
cinq scalaires complexes

Ψ0 = −Cαβγδl
αmβlγmδ = C1313,

Ψ1 = −Cαβγδl
αnβlγmδ = C1213,

Ψ2 = −Cαβγδl
αmβm

γ
nδ = C1342, (1.48)

Ψ3 = −Cαβγδl
αnβm

γ
nδ = C1242,

Ψ4 = −Cαβγδn
αm

β
nγm

δ
= C2424.

Les équations d’Einstein seront écrites avec les dérivées directionnelles, les coefficients de spin et ces
cinq scalaires.

Ce formalisme sera utilisé pour l’article sur la section efficace des trous noirs en LQG (section 3.2)
et celui sur l’isospectralité (section 3.3.3).

Le formalisme spinoriel, actif, complexe

Ce formalisme est un cas particulier du formalisme des tétrades. Il est défini avec les quatre matrices
4 × 4 γa, elles vivent dans l’espace de Minkowski et les tétrades permettent de les décrire en espace
courbe

γµ = γaeµa. (1.49)

Elles obéissent à l’algèbre de Clifford

{γa, γb} = 2ηab, (1.50)

et en utilisant la propriété (1.36), on a alors

{γµ, γν} = 2gµν. (1.51)

On peut écrire une représentation complexe de l’algèbre de Lorentz

σab =
1
4

[γa, γb]. (1.52)

Il est possible de vérifier que ces matrices satisfont effectivement les règles de commutation de l’algèbre
de Lorentz. Dans la représentation spinorielle, la transformation de Lorentz s’écrit
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Λ 1
2
= e

1
2ωabσ

ab

, (1.53)

avec ωab les six paramètres du groupe de Lorentz. Les matrices γ sont invariantes par rotation
simultanée de leur indices vectoriels et spinoriels [6]

Λ−1
1
2
γaΛ 1

2
= Λa

bγ
b. (1.54)

La connexion spinorielle est définie par

Ωµ =
1
2
Ωab

µσab, (1.55)

et la condition de métricité s’écrit

∇µγa = ∂µγ
a + γbΩa

bµ + [γa,Ωµ] = 0. (1.56)

Ce formalisme sera utilisé pour l’article de l’étude des spineurs, dans des potentiels de types
hydrogène et oscillateur harmonique, qui décrira également l’effet Aharonov Bohm gravitationnel
(section 4.3), ainsi que dans l’article sur la section efficace de la diffusion Compton (section 4.4).

Les équations d’Einstein sont non linéaires et il est très compliqué de trouver des solutions. Grâce
aux simplifications dues aux symétries, plusieurs solutions on été trouvées. La première solution est
celle de l’univers en expansion. La deuxième solution est celle de trou noir (mais plus généralement
c’est une solution de corps sphériques statiques) qui décrit une région de l’espace-temps où la matière
ne peut pas s’échapper. Dans les deux cas, la RG prédit une singularité. La gravité quantique pourrait,
quant à elle, permettre de résoudre ces singularités.

1.2.2 La cosmologie

On a vu précédemment que la métrique est reliée à la distribution de matière, par les équations
d’Einstein (1.32). Pour décrire l’univers comme un tout, ce dernier est supposé homogène et isotrope à
très grande échelle. C’est le principe cosmologique, consistant avec les observations. Ces symétries
simplifient énormément les équations d’Einstein, et il existe une solution décrite par la métrique de
Friedmann-Lemaître-Robertson-Walker (FLRW)

ds2 = −N2(t)dt2 + a2(t)
[

dr2

1 − kr2
+ r2 + r2 sin2 θdφ

]
, (1.57)

avec t le temps cosmologique, k le facteur de courbure et a le facteur d’échelle. La fonction lapse N(t)
ne joue aucun rôle dynamique, elle correspond un multiplicateur de Lagrange. Elle permet de définir
un choix de jauge pour l’évolution de la composante temporelle. L’action est donnée par l’équation
(1.33). Pour un univers décrit par l’équation (1.57), le scalaire de Ricci est donné par

R = 6
(

ä

N2a
+

ȧ2

N2a2
+

k

a2
− ȧṄ

aN3

)
, (1.58)

et l’action d’Einstein-Hilbert Eq.(1.35) se réduit à
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S EH =
1
2κ

∫
d4xNa3

(
R − 2Λ + 2κLM

)
. (1.59)

avec Λ la constante cosmologique et LM le Langrangien qui décrit le contenu en matière de l’univers.
La dynamique est dictée par le contenu de l’univers. On suppose que l’univers est rempli d’un fluide
parfait, ainsi le tenseur énergie-impulsion s’écrit

Tµν = ρuµuν + p(gµν + uµuν), (1.60)

avec ρ la densité d’énergie, p la pression et u la quadri-vitesse du fluide. Les équations d’Einstein se
réduisent alors aux équations de Friedmann

H2 ≡
(
ȧ

a

)2

=
κ

3
ρ +
Λ

3
− k

a2
, (1.61)

ä

a
= −κ

6
(ρ + 3p) +

Λ

3
. (1.62)

En multipliant l’équation (1.61) par a2, différenciant cette équation et éliminant ä via l’équation (1.62),
on obtient

ρ̇ + 3H(ρ + 3p) = 0. (1.63)

On peut alors décrire la densité d’énergie ρ de chaque contenu en fonction de a et du paramètre d’état
ω ≡ p/ρ. En supposant ω constant, on a

ρ(t) ∼ a(t)−3(1+ω). (1.64)

Le paramètre ω décrit le contenu en matière : ω = 1/3 pour le rayonnement, ω = 0 pour la matière non
relativiste et ω = −1 pour une constante cosmologique. Ainsi, pour ω , −1, l’expansion de l’univers
est décrite selon

a(t) ∼ t
2

3(1+ω) . (1.65)

Le cas ω = −1 décrit un univers dynamique dont la densité d’énergie reste constante au cours du
temps. Cela donne lieu à une expansion exponentielle de l’univers, Eq. (1.61). Actuellement nous
observons une telle expansion. L’explication standard décrit un univers dominé par l’énergie noire dont
les propriétés restent encore incertaines et dont les effets sont décrits par Λ. Une description très rapide
du modèle cosmologique serait la suivante : nous avons le Big-Bang, puis l’univers est principalement
rempli par le rayonnement, ensuite la matière non relativiste domine (les grandes structures se créent)
et enfin nous avons la phase d’expansion accélérée actuelle. Il y a eu une phase d’équilibre entre les
photons et les baryons, puis l’expansion de l’univers a permis aux photons de s’échapper de cette
interaction et de se propager à travers l’univers. C’est grâce à ce fond diffus cosmologique (dit CMB,
pour Cosmic Microway Background), qu’aujourd’hui nous pouvons effectuer des observations des
premiers instants de l’univers. Dans ce modèle cosmologique, nous introduisons également l’inflation.
Cette dernière décrit une phase d’expansion exponentielle (espace de de Sitter ≡ dS) qui a eu lieu juste
après le Big Bang. Ce modèle permet de résoudre les problèmes d’homogénéité, d’isotropie, d’horizon
et de platitude. De plus, cette phase d’inflation est importante pour les perturbations primordiales, que
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nous verrons dans la section 2.3.1. L’inflation permet également de décrire la création des particules
primordiales. En effet, pendant l’inflation on a un vide privilégié associé à l’espace dS, et brutalement,
on passe à un autre vide privilégié lorsque l’inflation s’arrête et que l’univers est dominé par le
rayonnement. Ainsi la transition est décrite par les transformations de Bogoliubov (1.119, 1.120).

En cosmologie standard, il n’existe aucune prédiction sur la durée de l’inflation. Par contre, il faut
qu’elle dure assez longtemps pour permettre de résoudre le problème de l’horizon. Cela signifie que
l’inflation doit établir un contact causal entre des régions éloignées du CMB. La durée de l’inflation
est exprimée en nombre d’e-folds N défini tel que

N = ln
(

ai

a f

)
, (1.66)

avec ai et a f les facteurs d’échelle au début et à la fin de l’inflation, respectivement. Cette phase
d’expansion peut être expliquée si l’univers est rempli d’un champ scalaire φ. C’est ce modèle ci que
nous présentons, cependant il existe un large panel de modèles aptent à générer une phase d’inflation
[7].

La dynamique d’un champ scalaire minimalement couplé à la gravité, avec Λ = 0, est décrit par
l’action suivante

S = S EH + S φ =

∫
d4x
√−g

( 1
2κ

R +
1
2
∂µφ∂µφ − V(φ)

)
, (1.67)

Le tenseur énergie-impulsion correspondant se déduit en dérivant l’action par rapport à gµν (1.34), on
obtient

Tµν = −
2√
− det g

δS φ

δgµν
= ∂µφ∂νφ − gµν

(1
2
∂σφ∂σφ + V(φ)

)
. (1.68)

On en déduit

ρ =
1
2
φ̇2 + V(φ) et P =

1
2
φ̇2 − V(φ). (1.69)

Ainsi dans un univers homogène et isotrope, l’équation de Klein-Gordon se réduit à

φ̈ + 3Hφ̇ +
dV

dφ
= 0. (1.70)

Dans le cas d’un régime de roulement lent (dit "slow-roll"), c’est-à-dire lorsque l’énergie potentielle
domine par rapport à l’énergie cinétique, on a une expansion accélérée

H2 ≈ κ

3
V et φ̇ ≈ − 1

3H

dV

dφ
≈ constante. (1.71)

Ce modèle décrit une phase d’inflation dans l’univers primordial dictée par la dynamique d’un champ
scalaire φ.
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1.2.3 Les trous noirs

La solution stationnaire, axisymétrique et asymptotiquement plate aux équations d’Einstein dans le
vide, la plus générale décrit les trous noirs de masse M, avec une charge Q et un moment cinétique J.
Ils sont appelés trous noirs de Kerr-Newman. Ceci est confirmé par le théorème de la calvitie : un trou
noir est caractérisé par seulement ces trois paramètres : M, Q et J et ce, peu importe la façon dont il a
été formé.

Les trous noirs de Schwarzschild

Les trous noirs de Schwarzschild sont une solution statique à symétrie sphérique des équations
d’Einstein dans le vide. D’après les symétries, cet espace-temps peut être décrit par une variété S2×U2,
avec S2 la sphère à deux dimensions, dont la métrique s’écrit

dΩ2 = dθ2 + dϕ2 sin2 θ (1.72)

et U2 une variété à deux dimensions dont la métrique n’est pas définie. Sur U2, on peut définir des
coordonnées u et 3 telles que les courbes u = constante et 3 = constante soient de type lumière. La
métrique s’écrit alors sous la forme de Kruskal

ds2 = −32M3

r
e

r
2M dud3 − r2dΩ2, (1.73)

où r est relié à u et 3 via

− u3 =

(
1 − r

2M

)
e

r
2M . (1.74)

On peut ensuite effectuer une transformation conforme pour passer des coordonnées de Krushkal (u, 3)
aux coordonnées cartésiennes de Penrose (Ũ, Ṽ)

u = tan Ũ (1.75)

3 = tan Ṽ (1.76)

L’espace-temps de Schwarzschild peut être alors représenté par un diagramme de Penrose, tracé sur la
Figure 1.1. La région I définit l’extérieur du trou noir r > 2M tandis que la région II est l’intérieur du
trou noir r < 2M. La région IV décrit une solution de trou blanc. Dans les régions I et III, on peut
poser

u

3

= e
t

2M , (1.77)

et obtenir la métrique de Schwarzschild

ds2 =

(
1 − 2M

r

)
dt2 − 1

1 − 2M
r

dr2 − r2dΩ2. (1.78)

L’horizon des événements est une hypersurface de rayon rh = 2M, appelé rayon de Schwarzschild.
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Figure 1.1 – Diagramme de Penrose de l’espace temps de Schwarzschild avec Ũ et Ṽ les coordonnées
cartésiennes de Penrose reliées aux coordonnées de Kruskal par les transformations (1.75) et (1.76) [8].

Les autres solutions et la classification des trous noirs

Le modèle des trous noirs de Schwarzschild est le plus simple étant donné qu’il ne dépend que
de la masse. Mais, comme on l’a vu précédemment les trous noirs peuvent dépendre de deux autres
paramètres.

Un trou noir de Reissner-Nordström est une solution, à symétrie sphérique, des équations d’Einstein
couplées aux équations de Maxwell. Avec Q la charge électrique, la métrique s’écrit

ds2 =

(
1 − 2M

r
+

Q2

r

)
dt2 − 1

1 − 2M
r
+

Q2

r

dr2 − r2dΩ2. (1.79)

Ces trous noirs possèdent deux horizons : un horizon des événements, externe, et un horizon de Cauchy,
interne.

Les trous noirs en rotation sont décrits par la métrique de Kerr. Avec J le moment cinétique, dans
les coordonnées de Boyer-Lindquist, la métrique s’écrit

ds2 =

(
1 − 2Mr

r2 + a2 cos2 θ

)
dt2 +

4Mra sin2 θ

r2 + a2 cos2 θ
dtdφ − r2 + a2 cos2 θ

r2 − 2Mr + a2
dr2

− (r2 + a2 cos2 θ)dθ2 −
(
r2 + a2 +

2Mra2 sin2 θ

r2 + a2 cos2 θ

)
sin2 θdφ2, (1.80)

avec a = J/M. Cette solution correspond aux trous noirs qu’on observe dans l’univers. En effet, les
trous noirs de Reissner-Nordström sont instables car, de part leur charge, ils vont attirer les particules
chargées de sorte à devenir neutre.
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On classe les trous noirs selon leur intervalle de masse :

• les trous noirs supermassifs qui se trouvent aux centres des galaxies : M ∼ (105 − 109)M⊙ ,

• les trous noirs intermédiaires M ∼ 103M⊙ ,

• les trous noirs de masses stellaires M ∼ 10M⊙ ,

• les trous noirs microscopiques.

Dans ce manuscrit, nous aborderons les trous noirs microscopiques, qui sont considérés pour le
modèle des trous noirs en rebond (voir la section 3.1). Cependant leur existence n’est pas avérée. En ce
qui concerne les ondes gravitationnelles actuellement détectées, elles proviennent de la coalescence
de trous noirs stellaires. Les récentes mesures de LIGO vont peut-être chambouler ces catégories en
faisant apparaître une sorte de continuum (par exemple avec les trous noirs de 100 masses solaires).

1.3 La théorie quantique des champs

Après avoir introduit la RG pour décrire les espace-temps courbes, nous présentons quelques
aspects de théorie quantique des champs. Dans cette section, nous nous plaçons en espace plat puis
nous aborderons la description des champs quantiques en espace courbe dans la section suivante. Cette
section s’appuie sur les références [1] et [6].

1.3.1 Quantification du champ scalaire

Nous considérons un champ scalaire φ réel de masse m. Le Lagrangian d’un tel champ s’écrit

L = 1
2

(∂µφ∂
µφ − m2φ2), (1.81)

Les équations d’Euler-Lagrange donnent l’équation de Klein-Gordon

(∂µ∂
µ + m2)φ = 0. (1.82)

Une onde plane φ = A exp(ip.x) est solution si

(p0)2 − p2 = m2. (1.83)

Pour définir une solution plus générale, nous avons besoin d’un produit scalaire

〈φ1|φ2〉 = −i

∫

Σt

d3xφ1
←→
∂0 φ2, (1.84)

avec f
←→
∂µ g = f∂µg−(∂µ f )g et Σt l’hypersurface spatiale à t constant. Ce produit scalaire est indépendant

du temps si les champs φ1 et φ2 sont solutions de l’équation de Klein-Gordon (1.82). Étant donné

〈eik
µ

1 xµ |eik
µ

1 xµ〉 = (Ek1 + Ek2)e
−i(Ek1−Ek2 )t(2π)3δ(k1 − k2), (1.85)

un ensemble de modes orthogonaux est donné par



24 Chapitre 1. La théorie quantique des champs et la relativité générale

fk(xµ) =
eikx

√
Ek(2π)3

. (1.86)

Les modes sont dit de fréquence positive (respectivement négative) si

∂t fk = −iEk fk avec Ek > 0 (1.87)

(∂t f ∗k = −iEk f ∗k avec Ek < 0 respectivement) (1.88)

Ainsi, une solution générale est la superposition d’ondes planes telle que

φ(x) =
∫

d3 p

(2π)3
√

2Ep

(ape
−ipx + a∗pe

ipx) |p0=Ep
, (1.89)

avec Ep = +
√

p2 + m2.

En TQC, les champs φ et leur moment conjugué Π passent au rang d’opérateurs et on impose les
relations de commutation suivantes

[φ(t, x),Π(t, y)] = iδ(3)(x − y), (1.90)

[φ(t, x), φ(t, y)] = [Π(t, x),Π(t, y)] = 0. (1.91)

Pour promouvoir le champ φ au rang d’opérateur hermitien, on promeut ap en opérateur et ap∗ en
opérateur hermitien conjugué. Ainsi, le champ scalaire s’écrit :

φ(x) =
∫

d3 p

(2π)3
√

2Ep

(ape
−ipx + a†pe

ipx). (1.92)

On a alors

[ap, a
†
q] = (2π)3δ(3)(p− q), (1.93)

[ap, aq] = [a†p, a
†
q] = 0. (1.94)

Les états de Fock sont décrits par l’action des opérateurs création et annihilation sur le vide. L’état du
vide |0〉 est choisi tel que

ap |0〉 = 0. (1.95)

La normalisation relativiste est définie par

|p1...pn〉 =
√

2Ep1 ...
√

2Epn
a†p |0〉 . (1.96)

Elle est choisie ainsi pour avoir

〈pm|pn〉 = 2Epm
(2π)3δ(3)(pm − pn) (1.97)

car 2Epm
δ(3)(pm − pn) est un invariant de Lorentz. Le nombre de particules est défini par l’opérateur

Nk = a
†
k
ak, (1.98)

agissant sur l’état du vide.
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1.3.2 Quantification du champ de Dirac

Soit un champ de Dirac, son Lagrangien s’écrit

L = ψ(iγµ∂µ − m)ψ. (1.99)

avec γµ des matrices à quatre dimensions qui respectent l’algèbre de Clifford (1.50). Les équations
d’Euler-Lagrange donnent l’équation de Dirac

iγµ∂µψ − mψ = 0. (1.100)

Dans la représentation chirale donnée par l’équation (1.17), le Lagrangien s’écrit

LD = iψ
†
L
σ
µ
∂µψL + iψ

†
R
σµ∂µψR − m(ψ†

L
ψR + ψ

†
R
ψL). (1.101)

Sous parité on a ψL ↔ ψR et ∂ρ ↔ −∂ρ (avec ρ ǫ (1, 2, 3)) tels que σµ
∂µ ↔ σµ∂µ. La masse apparaît

dans le terme qui mélange la partie gauche et la partie droite.

Ici nous avons présenté la représentation chirale des spineurs de Dirac définis par l’équation (1.17).
Il est également possible de décrire les spineurs de Dirac dans une autre représentation. On peut définir
un nouveau choix de spineur tel ψ′ = Uψ avec U une matrice unitaire constante. Dans ce cas on aura
γµ
′
= UγµU† et ψ

′
= (ψ′)†γ0. Avec la matrice unitaire

1
√

2


1 1

−1 1

 , (1.102)

le spineur, en représentation standard, s’écrit

ψ =


ψG

ψP

 =
1
√

2


ψR + ψL

ψR − ψL

 , (1.103)

avec ψG et ψP les parties grande et petite du spineur, respectivement. Cette représentation est bien
adaptée lorsqu’on veut passer à la limite non relativiste. En effet, dans la représentation de l’impulsion,
l’équation de Dirac (1.100) s’écrit

pµ∂µψ − mψ = 0. (1.104)

Ainsi dans le référentiel au repos, dans la limite non relativiste, on a



p0

0

0

0


=



m

0

0

0


. (1.105)

Étant donné que la matrice γ0 s’écrit


I2 0

0 −I2

 , (1.106)
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en représentation standard, l’équation (1.104) avec le spineur (1.103) implique que la partie petite du
spineur est nulle : ψP = 0.

Pour quantifier la théorie, on promet ψ et ψ† au rang d’opérateurs qui satisfont les relations
d’anticommutations

{ψα(x, t), ψ†
β
(y, t)} = δ(3)(x − y)δαβ, (1.107)

avec α, β = 1, 2, 3, 4 les indices de Dirac, qui indiquent les composantes du spineur. Les crochets {. , .}
indiquent l’anticommutateur. Le champ de Dirac quantifié s’écrit

ψ(x) =
∫

d3 p

(2π)3
√

2Ep

∑

s=1,2

(
ap,su

s(p)e−ipx + b†p,s3
s(p)eipx

)
, (1.108)

avec us(p) et 3s(p) deux spineurs et s indique le spin. Les opérateurs a et a† sont les opérateurs
d’annihilation et de création d’une particule et de même, b et b†, pour les antiparticules. Ils respectent
les crochets d’anticommutation :

{ar
p, a

s†
q } = {br

p, b
s†
q } = (2π)3δ(3)(p− q)δrs. (1.109)

Après avoir vu quelques aspects de TQC en espace plat, nous allons étendre cette théorie à des
espace-temps courbe, afin de prendre en compte certains caractéristiques de la RG.

1.4 La théorie quantique des champs en espace courbe

La TQC en espace courbe est une théorie semi-classique. Les champs sont quantifiés et ils se
propagent dans un espace courbe qui lui n’est pas quantifié. Dans cette théorie, les états du vides
sont différents en fonction de l’observateur. Quel vide correspond à l’état fondamental ? Comment
interpréter le concept de particule ?

D’un point de vue heuristique, on passe de la TQC en espace plat à la TQC en espace courbe en
remplaçant la dérivée partielle par une dérivée covariante. Par exemple, l’équation de Klein-Gordon
(1.82), pour un champ minimalement couplé à la gravité, devient alors

∇µ∇µφ + m2φ = 0 (1.110)

avec ∇µ la dérivée covariante. On peut définir un produit scalaire sur une base de solutions φ1 et φ2

de l’équation (1.110). Pour une hypersurface Σ de type espace avec une métrique γρσ et un vecteur
normal nµ, on définit

〈φ1|φ2〉 = −i

∫

Σ

d3x(φ1∇µφ∗2 − φ∗2∇µφ1)nµ
√

det γ. (1.111)

Ce produit scalaire est l’analogue de l’équation (1.84) dans le cas d’un espace courbe. Il satisfait

〈φ1|φ2〉∗ = − 〈φ∗1|φ∗2〉 = − 〈φ2|φ1〉 et 〈φ1|φ∗1〉 = 0. (1.112)
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Les relations de commutations s’écrivent

[a(φ1), a†(φ2)] = 〈φ1|φ2〉 . (1.113)

On n’a plus de séparation entre le temps et l’espace comme c’était le cas en espace plat. Le vide et les
opérateurs dépendent du choix de base f . Et il n’existe plus un choix de base privilégié. Soit { fi} et {gi}
deux ensembles complets de solutions à normes positives, { f ∗i } et {g∗i } deux ensembles complets de
solutions à normes négatives et { fi, f ∗i } et {gi, g

∗
i } deux ensembles complets de solutions à l’équation

d’onde (1.110). L’opérateur champ s’écrit alors

φ =
∑

i

(ai fi + a
†
i

f ∗i ) =
∑

i

(bigi + b
†
i
g∗i ). (1.114)

Soit |0 f 〉 le vide associé à la base des modes f , on a

ai |0 f 〉 = 0, ∀i et N f i = a
†
i
ai. (1.115)

De même |0g〉 est le vide associé à la base des modes g et on a

bi |0g〉 = 0, ∀i et Ngi = b
†
i
bi. (1.116)

Les modes gi s’écrivent comme une combinaison linéaire des modes fi et f ∗i et inversement. On a

gi =
∑

j(αi j f j + βi j f ∗j ), (1.117)

fi =
∑

j(α
∗
jig j − β jig

∗
j). (1.118)

Ainsi on déduit les transformations d’opérateurs

bi =
∑

j

(α∗i ja j − βi ja
†
j
), (1.119)

ai =
∑

j

(α jib j + β
∗
jib
†
j
). (1.120)

Les transformations (1.119) et (1.120) sont appelées transformations de Bogoliubov. Ceci nous permet
de calculer la valeur moyenne de l’opérateur nombre de particules vu par un observateur qui utilise les
modes g, dans le vide des modes f ,

〈0 f |Ngi|0 f 〉 = 〈0 f |b†i bi|0 f 〉 =
∑

j

|βi j|2. (1.121)

Ainsi, on observe que le nombre de particules est relatif. Ce processus permet d’expliquer l’effet Unruh
[9], dont l’effet Hawking [10] est un cas particulier. Ce dernier sera plus amplement discuté dans la
section 3.2.

1.5 La gravité quantique à boucles

Quantifier la gravité présente de nombreuses difficultés, la mécanique quantique et la gravité
reposent sur des socles très différents. Le point clé est qu’en TQC on quantifie les champs sur un
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espace-temps fixe et plat. Or, en gravité quantique, on voudrait quantifier l’espace-temps lui-même.
Une des premières tentatives de quantification est celle de Wheeler-De Witt. Cette dernière n’est
pas prédictive et utilise des objets mathématiquement mal définis. Une alternative est proposée par
la gravité quantique à boucles (LQG). Il existe deux formulations équivalentes de la LQG. Nous
présenterons la formulation canonique [5] qui est basée sur le formalisme Hamiltonien de la RG. Dans
ce cas la covariance est explicitement brisée mais rétablie par une contrainte. Nous ne présenterons pas
la formulation covariante [11], basée sur les mousses de spin, dans ce manuscrit.

1.5.1 Les théories de Yang-Mills

Une théorie de Yang-Mills est une théorie de jauge non abélienne. La relativité générale écrite avec
les variables d’Ashtekar, introduites postérieurement, ressemble à une théorie de Yang-Mills. Ainsi, je
vais introduire succinctement la construction d’une telle théorie. On a un potentiel vecteur Aµ dont les
valeurs sont des éléments de l’algèbre de Lie

Aµ = AiµT
i. (1.122)

avec T i les générateurs de l’algèbre qui satisfont

[T j,T k] = i f jklT l, (1.123)

avec g la constante de couplage et f jkl les constantes de structure de l’algèbre. La dérivée covariante
de Yang-Mills pour décrire les transformations internes dans le groupe s’écrit

Dµ = ∂µ + i
g

2
AiµT

i, (1.124)

On peut écrire le commutateur de deux dérivées covariantes de Yang-Mills,

[Dµ,Dν] = −
g

2
F i

µνT
i, (1.125)

avec

F i
µν = ∂µAi

ν − ∂νAi
µ + gǫ i jkA j

µAk
ν. (1.126)

La dynamique est donnée par

DµFµν = 0, (1.127)

et le Lagrangien est donné en utilisant la trace

L = −1
4

∫
d3xF i

µνF
iµν = 0. (1.128)

Pour le groupe de Lie SU(2), dans la représentation fondamentale, les générateurs de l’algèbre su(2)
sont les trois matrices de Pauli σi et les constantes de structure sont f i jk = 2ǫ i jk.
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1.5.2 Le formalisme ADM

La RG décrit un système totalement contraint, ainsi l’Hamiltonien s’écrit comme une combinaison
linéaire de contraintes. Le formalisme ADM (Arnowitt, Deser, Misner) est une formulation Hamilto-
nienne de la RG, qui consiste à séparer l’espace et le temps. La covariance sera rétablie à l’aide d’une
contrainte. La variété s’écritM = R × Σt avec Σt une hypersurface spatiale au temps t. La direction du
temps est décrite par le vecteur tµ dont les trajectoires sont les courbes paramétrées par t et définies sur
Σt. Soit nµ un vecteur normal à Σt (de type temps) tel que gµνn

µnν = −1. Dans la suite, les indices α, β
vont de 1 à 3. Avec la convention utilisée, la métrique spatiale est définie par

qαβ = gαβ − nαnβ. (1.129)

Le vecteur tα est décomposé en une composante tangente et une autre normale à Σt

tα = Nnα + Nα. (1.130)

La fonction lapse N définit un choix dans l’évolution de la composante temporelle. Le vecteur shift Nα

définit un choix pour l’évolution des composantes spatiales. Ce sont des multiplicateurs de Lagrange. N

est associé à la contrainte Hamiltonienne C, qui assure l’invariance de la théorie par reparamétrisation
du temps. Les trois multiplicateurs Nα sont associées aux trois contraintes de moments Hα qui assurent
l’invariance de la RG sous transformations de coordonnées spatiales à l’instant t donné. Un intervalle
d’espace-temps s’écrit

ds2 = N2dt2 − qαβ(N
αdt + dxβ)(Nαdt + dxβ). (1.131)

Ainsi l’action d’Einstein-Hilbert peut s’écrire

S =
1
2κ

∫

R

dt

∫

Σ

d3x(Pαβq̇αβ − [NαHα + NH]), (1.132)

avec q̇αβ la dérivée de Lie par rapport au temps telle que

q̇αβ = Ltqαβ = NLnqαβ +LNγqαβ, (1.133)

et Pαβ le moment conjugué de qαβ, C etHα sont les densités de contrainte Hamiltonienne et de moments,
respectivement. Dans ce qui suit, nous allons décrire cette théorie avec de nouvelles variables : les
variables d’Ashtekar.

1.5.3 Les variables d’Ashtekar

La métrique spatiale peut s’exprimer à l’aide des triades ei
α

qαβ = ei
αe

j

β
δi j. (1.134)

Les triades sont invariantes par rotation, ce qui rajoute trois degrés de liberté supplémentaires. Les
cotriades sont des 1-formes à valeur dans su(2). L’extension de l’espace des phases fera ainsi apparaître
trois nouvelles contraintes : les contraintes de Gauss Gi. Historiquement, Wheeler et DeWitt ont
quantifié la gravité avec la métrique spatiale qαβ et la courbure extrinsèque de l’hypersurface Kαβ.
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Néanmoins la théorie est mal définie et ces problèmes sont résolus en LQG grâce à l’introduction des
variables d’Ashtekar. La première variable est la densité triade

E α
i =

√
det(q)e β

i
. (1.135)

On peut ensuite définir la dérivée covariante Dα, purement spatiale, telle que

DαE
β

i
= ∂αE

β

i
+ εk

i jA
k
αE

β

k
(1.136)

avec Ak
α une nouvelle connexion qui dépend de la connexion de spin Ωi j

α et de Kαβ :

Ak
α = Ω

i j
αε

k
i j + γKk

α. (1.137)

Cette dernière est appelée connexion d’Ashtekar-Barbero et forme avec la densité triade les variables
d’Ashtekar. Cette connexion transporte parallèlement des spineurs chiraux. L’espace des phases est
le même qu’une théorie de Yang-Mills SU(2). Le paramètre γ est un paramètre libre de la théorie,
appelé paramètre de Barbero-Immirzi. Ces deux variables permettent de décrire la RG mais ce qui
particulièrement intéressant c’est qu’elles obéissent aux crochets de Poisson

{Ai
α(x), A j

β
(y)} = {Ei α(x), E β

j
(y)} = 0, (1.138)

{Ai
α(x), E j

β
(y)} = κγδi

jδ
β
αδ

(3)(x − y). (1.139)

Ainsi il est possible d’écrire l’action d’Einstein-Hilbert avec ces deux nouvelles variables

S =
1

2κγ

∫

R

dt

∫

Σ

d3x

(
2E α

i Ȧi
α − [λiGi + NµHµ + NH]

)
. (1.140)

et la somme des densités de contrainte du système :

• la densité de contrainte de Gauss

Gi = DαE α
i , (1.141)

qui génère les transformations de jauge SU(2) agissant sur la triade et la connexion.

• la densité de contrainte de moments

Hα = F i
αβE

α
i . (1.142)

• la densité de contrainte Hamiltonienne

H =
E α

i
E

β

j

| det E α
i
|

[
Fk

αβε
i j

k
− 2(1 + γ2)K[i

αK
j]
β

]
, (1.143)

qui génère l’évolution temporelle

avec F i
αβ

la forme de courbure (1.126) définie telle que

F i
αβ = 2∂[αAi

β] + ε
i

jkA j
αAk

β. (1.144)

La contrainte de difféomorphisme est définie par une combinaison linéaire de la contrainte de
Gauss et de la contrainte de moments
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Dα = Hα − Ai
αGi. (1.145)

Elle génère les difféomorphismes spatiaux. Ainsi l’Hamiltonien total s’écrit comme la somme des
contraintes de Gauss, de difféomorphisme et Hamiltonienne : G[λ], D[Na] et C[N].
On a

H =
1

2κγ

∫

R

dt

∫

Σ

d3x[λiGi + NαDα + NH] = G[λ] + D[Na] +C[N]. (1.146)

Les équations d’Hamilton donnent lieu aux équations d’Einstein. L’algèbre des contraintes est fermée.
En effet, les crochets de Poisson entre deux contraintes sont proportionnelles à une combinaison
linéaire des contraintes, elles respectent l’équation (1.123). Les contraintes sont dites alors de première
classe. Ainsi, on a l’hypersurface spatiale où les contraintes sont nulles et, étant donné que l’algèbre est
fermée, on reste toujours sur cette hypersurface. Ceci nous assure que les solutions physiques restent
bien dans l’espace des phases physique au cours de l’évolution temporelle.

La RG écrite avec les variables d’Ashetkar s’écrit telle une théorie de jauge à valeurs dans su(2).
Ainsi il serait naturel de travailler dans la représentation des connexions et de considérer la fonction
d’onde Ψ(Ai

α). Cependant elle diffère d’une théorie de Yang-Mills étant donné qu’elle décrit l’espace-
temps. Par conséquent, lorsqu’une distribution de Dirac apparaît, nous ne pouvons pas utiliser les
outils de régularisation de la TQC. Nous allons alors passer dans la représentation des boucles où nous
travaillons avec les holonomies de la connexion.

1.5.4 La quantification

Dans cette section, nous introduisons l’idée générale de la quantification, sans pour autant en
dépeindre les détails techniques. On choisit un espace de Hilbert cinématique K0 tel que les variables
de configuration soient les connexions. Dans la représentation des connexions, on considère un
ensemble de fonctionnelles Ψ[Ai

α] de carré sommable. Les variables d’Ashtekar sont promues au rang
d’opérateur. La connexion est un opérateur multiplicatif

Âi
αΨ[A] = Ai

αΨ[A], (1.147)

et les densités de triades sont des dérivées fonctionnelles

Ê α
i Ψ[A] = −i

δΨ[A]
δAi

α

. (1.148)

Ces variables vérifient les relations de commutation

[Ai
α(x), E j

β
(y)] = −i~κγδi

jδ
β
αδ

(3)(x − y). (1.149)

Ensuite, il faut promouvoir les contraintes au rang d’opérateurs. La contrainte de Gauss quantique
s’écrit

Ĝ jΨ = −iDα

δΨ[A]

δA
j
α

= 0. (1.150)
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Après avoir appliqué cette contrainte, on a un espace de Hilbert cinématique K1 qui est invariant de
jauge. La contrainte de moments quantique s’écrit

ĤaΨ = −iF̂ i
αβ

δΨ[A]

δAi
β

= 0. (1.151)

On a alors un espace de Hilbert K2 invariant sous difféomorphismes spatiaux. Puis la résolution de la
contrainte Hamiltonienne permet d’obtenir l’espace de Hilbert K3 des solutions physiques. Plusieurs
difficultés apparaissent lorsqu’on veut promouvoir la contrainte Hamiltonienne au rang d’opérateur.
On utilise alors les holonomies des variables d’Ashtekar afin d’avoir un produit scalaire bien défini.
D’après le théorème de Giles, les traces d’holonomies constituent une base pour les fonctions de la
connexion invariantes de jauge. On peut alors écrire un état sur une base des traces des holonomies tel
que

Ψ[A] =
∑

γ

Ψ[γ]Wγ[A], (1.152)

où la somme s’effectue sur toutes les boucles fermées γ possibles et Wγ, dites boucles de Wilson,
définies telles que

Wγ[A] = Tr
(
P
[

exp
(
−
.
γ

γ̇α(s)Aα(s)ds

)])
, (1.153)

avec P l’opérateur d’ordre.

Un des résultats importants de la LQG est que l’aire est quantifié et son spectre est donné par

A( j) = 8πγl2
P

√
j( j + 1), (1.154)

avec j = 1/2, 1, ... des demi-entiers. L’aire minimale est ∆ = 4
√

3πγl2
Pl

.

Dans ce manuscrit, la densité critique cosmologique sera dénotée par ρcr, elle est définie telle que
ρcr = 3H2/κ. La densité critique de la gravité quantique étant la densité maximale qui peut être atteinte
sera dénotée par ρc. Elle est proche de la densité de Planck mais n’est pas forcément égale à cette
dernière.
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2.1 La théorie de la cosmologie quantique à boucles

Dans ce chapitre, je vais présenter mes différents travaux sur la cosmologie quantique à boucles
(LQC). Tout d’abord, comment le modèle de la LQC est-il construit ? La façon la plus rigoureuse
pour décrire un modèle cosmologique qui découlerait de la théorie de la LQG serait de quantifier la
théorie fondamentale puis d’appliquer les symétries d’un univers homogène et isotrope à ce système.
Cependant, la quantification de la contrainte Hamiltonienne pose encore problème. Il n’est donc pas
(encore?) possible de procéder de la sorte. On peut alors faire l’inverse : appliquer les symétries au
système et ensuite effectuer la quantification de ce modèle simplifié. Ces deux façons de procéder ne
sont pas toujours équivalentes. Étant donné que la première méthode n’est pas accessible, nous opérons
selon la deuxième qui correspond à une approximation de mini-super-espace. La quantification de ce
système à symétries réduites, en utilisant les outils de la LQG, amène à un modèle effectif appelé la
LQC. La présentation de cette théorie dans les sections suivantes est inspirée, en partie, des travaux
suivants : [12, 13, 14].

2.1.1 La théorie classique

Nous considérons un univers plat de sorte que l’hypersurface Σ est de topologie R3. Étant donné que
cet espace n’est pas compact, cela va entraîner des divergences lors de l’intégration sur l’espace. On va
alors décrire le système sur une cellule fiducielle homogène puis décrire des résultats qui ne dépendent
pas du volume de cette cellule. Le volume comobile de la cellule s’écrit V0. Pour la quantification, je

33
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vais présenter la façon de quantifier la partie gravitationnelle, tandis que la partie matière est quantifiée
de façon usuelle, dans la représentation de Schrödinger. On se place dans la cas d’un univers sans
constante cosmologique Λ et rempli d’un champ scalaire sans masse φ. La métrique s’écrit

ds2 = −dt2 + a2q̊µνdxµdxν, (2.1)

avec t le temps propre, a le facteur d’échelle et q̊µν la métrique fiducielle de la variété spatiale.
Cependant, la théorie est indépendante du fond, donc le temps ne doit pas apparaître. Un des champs
est choisi comme horloge interne et la dynamique des autres champs est décrite par rapport à ce dernier.
Dans ce cas, le champ scalaire φ sera choisi comme horloge. Étant donné qu’il satisfait à l’équation
d’onde �φ = 0, il est pertinent d’introduire un temps harmonique τ qui satisfait à l’équation d’onde
également. Ce choix correspond à avoir une fonction lapse telle que N = a3. La métrique s’écrit alors

ds2 = −a6dτ2 + a2(dx2
1 + dx2

2 + dx2
3). (2.2)

La métrique spatiale physique est qµν = a2q̊µν et le volume physique est V = a3V0. Les variables de
l’espace des phases gravitationnel sont a et son conjugué pa = aȧ, avec le point qui défini la dérivée
par rapport au temps propre. Et les variables de l’espace des phases de matière sont φ et pφ = Vφ̇. Ces
variables satisfont

{a, pa} =
κ

6V0
et {φ, pφ} = 1. (2.3)

La contrainte Hamiltonienne totale (en prenant en compte la gravité et la matière), dans un univers plat
sans constante cosmologique, est donnée par

Htot = −
3
κ

p2
aV

a4
+

p2
φ

2V
. (2.4)

Lorsque cette contrainte est nulle, on retrouve l’équation de Friedmann (1.61). On va réécrire cette
contrainte avec les variables d’Ashtekar. Étant donné les symétries, on a

Ai
µ = cV

−1/3
0 ω̊i

µ et E
µ

i
= pV

−2/3
0

√
det q̊e̊

µ

i
, (2.5)

avec c et p la connexion et la triade isotropes, ω̊i
µ et e̊

µ

i
les co-triades et triades fiducielles. On a

c = γV
1/3
0 ȧ/N et | p |= V

2/3
0 a2. Nous définissons la paire de variables suivantes

b =
c

|p|1/2 et 3 = sgn(p)
|p|3/2
2π

. (2.6)

Ces variables satisfont

{b, 3} = 2γ, (2.7)

et on écrit la contrainte Hamiltonienne sous la forme

Htot = −
3

4γ2
b2|3| +

pφ

4π|3| . (2.8)

Les équations d’Hamilton donnent lieu à une solution d’univers en expansion et une solution d’univers
en contraction :

φ = ± 1
√

12π
ln
3

3c

+ φc, (2.9)

avec 3c et φc deux constantes d’intégration. Ces solutions classiques possèdent une singularité.
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2.1.2 La théorie quantique

Pour passer à un formalisme quantique, il faut promouvoir les variables et la contrainte Hamilto-
nienne au rang d’opérateurs. Inspirés par la LQG, nous passons aux holonomies. En effet, l’espace de
Hilbert cinématique n’admet pas d’opérateur de connexion ĉ. Par contre, les fonctions exponentielles
de la connexion sont bien définies. Pour une connexion à symétrie réduite Ai

µ, le long d’un bord droit
e̊
µ

k
avec une longueur fiducielle λc, l’holonomie est donnée par

h
(λc)
k
= cos

(
λcc

2

)
I + 2 sin

(
λcc

2

)
τk, (2.10)

avec τk = −iσk/2, où σk sont les matrices de Pauli. Soit |µ〉 les états propres de p̂, ils satisfont

〈µ1|µ2〉 = δµ1µ2 . (2.11)

Ici, dans le cas des holonomies, on a un delta de Kronecker et non pas un delta de Dirac comme c’est
le cas pour la théorie de Wheeler-DeWitt. Les deux théories ont des espaces de Hilbert différents,
ainsi les dynamiques cosmologiques associées sont très différentes. Dans la représentation des triades,
l’action des opérateurs s’écrit

p̂ |µ〉 =
8πγl2

Pl

6
µ |µ〉 , (2.12)

êiλcc/2 |µ〉 = |µ + λc〉 . (2.13)

La densité de contrainte Hamiltonienne Eq.(1.143) dépend de deux termes. Cependant les deux sont
proportionnels pour un espace spatialement plat, homogène et isotrope. Dans ce cas, la contrainte
Hamiltonienne s’écrit

C = − 1
γ2

∫
d3x

(
N√
det q

ǫ
i j

k
E

µ

i
E ν

j

)
Fk

µν. (2.14)

Avec les triades homogènes et la fonction lapse telle que N = a3, on a

C =
1

γ2V
1/3
0

ǫ
i j

k
e̊
µ

i
e̊ ν

j |p|2Fk
µν. (2.15)

Le champ de force peut s’écrire classiquement en termes d’une trace des holonomies sur une boucle
carrée �i j sur une face d’une cellule élémentaire dont l’aire A(�) = λ2

c tends vers zéro. On a

Fk
µν = − 2 lim

A(�)→0
Tr

(h
(λc)
�i j
− I

λ2
c

τk

)
ω̊i

µω̊
j
ν

= lim
λc→0

ǫk
i jω̊

i
µω̊

j
ν

(sin2 λcc

λ2
c

)
, (2.16)

avec h
(λc)
�i j
= h

(λc)
i

h
(λc)
j

(h(λc)
i

)−1(h(λc)
j

)−1. Mais la limite en zéro n’est pas consistante avec l’existence d’une
aire minimale ∆ donnée par le spectre (1.154) de la LQG. L’aire d’une boucle pour une métrique
physique est λ2

c |p|, ainsi on demande λc =
√
∆/|p|. La difficulté qui apparaît est que la longueur λc

dépend de la triade donc l’action de exp(iλc(p)c) sur les états propres de la triade est compliquée dans
la base |µ〉. Par contre, si on passe dans la représentation des volumes |ν〉 et qu’on utilise les variables
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définies par l’équation (2.6) alors l’opérateur volume et l’opérateur ̂exp(iλb/2) (avec λ2 = ∆) sont bien
définis

V̂ |ν〉 = 2πl2
Plγ|ν| |ν〉 , (2.17)

êiλb/2 |ν〉 = |ν + λ〉 , (2.18)

avec ν = 3/γ~. La contrainte classique (2.8) écrite en termes d’holonomies est inchangée. Ainsi en
utilisant les opérateurs (2.17) et (2.18), on peut trouver les solutions à ĤtotΨ(ν, φ) = 0 :

∂2
φΨ(ν, φ) = 3πν

sin λb

λ
ν

sin λb

λ
Ψ(ν, φ)

=
3π
4λ2

ν

[
(ν + 2λ)Ψ(ν + 4λ, φ) − 2νΨ(ν, φ) + (ν − 2λ)Ψ(ν − 4λ, φ)

]

= ΘΨ(ν, φ), (2.19)

qui peut se réécrire

C+(ν)Ψ(ν + 4λ, φ) +C0Ψ(ν, φ) +C−Ψ(ν − 4λ, φ) = ĤmatΨ(ν, φ). (2.20)

La forme de la contrainte quantique est similaire à celle de Klein-Gordon avec φ analogue au temps et
Θ au Laplacien spatial. On choisit les états physiques comme étant les solutions dont les fréquences
sont positives

− i∂φΨ(ν, φ) =
√
ΘΨ(ν, φ), (2.21)

avec le produit scalaire donné par

〈Ψ1,Ψ2〉 =
∑

ν

Ψ1(ν, φ0)|ν|−1Ψ2(ν, φ0), (2.22)

et φ0 une constante arbitraire. On veut à présent définir des observables. On peut définir l’opérateur
V̂ |φ0 qui correspond au volume au "temps" φ0 et l’opérateur p̂φ0 , qui est une constante du mouvement,

V̂ |φ0Ψ(ν, φ) = 2πγl2
Ple

i
√
Θ(φ−φ0)Ψ(ν, φ), (2.23)

p̂|φ0Ψ(ν, φ) =
√
ΘΨ(ν, φ). (2.24)

Le modèle de LQC dans un univers plat avec un champ scalaire sans masse est exactement résoluble
en passant dans la représentation b. Étant donné que les fonctions d’ondesΨ(ν, φ) dans la représentation
de volume ont un support sur un intervalle discret ν = 4nλ et que b est canoniquement conjugué à
ν, leurs transformées de Fourier Ψ(b, φ) ont un support sur un intervalle continue (0, π/λ) et on peut
résoudre la contrainte quantique [15]. Il est alors possible d’écrire chaque solution en termes d’une
partie pour les modes dirigés vers la gauche et une pour les modes dirigés vers la droite et obtenir un
produit scalaire. La valeur moyenne de l’opérateur volume, au temps φ, s’écrit alors

〈V〉φ = V+e
√

12πφ + V−e
−
√

12πφ, (2.25)

avec V+ et V− deux constantes déterminées par les conditions initiales. Le volume a une valeur
minimum :
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Vmin = 2(V+V−)
1/2, (2.26)

et le rebond a lieu au temps

φV
b = (2

√
12π)−1 ln(V−/V+). (2.27)

Et l’observable densité d’énergie ρ̂|φ0 est bornée :

〈ρ̂〉φ ≤ ρc a3ec ρc =
3

8πγ2λ2
. (2.28)

Pour le choix standard de LQC on a ρc =
√

3/(32π2γ3). Ainsi, on observe qu’en LQC la singularité est
résolue.

2.1.3 Le modèle effectif

Lorsque le modèle quantique n’est pas résoluble analytiquement, il est possible de résoudre
numériquement l’équation (2.19). Étant donné l’état initial et la fonction d’onde associée le code
CHIMERA donne le comportement des fonctions d’ondes à travers le rebond [16]. Il est possible
d’écrire un Hamiltonien effectif qui donne de bonnes approximations des valeurs moyennes de ces
simulations numériques. Nous présentons de manière très succincte, la construction du Hamiltonien
effectif. L’idée générale est de projeter la dynamique quantique de l’espace des phase quantique ΓQ sur
l’espace des phases classique Γ. Pour tout point γ0 = (q0

i
, p0

i
) ∈ Γ, on associe un état quantique Ψγ0 .

On défini un sous espace ΓQ ∈ ΓQ en exigeant q0
i
= 〈Ψγ0 q̂iΨγ0〉, p0

i
= 〈Ψγ0 p̂iΨγ0〉. On exige également

que le champ de vecteur Hamiltonien quantique soit approximativement tangent à ΓQ. Ces conditions
permettent de définir un Hamiltonien effectif tel que Heff(q0

i
, p0

j
) := 〈Ψγ0 ĤΨγ0〉. La contrainte effective

s’écrit

Heff
tot = −

3
4γ
ν

sin2(λb)
λ2

+ Hmat. (2.29)

Les équations du mouvement, avec t le temps cosmologique, redonnent les équations classiques,
excepté pour l’équation

V̇ =
3
γλ

sin(λb) cos(λb). (2.30)

Ce qui amène à une équation de Friedmann modifiée

H2 =
κ

3
ρ

(
1 − ρ

ρc

)
. (2.31)

Ainsi, la LQC décrit un univers en contraction, qui lorsqu’il atteint la densité critique ρc va rebondir et
décrire un univers en expansion dans lequel nous sommes observateurs.
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2.2 Durée de l’inflation en LQC

La cosmologie standard et la LQC prédisent deux équations de Friedmann différentes : Eqs. (1.61)
et (2.31) respectivement. Quelles vont être les conséquences de cette différence? Un premier point
concerne la durée de l’inflation.

L’équation de Klein-Gordon (1.70) peut se réécrire comme un système de deux équations différen-
tielles du premier ordre. Au lieu de dériver par rapport au temps cosmologique, il est plus judicieux de
dériver par rapport à λ = ln a. On a alors

dφ/dλ = p/H,

dp/dλ = −3p − m2φ/H. (2.32)

On introduit les variables sans dimension suivantes

x =
mφ√
2ρ0

et y =
p√
2ρ0

. (2.33)

Ces variables seront utilisées pour l’analyse numérique de la durée de l’inflation. Ces variables sont
usuelles en cosmologie, elles définissent un cercle x2 + y2 = 1 au moment du rebond.

Dans l’approximation de roulement lent, le nombre d’e-folds N est une fonction du champ scalaire.
Il a été montré [17] que pour une température de T ≈ 1016 GeV au début de la période de rayonnement,
l’inflation doit durer au minimum 60 e-folds. La densité de l’univers étant bornée à la densité de Planck,
l’inflation peut durer jusqu’à 1014 e-folds. Ainsi, la durée de l’inflation dans le modèle standard n’est
pratiquement pas contrainte. Cette durée dépend des conditions initiales, x0 et y0. On peut montrer que
99, 99% de l’espace de phases de ces paramètres entraîne une inflation supérieure à 60 e-folds [18].

Contrairement au modèle standard, la LQC possède un caractère prédictif. En effet, en LQC, la
phase d’expansion est précédée d’un rebond, qui lui même est précédé d’une phase de contraction.
Ainsi, nous pouvons étudier les conséquences de cette phase. Dans les articles [19] et [20], la phase
de contraction est supposée rempli d’un champ scalaire dans un univers homogène et isotrope, dans
la branche classique (suffisamment loin du rebond). Ainsi la phase de ce champ est aléatoire et on
peut mettre une distribution de probabilité plate sur cette phase. Cette distribution va engendrer une
distribution sur les conditions initiales et, par conséquent, sur la durée de l’inflation. Cette distribution
de probabilité sur la durée de l’inflation est très piquée (voir l’histogramme rouge de la Figure 3).
La plupart des valeurs se trouvent entre 110 et 170 e-folds, avec une valeur moyenne de 145 e-folds
environ. Ainsi, non seulement nous avons une prédiction probabiliste sur la durée de l’inflation, mais
de plus, cette prédiction se trouve proche de la valeur minimum requise. L’intervalle sur la durée est
alors considérablement réduit.

Dans cet article, on compare deux modèles :

— dans le premier cas, on part d’une densité initiale ρc puis on applique une dynamique de type
RG avec l’équation (1.61), sans constante cosmologique et sans courbure.

— dans le deuxième cas, on part d’une densité initiale ρc, étant celle du rebond, puis on applique
une dynamique de type LQC avec l’équation (2.31).
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Dans les deux cas, les conditions initiales, lorsqu’on a ρ = ρc, sont données par la distribution de
probabilité prédite lorsqu’on considère une distribution de probabilité plate sur la phase du champ
dans l’univers en contraction. Ainsi, on a les mêmes conditions dans les deux modèles et on étudie
comment la dynamique de fond va influencer la durée d’inflation. Par abus de langage, le premier
modèle sera dénoté comme étant le modèle RG. Dans ces deux modèles, on observe trois régimes : (i)
la phase pré-inflationnaire où φ augmente jusqu’à atteindre un maximum, (ii) la phase d’inflation qui
commence lorsque φ̇ = 0 et dure jusqu’à avoir φ = 0 pour la première fois, (iii) le champ oscille de
façon amortie et se désintègre en particules du modèle standard.

On peut montrer que dans le régime pré-inflationnaire on a

xRG ≈ xc + (3/Γ)λ, (2.34)

xLQC ≈ xc + (3/Γ)λ + (ln 2/Γ), (2.35)

avec Γ =
√

3ρc/m et xc l’énergie potentielle initiale. Ainsi en LQC la champ scalaire est boosté dans la
phase de pré-inflation ce qui amène à avoir une énergie potentielle plus élevée au début de l’inflation.
Ceci va engendrer une différence de la durée d’inflation entre les deux modèles. Cette différence
est donnée par

√
8/3 ln 2

√
NRG. On peut donc voir que pour les mêmes conditions initiales, la LQC

engendre une inflation qui dure quelques e-folds de plus qu’en RG. On observe donc que la dynamique
n’a guère d’importance.

Ainsi, la grande différence de la LQC par rapport à la RG, est non pas dû à la dynamique de fond,
car le terme en ρc dans l’équation (2.31) est très rapidement négligeable, mais dans sa capacité à
prédire de façon probabiliste les conditions initiales.

Cet article a été publié dans Classical and Quantum Gravity [21].
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Abstract

The prediction of a phase of inflation whose number of e-folds is constrained 

is an important feature of loop quantum cosmology. This work aims at giving 

some elementary clarifications on the role of the different hypotheses leading 

to this conclusion. We show that the duration of inflation does not depend 

significantly on the modified background dynamics in the quantum regime.

Keywords: loop quantum cosmology, inflation, quantum gravity

(Some figures may appear in colour only in the online journal)

Loop quantum gravity (LQG) is a nonperturbative and background-independent quantization 

of general relativity (GR). It relies on the Sen–Ashtekar–Barbero variables, that is SU(2) val-

ued connections and conjugate densitized triads. The quantization is obtained using holono-

mies of the connections and fluxes of the densitized triads. Loop quantum cosmology (LQC) 

is an effective theory based on a symmetry reduced version of LQG. In LQC, the big bang is 

believed to be replaced by a bounce due to repulsive quantum geometrical effects (see [1] for 

a review). For the flat homogeneous and isotropic background cosmology that we consider in 

this work, the effective LQC-modified Friedmann equation is

H2
=

ρ

3

(

1 −

ρ

ρB

)

, (1)

where H ≡ (ȧ/a) is the Hubble parameter, ρ is the total energy density and ρB is the critical 

density at the bounce (expected to be of the order of the Planck density). The dot refers to a 

coordinate time derivative. Throughout all this article we use reduced Planck units: 
√

8πG = 1. 

So, in these units, the Planck mass is mPl ≡ 1/
√

G =
√

8π. We assume that the dominating 

energy component in the early universe is a scalar field φ, with potential V =
1
2 m2φ2. As 

shown in [2], a massive scalar field is now disfavored by data. This choice however remains 

interesting so as to compare our study with other results (a quantitative estimate of the effect 
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of choosing, for example, the Starobinsky potential, used in [3], can be found in [4]). The 

total energy density can be written as ρ =
1
2 φ̇

2 + V . As explained in details in [5] it should be 

made clear that the existence of an inflationary phase is not in itself a consequence of LQC, 

but of the choice of an appropriate scalar field as the content of the Universe. Based on cosmic 

microwave background (CMB) measurements and under most reasonable assumptions for 

the length of observable inflation (between horizon exit of the pivot scale and the end of the 

inflationary phase), one obtains m ≃ 10−6mPl. The equation of motion for the scalar field is

φ̈+ 3Hφ̇+ m2φ = 0. (2)

There are different ways to statistically estimate the duration of inflation in this framework.

At a fixed energy density, ρ0, one can first ask the following question: for a given number of 

e-folds N, what is the fraction of trajectories, i.e. solutions to equation (2), that lead to a phase 

of slow-roll inflation lasting more than N e-folds? It should be noticed that the set of trajec-

tories can be parametrized by {a0,φ0}. As the energy density has been fixed, the initial time 

derivative of the scalar field, φ̇0, is determined in terms of ρ0 and φ0. This also implies that φ0 

can only take values within a finite interval, ranging from −(
√

2ρ0/m) to (
√

2ρ0/m). In a flat 

universe, the value of the scale factor has no physical meaning. The number of e-folds of infla-

tion depends on φ0 but not on a0: N = N(φ0; m, ρ0). So the fraction of trajectories that achieve 

a phase of inflation lasting more than N e-folds can be written as µ = (m∆φ0)/(2
√

2ρ0), 
where ∆φ0 is the range of initial values of the scalar field that yields the required inflationary 

phase. It is then necessary to evaluate µ as a function of N. There are two cases in which this 

can be done analytically: (i) at low energy, ρ0 � m2, and (ii) at high energy ρ0 � m2. At low 

energy, the calculation of Gibbons and Turok of the probability for inflation can be used to 

show that [6]

µ(N) = CmN−

1
2 exp(−3N){1 + 1/(6N)}, (3)

where C is a numerical factor that does not depend on m or ρ0. For N ≃ 60 e-folds, as required 

to explain the CMB temperature anisotropy, this leads to µ(N) � 1. It should be noticed that 

the conclusions of [6] are to be contrasted with those of [7], which shows the importance of 

working with well defined probability distribution functions. At high energy, one reaches the 

opposite conclusion. In this case, one can compute ∆φ0 as follows. For a massive quadratic 

potential the total number of e-folds of inflation can be expressed in terms of the amplitude 

of the scalar field at the start of the inflationary phase, φI, as N ≈ (φ2
I /4). In turn, φI can be 

expressed in terms of the initial value of the scalar field as [8]:

φI = φ0 + sgn(φ̇0)
√

(2/3)Arcsinh
(

Γ
√

2/ ln(z)
)

, (4)

with z ≡ 8Γ2 exp(
√

6φ0) and Γ ≡
√

3ρ0/m. This formula for the amplitude of the scalar 

field at the start of inflation is valid in LQC, with the modified Friedmann equation given by  

equation (1). For the standard flat FLRW dynamics, without LQC modifications, the analyti-

cal calcul ations suggest that at the start of inflation the scalar field reaches a maximum value 

given by (4) minus (ln 2/Γ). In both cases, we find that the range of values of φ0 that do 

not yield an inflationary phase longer than N e-folds is an interval of size 4
√

N  centered on 

φ0 = 0. Hence,

µ(N) = 1 − m
√

(2N/ρ0), (5)

and µ(60) ≃ 0.999 99 (for ρ0 = 1) , which means that all but a tiny fraction of the possible 

trajectories do not go through a long inflationary phase. It might be tempting to interpret µ 

as a probability measure. This is however not that simple. The phase space of the flat FLRW 
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universe presents a serious ambiguity: the Liouville measure is proportional to the scale factor 

and the scale factor can be rescaled arbitrarily. In addition, as explained just before, µ depends 

on the choice of the surface of initial data. More importantly, the fundamental question to 

ask is: is there a variable on which a flat (or at least known) probability distribution function 

(PDF) can be assigned? There is no reason to assume implicitly that the initial values of the 

field should have a flat PDF.

This work is somehow complementary to what was studied in [9] and sheds a new light on 

the difference between different predictions made in quantum and classical cosmology.

In [10] it was argued that the two first issues mentioned above can be solved in LQC. It was 

indeed claimed that the scale factor can be rigorously factored out of the Liouville measure, 

and that the bounce provides a preferred choice for the surface of initial data. In this study, 

following [11, 12] we choose a different perspective. We decide, the other way round, to set 

initial conditions in the remote past of the contracting branch, when the Universe is classical 

and well understood (ρ0 � ρB). This is not only technically justified but also conceptually 

necessary if the bounce has to be taken seriously in a causal way. Still, we naturally choose 

a time which is close enough to the bounce so that it is reasonable to assume a scalar field as 

the main component of the Universe. The phase of the oscillations of the scalar field in the 

contracting branch is an obvious variable to which a flat PDF can be assigned [11]. In addition, 

the key point is that this PDF is preserved over time (as long as one remains in the classical 

phase when the field oscillates). The numerical analysis of [11] shows that at fixed ρ0, nearly 

all possible initial values for the scalar field, φ0, yield an inflationary phase whose number of 

e-folds is peaked around N  =  142 e-folds (with ρB = 0.41m4
Pl).

The procedure to derive this result is simple:

 • Consider an initial energy density ρ0 = ρPl/α
2, with α large enough so that the evolution 

starts in the remote past of the contracting phase.

 • Choose an initial value for the scalar field and its time derivative by a random sampling 

of the phase θ0  between 0 and 2π, where θ0  is defined such as φ0 =
√

2
3
Γ

α
sin θ0.

 • Solve the dynamics, across the bounce, until the end of slow-roll inflation in the expanding 

branch.

 • For each θ0 , collect the corresponding number of e-folds.

Finally, one can produce the associated histogram which, in a probabilistic interpretation, 

is the PDF for the number of e-folds. This is illustrated on the right panel of figure 1 where 

we also present the PDFs for several initial energy densities corresponding to different values 

of α ≡
√

ρPl/ρ0  in order to show that for large values of α the PDF becomes independent of 

the initial energy density, as explained analytically in [11]. Interestingly, the peakedness of 

the PDF can be understood as follows. The calculation Gibbons and Turok is often considered 

controversial in standard cosmology because they somehow set ‘initial conditions’ for the 

final state. However, in the case of a bouncing Universe it implies that almost none of all the 

possible trajectories, starting at low energy in the contracting branch, have a significant phase 

of pre-bounce exponential contraction, that is of so-called deflation. A trajectory with defla-

tion in the contracting phase leading to (φB, φ̇B) can be identified with a trajectory with infla-

tion in the expanding phase with (φB,−φ̇B). Equation (4) can be used to calculate the value 

of the scalar field at the bounce corresponding to the trajectory with no deflation. One simply 

has to solve equation (4) with respect to φB for φI = 0 and φ̇B < 0. In the limit of large Γ, the 

solution is well approximated by

φGT
B ≡

√

(2/3) ln
(

2Γ/
√
ln Γ

)

. (6)
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This can then be inserted back into equation (4), with φ̇B > 0, in order to obtain the value 

of the field at the start of inflation in the expanding phase and the corresponding number of 

e-folds of inflation. With the standard values for m and ρB, this calculation yields N  =  142, 

in excellent agreement with the numerics (figure 1). Moreover, a closer look at Gibbons and 

Turok’s PDF for the number of e-folds suggests that most trajectories starting in the remote 

past have less than one e-folds of deflation, see figure 2. This means that nearly all trajectories 

end up with a value of φB that belongs to an interval of size ∆φB ≈ 4 centered around φGT
B . In 

terms of number of e-folds this translates into ∆N ≈ 4
√

N , also in agreement with the numer-

ics as can be seen on figure 1.

We shall now investigate to which extent the specific modified dynamics is responsible for 

the peakedness of the probability density function of the number of e-folds in loop quantum 

cosmology. The argument we have developed in the previous section did not refer to the modi-

fied LQC dynamics. It was essentially based on Gibbons and Turok’s analysis combined with 

the presence of the bounce at Planckian energy density. It can therefore already be guessed 

that the peakedness does not depend strongly on the LQC modification to the Friedmann equa-

tion. To address this question in more details, we consider an artificial bouncing cosmological 

scenario where the Friedmann equation is left unchanged even at Planckian energy. In this 

‘GR-like’ cosmological scenario, initial conditions for a given trajectory are set in the remote 

past of the contracting branch at the same energy density and with the same values of φ0 and 

φ̇0 than for a trajectory which follows the LQC dynamics (as previously considered). The 

dynamics is divided into two parts: the contracting branch with a negative Hubble parameter 

and the expanding branch with a positive Hubble parameter. The evolution, starting in the 

contracting branch, is artificially stopped when the energy density reaches the LQC critical 

energy density ρB. The values of φB and φ̇B are collected and used as initial conditions for the 

dynamics in the expanding branch where the initial Hubble parameter is now positive. At the 

junction between both phases, the Hubble parameter and therefore φ̈ are discontinuous but a, 

φ and φ̇ are continuous, as illustrated in figures 3, 4 and 5.

The numerical result for the PDF of the number of e-folds in the GR-like scenario is plot-

ted against the LQC prediction on the left panel of figure 1. The PDF has the same width and 

shape than in LQC. This confirms that the peakedness does not depend strongly on the specific 

Figure 1. Probability distribution of the number of inflationary e-folds. On the left panel, 
the black histograms corresponds to a ‘GR’ like dynamics (using the standard Friedmann 
equation throughout the evolution). The red histogram is the prediction of loop quantum 
cosmology. With the standard Friedmann equation the most likely value is Ntot = 133, 
while in LQC we find Ntot = 145. The right panel shows that the probability density 
function does not depend on the value of the energy density as long as the surface of 

initial data is set at ρ � ρPl. The different histograms are labeled by α =
√

ρPl/ρ. The 

probability density function converges as soon as α becomes larger than 10.
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LQC modified dynamics, and suggests that this feature would remain in case one incorpo-

rates additional quantum gravity corrections to the LQC effective equations. Nevertheless, the 

number of e-folds corresponding to the peak of the PDF is slightly different in the GR-like 

scenario than in LQC. This can be explained as follows. First, it should be noticed that the 

difference between the GR-like scenario and LQC becomes significant when ρ ≈ ρPl. Second, 

as shown in the previous sections, the fraction of trajectories that have a significant phase 

of deflation in the contracting branch is tiny. This means that at high energy density, the 

Figure 2. Probability distribution of the number of e-folds, when the surface of initial 
data is set at low energy density, in a agreement with the result of Gibbons and Turok.

Figure 3. Evolution of the potential energy parameter in the GR-like scenario (black) 
compared to loop quantum cosmology (red), for different values of xB, linearly 
distributed between  −10−6 and 10−6. Dashed lines correspond to negative initial values 

for xB. 
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dynamics of most trajectories is largely kinetic energy dominated. In simplistic terms, defla-

tion can not bring the amplitude of the scalar field to large values because it stops nearly 

immediately. To inverstigate the difference between the GR-like scenario and LQC, the equa-

tion of motion of the scalar field at high energy, and for kinetic energy domination, need to be 

studied. It is natural to introduce x ≡ φ/
√

2ρB  and y ≡ φ̇/
√

2ρB , the so-called potential and 

kinetic energy parameters. As the duration of inflation depends on the scalar field amplitude, 

it is sufficient to focus on the potential energy parameter. It is easy to show that in the regime 

compatible with observations

xGR
≃ xB + (3/Γ) ln a, (7a)

xLQC
≃ xB + (3/Γ) ln a + (ln 2/Γ). (7b)

In LQC the scalar field is boosted by a short phase of super-inflation, Ḣ > 0, during which 

its amplitude accumulates a surplus of (ln 2/Γ) compared to the standard FLRW dynamics. 

This yields a difference of 
√

8/3 ln 2
√

NGR  between the number of e-folds in both scenarios. 

With the standard numerical values of m and ρB, one gets NLQC − NGR ≃ 13, in agreement 

with the numerical results.

Although an exhaustive investigation would in principle be necessary it can be quite safely 

conjectured that most results derived in this study do not depend on the details of the consid-

ered bounce scenario. Actually, the key parameter is the energy density at which the bounce 

takes place.

One can also study the differences between the primordial power spectra of cosmological 

perturbations in the GR-like scenario and in LQC (the interested reader can consider [13] for 

a detailed study in the dressed metric approach and [14] in the deformed algebra approach). 

As a toy model to focus on the difference between both background dynamics, we set initial 

conditions for perturbations at an energy density corresponding to the bounce energy den-

sity, choosing the Bunch–Davies vacuum as the initial state. The resulting power spectra are 

shown on figure 6 and compared with the usual slow-roll inflation expectation (dotted lines). 

Such spectra (and their variants including more subtle LQC effects) are the main observables 

associated with loop quantum cosmology. Assuming a Bunch Davies state is a valid assump-

tion only for modes with a wavelength small compared to the curvature radius at the bounce, 

or the Planck length in the ‘GR-like’ scenario. For such modes, the Bunch Davies state is the 

‘preferred’ vacuum state (selected by the regularity conditions and the symmetry group of flat 

Figure 4. Evolution of the scale factor (left) and the Hubble parameter (right) in loop 

quantum cosmology (red) and in the GR-like scenario (black).

B Bolliet et alClass. Quantum Grav. 34 (2017) 145003



7

space-time). However, for modes with larger wavelength there is some freedom for the choice 

of the initial state. Here, our goal is not to discuss the impact of different initial state on the 

power spectrum, but rather to investigate the effects of two different dynamical models for the 

background cosmology (‘GR-like’ and LQC) on the power spectrum resulting from the evo-

lution of modes starting at the same energy density (Planckian) and in the same state.

The duration of inflation is crucial because it determines the location of the window of 

wavenumbers relevant for the cosmic microwave background anisotropy measurements, with 

respect to the characteristic LQC scale kLQC ≡ aB
√
ρB. On infrared scales, the mode functions 

remain in the Bunch–Davies state with P(k) ∝ k2. We see that in both LQC and the GR-like 

scenario the power spectra agree with the slow-roll expectations in the ultraviolet regime. 

Oscillations are present in both scenarios in the range 10−3 < k/kLQC < 1. The amplitude 

is larger in the GR-like scenario than in LQC, however the period of the oscillations does 

not seem to be affected by the specific modified LQC dynamics. This shows that oscilla-

tions in themselves are a bounce feature but not a specific LQC feature. This motivates the 

search for complementary probes such as primordial non-gaussianity [15]. For a more detailed 

compariso n of the different kinds of power spectra expected in LQC under different assump-

tions for the mode propagation, see [16].

The most reliable result of loop quantum cosmology is the modified Friedmann equa-

tion describing the background dynamics. It receives a quadratic correction in density which 

prevents the Universe from collapsing into a singularity. In this article, we have investigated 

the influence of this modified dynamics on the duration of inflation. The conclusion is that the 

modification of the Friedmann equation has a very small (but non vanishing) impact on the 

Figure 5. The fraction of potential and kinetic energy in general relativity (black) and 
loop quantum cosmology (red).
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duration of inflation. The key role played by LQC in ‘predicting’ inflation—or more precisely 

the duration of inflation—is not due to the modified dynamics in itself. It is grounded in two 

different aspects. First, LQC sets the energy scale. This is the fundamental point. As far as 

the Universe is assumed to be filled by a massive scalar field, inflation happens naturally if 

the energy scale ‘before’ inflation is high enough, ρ � m2. But whereas starting at the Planck 

energy density in GR is somehow arbitrary, in LQC the bounce energy density can be calcu-

lated (modulo some hypotheses) and derived from the full theory, providing a natural energy 

scale. This is the first important aspect. Second, LQC selects favored conditions at the bounce, 

see formula (6), corresponding to a favored duration of inflation N ≃ 145, for ρB = 0.41m4
Pl. 

This is an interesting prediction rooted in the existence of a pre-bounce phase where a natural 

variable to which a known PDF can be assigned was identified. This cannot be produced in 

standard cosmology and is specific to bouncing models.
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Figure 6.  Primordial power spectra of scalar (top) and tensor (bottom) perturbations 
for the GR-like dynamics in black (standard Friedmann equation, initial condition 
at the energy density corresponding to the energy density of the LQC bounce) and 
LQC dynamics in red (initial conditions at the bounce) plotted against the slow-roll 

expectation (dotted lines). On the x-axis, kLQC = aB
√
ρB. The spectrum becomes scale 

invariant in the UV limit.
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50 Chapitre 2. La cosmologie quantique à boucles

2.3 Perturbations scalaires en LQC

2.3.1 La théorie des perturbations

La formation des grandes structures actuelles auraient pour origine des perturbations du champ
d’inflaton. Durant l’inflation, les fluctuations quantiques de ce champ sont excitées et leur longueur
d’onde va croître. Si la longueur d’onde devient plus grande que le rayon de Hubble, le terme de
friction devient important et l’amplitude des fluctuations se "gèle". Ces perturbations quantiques ont
des conséquences sur la métrique et sont décrites par les équations linéarisées de la RG.

Les perturbations du champ d’inflaton

On considère un champ scalaire sans masse dans un espace de de Sitter, tel que

a(t) ∝ eHt, (2.36)

avec H constant. Le champ s’écrit

φ + δφ, (2.37)

avec φ la valeur moyenne du champ et δφ les perturbations qui obéissent à l’équation de Klein-Gordon
(1.70). Les modes de Fourier de ces perturbations s’écrivent

δφ(x, t) =
∫

d3 k

(2π)3/2
eik·xδφk(t). (2.38)

Leur dynamique est régie par l’équation suivante

d2

dt2
δφk + 3H

d

dt
δφk +

k2

a2
δφk = 0. (2.39)

Pour λ ≪ H−1, on peut négliger le terme de friction 3H(dδφk/dt) et on retrouve l’équation d’un
oscillateur harmonique ; les fluctuations oscillent. Pour λ ≫ H−1, on a k ≪ aH, le dernier terme de
l’équation (2.38) est négligeable et les modes deviennent constants.

Les perturbations scalaires de la métrique

Les perturbations du champ scalaire δφ vont modifier le tenseur énergie-impulsion et donc engen-
drer des perturbations de la métrique. Ainsi, on a

gµν + δgµν, (2.40)

avec gµν la valeur moyenne de la métrique. A priori les deux perturbations doivent être traitées en même
temps, cependant à l’ordre linéaire elles peuvent être traitées de façon indépendante. La métrique
est décrite par l’équation de Friedmann (1.61) en cosmologie standard et par l’équation modifiée
(2.31) dans le cadre de la LQC. Les perturbations de la métrique peuvent être décomposées en des
termes scalaires, vecteurs et tenseurs. En effet, à l’ordre linéaire, ces trois types de perturbations sont
découplées et peuvent donc être traitées séparément. Ici, nous ne considérons que les perturbations
scalaires. L’expression de la métrique perturbée est donnée par
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ds2 = a2(η)
[
− (1 + 2ϕ)dη2 + 2∂αBdηdxα − [(1 − 2ψ)δαβ + 2∂α∂βE]dxαdxβ

]
, (2.41)

avec α, β ǫ {1, 2, 3}, où nous avons quatre perturbations de champ scalaire ϕ, B, ψ et E. Ici nous avons
utilisé le temps conforme η défini tel que dt = a(η)dη. On peut alors construire des variables invariantes
de jauge, ce sont les potentiels de Bardeen [22] :

Φ = ϕ + (B − E′)′ + Hc(B − E′), (2.42)

Ψ = ψ − Hc(B − E′). (2.43)

avec Hc = a′/a le paramètre de Hubble comobile et le prime désigne la dérivée par rapport au
temps conforme. De même, il est possible de définir les quantités invariantes de jauge pour le champ
d’inflaton :

δφGI = δφ + φ(B − E). (2.44)

Après avoir introduit ces quantités invariantes, nous avons la liberté de fixer une jauge, on peut
ensuite effectuer les calculs et obtenir les quantités physiques. Dans la jauge longitudinale : E = B = 0,
on a la contrainte suivante : ϕ = ψ. Une combinaison linéaire des équations d’Einstein nous permet
d’obtenir l’équation du mouvement pour Φ et la partie non diagonale des équations nous impose
Ψ = Φ. En définissant

z = a
φ̇

H
et 3 = aδφGI + zΨ, (2.45)

puis en passant dans l’espace de Fourier, on trouve l’équation de Mukhanov-Sasaki :

3
′′ −

(
k2 − z′′

z

)
3 = 0. (2.46)

Pour décrire les perturbations en LQC il existe deux approches qui mènent à deux équations du
mouvement différentes.

L’approche LQC de la métrique habillée

Cette approche a été développée en 2012 par Agullo, Ashtekhar et Nelson [23, 24, 25]. L’espace
de Hilbert total est donné par un produit tensoriel entre l’espace de Hilbert du fond et celui des
perturbations. On traite les perturbations dans la représentation de Schrödinger et elles sont quantifiées
avec les techniques de TQC en espace courbe mais on n’utilise pas la métrique classique. En effet, le
fond, lui, est quantifié à la LQG et ses effets quantiques se retrouvent dans une métrique effective dite
métrique habillée

g̃ = ã2(−dη̃2 + δµνdxµdxν), (2.47)

avec ã et η̃ le facteur d’échelle habillé et le temps conforme habillé, respectivement. Le fond est
représenté par la fonction d’onde Ψ[a, φ] et, ã et η̃ sont obtenus via

ã4 = 〈Ĥ−1/2
FLRW

â4Ĥ
−1/2
FLRW
〉〈Ĥ−1

FLRW〉−1 et η̃ = ã2〈Ĥ−1
FLRW〉dφ, (2.48)

avec ĤFLRW un opérateur associé à la contrainte Hamiltonienne C divisé par 2 pour un fond homogène
et isotrope. Les crochets représentent la valeur moyenne par rapport à l’état correspondant à Ψ[a, φ].
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En utilisant le champ scalaire φ comme horloge il est possible d’établir les équations du mouvement
[23]. On obtient alors l’équation de Mukhanov-Sasaki modifiée, qui s’écrit alors

3
′′ −

(
k2 − z

′′

z

)
3 = 0, (2.49)

avec z une valeur habillée dans une métrique habillée. La variable z est initialement définie à partir
d’opérateurs, mais les calculs montrent qu’elle se réduit au z usuel et on retrouve l’équation (2.46).
Étant donné que les degrés de liberté du fond et les modes d’inhomogénétités sont séparés, cette
approche perd la covariance [26]. L’intérêt de cette approche est qu’elle est plus « près » de la théorie
mère, car elle tente en effet de traiter les degrés de liberté de façon quantique, mais elle a le défaut de
n’avoir pas prouver sa cohérence au sens où il n’est pas évident que l’algèbre résultante soit clause.

L’approche LQC de l’algèbre déformée

L’approche dite de l’algèbre déformée a été initiée par Bojowald en 2006 [27, 28, 29], puis étudié
en 2012 avec Cailleteau, Barrau, Mielszarek, et Grain [30, 31, 32, 33]. Dans la section 1.5, on a
vu que l’algèbre est fermée sur l’hypersurface des contraintes. Ici on prend en compte la matière,
la contrainte Hamiltonienne admet alors un terme en φ et pφ et les crochets de Poisson s’écrivent :
{ . , . } = { . , . }b,p + { . , . }φ,pφ . Lorsqu’on intègre la correction d’holonomie dans ces contraintes, on a
des anomalies qui apparaissent et l’algèbre n’est plus fermée

{Ti,T j} = f k
i j(A, E)Tk +Ai j, (2.50)

avec Ai j les termes d’anomalies. Il est possible d’ajouter des termes dans les crochets de Poissons
(2.50) qui permettent de retrouver une algèbre fermée. Par exemple, en RG, les crochets de Poisson de
la contrainte Hamiltonienne s’écrivent :

{C[N],C[M]} = −D[S µν(N∂µM − M∂∂νN)], (2.51)

avec S
µ
ν = |detE

µ

i
|E µ

i
Ei

ν. En LQC, si on prend en compte la correction d’holonomie et qu’on supprime
les anomalies au second ordre on obtient

{C[N],C[M]} = ΩD[S µν(N∂µM − M∂∂νN)], (2.52)

avec
Ω = 1 − 2

ρ

ρc

. (2.53)

L’équation de Mukhanov-Sasaki modifiée s’écrit alors

3
′′ −

(
Ωk2 − z′′

z

)
3 = 0. (2.54)

Lorsque Ω change de signe, proche du rebond, la structure de l’espace-temps devient Euclidienne [34].

Dans les deux cas

A présent, nous souhaitons définir explicitement le potentiel effectif z′′/z. Pour cela on utilise la
définition (2.45) et la dynamique de fond. En utilisant les équations (2.31,1.69, 1.70) et leur dérivées,
on obtient le potentiel effectif

z′′

z
= a2

[
− ∂2

φV(φ) + 2H2 − 2κΩ
φ̇∂φV(φ)

H
− 7

2
κΩφ̇2 +

3κ
ρc

φ̇4 + κ2Ω2 φ̇4

2H2

]
. (2.55)
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Étant donné que cette équation découle de la dynamique de fond, elle est valable pour les deux
approches : la métrique habillée et l’algèbre déformée. Le terme Ω n’est pas associé à la seconde
approche, il provient de la dérivation de l’équation (2.31).

2.3.2 Le spectre des perturbations scalaires en LQC

Le spectre de puissance des perturbations primordiales est un point clé pour permettre de tester les
prédictions de LQC avec les expériences. Actuellement, les inhomogénéités scalaires du CMB sont
observables via les variations en température. Dans le futur, les inhomogénéités tensorielles seront
accessibles via la détection des modes B (mesure de la polarisation des photons). Dans cet article,
nous nous intéressons au spectre des perturbations scalaires prédit par la LQC. On considère un champ
scalaire massif avec une inflation à roulement lent. On explore différentes formes de potentiel pour ce
champ.

La perturbation de courbure ψ associée à la foliation de l’espace décrit par la métrique ADM
(1.131) est définie par

e6ψ = det
(
qµν/a

2
)
, (2.56)

avec qµν la métrique spatiale. Pour un temps conforme η constant dans univers plat, la courbure
intrinsèque de l’hypersurface spatiale s’écrit

(3)R =
4
a2
∇

2ψ. (2.57)

On peut alors définir la perturbation de courbure comobile R telle que

R = ψ + H
δφ

φ̇
. (2.58)

Elle peut également s’écrire à l’aide des variables de Mukhanov-Sasaki

R = 3
z
. (2.59)

Les modes qui sont plus grands que le rayon de Hubble n’évoluent plus dans le temps. Leur amplitude
est figée dés lors qu’ils traversent ce rayon. Puis, après l’inflation, l’échelle de Hubble grandit plus
rapidement que les longueurs d’ondes et ces modes re-entrent dans l’horizon de Hubble, pendant la
phase dominée par le rayonnement ou la matière. Ainsi les modes sont dé-figés et les perturbations de
densité de matière augmentent. Ce processus permet des créer les grandes structures. Au contraire les
modes bien plus petits que le rayon de Hubble se comportent comme des ondes planes dans un espace
de Minkowski (la courbure est négligeable pour eux). Les fonctions de corrélation à deux points de R
dans l’espace de Fourier définissent le spectre de puissance PR tel que

(2π)3PR(k1)δ(k1 + k2) = 〈Rk1Rk2〉. (2.60)

Dans le cas d’une inflation à roulement lent, le spectre de puissance des perturbations scalaires s’écrit

PS (k) =
k3

2π2
PR(k) =

k3

2π2

∣∣∣∣∣
3k

z

∣∣∣∣∣
2

= AS

(
k

k⋆

)ns−1

, (2.61)

avec k⋆ = 0.05 Mpc−1 l’échelle de pivot.
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L’approche de la métrique habillée

Pour commencer, nous nous plaçons dans le formalisme de la métrique habillée et nous considérons
un potentiel quadratique. Les conditions initiales sont choisies lorsqu’on se trouve dans un vide de
Bunch-Davies, quand le potentiel effectif est négligeable,

z′′/z ≪ k2, (2.62)

pour qu’il n’y est pas d’ambiguïté. En effet, dans ce cas, l’équation de Mukhanov-Sasaki (2.46) a
des fréquences indépendantes du temps. Ainsi, les modes ne sont pas affectés par la gravité et se
comportent comme dans un espace de Minkowski. On a alors

3k(η) =
1
√

2k
e−ikη. (2.63)

En cosmologie standard, le vide de Bunch-Davies est atteint de façon asymptotique lorsqu’on s’ap-
proche du Big-Bang. En LQC, pour les perturbations scalaires, le vide de Bunch-Davies est atteint a
différents moments dans la phase de contraction. En effet, on peut voir sur la Figure 3 de l’article, le
comportement du potentiel z′′/z. On a des oscillations qui s’amplifient à l’approche du rebond. On
observe que le potentiel est nul aux temps

ti = 1.46,×107, (2.64)

ti = 1.52 × 107. (2.65)

Ces deux instants sont des moments privilégiés pour mettre les conditions initiales. Cependant ces
instants sont proches du rebond, où la phase quantique émerge. Ainsi, il faut tout de même, être
conscient que ce ne sont pas non plus des conditions idéales mais elles restent préférables à tous les
autres choix potentiels étant donné la théorie effective. Dans la Figure 4 de l’article, on observe que
pour des conditions initiales choisies aux deux temps qui correspondent au vide de Bunch-Davies
(2.64, 2.65), le spectre de puissance est similaire. On peut observer trois comportements : la région
ultraviolette où le spectre est proportionnel à k−0.04 ; la région intermédiaire des oscillations et la région
infrarouge où le spectre est proportionnel à k2. Dans la région infrarouge, la condition (2.62) sera
moins respectée quand k devient petit. Le choix du vide idéal serait quand t → −∞ ainsi, le spectre au
temps (2.65) doit être légèrement meilleur qu’au temps (2.64). Qu’en est-il de la comptabilité avec les
expériences ? Les observations montrent un spectre presque invariant d’échelle. La partie infrarouge ne
présente pas cette invariance. La partie intermédiaire n’est pas incompatible car il est possible d’avoir
des oscillations qui en moyenne sont invariantes d’échelle. Enfin, la partie ultraviolette est consistante
avec les observations. De plus, étant donné qu’une grande partie de l’espace des phases des conditions
initiales donne lieu à une durée d’inflation supérieure à 70 e-folds, il est très probable que le spectre
observé se trouve dans la région ultraviolette. Ainsi le spectre de puissance de la LQC est compatible
avec les expériences.

On a également étudié le spectre pour des formes de potentiel plus générales :

V(φ) =
1
n
λnφ

n. (2.66)

Le comportement du potentiel z′′/z dépend de la valeur de n, comme le montre la Figure 8. Néanmoins,
il existe toujours un nombre fini de points où on est dans les conditions du vide de Bunch-Davies. Les
spectres de puissance sont légèrement différents. En fait les lois de puissance dépendent de la valeur de
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n. Mais les trois régions disparates sont toujours présentes. La région des ultraviolets est dans tous les
cas pratiquement invariante d’échelle.

L’approche de l’algèbre déformée

Dans cette approche, on observe que le spectre de puissance présente une croissance exponentielle
dans la région ultraviolette (voir les Figures 12-14). De plus, ce caractère divergeant apparaît peu
importe la forme du potentiel du champ scalaire. Ceci n’est pas du tout compatible avec les observations.
Cependant, on peut se poser la question de pourquoi un tel comportement apparaît ? Quelle hypothèse
fausse-t-elle le résultat ? Un point important, non résolu à ce jour, est le problème transplanckien. En
effet, ici on considère la partie du spectre où les longueurs d’ondes sont petites. Ainsi, si on remonte
suffisamment loin dans le passé, ces longueurs vont devenir inférieures à la longueur de Planck, et
dans ce cas une approche semi-classique n’est pas forcément apte à décrire la physique. Il faudrait
considérer un système purement quantique pour traiter le problème.

Cet article a été publié dans Physical Review D [35].
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Aurélien Barrau,
*
Pierre Jamet,

†
Killian Martineau,

‡
and Flora Moulin

§

Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS-IN2P3 53,
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I. INTRODUCTION

The calculation of primordial cosmological power spec-

tra is an important way to connect speculative theories of

quantum gravity with observations (see [1] for a recent

review). Among those theories, loop quantum gravity

(LQG) (see, e.g., [2]) has now reached the point where

explicit calculations can be performed. At this stage, it

remains, however, extremely difficult to derive rigorous

cosmological predictions from the full theory. But, in the

specific case of loop quantum cosmology (LQC), which

can be viewed as the quantization of symmetry reduced

general relativity using techniques from LQG (see, e.g.,

[3,4]), quite a lot of results have already been obtained,

beginning with the replacement of the usual big bang by a

big bounce. Recently, important improvements were pro-

posed, e.g., in group field theory [5–7], in quantum reduced

loop gravity [8–11], in refined coherent state approaches

[12], in diffeomorphism invariance derivation [13] or in

analogies with a Kasner transition [14], to cite only a few.

Together with hybrid quantization [15,16], two main

approaches have been developed in this framework to study

inhomogeneities: the dressed metric [17–19] and the

deformed algebra [20–23]. The first deals with quantum

fields on a quantum background, while the second puts the

emphasis on the consistency and covariance of the effective

theory. This led to clear predictions about the power spectra

[24–29]. Other complementary paths were also considered

to investigate perturbations [30–34].

Many works were devoted to tensor perturbations that are

easier to handle both for gauge and for anomaly issues. Scalar

modes are, however, more important from the observational

viewpoint (see, e.g., [24,35–38] for recent works in LQC).

This article focuses on scalar spectra and aims at clarifying

how previous LQC results obtained for a simple massive

scalar field can be generalized to other monomial potentials

and to which extent the spectrum is sensitive to initial

conditions (i.e., to a vacuum choice) for perturbations. It

is essentially impossible to derive fully generic results, sowe

explicitly investigate different solutions and show the asso-

ciated numerical computations so that they can be accounted

for in future studies.

II. GENERIC FRAMEWORK

We consider here a spatially flat and isotropic FLRW

spacetime filled with a minimally coupled scalar field with

a monomial potential. We neglect backreaction and trans-

Planckian effects.

We first come back to the study developed by some of

the authors of this article in [27]. As in this work, we adopt

here a causal viewpoint and put the initial conditions, both

for the background and the perturbations, as far as possible

in the contracting phase preceding the bounce.

The basic ingredients are the following. The Friedmann

equation, modified by holonomy corrections, reads as

H2 ¼ κ

3
ρ

�

1 −
ρ

ρc

�

; ð2:1Þ

where ρc is the critical density (expected to be of the order

of the Planck density), and H ¼ _a=a is the Hubble

parameter. The Klein-Gordon equation for the background

is given by

φ̈ ¼ −3H _φ − ∂φVðφÞ; ð2:2Þ

where φ is here used for φ̄, the average scalar field. The

differential system for the background can be summarized

as (we choose the convention aðtinitÞ ¼ 1)
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_φðtÞ ¼ ∂φ

∂t
; ð2:3Þ

φ̈ðtÞ ¼ −3HðtÞ _φðtÞ − ∂φVðφðtÞÞ; ð2:4Þ

_HðtÞ ¼ −

κ

2
_φ2ðtÞ

�

1 − 2
_φ2ðtÞ=2þ VðφðtÞÞ

ρc

�

; ð2:5Þ

_aðtÞ ¼ HðtÞaðtÞ: ð2:6Þ
Perturbations are described in the Fourier space by the

gauge invariant Mukhanov-Sasaki equation,

v00k þ
�

k2 −
z00

z

�

vk ¼ 0; ð2:7Þ

where z ¼ a _φ
H
, and the derivation is with respect to the

conformal time dη ¼ 1

a
dt. One can easily show that

z̈

z
¼ φ⃛

_φ
þ φ̈

_φ

�

2H−2

_H

H

�

þH2
−

_Hþ2

�

_H

H

�

2

−

Ḧ

H
: ð2:8Þ

Introducing

Ω ¼ 1 − 2
ρ

ρc
; ð2:9Þ

and using

ρ ¼ 1

2
_φ2 þ VðφÞ; ð2:10Þ

leads to the final expression,

z00

z
¼ a2

�

−∂2
φVðφÞ þ 2H2

− 2κΩ
_φ∂φVðφÞ

H
−

7

2
κΩ _φ2

þ 3κ

ρc
_φ4 þ κ2Ω2

_φ4

2H2

�

: ð2:11Þ

This is the intricate effective potential that has to be dealt

with. In the next two sections, we study perturbations as

described by the dressed metric approach [17–19], which

is very close to the hybrid quantization one as far as

phenomenology is concerned [33]. Interestingly, at the

effective level, the equation of motion (2.7) is formally the

same than in general relativity, even though the value of

z00=z is of course heavily modified. We then switch to the

deformed algebra approach were an effective change of

signature shows up.

III. QUADRATIC POTENTIAL

The resulting typical evolution of the scalar field is

shown in Fig. 1: pseudo-oscillations are followed by the

bounce and by an inflationary stage. The details obviously

depend on the phase of the field during the contracting

period but, as shown in [39–41], what is displayed in Fig. 1

is a quite generic behavior. The probability to have, e.g., a

phase of deflation is much smaller. All numbers are given in

Planck units.

The way to choose initial conditions for the perturbations

is more subtle. The usual Minkowski solution,

vkðηÞ ¼
1
ffiffiffiffiffi

2k
p e−ikη; ð3:1Þ

is approached in the so-called Bunch-Davies vacuum.

The main requirement to set the vacuum is that the effective

potential is negligible so that the equation of motion

becomes nearly the one of an harmonic oscillator. In

addition, if the causal evolution of the Universe during

the bounce is taken seriously and if the word “initial” is

taken literally, it makes sense to put initial conditions far

away before the bounce, this later constituting in addition

the most “quantum” and less controlled moment in the

whole cosmic history (see e.g., [42] for a discussion). As it

will become clear later, this requirement is actually in

tension with the first one (which should be considered as

the mandatory one).

The evolution of the absolute value of the effective

potential z00

z
is shown in Fig. 2 during the full integration

time interval. It should be noticed that it increases both in

the past and in the future of the bounce (which is located

around t ¼ 1.5 × 107 on the plot). This raises an issue

which is fundamental for bouncing models and should be

taken into account with care, as studied later in this article.

Figure 3 shows the effective potential between the

beginning of the integration interval and the bounce. The

shape is highly complex and very different from what

happens either in standard cosmology or in LQC for tensor

modes. In the standard cosmological model it vanishes

when going backward in time, deep into the de Sitter

inflationary phase. This is also true for bouncing models

when going far away in the past of the contracting phase,

but only for tensor modes. In the considered case, due to the

large (negative) value taken by the potential in the remote

tb1×107 2×107 3×107 4×107 t [tPl]

1

2

3

4

5

φ [mPl]

FIG. 1. Temporal evolution of the scalar field, for a mass

m ¼ 1.2 × 10−6.
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past it is impossible to put stable initial conditions very far

from the bounce. Strictly speaking, it might make sense to

set initial conditions in this way but the interesting selection

criterion associated with the Bunch-Davies vacuum would

be lost. If one wants to remain in a framework where a

Bunch-Davies–like initial state—which is at least justified

to compare with other results—is used, there are two

moments which can be chosen such that z00

z
vanishes.

However, those points are not far from the bounce and

the fact that “initial” conditions have to be set at very

specific moments is something that deserves to be better

understood in the future and should be, at this stage,

considered as a weakness (at least at the heuristic level) of

those models.

As a first step in a better understanding of the situation,

we present in Fig. 4 the primordial power spectra resulting

from a full simulation of the evolution of perturbations

with initial conditions set both at the first zero, i.e., at

ti ¼ 1.46 × 107, corresponding to the earliest time in

cosmic history, and at the second zero of the effective

potential at ti ¼ 1.52 × 107.
First, it should be emphasized that the ultraviolet (UV)

part of the spectrum is the same for both ways of putting

initial conditions and is compatible with observations, that
is nearly scale invariant with a very slight tilt due to the
slow roll of the field during the inflationary stage. This is
particularly important as the UV part of the spectrum is
most probably the one which is experimentally probed.
This last fact entirely depends on the number of e-folds of
inflation: the conversion of the comoving wave number
into a physical wave number requires the knowledge of the
expansion factor of the Universe. Except if the background
initial conditions are hyper-fine-tuned, inflation lasts long
enough [39–41] so that the observational cosmological
microwave background (CMB) window clearly falls in the
UV part of the spectrum. In principle, this would require a
specific trans-Planckian treatment (see [28,43] for first
attempts in this direction) which is not the topic of this
study and which is anyway partially accounted for in the
dressed metric approach. The oscillations in the intermedi-
ate part of the spectra—due to quasi-bound states in the
effective Shrödinger equation—are basically the same in
both cases, together with the deep infrared (IR) part
(throughout all the article we call “infrared” the rising part
of the spectrum and “ultraviolet” the scale-invariant one).
However, some differences do remain in the junction
between the IR and the oscillatory regimes. We have
checked that they are not due to numerical issues.
Although this is not of high phenomenological signifi-
cance, this shows that the way initial conditions are set,
even around a vanishing effective potential, can influence
the resulting power spectrum.

We have also checked that when moving slowly away

from the exact point were z00

z
¼ 0, the spectrum slowly

changes. This is obviously expected but the details of the

changes are very hard to guess as the effective potential is

very complicated. Basically, the spectrum evolves from a

full k2 to a full k3 behavior in the IR. Figure 5 presents an

intermediate case, and this should be taken into account

when interpreting results given in [27].

tb1×107 2×107 3×107 4×107
t [tPl]

1030

1080

10130

|
z ''

z
| [mPl

2]

FIG. 2. Temporal evolution of the absolute value of effective

potential z00

z
over the full integration interval.
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FIG. 3. Temporal evolution of the effective potential z
00

z
between

the beginning of the integration and just before the bounce.
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FIG. 4. Primordial scalar power spectra, as a function of the

comoving wave number, for a quadratic potential and initial

conditions put whether at the first zero of z00

z
, i.e., ti ¼ 1.46 × 107

(lower plot in the IR, black disks), or at the last zero of z00

z
, i.e.,

ti ¼ 1.52 × 107 (upper plot in the IR, green triangles).
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Finally, in Fig. 6, the spectrum is plotted for initial

conditions set at a local extremum further away from the

bounce, at ti ¼ 2.00 × 106. The plain line corresponds to a

point deeper in the past than the dotted line.

This shows that although the global shape of the spectrum

is under control—especially in the region of phenomeno-

logical significance—the detailed structure is quite sensitive

to the way initial conditions are set. In models where the

effective potential does not vanish in the remote past, this

raises nontrivial issues. This means by no way that those

approaches are inconsistent but that some uncertainties

associated with the loss of a strong selection criterion on

initial conditions have to be included in the analysis.

IV. GENERALIZED POTENTIALS

It is important to investigate whether the scalar spectra

obtained hold for other inflaton potential shapes (not to be

confused with the effective potential felt by pertubations),

beyond the massive scalar field which is not favored by data

[44]. The case of plateaulike potentials is very specific in

bouncing models (see [41]), so we restrain ourselves to

confining monomial potentials of the form:

VðφÞ ¼ 1

n
λnφ

n: ð4:1Þ

No general analytical solution in the deep contracting

phase can be found anymore but it is still possible to set

initial conditions for the background as done previously.

The evolution of the scalar field is qualitatively weakly

depending on n. As an example, we show the result for

n ¼ 3 in Fig. 7.

The situation is more complicated when one considers

the details of the effective potential. Figure 8 shows the

evolution of z00=z up to the respective bounces for n ¼ 3, 4,

4=3, 5=2.
Clearly, the shape of the behavior of the effective potential

depends on the value of n. The number of points were the

potential identically vanishes is finite in each case, leading to

a finite number of ways to set a rigorous instantaneous

Bunch-Davis vacuum. In all cases, there is also an infinite

10–8 10–6 10–4 10–2 100

10–22

10–18

10–14

10–10

10–6

10–2

k [mPl]

P
s
(k

)

FIG. 6. Primordial scalar power spectrum, as a function of the

comoving wave number, for a quadratic potential and initial

conditions at local extrema far away from the bounce, at

ti ¼ 2.00 × 106. From the dot line to the plain line, one goes

deeper in the remote past.
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FIG. 5. Primordial scalar power spectrum, as a function of the

comoving wave number, for a quadratic potential and initial condi-

tions set 0.6tPl before the Bunch-Davies vacuum at ti¼1.46×107.
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FIG. 7. Evolution of the scalar field for n ¼ 3.
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FIG. 8. Evolution of z00

z
in the contracting universe up to the

respective bounces for VðφÞ ¼ 1

n
λnφ

n and n ¼ 3 (blue dotted

line), n ¼ 4 (red dashed line), n ¼ 4=3 (black solid line) and

n ¼ 5=2 (green solid line).
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number of local minima that can be used as approximate

vacua, depending on the range of wave numbers relevant for

the considered study. We insist once more that the details of

the spectrum do depend on this choice.

Figure 9 shows the envelope of the effective potential for

n ¼ 3 when going deeper into the past. It can be empiri-

cally fitted by a power law ðt − tbÞ0.45. The oscillations

themselves get quite chaotic, reflecting the nonlinearity of

the equations. The situation is very different from what

happens for the effective potential of tensor modes. It might

be that, from the bounce, time flows in two opposite

directions. Then it would make sense to put initial con-

ditions at the bounce, as in [17–19]. If, however, the

evolution remains globally causal with a unique time

direction, the questions raised here cannot be ignored.

As “extreme” examples, we show in Fig. 10 (respec-

tively, Fig. 11) the scalar spectra for n ¼ 4=3 (respectively,

n ¼ 5=2) with initial conditions set close to the bounce and
in the deep past. This reinforces the previous conclusions:

the “small scales” part of the spectra is nearly scale

invariant in all cases (although small differences do exist),

making the results compatible with observation for the vast

majority of the parameter space which leads to an infla-

tionary stage so long that the observable part falls in the

deep UV range. However, the IR part and some of the

oscillations can sensitive to the details of the inflaton

potential shape and to the way initial conditions are set.

V. DEFORMED ALGEBRA

Another approach to LQC, the so-called deformed

algebra, relies on a different view of the situation [20–23,

45,46]. In this case, the emphasis in put on the consistency

of the effective theory. The Poisson brackets are calculated

between (holonomy) quantum corrected constraints.

Anomalies do appear in general. To ensure covariance,

counter-terms with a vanishing classical limit are added to

the constraints, so that the system remains “first class” in

the Dirac sense. The resulting algebra (including the matter

content) is closed and reads as

fD½Na
1
�; ½Na

2
�g ¼ 0; ð5:1Þ

fH½N�; D½Na�g ¼ −H½δNa∂aδN�; ð5:2Þ

fH½N1�; H½N2�g ¼ D

�

Ω
N̄

p̄
∂aðδN2 − δN1Þ

�

; ð5:3Þ

where D½Ni� is the full diffeomorphism constraint and

H½N� is the full scalar constraint. The important feature

it the Ω ¼ ð1 − 2ρ=ρcÞ term in the last Poisson bracket.

It becomes negative close to the bounce and leads to an

effective change of signature. The Mukhanov equation of

motion in Fourier space reads, in this framework, as

R̈k −

�

3H þ 2m2
φ̄

_̄φ
þ 2

_H

H

�

_Rk þ Ω
k2

a2
Rk ¼ 0; ð5:4Þ

with
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FIG. 9. Evolution of z00

z
, together with its envelop, in the

contracting universe, up to the bounce on a wide time interval.
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FIG. 10. Spectrum for n ¼ 4

3
with initial conditions whether

close to the bounce, at ti ¼ 1.87 × 107tPl (lower plot in the IR,

black disks), or far from it at ti ¼ 1.49 × 107 (upper plot in the

IR, green triangles).
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FIG. 11. Spectrum for n ¼ 5

2
with initial conditions whether

close to the bounce, at ti ¼ 1.35 × 107 (k2 behavior in the IR,

black disks), or far from it at ti ¼ 1.35 × 106tPl (k
3 behavior in

the IR, green triangles).
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R ≔

v

z
; ð5:5Þ

where v is the gauge-invariant perturbation and z is the

background variable. Phenomenologically, the main con-

sequence of this model, if a causal view is chosen and a

massive scalar field is assumed to fill the Universe, is an

exponential growth of the spectrum in the UV [26,27]. It

is obviously not compatible with data [29], but this

conclusion clearly relies on heavy assumptions that might

be radically altered when considering trans-Planckian

effects [28] or other ways of setting initial condi-

tions [47,48].

We have readdressed the question of the propagation of

scalar perturbations in the deformed algebra framework

with new potentials. As can be seen in Figs. 12–14, the UV

rise of the spectrum clearly remains present whatever the

chosen potential. All the conclusions about the features of

this model, therefore, remain valid beyond the massive

scalar field approximation. The subtle modifications of the

IR shape are actually due to the way the initial vacuum is

chosen which is inevitably impacted by the choice of the

potential.

VI. CONCLUSION

In this article, we have addressed the question of the

primordial power spectrum of scalar perturbations in a

bouncing universe described by loop quantum cosmo-

logy by studying the gauge-invariant Mukhanov-Sasaki

equation with the appropriate effective potential associ-

ated with different inflation potentials. A full numeri-

cal simulation was developed. The conclusions are the

following:

(i) the temporal behavior of the effective z00=z potential
is, in general, highly complicated with a pseudo-

periodic structure which depends on the details of the

inflaton potential VðφÞ.
(ii) the ultraviolet part of the power spectrum, which is

the most relevant one from the observational per-

spective, is mostly independent of the way initial

conditions are set and of the choice of the potential.

This makes the main LQC predictions robust.

(iii) the intermediate and infrared parts of the spectrum

do depend on the initial conditions and on the

inflaton potential. The IR slope varies between k2

and k3 depending on the type of vacuum chosen and

the amplitude of the oscillations can vary substan-

tially.

This study shows that the main conclusions regarding the

compatibility of the spectrum with CMB observations (for

most of the parameter space span by initial conditions for

the background) in LQC are reliable. However, if the initial

values for the inflaton field and its momentum are fine-tuned

so that the number of e-folds of inflation is small, the

observational window might fall on the intermediate or IR

part of the spectrum. In that case, LQCpredictions do depend

on the way initial conditions (for perturbations) are set and

on the choice of the inflaton potential. This should be taken

into account in future studies.
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2.4 Distance de luminosité dans un univers en contraction

L’émergence d’un univers en contraction précédent la phase d’expansion ouvre de nouvelles
perspectives. Ce scénario d’un univers en rebond existe également en dehors de la LQC. Est ce que des
observables issues de l’univers pré-rebond pourraient persister dans l’univers actuel ? Dans cet article
nous investiguons le comportement de la distance de luminosité dans un univers en contraction. Le
flux observé d’une source astrophysique est donné par

f =
L

4πD2
L

, (2.67)

avec L la luminosité de la source et DL la distance de luminosité. Cette dernière permet de décrire la
distance parcourue par un signal étant donné que l’univers est dynamique. Dans un univers plat, elle
s’écrit

DL = c(1 + z)
∫ z

0

dz′

H(z′)
, (2.68)

avec z le redshift et H le paramètre de Hubble. On peut l’écrire comme une fonction du temps

DL = c
a(tr)2

a(te)

∫ tr

te

dt

a(t)
. (2.69)

avec te et tr le temps cosmologique d’émission et de réception, respectivement. Soit t = 0 le temps
de rebond et un univers qui se contracte selon a(−t) = k(−t)n. Ici k est une simple constante de
proportionnalité, et ne doit pas être confondu avec le facteur de courbure, qui lui est nul. Soit te et tr

négatifs, tel que te < tr, dans la phase de contraction, alors on a

DL = c
(−tr)2n

n − 1

[ (−tr)1−n

(−te)n
− (−te)

1−2n

]
. (2.70)

Il existe trois comportements de la distance de luminosité en fonction de la valeur de n. Ces
comportement sont mis en évidence par la Figure 1 de l’article :

1. Pour n < 1/2, la limite est donnée par

lim
te→−∞

DL = ∞. (2.71)

La distance de luminosité augmente lorsque l’intervalle de temps augmente.

2. Pour n = 1/2, il est intéressant de constater que la limite est donnée par

lim
te→−∞

DL =
2ca(tr)2

k
. (2.72)

Cette valeur de n correspond à un univers dominé par le rayonnement. On observe qu’il existe un
régime asymptotique à partir du quel la luminosité observée ne dépend plus du temps d’émission.

3. Pour n > 1/2, cette limite est

lim
te→−∞

DL = 0. (2.73)
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De façon intuitive, la distance de luminosité diminue dès lors que l’univers se contracte plus
rapidement que le signal ne se propage. Soit une source observée à t = tr, si elle a été émise
peu de temps avant, la distance de luminosité va croitre avec l’intervalle de temps ∆t = |te − tr|.
Cependant si cet intervalle continue de croître, alors la distance de luminosité va ensuite diminuer.
En effet, le maximum est atteint lorsque

− te =

[2n − 1
n

] 1
n−1

(−tr). (2.74)

Ainsi après ce maximum, une source apparaîtra d’autant plus brillante qu’elle n’a été émise
loin de le passé. Cet effet sera évidemment amplifié dans le cas d’un univers en contraction
exponentielle.

Dans certains cas, la distance de luminosité diminue ou atteint une valeur asymptotique avec
le temps. Cela soulève un paradoxe : un univers infiniment en contraction avec des objets dont la
luminosité explose n’est pas viable. En considérant la gravité quantique, la contraction entraîne une
croissance de la densité d’énergie jusqu’à atteindre la densité critique ρc. Dès lors, les effets quantiques
répulsifs vont dominer et on aura le scénario du rebond. Ainsi, cette étude sur la distance de luminosité
permet de contraindre le passé asymptotique pour certains types de contenus.

La distance de luminosité n’est pas une observable additive. Un effet intégré engendre qu’une
source émise dans la phase de contraction peut voir sa distance de luminosité diminuer autant qu’elle
ne sera ensuite augmentée dans la phase d’expansion de sorte qu’elle est la même luminosité à la
réception. Évidemment, ici, les effets du rebond sur la propagation du signal ont été omis. Toutefois,
en première approximation, on observe que des sources pré-rebond peuvent émettre des signaux qui
perdurent dans l’univers post-rebond, de façon non négligeable. C’est le cas des ondes gravitationnelles.
En effet leur amplitude est inversement proportionnelle à la distance de luminosité

h =
4

DL

[
GM

c2

]5
3
[
π f

c

] 2
3
g(τ,Φ( f )), (2.75)

avecM la "chirp mass", f la fréquence des ondes gravitationnelles,g une fonction qui dépend de la
polarisation, τ l’angle du plan orbital et Φ( f ) la phase.

Du point de vue observationel, l’amplitude d’ondes pré-rebond sera fortement atténuée par la phase
d’inflation. Cependant, plusieurs modèles à rebond peuvent résoudre les problèmes d’homogénité,
d’horizon et de platitude sans avoir recours à l’inflation [36, 37]. Nous nous plaçons dans ce cadre-ci
et nous étudions un modèle simplifié. Soit une phase de contraction dominée par le rayonnement,
puis une phase stationnaire pour le rebond, suivi d’une phase dominée par le rayonnement, puis la
matière. On a considéré des ondes gravitationnelles émises par la coalescence de trous noirs de 109

et 108 masses solaires (voir la Figure 4). Étant donné, le contenu en rayonnement dans la phase de
contraction, la coalescence peut avoir lieu arbitrairement loin avant le rebond. L’amplitude des ondes
h est tracée en fonction de la température de l’univers au moment du rebond. On observe que pour
des températures raisonnables, l’amplitude est constante et ses valeurs sont d’ordre comparable aux
amplitudes prochainement détectables. Évidemment, la formule de l’amplitude est valable seulement
en régime perturbatif. Mais pour des températures faibles le régime perturbatif est valide.

Ainsi par cette étude nous avons étudié le comportement de la distance de luminosité dans un
univers en contraction. En fonction du contenu elle peut augmenter, mais également stagner ou
diminuer. Dans les deux derniers cas, ceci engendre un régime à haute densité d’énergie, où une
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description quantique serait de rigueur, qui permet de décrire la phase de rebond. Le comportement de
la distance de luminosité permet notamment d’envisager que des ondes gravitationnelles pré-rebond
pourraient avoir des amplitudes non négligeables aujourd’hui, selon les modèles. Qu’en est-il de leur
fréquences ? Sont-elles dans un intervalle mesurable ? Cela dépend du temps d’émission. Par exemple
dans la cas d’un univers parfaitement symétrique au rebond, un signal sera autant "blueshifté" dans la
phase en contraction, que "redshifté" dans la phase en expansion. Donc la fréquence observée sera
celle émise. Ainsi, on observe d’ores et déjà qu’il existe plusieurs cas possibles où la fréquence se
situerait dans l’intervalle des fréquences mesurables mais une étude plus précise serait profitable.

Cet article a été publié dans Physical Review D [38].
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I. INTRODUCTION

The big bang is a prediction of general relativity (GR) in
a regime where the theory is not valid anymore.
Singularities are most probably pathologies of the models,
not of spacetime itself. It is therefore natural to consider
alternatives to the naive big bang image. Importantly, most
models replacing the initial singularity by “something else”
were not designed to this aim but produce this desirable
effect as a consequence of their application to the early
universe (see [1,2] and references therein for recent
reviews). Among the countless ways to obtain a cosmo-
logical bounce, one can mention the null energy condition
violation [3], the strong energy condition violation with a
positive curvature [4], ghost condensates [5], galileons [6],
S-branes [7], quantum fields [8], higher derivative terms
[9,10], non-standard couplings [11], supergravity [12], and
loop quantum cosmology [13,14]. These are only some
examples among a much longer list which also includes, in
a way, the ekpyrotic and cyclic scenarios [15,16], together
with string gaz cosmology [17]. Bouncing models are
natural extensions of the big bang scenario and it comes as
no surprise that they arise in many theories beyond GR.
(Interestingly, those ideas are also being investigated in the
black hole sector, see [18] for a recent review).
All those models are obviously missing an observational

confirmation or, at least, strong experimental constraints. As
a legitimate step in this direction, many efforts were recently
devoted to the calculation of primordial cosmological power
spectra. Predictions for the cosmological microwave back-
ground (CMB)weremade for nearly all the above-mentioned
models (as examples for specific settings, explaining the
global strategy, one can consider [19,20]).

In this article we follow another path. We investigate the

unusual luminosity distance behavior in a contracting

universe. We show that it is highly nontrivial. As a

consequence, we raise some consistency issues for bounc-

ing cosmological models. We finally suggest possible

observational footprints of the contracting phase that could

be observed through “usual” gravitational waves.

II. THE LUMINOSITY DISTANCE

IN A CONTRACTING UNIVERSE

As far as observations are concerned, an important

parameter is the luminosity distance DL. It is defined by

f ¼ L=ð4πD2
LÞ, where f is the observed flux from a given

astrophysical source and L is its luminosity. Intuitively, the

luminosity distance is the “equivalent” distance at which an

object of the same luminosity should be in a usual

euclidean space to lead to the same observed flux. In a

flat expanding universe (in the presence of spatial curva-

ture, the general expression involves trigonometric and

hyperbolic functions [21]), it reads as

DL ¼ cð1þ zÞ

Z

z

0

dz0

Hðz0Þ
; ð1Þ

where H is the Hubble parameter and z is the redshift. For
our purpose, it is convenient to rewrite this formula as a

function of time:

DL ¼ cð1þ zÞaðtrÞ

Z

tr

te

dt

aðtÞ
; ð2Þ

where te and tr are the emission and reception cosmic times

of the considered signal and aðtÞ is the scale factor. To

study a contracting universe it is even better to get rid of the

redshift and write the expression as

DL ¼ c
aðtrÞ

2

aðteÞ

Z

tr

te

dt

aðtÞ
: ð3Þ

When one considers the contracting branch of a bouncing

scenario, interesting and unusual phenomena can take place.

Let us choose t ¼ 0 at the bounce time and assume that the

universe contracts as aðtÞ ¼ kð−tÞn before the bounce (with
n ¼ 2=3 for a matter-dominated phase and n ¼ 1=2 for a

radiation-dominated phase). The detailed evolution around

the bounce could be e.g., given by the loop quantum

cosmology modified Friedmann equation [22]
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H2 ¼
κ

3
ρ

�

1 −
ρ

ρc

�

; ð4Þ

where ρc depends on the details of the model but can be

guessed to be close to the Planck density. However we have

checked that the observables calculated in this article do not

depend on the detailed shape of the modified equation of

motion. We therefore approximate the scale factor by a

constant function between −tB and tB. Let te and tr both be
negative—that is in the contracting branch—with te < tr. It
is then easy to show that:

DL ¼ c
ð−trÞ

2n

n − 1

�

ð−trÞ
1−n

ð−teÞ
n

− ð−teÞ
1−2n

�

: ð5Þ

When n < 1=2, DL → ∞ when te → −∞. This is in agree-

ment with the intuitive behavior.

However, when n > 1=2, DL → 0 when te → −∞. This

is one of the important results we want to stress here. This

strange behavior never happens in an expanding universe. It

means that, for a fixed reception time tr, an event that took

place earlier in the contracting phase will be seen as

brighter. Of course, the luminosity distance first increases

with higher values of −te, reaches a maximum, and then

decreases. The maximum can be shown (when n ≠ 1) to be

reached when

−te ¼

�

2n − 1

n

�

1

n−1

ð−trÞ: ð6Þ

When n ¼ 1=2, DL → 2caðtrÞ
2=k2 when te → −∞.

This means that events arbitrarily far away in the past will

be detected at the same brightness once the asymptotic

regime is reached.

Figure 1 shows the luminosity distance evolution for

three different values of n. It can be seen that DL is

asymptotically constant in the remote past when n ¼ 1=2
and tends to 0 when n > 2=3. The numerical values are not

relevant and the plot aims at showing the global behavior.

In Fig. 2 we consider the luminosity distance between an

event in the contracting phase and the contemporary

universe, as a function of the “bounce duration.”

Figure 2 shows that the detailed value of tB does not care

in the following analysis: the contribution of the bounce

phase to the full integral is negligible.

Finally, it is worth considering the cosmological constant

case, aðtÞ ¼ ke−αt, where α ¼ jHj > 0. The luminosity

distance then reads

DL ¼ c
eαðte−2trÞ

α
½eαtr − eαte �: ð7Þ

Clearly, in this case again, DL → 0 when te → −∞, as

illustrated in Fig. 3. Sources located in the remote past have

their flux intensely amplified.

−100 −80 −60 −40 −20
time

2 × 108

4 × 108
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8 × 108

luminosity distance

FIG. 1. Luminosity distance (m) as a function of the emission

time te (s) in the contracting branch for the power law contraction.

The reception time tr has been set to 1 second before the bounce.

The lower curve corresponds to n ¼ 2=3, the mid curve to

n ¼ 1=2 and the upper curve to n ¼ 0.45.
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FIG. 2. Luminosity distance (m) as a function of the bounce

duration (s) between an event in the contracting phase and the

current universe (including radiation dominated and matter

dominated phases).
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FIG. 3. Luminosity distance (m) as a function of the emission

time te (s) in the contracting branch for an exponential con-

traction. The reception time tr has been set to 1 second before the
bounce and α was arbitrarily set to 1 in order to increase the

readability.
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III. CONSISTENCY CONDITIONS

The results given in the previous section do raise some

questions. The case n > 1=2 is in no way exotic from the

point of view of the equation of state. It actually corre-

sponds to a usual matter dominated universe, as naively

expected far away from bounce. The behavior of the

luminosity distance is then such that sources that have

emitted light in an arbitrary distant past will lead to a

measured flux which is arbitrarily amplified by the con-

traction of the scale factor. This basically means that the

energy density will diverge at all points in space, leading to

a kind of new Olbers paradox worsened by the contraction.

In addition the frequency will also become arbitrarily high.

As a consequence, the Universe cannot have been forever in

a contraction phase with n > 1=2 and filled with objects

emitting energy. The energy density growth would anyway

trigger the bounce—at least in quantum-gravity models

where the energy density is bounded from above by

quantum geometry repulsive effects. This consistency

condition has to be taken into account when building a

consistent bouncing universe.

The case n ¼ 1=2 is not fundamentally different. The

luminosity distance being nearly constant, the energy

amount received by each space point would also diverge

in a forever-contracting universe. It should be pointed out

that even for n < 1=2 the space integral of any homo-

geneous source term will obviously diverge, as this is

already the case in a static Minkowski universe.

The exponential contraction case is slightly more subtle.

The luminosity distance is rapidly going to zero. The

amplification due to the fast contraction of the Universe is

thus very intense. However the horizon and physical

distances relative evolutions are such that the comoving

Hubble radius is shrinking when going backward in time in

the contracting branch (as when going forward in time in

the expanding branch). The number density of sources

causally linked to any space point will therefore also tend to

zero and eventually solve the apparent paradox.

IV. SEEING THROUGH THE BOUNCE

Those considerations raise the important question of the

possible observation of events having taken place before

the bounce. Obviously, most signals or objects possibly

existing in the contracting branch will be destroyed

of washed out by the huge density reached—in most

models—around the bounce time. The only exception

could be gravitational waves. This is the only signal

coupled weekly enough to matter so that it could propagate

through the bounce (the details depend on the specific

model considered). This has been investigated in different

cases (see, e.g., [23,24]) but focusing only on geometrical

aspects—ignoring the aforementioned amplification—and

considering consequences on the cosmological microwave

background (CMB) spectra.

Let us consider here a different scenario. The hypothesis

is that an event emitting intense gravitational waves has

taken place before the bounce, e.g., the coalescence of two

massive black holes (BHs). Clearly we do not know what

the Universe looked like before the bounce. We however

assume here that events comparable to what happens in our

expanding branch took place in the contracting branch. At

the lowest order the wave amplitude produced by a binary

system and observed far away can be written [25]:

h ¼
4

DL

�

GM

c2

�

5

3

�

πf

c

�

2

3

gðτ;ΦðfÞÞ; ð8Þ

where M is the chirp mass, f is the gravitational wave

frequency at the observer location, g is a sum and product

of trigonometric functions (different for different polar-

izations) depending on τ, the angle of the orbital plane, and

on the phase ΦðfÞ.
As quite a lot of bouncing models are justified as

alternatives to inflation (although bounces are compatible

with inflation [26]), it is instructive to focus on a non-

inflationary scenario and to study whether a pre-big bounce

signal can be detected. (An inflationary phase would

obviously dilute the signal to a vanishingly small ampli-

tude.) We consider the following toy model: a contracting

radiation-dominated phase, followed by a stationary bounc-

ing phase, followed by the usual radiation-dominated and

matter dominated stages. The number of efolds between the

bounce and today is of course a relevant parameter that we

express through the temperature of the Universe at the

bouncing time. On Fig 4, we have plotted the amplitude of

gravitational waves emitted by the coalescence of 100 mil-

lions and one billion solar masses BHs as a function of the

bouncing temperature. Interestingly, for a radiation domi-

nated contracting phase, because the luminosity distance

rapidly reaches an asymptotic value, it is not necessary to

specify the merging time as long as it is far enough before

the bounce. As it can be noticed from the curves, as soon as

the temperature is chosen at a reasonable value, the
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FIG. 4. Gravitational wave amplitude today as a function of the

bounce temperature (GeV). The upper curve is for 109 solar

masses BHs and the lower curve for 108 solar masses BHs, both

merging in the contracting phase.
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amplitude is constant and becomes non-negligible and

comparable to the sensitivity of current or next-generation

experiments. The h asymptotic behavior—which might

appear as quite strange at first sight—is just due to the

converging property of the integral of 1=a which enters the

definition of the luminosity distance.

An obvious limitation of this calculation comes from the

perturbative treatment. As it can be seen in Fig. 5, as long as

the bounce temperature is set much above the nucleosyn-

thesis temperature, the gravitational waves amplitude at the

bounce becomes too large to justify a perturbative calcu-

lation. This is a limitation to the presented study—which

requires a deeper treatment for this case—but not to the

presented idea in itself.

However, if the bounce temperature is set to the lowest

possible one, the amplitude at the bounce is marginally

compatible with a perturbative approach and this study

shows—in a consistent way—that, in principle, gravita-

tional waves from events occurring in the contracting phase

of bouncing models could be detected in the contemporary

universe.

One could also consider a phase of matter domination

preceding the radiation dominated era in the contracting

branch. If sources are located in this matter dominated

phase, the amplitude does depend on the time at which the

coalescence takes place. It is then possible to achieve nearly

any value by choosing an emission time in the deep past.

But the breakdown of the perturbative treatment would

them become drastic and the whole result would be

questionable. We therefore restrict ourselves to the radia-

tion dominated case.

Another limitation is associated with the homogeneous

and isotropic treatment of the bouncing universe. This

should be considered as a toy-model approximation. It is

however not fully irrelevant. First, it should be pointed out

that many bouncing models have been shown to resist the

inclusion of anisotropies (see, e.g., [27] for the case of loop

gravity) with a quite minor modification of the Friedmann

equation [28]. Anisotropic stress on gravitational waves

could even be a way to discriminated between models. The

homogeneous treatment is harder to justify and should

obviously be seen as a first step. Recent calculations [29]

have however shown that exact solutions describing a

regular lattice of black holes in a cosmological bouncing

background do exist.

V. CONCLUSION

In this article we have shown that the luminosity distance

in a contracting universe has a highly nontrivial behavior.

Because of the “competition” between the expanding wave

dilution and the amplification due to the decreasing scale

factor, in some cases (n > 1=2), the luminosity distance

between two events in the contracting branch does decrease

with an increasing time difference.

As a consequence, some violent events releasing gravi-

tational waves and taking place in the contracting branch of

the Universe could be detected today. The question of

their frequency is hard to be answered unequivocally as it

obviously depends on the precise emission time which, in

the case n ¼ 1=2, has strictly no impact on the luminosity

distance. We leave for a future study the associated

statistical analysis, together with the systematic study of

the characteristic signatures of “prebounce” signals.

It can already be underlined that several possible ways of

discriminating between “prebounce” events and usual

“postbounce” events do exist. The most obvious approach

is purely statistical: the number of events should simply be

higher than expected if sources located before the bounce

contribute to the measured events. Beyond this obvious

statement, one should also look for the absence of electro-

magnetic counterparts. Although not demonstrated, electro-

magnetic signals are usually expected to be associated with

merging supermassive BHs. Third, the measured luminos-

ity distances for some events should lie outside of the usual

range (either too large or to small). Finally, the measured

luminosity distance (inferred from the frequency, the

frequency evolution and the amplitude, see e.g., [30] or

[31]) might mismatch the real one in a way which is

observationally measurable.
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FIG. 5. Gravitational wave amplitude at the bounce time as a

function of the bounce temperature (GeV). The upper curve is for

109 solar masses BHs and the lower curve for 108 solar masses

BHs, both merging in the contracting phase.
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CHAPITRE 3

Les trous noirs
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3.1 Les trous noirs en rebond

Le modèle de cosmologie quantique à boucles décrit un univers en contraction, puis, lorsque la
densité critique ρc est atteinte, les effets de gravité quantique génèrent une force effective de répulsion
qui contrebalance l’attraction gravitationelle et l’univers s’expand. L’idée des trous noirs en rebond
est basée sur le même principe [39, 40]. Un trou noir est soumis à l’effondrement gravitationnel, puis,
lorsqu’il atteint une certaine densité, l’effondrement est contrebalancé par les effets quantiques. Il
transite alors vers une solution de trou blanc par effet tunnel. La singularité est alors évitée. Pour que
ce processus puisse exister, il faut qu’il y ait des effets quantiques qui englobent l’horizon. Or, dans
cette région la courbure est faible, donc on pourrait penser que les effets quantiques sont négligeables.
Cependant, ces effets quantiques peuvent se cumuler dans le temps. Ainsi, proche, mais en dehors, de
l’horizon [41], ces effets peuvent peut être devenir importants. En effet, si l’on considère le modèle
de désintégration radioactive, un atome d’uranium est stable par unité de temps. Néanmoins, après
plusieurs milliards d’années, l’atome finira par se désintégrer par effet tunnel. Le modèle de trou noir
en rebond est analogue. La probabilité de transiter vers un trou blanc est faible, mais cumulée dans le
temps, le trou noir finira par transiter vers cet état par effet tunnel. Ce modèle a ensuite été amélioré
pour corriger les instabilités [42]. Le temps de rebond τ est proportionnel à la masse du trou noir, M,
au carré [43] : τ = kM2 avec k le facteur de proportionnalité (pris de l’ordre de 1). D’autre part, le
temps d’évaporation d’un trou noir est proportionnel à sa masse au cube M3. Ainsi un trou noir va
rebondir avant de s’être totalement évaporé et son rayonnement thermique est vu comme un processus
dissipatif faible.
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Plusieurs études sur la phénoménologie de ce modèle ont été effectuées [44], notamment sur leur
capacité à expliquer les sursauts radio rapides (FRBs pour fast radio bursts) [45, 46]. Ces études
montrent que les trous noirs en rebond ne peuvent pas être une explication viable. Cependant, dans
ces articles, en première approximation, le temps de vie était présumé déterministe. Or, du fait qu’il
s’agisse d’un effet tunnel nous devons prendre en compte l’aspect probabiliste. C’est le point clé de
l’article ci-joint.

La probabilité qu’un trou noir n’ait pas encore rebondi à l’instant t est donnée par

P(t) =
1
τ

e
−t
τ , (3.1)

comme dans le cas de la désintégration nucléaire. Ainsi le nombre de trous noirs à avoir rebondir après
un temps tH (le temps de Hubble) par unité de temps dt est

dN =
N0

kM2
e
− tH

kM2 dt, (3.2)

avec N0 le nombre de trous noirs initiaux. Les trous noirs qui ont le plus de probabilité de rebondir
aujourd’hui seraient les trous noirs formés dans l’univers primordial. L’existence de ces trous noirs pri-
mordiaux (PBHs pour primordial black holes) n’est pas confirmée à ce jour. Cependant, les contraintes
sur ces derniers ont récemment été actualisées [47]. Le spectre de masse des PBHs est noté dN/dM.
Le signal des photons émis par un trou noir rebondissant est modélisé par une fonction Gaussienne

dNBH
γ

dE
= Ae

− (E−E0)2

2σ2
E , (3.3)

avec E0 = 1/2RS = 1/4M. L’amplitude A est fixée de sorte que

∫
E

dNBH
γ

dE
dE = M. (3.4)

Le signal total émis pour une distribution locale de trous noirs en rebond est donnée par

dNγ

dE
=

∫ ∞

MPl

Ae
− (E−E0)2

2σ2
E

dN

dM
(M)

1
kM2

e
− tH

kM2 . (3.5)

Si les PBHs sont produits par un événement ponctuel, de type transition de phase, alors leur spectre
sera piqué, tel que

dN

dM
∝ e

− (M−M0)2

2σ2
M . (3.6)

Il n’y pas d’a priori sur la masse M0 autour de laquelle le spectre est piqué. Si cette masse correspond
à MtH (la masse définie telle que le temps de rebond est celui de Hubble), le flux sera plus important.
Cependant, étant donné l’aspect probabiliste, pour des masses M0 supérieures à MtH , il y aura des
trous noirs (dans l’intervalle associé à la queue de la distribution) qui vont rebondir aujourd’hui.
Nous pouvons constater par exemple, sur la Figure 1 de l’article, que lorsque la masse centrale vaut
M0 = 1000MtH , le pic du flux émis se trouve dans l’intervalle d’énergie (10−6eV) correspondant à celui
des FRBs.

Dans d’autres modèles, nous avons un spectre large, tel que
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dN

dM
∝ Mα. (3.7)

Pour une formation de PBH à partir des fluctuations primordiales dans la phase de domination par le
rayonnement α = −5/2. Mais d’autres processus, comme des transitions de phase, peuvent conduire à
des valeurs différentes. La normalisation entre les courbe est choisie telle que la masse totale allant
dans les trous noirs est la même :

∫ ∞

MPl

M
dN

dM
= cte. (3.8)

Nous avons également considéré la normalisation telle que le nombre de trous noirs total est le même :
∫ ∞

MPl

dN

dM
= cte. (3.9)

Ces deux normalisations amènent à des résultats presque identiques. Pour ce type de spectre, la
phénoménologie associée est différente. Les prédictions (voir Figure 2) sont un flux qui augmente en
loi de puissance avec l’énergie, et la pente varie en fonction de la puissance α du spectre de masse.

Ainsi, on a pu observer, qu’en prenant en compte l’aspect probabiliste de la transition d’un trou
noir vers un trou blanc, le signal émit peut se trouver dans l’intervalle de fréquences des FRBs. En
fonction de la forme du spectre de masse des PBHs, les prédictions sur la forme du signal sont
différentes. Évidemment, les trous noirs en rebond ne sont pas l’explication la plus argumentée pour
expliquer la présence des FRBs. D’autres sources astrophysiques peuvent tout aussi bien en être la
cause. Cependant, contrairement aux études où le temps de rebond était pris comme déterministe,
dans le cas probabiliste l’hypothèse n’est pas écartée. De plus, il est intéressant de noter que les trous
noirs en rebond ont une signature différente de celles des sources astrophysiques ou de physique des
particules. En effet, plus un trou noir rebondit loin (donc plus son énergie sera "redshiftée"), plus son
temps de rebond est petit (donc plus son énergie sera grande). Or il a été montré [48] que ces deux
effets se compensent de sorte que le signal ne possède pas beaucoup de dépendance en redshift.

Cet article a été publié dans Physical Review D [49].
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I. INTRODUCTION

Finding observational consequences of quantum gravity is

obviously a major challenge. In the last decade most

attempts have focused on the early Universe, evaporating

black holes, or Lorentz invariance violation (see Ref. [1] for

a recent overview). In the last years, the idea that quantum

gravity effects could be seen in higher-mass black holes has

attracted a lot of interest [2–6]. In particular, it was suggested

that the quite mysterious fast radio bursts (FRBs) [7] could

be explained by bouncing black holes [8]. There are

unquestionably simpler astrophysical explanations that we

consider to be more probable, but this hypothesis is worth a

deeper look. At the heuristic and intuitive level, this bounce

can be understood as a phenomenon quite similar to what is

expected to happen to the Universe in loop quantum

cosmology [9,10]. In the cosmological framework, the

classically contracting branch is linked to the classically

expanding one by a quantum tunneling, whereas in the black

hole sector the classically collapsing solution is glued to the

classically exploding one (on the double cover of the

Kruskal map [3]). The usual event horizon is replaced by

a trapping horizon [11]. In this brief article we revisit this

hypothesis by taking into account the fundamental random-

ness of the tunneling process that was previously ignored. In

Sec. II we assume a peaked mass spectrum for the bouncing

black holes and show that the 3 orders of magnitude in

energy thought to be missing to explain FRBs can easily be

accounted for. In Sec. III we consider a wide mass spectrum

and investigate the sensitivity of the signal to the spectral

index. We show that the expected emission remains com-

patible with measurements and make clear predictions.

II. PEAKED MASS SPECTRUM

The heuristic arguments given by Rovelli, Haggard, and

Vidotto in the previously mentioned articles suggested that

the black hole lifetime could be of the order ofM2 in Planck

units (those units are used throughout the rest of the article

except otherwise stated). As this is shorter that the Hawking

evaporation time (of the order ofM3), this means that black

holes might bounce before they evaporate: the Hawking

effect would just be a dissipative correction. An exact

calculation of this lifetime is in principle possible in loop

quantum gravity (see, e.g., Ref. [12]), but it is still hard to

perform accurately at this stage [13]. The previous phe-

nomenological works around this hypothesis have focused

on gamma-ray bursts [14], FRBs [8], the space-integrated

signal [15], and trying to explain the Fermi excess [16]. In

all of them the lifetime was taken (as a first approximation)

to be deterministic, fixed at the value τ ¼ kM2 where kwas
chosen to be of the order of 0.05 (however, in one of the

studies [15] its value was varied). We also assume this value

in the present article as it the most phenomenologically

interesting one (and the smallest one theoretically allowed).

However, as the black-to-white hole transformation is to be

understood as a tunneling process, the lifetime of a black

hole should be considered as a random variable.

The probability that a black hole has not yet bounced

after a time t is given by

PðtÞ ¼
1

τ
e−

t
τ: ð1Þ

This is the usual “nuclear decay” behavior which comes

directly from the fact that the number of bouncing black

holes during a time interval dt is proportional to the full

number of black holes and to dt. We focus in this study on

local effects and neglect the redshift integration as this will

play only a minor role in the analysis carried out. The black

holes we are interested in can be considered to have been

produced in the early Universe, as the range of masses (far

below a solar mass) leading to bounces occurring in the
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contemporary Universe can only be associated with pri-

mordial black holes (PBHs; see Ref. [17] for a rather recent

review on the limits on the PBH abundance and references

therein for possible formation mechanisms). In general, the

number of black holes of a given type bouncing after a time

tH (taken to be the Hubble time as we are considering

present-day phenomena) in a time interval dt is

dN ¼
N0

kM2
e
−

tH

kM2dt; ð2Þ

whereN0 is the initial abundance. The exponential function

entering this calculation comes directly from the random

nature of the bounce, as in the previous formula. Let us

assume that the initial differential mass spectrum of the

considered PBHs is given by dN=dM.

In this study, we focus on the so-called bouncing black

hole low-energy component as this is the one that is

relevant for a possible link with FRBs. This specific

component is based on a simple dimensional analysis:

photons are assumed to be emitted with a characteristic

wavelength that is of the order of the size of the black hole,

which is the only length scale of the problem. As in

Ref. [16], we model the shape of the signal emitted by a

single black hole by a simple Gaussian function:

dNBH
γ

dE
¼ Ae

−

ðE−E0Þ
2

2σ2

E ; ð3Þ

where E0 ¼ 1=ð2RSÞ ¼ 1=ð4MÞ, RS is the Schwarzschild

radius, andM is the mass of the considered black hole. This

choice is arbitrary and simply taken as an example. The

width is typically fixed to be σE ¼ 0.1E0, but the results do

not critically depend on this value or the detailed shape of

the distribution.

The full signal due to a local distribution of bouncing

black holes is given by

dNγ

dE
¼

Z

∞

MPl

Ae
−

ðE−E0Þ
2

2σ
2

E ·
dN

dM
ðMÞ ·

1

kM2
e
−

tH

kM2 : ð4Þ

The point we want to raise in this study is that the mean

energy of the detected signal might not be the naively

expected one, that is, may not be E ∼ 1=ð4MtH
Þ, whereMtH

is the mass satisfying tH ¼ kM2
tH
(this would correspond to

black holes having a characteristic lifetime equal to the age

of the Universe). The naive expectation E ∼ 1=ð4MtH
Þ is

not in the radio band, but rather 3 orders of magnitude

higher in energy, in the infrared band. If the initial mass

spectrum is peaked around a value M0, e.g., according to

dN

dM
∝ e

−

ðM−M0Þ
2

2σ2

M ; ð5Þ

which can in principle be different than
ffiffiffiffiffiffiffiffiffiffi

tH=k
p

, the energy

will however be peaked around 1=ð4M0Þ which can differ

from 1=ð4MtH
Þ. This is possible precisely because of the

distributional nature of the actual bouncing time.

Considering a peaked mass spectrum is not arbitrary and

can be justified if PBHs are created, for example, because

of a phase transition in the early Universe (see, e.g.,

Ref. [18]). As the primordial cosmological power spectrum

is now clearly known not to be blue [19] (at least on large

scales), the naturally expected density contrast is not high

enough to produce PBHs [20] and specific post-inflationary

phenomena are generically required (see, e.g., Ref. [21]).

In Fig. 1, the expected emitted flux is shown for

different values of the central mass M0 of the initial

mass spectrum: MtH
, 10MtH

, 100MtH
, and 1000MtH

. As

expected, this shows that the energy of the signal depends

on the mass spectrum even if the parameters of the model

are fixed. Naturally, when the mass spectrum is peaked at

masses well above MtH
, the amplitude of the expected

signal decreases as BHs that are exploding today constitute

an increasingly smaller fraction of the full population.

However, the key point we stress here is that a given mean

lifetime τ ¼ kM2 does not imply a fixed expected energy.

In particular, it was previously emphasized that the

expected mean wavelength (obtained by fixing τ ¼ tH) of
the electromagnetic emission associatedwith bouncingblack

holes was basically one thousand times smaller than required

to explain the FRBs. If themass spectrum is peaked atmasses

higher thanMtH
, it is however perfectly possible to precisely

account for the expected wavelength. The curve on the left in

Fig. 1 is peaked around 1.5 GHz, which corresponds to the

typicalwavelength of FRBs.At this stage, there is noobvious

motivation for choosing a specific value for the peak mass.

Interesting proposals were recently suggested, for example,

in the framework of critical Higgs inflation [22], but (as

pointed out in thementioned reference) the actual peak value

could differ from the naively calculated one by several orders

of magnitude due to accretion and merging, and many other

models do exist that suggest other mass values.
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FIG. 1. Differential electromagnetic flux emitted by bouncing

PBHs for a central mass M0 equal (from right to left) to MtH
,

10MtH
, 100MtH

, and 1000MtH
. The normalization is such that the

total mass going into PBHs is the same in all cases.
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In Fig. 1 the normalization between the different curves

is such that the total mass going into black holes is the

same:

Z

∞

MPl

M
dN

dM
¼ cte: ð6Þ

This is somehow justified if ones tries to account for dark

matter with PBHs. The point we want to stress with this

remark is simply that the decrease in flux when one moves

below the “natural" mass MTH
is not drastic. Accounting

for the observed events by shifting the peaked mass to

higher values requires a higher density of PBHs. This

cannot be done up to arbitrary values, as the upper bounds

on the density of PBHs would then be violated. However,

orders of magnitude show that the density of PBHs required

to account for observed events is very far below the known

bounds, and this does not limit the present proposal as the

rate of FRBs is actually very small [23]. There is no point in

performing a detailed normalization of the expected spec-

trum at this stage, as the initial mass spectrum normaliza-

tion is totally unknown and the calculation of any

observable would directly depend on it.

We have also considered a second normalization, such

that the total number of black holes is the same,

Z

∞

MPl

dN

dM
¼ cte; ð7Þ

and this basically leads to the exact very same results.

Beyond FRBs—which can be explained by astrophysical

phenomena—the point raised here is simply the fact that

when the probabilistic nature of the bouncing time is

accounted for, the mean energy of the emitted signal is

also determined by the mass spectrum and not only by the

lifetime of the black holes.

III. WIDE MASS SPECTRUM

It is also possible that the mass spectrum of PBHs is quite

wide. As a toy model, if it is directly produced by scale-

invariant density perturbations in a perfect fluid with

equation of state w ¼ p=ρ, the mass spectrum can be

approximated by [20]

dN

dM
∝ M−1−

1þ3w
1þw : ð8Þ

In this study, we just consider (as a first approximation) a

spectrum

dN

dM
∝ Mα; ð9Þ

where α is an unknown parameter. In Fig. 2 we present the

expected signal for α ¼ f−3;−2;−1; 0g (a spectrum rising

with an increasing mass on a wide interval would be rather

unphysical). Once again, the shape of the mass spectrum

does influence the expected signal as the probabilistic

nature of the lifetime is now taken into account: black holes

with masses smaller or larger thanMtH
do also contribute to

the emitted radiation, and changing their relative weights

does change the result.

This leads to another way of addressing the discrepancy

between the “natural” wavelength (around 0.02 cm∼

2 × 10
−6 eV) of bouncing black holes and the observed

wavelength (around 20 cm ∼ 2 × 10
−3 eV) of FRBs. It could

indeed be thatmost bouncing black holes do lead to a signal of

wavelength ∼0.02 cm and that only the tail (which exists

because of the probabilistic nature of the lifetime) of the

distribution is observed in the radio band. If the peak is in the

infrared—which shouldoccur if themass spectrum iswide—it

might be that it is simply unobserved today. Detectors in the

infrared band have proper time constants that aremuch to high

to allow for themeasurement of such fast transient phenomena

and there are no deep surveys being carried out.

In this case, as shown in Fig. 2, a clear prediction of this

model for future observations is that one should expect a

higher flux as the energy increases (up to the infrared

band). The slope of this increase reflects that of the mass

spectrum. This is qualitatively quite independent of the

details of the mass spectrum.

IV. CONCLUSION

The possible existence of a black-to-white hole transition

through a kind of tunneling process has recently received a

lot of attention in quantum gravity. In this brief article we

have taken into account the fundamentally random nature

of the black hole lifetime in those models. We showed that

this can induce a substantial shift with respect to previous

studies in which the characteristic lifetime τ [either derived

from the full theory (first attempts can be found in

Ref. [13]) or inferred by heuristic arguments] was taken

as an actual bouncing time.

In a Poisson process, the distribution of time intervals is

wide and exponentially decreasing. A bounce can occur

after a time which is very different from its characteristic
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FIG. 2. Signal expected from a wide mass spectrum, with α ¼
f−3;−2;−1; 0g from the lower curve to the upper curve at

10
−6 eV.
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timescale, with the smallest time being always the most

probable one. This should be taken into account (and this

was indeed accounted for in Ref. [24]).

Beyond this quite trivial statement, we have shown that,

because of this stochastic process, the mean energy of the

emitted signal can be different than that previously con-

sidered. In particular, if the mass spectrum of PBHs is

peaked, it is perfectly possible to match the observed FRBs.

In addition, if the mass spectrum of PBHs is wide and

continuous it is still possible to explain the data, and a

prediction was suggested for future observations.

The main point of this study was not to revive at any

price the hypothesis that FRBs are due to bouncing black

holes. Our point was to show that the randomness of the

lifetime of black holes in quantum gravity can drastically

change the spectral characteristic of the expected signal

when the mass spectrum is highly peaked and can lead to

interesting predictions in any case.
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78 Chapitre 3. Les trous noirs

3.2 Propagation de champs quantiques dans un modèle de trous

noirs en LQG

Nous avons vu dans la section 1.4 qu’en espace courbe le nombre de particules est relatif à l’état de
vide qu’on choisit en tant qu’état fondamental. Ainsi, pour faire ce choix, il faut étudier les symétries
afin d’écrire le champ sous forme d’états propres tels que les valeurs propres soit des constantes du
mouvement. Ces constantes sont données par les vecteurs de Killing.

Proposition : Soit ζ un champ de vecteur de Killing et γ une géodésique avec pour vecteur tangent u.
Alors la quantité ζµuµ est constante le long de γ.

Ainsi, un choix de vide peut s’effectuer en identifiant les vecteurs de Killing de type temps globalement.
On associera alors la coordonnée temporelle au vecteur de Killing et on définira les énergies positives
et négatives sur chaque foliation de l’espace à un instant t fixé. Lorsqu’il n’existe pas de vecteur
de Killing de type temps global, on peut considérer un vecteur de Killing dans une région. Dans le
cas d’un trou noir de Schwarzschild le vecteur de Killing de type temps ζµ(t) défini tel que ζµ(t)∂µ = ∂t

permet de définir les fréquences pour un observateur lointain. Pour cet observateur un champ scalaire
φ quantifié va être défini avec les opérateurs création et annihilation pour les modes entrant et sortant.
Lorsque l’on considère l’émission de particules par effet Hawking nous prenons en compte seulement
les modes sortants. Les fréquences positives vont être définies par ∂tφ = −iωφ. Cependant si cet état
du vide est choisi comme état fondamental, on observe qu’à l’horizon le tenseur Tµν diverge, alors que
ce n’est pas une singularité fondamentale donc il est préférable de choisir un autre état fondamental.
Par exemple, il y a les fréquences de l’observateur en chute libre à l’horizon des évènements. Elles
sont très différentes des précédentes et ceci est à l’origine de l’effet Hawking que nous allons décrire
plus en détails dans la section suivante 3.2.1.

3.2.1 L’effet Hawking

Pour décrire l’effet Hawking nous nous plaçons dans le cadre d’un champ scalaire φ décrit dans un
espace-temps de Schwarzschild. Nous suivons ici la description décrite dans [50].

Nous avons l’habitude, en TQC en espace plat, de développer l’opérateur champ en modes et
ensuite d’associer les opérateurs création a† et annihilation a à ces modes. Mais en espace courbe
il n’existe pas un ensemble naturel de modes en particulier. Comme nous l’avons déjà mentionné,
une décomposition en mode permet d’avoir une base dans l’espace des solutions mais ne possède par
un caractère fondamental. Ainsi il est possible de procéder différemment et de commencer par une
solution de paquet d’onde individuel. Soit f une solution classique complexe de l’équation (dans ce cas,
l’équation de Klein Gordon) et φ l’opérateur de champ. On peut alors définir l’opérateur annihilation
de la façon suivante,

a( f ) = 〈 f |φ〉 . (3.10)

Étant donné que f et φ satisfont tout deux à l’équation d’onde, cet opérateur est bien défini et
indépendant de la surface où le produit scalaire est évalué. Le caractère hermitien de l’opérateur de
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champ φ induit

a†( f ) = −a( f ∗). (3.11)

Comme nous venons de le voir, il y a deux notions de fréquences pertinentes :

— les "fréquences de Killing" : infiniment loin, ces fréquences coïncident avec les fréquences vu
par un observateur de Minkowski au repos par rapport au trou noir.

— les "fréquences de chute libre" : vues par un observateur en chute libre qui traverse l’horizon.

On considère un trou noir formé par un effondrement gravitationnel avec un état quantique |ψ〉.
Bien longtemps après l’effondrement, on veut définir les observables pour un paquet d’onde P sortant,
a fréquences de Killing positives, d’un champ quantique loin du trou noir. Le nombre moyen de
particules de ce paquet d’onde sera décrit par :

〈ψ|N(P)|ψ〉 avec N(P) = a†(P)a(P). (3.12)

L’opérateur annihilation correspondant au paquet d’onde normalisé P est donné par

a(P) = 〈P, φ〉Σ f
, (3.13)

évalué sur Σ f l’hypersurface spatiale, loin du trou noir. Unruh a montré que [51] l’on peut évaluer la
valeur moyenne de N(P) sur Σ f en utilisant nos connaissances sur Σi, une hypersurface assez loin dans
le passé de Σ f mais tout de même bien après la formation du trou noir. Sur Σ f , on a le paquet d’onde
P qui ne contient que des modes sortants. En propageant en arrière ce paquet d’onde via l’équation
de Klein Gordon, il se sépare en une partie R réfléchie par la barrière de potentiel du trou noir et une
partie T transmise qui se dirige vers l’horizon :

P = R + T. (3.14)

Le support de R est sur la partie spatiale loin de l’horizon et le support de T est sur une petite région
proche, mais en dehors, de l’horizon. Le produit scalaire (3.13) peut être évalué sur Σi, car entre les
deux hypersurfaces φ et P satisfont l’équation de Klein Gordon, donc a(P) ne va pas être modifié. On
peut alors séparer l’opérateur annihilation en deux parties

a(P) = a(R) + a(T ), (3.15)

et le nombre moyen de particules (3.12) s’écrit

〈ψ|N(P)|ψ〉 = 〈ψ|(a†(R) + a†(T ))(a(R) + a(T ))|ψ〉 . (3.16)

La métrique du trou noir étant stationnaire, les fréquences de Killing, dans les solutions de
l’équation de Klein Gordon, sont conservées. Ainsi R et T ont les mêmes fréquences positives que P.
Infiniment loin du trou noir, on a la partie réfléchie et les fréquences positives sont celles d’un espace
de Minkowski asymptotiquement. Étant donné qu’il n’y a pas de mode entrant, on a

a(R) |ψ〉 = 0, (3.17)

on en déduit

〈ψ|N(P)|ψ〉 = 〈ψ|a†(T )a(T )|ψ〉 . (3.18)
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Par contre, l’observateur en chute libre, de temps propre τ, à l’horizon des événements verra des
fréquences positives et négatives pour le paquet d’onde T . Au point τ = 0 lorsqu’il traverse l’horizon,
l’hypersurface Σi intersecte l’horizon. Derrière l’horizon, pour τ > 0, le paquet d’onde T sera nul
(car il n’a pas de support). On sait que si une fonction s’annule sur un arc continue du domaine où la
fonction est analytique (ici ce sera l’axe réel positive de τ) , alors par prolongement analytique elle est
nulle partout dans le domaine. Ainsi n’importe qu’elle fonction a fréquences positives

h(τ) =
∫ ∞

0
dωe−iωτh̃(ω) (3.19)

est analytique dans le demi plan de partie imaginaire négative et si h(τ) = 0 pour τ > 0, on aura
également h(τ) = 0 pour τ < 0 pour l’observateur en chute libre. On peut alors décomposer le paquet
d’onde T en une partie à fréquences positives et une autre à fréquences négatives par rapport à τ

T = T+ + T− (3.20)

et on a également

a(T ) = a(T+) + a(T−) (3.21)

= a(T+) − a†((T−)∗). (3.22)

Pour l’observateur, en chute libre, à τ < 0, les paquets d’onde T+ et (T−)∗ ont des très hautes fréquences.
Ainsi, à courte distance, on peut considérer que ces paquets d’onde sont dans leur états fondamentaux
et on a

a(T+) |ψ〉 = 0, (3.23)

a((T−)∗) |ψ〉 = 0. (3.24)

En utilisant les équations (1.112),(1.113), (3.22) et (3.24), on obtient que le nombre moyen de particules
s’écrit

〈ψ|N(P)|ψ〉 = 〈ψ|a(T−)∗a†((T−)∗|ψ〉 (3.25)

= 〈ψ|[a(T−)∗, a†((T−)∗]|ψ〉 (3.26)

= 〈(T−)∗|(T−)∗〉Σi
(3.27)

= 〈T−|T−〉Σi
(3.28)

Dans le cas d’un trou noir de Schwarzschild, la symétrie sphérique permet de décomposer le champ
en harmoniques sphériques. De plus, étant donné que la métrique est statique la dépendance en temps
des modes sortants à l’infinie s’écrit e−iωt et à l’horizon e−iωu avec u = t − r∗. La coordonnée u diverge
à l’horizon, elle est relié au temps propre de l’observateur en chute libre τ traversant l’horizon. On a

τ ≈ −τ0e−
u

4M , (3.29)

avec τ0 une constante qui dépend de la vitesse de l’observateur en chute libre et 1/4M représente la
gravité de surface d’un trou noir de Schwarzschild. On considère le paquet d’onde P longtemps après
l’effondrement gravitationnel qui est piqué en la fréquence de Killing ω, puis on le propage en arrière
et on regarde la partie T à l’horizon. Sa dépendance en τ pour un observateur en chute libre s’écrit
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T ∼ exp
(
i4Mω ln(−τ)

)
, (3.30)

pour τ < 0 et s’annule pour τ > 0. On passe alors dans le plan complexe et par continuité analytique
l’extension des fréquences positives de T (τ) pour τ > 0 s’obtient en remplaçant ln(−τ) par ln τ + iπ :
on a alors T (−τ) exp(−4Mπω) pour τ > 0. Pour les fréquences négative l’extension avec ln τ − iπ

donne T (−τ) exp(4Mπω) pour τ > 0. On définie T̃ tel qu’on passe de T à l’extérieur de l’horizon à
exp(±4Mπω) à l’intérieur de l’horizon. Le support de T̃ est défini seulement à l’intérieur de l’horizon
où il est constant pour les lignes de lumière sortantes avec T̃ (τ) = T (−τ) pour τ > 0. Les paquets
d’ondes

T+ = c+(T + e−4MπωT̃ ), (3.31)

T− = c−(T + e+4MπωT̃ ), (3.32)

définissent les fréquences positives et négatives, respectivement, de l’observateur en chute libre. Pour
avoir la continuité avec T en dehors de l’horizon, les constantes c − + et c− s’écrivent

c− = (1 − e8Mπω)−1, (3.33)

c+ = c−e
8Mπω. (3.34)

Étant donné que T et T̃ possèdent deux supports qui ne s’intersectent pas, on a 〈T |T̃ 〉 = 0 et 〈T̃ |T̃ 〉 =
− 〈T |T 〉. Ainsi on a

〈T−|T−〉 = 〈T |T 〉
(1 − e8Mπω)

. (3.35)

On obtient alors l’expression pour le nombre de particules

〈ψ|N(P)|ψ〉 = − 〈T−|T−〉Σi
(3.36)

=
〈T |T 〉

e8πωM − 1
. (3.37)

Cette valeur moyenne (3.37) correspond à l’état thermique à la température de Hawking TH = 1/8πM

multipliée par le facteur de corps gris :

Γ = 〈T |T 〉 . (3.38)

En toute généralité ce facteur de corps gris dépend de la masse du trou noir M, de l’énergie de la
particule ω et de son spin s. Il correspond au produit de la section efficace d’émission avec le terme
d’espace des phases. Ainsi on peut réécrire le spectre différentiel

dN

dt
=
σ(M, s, ω)

e
ω

TH ± 1

d3k

(2π)3
. (3.39)

La partie thermique ne dépend que de la masse du trou noir et ne nous indique aucune information sup-
plémentaire sur ce dernier. Par contre la section efficace dépend de la forme du potentiel gravitationnel
et permet de renseigner sur la géométrie du trou noir. Ainsi, des métriques différentes de trous noirs
sont distinguables par le calcul de sections efficaces. Dans l’article suivant, nous avons calculé σ pour
un modèle de trou noir provenant de la LQG. Nous présentons ce modèle dans la section suivante.
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3.2.2 Le modèle des trous noirs quantiques à boucles

Nous avons vu la quantification polymérique utilisée pour quantifier la LQC. Il existe également
un modèle de trous noirs en LQG qui utilise un procédé similaire [52]. On considère les trous noirs
de Schwarzschild, écrit avec les variables d’Ashtekar à symétrie sphérique et homogènes. On a un
paramètre de polymérisation δ qui définit le pas du réseau et la contrainte Hamiltonienne est exprimée
en termes d’holonomie h(δ)(A). L’homogénéité implique que la contrainte de difféomorphisme est
nulle. L’espace-temps considéré est de Kantowski-Sachs : homogène, anisotrope dont la topologie de
l’espace est donné par R × S2. Ainsi, la contrainte de Gauss est également nulle. Il faut maintenant
imposer que la contrainte Hamiltonienne s’annule et étendre la solution à tout l’espace. La métrique
résultante est donnée par

ds2 = G(r)dt2 − dr2

F(r)
− H(r)dΩ2, (3.40)

G(r) =
(r − r+)(r − r−)(r + rx)2

r4 + a0
, (3.41)

F(r) =
(r − r+)(r − r−)r4

(r + rx)(r4 + a2
0)
, (3.42)

H(r) = r2 +
a2

0

r2
, (3.43)

avec r+ = 2m et r− = 2mP2 deux horizons, et rx =
√

r+r−. La fonction polymérique est définie telle
que P = (

√
1 + ǫ − 1)/(

√
1 + ǫ + 1) avec ǫ = γδ. Le paramètre a0 est relié à l’aire minimale du spectre

d’aire (1.154), a0 = Amin/8π. Le paramètre de masse m est relié à la masse ADM M = m(1 + P)2. Le
modèle décrit un trou noir de Schwarzschild, qui prend en compte la discrétisation de l’espace-temps,
avec δ, et l’existence d’une aire minimale, avec a0. La création de particules par effet Hawking de ce
modèle de trous noirs a été étudié [53].

3.2.3 Le rayonnement émis par les trous noirs quantiques à boucles

Le calcul de la section efficace dépend du type de particules considéré car il implique l’équation
radiale du mouvement. Nous nous sommes d’abord intéressés au cas d’un champ scalaire puis à celui
d’un champ spinoriel. Les résultats sont similaires, ainsi je vais seulement exposer la cas des particules
de spin 1/2.

Pour étudier la propagation des fermions en espace courbe, il est nécessaire d’utiliser un formalisme
de tétrades. Le formalisme Newmann-Penrose est particulièrement bien adapté étant donné que
l’on considère un trou de type D, dans la classification de Petrov. Les champs fermioniques ψ sont

représentés par une paire de spineurs PA et Q
A′

avec A, A′ = 0, 1. On écrit alors l’équation de Dirac
dans le formalisme de Newman-Penrose. Ceci correspond aux équations (21 − 24) de l’article. Les
symétries du trou noir justifient d’écrire le champ sous la forme : Ψ(t, r, θ, φ) = R(t)S (θ)ei(ωt+m′φ) avec
ω l’énergie et m′ un nombre entier. Une étape clé est de remarquer que les équations sont séparables
en une partie radiale et une partie angulaire seulement si on fait l’ansatz suivant :
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P0 ∝ R+(r)S +(θ), (3.44)

P1 ∝ R−(r)S −(θ), (3.45)

Q
0′ ∝ R+(r)S −(θ), (3.46)

Q
1′ ∝ R−(r)S +(θ). (3.47)

Ainsi les dégrées de liberté des parties radiales et angulaires des particules et anti-particules de spin up
et down se mélangent. Une particule de spin up aura la même partie radiale qu’une anti-particule de
spin up mais la même partie angulaire qu’une anti-particule de spin down. Cet ansatz permet d’obtenir
des équations purement radiales et purement angulaires. Les dernières sont les mêmes que dans le
cas d’un trou noir de Schwarzschild. Il en résulte que λ, la constante de séparation, est donnée par
λ2 = (ℓ + 1)2 avec ℓ le moment angulaire. L’équation radiale pour R+ pour un fermion sans masse est
donnée par

√
HFD

(√
HFD†R+

)
− λ2R+ = 0 (3.48)

avecD un opérateur radial donné par

D = ∂r +

(
G′

8G
− F′

8F

)
+

iω
√

GF
(3.49)

etD† son complexe conjugué.
Nous considérons le rayonnement émis par un trou noir, qui se diffuse sur la barrière de potentiel. Par
conséquent, nous cherchons les solutions de l’équation (3.48) qui correspondent aux conditions aux
bords suivantes :

— modes entrants et sortants à l’horizon,

— modes sortants à l’infini spatial.

Et nous cherchons le coefficient de transmission. Cependant, par symétrie, ce coefficient sera le même
que celui calculé du point de vue d’un champ absorbé avec les conditions :

— modes entrants à l’horizon,

— modes entrants et sortants à l’infini spatial.

Ici nous adoptons le point de vue de l’absorption. On fixe alors les conditions initiales à l’horizon,
puis on résout l’équation jusqu’à une distance considérée comme étant l’infini. Puis, à cette distance,
on ajuste notre solution numérique avec les conditions à l’infini pour avoir accès au coefficient de
transmission. Ce dernier est relié à la section efficace par le théorème optique

σ(M, s, ω) =
∞∑

ℓ=0

(2 j + 1)π
ω2

| Aℓ,s |2 . (3.50)

Le coefficient de transmission diminue fortement pour les grands ℓ. Dans la pratique, nous avons
sommé jusqu’à ℓ = 10. Les résultats sont dépeins sur les Figures 2 (pour les scalaires) et 3 (pour les
fermions) de l’article. On observe que par rapport aux trous noirs de Schwarzschild, les trous noirs
quantiques à boucles ont une section efficace plus faible. Plus la valeur du paramètre de discrétisation
δ est élevée plus la section efficace diminue. Ainsi plus la discrétisation de l’espace se ressent à
grande échelle, moins le flux sera transmis par la barrière de potentiel. Cependant, pour des valeurs
raisonnables sur le paramètre δ la différence est très faible.

Cet article a été publié dans Classical and Quantum Gravity [54].



Classical and Quantum Gravity

PAPER

Quantum fields in the background spacetime of a polymeric loop black
hole
To cite this article: Flora Moulin et al 2019 Class. Quantum Grav. 36 125003

 

View the article online for updates and enhancements.

This content was downloaded from IP address 128.151.10.35 on 21/07/2019 at 12:31



1

Classical and Quantum Gravity

Quantum fields in the background 

spacetime of a polymeric loop black hole

Flora Moulin1, Killian Martineau1, Julien Grain2 
and Aurélien Barrau1,3

1 Laboratoire de Physique Subatomique et de Cosmologie, Université  

Grenoble-Alpes, CNRS/IN2P3 53 avenue des Martyrs, 38026 Grenoble cedex, France
2 Institut d’astrophysique spatiale, Université Paris-Sud, CNRS Bâtiments 120 à 121, 

Université Paris Sud, 91405 ORSAY, France

E-mail: barrau@in2p3.fr

Received 17 December 2018, revised 12 April 2019

Accepted for publication 9 May 2019

Published 28 May 2019

Abstract

The description of black holes in loop quantum gravity is a hard and tricky 

task. In this article, we focus on a minisuperspace approach based on a 

polymerization procedure. We consider the resulting effective metric and study 

the propagation of quantum fields in this background. The cross sections for 

scalar particles and fermions are explicitly calculated. The Teukolsky–

Chandrasekhar procedure used to derived the fermionic radial equation  of 

motion for usual spacetimes is entirely generalized to a much larger class. 

The resulting radial equation can be used in quite a lot of other contexts.

Keywords: black holes, loop quantum gravity, greybody factors

(Some figures may appear in colour only in the online journal)

Introduction

Loop quantum gravity (LQG) is a mature framework which is mathematically consistent and 

can be approached by several complementary paths, from canonical quantization to spin-

foams (see, e.g. [1–4] and references therein). The ideas of the theory have been successfully 

applied to the Universe, leading to the loop quantum cosmology (LQC) paradigm (see, e.g. 

the reviews [5–12], and references therein) and to black holes (BHs) (see, e.g. the reviews 

[13–17], and references therein).

In this article, we focus on the BH issue and consider the propagation of quantum fields. 

There are many different attempts to deal with BHs in LQG and to describe their dynamics. 

In this study, we use an effective corrected metric derived in [18]. This spacetime structure is 
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in no way a final word on the question of the exterior background of an LQG BH. It relies on 

heavy hypothesis that should be questioned. But it constitutes an interesting phenomenologi-

cal framework to investigate the questions of cross-sections and greybody factors in an effec-

tive quantum gravity-corrected background. Within this spacetime, we investigate in details 

the scattering of quantum fields. We first draw the general picture used to model BHs in this 

framework. Then we explain how cross sections are calculated and their meaning. We turn to 

the explicit computation for scalar particles. Finally, we derive the propagation equation for 

fermions. Conclusions and perspectives are outlined.

Black holes in loop gravity

BHs are fascinating objects that have been intensively investigated in the framework of LQG 

[13–17]. To give just one example, the Bekenstein–Hawking entropy is now correctly recov-

ered, although different ways to compute it are still considered (see, e.g. [17]). In microca-

nonical calculations taking into account only the quantum geometrical degrees of freedom 

[19] this requires a specific fixing of the Barbero-Immirzi parameter, depending on the details 

of the state counting [20]. This is not anymore the case in recent holographic models [21–25].

In this study, we use the metric obtained in [18], building on [26]. This framework was 

precisely set-up to investigate the creation of BHs and their subsequent Hawking evaporation. 

This question is intimately related to the information paradox which is itself closely linked to 

the singularity resolution. An interesting approach consists in using the 4-dimensional static 

model derived in [26] and to make it dynamical. This allows one to reproduce the Hawking 

calculation of particle creation in a classical BH background and to demonstrate that the whole 

process is unitary. The spirit of the framework in the line of the long history of ‘non-singular’ 

BHs (see, e.g. [27–30], and references therein).

In canonical LQG, the basic variables are the holonomy of the Asktekar connexion and the 

flux of the densitized triads. In the covariant formulation, space is described by a spin network 

whose edges are labelled by irreductibles representations of SU(2) and nodes are intertwiners 

[31]. Intuitively, the edges carry quanta of area and the vertices carry elementary volumes. 

One of the most important result of LQG is that the area is quantized according to:

A( j) = 8πγl2P

√

j( j + 1), (1)

where γ  is the Barbero-Immirzi parameter, lP is the Planck length and j  is a half-integer. In 

[18], several hypotheses were made to describe LQG BHs beginning, as expected, by spheri-

cal symmetry which is used to reduce the number of variables. In addition, instead of all a 

priori possible closed graphs, a regular lattice with edges of lengths δb and δc has been chosen. 

Details on the structure of lattices possibly used can be found in [32]. The resulting dynamical 

solution inside the horizon was then analytically continued to the region outside the horizon, 

showing that it is possible to reduce the two unknown parameters by requiring that the mini-

mum area in the solution is equal to minimum area of LQG (exactly as done in LQC). The 

remaining free parameter δb will now be called δ and referred to as the ‘polymeric parameter’. 

Together with Amin = A(1/2), it determines how ‘different’ from the usual general relativity 

(GR) solution the considered BH is.

In practice, the procedure consists in first defining the Hamiltonian constraint by the use 

of holonomies along the considered fixed graph. It is important to underline that the influence 

of the choice of a specific graph has not been studied in details and this should be considered 

as a weakness of the considered approach. Both the diffeomorphism and Gauss constraints 

are identically vanishing: the first one is zero because of homogeneity and the second one is 

F Moulin et alClass. Quantum Grav. 36 (2019) 125003



3

zero because the spacetime is of the Kantowski–Sachs form. The Hamiltonian constraint is 

solved after replacing the connection by the holonomy. Finally, the solution is expanded to the 

full spacetime, leading to the effective LQG-corrected geodesically complete Schwarzschild 

metric:

ds2
= G(r)dt2

−

dr2

F(r)
− H(r)dΩ2,

G(r) =
(r − r+)(r − r

−
)(r + rx)

2

r4 + a2
o

,

F(r) =
(r − r+)(r − r

−
)r4

(r + rx)2(r4 + a2
o)

,

H(r) = r2 +
a2

o

r2
,

 

(2)

where dΩ2 = dθ2 + sin
2 θdφ2, r+   =  2m and r

−
= 2mP2 are the two horizons (being respec-

tively future and past horizons for observers in the two asymptotically flat regions of the 

associated causal diagram), and rx =
√

r+r
−
= 2mP, P being the polymeric function defined 

by P = (
√

1 + ε2
− 1)/(

√
1 + ε2 + 1), with ε = γδ, and the area parameter ao is given by 

a0 = Amin/8π. In principle ε is not bounded but the approach is rigorous only when ε � 1 

(at this state no phenomenological bound has been derived on ε). The parameter m in the 

solution is related to the ADM mass M by M  =  m(1  +  P)2 (inferred from what is observed at 

asymptotic infinity). This metric should be considered as a ‘toy model’ and not taken as a final 

statement about the spacetime structure around an LGQ BH. It is however very convenient and 

meaningful for first phenomenological investigations. The associated Penrose digram is given 

in figure 1. From now, we use only Planck units.

Let us discuss a bit more this solution. The considered spacetime is a particular example of 

a Kantowski–Sachs spacetime. In the construction, the interior of a spherically symmetric BH 

is treated as homogeneous, but not explicitly as isotropic. As usual, the connection is replaced 

by the holonomy in the Hamiltonian constraint and the equation of motion are solved, together 

with the Hamiltonian constraint. The outcome is an exact solution of a minisuperspace model 

valid inside the event horizon [26]. Finally, the solution is analytically extended to the whole 

spacetime. In other words, the metric was assumed to be valid everywhere and it was explicitly 

proven with a coordinate transformation that the singularities at the two horizons (event hori-

zon and Cauchy internal horizon) were just coordinate singularities. The resulting metric has 

a simple, geodesically complete, analytic form in the whole spacetime. The weaknesses are 

the following. First, the metric cannot be considered a rigorous ‘full LQG’ solution, although 

it captures some features of LQG as the minimum area and the use of holonomies. Second, 

this metric builds on the initial version of LQC. In the future it would be interesting to replace 

the polymeric parameter by a rescaled one, in the same sense than the µ0 scheme in LQC has 

been replaced by the µ̄ one (see [6]). Finally, it is assumed that matter couples minimally to 

the effective metric.

It should me underlined that the model considered in this article is far from being the only 

possible one within the LQG framework. It is somehow ‘unusual’ in the sense that it might 

lead to possible large quantum gravity effects outside the horizon. Although not something 

fully exotic (this possibility is e.g. advocated on a different grounding in [33]), it is fair to say 

that this is not a generic prediction. It is however the specific case where quantum gravity 

might have an impact on observations and this is why we focus here on this specific setting 

which is anyway quite well justified in its physical motivations.

F Moulin et alClass. Quantum Grav. 36 (2019) 125003



4

Cross section for evaporating black holes

The Hawking evaporation [34] (as a specific case of the Unruh effect [35]) is one of the most 

important aspects of BH physics. Although it can be described as semi-classical process in 

the ‘large mass’ regime, it requires a quantum gravity treatment near the endpoint. Several 

attempts to describe it in the framework of LQG were made [36–38]. In this study we focus 

on another aspect. Basically, the ‘naive’ Hawking spectrum is described by a blackbody law, 

in agreement with the Unruh effect which predicts that an accelerated observer sees a bath of 

thermal particles with temperature T = a/(2π). In the case of black holes, the temperature 

is TH = 1/(8πM): the lighter the BH, the highest its temperature, which makes the whole 

process very explosive in the last stages (a BH with a mass above the mass of the Moon has a 

temperature smaller that the one of the cosmological microwave background). However, the 

real spectrum is slightly more complicated as the emitted particles have to cross a potential 

barrier before escaping to infinity. This induces a modification, captured by the cross sec-

tion σ, to the pure blackbody spectrum which is known to encode quite a lot of information on 

the gravitational theory or spacetime structure considered. The spectrum reads as:

dN

dt
=

1

e
ω

TH ± 1
σ(M, s,ω)

d3k

(2π)3
, (3)

with M the BH mass, s the particle spin, ω  its energy and k its momentum.

Cross sections have already been calculated for many metrics, beginning by the pioneering 

works on Schwarzschild, Kerr, and Reisner–Nordstrom BHs in the case of scalar, fermion and 

vector fields [39–41]. They have also been investigated for extra-dimensional Schwarzschild–

de–Sitter black hole [42], for lovelock gravity [43], for tachyonic fields [44], for scalar fields 

Figure 1. Penrose diagram for the metric considered in this study. The horizons are 
denoted as r+ and r−.

F Moulin et alClass. Quantum Grav. 36 (2019) 125003
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in an Einstein–Maxwell background [45], for f (R) gravity minimally coupled to a cloud 

of strings in 2  +  1 dimensions [46], for Einstein–Gauss–Bonnet–de Sitter black holes [47], 

for black strings [48], for Einstein–Born–Infeld dilaton spacetimes [49], for dRGT massive 

gravity [50], for Reissner–Nordström–de Sitter black holes [51], for extra-dimensional Kerr 

black holes [52], for Myers–Perry black holes [53], for dilatonic black holes [54], for rotating 

charged Goedel black holes [55], to cite only a few remarkable results. In each case the cross 

section captures some specific and non-trivial characteristics of the considered spacetime. In 

this article, we calculate the cross sections for a so-called loop BH (LBH), as described by the 

metric (2), which is static and spherical symmetric. Given those spacetime symmetries, and 

according to the optical theorem, the cross section reads

σ(M, s,ω) =
∞∑

l=0

(2j + 1)π
ω

2
|Al,s|

2, (4)

where Al,s is the transmission coefficient of the angular momentum mode l, and j   =  l  +  s is 

the total angular momentum.

Massless scalar field

The dynamics of a massless scalar field minimally coupled to the gravitational field is 

described by the generalized Klein–Gordon equation:

1
√
−g

∂µ(g
µν
√
−g∂νΦ) = 0, (5)

where Φ ≡ Φ(t, r, θ, φ). Since we work within a static and spherically symmetric setting, the 

scalar field can be written as:

Φ(r, θ,φ, t) = R(r)S(θ)ei(ωt+m′φ), (6)

where w is the frequency and m′ is an integer. When inserting this ansatz in the Klein–Gordon 

equation (5) with the metric (2), the radial equation reads
√

GF

H

∂

∂r

(

H
√

GF
∂R(r)

∂r

)

+

(

ω
2
−

G

H
l(l + 1)

)

R(r) = 0, (7)

with l the orbital quantum number. This result uses the squared angular momentum operator 

L2 = −

[

1
sin2 θ

∂2

∂φ2 +
1

sin θ
∂
∂θ

(

sin θ ∂
∂θ

)

]

, whose eigenvalues are l(l + 1).

As usually done to study this kind of problems, we introduce the tortoise coordinate. 

Focusing on the two non-trivial coordinates, the metrics (2) reduces to

ds2 = −G(r)dt2 +
dr2

F(r)
, (8)

and the null geodesics are given by ds2 = 0, that is dt2 = dr2

GF
≡ dr∗2 with r∗ the tortoise coor-

dinate. This new coordinate tends to −∞ when r tends to r+ . By introducing a new radial field 

Ψ(r) ≡
√

HR(r) and writing equation (7) with respect to r∗, we obtain:

(

∂2

∂r∗2
+ ω

2
− V(r∗)

)

Ψ(r) = 0, (9)

F Moulin et alClass. Quantum Grav. 36 (2019) 125003
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V(r) =
G

H
l(l + 1) +

1
2

√

GF

H

∂

∂r

(

√

GF

H

∂H

∂r

)

. (10)

The potential V(r) vanishes at the horizon r+ and at spatial infinity.

At the horizon r+ , 
√

H tends to the constant 
√

H(rp)  and the radial part of the wavefunc-

tion R is a plane wave with respect to the tortoise coordinate:

R(r∗) = Ah
ineiωr∗ + Ah

oute
−iωr∗ , (11)

with Ah
in (respectively Ah

out) the probability amplitude for the incoming modes (resp. outgo-

ing modes) at the horizon. For convenience, we choose the absorption point of view. With 

this convention, there are incoming and outgoing modes infinitely far from the BH and only 

incoming ones at the horizon. We therefore impose Ah
out = 0.

Infinitely far away from the horizon, 
√

H tends to r and the radial wavefunction is a spheri-

cal wave with respect to the coordinate r:

R(r) =
A∞

in

r
eiωr +

A∞

out

r
e−iωr. (12)

For a scalar particle, the transmission amplitude for the mode l is given by:

|Al|
2 = r2

+

∣

∣

∣

∣

Ah
in

A∞

in

∣

∣

∣

∣

2

= 1 −

∣

∣

∣

∣

A∞

out

A∞

in

∣

∣

∣

∣

2

. (13)

The calculation of the cross section relies on the following steps. For each quantum num-

ber l, we solve the radial equation (7) so as to determine the transmission coefficients A∞. 

Numerical computations must be performed from the horizon (where the radial wavefunction 

takes the form of equation (11)) until infinity (where the radial wave function takes the form 

of equation (12)). In practice, the numerical solving begins at rini = r+ + 10−3r+ and stops 

sufficiently far at rend ≈ 300/ω which can be considered as infinity at the chosen accuracy.

We decompose the radial wavefunction R(r) into its real part U(r) and its imaginary part 

V(r). At rini ≈ r+, the normalization condition R(rini) = 1 ensures that there are only incom-

ing modes and 
dR(rini)

dr
= iω√

G(rini)F(rini)
. Technical details are given in appendix A.

The radial equation is solved with a fifth order Runge Kutta method until rend. The radial 

wavefunction is fitted with the function given by equation (12) so as to obtain the coefficients 

A∞

out  and A∞

in . Then the |Al|
2 can be obtained from equation (13). The bigger the l, the smaller 

the |Al|
2 and numerical investigations have shown that stopping at l  =  10 is sufficient. Finally, 

equation (4) is used to evaluate the cross section. The results are presented in figure 2.

The cross section  does decrease when ε increases. One can also notice a slight energy 

shift of the pseudo-periodic oscillations toward a lower frequency (in Mω) when ε increases. 

When ε < 10−0.8, it is hard to distinguish between the solutions. As far as phenomenology 

is concerned, it seems that taking into account the quantum corrections does not influence 

substantially the cross section of a scalar field for reasonable values of ε (that is ε � 1). The 

main trend is however clear.

Spin 1
2
 field

For spacetimes such that ds2 = f (r)dt2
− f−1(r)dr2

− r2dΩ2, the radial equation is given by 

the Teukolsky master equation  [56]. The metric given by equation  (2), without any speci-

fied expressions for G(r), F(r) and H(r), is however more general and basically includes 

F Moulin et alClass. Quantum Grav. 36 (2019) 125003
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all the static and spherical spacetimes. To the best of our knowledge, the fermionic radial 

equation for such spacetimes has not been explicitly derived. In the following, we derive this 

equation by generalizing the Teukolsky–Chandrasekhar procedure [57]. This can be used in 

other contexts.

To this aim, we have used the Newmann–Penrose formalism [58], which is, among other 

desirable properties, well-suited for spherical BHs. In this formalism, we have chosen a null 

basis consisting of a pair of real null vectors l and n and a pair of complex conjugate null vec-

tors m and m:

l · l = n · n = m · m = m · m = 0. (14)

The orthoganility conditions are imposed:

l · m = l · m = n · m = n · m = 0. (15)

We also require the following normalization:

l · n = 1 and m · m = −1. (16)

This normalization condition is not necessary in the Newmann–Penrose formalism, but it is 

convenient for our purpose. Any basis with the properties given by equations (14)–(16) can be 

used. We choose the basis vectors:

li =
1
√

2

(

1
√

G
,−

√
F, 0, 0

)

, (17)

ni =
1
√

2

(

1
√

G
,
√

F, 0, 0

)

, (18)

mi =
1
√

2

(

0, 0,
1

√
H

,
i

√
H sin θ

)

, (19)

Figure 2. Emission cross section for a scalar field with energy ω  in the background 
spacetime of a LBH of mass M for different values of ε (ε = γδ measures the 
‘quantumness’ of spacetime). From bottom to top: ε = 10{−0.3,−0.6,−0.8,−1,−3}. The blue 
line, corresponding to ε = 10−3 is superposed with the cross section for a Schwarzschild 
BH.

F Moulin et alClass. Quantum Grav. 36 (2019) 125003
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mi =
1
√

2

(

0, 0,
1

√

H
,

−i
√

H sin θ

)

. (20)

When δ tends to zero and a0 vanishes, this basis tends to the Carter tetrad, which can be 

used to describe a Schwarzschild BH [59]. However, usually, the Kinnersley tetrad is pre-

ferred for Schwarzschild BHs [57]. Different choices for the tetrads will lead to different spin 

coefficients and finally to apparently different, but actually equivalent, radial equations.

For spin 1
2 fields, the wavefunction is represented by a pair of spinors, PA and Q

A′

, with 

A = 0, 1 and A′ = 0, 1. The Dirac equation in the Newmann–Penrose formalism can be writ-

ten as [57]:

(D + ε− ρ)P0 + (δ∗ + π − α)P1
= iµ∗Q

1′
, (21)

(∆ + µ− γ)P1 + (δ + β − τ)P0 = −iµ∗Q
0′

, (22)

(D + ε
∗

− ρ∗)Q
0′
+ (δ + π∗

− α∗)Q
1′
= −iµ∗P1, (23)

(∆ + µ∗ − γ∗)Q
1′
+ (δ∗ + β∗

− τ∗)Q
0′
= iµ∗P0, (24)

with

D = li∂i; ∆ = ni
∂i; δ = mi

∂i; δ
∗ = mi

∂i (25)

µ∗
 is related to the mass of the fermion me by µ∗

√
2 = me. The spin-coefficients are derived 

from the rotation coefficients. In the tetrad formalism (for more details, see, e.g. [57]), the 

λ-symbols are defined as:

λabc = ebi,j[e
i
ae j

c − e j
aei

c], (26)

the a, b et c indices do indicate the vector of the basis, while the i and j  indices are the coordi-

nates. The correspondence reads as e1 = l, e2 = n, e3 = m and e4 = m with e1 = e2, e2 = e1, 

e3 = −e4 and e4 = −e3. For example, e12,3 represents the second composant of l, derived with 

respect to θ. The rotation coefficients are defined as:

γcab = ek
ceak;ie

i
b. (27)

Then, from the λ-symbols, the rotation coefficients are obtained with the relation:

γcab =
1
2
(λabc + λcab − λbca). (28)

The λ-symbols (26) and the rotation coefficients (27) should not be confused with the 

spin coefficients λ and γ . The spin coefficients are defined with the rotation coefficients (see 

appendix B). So first we have calculated the λ-symbols and then we have deduced the spin 

coefficients:

κ = σ = λ = ν = τ = π = 0, (29)

ρ = µ =

√
FH′

2
√

2H
, (30)

ε = γ = −

√
FG′

4
√

2G
, (31)
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α = −β = −

cotθ

2
√

2H
. (32)

Given the symmetries, the wavefunctions can be written as Ψ(t, r, θ,φ) = R(r)S(θ)ei(ωt+m′φ) 

where, as for scalars, ω  is the frequency and m′ is an integer. We use the following ansatz:

P0 =
ei(ωt+m′φ)

√

H(r)(G(r)F(r))
1
8

R+(r)S+(θ), (33)

P1 =
ei(ωt+m′φ)

√

H(r)(G(r)F(r))
1
8

R
−
(r)S

−
(θ), (34)

Q
0′
= −

ei(ωt+m′φ)

√

H(r)(G(r)F(r))
1
8

R+(r)S−(θ), (35)

Q
1′
=

ei(ωt+m′φ)

√

H(r)(G(r)F(r))
1
8

R
−
(r)S+(θ). (36)

This is useful as it makes the system separable into a radial and an angular parts. The 

normalisation with 1/(
√

H(r)(G(r)F(r))
1
8 ) is only chosen for convenience. By inserting the 

previous expressions in Dirac equation (21), we obtain:

−(
√

HFD†R+ + ime

√
HR−)S+ + R−LS− = 0, (37)

with D a radial operator

D = ∂r +

(

G′

8G
− F′

8F

)

+
iw√
GF

, (38)

and L an angular operator

L = ∂θ +
m′

sin θ
+

cotθ

2
. (39)

D† is the complex conjugate of D and L† is −L once replacing θ by π − θ.

Equation (37) implies:

LS
−
= λ1S+, (40)

√
HFD†R+ + ime

√
HR− = λ1R−, (41)

with λ1 a constant of separation. Proceeding in the same way with equations (22)–(24), three 

other constants of separation do appear: respectively denoted λ2, λ3 and λ4. Among the eight 

equations, there is some redundancy and only four are actually independent. The consistency 

implies: λ1 = λ2 = λ3 = λ4 ≡ λ. This separation constant λ is neither a λ-symbol nor a spin 

coefficient, we simply use the notation of [57].

The Dirac equations finally reduce to the following radial and angular systems:
( √

HFD −(λ+ ime

√
H)

−(λ− ime

√
H)

√
HFD†

)

(

R−

R+

)

= 0, (42)
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(

L −λ

λ L†

)(

S−

S+

)

= 0. (43)

By eliminating R− in equation (42), we obtain the radial equation for R+ :

√
HFD

( √
HFD†

λ− ime

√
H

R+

)

− (λ+ ime

√
H)R+ = 0. (44)

The radial equation for R− is the conjugate of equation (44). This equation generalizes the 

Teukolsky equation [56]. The separation constant λ is obtained by solving the angular equa-

tion, which is the same than in the Schwarzschild case: λ2 = j( j + 1)− s(s − 1) [60], that is 

λ
2 = (l + 1)2 for fermions.

Setting me  =  0 leads to:

√
HFD

(√
HFD†R+

)

− λ
2R+ = 0. (45)

This equation of motion can be used to determine the fermionic cross section. We study the 

asymptotic solutions, near the horizon and at spacial infinity. The function R is splitted into its 

real part U and its Imaginary part V . Both equations are then solved thanks to equation (44).

For a massless fermionic field, at the horizon, equation (44) tends to:

∂2R+

∂r2
+

1
2(r − r+)

∂R+

∂r
+

(

ω
2

C1
+ i

ω√
C1

)

R+

(r − r+)2
= 0, (46)

with C1 =
(r+−r−)2r4

+

(r4
+
+a2

o)
2 . With respect to the tortoise coordinate r∗, equation (46) reads as:

1
C1

∂2R+

∂r∗2
−

1

2
√

C1

∂R+

∂r∗2
+

(

ω
2

C1
+ i

ω√
C1

)

R+ = 0. (47)

The determinant of the characteristic equation  of equation  (47) is det = 1−16ω(4ωM+i)
4C1

. 

There are two roots but, from the absorption point of view, there should be only an incoming 

Figure 3. Emission cross section for a fermionic field, with energy ω , in the background 

spacetime of a LBH of mass M. From bottom to top: ε = 10{−0.3,−0.6,−0.8,−1,−3}. The 
dashed dark curve corresponds to the Schwarzschild cross section.
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mode at the horizon. The root x1 is therefore chosen with a positive imaginary part. Near the 

horizon, the radial part reads as:

R+(r
∗) = Aex1r∗ , (48)

with A a complex number. As before, we normalize such that R+(rini) = 1, which leads to 

dR+(rini)
dr

= x1√

G(rini)F(rini)
. At spacial infinity, the solution is a plane wave.

It has been shown in [61] that the transmission coefficient for spin 1/2 fields is given by:

|Al|
2 =

∣

∣

∣

∣

Ah
in

A∞

in

∣

∣

∣

∣

2

. (49)

As for the scalar case, we numerically solve equation (44), fit the solution in order to obtain 

A∞

in  for each l � 10, and then obtain the cross section. The result is shown in figure 3. Once 

again, the general trend is to decrease the cross section when the ‘quantumness’ increases. 

As the relative effect is getting bigger with an increasing energy of the emitted particle, this 

should leave a footprint through a distortion of the instantaneous Hawking spectrum which 

will exhibit slight suppression of its UV tail.

Finally, in figure 4, we show that the effect of sending to 0 the minimum area a0 does not 

have a dramatic effect. However, choosing a non-vanishing a0 leads to a slight increase of the 

cross section on the first peak. The cross section itself is of course a continuous function of a0. 

This parameter has a clearly different influence than the polymerization parameter.

Conclusion

In this article, we have studied the propagation of quantum fields in the vicinity of a black 

hole undergoing quantum gravity corrections. It is shown that the effects are generically small 

but the trend is quite clear. Phenomenologically, large values of the polymerization parameter 

could be probed by a decreased cross section, together with a slight frequency shift for fermi-

ons. In addition, the non-vanishing minimum area leaves a specific footprint on the first peak.

Figure 4. Emission cross section for a fermionic field, with energy ω , in the background 
spacetime of a LBH of mass M, for ε = 10−0.3. The dashed curved corresponds to 

a0  =  0 and the plain curve to the usual LQG value, a0 = Amin/8π =
√

3γ/2.
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This sets a framework for futures studies, both in LQG or in modified gravity. In the spe-

cific case of loop black holes, it would be most interesting to investigate, using the tools 

developed in this study, the cross sections for recent BH models published in [62] and [63, 

64], among others.

As the Hawking evaporation of a black hole is considered to be one of the rare possible probes of 

quantum gravity, it is mandatory to calculate the cross sections for quantum fields in the associated 

background spacetime. This article is only a first step in this direction for LQG. It already shows 

that different quantum corrections—still in the LQG framework—will lead to different effects on 

the behavior of cross section. This is both useful for accurate calculations of the Hawking spectrum 

(to refine, e.g. what was done in [65]) and as a probe, in itself, on the intricate spacetime structure.
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Appendix A

The initial conditions for solving the radial equation  (7) are R(rini) = Ah
ineiωr∗ = 1 and 

dR(rini)
dr

= iω
√

GF
. To solve this complex equation, both the real and the imaginary parts have to 

be solved. Writing R(r) = U(r) + iV(r), the initial conditions are:

U(rini) = 1, V(rini) = 0,

dU(rini)

dr
= 0,

dV(rini)

dr
=

ω

√

GF
.

 
(A.1)

Far from the BH, we have:

U(r) =
a1

r
cos(ωr) +

b1

r
sin(ωr), (A.2)

V(r) =
a2

r
cos(ωr) +

b2

r
sin(ωr), (A.3)

with a1 = ℜ(A∞

in ) + ℜ(A∞

out), b1 = ℑ(A∞

out)−ℑ(A∞

in ), a2 = ℑ(A∞

in ) + ℑ(A∞

out) and 

b2 = ℜ(A∞

in )−ℜ(A∞

out). With a fifth order Runge Kutta method, we solve the real and imagi-

nary parts of equation (44) with the initial conditions given by equation (A.1). At rend, we fit 

the solutions of U and V  with functions given in equations (A.2) and (A.3) to obtain the coef-

ficients a1, b1, a2, and b2 so as to deduce A∞

in  and A∞

out .

Appendix B

The spin coefficients defined with the rotation coefficient are given by:

κ = γ311 ρ = γ314 ε =
1
2
(γ211 + γ341)

σ = γ313 µ = γ243 γ =
1
2
(γ212 + γ342)

λ = γ244 τ = γ312 α =
1
2
(γ214 + γ344)

ν = γ242 π = γ241 β =
1
2
(γ213 + γ343).
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Chapitre 3. Les trous noirs 99

3.3 Les modes quasi normaux

3.3.1 Point de vue théorique

Lorsqu’un trou noir est perturbé, et ce peu importe de quelle façon, il aura une phase de relaxation
("ringdown" en anglais) avant de se stabiliser. Lors de cette dernière étape, il va émettre des ondes gra-
vitationnelles amorties dont les fréquences propres ωR et leur amortissement ωI dépendent uniquement
des caractéristiques du trou noir et non du processus qui l’a perturbé. Dans cette phase, on se trouve
dans le régime perturbatif. Les modes propres sont solutions des équations des perturbations avec les
conditions aux bords suivantes :

— onde purement rentrante à l’horizon,

— onde purement sortante à l’infini spatial.

Les fréquences ω sont appelées modes quasi normaux (QNMs pour quasi normal modes) [4, 55, 56].
Pour les trous noirs stationnaires, la dépendance en temps est donnée par

eiωt = ei(ωR+iωI )t. (3.51)

Il existe deux types de perturbations. Pour appuyer leur différence mathématique, considérons les
perturbations d’un trou noir stationnaire à symétrie sphérique. La métrique peut s’écrire sous la forme

ds2 = e2µtdt2 − e2ψ(dφ − qtdt − qrdr − qθdθ)
2 − e2µr dr2 − e2µθdθ. (3.52)

La symétrie sphérique impose que les coefficients qt, qr, et qθ soient nuls. Les perturbations telles que
ces coefficients prennent une petite valeur non nulle sont appelées les modes axiaux. Ils entrainent une
faible rotation du trou noir. D’autre part, lorsqu’on rajoute une petite incrémentation δµt, δµr, δµθ et δψ
aux coefficients déjà non nuls, nous décrivons les modes polaires. Ces deux types de perturbations
vont se transformer différemment sous parité. Pour un moment angulaire ℓ donné, les perturbations
axiales se transforment en (−1)ℓ+1, alors que les perturbations polaires se transforment en (−1)ℓ. La
partie radiale de ces deux types d’ondes est décrite par une équation de type Schrödinger, avec des
potentiels V(r) différents

d2Z

dr∗2
+ ω2Z − V(r)Z = 0, (3.53)

avec r∗ la coordonnée tortoise qui tends vers −∞ quand r tends vers l’horizon. Par exemple pour les
trous noirs de Schwarzschild, on a

ds2 = f (r)dt2 − f (r)−1dr2 − r2dΩ2, (3.54)

et la coordonnée tortoise est définie par dr∗ = f −1dr. Les modes axiaux sont solutions lorsqu’on a le
potentiel de Regge-Wheeler

VRW
ℓ (r) =

(
1 − 2M

r

)[
ℓ(ℓ + 1)

r2
− 6M

r3

]
, (3.55)

avec ℓ ≥ 2. Les modes polaires sont solutions pour le potentiel de Zerilli
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Figure 3.1 – Le potentiel V en fonction de la coordonnée tortoise r∗ [60].

VZ
ℓ (r) =

2
r3

(
1 − 2M

r

)
× 9M3 + 3L2Mr2 + L2(1 + L)r3 + 9M2Lr

(3M + Lr)2
, (3.56)

avec L = ℓ(ℓ + 1)/2 − 1. Nous verrons, dans la section 3.3.3, qu’il existe des transformations qui
relient les solutions des deux équations (Regge-Wheeler et Zerilli). Cette caractéristique est appelée
isospectralité.

Pour calculer la valeur des QNMs, il est possible de déterminer leur valeur numériquement mais
il est également intéressant de les calculer semi-analytiquement avec des méthodes d’approximation.
Il est pertinent de calculer leur valeur avec une bonne précision car un important changement sur
les paramètres du trou noir induit seulement une faible déviation dans les QNMs. Les méthodes
semi-analytiques sont comparées aux calculs purement numériques afin d’établir leur précision. Il
existe différentes méthodes approximatives qui permettent de calculer ces QNMs [56] avec une bonne
précision. Dans les articles des sections 3.3.4 et 3.3.7, nous utilisons la méthode de WKB [57]. C’est
une méthode semi-classique applicable lorsqu’on a une barrière de potentiel dont les valeurs à l’horizon
et à l’infini spatial sont constantes. Elle permet d’obtenir une approximation à la solution d’une équation
différentielle linéaire dont le terme de dérivée d’ordre supérieur est multiplié par un petit paramètre ǫ.
L’approximation WKB pour le calcul des QNMs des trous noirs de Schwarzschild a initialement été
introduit par Schutz, Will et Iyer [58, 59, 60]. Dans ces papiers, l’approximation WKB est effectuée
jusqu’au 3ème ordre. Plus tard, Konoplya a prolongé l’approximation jusqu’au 6ème ordre [61].

Le terme d’ordre supérieur de l’équation (3.53) est multiplié par un paramètre de perturbation ǫ tel
que

ǫ2 d2Z

dr∗2
+ Q(r∗)Z = 0, (3.57)

avec Q(r∗) = ω2−V(r∗). Ce "potentiel" est constant en r∗ = ±∞, mais pas nécessairement le même aux
deux bords. L’espace est séparé en trois régions en fonction du potentiel, comme on peut l’observer sur
la Figure (3.1). Dans les régions I et III, les solutions sont approximées par une exponentielle

Z(r∗) ∼ exp
(1
δ

∞∑

n=0

δnS n(r∗)
)

quand δ→ 0. (3.58)

avec δ le paramètre WKB qui indique l’ordre d’expansion. On peut alors dériver cette expression par
rapport à r∗ et trouver
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Q(r∗) =
ǫ2S

′2
0

δ2
+

2ǫ2

δ
S
′

0S
′

1 +
ǫ2

δ
S
′′

0 + ǫ
2S

′′

1 + ... quand δ→ 0. (3.59)

Si on suppose que le terme le plus grand est

ǫ2S
′2
0

δ2
, (3.60)

alors Q(r∗) ∼ ǫ2S
′

0/δ
2. Donc, on a S

′

0 ∼
√
δ2Q/ǫ2 et S

′′

0 = δQ/2ǫ. D’après l’équation (3.59), on en
déduit

Q =Q + 2ǫ
√

QS 1 +
ǫ

2
Q′
√

Q
(3.61)

≈Q quand ǫ → 0. (3.62)

Ainsi l’hypothèse émise (3.60) est totalement cohérente. Si, on avait supposé que le terme le plus
important était

ǫ2

δ
(2S

′

0S
′

1 + S
′′

0 ), (3.63)

alors l’équation (3.59) donnerait

Q =

( ∫
Q(x)dx

)2

+ ǫQ, (3.64)

ce qui n’est pas cohérent lorsque ǫ → 0. Cette méthode, dite de balance dominante, nous permet de
déduire le terme le plus important et en déduire ǫ ∼ δ [62]. La première équation

S
′2
0 = Q(r∗) (3.65)

amène à l’équation eikonal

S 0 = ±
∫ √

Q(x)dx. (3.66)

La deuxième équation

2S
′

0S
′

1 + S
′′

0 = 0 (3.67)

amène à l’équation de transport

S 1 = −
1
4

ln Q. (3.68)

On peut continuer ainsi de suite pour avoir les termes S n. Dans la région II, Q(r∗) est approximé par
un développement de Taylor autour du maximum du potentiel V0. Puis, lorsque l’on fait coïncider ces
solutions, on trouve, au 6ème ordre
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ω2 = V0 − i

√
−2V

′′
0

( 6∑

j=2

Λ j + n +
1
2

)
(3.69)

où les expressions Λ j sont données dans [61]. Ainsi grâce à l’expression du potentiel et de ses dérivées
au maximum de la barrière de potentiel, on a accès aux valeurs approximatives des QNMs. La valeur
des QNMs dépend donc de deux nombres entiers : les harmoniques n (overtone en anglais) et du
moment angulaire ℓ qui caractérise le potentiel.

3.3.2 Point de vue expérimental

Est ce que ces QNMs sont/seront détecter avec les interféromètres actuels et futurs? La phase de
relaxation est caractérisée par une sinusoïde amortie qui est une somme pondérée de tous les QNMs.
Le poids, dans la reconstruction du signal, le plus important est pour le mode fondamental n = 0 et
ℓ = 2. La possibilité de mesurer expérimentalement les QNMs commence à peine à émerger. En effet,
dans l’évènement QW150914, un ajustement de la sinuisoïde amortie a pu être effectué pour obtenir la
fréquence et son temps d’amortissement pour le QNM fondamental et pour la première harmonique
n = 1 et ℓ = 2 [63]. L’intervalle de confiance étant de 3.5σ. Cependant la précision n’est pas assez
grande pour identifier une faible déviation comparée au modèle classique. Mais le mode fondamental a
déjà permis de tester certains modèles exotiques. Par exemple le modèle "gravastar" ne permet pas
d’expliquer les données de l’évènement GW150914 [64]. Dans les expériences futures, telles que le
Einstein Télescope, il sera possible de mesurer avec plus de précision la première harmonique n = 1 :
de quelques dizaines de pourcents la précision atteindra quelques pourcents.

3.3.3 L’isospectralité des trous noirs de Schwarzschild-de Sitter et Schwarzschild-

Anti-de Sitter

Nous avons vu qu’il existait deux types de perturbations : axiales et polaires. A priori, ces per-
tubations ne possèdent pas le même spectre de fréquences propres. Cependant, il a été montré que
les trous noirs de Schwarzschild [65], Reissner-Nordström [66] et Kerr [67] possèdent la propriété
d’isospectralité. C’est-à-dire que, les modes axiaux et polaires ont le même spectre. Cependant pour
d’autres modèles avec des métriques effectives, l’isospectralité n’est pas respectée. A vrai dire, cette
propriété d’isospectralité a été peu investiguée et lorsqu’elle a été étudié c’était de façon numérique
principalement. Les seules preuves analytiques sont celles données par Chandrasekhar citées précé-
demment. Ainsi, le but de cet article est d’approfondir la preuve analytique d’isospectralité pour voir si
elle peut s’étendre à une catégorie plus générale de trous noirs.

Deux types de perturbations sont isospectrales, si leurs parties radiales Z1 et Z2 obéissent à
l’équation (3.53) avec leurs potentiels respectifs V1 et V2 et ont pour solutions les mêmes fréquences ω.
Pour que ceci ait lieu, trois conditions doivent être respectées [4]. Il faut qu’il existe deux fonctions p

et q telles que :
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1. Z1 = pZ2 + q
dZ2

dr∗
, (3.70)

2. V1 = V2 +
2
q

dp

dr∗
+

1
q

d2q

dr∗2
, (3.71)

3. p2 +

(
p

dq

dr∗
− dp

dr∗
q

)
− q2(V2 − ω2) = C2 = cte. (3.72)

On considère la métrique suivante

ds2 = B(r)dt2 − B(r)−1dr2 − r2dΩ2, (3.73)

sans préciser la forme de la fonction B(r) pour le moment. On utilise le formalisme de Newman-Penrose.
Étant données les symétries, le seul scalaire de Newman-Penrose (1.48) non nul est

Ψ2 =
−2 + 2B(r) − 2rB′(r) + r2B′′(r)

12r2
. (3.74)

Les perturbations sont les quatre scalaires Ψ0, Ψ1, Ψ3 et Ψ4 (ré-échelonnés en Φi) et les quatre
coefficients de spin κ, σ, λ et ν (ré-échelonnés en k, s, l et n). On établit les équations de Bianchi et de
Ricci linéarisées qui décrivent ces perturbations

L2Φ0 −
(
D0 +

3
r

)
Φ1 = 6r3Ψ2k +

√
2r[R1], (3.75)

Br2
(
D†2 −

3
r

)
Φ0 +L†−1Φ1 = −6r3Ψ2s − 2r2[R2], (3.76)

(
D0 +

3
r

)
s − L−1k =

Φ0

r
, (3.77)

(
D0 −

3
r

)
Φ4 − L−1Φ3 = −6r3Ψ2l + r4[R3], (3.78)

L†2Φ4 +
Br2

2

(
D†−1 +

3
r

)
Φ3 = −6r3Ψ2n +

√
2r5[R4], (3.79)

Br2
(
D†−1 +

3
r

)
l +L−1n =

Φ4

r
. (3.80)

avecD et L des opérateurs radial et angulaire respectivement définis tels que

Dn = ∂r +
iω

B(r)
+ n

(
B′(r)
B(r)

+
2
r

)
, (3.81)

Ln = ∂θ +
m

sin θ
+ n cot θ, (3.82)

avecD†n le complexe conjugué deDn et L†n(θ) = −Ln(π− θ). Les termes [Ri] sont des combinaisons du

tenseur de Riemann. En appliquant L†−1 à l’équation (3.75) et
(
D0 +

3
r

)
à l’équation (3.76) on obtient

L†−1L2Φ0 +

(
D0 +

3
r

)[
Br2

(
D†2 −

3
r

)
Φ0

]
=

6r3Ψ2

[
L†−1k −

(
D0 +

3
r

)
s

]
− 6s∂r(r

3Ψ2) +L†−1(
√

2r[R1]) − 2
(
D0 +

3
r

)
(r2[R2]). (3.83)
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Il est intéressant de remarquer que si r3Ψ2 est une constante et que [R1] et [R2] sont nuls, alors la partie
gauche de l’équation (3.77) apparaît et peut être remplacée par Φ0/r. On obtient alors une équation
découplée pour Φ0

L†−1L2Φ0 +

(
D0 +

3
r

)[
Br2

(
D†2 −

3
r

)
Φ0

]
= −6r2Ψ2Φ0. (3.84)

De façon similaire on peut obtenir une équation découplée pour Φ4 avec les équations (3.78), (3.79) et
(3.80). Les conditions pour découpler les équations sont donc les suivantes

r3Ψ2 = cte et [R1] = [R2] = [R3] = [R4] = 0. (3.85)

Ces deux conditions restreignent l’espace-temps à celui de Schwarzschild-de Sitter et Schwarzschild-
Anti-de Sitter :

B(r) = 1 − 2M

r
− Λr2, (3.86)

avec Λ la constante cosmologique. Mais ces conditions ne sont pas respectées pour des espace-temps
plus généraux. A partir des équations découplées, il est possible de faire plusieurs transformations
et changements de variables de sorte à trouver les fonctions q et p qui respectent les conditions
d’isospectralité (3.70), (3.71 ) et (3.72) qui relient les perturbations axiales Z− et polaires Z+. On
obtient

q = 2γ et p = κ + 2γ2 f (3.87)

avec µ2 = ℓ(ℓ + 1) − 2, γ2 = 36M2, κ = µ2(2 + µ2) et f = B/(µ2r2 + 6Mr).
Les potentiels s’écrivent sous la forme générales

V± = ±γ d f

dr∗
+ γ2 f 2 + κ f , (3.88)

ce qui nous permet de les réécrire sous leur forme explicite

V− =
(
1 +

2M

r
+ Λr2

)[
ℓ(ℓ + 1)

r2
− 6M

r3

]
(3.89)

(3.90)

et

V+ =
2
r3

(
1 +

2M

r
+ Λr2

)
× 9M3 + 3L2Mr2 + L2(1 + L)r3 + 9M2r(L − Λr2)

(Lr + 3M)2
(3.91)

avec 2L = µ2. Ce qui clôture la preuve analytique de l’isospectralité pour les trous noirs de Schwarzschild-
de Sitter et Schwarzschild-Anti-de Sitter. Un des points initiaux clé à la preuve est de pouvoir découpler
les équations, afin d’effectuer toutes les transformations qui suivent. Ce découplage ne peut pas être
effectué dans le cas d’espace-temps plus généraux. Mais il est possible de les découpler autrement,
en utilisant la jauge "fantôme" (phantom gauge). Cependant dans ce cas, nous ne pouvons pas faire
certaines hypothèses qui conduisent à la preuve.

Cet article a été publié dans General Relativity and Gravitation [68].
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Abstract

The deep reason why the equations describing axial and polar perturbations of

Schwarzschild black holes have the same spectrum is far from trivial. In this arti-

cle, we revisit the original proof and try to make it clearer. Still focusing on uncharged

and non-rotating black holes, we extend the results to spacetimes including a cosmo-

logical constant, which have so far mostly been investigated numerically from this

perspective.
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1 Introduction

The direct measurement of gravitational waves emitted by the coalescence of black

holes (BHs) is now possible. Since the seminal detection by LIGO [1], several other

events were recorded and a catalogue is already available [2]. The recent improvement

in sensitivity has even led to a dramatic increase in the detection rate. The recorded

gravitational waves carry fundamental informations about the structure of spacetime,

BHs being vacuum solutions of the Einstein field equations. Three phases can be

distinguished during a coalescence: the inspiral, the merger and the ringdown. The

later can be partially treated perturbatively as a superposition of damped oscillations

with different complex frequencies, called quasinomal modes (QNMs). An intuitive

introduction can be found in [3] and a review in [4]. The ringdown does not lead

to pure “normal” modes because the system looses energy through the emission of

gravitational waves. The equations for the metric perturbations are somehow unusual

because of their boundary conditions: the waves have to be purely outgoing at infinity

and purely ingoing at the event horizon. The radial part can schematically be written

as φ ∝ e−iωt = e−i(ωR+iωI )t where ωR is proportional to the frequency and ωI is

the inverse of the decaying time scale. The process is stable when ωI < 0. Basically,

QNMs are characterized by their overtone and multipole numbers: n and ℓ.

The determination of QNMs have driven a huge amount of efforts (see, e.g., [5] for

a historical review, [6,7] for an example of quite recent results based on a numerical

approach and [8–14] for WKB treatments). This article is not about the calculation of

the complex frequencies but about a remarkable—and quite strange—property. The

perturbations of the metric are described by two different equations depending on

their parity: whether polar or axial, they do not fulfill the same equation. They both

obey a Schrödinger-like equation (Eq. 7) but with different potentials. For a spherical

time-independent metric, one can write

ds2 = e2μt dt2 − e2ψ (dφ − qt dt − qr dr − qθ dθ)2

− e2μr dr2 − e2μθ dθ2. (1)

For the special case such that

e2μt = e−2μr = B(r), e2μθ = r2, (2)

e2ψ = r2sin2(θ) and qt = qr = qθ = 0, (3)

the perturbations will be described by qt , qr and qθ , being first order small quantities,

and μt , μr , μθ , and ψ which receive small increments δμt , δμr , δμθ and δψ . The

former lead to a non-static stationary distribution of mass-energy leading to a rotating

BH. They are called the axial perturbations. The latter do not imply any rotation and

are called the polar perturbations.

In the Schwarzschild case, the Regge-Wheeler potential (for the axial parity) is

given by

V RW
ℓ (r) =

(

1 −
2M

r

) [

ℓ(ℓ + 1)

r2
−

6M

r3

]

, (4)

123
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and the Zerilli potential (for the polar parity) reads

V Z
ℓ (r) =

2

r3

(

1 −
2m

r

)

×
9M3 + 3L2 Mr2 + L2(1 + L)r3 + 9M2Lr

(3M + Lr)2
, (5)

with L = ℓ(ℓ + 1)/2 − 1. The remarquable fact—known as isospectrality—is that

those equations share the same spectrum of quasinormal modes. This is also true for

the Reissner-Nordström and Kerr metrics. This might appear as a kind of “miracle”

when using the standard tensor formalism where the axial and polar perturbations are

teated independently. However, when one actually works in the Newmann–Penrose

(NP) formalism [15], isospectrality comes as a quite natural feature. This property

remains however true only for very specific spacetimes. It is not yet fully clear whether

isospectrality is generic or happens as an incredible “stroke of luck” for classical BHs.

In [16], it was shown that isospectrality is broken down for general f (R) gravity.

In the case of Lovelock black holes, isospectrality is roughly recovered but not exactly

[17]. It fails in Chern-Simons gravity [18]. The presence of a dilatonic field also

breaks isospectrality [19,20]. Actually, a perturbative analysis shows that isospectrality

seems to be quite generically lost in theories beyond GR [21]. However, it seems

that Schwarzschild-(anti)-de-Sitter (S(A)dS) black holes are isospectral, although the

situation is not fully clear [22–25].

In this article, we try to make clearer the quite involved historical derivation by

Chandrasekhar [26] and extend it as far as it can be using the original argument.

Although no spectacular new results is obtained, we elegantly end up with an analytical

explanation of the isospectrality of SdS and SAdS black holes. We begin with a general

metric of the form

ds2 = B(r)dt2 − B(r)−1dr2 − r2d�2, (6)

and explicitly show that if B(r) describes a SdS or SAdS spacetime, the isospectrality

property holds. This does not rigorously mean that it is a necessary condition in general

but it is one if we rely on the historical strategy to approach isospectrality. The proof

can be straightforwardly extended to the case of a charged BHs (the steps are the same

than for going from Schwarzschild to Reissner-Nordström).

Our aim here is just to slightly generalize the original derivation and to explain in

details each step of the proof. This is mainly useful for pedagogical, methodological

and historical purposes. Modern and extremely efficient methods are given in [27,28].

In these references, new results are obtained on the isospectrality, traced back to the fact

that the Zerilli and Regge-Wheeler equations are related by a Darboux transformation.

More precisely, it is shown that although standard and binary Darboux transformations

ensure isospectrality, generalized ones—associated with long-range potentials—do

not solve exactly the problem. Such methods are powerful and well suited for most

complex problems. They also open fascinating mathematical questions that are still

unanswered. We however will not use them here and will remain close to the original

derivation. The small generalization that we provide is already non-trivial.

123
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In the first section, we review sufficient conditions for isospectrality. Then, we

introduce the NP formalism which will be used to determine the radial equation. We

finally proceed to the full calculation and conclude.

2 Conditions for isospectrality

To study black hole perturbations, we separate the radial and angular parts so as to

obtain a wave equation for radial and time variables. This equation has a Schrödinger-

like form:

d2 Z

dr∗2
+ ω2 Z − V Z = 0, (7)

with r∗ the tortoise coordinate defined by dr∗ = dr/B(r). The eigenvalue ω is the

frequency of the wave satisfying the boundary conditions given in the introduction

and detailed in the following sections. In full generality, if Z2 satisfies Eq. (7) with a

potential V2, then

Z1 = pZ2 + q
d Z2

dr∗ , (8)

with p and q two functions, also satisfies Eq. (7) with V1 if [26]

V1 = V2 +
2

q

dp

dr∗ +
1

q

d2q

dr∗2
, (9)

and

2p
dp

dr∗ + p
d2q

dr∗2
−

d2 p

dr∗2
q − 2q

dq

dr∗ (V2 − ω2) − q2 dV2

dr∗ = 0. (10)

We don’t use here an index for ω as the isopectrality precisely means that ω1 = ω2.

Equation (10) is equivalent to

p2 +
(

p
dq

dr∗ −
dp

dr∗ q

)

− q2(V2 − ω2) = C2 = cte. (11)

To show that Eqs. (9) and (10) imply isospectrality, we use the fact that Z2 satisfies

Eq. (7), which implies

d3 Z2

dr∗3
+ ω2 d Z2

dr∗ −
dV2

dr∗ Z2 − V2
d Z2

dr∗ = 0. (12)
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When replacing Z1 and V1 by their expressions given by Eqs. (8) and (9), we are

led to

d2 Z1

dr∗2
+ω2 Z1 − V1 Z1 =

(

d2 p

dr∗2
−

2p

q

dp

dr∗ −
p

q

d2q

dr∗2

)

Z2

+ q
dV2

dr∗ Z2 + 2
dq

dr∗
d2 Z2

dr∗2
.

(13)

Using Eqs. (10) and (12), one can conclude that Z1 satisfies Eq. (7) with V1.

We first establish the equations governing the gravitational perturbations, we then

expose the conditions required to transform it into a wave equation. Finally, we show

isospectrality for SdS and SAdS spacetimes by finding the functions p and q satisfying

Eqs. (9) and (11) for the potentials of axial and polar perturbations. It should be

emphasized that we do not assume a S(A)dS spacetime from the beginning but, instead,

are led to it by the requirement that isospectrality emerges—at least in this approach.

3 The Newman–Penrose formalism

To go ahead, the perturbations need to be analyzed in the NP formalism [15]. This is

a special case of the tetrad formalism (see, e.g., [29]). To guide the unfamiliar reader,

we make every step leading to the result explicit in a pedagogical perspective. In this

approach, one needs to set up a basis of four null vectors at each point of spacetime.

This basis is made of a pair of real null vectors l and n and a pair of complex conjugate

null vectors m and m:

l.l = n.n = m.m = m.m = 0. (14)

Furthermore, these vectors satisfy the following orthogonality relations:

l.m = l.m = n.m = n.m = 0. (15)

We also require the normalization

l.n = 1 and m.m = −1, (16)

but this latter condition is less crucial in the NP formalism. The number of equations

is conveniently reduced thanks to the use of complex numbers. Any basis with the

properties given by Eqs. (14), (15) and (16) can be considered. For example, in the

Schwarzschild case one usually works with the Kinnersley tetrad and sometimes the

Carter one [30]. Here, we choose a Kinnersley-like tetrad:

l i =
(

1

B(r)
, 1, 0, 0

)

, (17)

ni =
(

1

2
,−

B(r)

2
, 0, 0

)

, (18)
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mi =
(

0, 0,
1

√
2r

,
i

√
2r sin θ

)

, (19)

mi =
(

0, 0,
1

√
2r

,
−i

√
2sinθ

)

. (20)

In the NP formalism, the directional derivatives are usually denoted by the following

symbols:

D = l i∂i ; 
 = ni∂i ; δ = mi∂i ; δ∗ = mi∂i . (21)

The equations will be written with the so-called spin coefficients [31] carrying

(roughly speaking) the information on the Riemann tensor. To make things explicit,

we switch, here, to the more general framework of the standard tetrad formalism. The

four contravariant vectors of the basis are ei
a, where a, b, c …are the tetrad indices,

indicating the considered vector and i, j, k …are the tensor indices, indicating the con-

sidered componant (alternatively, one can also think to the lower index as an internal

Lorentz one and consider the upper index as a coordinate one). The correspondance

reads as e1 = l , e2 = n, e3 = m and e4 = m with e
1 = e2, e

2 = e1, e
3 = −e4

and e
4 = −e3. For example, e12,3 represents the second componant of l, derived with

respect to θ . We define the Ricci rotation coefficients (the symbol “;” referring to a

covariant derivative)

γcab = ek
c eak;i e

i
b, (22)

or equivalently

eak;i = ec
kγcabeb

i . (23)

These coefficients are antisymmetric with respect to the first pair of indices:

γcab = −γacb. (24)

Let X,Yand Z be contravariant vector fields: X,Y, Z ∈ T 1
0. The Riemann tensor

field R is of type (1, 3):

R : T 1
0 × T 1

0 × T 1
0 → T 1

0. (25)

It is defined as

R(X, Y)Z = ∇X∇YZ − ∇Y∇XZ, (26)

with the Ricci identity

Ri
jkl Zi = Z j;k;l − Z j;l;k . (27)

123
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This leads, for Z = ea , to

Ri jkle
i
a = eaj;k;l − eaj;l;k . (28)

We project this identity on the tetrad frame and use Eqs. (22), (23) and (24). The

projected Riemann tensor depends only on the rotation coefficients and their deriva-

tives:

Rabcd = Ri jkle
i
ae

j
bek

c el
d

= [eaj;k;l − eaj;l;k]e
j
bek

c el
d

=
(

− [γa f ge
f
j e

g
k ];l + [γa f ge

f
j e

g
l ];k

)

e
j
bek

c el
d

= −γabc,d + γabd,c + γba f (γ
f

c d − γ
f

d c)

+ γ f acγ
f

b d − γ f adγ
f

b c. (29)

The spin coefficients of the NP formalism are also defined through the rotation

coefficients:

κ = γ311, ρ = γ314, ǫ =
1

2
(γ211 + γ341),

σ = γ313, μ = γ243, γ =
1

2
(γ212 + γ342),

λ = γ244, τ = γ312, α =
1

2
(γ214 + γ344),

ν = γ242, π = γ241, β =
1

2
(γ213 + γ343).

The 36 equations (29) can be written as 18 complex equations. The 10 independent

components of the Weyl tensor Cabcd are represented by five complex scalars:

�0 = −C1313 = −C pqrsl pmq lr ms,

�1 = −C1213 = −C pqrsl pnq lr ms,

�2 = −C1342 = −C pqrsl pmqmr ns,

�3 = −C1242 = −C pqrsl pnqmr ns,

�4 = −C2424 = −C pqrsn pmqnr ms,

(30)

and the 20 linearly independent Bianchi identities can be written as eight complex and

four real equations. As it will be useful later we also define the following scalars:

�00 = − 1
2

R11; �22 = − 1
2

R22; �02 = − 1
2

R33;
�20 = − 1

2
R44; �11 = − 1

4
(R12 + R34); �01 = − 1

2
R13;

�10 = − 1
2

R14; �12 = − 1
2

R23; �21 = − 1
2

R24. (31)
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4 Preliminaries on isospectrality

4.1 Derivation of the radial equation

We assume that the perturbations have a t and φ dependance given by ei(ωt+mφ) and

we define the following operators (n being an integer):

Dn = ∂r +
iω

B(r)
+ n

(

B ′(r)

B(r)
+

2

r

)

, (32)

and

Ln = ∂θ +
m

sin(θ)
+ n. cot(θ). (33)

The prime denotes the derivative with respect to r. Let D†
n be the complex conjugate

of Dn and L†
n(θ) = −Ln(π − θ). It is interesting to notice that

Br2Dn+1 = Dn Br2. (34)

The directional derivative given by Eq. (21) reads

D = D0, 
 = −
B(r)

2
D†

0,

δ =
1

√
2r

L†
0, δ∗ =

1
√

2r
L0.

(35)

The five scalars are:

�2 =
−2 + 2B(r) − 2r B ′(r) + r2 B ′′(r)

12r2
, (36)

�0 = �1 = �3 = �4 = 0. (37)

As �0, �1, �3 and �4 vanish but �2 doesn’t, the spacetime defined by Eq. (72)

is a Petrov type D spacetime. A corollary of the Goldberg-Sachs theorem [32] shows

that this implies that κ , σ , λ, and ν do vanish. The explicit calculation indeed leads

to:

κ = σ = λ = ν = 0, (38)

τ = π = ǫ = 0 (39)

and

ρ = − 1
r
, μ = − B

2r
, γ = B′

4
,

α = −β = − cot θ

2
√

2r
. (40)
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There are 6 linearized equations, 2 from the Ricci identities (43,46) and 4 from the

Bianchi identities (41,42,44, 45):

(δ∗ − 4α)�0 − (D − 4ρ)�1 = 3κ�2 + [R1], (41)

(
 − 4γ + μ)�0 − (δ + 2α)�1 = 3σ�2 + [R2], (42)

(D − 2ρ)σ − (δ + 2α)κ = �0, (43)

and

(D − ρ)�4 − (δ∗ + 2α)�3 = −3λ�2 + [R3], (44)

(δ − 4α)�4 − (
 + 2γ + 4μ)�3 = −3ν�2 + [R4], (45)

(
 + 2μ + 2γ )λ − (δ∗ + 2α+)ν = −�4, (46)

with

[R1] = −D�01 + δ�00 + 2ρ�01 + 2σ�10 − 2κ�11 − κ�02

= κ

4r2 [2 − 2B(r) + r2 B ′′(r)] (47)

[R2] = −D�02 + δ�01 + 2α�01 − 2κ�12 − λ�00 + 2σ�11 + ρ�02

= −σ

4r2 [2 − 2B(r) + r2 B ′′(r)] (48)

[R3] = −
�02 + δ∗�21 + 2α�21 + 2ν�10 + σ�22 − 2λ�11 − μ�20

= λ

4r2 [2 − 2B(r) + r2 B ′′(r)] (49)

[R4] = 
�21 − δ∗�22 + 2(μ + γ )�21 − 2ν�11 − ν�20 + 2λ�12

= ν

4r2 [2 − 2B(r) + r2 B ′′(r)], (50)

where �0, �1, �3, �4, κ , σ , λ, and ν are the perturbations. Using Eqs. (36), (38) and

(40), we obtain:

1

r
√

2

(

L0 + 2 cot θ

)

�0 −
(

D0 +
4

r

)

�1 = 3κ�2 + [R1], (51)

−
B

2

(

D†
0 +

2B ′

B
+

1

r

)

�0 −
1

r
√

2

(

L†
0 − cot θ

)

�1

= 3σ�2 + [R2], (52)
(

D0 +
2

r

)

σ −
1

r
√

2

(

L†
0 − cot θ

)

κ = �0, (53)

(

D0 +
1

r

)

�4 −
1

r
√

2

(

L0 − cot θ

)

�3 = −3�2λ + [R3], (54)

1

r
√

2

(

L†
0 + 2 cot θ

)

�4 +
B

2

(

D†
0 −

B ′

B
+

4

r

)

�3

= −3�2ν + [R4], (55)
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−
B

2

(

D†
0 −

B ′

B
+

2

r

)

λ −
1

r
√

2

(

L0 − cot θ

)

ν = �4. (56)

We proceed to the following change of variables:

�0 = �0, �1 = �1r
√

2, k =
κ

r2
√

2
, s =

σ

r
, (57)

�4 = �4r4, �3 = �3
r3

√
2
, l =

λr

2
, n =

νr2

√
2

. (58)

This leads to:

L2�0 −
(

D0 +
3

r

)

�1 = 6r3�2k +
√

2r [R1], (59)

Br2

(

D†
2 −

3

r

)

�0 + L†
−1�1 = −6r3�2s − 2r2[R2], (60)

(

D0 +
3

r

)

s − L−1k =
�0

r
, (61)

(

D0 −
3

r

)

�4 − L−1�3 = −6r3�2l + r4[R3], (62)

L†
2�4 +

Br2

2

(

D†
−1 +

3

r

)

�3 = −6r3�2n +
√

2r5[R4], (63)

Br2

(

D†
−1 +

3

r

)

l + L−1n =
�4

r
. (64)

By applying L†
−1 to Eq. (59) and

(

D0 + 3
r

)

to Eq. (60), we are then led to:

L†
−1L2�0 +

(

D0 +
3

r

)[

Br2

(

D†
2 −

3

r

)

�0

]

= 6r3�2

[

L†
−1k −

(

D0 +
3

r

)

s

]

− 6s∂r (r
3�2)

+ L†
−1(

√
2r [R1]) − 2

(

D0 +
3

r

)

(r2[R2]). (65)

It should be noticed that if r3�2 is a constant and if [R1] and [R2] do vanish, then

the left part of Eq. (61) does appear and can be replaced by �0/r which leads to a

decoupled equation for �0:

L†
−1L2�0 +

(

D0 +
3

r

)[

Br2

(

D†
2 −

3

r

)

�0

]

= −6r2�2�0. (66)
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In the same way, by applying L−1 to Eq. (63) and Br2

(

D†
−1 + 3

r

)

to Eq. (62), we

can obtain a decoupled equation for �4 if, in addition, [R3] and [R4] are zero:

Br2

(

D†
−1 + 3

r

)[(

D0 − 3
r

)

�4

]

+ L−1L†
2�4 = −6r2�2�4, (67)

where Eq. (64) has also been used. To summarize, one is led to two decoupled equa-

tions, for �0 and �4, if:

r3�2 = cte (68)

and

[R1], [R2], [R3], [R4] = 0. (69)

The first condition, Eq. (68), implies that the metric must have the form

B(r) = 1 +
C1

r
+ C2r + C3r2, (70)

while the second condition, Eq. (69), implies

B(r) = 1 +
D1

r
+ D2r2, (71)

with Ci and Di some arbitrary constants. The latter condition (which contains the pre-

vious one) corresponds to Schwarzschild-de Sitter and Schwarzschild-Anti-de Sitter

spacetimes:

B(r) = 1 −
2M

r
− �r2, (72)

with � the cosmological constant.

In the Reissner-Nordström case, it is possible to find new variables that mix the �i

functions with the spin coefficients so that a separation is possible [26]. This works

because �1 does not vanish and this implies two more equations which lead to a radial

equation of the form of Eq. (87) such that P and Q lead to isospectrality. As far as

our argument is concerned, the extension from the Schwarzschild case to the charged

case is therefore straightforward.

5 Proof of isospectrality

The Eqs. (66) and (67) read

[

L†
−1L2 + Br2D1D†

2 − 6(�r + iω)r

]

�0 = 0, (73)
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[

L−1L†
2 + Br2D†

−1D0 − 6(�r − iω)r

]

�4 = 0. (74)

If we set

�0 = R+2(r)S+2(θ), �4 = R−2(r)S−2(θ), (75)

they are separable with a separation constant μ2. This leads to:

L†
−1L2S+2 = −μ2S+2, (76)

[

Br2D1D†
2 − 6(�r + iω)r

]

R+2 = μ2 R+2, (77)

L−1L†
2S−2 = −μ2S−2, (78)

[

Br2D†
−1D0 − 6(�r + iω)r

]

R−2 = μ2 R−2. (79)

The separation constant is calculated with Eq. (76)—or Eq. (78)—by requiring the

regularity of S+2 at θ = 0 and θ = π . The angular equation is the same than in the

Schwarzschild case, which gives μ2 = l(l + 1) − 2 = 2L .

We set

D0 =
1

B
�+, D†

0 =
1

B
�−. (80)

Using the the tortoise coordinate r∗ (with d
dr∗ = B d

dr
), we are led to

�+ =
d

dr∗ + iω, �− =
d

dr∗ − iω and �2 = �+�−, (81)

that is

�± = �∓ ± 2iω. (82)

The operator �2 has no link with the cosmological constant (and cannot be confused

with it as the cosmological constant never appears squared in this article). It should

be pointed that the equation

[

Br2D−1D†
0 − 6(�r + iω)r

]

B2r4 R+2 = μ2 B2r4 R+2 (83)

is the same than Eq. (77). Using the properties of Eq. (34), we obtain

Br2D−1D†
0 = (Br2)2D0

1

Br2
D†

0 = r4 B�+

(

1

B2r2
�−

)

. (84)
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Defining Y as

Y = B2r R+2, (85)

we are led to

�+

(

1

Br2
�−(r3Y )

)

=
r

B2
�2Y +

d

dr∗

(

r

B2

)

�−Y +
3

B
�+Y +

d

dr∗

(

3

B

)

Y .

(86)

By calculating the derivative and replacing �+ by �− + 2iω in Eq. (86), we find

that Eq. (83) is equivalent to

�2Y + P�−Y − QY = 0, (87)

with

P =
(

4B

r
− 2B ′

)

=
B2

r4

d

dr∗

(

r4

B2

)

=
d

dr∗

(

log

(

r4

B2

))

,

(88)

and

Q =
(

3

r
B B ′ + 6B� + μ2 B

r2

)

. (89)

For the same reasons, Y−2 = r−3 R−2, satisfies

�2Y−2 + P�+Y−2 − QY−2 = 0. (90)

Equation (87) needs to be transformed into a wave equation in one dimension:

�2 Z = V Z . (91)

The functions Y and Z both satisfying a second order equation, we write Y as a

linear combination of Z and its derivative:

Y = ζ�+�+Z + W�+Z

= ζ V Z + (W + 2iωζ)�+Z , (92)
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with ζ and W two functions of r∗. Applying �− to Eq. (92) yields

�−Y =
[

d

dr∗ (ζ V ) + W V

]

Z +
[

ζ V +
d

dr∗ (W + 2iωζ)

]

�+Z

= −γ
B2

r4
Z + R�+Z , (93)

with

R = ζ V +
d

dr∗ (W + 2iωζ), (94)

γ = −
r4

B2

(

d

dr∗ (ζ V ) + W V

)

. (95)

By applying again �− to Eq. (93), we obtain

�−�−Y =
[

− γ
B2

r4
+

d R

dr∗

]

�+ Z +
[

2iωγ
B2

r4
−

dγ

dr∗
B2

r4
− γ

d

dr∗

(

B2

r4

)

+ RV

]

Z .

(96)

On the other hand, one can notice that Eq. (87) leads to:

�−�−Y = −(P + 2iω)�−Y + QY =
[

− (P + 2iω)R + Q(W + 2iωζ)

]

�+Z

+
[

(P + 2iω)
γ B2

r4
+ Qζ V

]

Z .

(97)

Identifying Eqs. (96) and (97), and by using the definition of P given by Eq. (88),

we find:

−
dγ

dr∗
B2

r4
− γ

d

dr∗

(

B2

r4

)

+ RV

=
d

dr∗

(

log

(

r4

B2

))

γ B2

r4
+ Qζ V

= −γ
d

dr∗

(

B2

r4

)

+ Qζ V ,

(98)

which gives

−
dγ

dr∗
B2

r4
= (Qζ − R)V , (99)

and

d R

dr∗ −
B2

r4
γ = Q(W + 2iωζ) − (P + 2iω)R, (100)
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r4

B2

d R

dr∗ +
r4

B2

d

dr∗

(

log

(

r4

B2

))

R =

γ +
r4

B2
Q(W + 2iωζ) − 2iω

r4

B2
R, (101)

d

dr∗

(

r4

B2
R

)

= γ +
r4

B2

(

Q(W + 2iωζ) − 2iωR

)

. (102)

The combination ζ V × Eq. (102) + R× Eq. (95) - γ× Eq. (94) - r4

B2 (W + 2iωζ)×
Eq. (99) leads to

ζ V
d

dr∗

(

r4

B2
R

)

+
r4

B2
R

d(ζ V )

dr∗

+ γ
d

dr∗ (W + 2iωζ) + (W + 2iωζ)
dγ

dr∗ = 0,

(103)

that is to say

r4

B2
Rζ V + γ (W + 2iωζ) = K = cte. (104)

As we have written Y as a linear combination of Z and �+Z in Eq. (92), it is

possible to write Z as a linear combination of Y and �+Y . Using Eqs. (92) and (93):

K Z =
r4

B2
Rζ V Z + γ (W + 2iωζ)Z

=
r4

B2
RY −

r4

B2
(W + 2iωζ)(�−Y + γ

B2

r4
Z)

+ γ (W + 2iωζ)Z

=
r4

B2
RY −

r4

B2
(W + 2iωζ)�−Y ,

(105)

and

K�+Z =
r4

B2
Rζ V �+Z + γ (W + 2iωζ)�+Z

=
r4

B2
ζ V �−Y +

r4

B2
ζ V γ

B2

r4
Z + γ Y − γ ζ V Z

=
r4

B2
ζ V �−Y + γ Y .

(106)

By requiring γ = cte and ζ = 1, Eq. (99) leads to

R = Q, (107)
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and from Eq. (94) one obtains

V = Q −
dW

dr∗ . (108)

Equation (102) then leads to

d

dr∗

(

r4

B2
R

)

= γ +
r4

B2
QW , (109)

and Eq. (104) yields

r4

B2
QV + γ W = K − 2iωγ = κ = cte. (110)

Defining

F ≡
r4

B2
Q, (111)

Equations (109) and (110) lead to

W =
1

F

(

d F

dr∗ − γ

)

, (112)

and

FV + γ W = F

(

Q −
dW

dr∗

)

+ γ W = κ, (113)

F Q − F
d

dr∗

[

1

F

d F

dr∗ −
γ

F

]

+
γ

F

(

d F

dr∗ − γ

)

= κ, (114)

which gives

1

F

(

d F

dr∗

)2

−
d2 F

dr∗2
+

B2

r4
F2 =

γ 2

F
+ κ. (115)

There exist constants γ and κ such that Eq. (115) is satisfied by the function (111).

Depending on the square root of γ 2 chosen (−γ or +γ ), one is led to the equation for

axial or polar perturbations. With

W ± =
1

F

(

d F

dr∗ ∓ γ

)

, (116)

then

V ± = Q −
d

dr∗

(

1

F

d F

dr
∓ γ

)

. (117)
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Defining f ≡ 1
F

,

V ± = ±γ
d f

dr∗ + γ 2 f 2 + κ f , (118)

and

Y = V ±Z± + (W ± + 2iω)�+Z±, (119)

�−Y = ∓γ
B2

r4
Z± + Q�+Z±, (120)

K ± = κ ± 2iωγ, (121)

K ±Z± =
r4

B2
[QY − (W ± + 2iω)�−Y ], (122)

K ±�+Z± =
r4

B2
V ±�−Y ± γ Y . (123)

By inserting Eqs. (119) and (120) in Eq. (122), one obtains

K −Z− =
r4

B2

[

Q[V +Z+ + (W + + 2iω)�+Z+]

− (W − + 2iω)[−γ
B2

r4
Z+ + Q�+Z+]

]

=
[

r4

B2
QV + + γ (W + + 2iω) − γ (W + − W −)

]

Z+

+ F[W + − W −]�+Z+,

(124)

which simplifies to

(κ − 2iωγ )Z− = (κ + 2γ 2 f )Z+ − 2γ
d Z+

dr∗ . (125)

Equivalently, one can show that

(κ + 2iωγ )Z+ = (κ + 2γ 2 f )Z− + 2γ
d Z−

dr∗ . (126)

By identification with the previously given condition we are led to

q = 2γ and p = κ + 2γ 2 f . (127)

Conditions given by Eqs. (8), (9) and (10) are therefore respected. In [26], it is

shown that if ω is a characteristic frequency and Z−(ω) is a solution belonging to

it, then the solution Z+(ω) in accordance with the relation (126), will satisfy the
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boundary conditions of the quasi normal modes:

Z± → A±(ω)e−iωr (r∗ → +∞) (128)

→ e+iωr∗ (r∗ → −∞) (129)

with

A+(ω) = A−(ω)
κ − 2iωγ

κ + 2iωγ
. (130)

The values of κ and γ when the metric function B(r) is defined by (72) now need

to be determined. First, one can notice that:

− F

(

d2

dr∗2
log F

)

=
1

F

(

d F

dr∗

)2

−
d2 F

dr∗2
, (131)

which implies that Eq. (115) reads as

− F

[

d2

dr∗2

(

log F

)

−
B2

r4
F

]

=
γ 2

F
+ κ. (132)

Moreover, F is given by

F =
r

B
(μ2r + 6M). (133)

This leads to

B

F

d F

dr
=

μ2r

F
+

1

r
−

4M

r2
+ �r , (134)

and

d

dr

(

B

F

d F

dr

)

= −
1

r2
+

8M

r3
+ � +

μ2

F

(

1 −
r

F

d F

dr

)

= −
1

r2
+

8M

r3
+ � +

μ2

F Br2

(

2Mr − 2�r4 −
μ2r4

F

)

,

(135)

together with

− F B
d

dr

(

B

F

d F

dr

)

+
B2 F2

r4
= μ4 + μ2

−
12M2

r2
+ �μ2r2 +

2Mμ2

r
+

6M

r
− 6M�r +

μ4r2

F

= μ4 + 2μ2 +
36M2

F
.

(136)
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Identifying with Eq. (132), this means

γ 2 = 36M2 , κ = μ2(2 + μ2). (137)

The functions p and q are now explicitly given thanks to Eqs. (127) and (137),

which proves the isospectrality for a metric such that B(r) satisfies Eq. (72).

The potentials can also be explicitly determined, from Eq. (118), for both pertur-

bations. The axial perturbation are described by:

V − =
(

1 +
2M

r
+ �r2

)[

l(l + 1)

r2
−

6M

r3

]

, (138)

while the polar perturbations feel the potential

V + =
2

r3

(

1 +
2M

r
+ �r2

)

×

9M3 + 3L2 Mr2 + L2(1 + L)r3 + 9M2r(L − �r2)

(Lr + 3M)2
. (139)

6 Phantom gauge

In this section, we briefly discuss the Phantom gauge. As we deal with six equations,

namely Eqs. (59–64), and eight unknown variables, the solutions involve two arbitrary

functions. This comes from the degrees of freedom associated with the rotation of the

chosen tetrad. If first order infinitesimal rotations of the tetrad basis are performed,

�0 and �4 are affected at the second order level while �1 and �3 are affected at the

first order level (the interested reader can find a clear proof in [26], Chapter 17.(g) or

through Eq. (7.79) in [33]). At the linear order which is considered here, �0 and �4

are therefore gauge invariant (not affected by infinitesimal rotations), contrarily to �1

and �3. We have chosen a gauge such that

�1 = �3 = 0. (140)

The vanishing of �1 and �3 does not affect the behavior of �0 and �4. This gauge

leads to the radial equations (66) and (67) .

Another meaningful choice could have been done: the so-called “Phantom Gauge”.

The previous gauge was useful to separate the equations when conditions given by

Eqs. (68) and (69) were fulfilled. However, if these conditions are not respected it is

still possible to obtain two decoupled equations. Thanks to the freedom associated

with the rotation of the tetrad, one can impose two additional ad hoc constraints. By

applying Br2

(

D†
2 − 3

r

)

to Eq. (59) and L2 to Eq.(60), it is possible eliminate �0.
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Indeed the condition

−Br2

(

D†
2 −

3

r

)(

6r3k�2 +
√

2r [R1]
)

−L2

(

6r3s�2 + 2r2[R2]
)

= 6r B ′�1 (141)

gives

[Br2D†
2D0 − 6iωr + L2L†

−1]�1 = 0, (142)

and therefore

[Br2D†
2D0 − 6iωr ]R1 = 0. (143)

The same procedure can be followed for �3. This gauge might have appeared to

be well suited to derive isospectrality for more general metrics, that is beyond the

conditions Eqs. (68) and (69) . The radial equation (143) can be written in the form of

Eq. (87) with Y defined by

Y = r B R1, (144)

as well as P and Q expressed by:

P =
d

dr∗ log

(

r2

B

)

, (145)

and

Q =
B

r2
(4r B ′ + r2 B ′′ + 2B + μ2). (146)

However, in that case, it seems difficult (if not impossible) to find p and q so that

Eq. (9) and Eq. (10) are fulfilled. One could follow the same procedure than previously

and replace Eq. (94) and (95) with

RPG = ζPG V +
d

dr∗ (W + 2iωζPG), (147)

γPG = −
r2

B

(

d

dr∗ (ζPG V ) + W V

)

, (148)

where r2

B
appears instead of r4

B2 . Then, Eq. (104) is replaced by

r2

B
RPGζPG V + γPG(W + 2iωζPG) = K PG = cte. (149)
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It is however not anymore possible to require γPG = cte and ζPG = 1 as it has

been previously done for γ and ζ . Indeed, if ζPG = 1, then γPG = B
r2 γ which cannot

be constant. The phantom gauge does not seem to bring any new convenient way to

go ahead in this approach.

7 Summary and conclusion

Let us summarize the main ingredients of the calculation. The conditions (68,69)

allow to decouple equations (59–61) in the form of Eq. (87) with functions P and Q so

that Eq. (104) is fulfilled. These conditions lead to the Schwarzschild-(anti-)de Sitter

metric (72). This allows to write −F

[

d2

dr∗2

(

log F

)

− B
r4 F

]

as cte + cte′

F
, yielding

explicit expressions for p and q which show the isospectrality.

In this article, we tried to go a bit deeper into the original argument from Chan-

drasekhar so as to make it accessible to the reader who wants to apply the method to

a specific spacetime structure. We show explicitly what are the conditions to prove

isospectrality in this framework. As a result, S(A)dS black holes emerge naturally as

being isospectral. This also led us to obtain the exact form of the potential for the polar

and axial perturbations.

Isospectrality is a beautiful property which seems to be true only for very spe-

cific geometries. As far as we know, no analytical proof of isospectrality (or of the

breakdown of isospectrality) as been produced yet in full generality. This article goes

slightly beyond Schwarzschild and points out the difficulties one has to face when

trying to extend the proof to more general spacetimes.
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3.3.4 Les modes quasi normaux dans les différents modèles au delà de la RG

Étant donné que la fenêtre des observations expérimentales de QNMs s’ouvre, il est intéressant
d’étudier comment la valeur des QNMs varie en fonction des différents modèles au delà de la RG.
Plusieurs modèles possèdent une métrique de la forme

ds2 = f (r)dt2 − f (r)−1dr2 − r2dΩ2 (3.92)

avec f (r) des fonctions modifiées comparé à l’expression pour Schwarzschild. Pour ces modèles, le
potentiel des perturbations axiales s’écrit :

V(r) = f (r)
(
λ + 2( f (r) − 1)

r2
− f ′(r)

r

)
(3.93)

avec λ = ℓ(ℓ + 1). Pour d’autres modèles, toujours statiques à symétrie sphérique, la métrique est plus
générale telle que

ds2 = A(r)dt2 − B(r)−1dr2 − H(r)dΩ2. (3.94)

C’est le cas du modèle de trou noir en LQG considéré dans la section 3.2. Il faut alors déterminer le
potentiel via les équations de perturbations. En considérant une dépendance en temps donnée par eiωt

et en définissant la coordonnée tortoise telle que dr∗ = dr/
√

AB, j’ai montré que le potentiel s’écrit

V(r) =
1

2H2

(
dH

dr∗

)2

+
µ2A

H
− 1
√

H

d2

dr∗2

(√
H

)
, (3.95)

avec µ = (ℓ − 1)(ℓ + 2). Le calcul explicite se trouve dans l’article. Grâce aux expressions de potentiel
nous pouvons calculer les QNMs avec la méthode WKB au 6ème ordre.

3.3.5 Les modes quasi normaux dans les différents modèles de gravité

L’étude effectuée est une étude préliminaires dans le sens où, en pratique, les trous noirs possèdent
un moment cinétique. Cependant, en première approximation, nous pensons que l’ordre de grandeur
des variations demeure comparable. Ainsi nous étudions des trous noirs statiques à symétries sphérique
et on va pouvoir comparer les prédictions des différents modèles par rapport aux trous noirs de
Schwarzschild. Dans toutes les Figures, les QNMs de Schwarzschild sont représentés par les points
noirs. Nous avons investigué des modèles dont la métrique à une expression explicite afin d’utiliser
l’approximation WKB au 6ème ordre. Le poids des QNMs, dans la reconstruction du signal, est
d’autant plus grand lorsque n et ℓ sont petits. Le poids prépondérant est pour le mode fondamental
n = 0 et ℓ = 2. Nous avons calculé les QNMs pour n = 0 et ℓ = 2, 3, 4.

Gravité massive

Tout d’abord nous considérons le modèle de la gravité massive. Dans cette théorie, il n’y a qu’un
type de graviton et il possède une masse m. Contrairement à la gravité bimétrique où il y a un graviton
massif et un sans masse. Un point intéressant de la gravité massive est que la masse du graviton va
naturellement engendrer une expansion accélérée de l’univers. Une solution de trou noir s’écrit avec
une métrique telle que (3.92) avec
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f (r) = 1 − 2M

r
+
Λr2

3
+ γr + ǫ, (3.96)

avec Λ, γ et ǫ définis par

Λ = 3m2(1 + a + b),

γ = −cm2(1 + 2a + 3b), (3.97)

ǫ = c2m2(a + 3b)

avec a et b deux constantes, sans dimension, arbitraires et c défini positivement. On observe qu’effecti-
vement la masse du graviton donne lieu à la constante cosmologique Λ.

Gravité scalaire-tenseur-vecteur

Dans la théorie de gravité scalaire-tenseur-vecteur (STVG pour scalar-tensor-vector gravity, appelée
également MOG pour Modified Gravity), l’existence d’un champ vectoriel est postulée tandis que les
constantes sont promues au rang de champs scalaires dynamiques. Loin des sources la gravitation est
plus élevée qu’usuellement - ce qui permet d’expliquer les courbes de rotation des galaxies - mais à
petite échelle l’effet est contrebalancé par le champ vectoriel qui produit une force répulsive [69]. La
principale conséquence est que la loi d’accélération est modifiée. Ce qui est intéressant c’est que cette
dernière est en concordance avec les courbes de rotation des galaxies, sans avoir à ajouter de la matière
noire non baryonique. Pour des champs gravitationnels faibles, un échange de boson massif de spin
1 (dont le couplage et la masse varient en fonction de la distance) entraine un potentiel de Yukawa
répulsif. Pour décrire cette théorie, l’action va être modifiée par l’ajout de termes contenant le champ
vectoriel φµ. Les nouvelles équations de champ qui apparaissent possèdent une solution statique et
sphérique [70] décrite par

f (r) = 1 − 2M

r
+
α(1 + α)M2

r2
. (3.98)

La force de répulsion gravitationnelle se retrouve dans le terme α, la charge de cette force s’écrit

Q =
√
αGN M (3.99)

avec G = GN(1 + α) (ici, GN dénote la constante de Newton). Cette solution possède deux horizons
pour α < αc = 0.67.

Gravité Hořava-Lifshitz

Étant donné que la RG n’est pas renormalisable, l’idée de la théorie de Hořava-Lifshitz [71] est de
rendre la théorie renormalisable en ajoutant des termes d’ordre supérieur de courbure et de dérivées
temporelles dans l’action de Einstein-Hilbert. Une conséquence est que l’invariance de Lorentz est
brisée à l’échelle ultraviolette mais peut être retrouvée dans l’infrarouge. Une solution de trou noir
s’écrit [72]

f (r) =
2(r2 − 2Mr + β)

r2 + 2β
√

r4 + 8βMr
(3.100)

avec β = 1/(2w), w étant une constante de couplage qui apparaît dans les termes d’ordre supérieur de
l’action.
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Correction ~

Dans [73], une métrique avec une correction quantique effective est construite. Pour modéliser
cette dernière, les contraintes à respecter sont les points suivants :

— reproduire la limite Newtonienne avec une correction en ~ (notamment dans le potentiel Newto-
nien [74] ),

— reproduire les résultats sur l’entropie des trous noirs,

— les géodésiques des particules test dans cette métrique doivent être cohérentes.

Le résultat final est décrit par la fonction

f (r) = 1 − 2M

r
+

2Mγ

r3
. (3.101)

Des indications amènent à considérer le paramètre γ comme étant négatif. Plusieurs valeurs sont
proposées dans la littérature, la dernière étant γ = −41/10. Dans l’article ci-dessous, on a choisi
différentes valeurs espacées linéairement dans l’intervalle des γ proposés.

Gravitation quantique à boucles

Ici, nous considérons le métrique construite dans le cadre de la LQG, qu’on a déjà considéré dans
la section 3.2. Nous rappelons que la métrique s’écrit

ds2 = G(r)dt2 − dr2

F(r)
− H(r)dΩ2, (3.102)

G(r) =
(r − r+)(r − r−)(r + rx)2

r4 + a0
(3.103)

F(r) =
(r − r+)(r − r−)r4

(r + rx)(r4 + a2
0)

(3.104)

H(r) = r2 +
a2

0

r2
(3.105)

avec r+ = 2m, r− = 2mP2, rx =
√

r+r−, P = (
√

1 + ǫ − 1)/((
√

1 + ǫ + 1) avec ǫ = γδ, a0 = Amin/8π
avec Amin l’aire minimale du spectre de la LQG.

3.3.6 Les résultats

Dans le modèle de gravité massive (Figure 1), on observe que globalement la fréquence des QNMs
augmente avec la masse du graviton. L’amortissement augmente également légèrement avec la masse,
mais pas de façon significative. Nous observons également que la pente entre les harmoniques n varie
quand la masse du graviton augmente. Dans le modèle scalaire-tenseur-vecteur (Figure 2), on a un
comportement similaire au cas précédent. La valeurs réelle des QNMs augmente lorsque α augmente
mais il n’y a aucun changement pour la valeur imaginaire. La pente entre les harmoniques reste
cependant la même pour les différentes valeurs de α. Dans le modèle de Hořava-Lifshitz (Figure
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3), on observe également un déplacement des QNMs vers des plus grandes valeurs réelles quand β
augmente. Mais on remarque également, qu’en parallèle, la partie imaginaire va diminuer ce qui est
caractéristique de cette théorie. On observe pas de changement sur la pente des harmoniques. Dans
le modèle avec une correction quantique en ~ (Figure 4), on observe que contrairement aux modèles
précédents, la déviation par rapport à Schwarzschild se fait vers la gauche. Étant donné que γ apporte
une contribution négative à la métrique plus la valeur absolue de γ est élevée plus la partie réelle des
QNMs diminuent. Ainsi, ce modèle se distingue des autres. De plus la pente des harmoniques varie.
Dans le modèle des trous noirs quantiques à boucles (Figure 5), on a un léger décalage des fréquences
vers la droite et la pente des harmoniques reste inchangée en fonction de δ, qui caractérise l’échelle de
discrétisation.

Cet article a été publié dans Universe [75].
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Abstract: As gravitational waves are now being nearly routinely measured with interferometers, the

question of using them to probe new physics becomes increasingly legitimate. In this article, we rely

on a well established framework to investigate how the complex frequencies of quasinormal modes

are affected by different models. The tendencies are explicitly shown for both the pulsation and the

damping rate. The goal is, at this stage, purely qualitative. This opportunity is also taken to derive

the Regge-Wheeler equation for general static and spherically symmetric metrics.

1. Introduction

General relativity (GR) is our best theory of spacetime. While the Lovelock theorem [1] ensures

that it cannot be easily modified, there are quite a lot of attempts to relax some hypotheses and build a

deeper model to describe the gravitational field. From effective quantum gravity to improved infrared

properties, the motivations to go beyond GR are countless. So are the situations, both in astrophysics

and cosmology, where extended gravity theories can, in principle, be tested. In practice, reaching the

level of accuracy useful to probe the relevant range of parameters is obviously far from trivial. In this

article we focus on a specific aspect of gravitational waves that would be emitted during the relaxation

phase of a deformed black hole (BH).

We will consider quasinormal modes associated with the ringdown phase of a BH merger.

The modes are not strictly normal due to energy losses of the system through gravitational waves.

The boundary conditions for the equation of motion are unusual as the wave has to be purely outgoing

at infinity and purely ingoing at the event horizon. The time component of the radial part reads

(an introductory review can be found in [2]):

e−iωt = e−i(ωR+iωI)t, (1)

the complex pulsation ω being split into a real part ωR, which corresponds to the frequency, and

an imaginary one ωI , which is the inverse timescale of the damping. Stability requires ωI < 0.

While real-life BHs are spinning, we focus on Schwarzschild solutions in this article. The details of

these predictions can not be used to directly compare with observations. We, however, expect the

general tendencies and orders of magnitudes to remain correct, as they can be checked for the general

relativistic case in [3].

Whether one considers “axial” or “polar” perturbations, the linearized Einstein equations lead

to wave equations with different potentials. In GR, the (so-called Regge-Wheeler) potential for axial

perturbations is:

VRG
ℓ (r) =

(

1 − 2M

r

) [

ℓ(ℓ+ 1)

r2
− 6M

r3

]

, (2)

Universe 2019, 5, 202; doi:10.3390/universe5090202 www.mdpi.com/journal/universe



Universe 2019, 5, 202 2 of 14

while the (so-called Zerilli) one for polar perturbations is:

VZ
ℓ (r) =

2

r3

(

1 − 2M

r

)

×

× 9M3 + 3a2Mr2 + a2(1 + a)r3 + 9M2ar

(3M + ar)2
, (3)

where a = ℓ(ℓ+ 1)/2− 1. Throughout the paper we use Planck units. In the purely gravitational sector,

one needs ℓ ≥ 2. Interestingly, both those equations have the very same spectrum of quasinormal

modes (QNMs). This property, called isospectrality [4], is not always true in modified gravity (see [5]

for an extension and a discussion of the original proof). Basically, quasinomal modes are described by

their multipole number ℓ and their overtone number n. The fundamental quadrupolar mode (n = 0

and ℓ = 2) for a Schwarzschild BH in GR is given by Mω ≈ 0.374 − 0.0890i.

There are many different ways to calculate the QNMs: Continued fractions, Frobenius

series, Mashhoon’s method, confluent Heun’s equation, characteristic integration, shooting,

Wentzel-Kramers-Brillouin (WKB) approximations, etc. In this article we focus on the last approach.

For most models considered here, the QNMs have already been calculated in previous studies.

However, this has most of the time been done for s = 0 or s = 1, not for s = 2 as we have done it

here. More importantly, it is in addition very useful to rely on the very same method to investigate all

models so that the differences underlined are actually due to physical effects and not to numerical

issues. Even when the same approach is considered, the way it is implemented is often different

enough, between articles, so that it is hard to directly compare the results. This is why we have

here tried to methodically consider several modified gravity models with a well controlled WKB

approximation scheme used in the same way in all cases so as to compare the tendencies between

modified gravity proposals. This is not mandatory for this qualitative step but this will become useful

in future quantitative studies.

The determination of the complex frequencies of QNMs is difficult (see [6,7] for historical reviews

and [8,9] for results based on numerical approaches). This work is based on the WKB approach

described in [10]. Following the pioneering work in [11], the WKB method for QNMs was developed

in [12–15]. This formalism leads to fairly good approximations, especially for high multipole and low

overtone numbers. In the following, we restrict ourselves to n < l and use the sixth order WKB method

developed by Konoplya [10] (see also [16–18]). This allows one to recast the potential appearing in the

effective Schrödinger equation felt by gravitational perturbations in a complex but tractable form.

The aim of this introductory paper is to investigate how several modified gravity theories impact

the QNMs at the qualitative level. There are several ways to go beyond GR: Extra dimensions, weak

equivalence principle violations, extra fields, diffeomorphism–invariance violations, etc. Beyond those

technicalities, there are strong conceptual motivations to consider extended gravity approaches, from

the building of an effective quantum gravity theory to the improvements of the renormalisation

properties, through the implementation of a dynamical cosmological constant. Among many others,

examples of recent relevant works on QNMs can be found in [19–22].

2. Perturbation Dynamics

The QNMs are solutions of a perturbation equation with the specific boundary conditions given

in the previous section. The radial and angular parts can be separated. The radial part is governed by

a Schrödinger-like equation:

d2Z

dr∗2
+ V(r)Z = 0, (4)

where Z is the radial part of the “perturbation” variable, assumed to have a time-dependance eiωt, and

r∗ is the tortoise coordinate. For a metric such that:
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ds2 = f (r)dt2 − f (r)−1dr2 − r2dθ2 − r2 sin2 θdφ2, (5)

the tortoise coordinate is defined by:

dr∗ =
1

f (r)
dr. (6)

It tends to −∞ at the event horizon and to +∞ at spatial infinity.

As explained previously, BH gravitational perturbations can be of two different types

distinguished by their behavior under a parity transformation. For an angular momentum l, axial

perturbations transform as (−1)l under parity, while polar perturbations transform as (−1)l+1.

This leads to the two different potentials in Equation (4). The potential for the gravitational

axial perturbations reads in full generality (see [2] and references therein) for the metric given by

Equation (5):

V(r) = f (r)

(

λ + 2( f (r)− 1)

r2
− f ′(r)

r

)

. (7)

In this work we will not consider the isospectrality-violation issues and we will focus only on

such perturbations. It should anyway be kept in mind that, in principle, isospectrality might not hold.

The boundary conditions can be expressed as:

Z ∼ e−iωr∗ r∗ → −∞, (8)

Z ∼ eiωr∗ r∗ → +∞. (9)

We shall now derive the Regge-Wheeler equation for the more general (spherical and static) metric:

ds2 = A(r)dt2 − B(r)−1dr2 − H(r)dθ2 − H(r) sin2 θd2φ. (10)

For this metric, the tortoise coordinate is defined by:

d

dr∗
=

√
AB

d

dr
. (11)

The general form of an axisymmetric metric can be written as [4]:

ds2 = e2ν(dx0)2 − e2ψ(dx1 − σdx0 − q2dx2 − q3dx3)2

−e2µ2(dx2)2 − e2µ3(dx3)2, (12)

where t = x0, φ = x1, r = x2 and θ = x3. For the metric given by Equation (10), the correspondence is:

e2ν = A(r), e−2µ2 = B(r),

e2µ3 = H(r), e2ψ = H(r) sin2 θ, (13)

σ = q2 = q3 = 0.

A perturbation of this kind of spacetime is described by σ, q2 and q3, assumed to be first order

quantities, and by infinitesimal increments, δν, δµ2, δµ3, of the other quantities. We focus here on axial

perturbations. The point is to linearize the field equations about the solution given by Equation (10),

considering components where σ, q2 and q3 are only functions of t, x2 and x3. The equations governing

σ, q2 and q3 are described by the vanishing of the Ricci tensor components:
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R12 = R13 = 0. (14)

For Equation (12), one has [4] :

R12 =
1

2
e−2ψ−ν−µ3 ×

[(e3ψ−ν−µ2+µ3 Q02),0 − (e3ψ+ν−µ2−µ3 Q32),3], (15)

with:

Qab = qa,b − qb,a and Qa0 = qa,0 − σ,a for a, b = 2, 3. (16)

where the comma indicates the derivative. The notation Q0a is used to mean −Qa0. The component

R13 is also given by Equation (15) by switching indices 2 and 3.

The perturbed field equations are obtain by δRαβ = 0. After replacing ν, µ2, µ3 and ψ by their

expressions, δR12 = 0 leads to:

(H sin3 θ
√

ABQ23),3 = −H2 sin3 θ

√

B

A
Q02,0. (17)

By defining:

Q =
√

ABHQ23 sin3 θ, (18)

one obtains:

√

A

B

1

H2 sin3 θ

∂Q

∂θ
= Q20,0. (19)

For δR13 = 0, one is led to:

√
AB

H sin3 θ

∂Q

∂r
= −Q30,0. (20)

We assume that perturbations have a time dependance given by: eiωt. This implies that Equations

(19) and (20) read:

√

A

B

1

H2 sin3 θ

∂Q

∂θ
= −ω2q2 − iωσ,2, (21)

√
AB

H sin3 θ

∂Q

∂r
= ω2q3 + iωσ,3. (22)

Taking the derivative of Equation (21) with respect to θ and the derivative of Equation (22) with

respect to r and combining the results leads to:

sin3 θ
∂

∂θ

(

1

sin3 θ

∂Q

∂θ

)

+
H2B

A

∂

∂r

(

√
AB

H

∂Q

∂r

)

+ σ2 QH

A
= 0. (23)

As suggested in [4], one can then separate the variables r and θ using:

Q(r, θ) = R(r)C−3/2
l+2 (θ) (24)

with Cm
n the Gegenbauer function satisfying:

(

d

dθ
sin2m θ

d

dθ
+ n(n + 2m) sin2m θ

)

Cm
n (θ) = 0. (25)

Inserting Equation (24) into Equation (23), one is led to following radial equation:
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H2 B

A

∂

∂r

(

√
AB

H

∂R(r)

∂r

)

+
H

A
σ2µ2R(r) = 0, (26)

where µ2 = (l − 1)(l + 2). Defining Z so that R =
√

HZ and using the tortoise coordinate, we are led

to a Schrödinger-like equation:

d2Z

dr∗2
+ (σ2 − V(r))Z = 0, (27)

where the potential is:

V(r) =
1

2H2

(

dH

dr∗

)2

+
µ2 A

H
− 1√

H

d2

dr∗2

(√
H

)

. (28)

The potential reduces to Equation (7) for A(r) = B(r) and H(r) = r2. This derivation is useful to

calculate QNMs for general static and spherically symmetric metrics.

3. The WKB Approximation

The WKB approximation [12–14] is known for leading to good approximations (compared to

numerical results) for the QNMs. The potential is written using the tortoise coordinate so as to be

constant at r∗ → 0 (which represent the horizon of the BH) and at r∗ → +∞ (which represents spatial

infinity). The maximum of the potential is reached at r∗0 . Three regions can be identified: Region I

from −∞ to r1, the first turning point (where the potential vanishes), region I I from r1 to r2, the second

turning point, and region I I I from r2 to +∞. In region I I, a Taylor expansion is performed around r∗0 .

In regions I and I I I, the solution is approximated by an exponential function:

Z ∼ exp

[

1

ǫ

∞

∑
n=0

ǫnSn(x)

]

, ǫ → 0. (29)

This expression can be inserted into Equation (4) so as to obtain Sj as a function of the potential

and its derivative. We then impose the boundary conditions given by Equation (9) and match the

solutions of regions I and I I I with the solution for region I I at the turning points r1 and r2, respectively.

The WKB approximation has been usefully extended from the third to the sixth order in [10].

This allows one to derive the complex frequencies as a function of the potential and its derivatives

evaluated at the maximum. For the sixth order treatment, one is led to:

ω2 = V0 − i
√

−2V′′
0

( 6

∑
j=2

Λj + n +
1

2

)

, (30)

where the expressions of the Λjs can be found in [10]. In the following, we use this scheme to compare

different modified gravity models and we present results only in the range of validity of the WKB

approximations.

Interesting recent considerations on the convergence on the WKB series are given in [23].

Details on the expansion parameter used in this work can be found in [17]. The consistency of

the WKB approximation has been checked for the presented results.

4. Modified Gravity Models and Results

Throughout this section we investigate some properties of the QNMs for several extended gravity

approaches. We pretend in no way to do justice to the subtleties of those models and, when necessary,

we explicitly choose specific simplified settings to make the calculations easily tractable.

As we focus on phenomenological aspects, the more interesting mode is the fundamental one:

n = 0 and l = 2. We therefore focus on a few points around this one (keeping in mind that the accuracy
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is better for higher values of l). In all the figures, the lower overtone n is the one with the smallest

imaginary part.

We first consider models with a metric of the form:

ds2 = f (r)dt2 − f (r)−1dr2 − r2dθ2 − r2 sin2 θd2φ, (31)

and then investigate a model with two different metric functions, using the result obtained in

Equation (28).

4.1. Massive Gravity

In GR, the graviton is a massless spin-2 particle. One of the first motivations for modern massive

gravity—which can be seen as a generalization of GR—was the hope to account for the accelerated

expansion of the Universe by generating a kind of Yukawa-like potential for gravitation [24]. The initial

linear approach to massive gravity contained a Boulware-Deser ghost, which was cured in the dRGT

version [25–28]. Massive gravity also features interesting properties for holography (see, e.g., [29]).

Starting from the action:

S =
1

16π

∫

d4x
√

−g
(

R + m2U (g, φa)
)

, (32)

where R is the Ricci scalar and U is the potential for the graviton, the following black hole solution can

be derived [30,31]:

f (r) = 1 − 2M

r
+

Λr2

3
+ γr + ǫ, (33)

where Λ, γ and ǫ are, respectively:

Λ = 3m2(1 + a + b),

γ = −cm2(1 + 2a + 3b),

ǫ = c2m2(a + 3b), (34)

with a and b being two dimensionless constants and c being positive. It should also be pointed out

that a positive value of γ might raise consistency issues [31].

The results are presented in Figure 1. The values chosen for the constants do, of course, change

the amplitude of the displacement of the QNMs. The global trend, which is the point of this study,

however, remains the same. Increasing the graviton mass m tends to increase the real part of QNMs,

that is the frequency of the oscillations. The difference in frequency between the fundamental and the

first overtone also increases with m. The effect on the imaginary part is hardly noticeable on the plot,

even though a slight increase, which is actually 50% less important, in relative variation, than the shift

in frequency, should be noticed. The values considered here for the mass are, of course, way out of the

known bounds, but this is clearly not the point. As a specific feature, one can notice that the frequency

shift due to massive corrections decreases for higher overtones. The shift patterns are mostly the same

whatever the multipole number considered.
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Massive Gravity

Figure 1. Quasinormal modes (QNMs) in massive gravity. The left block is for l = 2, the middle

one corresponds to l = 3 and the right one is for l = 4. The dark points correspond to the

Schwarzschild QNMs. The arbitrary constants a, b and c have been taken to one. From left to right:

m = {15, 30, 45, 60, 75} × 10−3.

4.2. Modified Scalar–Tensor–Vector (STV) Gravity

The scalar–tensor–vector modified gravitational theory (MOG) allows the gravitational constant,

a vector field coupling, and the vector field mass to vary with space and time [32]. The equations

of motion lead to an effective modified acceleration law that can account for galaxy rotation curves

and cluster observation without dark matter. While it has recently been much debated and put under

pressure, the theory is still worth considering seriously. We consider the field equation for the metric

tensor [33] :

Rµν = −8πGTφµν, (35)

where the gravitational coupling is G = GN(1 + α), with GN being the Newton’s constant.

The gravitational strength of the vector field φµ (spin 1 graviton) is Qg =
√

αGN M. With Bµν =

∂µφν − ∂νφµ, the energy-momentum tensor for the vector field is :

Tφµν = − 1

4π
(Bµ

αBνα −
1

4
gµνBαβBαβ), (36)

with the constant ω of [32] being set to one. Solving the vacuum field equations:

∇νBµν =
1√−g

∂ν(
√

−gBµν) = 0, (37)

and:

∇σBµν +∇µBνσ +∇νBσµ = 0, (38)

with the appropriate symmetry leads to the metric:

f (r) = 1 − 2M

r
+

α(1 + α)M2

r2
. (39)
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We focus on the case where the field equations for Bµν are non-linear, as the phenomenology

is then richer, and we consider the relevant choice α < αc = 0.67 where there are two horizons and

appropriate potential behavior for the WKB approximation to hold. An up-to-date investigation of

QNMs in MOG can be found in [34].

The results are given in Figure 2. The imaginary part of the QNMs is nearly the same whatever

the value of α: The modified metric has no effect on the damping rate. However, increasing α does

increase of the real part, that is the frequency. The effect is important for values near the critical value

αc. The slope of the Imaginary part versus the real one, at a given l for different values of n, is nearly

independent of α. This slope is not directly observable but it shows how the structure of the QNMs

changes with the overtone number. The curves remain here parallel one to the other: This means that

increasing the deformation parameter does not change the frequency shift between overtones.
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Modified Gravity

Figure 2. QNMs in modified SVT gravity. The left block is for l = 2, the middle one corresponds to

l = 3 and the right one is for l = 4. The dark points correspond to the Schwarzschild QNMs. From left

to right: α = {1, 2, 3, 4, 5} × 10−1.

4.3. Hořava-Lifshitz Gravity

Hořava-Lifshitz gravity bets on the fundamental nature of the quantum theory instead of relying

on GR principles. It is a renormalizable UV-complete gravitational theory which is not Lorentz

invariant in 3 + 1 dimensions [35]. The relativistic time with its Lorentz invariance emerges only at

large distances. Black hole solutions have been found [36–38] and QNMs were studied [39].

Using the ansatz:

ds2 = −N2(r) dt2 +
dr2

f (r)
+ r2(dθ2 + sin2 θdφ2) (40)
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in the action, one is led to the Lagrangian:

L̃1 =
κ2µ2N

8(1 − 3λ)
√

f

(

λ − 1

2
f ′2 − 2λ( f − 1)

r
f ′ (41)

+
(2λ − 1)( f − 1)2

r2
− 2w(1 − f − r f ′)

)

, (42)

where w = 8µ2(3λ − 1)/κ2. For λ = 1, the solution is:

N2 = f (r) =
2(r2 − 2Mr + β)

r2 + 2β +
√

r4 + 8βMr
, (43)

with β = 1/(2w), w being the deformation parameter enterring the action given in [37]. There are two

horizons for M2 > β.

The results are given in Figure 3. The frequency increases with an increase of β. Interestingly,

the imaginary part of the overtones is highly sensitive to β. This remains true for higher multipoles.

The relative variation of the imaginary part is nearly the same whatever the overtone number.

It therefore becomes large in absolute value for high n values.
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Horava-Lifshitz

Figure 3. QNMs in Horava-Lifshits gravity. The left block is for l = 2, the middle one corresponds to

l = 3 and the right one is for l = 4. The dark points correspond to the Schwarzschild QNMs. From left

to right: β = {15, 30, 45, 60, 75} × 10−2.

4.4. h̄ Correction

It has been known for a long time that quantum corrections to the Newtonian gravitational

potential can be rigorously derived without having a full quantum theory of gravity at disposal (see,

e.g., [40–44] to cite only a few works from a very long list). Recently, a quite similar approach was

developed [45] requiring that the quantum mechanically corrected metric reproduces the corrected

Newtonian limit, reproduces the standard result for the entropy of black holes including the known

corrections and fulfills some consistency conditions regarding the geodesic motion.

The resulting metric is:
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f (r) = 1 − 2M

r
+ γ

2M

r3
. (44)

We use, as previously, natural units and the coefficients of the last term, γ, is proportional to h̄ in

these models. It is worth noticing that there has been a long controversy about the value and the sign

of the γ factor. From the phenomenological perspective, we do not fix it to a particular value but we

keep it negative, in agreement with the latest expectations.

The results are given in Figure 4. For large values of γ, the effects are noticeable on the frequency.

It is remarkable that, from our analysis, the real part of the complex frequency is only decreased,

which is not the case for the other models that have been considered in this study. The higher the

absolute value of γ, the larger the difference of frequency between the fundamental and the overtones.

This effect, however, remains quite subtle.
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Figure 4. QNMs in quantum-corrected gravity. The left block is for l = 2, the middle one corresponds

to l = 3 and the right one is for l = 4. The dark points correspond to the Schwarzschild QNMs.

From left to right: γ = {−5,−4,−3,−2,−1}.

4.5. LQG Polymeric BH

Loop quantum gravity (LQG) is a non-perturbative and background-independant quantum theory

of gravity [46]. In the covariant formulation, space is described by a spin network [47]. Each edge

carries a “quantum of area”, labelled by a half integer j, associated with a irreducible representations

of SU(2). Each node carries a “quantum of space” associated with an intertwiner. A key result is that

the area is quantized according to:

A(j) = 8πγBI

√

j(j + 1), (45)

with γBI being the Barbero-Immirzi parameter. Black holes are usually described in LQG through an

isolated horizon puncturing a spin network [48] and the phenomenology is very rich, depending on

the precise setting chosen [49]. We focus here on the model developed in [50], as this is the one leading

to metric modifications outside the horizon, where a regular lattice with edges of lengths δb and δc

is considered. Requiring the minimal area to be one derived in LQG, one is left with only one free
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parameter δ. From this minisuperspace approximation, a static spherical solution can be derived and

is given by:

ds2 = −G(r)dt2 +
dr2

F(r)
+ H(r)dΩ2 ,

G(r) =
(r − r+)(r − r−)(r + r∗)2

r4 + a2
o

,

F(r) =
(r − r+)(r − r−)r4

(r + r∗)2(r4 + a2
o)

,

H(r) = r2 +
a2

o

r2
, (46)

where dΩ2 = dθ2 + sin2 θdφ2, r+ = 2m and r− = 2mP2 are the two horizons, and r∗ =
√

r+r− = 2mP,

P is the polymeric function defined by P = (
√

1 + ǫ2 − 1)/(
√

1 + ǫ2 + 1) with ǫ = γBIδ, and the

area parameter a0 is given by a0 = Amin/8π, Amin being the minimum area appearing in LQG.

The parameter m in the solution is related to the ADM mass M by M = m(1 + P)2.

The results are given in Figure 5. The damping rate does not depend at all on the polymerization

parameter. The real part of the complex frequency does, however, first decrease with δ. Noticeably, the

slope is unchanged, and varying the deformation parameter just leads to a horizontal translation of the

QNM frequency in the complex plane. This means that the frequency shift between the fundamental

and the overtones does not depend on the amplitude of the quantum gravity corrections, as in modified

gravity. Interestingly, for higher values of δ, the frequency begins to increase. This is the only model

considered in this study with non-monotonic behavior. For δ ≈ 10−0.7 the “polymerization” effect

nearly exactly compensates the “area discretization" effect and one recovers the GR frequencies (and

damping rates).
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Figure 5. QNMs in loop quantum gravity (LQG) (polymer black holes (BHs)). The left block is for

l = 2, the middle one corresponds to l = 3 and the right one is for l = 4. The dark points correspond

to the Schwarzschild QNMs. The parameters are a0 = 1 and from left to right: ǫ = 10−x with

x ∈ {−1,−0.8,−0.6,−0.4,−0.2}.
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5. Conclusions

This study shows the evolution of the complex frequency of quasinormal modes of a

Schwarzschild black hole for the fundamental and the first overtones for a few multipole numbers.

We have considered massive gravity, STV gravity, Hořava-Lifshitz gravity, quantum corrected gravity

and loop quantum gravity. All the results were derived using the very same WKB approximation

scheme which makes a meaningful comparison possible. It will be especially useful for future

quantitative studies.

Obviously, distinguishing between those models with observations is more than challenging.

First, because there exist degeneracies, for given overtone and multipole numbers, between the

models—when taking into account that the values of the parameters controlling the deformation are

unknown. Second, because the intrinsic characteristics of the observed black holes are also unknown,

which induces other degeneracies. In addition, this study should be extended to Kerr black holes,

which also add some degeneracies in addition to the complexity.

Some interesting trends can, however, be underlined. For all models, the effects of modifying the

gravitational theory are more important for the real part than for the imaginary part of the complex

frequency of the QNMs. Stated in another way, the frequency shift is more important than the change

in the damping rate. Obviously, it does not make sense to quantitatively compare the results from

various models, as the deformation parameters are different. However, the “trends” are clearly specific

to each studied theory and there is no need to define comparable “steps” in the deformation parameters

(which do not have the same units anyway) to draw significant conclusions about the directions in

which the different models considered deviate from GR. In addition, the sign of the frequency shift,

and its dependance upon the overtone and multipole numbers, is characteristic of a given extension of

GR. The accurate patterns are never the same, which is an excellent point for phenomenology. It can

basically be concluded that a meaningful use of QNMs to efficiently investigate modified gravity

requires the measurement of several relaxation modes. This is in principle possible [51], but way

beyond the sensitivity of current interferometers. If features beyond GR were to be observed, the

direction of the frequency shift in the complex plane would already allow the exclusion of models, as

this article shows. The goal of this study was not to perform a detailed analysis of the discrimination

capabilities of gravitational wave experiments, it simply aimed at exhibiting the main tendencies for

currently considered extended gravity models, as an introduction to this special issue on “probing

new physics with black holes”.
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3.3.7 Les modes quasi normaux pour un modèle jouet de trou noir avec des

effets quantiques cumulatifs

Nous avons vu précédemment que des effets quantiques pouvaient exister et se cumuler en dehors
de l’horizon. Dans cet article, nous étudions si ces effets quantiques pourraient être perçus dans
les modes quasi-normaux. Pour celà nous investiguons un "modèle jouet" développé dans [76]. On
considère un trou noir de Schwarzschild, avec des effets quantiques qui ont une empreinte sur la
métrique à l’extérieur de l’horizon des événements. Le paramètre quantique qui décrit ces effets est

q(r) = lPlRτ =
M

r3

(
1 − 2M

r

)1/2

t (3.106)

avec R le scalaire de Kretschmann, décrivant l’échelle de courbure, τ le temps propre et t le temps
de Schwarzschild. Ce paramètre est maximal à la distance r = 2M(1 + 1

6). Les effets quantiques sont
représentés par une Gaussienne centrée en ce point telle que la métrique modifiée (3.92) s’écrit

f (r) =
(
1 − 2M

r

)(
1 + Ae

− (r−µ)2

2σ2

)2

. (3.107)

Cette forme particulière de métrique effective est justifiée seulement pour tenter de dépeindre les effets
quantiques. Le paramètre µ décrit la distance où les effets seraient maximum. Le paramètre σ désigne
l’écart-type qui caractérise l’étalement de des effets sur la métrique. Le but de cet article est de voir la
tendance générale, qualitative, que les effets quantiques pourraient présenter par rapport à la théorie
classique. Pour ce faire nous avons calculer les QNMs pour la métrique (3.107) avec la méthode WKB
au 6ème ordre.

Dans la Figure 1, on observe la valeur des QNMs pour Schwarzschild et pour le modèle jouet consi-
déré. La différence relative des fréquences propres entre ces deux modèles Re(∆ω/ω) est représentée
sur la Figure 2. Elle est donnée en fonction de µ et σ. La différence est maximale lorsque la Gaussienne
est centrée en µ = 3M. Ceci n’est pas surprenant étant donné que cela correspond à la sphère de photon
(le maximum du potentiel). Dans la Figure 3, on observe le déplacement relatif de la partie imaginaire
Im(∆ω/ω). L’amplitude A de l’équation (3.107) représente le poids de l’effet quantique, qui sera
d’autant plus grand que l’accumulation est pérenne. On a pu vérifier que le déplacement des QNMs
s’effectue de façon linéaire par rapport à A. On Re(∆ω/ω) = xA et Im(∆ω/ω) = yA. On observe sur
les Figures 5, 6, 7 et 8 comment varient x et y en fonction de ℓ, pour différentes valeurs de µ et de σ.
Sachant que la différence relative et que les coefficients de pente sont de l’ordre de 1, l’amplitude est
du même ordre également. L’amplitude A peut être grossièrement apparentée au paramètre quantique
q et les effets quantiques sont maximums pour

qmax =

(3
7

)√1
7

t

M2
. (3.108)

En fixant t à l’âge de l’univers, on remarque que les effets quantiques sont observables pour un trou noir
de 10−8 masse solaire. Les trous noirs qu’on observe actuellement sont bien plus massifs cependant il
est intéressant de noter que les effets quantiques apparaissent pour des masses bien plus élevées que
celle de Planck.

Cet article a été publié dans Physics Letters B [77].
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1. Introduction

Naively, quantum gravity is expected to show up at very small 
physical scales, around the Planck length (see [1] for a recent re-
view of the phenomenology of quantum gravity). This is indeed 
where predictions become precise and might lead to a clear dis-
crimination between models. In the black hole (BH) sector, it has 
therefore been widely believed that quantum gravity effects are 
confined to the vicinity of the central singularity. This is clearly 
the most conservative and natural hypothesis. In such a case, quan-
tum modifications to the spacetime structure are screened by the 
event horizon and the external observer is not expected to no-
tice any measurable effect, at least for macroscopic black holes. In 
this article, we focus on a different perspective, namely the possi-
bility that quantum corrections to the metric “leak” outside the 
horizon, even for stellar or supermassive BHs. This is obviously 
motivated by phenomenological reasons. There are, however, quite 
good physical motivations to consider quantum gravity effects well 
beyond the vicinity of the singularity. Studying their impact, in a 
very simple model, on the ringdown phase of BHs is the purpose 
of this study.

It has recently been argued in [2] and [3] that the observa-
tion of black holes with the Event Horizon Telescope might reveal 
quantum gravity effects. Consistency between general relativity 
(GR) and quantum mechanics (QM) might require quantum effects 

* Corresponding author.
E-mail address: barrau@in2p3.fr (A. Barrau).

at very large scale. Interestingly, the authors suggest that the time 
dependence of the shape and size of the shadow that a black hole 
casts on its surrounding emission might be seen around the BH 
at the center of the M87 galaxy (which has recently been effec-
tively observed [4,5]). On the extreme other side, in the firewall 
proposal, the usual geometry might break down a Planck length 
away from the horizon [6,7]. Many other possibilities with strong 
metric modifications outside the horizon (or what replaces it) have 
been considered: gravastars [8], fuzzballs where string theory con-
figurations replace the smooth manifold outside the horizon [9], or 
massive remnants [10]. The study of maximally entangled states of 
black holes has even shed a new light on the possibility of more 
drastic geometric effects far away from the horizon [11]. To give 
a final example, bouncing black holes – with quite different time-

scales – are also intensively considered [12,13].
In this article, we focus on a different approach which is based 

on heuristic considerations [14]. This is to be considered as a toy-
model or a kind of “prototype” of what could be expected in 
optimistic quantum gravity scenarii. Our aim is to calculate the 
displacement of quasinormal modes and quantify the amplitude 
of the metric modification that would be required for an experi-
mental detection. This might be used beyond this specific model. 
Focusing only on non-rotating BHs we do not search for accurate 
results, that would be meaningless at this stage, but just try to es-
timate the orders of magnitude for future studies. In the next sec-
tion we briefly explain the method used to evaluate the frequency 
and amplitude of the ringing modes of BHs. Then, we explain the 
model used and explicitly show our results.

https://doi.org/10.1016/j.physletb.2019.06.033

0370-2693/ 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
SCOAP3 .



A. Barrau et al. / Physics Letters B 795 (2019) 346–350 347

2. Quasinormal modes

Quasinormal modes (QNMs) are the decaying modes of black 
holes. As BHs are vacuum solutions of the Einstein field equation, 
QNMs can be regarded as the intrinsic vibrational and damping 
properties of spacetime itself. After a BH has been perturbed, three 
phases can be distinguished: the transient event, the quasinormal 
mode ringdown, and the damped tail.

The ringdown phase of a BH does not lead to precisely “nor-
mal” modes because the system looses energy through gravita-
tional waves. The wave equation for the metric perturbation is 
unusual because of its boundary conditions: the wave should be 
purely outgoing at infinity and purely ingoing at the BH horizon. 
The radial part of the oscillation can be written (see [15] for an 
intuitive introductory review) as φ ∝ e−iωt = e−i(ωR+iωI )t where 
the complex pulsation ω decomposes in a real part ωR and an 
imaginary part ωI , which is the inverse timescale of the damping. 
The process is stable only when ωI < 0. Technically, the calculation 
of QNMs is quite reminiscent of the one of greybody factors (see, 
e.g., [16] for a recent derivation with a quantum-gravity modified 
metric) which describes the scattering of quantum fields in a BH 
background.

The perturbations of the Schwarzschild metric are of two differ-
ent types. One is called “axial”, it gives small values to the metric 
coefficients that were zero, inducing a frame dragging and rota-
tion of the black hole. The other is called “polar” and gives small 
increments to the already non-zero metric coefficients. They are 
governed by two different equations. Perturbations with the axial 
parity are given by the Regge-Wheeler equation with the potential

V RG
ℓ (r) =

(

1 −
2M

r

)[

ℓ(ℓ + 1)

r2
−

6M

r3

]

, (1)

while perturbations with the polar parity are given by the Zerilli 
equation with potential

V Z
ℓ (r) =

2

r3

(

1−
2m

r

)

×

×
9M3 + 3a2Mr2 + a2(1+ a)r3 + 9M2ar

(3M + ar)2
, (2)

where a = ℓ(ℓ +1)/2 −1. For gravitational perturbations, one needs 
ℓ ≥ 2. Importantly, those equations have the same spectrum of 
quasinormal modes. This isospectrality property [17] is not always 
true in modified gravity (those considerations are well beyond the 
scope of this article and will be studied in another paper [18]). 
Quasinormal modes are characterized by their overtone number 
n and their multipole number ℓ. For example, the fundamental 
quadrupolar mode (n = 0 and ℓ = 2) for a Schwarzschild BH is 
given by Mω ≈ 0.374 − 0.0890i.

The calculation of quasinormal modes is nearly an art in itself 
(see [19,20] for historical reviews and [21,22] for an example of 
more recent results based on numerical approaches). In this study, 
we use a WKB approach described in [23] for D-dimensional BHs. 
The WKB method for QNMs was first introduced in [24–27] and 
has then been widely developed. The WKB formalism is very use-
ful to obtain good approximations without having to rely on heavy 
numerical techniques. The higher the multipole number and the 
lower the overtone, the better the accuracy. We restrict ourselves 
to n < l as the approximations otherwise break down. Details on 
the validity of the WKB approximation can be found in [24] but, 
in any case, it requires the multipole number to be smaller than 
(or equal to, if the accuracy requirement is relaxed) the overtone 
number, otherwise the basic condition |k′| ≪ k2 (where k2 is the 
potential of the considered effective Schrödinger equation) does 
not hold.

In order to have a good numerical accuracy, we have used the 
6th order WKB method developed by Konoplya. It is presented 
in details in [23] (see also [28]). This allows one to recast the 
potential appearing in the effective Schrödinger equation ( d

2�

dx2
=

k(x)�(x)) felt by gravitational perturbations in the form

ik0
√

2k′′
0

− �2 − �3 − �4 − �5 − �6 = n +
1

2
, (3)

where the terms �i are complicated – but known – expressions 
given in [23] whereas k0 stands for the maximum of the potential 
and the derivative is to be understood with respect to the tortoise 
coordinate r∗ (defined by dr∗ = dr/ f where f is the metric func-
tion).

3. The model and its consequences

We now focus on the toy model developed in [14]. The idea 
is very simple. The curvature scale is of the order of lR ∼ R−1/2 , 
where the Kretschmann scalar is R2 := RμνρλR

μνρλ . If one esti-
mates the intensity of quantum gravitational effects through the 
ratio of Planck length over the curvature scale, the result is van-
ishingly small for stellar or supermassive BHs. This vision however 
disregards possible cumulative effects (also considered in [29–32]). 
Dimensional arguments lead to the conclusion that the “quan-
tumness” of spacetime, integrated over a proper time τ , might 
be given by q = lP R τ . As the proper time is related to the 
Schwarzschild time by

τ =
√

1−
2M

r
t, (4)

one is led to

q(r) =
M

r3

(

1−
2M

r

)
1
2

t. (5)

Throughout all this study, we use Planck units. The maximum of 
this function is reached for r = 2M

(

1+ 1
6

)

and this is therefore 
where quantum gravity effects could be expected to be intense.

The arguments previously given are obviously purely heuristic 
and should be considered as a rough indication of what might hap-
pen when time-integrated quantum corrections are optimistically 
considered. To remain quite generic, we parametrize a possible 
metric modification outside the horizon by a simple Gaussian func-
tion:

ds2 = − f (r)dt2 + f −1(r)dr2 − r2d�2, (6)

with

f (r) =
(

1−
2M

r

)(

1+ Ae
− (r−μ)2

2σ2

)2

. (7)

This Gaussian truncation of the Schwarzschild metric is not jus-
tified by any serious theoretical arguments. It should be seen as an 
effective metric encoding possible cumulative quantum effects out-
side the horizon. In addition it has the advantage not to shift the 
event horizon position. By varying the parameters A, μ, σ , one can 
explore different shapes and positions for the “quantum bump”. In 
the following, we shall quantify the displacement of the real and 
imaginary parts of the QNMs as a function of the parameters (μ
and σ are expressed in units of M).

The complex frequencies are displayed in Fig. 1. The black dots 
correspond to the general relativistic case whereas the blue ones, 



348 A. Barrau et al. / Physics Letters B 795 (2019) 346–350

Fig. 1. Quasinormal mode complex frequencies for different multipolar orders (from 
ℓ = 2 to ℓ = 7 from the left to the right) and for different overtone numbers n
(increasing from the lower points to the upper points). The black dots on the left 
correspond to the usual Schwarzschild case and the blue dots on the right corre-
spond to the modified metric with μ/M = 2.3 and σ /M = 1.5.

Fig. 2. Relative displacement of the real part of the quasinormal mode (ℓ = 8, n = 0) 
as a function of μ and σ for A = 0.01.

on the right, correspond to the considered modified case with μ =
(7/6)R S , A = 0.01, and σ /M = 1.5.

In Fig. 2, the relative displacement of the real part of the quasi-
normal mode (ℓ = 8, n = 0) is displayed as a function of μ and σ
for A = 0.01. The trend does not radically depend on the specific 
mode chosen. We have therefore plotted here a quite high multi-

polar number as the WKB approximation is more reliable in this 
case. Interestingly – but not that surprisingly – it appears that the 
maximum displacement is obtained for μ ≈ 3M . In the limit of 
very large l, the value tends exactly to 3M , which corresponds to 
the photon sphere and to the maximum of the potential. We have 
also considered in this figure a case where the maximum of the 
quantum correction is inside the horizon. Then, only the “tail” of 
the Gaussian does affect the external spacetime. Even if the ef-
fect is smaller, it is still clearly non-vanishing. Interestingly the 
2-dimensional surface is actually an ensemble of Gaussian func-
tions whose width on the μ axis happens to be (non trivially) 
equal to the considered value of σ .

In Fig. 3, the relative displacement of the imaginary part of the 
quasinormal mode (ℓ = 8, n = 0) is displayed as a function of μ
and σ for A = 0.01. For quite low values of σ , the displacement 
can be either positive or negative for different values of μ. This 
means that depending on its position the “metric bump” can either 
increase on decrease the damping of gravitational waves.

Fig. 3. Relative displacement of the imaginary part of the quasinormal mode (ℓ =
8, n = 0) as a function of μ and σ for A = 0.01.

Fig. 4. Relative displacement of the real part of the quasinormal mode (ℓ = 8, n = 0) 
as a function of μ and σ for A = 0.01 (upper curve at μ = 3) and A = −0.01.

Finally, Fig. 4 shows the influence of the sign of the parameter 
A. The displacement is basically symmetrical.

For most of the considered parameter space, the displacement 
of the real part – that is of the frequency – is of the same order 
than the one of the imaginary part – that is of the damping time. 
The easiest effect to measure is probably a frequency shift which 
happens to be always positive. Quite obviously, when the metric 
perturbation is very wide, its precise position looses any notable 
influence.

4. Observability

Although gravitational waves have been “detected” decades ago 
thanks to the Hulse-Taylor binary pulsar, the recent LIGO-Virgo 
detections (see [33] for the seminal paper and [34] for a first 
catalogue) have completely changed the game. Real astrophysical 
objects have spin and a modified Kerr solution should be con-
sidered, which is far beyond this prospective study. However, the 
global trends are expected to be the same and the orders of mag-

nitude of the effects should be correct. Surprisingly, the very first 
event measured, GW150914, has already led to a detection of the 
fundamental quasinormal mode. It is not obvious to determine 
precisely the accuracy at which the characteristics of the QNMs 
are constrained by the current measurements. A relative accuracy 
of 50% is a conservative estimate. In the future, the Einstein Tele-
scope (ET) should lead to a one order of magnitude better preci-
sion [35].

The most important parameter for this study is obviously the 
constant A which determines the amplitude of the correction. We 
have checked that the displacement of the QNMs complex fre-
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Fig. 5. Slope x of the real part of the quasinormal modes (n = 0) relative frequency 
evolution as a function of A for σ /M = 1.5. The different curves correspond to 
different values of μ.

Fig. 6. Slope y of the imaginary part of the quasinormal modes (n = 0) relative fre-
quency evolution as a function of A for σ /M = 1.5. The different curves correspond 
to different values of μ.

quency is linear as a function of A over the interesting range. In 
Fig. 5, we plot the slope of the real part of the QNM displacement 
versus A (i.e. the x parameter of Re(
ω/ω) = xA) as a function 
of ℓ, for σ /M = 1.5. The different curves correspond to different 
values of the position μ of the quantum bump. In Fig. 6, the very 
same thing is represented for the imaginary part of the QNM (i.e.
the y parameter of Im(
ω/ω) = yA). In Fig. 7 and Fig. 8, the value 
σ /M = 4 is instead chosen. It should be pointed out that in some 
cases the lowest values of ℓ are not displayed as the WKB approx-
imation breaks down and calculations could therefore be dubious.

Let us now get an order of magnitude of how those estimates 
relate to the toy model previously considered. As the x and y
slopes are of order one, and as the relative displacement that could 
be measured is also of order one, this means that the A parameter 
has to be of order unity so that the kind of quantum gravity effects 
studied here could be measured. If A is assumed to be roughly 
comparable to the “quantumness” q introduced in the second sec-
tion, one is led to the conclusion that q should be of order one. It 
is easy to check that

qmax =
(

3

7

)3
√

1

7

t

M2
. (8)

If one sets t to be the age of the Universe, the mass value re-
quired so that the quantum gravity effects can be observed is of 

Fig. 7. Slope x of the real part of the quasinormal modes (n = 0) relative frequency 
evolution as a function of A for σ /M = 4. The different curves correspond to differ-
ent values of μ.

Fig. 8. Slope y of the imaginary part of the quasinormal modes (n = 0) relative 
frequency evolution as a function of A for σ /M = 4. The different curves correspond 
to different values of μ.

the order of 10−8 (or less) solar mass, that is roughly the mass 
of the Moon. Although far smaller than the mass of stellar black 
holes, this value is not ridiculously small and way higher than the 
Planck mass. An important property of the QNMs lies in the fact 
that the relevant value is the one of Mω: it is the product of the 
mass by the frequency that has a given (complex) value. The char-
acteristics of the QNMs of a lighter BH are exactly the same than 
those of a heavier one, they are simply shifted to higher frequen-
cies by the mass ratio. Some quantum corrections might explicitly 
break this scaling law. This is the case of the Hayward metric con-
sidered below.

It should first be pointed out that the work presented here aims 
at being quite generic and is not directly linked with the proposal 
[14]. The plots previously shown can be used to get an estimate 
of the QNMs displacement for any model with a roughly gaussian 
modification to the metric. In addition, and very speculatively, it 
could be argued that the maximum possible time to be used to 
evaluate the mass (the higher the time, the higher the mass) is 
not necessarily bounded by the age of the Universe: in quantum 
gravity a “bounce” is possible [36] and black holes could survive 
during this bounce [37]. In principle it is therefore conceivable that 
a time much larger than the inverse Hubble parameter could used 
[38,39], leading to measurable quantum gravity effects in QNMs at 
much higher masses
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5. The Hayward metric

Recently, an effective metric for Planck stars [13] has been pro-
posed in [40]. The idea is to cure two usual inconsistencies of most 
metrics: the absence of a correct treatment of the time dilatation 
between the center and infinity and the failure to reproduce 1-loop 
quantum corrections (as calculated e.g. in [41]). As a step in this di-
rection, the authors make use of the Hayward metric (revived in a 
quantum gravity context [42]):

F (r) = 1−
2m(r)

r
. (9)

Several proposals were made for the function m(r). We consider 
here the original version [43] where

m(r) =
M r3

r3 + 2ML2
, (10)

where L has the dimensions of a length. We consider only the case 
where L < 4

3
√
3
M , otherwise there is no horizon. We have investi-

gated the displacement of QNMs as a function of L – which intu-
itively quantifies the scale of “quantumness” – for a given mass. 
As expected, the minimal required value of L, for a given relative 
QNM move, is proportional to M . If we require (
ω

ω ) to be of the 
order of a few percent (that is in the ET sensitivity range), the min-

imum value of L is of the order of 0.7 mass units. More specifically 
(
ω

ω ) ∼ 5% is achieved for L/M ∼ 0.72. For a macroscopic BH, this 
is much larger than the Planck length and this means that in such 
approaches the quantum modifications would need to be extend-
ing substantially beyond the usually assumed length scale.

6. Conclusion and prospects

We have shown that if quantum gravity effects leak outside the 
horizon of a Schwarzschild black hole, the quasinormal modes can 
– as expected – be substantially modified. Using a gaussian trun-
cation of the metric structure, we have studied the influence of all 
the parameters describing the perturbations. In particular, we have 
quantified the amplitude of the quantum bump required for obser-
vation. Using a toy-model, we have translated the derived values 
into an upper limit on the mass leading to observable effects.

In the future, this approach should be refined by considering 
a rotating black hole. It would also be important to estimate de 
possible degeneracies: could the change in frequency and damping 
rate mimic a usual BH of different mass and spin?

Finally, it would be welcome to consider more realistic metrics 
based on heuristic quantum gravity arguments, in particular based 
either on loop quantum gravity black holes (see [44] for a review) 
of on string black holes (see [9] for interesting new ideas).
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Figure 3.2 – La surface d’un trou noir en LQG, caractérisée par l’ensemble des aires qui intersectionnent
les liens du réseau de spin à l’horizon du trou noir [78].

3.4 Revue sur les différents aspects des trous noirs en LQG

Dans cette revue, on présente plusieurs caractéristiques associés à la LQG sur la phénoménologie
des trous noirs. Certains aspects ont déjà été abordés dans les articles précédents : la phénoménologie
des trous noirs en rebond (section 3.1) et la section efficace des trous noirs quantiques à boucles
(section 3.2). Le reste ne concerne pas mes travaux directement ainsi je ne vais pas m’étendre sur cette
revue. Cependant, je vais tout de même présenter un aspect important.

En LQG, nous avons vu qu’un des résultats majeurs était la quantification de l’aire (1.154). On peut
alors définir l’aire d’un trou noir en LQG comme la somme des aires associées aux liens (du réseau de
spin) qui intersectent la sphère d’horizon du trou noir (voir Figure 3.2). On a

A j = 8πγ
N∑

n=1

√
jn( jn + 1), (3.109)

avec N le nombre de liens qui intersectent la surface. Ainsi l’évaporation d’un trou noir en LQG ne
s’effectue pas de façon continue mais par transition d’aires discrètes (parmi les aires autorisées du
spectre (1.154)).
Cette structure discrète va se retrouver dans le rayonnement de Hawking. Pour étudier ce phénomène,
une simulation Monte Carlo a été effectuée

— une particule aléatoire est choisie selon son poids en dégrées de liberté dans le modèle standard ,

— la probabilité de passer d’une aire A à une autre est décrite par

P(A→ A − δA) = Γe−δS , (3.110)

avec Γ qui dépend de la particule et S l’entropie.

— l’énergie de la particule émise donnée par la perte de masse du trou noir : E = dM.
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Sur la Figure 1 de l’article, on présente le nombre de trous noirs qui devraient être observés afin de
distinguer le modèle classique du modèle LQG à partir du spectre de photon émis en fonction de
l’erreur relative sur la reconstruction en énergie. La théorie classique décrit la relation entre A et S via
l’équation de Hawking-Bekenstein

S =
A

4
. (3.111)

En LQG, le paramètre de Barbero-Immirzi γ est un paramètre a priori libre de la théorie. En prenant
en compte la dégénérescence de la matière, ce paramètre modifie la relation aire/entropie

S =
A

4
+

√
πA

6γ
+ o(
√

A). (3.112)

Sur la Figure 3, on observe comment le spectre intégré dépend de γ. Le fond du spectre correspond à
la partie continue du modèle classique mais à cela s’ajoute pics qui caractérisent la discrétisation du
modèle.

La gravité quantique n’est pas élaborée totalement, il existe d’ailleurs plusieurs modèles. Du point
de vue expérimental, il semble presque impossible de pouvoir sonder directement des effets de gravité
quantique. Mais on observe que grâce aux trous noirs (et également la cosmologie), de tels effets
pourraient être observables. Du point vue théorique, la LQG connait encore des difficultés. Néanmoins,
à partir de la théorie mère il est déjà possible de décrire des modèles simplifiés auxquels on peut
associer de la phénoménologie. Et il apparaît que ces prédictions sont différentes de celle décrites
par la RG. Ainsi, la phénoménologie des trous noirs fait de la LQG, non plus un simple modèle
mathématiques, mais la fait rentrer dans le domaine de la science grâce à ses prédictions a priori
observables.

Cet article a été publié dans Universe [79].



Article

A Status Report on the Phenomenology of Black
Holes in Loop Quantum Gravity: Evaporation,
Tunneling to White Holes, Dark Matter and
Gravitational Waves

Aurélien Barrau * , Killian Martineau and Flora Moulin

Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS-IN2P3 53,

Avenue des Martyrs, 38026 Grenoble Cedex, France; martineau@lpsc.in2p3.fr (K.M.); moulin@lpsc.in2p3.fr (F.M.)

* Correspondence: barrau@in2p3.fr

Received: 28 August 2018; Accepted: 21 September 2018; Published: 2 October 2018

Abstract: The understanding of black holes in loop quantum gravity is becoming increasingly

accurate. This review focuses on the possible experimental or observational consequences of the

underlying spinfoam structure of space-time. It addresses both the aspects associated with the

Hawking evaporation and the ones due to the possible existence of a bounce. Finally, consequences

for dark matter and gravitational waves are considered.
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1. Introduction

The Planck length is 1015-times smaller than scales probed at colliders. Linking quantum

gravity with observations is therefore extremely hard (see, e.g., [1] for a recent review and [2–4]

for complementary viewpoints). Most works devoted to the connection of quantum gravity with

experiments are focused on cosmology or astroparticle physics. In the cosmological sector, the main

goal consists of calculating scalar and tensor power spectra (see, e.g., [5,6]), together with the

background dynamics (see, e.g., [7,8]). In the astroparticle physics sector, the main idea is to investigate

the possible consequences of the granular structure of space (see, e.g., [9] for a recent investigation).

Although black holes (BH) have been intensively studied in quantum gravity, those investigations

were mostly disconnected from observations and focused on consistency issues. Recovering, at the

leading order, the Bekenstein–Hawking entropy is, for example, obviously a major requirement for all

tentative theories (see, e.g., [10] and the references therein). Curing the central singularity—understood

as a classical pathology—is another one (see, e.g., [11,12]). Solving the information paradox

(see, e.g., [13] and the references therein) would also be highly desirable (this is clearly connected to

the previous issues).

In this article, we focus on black holes as possible probes for loop quantum gravity (LQG).

We begin by a very short summary of the basics of black hole physics in this framework. We then

switch to consequences for the Hawking evaporation, considering different possible perspectives.

The quite recent (within the LQG setting) hypothesis of black holes bouncing into white holes is

presented with the possible associated signals. Finally, we critically review the possible links with dark

matter and conclude with the prospect for gravitational waves.

2. Basics of Black Holes in Loop Quantum Gravity

The study of black holes is an incredibly fruitful field of theoretical physics. Black holes are simple

objects. They are pure geometry. There is no equation of state needed: they are just vacuum solutions

Universe 2018, 4, 102; doi:10.3390/universe4100102 www.mdpi.com/journal/universe
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to the Einstein equations. This is their first fundamental characteristic. The second specificity of black

holes lies in the fact that they are (classically) scale invariant [14]. They can, in principle, exist at

any mass.

As far as quantum gravity is concerned, the major breakthrough came from black hole

thermodynamics. Because of the no-hair theorem, in Einstein gravity, the most general stationary

black hole geometry is described by the Kerr–Newman (KN) solution with mass M, electric charge q

and angular momentum j as the only parameters. One can define three length scales characterizing

the BH [14]: m ≡ GMc−2, Q ≡
√

Gqc−2 and a ≡ jM−1c−1. There exists a BH solution only when

Q2 + a2 ≤ m2. One can show, from the area expression, that:

d(Mc2) = ΘdA + ΦdQ + Ωdj (1)

with

Θ ≡ c4(2GA)−1(rg − m), (2)

Φ ≡ q rg(r
2
g + a2)−1, (3)

Ω ≡ j m−1(r2
g + a2)−1, (4)

rg = 2m being the gravitational radius. The parameters Θ, Φ and Ω can be understood as the surface

gravity, the electrostatic potential and the angular momentum.

As Mc2 is the energy, this equation looks like the first law of thermodynamics TdS = dE − ΦdQ −
Ωdj. This led to the introduction of a temperature:

TH = (2ch̄/A)
√

M2 − Q2 − a2, (5)

and entropy:

SBH = A/4ℓP
2, (6)

yielding the evaporation process [15]. The second BH law expresses the fact that the sum of the BH

entropy together with the entropy outside the BH cannot decrease (from now on, unless otherwise

stated, we use Planck units).

The description of BHs in LQG heavily relies on the concept of isolated horizons (IH) [16–20].

This is an intrinsically quasilocal notion, which has the advantage of not requiring the knowledge

of whole spacetime to determine whether horizons are present, as is the case with event horizons.

The most important characteristics of isolated horizons are [10]: their quasilocality, the availability of

a Hamiltonian description for the sector of GR containing the IH, the possibility of finding physical

versions of the laws of BH thermodynamics and the existence of local definitions of the energy and

angular momentum.

This article focuses on the consequences and not on the theoretical definition of an LQG BH,

but recent pedagogical reviews on BH in LQG can be found, e.g., [21–27].

Very schematically, the isolated horizon plays the role of a boundary for the underlying manifold

before quantization. Given the area A of a Schwarzschild BH horizon, the geometry states of the BH

horizon arise from a punctured sphere. Each puncture carries quantum numbers (see, e.g., [28–31] for

details): two labels (j, m), where j is a spin half-integer carrying information about the area and m is

the corresponding projection carrying information about the curvature. They fulfill the condition:

A − ∆ ≤ 8πγ ∑
p

√

jp(jp + 1) ≤ A + ∆, (7)

where γ is the Barbero–Immirzi parameter entering the definition of LQG (see, e.g., [32]), ∆ is the

“smearing” area parameter (or coarse-graining scale) used to recover the classical description and p

refers to different punctures. In addition, one requires:
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∑
p

mp = 0, (8)

which means that the horizon has a spherical topology. Many aspects of the BH entropy were studied

in this framework, and we shall mention some of them in the following.

3. Modified Hawking Spectrum

One cannot directly measure the entropy of a BH. Therefore, even if some quantum gravity

approaches do predict some corrections with respect to the Bekenstein–Hawking law, this can hardly

be considered as a smoking gun for observational aspects of quantum geometry. On the other hand,

one might observe the evaporation of a black hole. This would require light black holes (the temperature

of a solar-mass BH is far below the one of the cosmological microwave background) whose existence is

far from obvious. At this stage, the Hawking evaporation of BHs therefore remains purely theoretical

(although there are some hints that this could have been observed in analog systems [33]). However,

it is in principle observable and might constitute a path toward experimental quantum gravity.

There exist quite a few attempts to deal with evaporating black holes in effective approaches

to quantum gravity. Among such attempts, one can mention results derived from the generalized

uncertainty principle, which aims at generalizing the Heisenberg uncertainty relation by introducing

gravity effects. In this framework, one case shows that there exist a maximum and a minimum

temperature for BHs [34–36]. Some models also lead to a vanishing temperature close to the end of

the evaporation (see, e.g., [36,37]). The path considered in the following is different and tries to use

the exact area spectrum form the full theory. There are no bounds on the temperature (beyond trivial

ones), but the energy spectrum of emitted particles can become discrete and keep the footprints of the

underlying quantum gravity theory.

3.1. Global Perspective

The first obvious idea to investigate LQG footprints is to consider the deep Planckian regime of

an evaporating BH by taking into account the discrete structure of the area operator eigenvalues in

LQG. An edge with spin representation j of SU(2) carries an area of eigenvalue:

Aj = 8πγ
√

j(j + 1), (9)

where j is, again, a half-integer. A BH surface punctured by N edges therefore exhibits, as explained

previously, a spectrum given by:

Aj = 8πγ
N

∑
n=1

√

jn(jn + 1), (10)

where the sum is carried out over all intersections of the edges with the isolated horizon. As the area

spectrum in discrete, BHs can only make discontinuous jumps, and the evaporation spectrum will

inevitably be modified.

In [38], a Monte Carlo simulation was carried out to investigate to what extent the associated line

structure can be discriminated from the usual continuous (envelope of the) spectrum. The algorithm

was based on an improved version of the method given in [39], enhanced by an efficient numeration

scheme based on a breadth-first search. The probability for the transition from a BH state to another is

expressed as the exponential of the entropy difference, weighted by the greybody factor. As the optical

limit was not satisfactory to derive accurate results, the full greybody factor obtained by solving the

wave equation in the (classical) Schwarzschild background was used. The simulation was started at

200 APl , where APl is the Planck area.

At each step n of the simulation, starting from a BH mass Mn, a new mass Mn+1 is randomly

determined within the available spectrum, according to the probability law previously given. A particle
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type is then randomly selected from the standard model, according to the weighted number of internal

degrees of freedom (and among those with a mass smaller than ∆M). The available energy Mn − Mn+1

is assigned to this particle, and the process is repeated. The analysis presented in the following was

carried out considering only the emitted photons, that is approximately 1.5% of the emitted quanta.

This choice is motivated by the fact that they keep their initial energy (quarks and gluons lead to jets),

and they are easy to detect (neutrinos are not), stable (muons or tau leptons do decay) and unaffected

by magnetic fields (electrons are).

The simulation was repeated many times to account for different possible realizations of the

process. As expected, the time-integrated spectrum exhibits lines that are not present in the standard

Hawking spectrum. The time integrated differential Hawking spectrum scales as E−3, where E is

the energy of the emitted photons. In this case, it becomes a truncated power-law as the available

energy is limited. To test to what extent the LQG spectrum can be distinguished from a standard

Hawking spectrum, a Kolmogorov–Smirnov (K-S) test was implemented. The K-S statistics measures

the distance between the cumulative distribution functions of the considered distributions and can be

used for a systematic study of discrimination capabilities.

Figure 1 shows the number of evaporating BHs, seen in their final stages, that would be required

to discriminate at a given confidence level between the Hawking spectrum and the LQG spectrum,

depending on the experimental uncertainty of the measure of the energy of the detected photons.

This latter parameter is mandatory. If the resolution were infinite, a single photon could nearly allow

one to discriminate, but this is obviously never the case. The results are theoretically appealing,

but experimentally challenging.
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Figure 1. Number of BHs that would have to be observed as a function of the relative error on the energy

measurement for different confidence levels (the color scale corresponds to the number of standard

deviations). Upper plot: discrimination between loop quantum gravity (LQG) and the Hawking

spectrum. Lower plot: discrimination between LQG and the Mukhanov–Bekenstein hypothesis [40].

From [38].
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Another interesting feature is the following. The end of the evaporation in the LQG framework

consists of the emission of a few particles, whose energies are given by the mass difference between

BH states. In the usual Hawking view, the situation is very different. The evaporation is expected

to stop somehow slowly (when compared to the previous stages). Because the energy available

inevitably becomes, at some point, smaller that it should be (in the sense that M becomes smaller that

the associated temperature 1/(8πM)), the process slows down and the energy of the emitted particles

decreases. In [38], it was shown that this might be used as another discrimination tool between models.

It could also be that a periodicity with broader peaks does appear in the emitted spectrum,

due to the “large scale” structure of the area spectrum. This has been discussed in [39]. In that case,

the Hawking/LQG spectra could also be discriminated for higher mass black holes [38]. This possibility

is however extremely unlikely, and we will not discuss it further, as a damping in the pseudo-periodicity

is expected to take place [41–43].

This analysis was pushed further in [44], where recent results are accounted for. The fundamental

excitations are now better understood as living on the horizon and as being elements of the Hilbert

space of a SU(2) Chern–Simons theory [45,46]. The quantization of such a Chern–Simons theory

with a compact gauge group is well defined, and the kinematical characteristics of a quantum black

hole become quite clear [47–49]. The role of the Barbero–Immirzi parameter γ was studied in detail,

and recovering the Bekenstein–Hawking entropy has been considered as a way to fix its value. It is

however the coupling constant with a topological term in the action of gravity, with no consequence

on the classical equations of motion. The strong dependence of the entropy calculation on γ therefore

remains controversial. Much progress has been recently made [50–54]. The canonical ensemble

formulation of the entropy making use of a quasi-local description shed a new light on the subject.

The semi-classical thermodynamical properties can actually be recovered for any value of γ if one

assumes a non-trivial chemical potential conjugate to the number of horizon punctures. A possible

fundamental explanation to the exponential degeneracy would be to consider the area degeneracy as an

analytic function of γ and to make an analytical continuation from real γ to complex γ. This suggests

that the quantum gravitational theory, defined in terms of self-dual variables, could account for the

holographic degeneracy of the area spectrum of the BH horizon.

Two models of black holes were studied by a full MC simulation in [44]. The first is based

on the naive microcanonical view. It takes into account only the quantum geometry excitations,

leading to [55]:

S =
γ0

γ

A

4
+ o(log(A)), (11)

where γ0 is of order one. Then, holographic black holes, where one uses the matter degeneracy

suggested by quantum field theory with a cut-off at the vicinity of the horizon (that is, an exponential

growth of vacuum entanglement in terms of the BH area), were considered. The entropy becomes:

S =
A

4
+

√

πA

6γ
+ o(

√
A). (12)

The simulation has been performed with 107 evaporating black holes. Figure 2 shows the

results for different values of the Barbero–Immirzi parameter γ. This γ dependence interestingly

shows up even though the leading order term of the black hole entropy, which mainly governs the

transitions during the evaporation process, does not depend on γ. This phenomenon is fully quantum

gravitational in nature and is both due to the fact that γ enters in the discretization of the area spectrum

and shows up in the sub-leading corrections to the entropy. The effects of a detector finite energy

resolution are shown in Figure 3.

This shows that the Hawking spectrum of a LQG BH has two distinct parts: a nearly continuous

background corresponding to the semi-classical stages of the evaporation and a series of discrete peaks

associated with the deep quantum structure. Interestingly, γ has an effect on both parts and becomes
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somehow measurable. In all cases, there are significant differences with the usual Hawking picture in

the last stages.

 A∆
0 5 10 15 20 25 30 35 40 45
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210
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610 =.2γ

=.3γ
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Hawking

Figure 2. Spectrum of a holographic black hole for different values of γ as a function of ∆A. From [44].
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Figure 3. γ dependence of the integrated spectrum, as function of the energy of the emitted particle,

in the holographic model, with a detector energy resolution of 5%. From [44].

3.2. Greybody Factors

When dealing with evaporating black holes, a key element is the greybody factor; closely related

to the absorption cross-section. The Hawking effect is approximated by a blackbody spectrum at

temperature TH = 1/(8πM) with M the mass of the BH. However, the emitted particles have to cross

a (gravitational and centrifugal) potential barrier before escaping to infinity. This induces a slight

modification of the spectrum, captured by the cross-section σ. The spectrum reads as:

dN

dt
=

1

e
ω

TH ± 1
σ(M, s, ω)

d3k

(2π)3
, (13)



Universe 2018, 4, 102 7 of 26

with s the particle spin, ω its energy and k its momentum. The cross-section is, in general, given by:

σ(ω)s =
∞

∑
l=0

(2j + 1)π

ω2
|Al,s|2, (14)

where Al,s is the transmission coefficient of the mode with angular momentum l and j = l + s is

the total angular momentum. It has been shown, in many different frameworks, to encode much

information on the chosen gravitational theory or on the underlying background spacetime. In the

framework of LQG, those cross=sections have been studied only in [56].

The emphasis was put on BHs as described in [57,58], where, instead of all a priori possible

closed graphs, a regular lattice with edges of lengths δb and δc was chosen. The resulting dynamical

solution inside the horizon is analytically continued to the region outside the horizon. Requiring

that the minimum area is the one found in the LQG area operator spectrum, the model is reduced to

one free parameter δ, the so-called dimensionless polymeric parameter. The effective LQG-corrected

Schwarzschild metric is then given by:

ds2 = −G(r)dt2 +
dr2

F(r)
+ H(r)dΩ2 ,

G(r) =
(r − r+)(r − r−)(r + r∗)2

r4 + a2
o

,

F(r) =
(r − r+)(r − r−)r4

(r + r∗)2(r4 + a2
o)

,

H(r) = r2 +
a2

o

r2
, (15)

where dΩ2 = dθ2 + sin2 θdφ2, r+ = 2m and r− = 2mP2 are the two horizons and r∗ =
√

r+r− = 2mP,

P being the polymeric function defined by P = (
√

1 + ǫ2 − 1)/(
√

1 + ǫ2 + 1), with ǫ = γδ, and the

area parameter ao is given by a0 = Amin/8π. The parameter m in the solution is related to the ADM

mass M by M = m(1 + P)2.

The case of massless scalar fields is quite easy to deal with. Since the BH is static and spherical,

the field can be written as Φ(r, θ, φ, t) = R(r)S(θ)ei(ωt+mφ) and the generalized Klein–Gordon

equation is:

1√−g
∂µ(gµν

√

−g∂νΦ) = 0, (16)

Leading the metric given in Equation (15) to the radial equation:

√
GF

H

∂

∂r

(

H
√

GF
∂R(r)

∂r

)

+

(

ω2 − G

H
l(l + 1)

)

R(r) = 0. (17)

Using the tortoise coordinate dr∗2 ≡ dr2

GF , one can impose the appropriate boundary conditions,

fit the asymptotic solutions and sum over the different values of l to get the final cross-section, which is

given in Figure 4.
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Figure 4. Emission cross-section for a scalar field with energy ω for a loop BH of mass M for different

values of ǫ. From bottom to top: ǫ = 10{−0.3,−0.6,−0.8,−1,−3}. The blue line, corresponding to ǫ = 10−3,

is superposed with the cross-section for a Schwarzschild BH. From [56].

The cross-section decreases when ǫ increases. One can also notice a shift of the pseudo-periodic

oscillations toward a lower frequency (in Mω). When ǫ < 10−0.8, it is hard to distinguish between

the solutions. From the phenomenological viewpoint, it seems that taking into account the quantum

corrections does not substantially influence the cross-section of a scalar field for reasonable values

of ǫ (that is ǫ ≪ 1). The main trend is however clear, and if the actual value of ǫ happened to be

unexpectedly high, it could be probed by a reduced cross-section.

The case of fermions is more complicated, and a specific derivation of the Dirac equation in the

Newman–Penrose formalism had to be developed in [56].

The Dirac equation in the Newman–Penrose formalism reads:

(D + ǫ − ρ)P0 + (δ∗ + π − α)P1 = iµ∗Q
1′

, (18)

(∆ + µ − γ)P1 + (δ + β − τ)P0 = −iµ∗Q
0′

, (19)

(D + ǫ∗ − ρ∗)Q
0′
+ (δ + π∗ − α∗)Q

1′
= −iµ∗P1, (20)

(∆ + µ∗ − γ∗)Q
1′
+ (δ∗ + β∗ − τ∗)Q

0′
= iµ∗P0, (21)

Using the tetrad given in [56] and the following ansatz:

P0 =
ei(ωt+m′φ)

√

H(r)(G(r)F(r))
1
8

R+(r)S+(θ), (22)

P1 =
ei(ωt+m′φ)

√

H(r)(G(r)F(r))
1
8

R−(r)S−(θ), (23)

Q
0′
= − ei(ωt+m′φ)

√

H(r)(G(r)F(r))
1
8

R+(r)S−(θ), (24)

Q
1′
=

ei(ωt+m′φ)

√

H(r)(G(r)F(r))
1
8

R−(r)S+(θ), (25)
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which makes the system separable. Basically, one is led to the following equation for the R+ component

of the Dirac spinor (the equation for R− is the conjugate):

√
HFD

( √
HFD†

λ − ime

√
H

R+

)

− (λ + ime

√
H)R+ = 0, (26)

with D a radial operator:

D = ∂r +

(

G′

8G
− F′

8F

)

+
iw√
GF

. (27)

The separation constant λ is obtained by solving the angular equation, leading to λ2 = (l + 1)2 for

fermions. Results are given in Figure 5. Once again, the general trend is a decrease of the cross-section

when the “quantumness” increases. In addition, it was shown that the existence of a non-vanishing a0

is the reason for the slight increase of the cross-section on the first peak. The polymerization parameter

and the minimal area do have different consequences.

0.0 0.2 0.4 0.6 0.8 1.0
Mω16

18

20

22

24

26

σ

Figure 5. Emission cross-section for a fermionic field, with energy ω, for a loop BH of mass

M. From bottom to top: ǫ = 10{−0.3,−0.6,−0.8,−1,−3}. The dashed dark curve corresponds to the

Schwarzschild cross-section. From [56].

The considered polymerized model [57] is just a first attempt and by no means a final statement

on the quantum corrected geometry around an LQG BH. The same work on greybody factors should

be carried out for models like [59–61], to cite only a few. This however shows that some non-trivial

features can be expected.

3.3. Local Perspective

The previous view is based on the idea that the Hawking evaporation should be considered as

a global phenomenon. The BH emits a particle and undergoes a transition from one area eigenstate

to another one. When the BH is large, the density of states grows exponentially and reads (we make

the Newton constant dependance explicit here) as ρ(M) ∼ exp(M
√

4ßG/3), which means that the

spectral lines are virtually dense in frequency for high enough masses. No quantum gravity effects are

therefore expected well above the Planck mass.
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This view is however not that straightforward. When the BH undergoes a transition from the

mass M1 to the mass M2, which is extremely close to M1 if the black hole is massive, the quantum

state after the jump is—in the global perspective—completely different from the initial one. The final

state corresponds to values of the spins (labeling the SU(2)representations of the edges puncturing

the horizon or colors of the graph) that are generically deeply different from the ones of the initial

state. Assuming that the quasidense distribution of states is correct requires a full reassigning of the

quantum numbers for every single transition, which is in tension with a quantum gravitational origin

of the evaporation process. As we will explain later, if, instead, one assumes that the evaporation is

due to a change of state of an “elementary area cell”, there is no reason for all of the other surfaces

paving the horizon to change simultaneously their quantum state (as argued, e.g., in [62]). This even

raises a causality issue: how can a “far away” elementary cell know how it should change to adjust to

the others?

Another view, to account for this issue, was however suggested in [63] (somehow in the line

of [64]), assuming that each particle emitted is basically due to the relaxation of the BH following a

change of state of a single elementary cell. This was called a local quantum gravity dynamics. This does

not assume that local processes magically know the global BH quantities like temperature, entropy

and mass: after the quantum jump, without any a priori knowledge of the picture, the BH relaxes

through a semiclassical process consistent with the energy available. This naturally leads to a spectrum

whose properties fit the Hawking description.

This hypothesis leads to phenomenological results comparable to those of [40], but with a clear

foundation in the LQG framework. The key point is that the same change of area dA (∼ APl) implies

a relative peak separation in the spectrum dE/T, which is independent of the BH mass. Quantum

gravity effects can therefore be expected to be measured for masses arbitrarily far above the Planck

mass. This deeply contrasts with what was believed to be expected in initial LQG studies. The density

of reachable states is no longer quasidense.

The eigenvalues of the area operator given by Equation (44) are not equally spaced: only in the

large-j limit does a regular line spectrum arise. It is shown in [63] that this interesting feature could

allow one to distinguish between different LQG models of black holes (in particular those in the line

of [28] favoring low spin values and the holographic ones [51] where higher spins could dominate).

If one calls nA0/2 the area variation associated with one quantum jump, n being an integer and

A0 the basic area ∼ APl , the relative variation of energy of the emitted particles between emissions

is ∆E/E ≈ nA0/(2A). The change in energy is therefore negligible, and the line structure should be

observable if it exists: the BH mass evolution during its evaporation does not erase this feature.

The criterion for the detection of a signal coming from an evaporating primordial black hole

(PBH) [65] consists of asking for a mean time ∆t between two measured photons smaller than a given

reference time interval ∆t0. This allows one to estimate a maximum distance for detection of:

Rmax ≈
√

S∆t0

M
. (28)

The realistic case however corresponds to the signal emitted by a distribution of PBHs with

different masses. Does the global line structure remain? It was shown that if the temperature of the

universe does not change by more that 5–10% during the formation of the considered PBHs, the line

structure holds.

Another issue had to be considered seriously: when the temperature of the BH is higher than

the quantum chromodynamics (QCD) confinement scale, the evaporating BH also emits partons that
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will fragment into hadrons. Some of those will then decay into gamma-rays, denoted as “secondary”.

The secondary instantaneous spectrum reads as:

d2Nγ

dEdt
= ∑

j

∫ ∞

Q=E
αjΓj(Q, T)

(

e
Q
T − (−1)2sj

)−1
(29)

×
dgjγ(Q, E)

dE
dQ,

where j = 1, ...6 is the flavor, sj = 1/2 ∀j, dg(Q, E)/dE is the normalized differential fragmentation

function (determined using the “Lund Monte Carlo” PYTHIAcode [66]), Q being the quark energy,

T the temperature of the black holes, α the number of degrees of freedom, Γ the cross-section and E the

photon energy. The time-integrated spectrum is then given by:

dNγ

dE
=
∫ M f

Mi

d2Nγ

dEdt

dt

dM
dM. (30)

Those secondary photons will obviously not exhibit the line structure of quantum gravitational

origin. The numerical simulation performed in [63] however shows that, quite surprisingly,

those electromagnetic quanta are not numerous enough to wash out the primary signal and its

line structure, which could indeed still be measured. The amplitude of the secondary component is

indeed comparable to the amplitude of the primary one.

If this local view for the evaporation of black holes is correct, this means that this should lead to a

line structure in the spectrum, even arbitrarily far away from the Planck mass.

4. Bouncing Black Holes

4.1. The Model

Recently, the possibility that black holes could actually be bouncing objects has been revived.

In its current “LQG-compatible” version, the model was first introduced in [67], and its consequences

were studied in [68]. It was then refined in [69,70]. Basically, the idea is that what happens to the

Universe in LQC, that is a bounce, should also happen to black holes. As the contracting Friedmann

solution is connected to the expanding one by a quantum tunneling, the classical black hole solution

is expected to be glued to the white hole one by quantum gravitational effects. This is in line with

other works based on different assumptions, e.g., [71,72]. The process takes a time proportional to M2,

whereas the Hawking process requires a time of order M3. Black holes would therefore bounce before

they evaporate, and the Hawking radiation would be seen as a kind of a dissipative correction.

The important result of [69] is that a metric exists for a bouncing black-to-white hole. It is a solution

to the Einstein equations outside a finite region and beyond a finite time duration. This means that it is

possible to have a bounce from a black hole into a white hole without any spacetime modification at a

large radius. The quantum region extends slightly outside the Schwarzschild radius and can have a

short duration. The associated Penrose diagram is shown in Figure 6.

Because of the gravitational redshift, the bounce is seen as nearly “frozen” by a distant observer,

but it is extremely fast for a clock co-mobile with the collapsing null shell. In this sense, a BH is a star

that is collapsing and bouncing, seen at very slow motion from the exterior.

The key-point is to assume that classicality might not be determined by, e.g., the Kretschmann

invariant (R2 = RabcdRabcd), but by:

q = l2−b
P R τb, (31)

with b of order unity and τ the (asymptotic) proper time. In this expression, units have been reinserted

for clarity. This opens the door to a possible cumulative effect like in the decay of an unstable nucleus.
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Figure 6. Causal diagram for a bouncing black hole, from [69]. (I) is flat; (II) is Schwarzschild; and (III)

is the “quantum gravity” region.

The metric is entirely determined by two functions of u and v,

ds2 = −F(u, v)dudv + r2(u, v)(dθ2 + sin2 θdφ2), (32)

whose explicit expression has been calculated in [69]. Interestingly, this also means that strong quantum

gravity effects may appear outside the event horizon (which becomes, in this context, a trapping

horizon) at R = (7/6)RS [73]. As far as this study is concerned, the key-point is that the bouncing

time is given by τ = 4kM2 (although this expression is hard to recover from the full theory [74]). The k

parameter has a lower bound (k > 0.05) and will be varied in the next sections.

4.2. Individual Events and Fast Radio Bursts

The question of the detectability of those bouncing black holes naturally arises. At this stage,

a detailed model for the emission from the white hole is missing. Two hypothesis can however

reasonably by made.

The first one is simply based on dimensional analysis. The hole size is the only scale of the

problem. It is therefore expected that the wavelength of the emitted radiation is of the order of the
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bouncing BH diameter. This makes clear sense, and this is in agreement with what happens, e.g.,

during the Hawking evaporation. The associated signal is called the low-energy component.

The second hypothesis relies on the symmetry of the process (this might not be completely

true [75], but this does not change the argument). What goes out of the white hole is what went in the

black hole. In this model, the bouncing star is formed by a collapsing null shell. The energy of the

emitted radiation should therefore be the same as the one of the incoming photons. If we consider

PBHs formed in the early universe by the collapse of over-densities, the correspondence between the

mass and the time is known. Time is also in one-to-one correspondence with the temperature of the

Universe. Therefore, for a given BH mass, one can calculate the energy of the emitted radiation, called

the high-energy component.

The idea of explaining fast radio bursts (FRBs) by bouncing black holes was suggested in [76].

Basically, FRBs are intense radio signals with a very brief duration. Events were, among others,

observed at the Parkes radio telescope [77–79] and by the Arecibo Observatory [80]. Could they be

explained by (the low-energy component of) bouncing black holes?

As mentioned before, the bouncing time can be estimated to be of the order of:

τ = 4k M2. (33)

For the phenomenology of FRBs, one sets the parameter to its lowest possible value: k = 0.05.

PBHs with an initial mass around:

MtH
=

√

tH

4k
∼ 1026 g, (34)

where tH is the Hubble time, would therefore be expected to explode today. One can notice that,

naturally, this mass is much higher than M⋆ ∼ 1015 g, corresponding to black holes that would require

a Hubble time to evaporate by the Hawking process. In the case of the low energy channel of bouncing

BH, the emitted radiation wavelength should be of the order of 200 microns, three orders of magnitude

below the measured 20 cm of FRBs.

This apparent discrepancy has been addressed and solved in [81]. The key idea lies in the fact

that if the black-to-white hole transition is to be understood as a tunneling process, the lifetime of a BH

should be considered as a random variable. The probability for a black hole not to have bounced after

a time t is given by:

P(t) =
1

τ
e−

t
τ . (35)

Let us model the shape of the signal emitted by a single black hole by a simple Gaussian function

of width σE. The full signal due to a local distribution of bouncing black holes is given by:

dNγ

dE
=
∫ ∞

MPl

Ae
− (E−E0)

2

2σ2
E · dN

dM
(M) · 1

4kM2
e
− tH

4kM2 . (36)

The key-point is that the mean energy of the detected signal is not necessarily the naively expected

one, that is may not be E ∼ 1/(4MtH
) where MtH

is such that tH = 4kM2
tH

(this corresponds to BHs

having a characteristic lifetime of the order of the age of the Universe, leading to the emitted wavelength

three orders of magnitude too small to account for FRBs). If the mass spectrum of PBHS is however

peaked around a mass M0,

dN

dM
∝ e

− (M−M0)
2

2σ2
M , (37)

which can be different than MtH
, the mean emitted energy will be around 1/(4M0), which can differ

from 1/(4MtH
). This happens because of the distributional nature of the bouncing time.
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In Figure 7, the emitted photon flux is shown for different values of the mean mass M0 of the mass

spectrum: MtH
, 10MtH

, 100MtH
and 1000MtH

. This shows that the energy of the radiation does depend

on this value, even if the parameters of the model are otherwise fixed. Since a given mean lifetime

τ = 4 kM2 does not imply a fixed expected energy, the three orders of magnitudes needed to match the

measured energy of FRBs can be accounted for with a mass M0 = 1000MtH
, which corresponds to the

left curve in Figure 7.

10-6 10-5 10-4 0.001
E (eV)

10-10

10-5

1

105

1010

ϕ (arbitary units)

Figure 7. Electromagnetic flux emitted by bouncing BHs for a mean mass M0 of (from right to left)

MtH , 10MtH , 100MtH and 1000MtH , normalized such that the total mass going into primordial black

holes (PBHs) is the same. From [81].

This explanation for FRBs is unquestionably exotic when compared to more conventional

astrophysical interpretations (especially when considering that one “repeater” has been observed; it

could however well be that there are different populations of FRBs). What makes the scenario however

meaningful is that it is testable, due to a specific redshift dependance. When observing a galaxy at

redshift z, the measured energy of the signal emitted by any astrophysical object (including decaying

dark matter) will be E/(1 + z) for a rest-frame energy E. This is not the case for bouncing black holes:

BHs that have bounced far away and are observed today had a shorter bouncing time and consequently

a smaller mass. The energy of the emitted radiation is therefore higher, and this compensates for the

redshift effect. The observed wavelength of the signal from an object at redshift z can be written as:

λBH
obs ∼ 2Gm

c2
(1 + z) × (38)

√

√

√

√

H−1
0

6 kΩ 1/2
Λ

sinh−1

[

(

ΩΛ

ΩM

)1/2

(z + 1)−3/2

]

,

where we have reinserted the physical constants; H0, ΩΛ and ΩM being respectively the Hubble rate,

the cosmological constant and the matter density. This is to be contrasted with what happens for

standard sources whose measured wavelength is related to the observed wavelength by:

λother
obs = (1 + z)λother

emitted , (39)

as shown in Figure 8.
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Figure 8. Measured wavelength, normalized to the rest-frame one, as a function of the redshift.

The upper curve is for a conventional astrophysical signal, and the lower one is for bouncing black

holes. Reproduced from [82], with the permission of AIP Publishing.

Importantly, is was also shown in [81] that even if the mass spectrum is wide, it could still be

possible to explain FRBs. It could be that most bouncing BHs lead to a signal of a wavelength of

0.02 cm and that only the tail (whose existence is due to the probabilistic nature of the lifetime) of

the distribution is actually detected by radio-telescopes. If the real emission peak is in the infrared

band—which should naturally occur if the mass spectrum is, itself, not peaked—it could very well be

that it is just unobserved today. Observatories in the infrared have time constants that are too high

to allow for the measurement of fast transient phenomena, and no large survey is being carried out.

In this case, a prediction of the model is that one should expect a higher flux as the energy increases.

Finally, it is worth considering the high-energy emission. The bouncing BHs then act as “redshift

freezing machines” for collapsing fields, which are emitted back at the energy they had when being

absorbed. However, in the meantime, the age of the surrounding Universe has grown tremendously.

In simple models, PBHs form with a mass of the order of the Hubble mass at the formation time.

For BH masses as considered here (around 1026 g), this corresponds to a temperature of the Universe

around the TeV. New very high energy telescopes, like the Cherenkov Telescope Array (CTA), could

detect bursts is this energy range, as suggested by this model.

The redshift dependance for this component is qualitatively the same as for the low-energy one,

but for different reasons. For a BH exploding at redshift z and cosmic time t, the energy is determined

by the temperature of the Universe when the formation took place. It is proportional to the inverse

square root of the time, which is in turn proportional to the horizon mass, that is to the BH mass.

Therefore, the emitted wavelength is proportional to the square root of the mass of the BH. This leads

to an observed wavelength:
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λobs ∝ (1 + z)

(

sinh−1

[

(

ΩΛ

ΩM

) 1
2

(z + 1)−
3
2

])

1
4

. (40)

As previously stated, this is a flatter dependance than for astrophysical effects.

It is meaningful to evaluate the maximal distance at which one could observe a bouncing black

hole. This question was addressed in [83], allowing the k parameter, which determines the bouncing

time, to vary. The minimum value of k is such that the quantum effects have enough time to make

the bounce happen, and the maximum is such that the bouncing time remains smaller than the

Hawking time. The study was carried out taking into account the size of the detector (and its detection

efficiency), the absorption during the propagation over cosmological distances and the number of

measured photons required for the detection to be statistically significant. As k increases, the global

trend is a decrease of the maximum distance at which the bouncing BH can be observed. This comes

both from the fact that BHs are lighter for higher values of k (for a given bouncing time) and from the

fact that they emit higher energy (and therefore fewer) particles. However, quite subtle effects also

appear. For example, the distance can slightly decrease above the threshold of emission of a new stable

particle (leaving less energy available for the considered photons), whereas it can increase when new

particles decaying into gamma-rays are produced. For k varying between 0.05 and 1022, the maximum

detectable distance varies from the Hubble scale to 1019 m for the low-energy component, as shown in

Figure 9, and from 1024–1016 m for the high energy component.
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Figure 9. Maximum distance at which a single bouncing BH can be observed through its low-energy

component, as a function of the k parameter, from [83] (Copyright IOP Publishing. Reproduced with

permission. All rights reserved.).
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4.3. Background

It is also important to consider a possible background emission. In this case, one does not look

for a single event, but from the diffuse emission due to a distribution of BHs. The number of photons

detected per time unit, surface unit and energy unit is given by:

dNmes

dEdtdS
=
∫

Φind((1 + z)E, R) · n(R) · A(E) · f (E, R)dR, (41)

where Φind(E, R) is the flux emitted by a single BH at distance R and at energy E, n(R) is the number

of BHs bouncing at distance R per unit time and volume, A(E) is the acceptance of the detector

convoluted with its efficiency and f (E, R) is the absorption. The n(R) term does depend on the shape

of the initial mass spectrum of PBHs, which is unknown. It has however been checked that varying

this shape has no significant impact on the results.

The study was carried out for both the low-energy and the high-energy components. In this

latter case, it is important to take into account the hadronization of emitted quarks that will produce

hadrons potentially decaying into gamma-rays. This was modeled using the PYTHIA Monte Carlo

program [66]. Quite surprisingly, the result is that, due to a kind of redshift-compensation effect,

the integrated signal is very similar to the single event one. It basically appears as a distorted Gaussian

function [83].

This also raised the question about whether it could be possible to explain the gamma-ray excess

coming from the galactic center, as observed by the Fermi satellite. This has been reported in [84–86]

and even observed at higher galactic latitudes [86,87]. Once again, many astrophysical interpretations

have been suggested. Millisecond pulsars are probably the most convincing hypothesis (see, e.g., [88]);

it is however not yet fully satisfactory [87], and their is room for new physics. Interestingly, it was

demonstrated in [82] that bouncing BHs can indeed explain the Fermi excess if the k parameter is

chosen at its higher possible value. It is worth noticing that the values required to explain either

the FRBs or the GeV gamma-ray excess are not “random”, but either the smallest or the highest

possible ones.

In [82], the secondary spectrum, mostly due to the decay of neutral pions, was shown to be well

approximated by:

f (E, ǫ) =
aǫb

πγ

[

γ2

(ǫ − ǫ0)2 + γ2

]

e−(
4ǫ
E )

3

, (42)

E being the quark energy, ǫ the photon energy, a = 50.7, b = 0.847, γ = 0.0876 and ǫ0 = 0.0418 (the

energies being in GeV), whereas the direct emission due to the low-energy component (the high-energy

component cannot be smaller than a TeV and is not relevant for this study) is given by:

g(E, ǫ) = Ae
− (ǫ−E)2

2σ2 + 3N
√

2πAσ f (E, ǫ), (43)

where N is the number of flavors of quarks with m < E.

The best fit is shown in Figure 10. The fact that the bouncing BH signal can account for the data

is in itself non-trivial. It is, for example, absolutely impossible to reproduce the measurements with

evaporating BHs. In addition, the most important result here lies in the amplitude of the little bump

on the left of the plot. It is associated with the secondary emission (that is the one coming from the

hadronization and subsequent decay of emitted partons). As the number of emitted quarks and gluons

is much higher than the number of directly emitted photons (responsible for the main bump), it could

have been (wrongly) expected that this indirect emission conflicts with the background displayed as

the horizontal green dashed line on the plot. Due to the subtle energy distribution in the jets, this is

not the case, and at this stage, the explanation by bouncing BHs does work satisfactorily.
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Figure 10. Fit to the Fermi excess with bouncing black holes. Reprinted from [82].

5. Dark Matter

The idea that if bouncing BHs are a substantial part of dark matter (DM), this might have an effect

on galaxy clustering was introduced in [89]. Several possible constraints were considered.

Only recently, however, was a new scenario for the evolution of black holes proposed [90],

with possible important consequences for DM, but in a different way than what was suggested

in [91,92]. In this model, a black hole first evaporates, according to the usual Hawking process.

The whole process preserves unitarity. When it becomes Planckian, the tunneling probability to turn

into a white hole, estimated to be of the order of:

P ∼ e
− M2

M2
p , (44)

becomes large. Old black holes have a large interior volume [93]: even if the Schwarzschild radius is

fixed, the “physical” volume available inside does increase with time. This remains true for the formed

white hole, although its mass is small (the volume is of the order of M4
i where Mi is the initial mass).

The white hole lifetime is also of the order of M4
i . This scenario meets the conditions required to solve

the information paradox.

It can be seen as a “less radical” proposal than the one presented in the previous sections. There is

still a black-to-white hole transition, in agreement with the arguments given before, but instead of

the very small bouncing time M2
i , it takes the time suggested by the usual instanton solution. This is

probably a more conservative and natural scenario.

In addition, following [91], it was suggested that dark matter could be formed by such white hole

relics [94]. In [95], the central argument is pushed forward. For those objects to be still present in the

contemporary Universe, one needs their lifetime to be larger than the Hubble time tH , that is:

M4
i > tH . (45)
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On the other hand, for those relics to be formed by evaporated black holes, one needs:

M3
i < tH , (46)

where M3
i is the Hawking evaporation time. This leads to:

1010 g < Mi < 1015 g. (47)

It is argued in [95] that this corresponds to typical Hubble masses at reheating, making the

scenario convincing.

It should be emphasized that quite a few models leading to stable relics at the end of the Hawking

evaporation process have been proposed so far, relying on many different assumptions (see [37,96–108]

to mention only a few historical references among many others). In those models, the relics are

completely stable. This makes the situation easier: the only constraint is then that initial primordial

black holes did evaporate within the Hubble time, but there is no lower bound on Mi. From this point

of view, the new model [95] is more challenging than the usual pictures, which does not make it wrong.

The key-point is of course to find a way to produce enough primordial black holes so that the

white hole relics account for dark matter, without relying on too exotic physics, as this is one of the

motivations for this new scenario. As the CMB-measured amplitude and slope of the primordial

power spectrum would lead to a vanishingly small number of primordial black holes, an extra input

is obviously needed. A possibility would be to follow [109] and use Starobinsky’s broken scale

invariance spectrum [110]. The main idea is that power is increased at small scales through a step in

the power spectrum.

Let us call MH,e the Hubble mass at the end of inflation, p2 the ratio of the power on large scales

with respect to that on small scales, δmin the minimum density contrast required to form a black hole,

MWH the mass of the white hole, Ω2
WH,0 the abundance of white holes today, LW the Lambert-W

function and σH the mass variance. One can then show that:

p ≈ σCMB
H

δmin

√

√

√

√LW

{

8.0 × 10−6

2πΩ2
WH,0

[

MWH

Mp

]2 [1015 g

MH,e

]3
}

. (48)

Requiring ΩWH,0 ≈ 0.3, δmin ≈ 0.7 and MWH ≈ Mp allows one to perform an explicit evaluation of

p, and this fixes the parameters of the scenario assuming that the reheating temperature is high enough.

However, a major problem remains to be solved. If the white hole relics are to be made by

primordial black holes with initial masses between 1010 g and 1015 g, one must consider the severe

constraints associated with nucleosynthesis. The D/H, Li6/Li7 and He3/D ratios must not be distorted

by the evaporation of black holes (assumed to be the “seeds” of the white hole relics) beyond observed

values [65]. This forbids the easy formation of enough relics, unless a way to evade those constraints is

found. This is the major challenge for future studies (which is fortunately easier to deal with when

extended mass functions are taken into account [111]).

Another possibility was imagined in [112]. Here, the objects are assumed to be formed before the

bounce in a cosmological model where the Big Bang singularity is replaced by a tunneling between

the classically contracting and the classically expanding Friedmann solutions, as suggested by loop

quantum cosmology [113]. This is in principle consistent, and other theories of quantum gravity might

lead to this new paradigm. This evades the previously mentioned problem. However, in a different

setting, the possibility was already considered in [114–116].

Very interestingly, the proposal is also related to the idea that the entropy and arrow of time could

be perspectival [117]. This approach sheds new light on the old paradox of the apparently low entropy

of the initial state of the Universe: the Universe is not anymore homogeneous at the bounce, and our

observed entropy is determined by the fact that we cannot access the huge volume inside the abundant

white hole remnants. It might seem puzzling that the authors explain the “un-naturally” low entropy
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of the Universe by arguing that the probability for us to be where we are (outside of a relic) is only one

part in 10120. It is however meaningful in the sense that a special position is much more anthropically

“acceptable” than a special state.

More importantly, it seems hard for the dark matter remnants to be already present at the

bounce time. The current density of the universe is ρ0 ∼ 10−30 g cm−3. If we assume the usual

cosmological evolution, we had at least 60 e-folds of inflation followed by approximately 60 e-folds of

radiation, matter and cosmological constant-dominated expansion. This means that the scale factor

has increased by at least a factor 1052 since the bounce. The density of remnants should then be at least

10156 × 10−30 = 10126 g.cm−3 at the bounce, that is 1033ρPl . Leaving apart the fact that this value is

probably unphysical (the bounce would have happened before when thinking in the positive time

direction), this is anyway incompatible with Planck mass and Planck size remnants (which cannot lead

to a density higher than the Planck density without merging).

This could be evaded by assuming that no inflation took place, but this would require a quite

exotic cosmological evolution. A nice feature of bouncing models is precisely to be compatible with

inflation [7,8,118–120]. However, a possible way out could be to focus on a matter bounce (as white

hole remnants would probably behave as pressure-less matter from the viewpoint of cosmological

evolution) [121]. This requires a much lower-than-Planckian density at the bounce time.

The new scenario put forward in [90] constitutes an exciting new paradigm in black hole physics.

It would be very nice to link it with the dark matter mystery, but quite a great deal remains to be understood.

6. Gravitational Waves

Gravitational waves from merging black holes are now observed for real by interferometers [122–126].

This opens a new era with important interesting constraints on black hole physics and modified gravity.

6.1. Spin in Gravitational Wave Observations

For a rotating black hole, the Bekenstein–Hawking entropy is given by:

S(M, j) = 2πM2(1 +
√

1 − j2), (49)

where j = J/M2 is the dimensionless spin parameter. It follows from Equation (49) that, at fixed

mass M, BHs with larger spin have a smaller entropy. If one assumes that PBHs were indeed formed

in the early Universe, following a microcanonical ensemble statistics, and if we make a statistical

interpretation of the BH entropy in terms of microstates, the previous statement indicates that there are

fewer microstates with large spin than with small spin. In this context, the existence of a population

of black holes with nearly vanishing spins is naturally predicted [127]. This is to be contrasted with

astrophysical black holes, formed by the collapse of rotating stars, which are expected to be generically

rotating quite fast.

If gravitational wave interferometers were to observe a specific distribution of events with very small

spins, this would both be evidence for the primordial origin of the considered BHs (at microcanonical

equilibrium) and for the physical relevance of the Hawking–Bekenstein entropy formula.

To go in this direction, one would need to consider the entropic factor eS(m,j) as the weighting

of a spin distribution of PBHs determined by the physical process responsible for their creation.

This distribution is however not known at this time (which means in no way that it can be approximated

by a flat distribution).

6.2. Quasinormal Modes

In the current LIGO/Virgo era, it would be highly desirable to make clear predictions about

gravitational waves in LQG. The possibility of detecting gravitational waves emitted by BHs before the

bounce was mentioned in [128]. This could be extremely promising for opening a new window on the

pre-bounce Universe thanks to the non-trivial behavior of the luminosity distance in the contracting
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phase, leading to a natural amplification of the signal (if the Universe is, e.g., matter dominated).

This, however, does not address the question of the specific modification to the gravitational wave

shape induced by LQG corrections.

The best way to face this difficult question is probably to focus first on quasinormal modes

(QNMs). They correspond to the ringdown phase between the transient and the exponential or power

law tail in a BH merging. The radial part of the perturbed metric is described by:

Ψ = Ae−iωt = Ae−i(ωR+iωI)t, (50)

where ωR characterizes the oscillations and ωI the characteristic damping timescale τ:

τ =
1

ωI
.

Very importantly, the frequencies of the QNMs form a countable set of discrete frequencies [129].

There are actually two types of perturbations (axial and polar) in the linearized Einstein field equations

described by the Regge–Wheeler and Zerilli equations. In GR, those equations are isospectral, but it is

not clear whether this fundamental property still holds in LQG.

The Regge–Wheeler equation is very close to the one used to calculate greybody factors (although

the question is different: the problem of QNM is to study the relaxation of the BH itself, not the way it

scatters a quantum field). It reads for a Schwarzschild BH:

Vaxial
ℓ (r) =

(

1 − 2M

r

) [

ℓ(ℓ+ 1)

r2
− 6M

r3

]

, (51)

for a mode of angular momentum ℓ. The know-how recently gained on greybody factors could

therefore be usefully recycled for this purpose. It should however be clear that the technique is

different (one does not search for the solution of an equation for all frequencies, but for the values

of the frequencies allowing for a solution with different boundary conditions) and that only models

leading to substantial metric modification around the horizon might lead to observational effects. This

is one of the most promising ways to relate LQG corrections to BHs with observations.

7. Conclusions

The description of black holes in loop quantum gravity has much improved in the last years.

A globally consistent picture is now emerging. In this article, we have reviewed its possible

experimental consequences.

The main results are the following:

• First, the Hawking evaporation spectrum should be modified in its last stages. We have shown that

it could not only allow for the observation of a clear signature of LQG effects, but also, in principle,

to the discrimination between different LQG models. In particular, holographic models lead to

specific features. The value of the Barbero–Immirzi parameter could even by measured.
• Second, attempts to calculate the greybody factors were presented. They should keep a subtle

footprint of the polymerization of space and of the existence of a non-vanishing minimum area gap.
• Third, it was emphasized that a local quantum gravity perspective would lead to an observable

modification to the Hawking spectrum (line structure), even arbitrarily far away from the Planck

mass. This prediction is not washed out by the secondary emission from the BH.
• Fourth, a model with BHs bouncing into white holes with a characteristic time proportional to

M2 was presented and shown to have astrophysical consequences. It can be fine-tuned to explain

ether fast radio bursts or the Fermi gamma-ray excess, depending on the values of the parameters.

The possible associated background was also studied. A specific redshift dependence allows one

to discriminate the model from other possible explanations.
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• Fifth, the possibility of having a large amount of dark matter in the form of white holes appearing

after quantum gravitational tunneling is presented together with possible weaknesses and future

improvements of the model.
• Sixth, observable effects on gravitational wave detections associated with the BHs’ spin

distribution expected are presented.
• Seventh, promising prospects for quasinormal modes are outlined.

It could be that black holes will play a major role in making quantum gravity become an

experimental science.
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3.5 La matière noire faite de reliques de trous noirs microsco-

pique

Les évidences de l’existence de la matière noire sont nombreuses [80]. Cette matière noire est
contrainte d’être électriquement neutre et non-baryonique. Mais de quoi est elle constituée ? Quelle est
son origine ? Ces questions restent ouvertes mais de nombreux candidats et modèles sont étudiés.

Dans cet article, on s’intéresse au scénario où la matière noire serait constituée de reliques de
Planck. Dans l’univers primordiale, si deux particules trans-Planckiennes entrent en collision et que le
paramètre d’impact est plus petit que le rayon de Schwarzschild, alors ce processus inélastique mène à
la formation de trou noir. La production de trou noir est décrite par la section efficace suivante

σ(s) = F(s)πR2
S (3.113)

avec
√

s l’énergie du centre de masse, Rs le rayon de Schwarzschild et F(s) de l’ordre de 1. La gravité
quantique doit être prise en compte pour une description plus rigoureuse mais les caractéristiques
principales sont indépendantes du modèle. Ici, nous ne considérons pas la production de trous noirs
microscopiques lié à l’existence de dimensions supplémentaires ou d’une énergie de Planck basse. La
fin du processus d’évaporation ne peut pas être traitée de façon semi-classique. Dans les théories au
delà de la RG, beaucoup d’entre elles argumentent qu’un trou noir ne s’évapore pas totalement mais,
au contraire, existe sous la forme d’une relique de Planck stable (ou à long temps de vie) [81]. Dans ce
cas, il serait possible de résoudre le paradoxe de l’information.

Soient des trous noirs primordiaux (PBHs) formés par des particules trans-Planckiennes pendant la
période de réchauffement. Les reliques qui en découlent sont constituées de matière non-relativiste
et leur densité se comporte comme a−3. La densité du fond, constitué de rayonnement, se dilue plus
rapidement en a−4. Ainsi on peut avoir

Ωrel =
ρrel

ρcr

≈ 1, (3.114)

avec ρrel la densité des reliques et ρcr la densité critique cosmologique définie telle que ρcr = 3H2/κ

(elle représente la densité pour définir un univers plat, elle est différente de la densité ρc définie en
LQC). L’amplification relative de la densité des reliques par rapport au fond de rayonnement est donné
par

TRH/Teq ≈ 3 × 1027TRH (3.115)

avec TRH la température de réchauffement et Teq la température au temps de l’équilibre. Le nombre de
particules avec une énergie au delà de la température moyenne décroit de façon exponentielle. Ainsi
pour que, dans la queue de distribution, il y ait suffisamment de trous noirs formés pour rendre compte
de la matière noire, il faut que l’énergie de l’inflation soit plus élevée que celle usuellement considérée.
C’est l’unique hypothèse exotique de l’article ci-joint. En effet, l’échelle d’énergie de l’inflation est
contrainte expérimentalement par le ratio scalaire-tenseur mais

— si on considère une inflation à champs multiples on peut avoir un ratio faible et une échelle
d’énergie élevée,

— si la gravité n’est pas quantifiée, alors il n’y a pas de mode même à une énergie d’inflation haute.
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Soit Et l’énergie des particules pour former un trou noir, on a une distribution de Maxwell-Boltzmann
pour décrire le nombre de particules d’énergie supérieure à Et

npart ≈ TRHe
−Et
TRH . (3.116)

Pour une section efficace de collision σBH, indépendante de l’énergie en première approximation, la
densité relative au temps d’équilibre est donnée par

Ω
eq

rel
=

30σBHmrel

1.66π2g
3/2
∗
· e

− 2Et
TRH

TeqT 3
RH

, (3.117)

avec mrel la masse des reliques et g∗ le nombre total des degrés de liberté sans masse (pour décrire les
radiations) [82]. La densité relative de reliques en fonction de la température de réchauffement est
tracée sur la Figure 1, avec un zoom sur la Figure 2. Ainsi on observe qu’avec une température de
réchauffement de l’ordre de 10−2 en unités de Planck, on obtient une fraction de reliques proche de 1,
ce qui permettrai d’avoir assez de reliques pour rendre compte de la quantité de matière noire.

Il serait possible de détecter de telles reliques si deux d’entre elles coalescent. Le taux de coales-
cence actuel, à t = t0, est donné par

nmerg =
3H2

0

8πG

Ωrel

mrel

dP

dt
, (3.118)

avec H0 le paramètre de Hubble actuel et P la probabilité de coalescence. Ce taux est de l’ordre de
10−45m−3s−1. Avec un instrument tel que Euso-like et en utilisant les planètes géantes en tant que
détecteurs cosmiques on pourraient atteindre 12 évènements par an ce qui est très faible mais tout de
même dans la fenêtre de ce qui est expérimentable.

Cet article a été publié dans Physical Review D [83].
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I. INTRODUCTION

Dark matter is a very old problem. On the experimental

side, it is being actively searched for, by direct detection

(see, e.g., [1–3] for reviews), by indirect detection (see, e.g.,

[4–6] for reviews), and by accelerator production (see, e.g.,

[7,8] for reviews). Many “little anomalies” are known, from

the Fermi excess of GeV gamma rays [9] to the PAMELA

and AMS-02 overabundance of positrons [10–12]. All of

them can however be quite simply accounted for by

conventional astrophysical processes and at this stage no

clear signal for nonbaryonic dark matter has been unam-

biguously recorded.

On the theoretical side, many hypotheses are being

considered. They are actually too numerous to be exhaus-

tively mentioned here (see, e.g., [13] for an introductory

review). From supersymmetry [14] to axions [15], most

of them imply some amount of “new physics.” Recent

developments even include an impressive list of highly

speculative hypotheses.

Obviously, estimating the “exoticity” of a model is quite

subjective. In this brief article, we revisit the idea of dark

matter made of Planck relics and we argue that this scenario

might be much less exotic than most models. The only

nonstandard hypothesis is a higher than usual reheating

temperature.

II. TRANS-PLANCKIAN SCATTERING

Most studies considering primordial black holes (PBHs)

are relying on production mechanisms that involve the

collapse of overdense regions (see, e.g., [16] for an early

detailed calculation, [17,18] for studies of phase transitions,

and [19,20] for reviews). Those scenarios are however very

unlikely as the density contrast required to form a PBH is

close to 1, whereas the primordial power spectrum mea-

sured in the cosmological microwave background (CMB)

has a much lower normalization. This bound could have

been circumvented by a blue power spectrum as the scales

involved in the formation of PBHs are much smaller than

those probed by the CMB. The actual spectrum, however,

happens to be red (ns ≈ 0.965) [21], making the production

of primordial black holes by “historical” mechanisms very

difficult. Other scenarios like the collapse of cosmic strings

were also considered [22] but they are also disfavored—if

not ruled out—by recent measurements. Interesting new

ideas are, however, now being considered [23,24].

Nevertheless, there exists a very different way to produce

small black holes, namely, through the scattering of trans-

Planckian particles. As initially argued in [25], when the

impact parameter is smaller than the Schwarzschild radius

(associated with the considered center-of-mass energy of a

particle collision), the cross section for the scattering of

trans-Planckian particles is dominated by an inelastic

process leading to the formation of a single black hole.

The key point is that the main features of high-energy

scattering above the Planck energy can be studied from

semiclassical considerations in general relativity and are

therefore reliable.

Basically, at impact parameters greater than the

Schwarzschild radius, elastic and inelastic processes (gravi-

tational radiation, bremsstrahlung for charged particles,

etc.) are described by solving the classical equations of the

low-energy theory with initial conditions described by a

pair of shock waves with appropriate quantum numbers.

At smaller impact parameters, scattering is dominated by

the resonant (in a sense different from the classical Breit-

Wigner one) production of a black hole with mass equal to
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the center-of-mass energy. The elastic cross section is

suppressed by a Boltzmann factor and the incoming

particles never get close enough together to perform a

hard QCD scattering. In this limit the eikonal approxima-

tion for the initial state becomes valid and is described by a

metric containing a pair of Aichelburg-Sexl shock waves

with the associated impact parameter.

In [26], the study was refined and it was also concluded

that the cross section for black hole production should be

of the order of σðsÞ ¼ FðsÞπR2

SðsÞ with FðsÞ being factor

of order 1,
ffiffiffi

s
p

the center-of-mass energy, and RS the

Schwarzschild radius. The details obviously depend on the

considered quantum gravity theory but the main features

are basically model independent.

Those ideas were applied to the possible production and

observation of microscopic black holes at colliders (see,

e.g., [26–29] for early works) in theories with a low Planck

scale—typically in the TeV range (usually associated with

the existence of large extra dimensions [30] or with many

new particle species [31]). A nice review including astro-

physical effects, like those mentioned in [32], can be found

in [33]. In this article, we do not rely on the existence of

extra dimensions and we do not assume a low Planck scale.

III. STABLE RELICS

The Hawking temperature TH ¼ 1=ð8πMÞ [34] is van-
ishingly small for astrophysical black holes but becomes

significant for very small black holes. The mass loss rate

during the evaporation is proportional to M−2 and the

process is therefore highly explosive. In itself, the evapo-

ration mechanism is well understood from many different

perspectives and is very consensual (see, e.g., [35] for a

simple introduction). Although it has not been observatio-

nally confirmed, there are indications that it might have

been revealed in analog systems [36].

The status of the end point of the evaporation process is

less clear. Obviously, the semiclassical treatment breaks

down in the last stages and the divergence of the temper-

ature together with the appearance of a naked singularity is

nonphysical. Many different arguments have been pushed

forward in favor of the existence of stable Planck relics at

the end of the evaporation process (see [37–50] to mention

only a few historical references, among many others).

There are excellent arguments from quantum gravity, string

gravity, or modified gravity theories in favor or remnants.

Those are however obviously based on new physics. One of

the best arguments for Planck relics using only known

physics was given by Giddings in [51]. Locality, causality,

and energy conservation considered within the information

paradox framework (see, e.g., the first sections of [52] for a

precise description) do suggest that the time scale for the

final decay of BHs is larger than the age of the Universe.

Although no clear consensus exists on the status of BHs

at the end of the evaporation process, it is fair to suggest

that the existence of relics is somehow simpler from the

viewpoint of usual physics. A recent review on the pros

and cons of stable remnants can be found in [53]. It is

concluded that if relics contain a large interior geometry—

which is supported by [54,55]—, they help solve the

information loss paradox and the firewall controversy.

IV. REHEATING SCALE

The idea that dark matter could be made of Planck

relics was first suggested in [56]. This seminal work was,

however, focused on PBHs formed by the collapse of

overdense regions (or similar mechanisms), which is now

believed to be extremely unlikely as previously pointed out.

We focus here on the possibility that PBHs are formed by

the collision of trans-Planckian particles in the early

Universe. This has already been considered in [57] and

in [58,59] (see also references therein) for the case with

extra dimensions.

In this work, we do not assume a lower than usual Planck

scale due to extra dimensions. We quite simply consider the

standard cosmological scenario in a (3þ 1)-dimensional

spacetime and just take into account the “tail” of trans-

Planckian particles at the reheating time. The key point lies

in the fact that the potentially produced relics behave

nonrelativistically and are therefore much less diluted (their

energy density scales as a−3) than the surrounding radiation

(whose energy density scales as a−4). Hence, it is possible
to reach a density of relics (normalized to the critical

density) close to 1, Ωrel ≡ ρrel=ρcr ≈ 1, with only a tiny

fraction of relics at the formation time. The relative

“amplification” of the relics density compared to the

radiation density between the reheating and the equilibrium

times is given by TRH=Teq ≈ 3 × 1027TRH when TRH is

given in Planck units. To fix ideas, for a reheating temper-

ature at the grand unified theory (GUT) scale, a relics

fraction of only 10−24 at the formation time would be

enough to nearly close the Universe at the equilibrium time.

For a thermal distribution of particles at temperature T,
the number of particles above Eth > T is exponentially

suppressed. This is why, even with the amplification factor

given above, the scenario presented here requires a reheating

temperature not much below the Planck scale. This con-

stitutes, in our view, the only “nonstandard” input of this

model. The Planck experiment final results lead to an upper

limit on the tensor-to-scalar ratio of primordial perturbations

r < 0.1 [60], which is even tightened to r < 0.064 by

combining the data with the BICEP2/Keck Array BK14

measurements. This is usually interpreted as an upper limit on

the energy scale of inflation around theGUT scale (the higher

the energy scale, the larger the normalization of tensor

modes), which is too low for the process considered here.

There are, however, at least two ways to circumvent this

bound (we assume for simplicity a sudden reheating).

The first one consists in noticing that the upper limit

on the energy scale of inflation holds firmly only for
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rudimentary models. In k inflation [61], the relation

basically becomes r ¼ −8CSnt (instead of r ¼ −8nt),
where nt is the tensor index and CS < 1 is the speed of

sound for perturbations. This relaxes the bound. In two-

field inflation [62], the upper limit is also relaxed to

r ¼ −8nt sin
2ðθÞ, where θ accounts for the possible evo-

lution of adiabatic scalar modes on super-Hubble scales.

In multifield inflation the relation between r and nT even

becomes an inequality.

A second and probably more provocative argument

would be the following. Whereas temperature anisotropies

originate from usual quantum physics, namely, from the

quantum fluctuations of the inflaton field, the tensor

perturbations leading to B modes in the CMB should come

from the quantum fluctuations of the polarization modes

of the graviton. In a sense (and although some counter-

examples have been constructed but for artificial models),

B modes would be a signature of perturbative quantum

gravity (dimensional arguments are given in [63]).

Quantum gravity is a fascinating area of research but it

has still no connection with experiments and assuming

gravity not to be quantized is also legitimate, especially

when considering how difficult and paradoxical the quan-

tization of the gravitational field is [64]. It is therefore

meaningful to consider the possibility that no B mode is

produced, even with a very high-energy scale for inflation,

just because gravity might not be quantum in nature (this

would also raise many consistency questions but is obvi-

ously worth being considered, as advocated in [65,66]). In

such a case, the usual upper bound could also be ignored.

Obviously, the normalization of the scalar spectrum

would also be in tension with such a high scale (violating

the slow-roll conditions in the most simple cases). We do

not mean that a higher than usual energy scale for inflation

is unavoidable or even favored. We simply state that this is

not ruled out by the tensor-to-scalar ratio and might be, in

our opinion, less “exotic” than most assumptions required

for usual DM candidates.

V. DARK MATTER ABUNDANCE

The threshold energy Et to produce a BH in a head on

collision of particles is expected to be of the order of the

Planck energy but, depending on the details of the

considered model, might be slightly different and we keep

it as a free parameter. To estimate the number density of

particles above Et, one simply needs to integrate the

thermal distribution, which leads to

npart ≈ TRHe
−Et=TRH ;

where we use Planck units (as everywhere in this work

except otherwise specified). Obviously, if the reheating

temperature is too small when compared to the threshold

energy of BH production, the number of PBHs will be

exponentially suppressed and the process will be inefficient.

The cross section, in principle, depends on the energy of

the collision but, as a fist step, can be assumed to be a

constant σBH above the threshold. The collision rate is

therefore given by Γ ¼ npartσBHv ≈ npartσBH. The energy

density of radiation is

ρR ¼ π2

30
g�T

4

RH;

with g� being the total number of effectivelymassless degrees

of freedom, that is, species with masses mi ≪ TRH. The

Hubble parameter is

H ¼ 1.66g
1=2
� T2

RH:

If relics are assumed to have a mass mrel (necessarily lower

than Eth), the energy density of relics is given by

ρrel ≈
npartmrelΓ

H
≈

e
−

2Et
TRHσBHmrel

1.66g
1=2
�

:

The relative density of relics at the formation time is

Ω
f
rel ¼

30σBHmrel

1.66π2g
3=2
�

·
e
−

2Et
TRH

T4

RH

;

leading, in agreement with [59], to a relative density at the

equilibrium time of

Ω
eq
rel ¼

30σBHmrel

1.66π2g
3=2
�

·
e
−

2Et
TRH

TeqT
3

RH

:

Let us first assume that the cross section is of order 1 in

Planck units ðσ ∼ APlÞ above the threshold and that the

mass of the relics is also of order 1 in Planck units

ðmrel ∼mPlÞ. In Fig 1, the relative abundance of relics at

the equilibrium time is plotted at the function of the

reheating temperature. Figure 2 is a zoom on the relevant

region. For a reheating temperature slightly above 10−2,

FIG. 1. Fraction of relics at the equilibrium time as a function of

the reheating temperature (in Planck units).
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one is led to a density of relics that can account for

dark matter.

Although the influence is negligible, from now on we

use the cross section σðsÞ ¼ FðsÞπR2

SðsÞ, where RS ¼ 2s.

We set F ¼ 1 above the threshold, but with the dependency

being linear it is easy to extrapolate to any reasonable value.

In Fig. 3, we show the influence of the threshold energy.

The influence of the threshold energy is—as expected—

very large. Interestingly, if nonperturbative effects were to

lower the threshold by 1 order of magnitude with respect

to the expected value, a reheating temperature around

the GUT scale would be enough to produce the required

density of remnants.

It is worth noticing that in the case with extra dimensions

[59], the “allowed” parameter space is defined by ensuring

that the Hubble rate during inflation Hi, together with the

maximal temperature are smaller than the D-dimensional

Planck scale. Meanwhile Hi must remain much larger

than the nucleosynthesis temperature. The formed relics

account for dark matter basically between a Hubble rate

of 10−16 (in usual four-dimensional Planck units) for a

D-dimensional Planck scale of 10−7 to a Hubble rate of

10−3 for a D-dimensional Planck scale equal to MPl.

VI. THE FINE-TUNING ISSUE

The model presented here seems to require a high level

of fine-tuning. In particular, as the dependency upon the

reheating temperature is exponential, varying slightly its

value leads to a large variation in the density of relics. One

can easily check that

dTRH

TRH

¼ dΩrel
eq

Ω
rel
eq

�

2ET

TRH

þ 3

�

−1

≈

TRH

2ET

dΩrel
eq

Ω
rel
eq

∼ 10−4;

to remain in agreement with data. Unquestionably, the

model requires a very high level of fine-tuning.

The question of fine-tuning is, however, tricky. It is only

well defined relatively to an a priori specific state. In the

cosmological framework, the value Ω ¼ 1 is clearly such a

special case. As is well known, inflation fixes a vanishing (or

nearly so) curvature. Basically, as ðΩ−1
− 1Þ ¼ −

3k
8πρa2

with

ρ remaining constant and the scale factor increasing by at

least 60 e-folds,Ω is fixed (close) to 1 at the end of inflation.

There is obviously nothingmagical here asΩ involves a nor-

malization to the critical density that, itself, depends on the

Hubble parameter. Should the content of the Universe be

different, we would still have Ω ¼ 1, with a different

expansion rate. This means that changing the parameters

of this model would, in fact, not drive the Universe out of the

specific situationΩ ¼ 1. In this sense it does not require fine-

tuning.

One might argue that if the reheating temperature were

different, other parameters of the Universe—e.g., the (un-

normalized)matter density, the equilibrium time, etc.—would

be different. This is correct. But, in our opinion, this is not a

fine-tuning issue. This is just the obvious statement that things

could have been different and that changing parameters do, of

course, change the final state. This is not problematic as long

as the “lost” state was not a very peculiar one.

To summarize, the parameters of the model need to be

fine-tuned so that the relic density closes the Universe at the

equilibrium time—which is a contingent fact—but not to

ensure Ω ¼ 1, which is indeed the a priori specific feature.

VII. DETECTABILITY

Testing this model is challenging. A Planck relic has the

weight of a grain of dust and no other interaction than

gravity to reveal itself to the outer world. Even though the

Planck mass is very small from the gravitational viewpoint,

it is very large from the particle physics viewpoint. The

number density of relics is therefore extremely small, even

if they are to account for all the dark matter. A density of

10−18 relics par cubic meter—that is, one relic per volume

of a million times the one of planet Earth—is enough to

close the Universe. Detection seems hopeless. The cross

section (or greybody factor) hopefully does not tend to 0 for

the absorption of fermions in the low-energy limit [67].

However, even avoiding this catastrophic suppression

FIG. 2. Zoom on the fraction of relics at the equilibrium time as

a function of the reheating temperature (in Planck units), around

the relevant zone.

FIG. 3. Fraction of relics at the equilibrium time as a function of

the energy threshold for different reheating temperatures (in

Planck units), from 10−3 to 2 × 102 from bottom to top.
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(which does exist for higher spins), the area involved is of

the order of the Planck one, 10−66 cm2, which indeed

makes direct detection impossible in practice.

We consider here another possibility associated with the

coalescences of relics that have occurred during the history

of the Universe. Contrarily to what is sometimes done for

PBHs we shall not focus on the emission of gravitational

waves whose amplitude would be negligible and frequency

way too high for any detector. However, something else is

also expected to happen in this model. When two remnants

merge, a higher-mass black hole is formed and evaporates

until it reaches again mrel ∼mPl assumed to be the minimal

one. This should happen preferably via the emission of one

(or a few) quantum close to the Planck energy. Each merging

should therefore emit about a Planck-energy particle, which

is, in principle, detectable. This sketch should of course be

refined but the hypothesis is realistic enough to investigate

whether this path is potentially fruitful.

We estimate the merging rate following [68], which

builds on [69]. It is not hard to show that the probability of

coalescence in the time interval ðt; tþ dtÞ is given by

dP ¼ 3

58

�

−

�

t

T

�

3=8

þ
�

t

T

�

3=37
�

dt

t
;

where T ≡ x̄4 3

170
ðGmrelÞ−3,

x̄ ¼
�

Mrel

ρrelðzeqÞ

�

1=3

¼ 1

ð1þ zeqÞ

�

8πG

3H2

0

mrel

Ωrel

�

1=3

being the mean separation of relics at the equilibrium time.

In those formulas, we have reinserted the constants to make

the use easier. The event rate is then given by

nmerg ¼
3H2

0

8πG

Ωrel

mrel

dP

dt

�

�

�

�

t0

:

This is of the order of 10−45 m−3 s−1. It is then straightfor-

ward to estimate the measured flux on a detector of surface

Sd and solid angle acceptance Ωacc, integrated up to a

distance Rmax,

Φmes ¼
Z

Rmax

0

nmergSd
Ωacc

4π
dR:

Although it is well known that TeV photons are absorbed

by interactions with the infrared background and PeV

photons by interactions with the CMB photons, there is no

strong absorption to be expected for Planck-energy pho-

tons. The wavelength of the background photons that

would lead to a center-of-mass energy close to the electron

mass is way larger than any expected background. The

Rmax value can therefore be assumed to be much larger than

for usual high-energy cosmic-ray estimations. For detectors

like Auger [70], the expected flux is too small for a

detection. For Euso-like instruments [71]—looking at

the atmosphere from the space station—we are led to an

order of magnitude not far from a fraction of an event per

year. For speculative ideas about using giant planets as

cosmic-ray detectors [72], we reach a dozen events per

year. This is obviously a hard task but, interestingly, the

model is clearly not unfalsifiable.

Furthermore, the idea that the Hawking radiation due to

the formed black holes before they become stable relics

might play a role in baryogenesis was considered in [73].

The possibility that they might have an effect on the

primordial nucleosynthesis should also be considered. In

the case considered in this article—with a true Planck scale

at the four-dimensional value—, the relics are so heavy and

heir number density so small that it is easy to check that the

associated signal would be entirely negligible.

VIII. CONCLUSION

The idea that dark matter could be made of Planck relics is

not new.Nor is the possibility that blackholes couldbe formed

by the scattering of trans-Planckian particles in the early

Universe. In this article we have gathered all the ingredients

and argued that the resulting model is not (that) exotic.

Unquestionably, the very high reheating temperature required

raises questions. We have however explained that the upper

bounds usually considered can be circumvented. Still, build-

ing a consistent cosmologicalmodelwith such a high scale for

inflation is not trivial and should be considered as a challenge.

There is no obvious solution to the dark matter problem,

which is one of the oldest enigmas of contemporary

cosmology. The scenario suggested here is based on a

minimum amount of new physics, if not only on known

physics. It requires a quite unusual cosmological behavior

but no new particle physics input is needed. From this point

of view, it might be worth being considered seriously.

Several developments would be worth being considered.

(i) The possibility that nonthermal processes do happen

during the reheating, eventually enhancing the high-

energy tail of the distribution, should be studied

with care.

(ii) The model presented in this article should be

investigated in the context of noninflationary bounc-

ing cosmologies, expected to be more favorable to

this scenario.

(iii) The experimental possibilities that were outlined

should be made more precise thanks to Monte Carlo

simulations.

(iv) in addition to the possible detection of extremely

high-energy gamma rays, it might be interesting to

consider a possible low-energy (in the 100 MeV

range) signal due to the disintegration of neutral

pions produced by the hadronization of quarks or

gluons emitted by the merging of relics.
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CHAPITRE 4

Le formalisme polaire
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4.1 La forme polaire

Avec l’étude des spineurs en espace courbe dans la section (3.2), on a pu voir que seulement une
séparation de variables très précise (3.44,3.45,3.46,3.47) permettait de découpler les équations. Les
spineurs sont des objets très sensibles à la structure de l’espace-temps, il est donc intéressant de les
étudier pour mieux appréhender leur interaction avec ce dernier. Un spineur est un objet à quatre
composantes complexes

ψ =



ψ1

ψ2

ψ3

ψ4


(4.1)

qui lors d’une transformation de Lorentz se transforme selon

ψ′ = Λ 1
2
ψ, (4.2)

avec Λ 1
2

définie par (1.53). Un spineur obéit à l’équation de Dirac

iγµ∇µψ+iωFµνσ
µνψ−mψ=0. (4.3)
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avec Fµν le potentiel d’un champ externe, où on a utilisé la notation de [84]. Dans ce cadre, Fµν ne
représente par le tenseur électromagnétique, sa forme pour l’oscillateur harmonique sera explicitée
dans la section (4.3.2). L’équation (4.3) est invariante sous transformation de Lorentz. Il existe 16
générateurs des matrices 4 × 4

I, γa, σab, γ5 et γaγ5. (4.4)

avec σab = 1
4 [γa, γb]. Avec le spineur ψ et son adjoint ψ = ψ†γ0, on définit les quantités suivantes

Φ=ψψ, (4.5)

Θ= iψγ5ψ, (4.6)

Ua=ψγaψ, (4.7)

S a=ψγaγ5ψ, (4.8)

Mab=2iψσabψ, . (4.9)

Ce sont tous des tenseurs réels. Les spineurs de Majorana et de Weyl sont décrits par Φ = Θ = 0 et
les spineurs de Dirac par Φ , 0 ou Θ , 0. Nous considérons, ici, le cas des spineurs de Dirac. On a
respectivement un scalaire, un pseudo-scalaire, le vecteur de la densité de vitesse, le vecteur axial de la
densité de spin et un tenseur antisymétrique de rang 2. Les identités de Fierz donnent

UaUa = −S aS a = Θ2+ Φ2, (4.10)

UaS a = 0. (4.11)

Ainsi nous avons

UaUa > 0 et S aS a < 0. (4.12)

Nous précisons qu’on travaille avec la convention +,−,−,−. Donc Ua est de type temps et nous
pouvons toujours trouver un référentiel tel que sa partie spatiale soit nulle. De même S a est de type
espace. Ainsi il existe trois boosts tels que U1 = U2 = U3 = 0 et S 0 = 0. De plus, il existe deux
rotations telles que S 1 = S 2 = 0 et enfin, nous pouvons effectuer une rotation autour de l’axe 3 pour
supprimer la phase. Après avoir utilisé les six libertés des transformations de Lorentz, le spineur s’écrit

ψ = φ



e
i
β

2

0

e
−i
β

2

0



(4.13)

en représentation chirale. Il reste deux dégrées de libertés qui sont scalaires, on ne peut donc pas
les éliminer. Le paramètre φ, le module, décrit l’amplitude du spineur et le paramètre β, l’angle
d’Yvon-Takabayashi, décrit une phase entre la partie gauche et droite du spineur. Lorsqu’on utilise
l’hypothèse de l’onde plane en TQC cela revient à supposer que l’amplitude φ est constante et l’angle
β est nul. Les quantités (4.5)-(4.9) s’écrivent
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Φ = 2φ2 cos β, (4.14)

Θ = 2φ2 sin β, (4.15)

Ua = 2φ2ua, (4.16)

S a = 2φ2sa, (4.17)

Mab=2φ2(cos βu jskε
jkab+sin βu[asb]). (4.18)

Les identités de Fierz s’écrivent alors

uaua = −sasa = 1, (4.19)

uasa = 0. (4.20)

Théorème : Il existe toujours une matrice de Lorentz Λ 1
2
= e

1
2 θabσ

ab

telle qu’un spineur puisse s’écrire
sous la forme polaire

ψ = Λ 1
2
φe
− iβγ5

2



1

0

1

0


= Λ 1

2
ψpol, (4.21)

avec ψpol le spineur dans le référentiel tel qu’on a utilisé les trois boosts pour avoir U1 = U2 = U3 = 0
et S 0 = 0, deux rotations telles que S 1 = S 2 = 0 et une troisième rotation pour enlever la phase. Étant
donné que les équations sont covariantes, on peut toujours se placer dans le référentiel où le spineur
s’écrit sous sa forme polaire (4.21) pour faire les calculs.

4.2 Les équations polaires

La dérivée covariante en représentation spinorielle s’écrit

∇µψ = ∂µψ + Ωµψ = ∂µψ +
1
2
Ωi jµσ

i jψ + iqAµψ, (4.22)

avec Ωµ la connexion de spin déjà définie par l’équation (1.55). Ici, nous avons également pris en
compte l’électromagnétisme avec q la charge et Aµ le potentiel vecteur. La transformation de Lorentz
en représentation spinorielle Λ 1

2
peut être définie telle que

Λ 1
2
∂µΛ

−1
1
2
= i∂µλI +

1
2
∂µθabσ

ab. (4.23)

En utilisant la dérivée covariante (4.22) sur la forme polaire du spineur (4.21), nous avons

∇µψ= (∇µ ln φI− i
2∇µβγ5−iPµI− 1

2Ri jµσ
i j)ψ, (4.24)
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avec

Pµ = ∂µλ − qAµ, (4.25)

Ri jµ = ∂µθi j −Ωi jµ, (4.26)

l’impulsion et la connexion tensorielle respectivement. A partir de (4.24), on peut montrer que

∇µua = Riaµu
i, (4.27)

∇µsa = Riaµsi. (4.28)

On peut voir qu’avec ce formalisme l’interaction électromagnétique et l’interaction gravitationnelle
sont traitées de façon similaire. Mais le point le plus intéressant concerne l’objet Ri jµ. En effet, il
est composé de ∂µθi j et Ωi jµ qui individuellement ne sont pas des tenseurs. Par contre Ri jµ est un
tenseur. La connexion Ωi jµ contient l’information sur la force inertielle et sur la gravité. L’objet ∂µθi j

contient l’information sur le repère. De sorte, que même en l’absence de gravité, l’objet Ri jµ contient
de l’information sur la force inertielle mais c’est un tenseur. C’est pour cela qu’on dit que c’est
une force inertielle covariante et que Ri jµ est appelé la connexion tensorielle [85]. C’est l’analogue
gravitationnel de ce qu’est le moment Pµ pour l’électromagnétisme. Le tenseur Ri jµ est antisymétrique
par permutation des deux premiers indices. Dans le cadre de la TQC, avec l’hypothèse d’onde plane,
on a Ri jµ = 0, φ = constante et β = 0, ainsi on a également ∇µ ln φ = 0 et ∇µβ = 0. Alors que dans le
cadre du formalisme polaire, on ne fait pas de telles hypothèses et le calcul montre que dans certains
cas φ et β ne sont effectivement pas constants. C’est ce que nous verrons dans l’article suivant.

On insère l’expression (4.24) dans l’équation de Dirac (4.3). Puis, on applique la décomposition de
Gordon, c’est-à-dire on multiplie le coté gauche par ψI, ψγa, ψσab, ψγ5 et ψγaγ5. Ceci donne 16
équations complexes. La partie imaginaire des quatre équations multipliées par ψγa est

∇αφ − 2(ψσµα∇µψ − ∇µψσµαψ) = 0. (4.29)

La partie réelle des quatre équations multipliées par ψγaγ5 est

∇αΘ − 2i(ψσµαγ
5∇µψ − ∇µψσµαγ

5ψ) + 2mS α = 0. (4.30)

Ces huit équations permettent de trouver les 32 équations de la décomposition de Gordon et sont
donc strictement équivalentes à l’équation de Dirac. On peut alors écrire les équations (4.29) et (4.30)
sous la forme polaire. Ensuite on diagonalise en prenant les deux combinaisons linéaires suivantes :
cos β× (4.29)+sin β× (4.30) et sin β× (4.29)−cos β× (4.30). Ceci donne les deux équations covariantes
suivantes

− 2ωFµνu
ν sin β−ωεµρησFρηuσ cos β +

1
2
εµανιR

ανι−2Pιu[ιsµ] + ∇µβ+2sµm cos β=0 (4.31)

2ωFµνu
ν cos β−ωεµρησFρηuσ sin β + R a

µa −2Pρuνsαεµρνα + 2sµm sin β+∇µ ln φ2=0 (4.32)

Les huit équations (4.31) et (4.32) sont totalement équivalentes aux huit équations (4.3) [86]. Ceci nous
permet donc d’avoir les équations de Dirac sous une nouvelle forme qui révèle les dégrées de liberté
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physiques du spineur : φ et β. Du point de vue de l’interprétation, on observe que sans les termes de
potentiel Fµν, l’angle β apparaît dans le terme de masse. En effet, comme nous l’avions vu dans le
Langragien (1.101), l’interaction entre la partie droite et gauche du spineur n’apparaît que dans le cas
d’un spineur massif.

L’interprétation du terme Ri jµ n’est pas encore entièrement comprise. Dans les articles [87, 88], on
observe qu’une solution exacte de l’équation de Dirac a les termes Rrtt, Rϕrt, Rθtt et Rϕθt qui dépendent
du paramètre ǫ. Ce dernier est une énergie négative qui décrit une force attractive sur le spineur même
dans le cas d’un système sans source. L’interprétation donnée est donc la présence d’une force attractive
qui tend à localiser la particule. En fait, en TQC on sait que l’hypothèse d’onde plane est une très
bonne approximation mais on sait également que dans la réalité les particules sont localisées dans une
région. Ainsi on voit que les termes Rµνσ permettent d’expliquer cette localisation. D’autres termes
du tenseur Ri jµ vont être interprétés dans la section suivante 4.3 pour décrire l’effet Aharonov-Bohm
gravitationnel.

Dans les articles suivants, on utilise une notation légèrement différente. La matrice γ5 est notamment
dénotée par le symbole π et la transformation de LorentzΛ 1

2
est dénoté par S. Les vecteurs sont indiqués

avec une flèche et le gras est utilisé pour les matrices. Dans la présentation des articles je garderais
néanmoins la même notation que précédemment, ainsi le gras désigne les vecteurs spatiaux.

4.3 Vers un effet Aharonov-Bohm gravitationel

Dans cet article, on montre que même en absence de gravité, c’est-à-dire avec un tenseur de
Riemann nul Ri

jµν
= 0, certains termes de la connexion tensorielle sont non nuls et cela donne lieu à un

effet Aharonov-Bohm gravitationnel. Nous étudions le cas d’un potentiel d’hydrogène et d’oscillateur
harmonique. Nous écrivons en parallèle le cas électromagnétique pour mettre en avant l’analogie. Le
tenseur électromagnétique Fµν en fonction de potentiel vecteur Aµ s’écrit

Fµν = ∂µAν − ∂νAµ. (4.33)

Il est également possible d’écrire le tenseur de Riemann Ri
jµν

en fonction de la connexion spinorielle
Ωi

jν

Ri
jµν = ∂µΩ

i
jν − ∂νΩi

jµ + Ω
i
kµΩ

k
jν −Ωi

kνΩ
k

jµ. (4.34)

A partir des relations (4.33) et (4.34), on peut en déduire

qFµν = −(∇µPν − ∇νPµ). (4.35)

Ri
jµν = −(∇µRi

jν − ∇νRi
jµ + Ri

kµR
k

jν − Ri
kνR

k
jµ). (4.36)

Nous allons étudier deux types de potentiels : l’atome d’hydrogène [86] et l’oscillateur harmonique.

4.3.1 L’atome d’hydrogène

Le potentiel de Coulomb est décrit par
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qAt = −
α

r
, (4.37)

avec α = q2 la constante de structure fine. L’équation de Dirac (4.3) s’écrit

(E+ α
r
)


I 0

0 −I

ψ+
i
r


0 σ·r
−σ·r 0

∂rψ − i

r2


0 (σ·r) (σ·L)

−(σ·r) (σ·L) 0

ψ−mψ=0

On se place dans le référentiel où le spineur est sous forme polaire et les deux dégrées de liberté sont
calculés

β = − arctan
(
α

Γ
cos θ

)
, (4.38)

φ = rΓ−1e−αmr/
√
∆ (4.39)

avec Γ =
√

1 − α2 et ∆(θ) = 1/
√

1−α2|sin θ|2. On observe, comme précédemment mentionné, que
l’amplitude φ et l’angle β ne sont pas constants. L’angle β n’a pas de dépendance radiale, ce qui est
cohérent avec le fait que pour un potentiel d’hydrogène l’amplitude on peut effectuer une séparation
des variables r et θ. L’impulsion est donnée par

Pt=E+α/r, (4.40)

Pϕ=−1/2, (4.41)

et on observe que bien qu’il n’y ait pas de courbure, certains termes Rµνσ sont non nuls

Rtϕθ=−αr sin θ cos θ|∆|2, (4.42)

Rrθθ=−r(1−Γ|∆|2), (4.43)

Rrϕϕ=−r|sin θ|2, (4.44)

Rθϕϕ=−r2 sin θ cos θ. (4.45)

On peut également calculer d’autres scalaires notamment la trace du tenseur énergie-impulsion définie
telle que T = L + mΨΨ , avec L le Langrangien. On obtient

T = 2φ2∆E. (4.46)

Le comportement de T à petit et grand r est similaire, ce qui ne sera pas le cas pour l’oscillateur
harmonique. Le calcul d’autres scalaires montre qu’ils ont tous le même comportement radial.

4.3.2 L’oscillateur harmonique

Dans le cas de l’oscillateur harmonique, le potentiel est donné par [84]

Fµν=3µxν−3νxµ, (4.47)
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avec 3µ un vecteur de type temps et xµ le vecteur position. Avec 3µ = (1, 0, 0, 0), l’équation de Dirac
s’écrit

E


I 0

0 −I

ψ+
i
r


0 σ·r
−σ·r 0

∂rψ

− i

r2


0 (σ·r) (σ·L)

−(σ·r) (σ·L) 0

ψ − iω


0 σ·r
σ·r 0

ψ−mψ=0. (4.48)

Comme précédemment, nous nous plaçons dans le référentiel où le spineur est dans sa forme polaire et
nous calculons les scalaires

β=arctan
(2ar cos θ

r2 − a2

)
, (4.49)

φ=Ke−
1
2ωr2 √

A/2, (4.50)

avec K une constante, a = (E − m)/2ω et A une fonction telle que A(r, θ) =
√

r4 + a4 + 2r2a2 cos(2θ).
On a la limite r = a où la densité scalaire Φ, défini par l’équation (4.14), change de signe. Pour
l’impulsion et la connexion tensorielle on obtient

Pt=E, (4.51)

Pϕ=−1/2, (4.52)

Rtϕθ=−2ar2 sin θ cos θ(r2+a2)A−2, (4.53)

Rrθθ=−2r3[r2+a2 cos (2θ)]A−2, (4.54)

Rtϕr=2ar|sin θ|2(r2−a2)A−2, (4.55)

Rrθr=−2a2r2 sin (2θ)A−2, (4.56)

Rrϕϕ=−r|sin θ|2, (4.57)

Rθϕϕ=−r2 sin θ cos θ. (4.58)

La trace du tenseur énergie-impulsion s’écrit

T = 2φ2A−1(r2E − a2m), (4.59)

on observe que le signe de ce scalaire change à r = a
√

m/E. Pour des petits r on a T ≈ −2φ2m alors
que pour des grands r, on a T ≈ 2φ2E. La limite non relativiste, telle ψP → 0, est décrite, dans le
formalisme polaire, par β→ 0. On en déduit a = 3/2m, ce qui entraîne qu’on a la limite non relativiste
lorsque la masse est grande. On peut séparer l’espace en trois régions, on a une première sphère
a
√

m/E, puis une région entre cette sphère et la sphère a et enfin la région extérieure. Dans la limite
non relativiste, les sphères r = a où Φ change de signe et r = a

√
m/E où T change de signe coïncident.

Il existe une sphère de rayon a
√

m/E à l’intérieur de laquelle les effets relativistes ne peuvent pas être
supprimés. Dans cette sphère les effets de la dynamique interne sont dominants. Ils sont d’autant plus
important lorsque β = π, c’est à dire lorsque la partie gauche et droite sont en opposition de phase.



194 Chapitre 4. Le formalisme polaire

4.3.3 L’effet Aharanov-Bohm

Dans les deux études précédentes, on a pu voir que certaines composantes des tenseurs Pµ et Rµνσ

sont non nulles même en l’absence de courbure. Du point de vue de l’électromagnétisme, pour Pµ, ce
phénomène est déjà connu comme étant l’effet Aharonov-Bohm. D’un point vue gravitationnel cet
effet a déjà été étudié [89, 90]. Ici, on propose de l’étudier avec le tenseur Rµνσ avec lequel on peut
faire un parallèle franc avec le cas électromagnétique.

Lorsque le spineur se trouve dans sa forme polaire, on observe que les équations (4.27, 4.28) se
réduisent à

∇µsi=R3iµ, (4.60)

∇µui=R0iµ. (4.61)

Ainsi la dynamique de la vitesse ua et du spin sa dépend uniquement des composantes de Ri jµ avec
i = 0, 3. Étant donné que ce dernier est antisymétrique par permutation des deux premiers indices, les
termes R12µ n’apparaissent jamais dans les équations de la dynamique de la vitesse et du spin, comme
c’est le cas pour Pµ en électromagnétisme. En intégrant (4.25) on a une phase ∆λ. L’intégrale sur une
boucle fermée donne

∮

γ

(Pµ+qAµ)dxµ=

∮

γ

∂µλdxµ=2πn, (4.62)

avec n un nombre entier. De façon analogue l’intégrale de (4.26) pour ∆θ12 donne

∮

γ

(R12µ+Ω12µ)dxµ=

∮

γ

∂µθ12dxµ=−4πn. (4.63)

Dans le cas où l’impulsion et la connexion tensorielle sont nulles, avec γ = ∂S , le théorème de Stoke
donne

q

∮

∂S

A·dx= q

∫∫

S

rotA·dΛ 1
2
=2πn, (4.64)

∮

∂S

Ω12 ·dx=

∫∫

S

rotΩ12 ·dΛ 1
2
=−4πn. (4.65)

Ainsi les équations (4.64) et (4.65) décrivent respectivement l’effet Aharonov-Bohm électromagnétique
et gravitationnel. Même en l’absence de source, le potentiel gravitationnel peut donner lieu à un
déphase du champ. On peut alors écrire

ψ = e−iλe−
1
2 θ12σ

12
ψpol, (4.66)

avec ψpol le spineur sous forme polaire (4.21). On a une phase abélienne λ et une phase non abélienne
θ12 qui peuvent être présentes même sans champ électromagnétique et gravitationnel.

Cet article a été publié dans European Physical Journal C [91].
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Abstract Spinor fields are written in polar form so as to

compute their tensorial connection, an object that contains

the same information of the connection but which is also

proven to be a real tensor. From this, one can still compute the

Riemann curvature, encoding the information about gravity.

But even in absence of gravity, when the Riemann curvature

vanishes, it may still be possible that the tensorial connection

remains different from zero, and thih can have effects on mat-

ter. This is shown with examples in the two known integrable

cases: the hydrogen atom and the harmonic oscillator. The

fact that a spinor can feel effects due to sourceless actions is

already known in electrodynamics as the Aharonov–Bohm

phenomenon. A parallel between the electrodynamics case

and the situation encountered here will be drawn. Some ideas

about relativistic effects and their role for general treatments

of quantum field theories are also underlined.

1 Introduction

Quantum field theory (QFT) is one of the most impressive

successes of contemporary science. From the standard model

of particle physics to condensed matter theory, this frame-

work works remarkably well and delivers high-precision

predictions. The mathematical foundations of QFT however

remain quite confusing. Some of the best known problems

are the following (see [1]): all calculations are performed

by expanding fields in plane waves, which are not square

integrable (and do not really exist as physical objects); in

this expansion the coefficients are interpreted as creation

and annihilation operators, lacking a precise definition [2];

and the calculations rely on the so-called interaction picture,

which is in tension with the concept of a Lorentz-covariant

field theory [3]. For all those reasons, it is clearly mean-

a e-mail: fabbri@dime.unige.it

ingful to consider a more general framework than ordinary

QFT. This is the setting used in this work. As QFT works

extremely well in all know situations, possible new results

will obviously arise only in subtle cases.

As it is well known, Dirac spinor fields can be classified

using the so-called Lounesto classification according to two

classes: singular spinor fields are those subject to the condi-

tions iψπψ =0 and ψψ =0 while regular spinor fields are all

those for which the two above conditions do not identically

hold [4–10]. For the regular spinor fields, it is possible to per-

form what is known as the polar decomposition of the Dirac

spinor field [11]: this is the way in which it can be written

in the Madelung form, that is with all the complex quantities

expressed as a real module times a unitary complex exponen-

tial (21) while respecting the transformation properties of a

1/2-spin spinor field. In this form, the 8 real components of

spinors are re-arranged so as to show the physical informa-

tion: of these 8 components in fact, 3 are shown to be the

spatial directions of the velocity, 3 are the spatial directions

of the spin, 1 is the usual expression of the module, and a

last 1 is a phase shift between left-handed and right-handed

chiral parts of the spinor. This exhibits a possible an intern

dynamics, not taken into account in QFT. New effects can be

associated with this phase.

Details about the spinor field equations in this form can

be found in [12]. By implementing the Madelung form, so

as to write every spinorial component as a module times a

unitary exponential, and using the Gordon decompositions,

so as to respect covariance, it is possible to convert the Dirac

spinor field equation into a pair of coupled and non-linear

vector field equations which are equivalent to the Dirac one.

These field equations determine the dynamics and the

structure of the degrees of freedom of the spinor field in

terms of two quantities collectively called the tensorial con-

nection. They are built in terms of the connection but are also

proven to be real tensors [13]. In [14], we eventually proved

123
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that with the tensorial connection it is possible to calculate

the Riemann tensor, which represents the space-time curva-

ture thus deciphering the information about the gravitational

field.

In absence of gravitation the space-time curvature van-

ishes, and the Riemann tensor becomes zero identically. In

this case, just as the connection, the tensorial connection

may still be different from zero, but just like any tensor,

if the tensorial connection happens to be non-zero then it

will remain such in any system of reference: if this were to

happen, we would be in presence of an object which, on the

one hand, would represent a potential having a non-trivial

structure, while on the other hand, it would have a vanishing

strength.

This circumstance is the sourceless case, that is when the

gravitational impact of the considered matter is identically

zero (the Riemann tensor vanishes, so the Ricci tensor van-

ishes, which means that the energy density is not large enough

to source gravity). Nevertheless, an influence on matter can

still arise if the tensorial connection is not identically equal

to zero.

As far-fetched as this situation may look, we will show

that it is indeed what might happen in two notable examples,

given by the two integrable cases known: the hydrogen atom

and the harmonic oscillator.

These two examples, both from some remarkable physi-

cal potentials, and both exact solutions, should convince the

skeptical reader of the fact that the structure of the wave func-

tion of a relativistic quantum matter distribution is in fact due

to the non-vanishing tensorial connection even when it has

no space-time curvature.

One should also keep in mind that a similar situation is

already known. In the same way in which a relativistic quan-

tum matter distribution can be affected by a non-vanishing

connection, even when it has no space-time curvature, it can

also be affected by some non-zero potential even when it

has no gauge curvature. This is the Aharonov–Bohm effect,

which happens when wave functions display a phase-shift

due to potentials even in regions where they give rise to no

electrodynamic forces. Thus, in a way, we may say that what

we are going to present consists in exhibiting the effects on

matter of a gravitational Aharonov–Bohm effect.

This effect for gravity seems to be richer than for electro-

dynamics as in this case the full wave function, and not only

its phase, can be modified. A comparative analysis of the two

Aharonov–Bohm effects will be given.

As a bonus, we will show how it could be possible to

obtain, in analogy to the Born rule for the discretization of

electrodynamic degrees of freedom, a kind of Born rule for

the discretization of gravitational degrees of freedom.

Some comments regarding the non-relativistic limit will

eventually be sketched in one final section.

2 Polar spinors

2.1 Kinematic quantities

We will consider the Clifford matrices γ a from which
[

γ a,γ b

]

= 4σ ab and 2iσ ab = εabcdπσ cd defining the σ ab

and π matrices (this latter is what is usually called γ 5 or γ 5

with a sign ambiguity that has to be fixed by convention).

As known, Clifford matrices account for a total of 16 lin-

early independent generaotrs for the space of 4 × 4 complex

matrices, given by

I, γ a, σ ab, π , γ aπ (1)

and it is possible to prove that they verify

γ iγ jγ k = γ iη jk − γ jηik + γ kηi j + iεi jkqπγ q (2)

which is a spinorial matrix identity (notice that this identity

shows the pseudo-scalar character of the π matrix).

Given the spinor field ψ , its complex conjugate spinor

field ψ is defined in such a way that bi-linear quantities

�ab =2ψσ abπψ (3)

Mab =2iψσ abψ (4)

with

Sa =ψγ aπψ (5)

U a =ψγ aψ (6)

as well as

�= iψπψ (7)

�=ψψ (8)

are all real tensors, and it is possible to prove that they verify

�ab =−1

2
εabi j Mi j (9)

Mab = 1

2
εabi j�i j (10)

together with

Mab�−�ab�=U j Skε jkab (11)

Mab�+�ab�=U[a Sb] (12)

alongside to

MikU i =�Sk (13)

�ikU i =�Sk (14)

Mik Si =�Uk (15)

�ik Si =�Uk (16)

and also
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1

2
Mab Mab =−1

2
�ab�

ab =�2−�2 (17)

1

2
Mab�

ab =−2�� (18)

and

UaU a =−Sa Sa =�2+�2 (19)

Ua Sa =0 (20)

called Fierz re-arrangement identities.

These identities are important because in the general case

of regular spinors, for which iψπψ �= 0 or ψψ �= 0, we

can use (19) to see that the U a vector is time-like. Three

boosts can therefore be used to remove its spatial components

and two rotations can be used to rotate Sa along the third

axis, while the third one eliminates the general phase. When

these operations are performed, the most general spinor field

compatible with those restrictions is

ψ =φe− i
2 βπ

S

⎛

⎜

⎜

⎝

1

0

1

0

⎞

⎟

⎟

⎠

(21)

in chiral representation. The matrix S is a generic complex

Lorentz transformation, β called Yvon-Takabayashi angle

and represents the phase shift between right-handed and left-

handed chiral parts of the spinor while φ is the module.

The full spinor field is then said to be in polar form [11].

In this polar form, the two antisymmetric tensors reduce

to

�ab =2φ2(cos βu[asb]−sin βu j skε
jkab) (22)

Mab =2φ2(cos βu j skε
jkab+sin βu[asb]) (23)

with the two vectors

Sa =2φ2sa (24)

U a =2φ2ua (25)

and the two scalars

�=2φ2 sin β (26)

�=2φ2 cos β (27)

in terms of the Yvon-Takabayashi angle and module.

All Fierz identities trivialize except for

uaua =−sasa =1 (28)

uasa =0 (29)

which show that the velocity and the spin are constrained,

so that in general they amout to three components each. The

most general spinor therefore possesses four components,

or eight real components, given by the three real compo-

nents of the velocity and the three real components of the

spin, which can always be boosted or rotated away, plus the

Yvon-Takabayashi angle and module, whose scalar charac-

ter makes them impossible to be removed with a choice of

frame. The latter are therefore the only two real degrees of

freedom of the spinor field.

From the metric, we define the symmetric connection as

usual with 
σ
αν from which, with the tetrads, we define the

spin connection �a
bπ =ξ ν

b ξa
σ (
σ

νπ−ξσ
i ∂πξ i

ν). With the gauge

potential, we then define the spinor connection

�μ = 1

2
�ab

μ σ ab+iq AμI (30)

needed to define

∇μψ =∂μψ+�μφ (31)

which is the spinorial covariant derivative.

Writing spinor fields in polar form does not only allow

us to distill the spinor components into the real degrees of

freedom, but it also provides the definition of the S matrix,

which verifies

S∂μS
−1 = i∂μλI+ 1

2
∂μθi jσ

i j (32)

where λ is a generic complex phase and θi j = −θ j i are the

six parameters of the Lorentz group. It is then possible to

define

∂μθi j −�i jμ ≡ Ri jμ (33)

∂μλ−q Aμ ≡ Pμ (34)

which can be proven to be real tensors. The spin connection

�i jμ carries information about gravity and coordinate sys-

tems while the derivative ∂μθi j carries information about the

coordinate system, and therefore Ri jμ carries information

about gravity and coordinate systems. However, while inde-

pendently non-tensorial quantities, their combination makes

the non-tensorial spurious terms cancel, and the result is

that Ri jμ is a real tensor. This is the reason why it is called

tensorial connection. Similarly, q Aμ contains information

about electrodynamics and gauge phases while ∂μλ about

gauge phases. While independently they are not gauge invari-

ant, their combination Pμ is a real gauge-invariant vec-

tor. This is why it is called gauge-invariant vector momen-

tum. Due to their analogy, we will collectively call them

tensorial connections, for simplicity [13]. One can show

that

∇μψ =
(

∇μ ln φI− i

2
∇μβπ−i PμI−

1

2
Ri jμσ i j

)

ψ (35)

from which
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∇μsi = R j iμs j (36)

∇μui = R j iμu j (37)

which are valid as general geometric identities.

2.2 Dynamical equations

The commutator of spinorial covariant derivatives can be

used to define

Ri
jμν =∂μ�i

jν −∂ν�
i

jμ+�i
kμ�k

jν −�i
kν�

k
jμ (38)

Fμν =∂μ Aν −∂ν Aμ (39)

which are the space-time and gauge curvatures.

It is straightforward to prove that

Ri
jμν =−(∇μ Ri

jν −∇ν Ri
jμ+Ri

kμ Rk
jν −Ri

kν Rk
jμ) (40)

q Fμν =−(∇μ Pν −∇ν Pμ) (41)

showing that the Riemann tensor can be written in terms

of the tensorial connection while the Maxwell tensor can

be written in terms of the gauge-invariant vector momen-

tum. The tensorial connection and the gauge-invariant vec-

tor momentum are therefore the potentials of the gravita-

tional and electrodynamic fields [14]. However, in absence

of gravity or electrodynamics, when the curvatures vanish

identically, differently from the connection and the gauge

potential, which can always be vanished with a choice of

frame or gauge, there is no way to vanish the tensorial con-

nection and the gauge-invariant vector momentum, if they do

not vanish identically already.

For the matter field, the dynamics is defined in terms of

the Dirac spinor field equation

iγ μ
∇μψ+iωFμνσ

μνψ−mψ =0 (42)

in which the ω term is an additional potential describing the

coupling of the dipole moment of the spinor to an external

field, which will be used to represent the potential of the

harmonic oscillator later in this work.

It is now possible to substitute (35) into (42) to write the

Dirac spinor field equation in polar form. We then proceed

to the Gordon decomposition by multiplying on the left with

ψ , ψγ a , ψσ ab, ψπ and ψγ aπ so to get 16 scalar equations,

and then we split into real and imaginary parts getting 32 real

scalar equations. Of these 32 real equations, we must expect

that 8 taken together will be equivalent to the 8 real compo-

nents of the Dirac equation (42). These 8 equations are those

obtained by selecting the imaginary part of the contraction

with γ a and the real part of the contraction with with γ aπ :

multiplying the first by cos β and the second by sin β and

adding them and multiplying the first by sin β and the second

by cos β and substracting them produces the diagonalization

that leads to

−2ωFμνuν sin β−ωεμρησ Fρηuσ cos β

+1

2
εμανι R

ανι−2P ιu[ιsμ] (43)

+∇μβ+2sμm cos β =0

2ωFμνuν cos β−ωεμρησ Fρηuσ sin β

+Ra
μa −2Pρuνsαεμρνα (44)

+2sμm sin β+∇μ ln φ2 =0

which can be proven, in return, to derive the polar form of

the Dirac spinor field equation. This proves the equivalence

between (44, 45) and (42) itself. So the four spinorial field

equations, which are eight real field equations, can be con-

verted into one vector field equation and one axial-vector

field equation, specifying the first-order derivatives of the

module and of the Yvon-Takabayashi angle, determining the

dynamics of the real degrees of freedom [12].

3 Application to two systems

The theory developed so far is general, but applications can

also be studied so as to better understand what are the prop-

erties of the tensorial connections: our goal is to see what

happens in the sourceless case, that is in situations where the

energy density is not large enough to be a source of gravita-

tion. We can assume that there is no gravity, a flat space-time,

and an indentically vanishing Riemann tensor (40). The ten-

sorial connection can however still be different from zero. In

this case we would have some non-trivial potential with no

strength.

To prove that such a non-vanishing tensorial connection

can have an effect on a relativistic quantum matter distribu-

tion, we consider explicit examples. To make our examples

stronger, we will choose exact solutions of integrable poten-

tials: one is given by the Coulomb potential, leading to the

description of the hydrogen atom; and the other is given by

the elastic potential, leading to the description of the har-

monic oscillator.

Both cases are interesting because they account for all

integrable potentials known in physics. In the following we

start by reviewing the case of the hydrogen atom as it was

treated in [14]. Then we consider the harmonic oscillator in

three-dimensional case as presented in [15].

The harmonic oscillator has not yet been studied in the

polar form, and thus we will present it with more details.

3.1 Non-trivial integrable cases

3.1.1 The hydrogen atom model

The case of the hydrogen atom is very widely known and can

be found in common textbooks.
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The interaction is given in terms of the Coulomb poten-

tial, that is the temporal component of the gauge potential

vector

q At =−α/r (45)

where α = q2 is the fine-structure constant given in units in

which it is the square of the electric charge.

Looking for solutions in stationary form i∂tψ = Eψ and

with the choice of spherical coordinates

�r =

⎛

⎝

r sin θ cos ϕ

r sin θ sin ϕ

r cos θ

⎞

⎠ (46)

the Dirac spinor equations are written according to

(E + α

r
)

(

I 0

0 −I

)

ψ+ i

r

(

0 �σ ·�r
−�σ ·�r 0

)

∂rψ −

− i

r2

(

0 �σ ·�r �σ · �L
−�σ ·�r �σ · �L 0

)

ψ−mψ =0 (47)

where

�L F =

⎛

⎝

i sin ϕ∂θ F +i cot θ cos ϕ∂ϕ F

−i cos ϕ∂θ F +i cot θ sin ϕ∂ϕ F

−i∂ϕ F

⎞

⎠ (48)

for any function F , given in terms of the elevation and

azimuthal angles. This form is well suited to study all cases

where a separation of variables is possible.

We will focus on the ground-state, the 1S orbital.

In this case, defining the constant Ŵ=
√

1 − α2 as well as

the function �(θ)=1/
√

1−α2|sin θ |2 of the elevation angle

alone, it is possible to see that the energy is given by E =mŴ

and the spinor

ψ = 1√
1+Ŵ

rŴ−1e−αmr e−i Et

⎛

⎜

⎜

⎝

1+Ŵ

0

iα cos θ

iα sin θeiϕ

⎞

⎟

⎟

⎠

(49)

is an exact solution of (47) with (48). To see this, one can

insert (49) into and (48) and (47) and check directly.

This is the standard treatment, but equations (47, 48) are

just the Dirac spinor equations (42) for ω = 0 written in

spherical coordinates

gt t =1 (50)

grr =−1 (51)

gθθ =−r2 (52)

gϕϕ =−r2|sin θ |2 (53)

with connection


θ
θr = 1

r
(54)


r
θθ =−r (55)


ϕ
ϕr = 1

r
(56)


r
ϕϕ =−r |sin θ |2 (57)



ϕ
ϕθ =cot θ (58)


θ
ϕϕ =− cot θ |sin θ |2 (59)

in the case in which the tetrad vectors are chosen to be

e0
t =1 (60)

e1
r =sin θ cos ϕ e2

r =sin θ sin ϕ e3
r =cos θ (61)

e1
θ =r cos θ cos ϕ e2

θ =r cos θ sin ϕ e3
θ =−r sin θ (62)

e1
ϕ =−r sin θ sin ϕ e2

ϕ =r sin θ cos ϕ (63)

and

et
0 =1 (64)

er
1 =sin θ cos ϕ er

2 =sin θ sin ϕ er
3 =cos θ (65)

eθ
1 = 1

r
cos θ cos ϕ eθ

2 = 1

r
cos θ sin ϕ eθ

3 =−1

r
sin θ (66)

e
ϕ
1 =− 1

r sin θ
sin ϕ e

ϕ
2 = 1

r sin θ
cos ϕ (67)

as the choice for which the spin connection vanishes.

Nevertheless, another specific choice is possible. It con-

sists in taking the tetrad vectors as

e0
t =� e2

t =−α sin θ� (68)

e1
r =Ŵ sin θ� e3

r =cos θ� (69)

e1
θ =r cos θ� e3

θ =−Ŵr sin θ� (70)

e0
ϕ =−αr |sin θ |2� e2

ϕ =r sin θ� (71)

and

et
0 =� et

2 =α sin θ� (72)

er
1 =Ŵ sin θ� er

3 =cos θ� (73)

eθ
1 = 1

r
cos θ� eθ

3 =−Ŵ

r
sin θ� (74)

e
ϕ
0 = α

r
� e

ϕ
2 = 1

r sin θ
� (75)

which means that we are in the system of reference where

the spinor field is in polar form.

We have then that

β =− arctan
(α

Ŵ
cos θ

)

(76)

and

φ=rŴ−1e−αmr/
√

� (77)

for the Yvon-Takabayashi angle and module.

Then we can compute

Rtϕθ =−αr sin θ cos θ |�|2 (78)

Rrθθ =−r(1−Ŵ|�|2) (79)
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Rrϕϕ =−r |sin θ |2 (80)

Rθϕϕ =−r2 sin θ cos θ (81)

and

Pt = E +α/r (82)

Pϕ =−1/2 (83)

as it is well known for the momentum.

One can check that the pair of equations (44, 45) is satis-

fied, as expected since (42) is equivalent to (44, 45).

For more details on the hydrogen atom we refer to [14].

3.1.2 The harmonic oscillator model

The case of the harmonic oscillator is also well known

although its relativistic treatment is not so thoroughly inves-

tigated. In the following we will refer to [15].

The interactions are given in terms of a coupling between

the dipole moment of the spinor and an external field, like

the one given in (42):

Fμν =vμxν −vνxμ (84)

with vμ a time-like vector and xμ the position vector. In the

case we intend to study, the time-like vector will be chosen

in the configuration in which only its temporal component

remains and is normalized to unity.

We still look for solutions in the stationary form and in

spherical coordinates, where (42) is given by

E

(

I 0

0 −I

)

ψ+ i

r

(

0 �σ ·�r
−�σ ·�r 0

)

∂rψ

− i

r2

(

0 �σ ·�r �σ · �L
−�σ ·�r �σ · �L 0

)

ψ

−iω

(

0 �σ ·�r
�σ ·�r 0

)

ψ−mψ =0 (85)

and as it is easy to see, this form is well suited for a sep-

aration of variables. However, we shall not implement this

separation because it is known that this property does not

hold for the harmonic oscillator, in the general case, when

no non-relativistic limit is taken.

As before, we focus only on the ground-state.

Defining the constant a = (E −m)/2ω together with the

function A(r, θ) =
√

r4+a4+2r2a2 cos (2θ) of the radial

coordinate and elevation angle, one can see that the energy

is given by E2 =m2+6ω with the spinor given by

ψ = K e− 1
2 ωr2

e−i Et

⎛

⎜

⎜

⎝

r cos θ

r sin θeiϕ

−ia

0

⎞

⎟

⎟

⎠

(86)

as an exact solution of (85) for any constant K .

Equations (85) are the Dirac spinor equations (42) with

no electric charge and written in spherical coordinates in the

case in which the tetrad vectors are chosen as before.

And as before, another possibility is to Lorentz transform

everything so to get the polar form. To this purpose, one first

needs to implement a rotation along the third axis so as to

perform a shift of ϕ/2 giving

ψ = K e− 1
2 ωr2

e−i(Et− ϕ
2 )

⎛

⎜

⎜

⎝

r cos θ

r sin θ

−ia

0

⎞

⎟

⎟

⎠

(87)

in standard representation. With this solution we can calcu-

late all bi-linear spinor quantities

�= K 2e−ωr2

(r2 − a2) (88)

�= K 2e−ωr2

(2ar cos θ) (89)

U 0 = K 2e−ωr2

(r2 − a2) (90)

U 2 = K 2e−ωr2

(2ar sin θ) (91)

S1 = K 2e−ωr2

(2r2 sin (2θ)) (92)

S3 = K 2e−ωr2

(r2 cos (2θ) + a2) (93)

and with U 1 =U 3 = S0 = S2 =0 identically. In order to force

U 2 = S1 =0 too, the only transformations of interest remain

the boost along the second axis and the rotation around the

second axis, given by

B2 =

⎛

⎜

⎜

⎝

cosh ξ 0 sinh ξ 0

0 1 0 0

sinh ξ 0 cosh ξ 0

0 0 0 1

⎞

⎟

⎟

⎠

(94)

and

R2 =

⎛

⎜

⎜

⎝

1 0 0 0

0 cos χ 0 sin χ

0 0 1 0

0 − sin χ 0 cos χ

⎞

⎟

⎟

⎠

(95)

in terms of the rapidity

tanh ξ =
(−2ar sin θ

r2 + a2

)

(96)

and the angle

tan χ =
( −r2 sin(2θ)

r2 cos(2θ) + a2

)

(97)

precisely because these are the rapidity and angle in terms of

which B2 and R2 vanish U 2 and S1 identically, respectively.
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This would mean that we have boosted into the rest frame

and rotated the spin along the third axis, and therefore that

we have written the spinor in polar form, which reads

ψ =φe− i
2 βπ

S

⎛

⎜

⎜

⎝

√
2

0

0

0

⎞

⎟

⎟

⎠

(98)

in standard representation. Here S= B
−1
2 R

−1
2 R

−1
3 with

β =arctan

(

2ar cos θ

r2 − a2

)

(99)

and

φ= K e− 1
2 ωr2√

A/2 (100)

for the Yvon-Takabayashi angle and module.

The same rapidity and angle, but for the real representation

of Lorentz transformations, would boost and rotate tetrads so

as to write them according to

e0
t =(r2+a2)A−1 e2

t =−2ar sin θ A−1 (101)

e1
r =− sin θ(r2−a2)A−1 e3

r =cos θ(r2+a2)A−1 (102)

e1
θ =r cos θ(r2+a2)A−1 e3

θ =r sin θ(r2−a2)A−1 (103)

e0
ϕ =−2ar2|sin θ |2 A−1 e2

ϕ =r sin θ(r2+a2)A−1 (104)

and

et
0 =(r2+a2)A−1 et

2 =2ar sin θ A−1 (105)

er
1 =− sin θ(r2−a2)A−1 er

3 =cos θ(r2+a2)A−1 (106)

eθ
1 = 1

r
cos θ(r2+a2)A−1 eθ

3 = 1

r
sin θ(r2−a2)A−1 (107)

e
ϕ
0 =2a A−1 e

ϕ
2 = 1

r sin θ
(r2+a2)A−1 (108)

and in terms of which it is now possible to calculate Ri jμ

with (33) getting

Rtϕθ =−2ar2 sin θ cos θ(r2+a2)A−2 (109)

Rrθθ =−2r3[r2+a2 cos (2θ)]A−2 (110)

Rtϕr =2ar |sin θ |2(r2−a2)A−2 (111)

Rrθr =−2a2r2 sin (2θ)A−2 (112)

Rrϕϕ =−r |sin θ |2 (113)

Rθϕϕ =−r2 sin θ cos θ (114)

while we also have

Pt = E (115)

Pϕ =−1/2 (116)

as it is again well known for the momentum.

One can see that the pair of equations (44, 45) is satisfied,

as expected since (42) is equivalent to (44, 45).

With the case of the harmonic oscillator completed it is

now possible to compare the two physical examples.

3.2 The comparison in parallel

3.2.1 Bi-linear invariant quantities

In order to make the comparison meaningful, it is easier to

consider quantities that are free of any superfluous informa-

tion. For this reason, we focus on scalars, since they are the

only quantities that can be invariant while still being non-

trivial. To make the comparison easy to read, in the follow-

ing, we express the considered quantities for the hydrogen

atom first and for the harmonic oscillator just below.

To begin, the Yvon-Takabayashi angles are

β =arctan
(

−α

Ŵ
cos θ

)

(117)

β =arctan

(

2ar cos θ

r2 − a2

)

(118)

and the modules are

φ=rŴ−1e−αmr/
√

� (119)

φ= K e− 1
2 ωr2√

A/2 (120)

where some information already becomes visible: for instance,

the Yvon-Takabayashi angle must be an odd function of cos θ

because of its pseudo-scalar character, and we see no radial

dependence in the Yvon-Takabayashi angle in concomitance

with the separability of variables of the module in the case

of the hydrogen atom, while no such feature exists for the

harmonic oscillator.

This is obvious from the fact that whenever the separability

of variables is demanded, the module must be a product of

the form φ = R(r)Y (θ) while at the same time the Yvon-

Takabayashi angle must be a sum of the form β = S(r)+Z(θ)

since it is the argument of an exponential function. Because

under parity the Yvon-Takabayashi angle flips its sign, we

then must have S =0 necessarily.

It should however be noticed that when the separation of

variable does not hold, as for the harmonic oscillator, the

radial dependence can carry surprises: for instance, it is easy

to see that at r = a the Yvon-Takabayashi angle is equal to

±π/2. This defines the boundary between the regions where

cos β is positive and regions where it is negative. Because

of this, the sphere of radius a is the limit through which the

scalar density � changes sign.

The five scalars coming from the squares of the tensorial

connections are given by

R c
ac Rai

i =− 1

r2

[

(2−Ŵ�2)2+|cot θ |2
]

(121)

R c
ac Rai

i =4(a2−2r2)A−2−
∣

∣

∣

∣

1

r sin θ

∣

∣

∣

∣

2

(122)

1

4
Ri jk Rabcε pi jkεpabc =− 1

r2
α2|cos θ |2�4 (123)
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1

4
Ri jk Rabcε pi jkεpabc =−4a2 A−2 (124)

1

2
Ri jk Ri jk = 1

r2

[

α2|cos θ |2�4−(1−Ŵ�2)2− 1

|sin θ |2
]

(125)

1

2
Ri jk Ri jk =4(a2−r2)A−2−

∣

∣

∣

∣

1

r sin θ

∣

∣

∣

∣

2

(126)

1

2
R

q
pq Ri jkε

pi jk = 1

r2
α cos θ�2(2−Ŵ�2) (127)

1

2
R

q
pq Ri jkε

pi jk =8ar cos θ A−2 (128)

1

4
Ri jc R c

pq εi j pq = 2

r2
α cos θ�2(1−Ŵ�2) (129)

1

4
Ri jc R c

pq εi j pq =8ar cos θ A−2 (130)

and something interesting is also emerging here: while in the

large-r regime, in both cases, all scalars tend to zero, in the

small-r region, for the hydrogen atom all scalars behave as

1/r2 whereas for the harmonic oscillator only Rc
ac Rai

i and

Ri jk Ri jk behave as 1/r2. As it is expected, both pseudo-

scalars tend to zero with a linear behaviour in the radial

coordinate but Ri jk Rabcε pi jkεpabc ≈ −16/a2 and the fact

that some scalar tends to a non-vanishing constant looks a

very astonishing circumstance.

This is a consequence of the fact that for the hydrogen

atom all scalars must have the same radial behavior to ensure

dimensional consistency while for the harmonic oscillator the

constant a has the dimension of a length and can therefore

be substituted to the radial coordinate in some expressions.

Nevertheless, for cases in which there is a natural constant

with the dimension of a length, we do not think that it is

possible to guess the actual radial behavior. There is in fact

no a priori difference between the three scalars and still one

of them has a radial behavior that is very different from the

one of the others.

3.2.2 Energy density tensor components

Albeit scalars are the invariants of the theory, it might also

be instructive to see what happens for a non-scalar quantity.

Even if we are considering situations where the energy is

not large enough to be a relevant source for the gravitational

field, it can still be different from zero and as such, it may

contain some interesting information.

The energy density tensor which is the source term of the

Einstein field equations is given, in polar form, according to

Tqa =2φ2

(

sq∇aβ/2+uq Pa + 1

4
εki jqsk R

i j
a

)

(131)

and it results in

Tt t =2φ2�(E +α/r) (132)

Tt t =2φ2 A−1(r2+a2)E (133)

Ttϕ =−φ2�(1−Ŵ)|sin θ |2 (134)

Ttϕ =−2φ2 A−1r2|sin θ |2 (135)

Trr =0 (136)

Trr =2φ2 A−1a (137)

Tθθ =φ2�αr (138)

Tθθ =2φ2 A−1ar2 (139)

Tϕt =−2φ2�αr |sin θ |2(E +α/r) (140)

Tϕt =−4φ2 A−1ar2|sin θ |2 E (141)

Tϕϕ =φ2�αr |sin θ |2 (142)

Tϕϕ =2φ2 A−1ar2|sin θ |2 (143)

in which an obvious lack of symmetry can be noticed in

the fact that in the case of the hydrogen atom there is no

radial–radial component is once again a consequence of the

separability of variables.

It is possible to compute the traces, which give

T =2φ2�E (144)

T =2φ2 A−1(r2 E −a2m) (145)

and exhibit an interesting property: while for the hydrogen

atom the large-r and small-r behaviors are the same, for the

harmonic oscillator the large-r behavior is T =2φ2 E but the

small-r behavior becomes T = −2φ2m flipping the sign of

the scalar trace of the energy density.

So the sphere of radius a
√

m/E defines the limit through

which the scalar trace of the energy density T changes from

positive values to negative values. Because the trace is such

that T =L + mψψ with L the Langragian functional, we

may think at the energy trace as what encodes information

about the total energy.

4 The tensorial connections

In the first section we have seen that Ri jk and Pa have the

character of connections while being true tensors: Ri jk is

the tensorial connection in a strict sense since it is directly

related to the Lorentz transformation while Pa is called the

gauge-invariant vector momentum to highlight its relation to

the gauge transformations. Although the concept of a tenso-

rial connection seems a contradiction, because connections

can be vanished with a choice of frame whereas tensors can-

not, this should not appear as something drastically new: the

orbital angular momentum can be vanished when calculated

in specific points but the spin cannot. The tensorial connec-

tion and the spin share this property of being truly covariant.

However, tensorial connections still behave as connec-

tions in their lacking of couplings to sources. In fact, the

components of Ri jk and Pa might well be different from zero

123
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but their curvatures are vanishing if, respectively, no gravity

or no electrodynamic phenomenon is present.

Situations where some physical effects can be ascribed to

potentials that are present (as non-zero connections) despite

having no strength (since they have zero curvature) is some-

thing that may be strange for Ri jk but for Pa is that we already

know as Aharonov–Bohm effect.

For Pa the technicalities can be worked out by taking

expression (34) and integrating it as

∫

γ

(Pμ+q Aμ)dxμ =
∫

γ

∂μλdxμ =
∫

γ

dλ=�λ (146)

along the trajectory γ , and where the last term is just the dif-

ference of phase between the starting and the ending points.

Similarly, from (33) we get

∫

γ

(Ri jμ+�i jμ)dxμ =
∫

γ

∂μθi j dxμ =
∫

γ

dθi j =�θi j (147)

in total analogy with the case above. Recall that Lorentz

indices designate quantities that are tensor under a (local)

Lorentz transformation but scalar under coordinate transfor-

mations. The integral is therefore well-defined.

When the spinor is in polar form, (36, 37) reduce to

∇μsi = R3iμ (148)

∇μui = R0iμ (149)

showing that the dynamics of the velocity vector or of the

spin axial-vector is determined only by those components of

Ri jμ for which the first index is equal to either zero or three.

The antisymmetry in the first two indices implies that any

of the first two indices has to be either zero or three, so that

R12μ never appears. This makes this component somehow

analogous to the momentum since Pμ never appears in the

dynamics of the velocity vector and of the spin axial-vector

in the first place.

This is in line with the fact that for a spinor that is an eigen-

state of the spin, that is for rotations around the third axis, as

the one in the polar form, rotations around the third axis have

the same effect than gauge shifts: in fact, a suitable rotation

around the third axis generates a component of R12μ which

is related by R12μ ≡ −2Pμ to the momentum generated by

an equivalent gauge shift.

If the trajectory is a close circuit, �θ is just a whole turn

times an integer

∮

γ

(Pμ+q Aμ)dxμ =2πn (150)

and analogously for �θ12 we have

∮

γ

(R12μ+�12μ)dxμ =−4πn (151)

where n is usually called winding number.

4.1 Discretizing the connection

If we consider the free cases, requiring the electromagnetic

field to vanish means that

∮

γ

Pμdxμ =2πn (152)

while requiring the gravitational field to vanish means that it

is always possible to find a frame where

∮

γ

R12μdxμ =−4πn (153)

as it is clear because of the formal analogy. Whereas the

former is clearly the Born rule for discretizing momenta

in closed orbits, the latter should be regarded as the Born

rule for discretizing some components of the connection in

closed orbits. Such an occurrence brings about an important

point in the discussion around the quantization of gravita-

tional degrees of freedom, because the tensorial connection

is precisely where the geometrical information is encoded.

The process of discretization is entirely independent on the

structure of the tensorial connection.

Much in the same way in which tensorial connections can

be discrete in the free case, the same might happen even

if gravity were present. In this case the quantization would

happen on the gravitational degrees of freedom. We do not

claim that this approach solves the long standing problem of

quantum gravity. It might however give some hints about the

fundamentally quantum nature of some geometrical degrees

of freedom.

4.2 Aharonov–Bohm Effects

If the gauge-invariant vector momentum and the tensorial

connection happen to vanish, and we choose a close circuit

to be the boundary of a given surface γ =∂S, then

q

∮

∂S

�A·d �x =2πn (154)

and analogously

∮

∂S

��12 ·d �x =−4πn (155)

in which we accounted for the spatial parts only. Using the

Stokes theorem we obtain

q

∫∫

S

rot �A·d �S =2πn (156)

and analogously
∫∫

S

rot ��12 ·d �S =−4πn (157)
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where we now have fluxes on the left-hand side. While the

former is recognized to be the condition giving rise to the

Aharonov–Bohm effect, the latter should be interpreted as

the condition giving rise to the gravitational analogous of

the Aharonov–Bohm effect. This would not only entail the

quantization of the electromagnetic as well as of the grav-

itational fluxes, as discussed above. But it also means that

there can be a phase-shift in the wave function of the matter

field due to the electromagnetic as well as to the gravitational

potentials even in regions with neither electromagnetic nor

gravitational forces.

In fact, writing (21) in the form

ψ = Sψpol (158)

where ψpol is the spinor in full polar form, we have that

S=e−iλe− 1
2 θi j σ

i j

(159)

in terms of one phase-shift of abelian type in λ and another

of non-abelian type in θ12 which, according to the above

(156, 157), can be present even in regions where no electro-

dynamic or gravity are present. However, electrodynamics or

gravity must be present in nearby regions so to let the fluxes

be non-zero at least somewhere.

The analogy of the two types of Aharonov–Bohm effect,

electrodynamic and gravitational, can be appreciated in its

full extent in the fact that in (159) both abelian gauge phase

and third-axis rotation angle have identical impact on the

structure of the spinor field matter distribution.

Nevertheless, it is important to stress that the usual elec-

trodynamic Aharonov–Bohm effect parallels only one of the

six vector potentials describing the gravitational Aharonov–

Bohm effect, and therefore the latter is inevitably richer in

potential physical applications.

5 Special approximations

As concluding remarks, we would like to investigate what

happens in the case of specific limits. A first approximation

is the one for which the two coupling constants are small:

in such a case, the above solution for the hydrogen atom

automatically reduces to the non-relativistic solution for the

considered system. Instead, the solution for the harmonic

oscillator has a ≈ 3
2m

which reduces to the non-relativistic

solution only in the case of large masses. In fact, even if the

mass is large, it would still be possible to consider radial dis-

tances small enough, and the non-relativistic approximation

still fails.

In fact, quite generally, for the harmonic oscillator we

can always find regions where relativistic effects cannot be

suppressed. To see this, just consider the scalar quantity cos β

and the energy trace T . The first changes sign on the sphere

of radius a and the second changes sign on the sphere of

radius a
√

m/E with a > a
√

m/E since ω is positive. For

small values of ω, we can expand the energy and write it

according to

T ≈2φ2

(

m cos β+ 3ωr2

Am

)

(160)

which isolates the kinetic energy m cos β from the potential

energy 3ωr2 A−1/m. The kinetic energy becomes negative

across the sphere of radius a
√

m/E and it becomes negative

and large enough so to overcome the positive potential and

make the total energy negative as well across the sphere of

radius a > a
√

m/E . Apart from this shift due to the poten-

tial, the reason for which both the energy and the modu-

lus become negative is the same, that is the fact that cos β

becomes negative. As cos β →−1 then β →π which means

that left-handed and right-handed chiral parts are in maximal

phase opposition with respect to one another. The deep inter-

pretation of such unusual new effects is still to be understood

but, at the heuristic levels, calculation of observables are in

principle possible.

Because the Yvon-Takabayashi angle is what describes

the differences between the two chiral parts even in the rest

frame, it can be interpreted as what describes the internal

dynamics of spinor fields. Thus, close to the center of the

matter distribution, where β tends to its maximal value, there

appears a region where the internal dynamics is dominant.

This is the region where relativistic effects can never be sup-

pressed, as we argued above.

Such an internal dynamics is confined within a sphere

whose radius can be evaluated, for small values of ω, to be

approximately one fourth of the Compton wavelength.

From the viewpoint of ordinary QFT, this is a strange

occurrence as the scalar density � is always assumed to be

strictly positive in QFT. This implies that the harmonic oscil-

lator has solutions which, as fields, cannot be quantized, or

at least not with usual methods.

We will not deal, however, with second quantization.

6 Conclusion

In this work, we have shown that when the spinor fields

are written in polar form, it becomes possible to define a

pair of objects that contain the very same information of

the space-time connection and the gauge potential but which

are covariant under Lorentz and phase transformations: they

are called tensorial connection and the gauge-invariant vec-

tor momentum. We have discussed that they are generally

non-zero even when they have neither space-time curvature

nor gauge curvature: this means that they can have effects

even when sourceless. Although this may look surprising,

we have shown that it consistently happens in specific cases,

such as the Coulomb and elastic potentials. A final compari-
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son between the hydrogen atom and the harmonic oscillator

was also performed, in particular for the scalars and for the

energy density tensor.

The fact that there could be non-trivial effects even when

considering sourceless actions is not new, since a phase shift

can occur in what is known as the Aharonov–Bohm effect.

We have shown that such a phenomenon occurs not only

for the gauge-invariant vector momentum but also for the

tensorial connection. To highlight this, we have built a par-

allel between the two cases. We have also underlined that

as the Aharonov–Bohm effect can entail information about

the quantization of electromagnetic fluxes, the gravitational

version of the Aharonov–Bohm effect may encode informa-

tion about the quantization of at least some of gravitational

fluxes.

We have concluded with comments on non-relativistic

limits, and in particular we have underlined the fact that for

the harmonic oscillator it is not possible to get non-relativistic

approximations in regions that are too close to the center of

the matter distribution because these are the regions where

the internal dynamics is dominant.

The fact that for the harmonic oscillator, both the energy

and the modulus may become negative seems to lead to some

conceptual problems in the perspective of QFT, since several

results of QFT are based on assumptions that we show not to

be fulfilled in general. For example, some hypotheses of spin-

statistic theorems, like the positivity of energy and norms,

should be questioned when harmonic oscillations are taken

into account. Nevertheless, while critical in QFT, these fea-

tures of the harmonic oscillator are a consequence of exact

solutions in presence of elastic potentials within the Dirac

equation, and so there does not seem to be much room for

improvement.

The only possibility could be that the problems come from

the elastic potential, but the elastic potential is just a dipole

coupling to an external tensor field, like the one that occurs

in presence of radiative processes.

We leave such considerations, and possible experimental

signatures, for a future work.
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206 Chapitre 4. Le formalisme polaire

4.4 La section efficace Compton dans le formalisme polaire

Ici le quadri-vecteur vitesse est dénoté par ga au lieu de ua étant donné que usuellement la lettre u

est utilisée pour indiquer un spineur en TQC.

Dans cet article, nous étudions la section efficace associée à la diffusion de spineurs dans le cadre
du formalisme polaire et on observe les différences avec les résultats de la TQC. Nous rappelons que,
sans potentiel externe, l’équation de Dirac s’écrit

iγµ∇µψ − mψ = 0, (4.67)

avec la dérivée covariante telle que

∇µψ = (∇µ ln φI − i

2
∇µβγ5 − iPµI −

1
2

Ri jµσ
i j)ψ = 0. (4.68)

On retrouve la TQC pour φ = constante, β = 0 et Ri jµ = 0. On a vu que l’équation de Dirac est
équivalente aux deux équations du formalisme polaire (4.31, 4.32). Sans le terme de potentiel Fµν, ces
équations se réduisent à

Bµ−2Pιg[ιsµ]+∇µβ+2sµm cos β=0, (4.69)

Rµ−2Pρgνsαεµρνα+2sµm sin β+∇µ ln φ2=0, (4.70)

avec Bµ =
1
2εµανιR

ανι et Rµ = R
a

µa . Avec les équations (4.69, 4.70), on peut écrire l’impulsion

Pµ=m cos βgµ−yks[kgµ]−xks jgiε
k jiµ, (4.71)

avec xk=
1
2(∇k ln φ2 + Rk) et yk=

1
2(∇kβ + Bk). En TQC, ces deux derniers sont supposés nuls. Ici, ce

n’est plus le cas et l’impulsion n’est plus proportionnelle à la vitesse, mais dépend également du spin
sa. On observe encore une fois que l’angle β apparaît dans le terme de masse, ainsi l’interaction des
parties gauche et droite change de façon effective la masse du spineur. Dans le cadre de la TQC, on a

Pµ = mgµ, (4.72)

ces quatre conditions impliquent que l’équation de Dirac (4.69, 4.70) (soit huit équations) avec
φ = constante et β = 0 est vérifiée. Si l’équation (4.72) était valide, il serait toujours possible
d’effectuer un boost dans le référentiel où la limite non-relativiste serait retrouvée, ce qui n’est pas
le cas. En effet, cette limite n’est pas retrouvée car même dans le référentiel au repos il existe une
dynamique interne due au spin sa et à l’angle β.

Ici, on souhaite prendre en compte xk et yk dans l’amplitude de diffusion. L’équation de Dirac
s’écrit donc

(Fkγ
k+ykγ

kγ5−m)ψ=0, (4.73)

avec Fk=Pk + ixk. Ainsi le propagateur G va être modifié et être solution de l’équation
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(Fkγ
k+ykγ

kγ5−m)G= I. (4.74)

On trouve que le propagateur s’écrit

G= (|F2+y2+m2|2 − |2F ·y|2 − 4F2m2)−1 × [Fkγ
k − ykγ

kγ5 − m] × [(F2 + y2 + m2)I + 2F ·yγ5 + 2mFaγ
a].

On retrouve effectivement le propagateur de la TQC pour xk = yk = 0.

On veut calculer l’amplitude de transition pour l’effet Compton. Les particules initiales sont un
photon d’impulsion k et un électron dans un potentiel d’hydrogène d’impulsion p. A l’état final on a
un photon d’impulsion k′ et un électron d’impulsion p′. L’amplitude pour le canal s est donnée par

1
4

∑
spin|Ms|2= e4

4 Tr
[
S (p′)γνG(q)γµS (p)γµG(q)γν

]
, (4.75)

avec q = p + k et S (p) la somme sur les spins. Dans le formalisme polaire, on a

S (p) =
∑

spins

ψψ = φ2(gaγ
a + e−iβγ5

). (4.76)

En considérant seulement les corrections au premier ordre, on a

S (p) = φ2
(
/g + I − iβγ5

)
, (4.77)

S (p′) = φ
′2
(
/g
′ + I − iβ′γ5

)
= m/g

′ + mI, (4.78)

car l’électron final est libre donc on a β′ = 0 et φ
′2 = m. Au contraire, l’électron initial orbite autour du

proton, et l’angle d’Yvon-Takabayashi est donné par

β = − arctan
(
α

Γ
cos θ

)
, (4.79)

avec α la constante structure fine et Γ=
√

1−α2. L’amplitude s’écrit

φ =
√

mrΓ−1e−αmr/
√
∆, (4.80)

avec ∆(θ)= (1−|α sin θ|2)−
1
2 . Étant donné la performance des résultats de la TQC, on peut en déduire que

les valeurs de xk et yk sont petites. On effectue une approximation au premier ordre pour le propagateur
et on obtient

G(q)≈ (q2−m2 + 4iq·x)−1 ×
[
WI + Xaγ

a + Yaγ
aγ5 + Zabσ

abγ5
]
,

avec

W = m +
2im(x · q)
q2 − m2

, (4.81)

Xa = qa + ixa +
2i(x · q)
q2 − m2

qa, (4.82)

Ya =
1

q2 − m2
[−(q2 + m2)ya + 2(y · q)qa], (4.83)

Zab =
4m

q2 − m2
yaqb. (4.84)
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En TQC, il n’y a pas de terme imaginaire au dénominateur et on le rajoute à la main pour utiliser
le Lemme de Jordan. Or on remarque ici que le terme 4iq · x apparaît naturellement. En utilisant
l’équation (4.71), on calcule l’impulsion de l’électron initial



p0

p1

p2

p3


=



m + α
r

− sinϕ/(2r sin θ)

cos ϕ/(2r sin θ)

0


. (4.85)

Sa vitesse ga est donnée par



g0

g1

g2

g3


=



1

−α sin θ sinϕ

α sin θ cosϕ

0


. (4.86)

La section efficace différentielle est donnée par

dσ

d cos θ′
=

1
2ω

1
2(m + α/r)

| M({k, p} → {k′, p′}) |2 × 1
4π

ω
′2

2mα/r − 1/(2r sin θ)2 + 2ω(m + α/r)
, (4.87)

le terme | M({k, p} → {k′, p′}) | dans le cadre du formalisme polaire se différencie du terme de TQC
car on ne peut plus remplacer p par mg, ainsi les produits scalaires vont avoir des valeurs différentes.
Dans la limite r → ∞, on en déduit la section efficace différentielle

dσ

dY
=

πα2

mω(m + ω − Yω)3

[
m2(1 + Y2)ω − m(Y − 1)(1 + Y2)ω2 + (Y − 1)2ω3

+
√

1 − Y2α sin θ sinϕ ×
(
m3 + m2(3 − 2Y)ω + m(Y − 1)2ω2

)]
. (4.88)

avec Y ≡ cos θ′, θ′ étant l’angle de diffusion du photon final défini sur la Figure 1 de l’article. Ainsi,
avec le formalisme polaire on peut calculer la section efficace lorsque l’électron initial n’est pas libre,
mais se trouve dans un potentiel d’hydrogène. Dans ce cas, il y a une dynamique interne entre les
parties droite et gauche de l’électron qui se traduit par un angle β non nul et une brisure de la symétrie
sphérique. On retrouve, en effet, les résultats de la TQC lorsque α tend vers zero. La section efficace
(4.88) dépend des angles θ et ϕ étant donné la brisure de symétrie. Cependant, en pratique, nous
effectuons une étude statistique et la section efficace (4.88) doit être moyennée sur θ et ϕ. Il en résulte
que statiquement il n’existe pas de correction en α et on retrouve la section efficace calculée en TQC.

Dans cet article nous avons utilisé le formalisme polaire pour décrire la diffusion de spineurs. Dans
ce cadre l’expression générale du propagateur a été calculée. La partie imaginaire du dénominateur
usuellement ajoutée pour effectuer le calcul des pôles apparaît ici naturellement. De plus, avec ce
formalisme, il est possible de décrire la diffusion pour des champs en interaction ce qui n’est pas le cas
en TQC. Il en résulte que la probabilité d’interaction pour un événement va être modifiée par cette
interaction. Cependant, d’un point de vue statistique, les résultats de la TQC sont retrouvés.
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We consider the theory of spinor fields written in the polar formalism. The components are given
as a module times a complex unitary phase respecting full Lorentz covariance. In this formalism,
spinors can be treated in their most general mathematical form, without the need to restrict them to
the case of plane waves. As a consequence, calculations of scattering amplitudes can be performed
by employing new fermion propagators and spin-sum relationships. In this article, we perform such
calculations for two processes: the electron-positron and Compton scatterings. We show how the
results differ from the ones calculated by using only plane waves, as usually done in quantum field
theory.

I. INTRODUCTION

Quantum field theory (QFT) is a magnificent theory
in its predictive power. It has successfully passed all ex-
perimental tests put forward up to now. Its core consists
in taking plane-wave solutions to the fundamental equa-
tions, promoting fields to be operators and expanding
scattering amplitudes in terms of radiative corrections
(or loop diagrams).

In this framework, predictions for the anomaly of
the magnetic moment of leptons and for the hyper-fine
splitting of hydrogen-like atoms have been confirmed
to an astonishing precision. The philosophy that lies
at the foundations of QFT is that, in the perturba-
tive expansion, all propagators are given for the free
fields, the full information about the interactions being
encoded through quantization protocols within the
vertices. Giving propagators in terms of free fields is
the reason why plane-wave solutions can be used, and
having all the information contained in the vertices is
the reason why radiative corrections account for the full
interaction. Naively, one may consider the process as a
Taylor expansion of the entire interaction.

Nevertheless, the mathematical structure still needs a
proper definition. Inconsistencies range from the fact
that equal-time commutation relationships may lack a
precise sense [1] to the fact that the interaction picture
used for the perturbative expansion may not, and in fact
in some cases does not, exist [2]. Even worse may be
the fact that all calculations are done in terms of plane-
wave solutions, which are not square-integrable so that,
strictly speaking, are not physically acceptable.

In this respect, one may wonder if, to describe a given
interaction, it could be possible to get rid of the per-
turbative series of vertex corrections, since they are not
necessarily well-defined on free propagators, and find a
way to describe the interaction as a whole.

This means that one would have, first, to find the most

general expression of interacting propagators and, then,
should recover the results of QFT in some limit.

In this study, we present the most general expression
of the interacting propagator for fermion fields. Then,
we use it to calculate some processes typically calculated
in QFT: the Bhabha (electron-positron) scattering and
the Compton scattering in the specific case where the
electron is in a hydrogen-like potential. Finally, we make
some comments on the comparison between what we ob-
tain and QFT in its standard form.

In order to get the general propagator for spinors, we
need to make a considerable use of the so called polar
form, the form in which spinor fields can be written in
such a way that each of their components is a module
times a complex unitary phase.

Generally speaking, this process spoils manifest covari-
ance. However, recent developments made it possible to
use an explicitly covariant approach. We thus take ad-
vantage of this formalism, and the ensuing polar form, for
the calculation of the general spinor propagator together
with the scattering amplitude.

II. GENERAL SPINOR THEORY

To treat spinors, we begin by introducing the Clifford
matrices γµ satisfying the Clifford algebra

{γa,γb}=2ηabI, (1)

in terms of which

σab= 1
4

[

γa,γb
]

(2)

are the generators of the complex Lorentz group,

S [Λ]=e
1
2
θabσ

ab

, (3)

where θab = −θba are the parameters of the real Lorentz
transformation Λ mentioned above. The relation

γiγjγk = γiηjk − γjηik + γkηij + iεijkqπγ
q (4)



implicitly defines the odd-parity π matrix (which is
usually referred to as γ5 but since, in the 4-dimensional
space-time, this index has no meaning we prefer to use
a notation with no index at all).

A spinor field ψ is defined as a vector field in the space
of spin, or complex Lorentz transformations. It is a “col-
umn” of 4 complex scalars satisfying

ψ→Sψ (5)

as a general transformation law. Its adjoint ψ=ψ†γ0 is
defined in this way because then the spinorial bi-linear
quantities

2iψσabψ=Mab, (6)

ψγaπψ=Sa, (7)

ψγaψ=Ga, (8)

iψπψ=Θ, (9)

ψψ=Φ, (10)

are all real tensorial quantities.
The dynamical character is determined by the Dirac

spinor field equation

iγµ
∇µψ−mψ=0, (11)

where m is the mass of the field. This field equation
could be complemented by additional interaction terms,
but for our purpose we will need nothing more.

Using the bi-linear quantities, one may perform a clas-
sification of spinor fields. For instance, if Θ and Φ do not
both vanish identically, the spinors are called regular and
they are essentially the Dirac spinors. If they both vanish
identically, then they are called singular, or flag-dipole,
and split in further sub-classes. If, in addition, Mab van-
ishes, then they are the so-called “dipole”. In this class,
one finds Weyl spinors. If Sa vanishes, then they are the
“flagpole”. In this class one finds Majorana spinors. Con-
sequently, it is not generally possible to dismiss singular
spinors as a whole. In this article, our interest will how-
ever be focused on regular spinors. For those spinors, it
was shown in [3] that it is always possible to write them
as

ψ=φe−
i

2
βπS







1
0
1
0






(12)

in the chiral representation, where φ is called the module,
β is the Yvon-Takabayashi angle, and S is a generic spin
transformation. For regular spinors, one has

Mab=(Φ2+Θ2)−1(GjSkεjkabΦ+G[aSb]Θ), (13)

showing that only the vector and axial-vector with scalar
and pseudo-scalar are independent. The spin transfor-
mation S is the one that takes the most general spinor in

the frame in which its velocity vector Ga loses its spatial
part and where the spin axial-vector Sa is aligned along
the third axis. We can normalize these vectors as

Sa=2φ2sa, (14)

Ga=2φ2ga, (15)

where

Θ=2φ2 sinβ, (16)

Φ=2φ2 cosβ, (17)

and show that the two scalar fields φ and β are the only
true real degrees of freedom of the spinor. The spino-
rial field consists in 8 real components, and the above
form makes their meaning clear: the scalar φ is what in
non-relativistic quantum mechanics gives the amplitude
of probability while β describes the dynamics between
right-handed and left-handed chiral projections. As such,
the latter disappears in the non-relativistic limit. The 3
components of the velocity and spin are described as ra-
pidities and angles in terms of the parameters of the S

transformation and thus can always be transferred to the
underlying space-time structure, as we will see.

Among other useful relationships, one should mention

ψψ≡ 1
2φ

2[(gaI+saπ)γ
a+e−iβπ(I−2gasbσ

abπ)], (18)

which is valid in the most general case, and in terms of
which it is possible to see that the spin-sum relationships
are given by

∑

spin ψψ≡φ2(gaγa+e−iβπ), (19)

where the sum is performed on all spin states [4].

By considering the polar form (12) and since in general

S∂µS
−1= i∂µθI+

1
2∂µθijσ

ij , (20)

where θ is a generic complex phase and θij=−θji are the
six parameters of the Lorentz group, we can define

∂µθij−Ωijµ≡Rijµ, (21)

∂µθ−qAµ≡Pµ, (22)

with the gauge potential qAµ and the spin connection
Ωijµ. Because equations (21,22) contain the same infor-
mation than the gauge potential and the spin connec-
tion but are proven to be real tensors, they are called
the gauge-invariant vector momentum and the tensorial
connection. Writing the spinor field in polar form thus
consists in re-arranging the components so as to isolate
the real degrees of freedom from the components that
can be transferred through the frame into the underlying
space-time structure where they combine with the gauge
potential and the connection leading to (22,21). Using
those variables, the spin covariant derivative is given by

∇µψ=(∇µ lnφI− i
2∇µβπ−iPµI− 1

2Rijµσ
ij)ψ (23)
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in the most general case. We therefore have

∇µsi=Rjiµs
j , (24)

∇µgi=Rjiµg
j , (25)

as general identities on the velocity and spin. The Dirac
spinor field equations are equivalently written according
to

Bµ−2P ιg[ιsµ]+∇µβ+2sµm cosβ=0, (26)

Rµ−2P ρgνsαεµρνα+2sµm sinβ+∇µ lnφ
2=0, (27)

where we have called 1
2εµανιR

ανι = Bµ and R a
µa = Rµ

for simplicity. The Dirac spinorial field equations are
8 real equations that, in polar form, are converted
into 2 vector equations that specify all the space-time
derivatives of the two real degrees of freedom. The angle
β is the phase-shift between the chiral parts and, as
such, it encodes the information about the mass term,
as it has been discussed in [5].

One can also to prove that

Ri
jµν=−(∇µR

i
jν−∇νR

i
jµ+R

i
kµR

k
jν−Ri

kνR
k
jµ) (28)

qFµν=−(∇µPν−∇νPµ), (29)

leading to the Maxwell strength and Riemann curvature
of the underlying gauge and space-time structures. A
gauge-covariant type of electrodynamic information is
therefore encoded in (22) while (21) encodes a covari-
ant type of gravitational and inertial acceleration. From
(28,29), one can see that the physical information is still
the one that enters the strength and curvature, so that
the non-zero solutions of equations

∇µR
i
jν−∇νR

i
jµ+R

i
kµR

k
jν−Ri

kνR
k
jµ = 0, (30)

∇µPν−∇νPµ = 0, (31)

describe a covariant type of gauge potential and inertial
acceleration that are not related to sources [6].

For electrodynamics such a strenghtless gauge poten-
tial is known to be related to the Aharonov-Bohm effect.
A similar phenomenon is expected in the gravitational
sector for the curvatureless covariant inertial acceleration
[7].

Finally, one notices that by combining the Dirac equa-
tions in polar form (26,27) it is possible to establish a
link between Pa and Rijk as

Pµ=m cosβgµ−yks[kgµ]−xksjgiεkjiµ, (32)

having set xk=
1
2 (∇k lnφ

2 + Rk) and yk=
1
2 (∇kβ + Bk)

for the sake of simplifying the form of the expression. It
should be noticed that these two terms are proportional
to an interaction between the velocity and the spin. In
fact, the angle β intervenes to change the length of the
momentum while xk and yk intervene in concomitance

with the spin to change the direction of the momentum
[8].

In view of the QFT treatment, it is also important to
establish the most complete form of the propagator for
the spinor field. For this purpose, we write the Dirac
spinor field equation in polar form (23) as

(Fkγ
k+ykγ

kπ−m)ψ=0, (33)

where Fk = Pk + ixk in terms of the momentum. The
propagator is hence the solution of the equation

(Fkγ
k+ykγ

kπ−m)G=I, (34)

and is found to be given by

G=(|F 2+y2+m2|2 − |2F ·y|2 − 4F 2m2)−1

×[Fkγ
k − ykγ

kπ −m]

×[(F 2 + y2 +m2)I+ 2F ·yπ + 2mFaγ
a], (35)

as proven by a direct substitution.
We will have the opportunity to use this expression in

the next sections when dealing with scattering processes.
It is however also necessary to see how QFT happens to
be recovered from this more general approach.

III. REDUCTION TO QFT

As mentioned in the introduction, the computations
are carried out in QFT by considering plane-wave solu-
tions of the fundamental equations. The implementation
of this requirement is performed by using

i∇µψ=Pµψ, (36)

which has to be compared with the general form (23). It
is easy to see that

(∇µ lnφI− i
2∇µβπ− 1

2Rijµσ
ij)ψ = 0, (37)

which has to be true for any spinor field. Then, because
σij , I and π are linearly independent we must have
Rijµ = 0 with φ and β constant. Since a constant
pseudo-scalar has to vanish we get that QFT essentially
requires φ to be constant with β and Rijµ equal to zero.

For the spin-sum relationships, and with the commonly
used normalization φ2=m, one would be led to

∑

spin ψψ≡(Paγ
a+mI), (38)

in which we have used the fact that according to (32) we
do have in this case

Pµ=mgµ, (39)

as widely used in QFT calculations. It should be however
noticed that (39) cannot account for the full dynamical
behavior of the Dirac spinor because its validity implies

3



the one of the Dirac spinor field equations. However a
set of four conditions can not imply the validity of a
system of eight equations in general. In this case, the lost
information is the one involving the internal dynamics.
In fact, if it were possible that Pµ=mgµ then any boost
in the rest frame, which is always possible for a massive
particle, would also mean a boost into the frame in
which the non-relativistic limit is recovered exactly. As
a consequence, for a massive particle, it would always be
possible to have a non-relativistic description, which is
not true. Thus, the proportionality between the velocity
and the momentum cannot hold in general. In general,
boosting to rest frame does not mean boosting to the
frame in which the non-relativistic approximation is
accurate because even in their rest frame particles still
have an internal dynamics. It is solely when the internal
dynamics is lost, by requiring the spin to vanich, that
(32) can be approximated by (39), as we would have in
QFT.

To conclude this section, we must show that the prop-
agator found above indeed reduces to the propagator of
QFT. The conditions for the restriction to QFT are, as
we said, Rijµ = 0 with β=0 and φ constant, which means
xa=ya=0. As, then, Fk=Pk identically, the propagator
reduces to

G=(|P 2+m2|2 − 4P 2m2)−1

×[Pkγ
k −m][(P 2 +m2)I+ 2mPaγ

a]

≡ (P 2−m2)−1[Pkγ
k +mI], (40)

which is in fact the propagator of QFT exactly.

The conditions Rijµ = 0, β=0 and ∇νφ=0 are there-
fore those implementing the reduction to QFT from the
most general case, whether it is in terms of the covariant
derivative of the spinor, the spin-sum relationships or the
propagator.

The vanishing of the Yvon-Takabayashi angle and of
the tensorial connection might appear as a reasonable
assumption. Its validity however leads to a number of
disturbing consequences. One is that under those hy-
potheses, the Dirac-Maxwell system of field equations has
no solution [9].

That tensorial connection and Yvon-Takabayashi angle
are quite generally different from zero is clear from the
fact that they are non-zero in some remarkable situations
such as those given by the integrable potentials associ-
ated with the hydrogen atom and the harmonic oscillator
[7].

IV. SCATTERING PROCESSES

We now proceed to calculate the transition amplitude
for the Bhabha and Compton scatterings.

A. Bhabha scattering

To begin with, we consider an electron-positron scat-
tering, which is simpler since, in this case, the propagator
is a photon and no correction is taken.

For this process, we focus on the two main usual Feyn-
man diagrams. The matrix element is the sum

iMfi = iMs
fi + iMt

fi, (41)

where s and t refer to the photon channels. We will
compute the two channels separately, although calcula-
tions are analogous. The momenta of the particles are
given by (32).

The calculation of the amplitude leads to

Ms
fi =

[

u(q1)(ieγ
ν)v(q2)

][

ηµν
s

][

v(p2)(ieγ
µ)u(p1)

]

= −e
2

s
u(q1)γµv(q2)v(p2)γ

µu(p1), (42)

and to

Ms
fi = − e2

s
u(p1)γ

νv(p2)v(q2)γνu(q1), (43)

as it is well known in QFT.

However, differently from what is done in standard
QFT, we consider a more general spin-sum: for the par-
ticle u we have

∑

spinuu=φ
2(gaγ

a+e−iβπ)

≈ φ2[/g+I(1−β2/2)−iβπ], (44)

while for the antiparticle v with v = πu we have

∑

spinvv=φ
2(gaγ

a−e−iβπ)

≈ φ2[/g−I(1−β2/2)+iβπ], (45)

up to second order in β, which is the level of approxima-
tion we consider here.

From these spin-sums, we get the transition amplitudes

1
4

∑

spin |Ms|2 = e4φ8

s2

×Tr

[

[ /h1 + I(1−β2/2)− iβπ]γµ

[ /h2 − I(1−β2/2) + iβπ]γν

]

×Tr

[

[ /g2 − I(1−β2/2) + iβπ]γµ

[ /g1 + I(1−β2/2)− iβπ]γν
]

, (46)
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and

1
4

∑

spin |Mt|2 = e4φ8

t2

×Tr

[

[ /h1 + I(1−β2/2)− iβπ]γµ

[ /g1 + I(1−β2/2)− iβπ]γν

]

×Tr

[

[ /g2 − I(1−β2/2) + iβπ]γµ

[ /h2 − I(1−β2/2) + iβπ]γν
]

, (47)

with g and h the velocities associated with the momenta
p and q respectively. It is easy to check that QFT results
are recovered if we normalize φ2 =m with p = mg and
q = mh with β=0. Calculating the traces shows that, up
to a second-order correction, all β terms disappear and
one is left with

1

4

∑

spin

|Ms|2 =
8e4φ8

s2

[

(g2 ·h1)(g1 ·h2)

+(g2 ·h2)(g1 ·h1) + (g1 ·g2) + (h1 ·h2) + 2

]

, (48)

and

1

4

∑

spin

|Mt|2 =
8e4φ8

t2

[

(g2 ·h1)(g1 ·h2)

+(g2 ·h2)(g1 ·h1)− (h1 ·g1)− (h2 ·g2) + 2

]

, (49)

showing no difference with respect to the result of stan-
dard QFT. We have also explicitly checked that this re-
mains true for the interference term.

B. Compton scattering

We now move to the Compton scattering. This process
is more complicated because it involves the evaluation
of traces that contain the propagator of the fermion
which, in our case, are given by intricate expressions.
The generalization appears through corrections in the
Yvon-Takabayashi angle. We consider an incident pho-
ton with momentum ka and an electron in a hydrogen
potentiel with momentum pa given by (32). The final

particles are a photon with k
′a and an electron with p

′a.

We still consider the two usual main Feynman dia-
grams. The matrix element in the s-channel is given by

1
4

∑

spin|Ms|2= e4

4 Tr
[

S(p′)γνG(q)γµS(p)γµG(q)γν

]

,(50)

as it is well known with q = p+ k.
For the spin-sums we take first-order corrections

S(p) = φ2
(

/g + I− iβπ

)

, (51)

and

S(p′) = φ
′2

(

/g
′ + I− iβ′π

)

= m/g
′ +mI (52)

since β′ is the Yvon-Takabayashi angle of the scattered
electron, which can be considered as free. For β, one has
to consider the Yvon-Takabayashi angle of the electron
orbiting the nucleus, which is given in spherical coordi-
nates by

β = − arctan
(α

Γ
cos θ

)

, (53)

with α the fine-structure constant and Γ =
√
1−α2 for

hydrogen-like atoms. The values of the modules are given
by φ

′2=m and

φ =
√
mrΓ−1e−αmr/

√
∆ (54)

with ∆(θ)= (1−|α sin θ|2)− 1
2 a function of the elevation

angle, as it has been found in reference [6]. It is quite an
interesting fact that β, lnφ and their derivatives are of
the same order than the fine-structure constant.

The propagators are given by (35) and the first-order
truncation leads to

G(q)≈(q2−m2 + 4q ·xi)−1

×
[

W I+Xaγ
a + Yaγ

aπ + Zabσ
abπ

]

, (55)

with

W = m+
2im(x · q)
q2 −m2

, (56)

Xa = qa + ixa +
2i(x · q)
q2 −m2

qa, (57)

Ya =
1

q2 −m2
[−(q2 +m2)ya + 2(y · q)qa], (58)

Zab =
4m

q2 −m2
yaqb. (59)

It is worth noticing that starting from our general
expressions and taking the first-order perturbative
expansion, we obtain the imaginary term 4q ·xi in the
denominator of the scalar factor without the necessity
to postulate it as done in QFT. This term is needed to
remove the poles and it is naturally present in the most
general formalism used here.

At first-order in x, y, and β we have

W (q)W ∗(q) = m2, (60)

X(q)X∗(q) = q2, (61)

W (q)X∗
a(q) +W ∗(q)Xa(q) = 2mqa, (62)

W (q)X∗
a(q)−W ∗(q)Xa(q) = −2imxa, (63)
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θ′k p

χ′

k p

p′

k′

Figure 1: Compton scattering in the lab frame.

so that

1

4

∑

spin

|Ms|2 =
4φ2me4

(q2 −m2)2

×
[

4m2 + 4q2 − 4m(g ·q)− q2(g ·g′)

−4m(g′ ·q) +m2(g ·g′) + 2(g ·q)(g′ ·q)
]

(64)

for the s-channel.
For the u-channel, calculations are analogous and give

1

4

∑

spin

|Mu|2 =
4φ2me4

(f2 −m2)2

×
[

4m2 + 4f2 − 4m(g ·f)− f2(g ·g′)

−4m(g′ ·f) +m2(g ·g′) + 2(g ·f)(g′ ·f)
]

, (65)

as it is easy to check, with f = p− k′.
For the interference term, we obtain

1

4

∑

spin

ℜ(MsMu) =
4φ2me4

(f2 −m2)

1

(q2 −m2)

×
[

− 2m2 +m2(g · g′) +

+m(q + f) · (g + g′) + (q · f)(1− 2(g · g′))
]

.

At this order, it should be noticed that the physical
changes are not due to the new propagator but to the
presence of the hydrogen potential, which is naturally
accounted for in this framework.

To compute the cross section we pick the lab frame as
in Fig. 1. The photon has momentum ka = (ω, 0, 0, ω)
and the electron is such that, in Lorentz indices, it reads







p0

p1

p2

p3






=







m+ α
r

− sinϕ/(2r sin θ)
cos ϕ/(2r sin θ)

0






. (66)

To recover the free case, as in QFT, one should consider
α → 0 and r → +∞. At first order in α, we have p2 =
m2 + 2mα/r − 1/(2r sin θ)2. The term 2mα/r is due
to the potential energy of the hydrogen atom, while the
term 1/(2r sin θ)2 is due to the kinetic energy generated
by the interaction with the hydrogen nucleus.

For the outgoing particles, the photon momentum is
k

′a = (ω′, ω′ sin θ′, 0, ω′ cos θ′) and a free electron has
p′2 = m2.

The cross section is

dσ =
1

2ω

1

2(m+ α/r)
dΦ2|M({k, p} → {k′, p′}|2, (67)

as easily shown by textbook calculations [10].
The explicit expression of dΦ2 is obtained using

∫

d3p′

2Ep

=

∫

d3p′dp′0δ(p
′2
0 − E2

p)Θ(p′0)

=

∫

d3p′dp′0δ(p
′2
0 − p

′2 − ~p′
2
)Θ(p′0)

=

∫

d3p′dp′0δ(p
′
ap

′a − p′2)Θ(p′0), (68)

so that

∫

dΦ2 =
1

(2π)2

∫

d3p′

2Ep′

d3k′

2ω′
δ(4)(k′ + p′ − k − p) (69)

=
1

(2π)2

∫

d3k′

2ω′
δ((p+ k − k′)2 −m2) (70)

Θ(ω + Ep − ω′)

=
1

2(2π)2

∫

ω′dω′dΩδ

(

2mα/r

− 1/(2r sin θ)2 + 2ω(m+ α/r)

− ω′[2(m+ α/r) + 2(1− cos θ′)ω

+
sinϕ sin θ′

r sin θ
]

)

=
1

4π

∫

d cos θ′ (71)

× ω
′2

2mα/r − 1/(2r sin θ)2 + 2ω(m+ α/r)
,

and eventually

dσ

d cos θ′
=

1

2ω

1

2(m+ α/r)
|M({k, p} → {k′, p′}) |2

× 1

4π

ω
′2

2mα/r − 1/(2r sin θ)2 + 2ω(m+ α/r)
, (72)

where |M | is the only unknown.

To evaluate |M |, the scalar products have to be explic-
itly performed. In [6], the velocity of the initial electron
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is given in Lorentz indices. As we keep only the first
order in α we have,







g0

g1

g2

g3






=







1
−α sin θ sinϕ
α sin θ cosϕ

0






. (73)

The total momentum qa = pa + ka is







q0

q1

q2

q3






=







m+ α
2r + ω

− sinϕ/(2r sin θ)
cos ϕ/(2r sin θ)

ω






. (74)

Defining Y ≡ cos θ′ and considering the limit r → ∞,
we obtain:

dσ

dY
=

πα2

mω(m+ ω − Y ω)3

[

m2(1 + Y 2)ω

−m(Y − 1)(1 + Y 2)ω2 + (Y − 1)2ω3

+
√

1− Y 2α sin θ sinϕ

×
(

m3 +m2(3− 2Y )ω +m(Y − 1)2ω2

)]

. (75)

When α tends to zero, we find back the usual QFT re-
sult. However, in general, the result is different, as a con-
sequence of the interaction. That is, individually, if one
photon hits an electron within the hydrogen potential,
the probability of diffusion depends on where the electron
is (through the θ and ϕ dependance). In an hydrogen-
like potential, β is indeed non-vanishing and describes an
internal dynamics between the left and the right parts of
the electron. This breaks down the spherical symme-
try. If, however, we assume a statistical phenomenon –
as implicitly done here –, the situation is different. For
example, the spin-sum relationships that were used in
(19) are statistical in nature. In this case, one needs to
average the cross section (75) over θ and ϕ. The inter-
action term then cancels which, quite hopefully, leads to
the usual result. Statistically, there is therefore no cor-
rection term at the first order in α that appears because
of the electron-proton interaction.

V. CONCLUSION

The first result of this study is the derivation of the
expression of the propagator for a fermion. The expres-
sion obtained is more general than the one of QFT. It is
interesting to notice that, in this generalized approach, a
“small” imaginary term elegantly appears in the denom-
inator. In QFT, one has to put it by hand to carry out
the calculations. Then, we have seen that in the Bhabha
scattering case, the transition amplitude terms appear
to be the same than in ordinary QFT. Even if some β2

terms are cnosidered, they do compensate each other. In
the case of the Compton scattering, considering only the
first order, we observe that the cross section is modified
by the derivative of the amplitude and the phase shift
of the spinor. There are some corrections at first order
in α, the fine structure constant. It is worth underlining
that, considering the most general description of a spinor
with φ, β and their derivatives, the α-correction appears
even when considering only the lowest order in Feynman
diagrams. This is different from the standard QFT cor-
rections in α that are present in the g-factor once loops
are added to the diagrams. However, the α corrections we
get, due to the interaction, do cancel under the averaging
procedure. It is important to mention that in this more
general formalism, one can in principle describe fields in
interaction, which is not possible in QFT as the plane
wave approximation suppresses β, x and y. As a result,
we have shown that the non-zero β of the initial electron
breaks down the symmetry. Consequently, the diffusion
probability for a single event in principle depends on the
electron localisation in the hydrogen potential. However,
statistically, the interaction term cancels and one finds
back the QFT result. In a way, this provide an expla-
nation of the reason why considering free fields is such
a good approximation. One could possibly investigate if
this results should lead to a widening of the experimen-
tally measured distributions but this remains beyond the
scope of this work.
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218 Chapitre 4. Le formalisme polaire

4.5 Conclusion sur le formalisme polaire

La mécanique quantique révèle la dualité onde-corpuscule des particules. En pratique, dans le
cadre de la TQC, l’aspect ondulatoire est décrit par l’approximation de l’onde plane et l’aspect
corpusculaire par l’approximation de la particule ponctuelle. En réalité, nous savons que l’onde n’est
pas délocalisée jusqu’à l’infini spatial et qu’à partir d’une certaine distance la particule ne peut pas
être considérée comme un point. Le formalisme polaire permet de décrire les particules sans utiliser
ces deux approximations. En effet, on pu voir dans la section 4.3, que pour des potentiels de Coulomb
et d’oscillateur harmonique, il existe des solutions à l’équation de Dirac décrites par une amplitude
non constante. L’amplitude diminue avec r et, pour l’oscillateur harmonique, on a également une
brisure de symétrie sphérique. Ainsi le gradient ∇rφ permet de décrire une particule qui n’est pas
étalée sur l’infini spatial mais localisée. De plus, une particule n’est pas ponctuelle et possède une
structure interne. Grâce au formalisme polaire on a pu décrire la dynamique interne des spineurs. En
effet, à l’intérieur du spineur, il y a une interaction entre ses parties droite et gauche qui est décrite par
l’angle β. Cette dynamique diminue lorsqu’on s’éloigne du centre de la particule. Pour conclure, ce
formalisme offre une excellente description des spineurs en utilisant pour unique hypothèse la validité
de l’équation de Dirac.



Conclusion

La gravité quantique a longtemps été considérée comme une chimère qui ne pourrait pas être
sondée par des expériences. Il existe différents modèles pour décrire la gravité quantique. Les travaux
théoriques actuels sont assez élaborés pour permettre d’ores et déjà d’étudier certains aspects phéno-
ménologiques associés à la gravité quantique. Dans ce manuscrit nous avons étudié principalement la
LQG et ses propriétés associées à la cosmologie et aux trous noirs.

En LQC, nous avons vu que l’univers en contraction permet de prédire une distribution de proba-
bilité sur la durée de l’inflation. Cette distribution réduit considérablement la fenêtre sur le nombre
d’e-folds. Cette dernière est piquée aux alentours de 145 e-folds et se trouve donc proche mais au
dessus de la limite minimale qui est de 60 e-folds. La perspective d’un univers en contraction avant le
rebond ouvre également la possibilité de détecter des signaux pré-rebond. Nous avons étudié le com-
portement de la distance de luminosité dans un univers en contraction. Il est intéressant de noter que,
en fonction du contenu en matière, la luminosité d’un signal peut augmenter avec l’intervalle de temps
entre l’émission et la réception. Ainsi, malgré une amplitude fortement diminuée par l’expansion de
l’univers actuel, des ondes gravitationnelles pré-rebond pourraient tout de même avoir des amplitudes
raisonnables. Enfin, nous avons pu observer que la LQC prédit des spectres de puissances différents de
ceux du modèle standard de la cosmologie. Dans le cadre de la LQC, la façon de choisir les conditions
initiales est plus ambigüe car plusieurs instants peuvent être approximés par un vide de Bunch-Davies.
Cependant, on a pu voir que, pour les perturbations scalaires, les différents instants impliquent des
spectres de puissance similaires.

Nous avons étudié différents aspects associés aux trous noirs. Lorsqu’on prend en compte les
effets quantiques, un trou noir qui atteint une densité importante pourrait transiter vers un état de trou
blanc, par effet tunnel. Le signal émis par ces derniers dépend du contenu, de quand et comment ils
ont été formés. Étant donné que le temps de rebond est long, nous nous sommes intéressés aux trous
noirs primordiaux. Pour différents spectres de masse initiaux, nous avons pu voir comment le flux
varie avec l’énergie. On observe que dans certains cas, un signal est émis dans l’échelle d’énergie des
sursauts radio rapides et ce signal se distingue des autres sources possibles de part sa dépendance en
redshift. Un autre article concerne la sections efficace associée au rayonnement de Hawking. On a
considéré un modèle de trou noir qui s’inspire des travaux de la LQG. Ce modèle décrit un trou noir
proche de celui Schwarzschild, qui prend en compte la discrétisation de l’espace et l’existence d’une
aire minimale. L’échelle de discrétisation tend à diminuer la section efficace. Les effets sont d’autant
plus grand que la discrétisation est ressentie à plus grande échelle. Ensuite, j’ai étudié la propriétés
d’isospectralité. Les perturbations des trous noirs classiques (Schwarzschild, Reissner-Nordström,
Kerr) sont isospectrales. Pour d’autres types de trous noirs, des travaux numériques ont été effectués.
J’ai repris la preuve analytique de Chandrasekhar pour voir si l’isospectralité pouvait s’appliquer
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à des cas plus généraux. Il se trouve que pour des trous noirs sans charge ni moment cinétique, la
preuve s’étend aux trous noirs de Schwarzschild-de Sitter et Schwarzschild-Anti de Sitter. Par la suite,
j’ai étudié comment la valeur de QNMs varie en fonction des différents modèles au delà de la RG.
Leurs valeurs a été calculées pour les modèles de gravité massive, de gravité scalaire-tenseur-vecteur,
de gravité de Hořava-Lifshitz, un modèle avec une correction en ~ et un modèle de trous noirs type
LQG. En comparant ces valeurs à celles d’un trou noir de Schwarzschild on observe la prédiction de
fréquences plus élévées ou plus faibles en fonction du modèle considéré. Cela ouvre une fenêtre vers
la discrimination de certaines théories lorsqu’expérimentalement les QNMs seront mesurés avec plus
de précision. Nous avons étudié un modèle jouet plus particulièrement. Ce dernier tente de dépeindre
les effets quantiques qui pourraient apparaître en dehors de l’horizon, après une accumulation dans
le temps. La différence relative par rapport aux trous noirs de Schwarzschild est d’autant plus élevée
lorsque les effets quantiques se trouvent proche de la sphère de photon. Ces effets quantiques pourraient
être observés pour des trous noirs de masse bien plus élevée que celle de Planck. Enfin, nous avons
investigué la possibilité que les origines de la matière noire actuelle soient des reliques de trous noirs
microscopiques, formés par la collision de particules trans-Planckiennes. Si l’échelle d’énergie de
l’inflation est suffisamment élevée, la densité de reliques peut rendre compte de la quantité de matière
noire.

Enfin j’ai étudié le formalisme polaire qui permet de décrire la dynamique des spineurs. En utilisant
les six dégrées de liberté associés aux transformations de Lorentz, nous pouvons décrire les spineurs
dans un référentiel où seulement deux dégrées résiduels persistent. Ce sont leur vrais degrés de liberté
car ce sont des scalaires et ils ne peuvent pas être effacés par des transformations. On a alors l’amplitude
φ et l’angle d’Yvon-Takabayashi β ainsi que leur dérivée. Nous avons étudié le cas des spineurs de
Dirac et montré que sous un potentiel de Coulomb ou d’oscillateur harmonique, φ n’est pas constant et
β n’est pas nul contrairement aux hypothèse de la TQC. Certains coefficients de la connexion tensorielle
Ri jµ sont également non nuls et cela permet de décrire l’effet Aharonov-Bohm gravitationnel. Nous
avons également utilisé ce formalisme pour décrire la section efficace Compton dans le cadre d’un
électron en interaction avec un proton. On a pu observer, que contrairement à la TQC, ce formalisme
était apte à décrire des sections efficaces pour des champs non libres. Le calcul de l’expression du
propagateur fermionique permet de montrer que l’astuce mathématique de TQC qui consiste à ajouter
un terme imaginaire au dénominateur apparaît ici naturellement. L’angle β qui traduit un déphasage
entre la partie droite et gauche du spineur décrit une dynamique interne. Du fait de cette dernière,
la probabilité d’interaction avec un électron sous un potentiel de Coulomb dépend de sa position, la
symétrie sphérique est brisée. Cependant d’un point de vue statistique, la section efficace sera la même
que celle calculée en TQC.

Perspectives

Un des points importants pour l’étude des perturbations primordiales en cosmologie concerne la
durée de l’inflation. En effet le spectre de puissance est très différents en fonction de la fenêtre du
nombre d’onde considérée. L’étude qu’on a effectué sur la LQC apporte une prédiction probabiliste
sur sa durée et l’étude de la distance de luminosité ouvre la perspective d’observer des traces de
la période pré-rebond. Cependant dans les deux cas nous avons négligé les conséquences dues au
rebond où les effets de gravité quantique sont les plus importants. Le rebond pourrait complètement
changer les grandeurs physiques qui le traversent et l’approximation de coller deux solutions classiques
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pourrait être une mauvaise approximation. Cependant, à ce jour les connaissances sur la gravité
quantique ne sont pas apte à décrire le rebond de façon rigoureuse. D’un point de vue expérimental,
beaucoup d’espoir se portent vers la mesures des spectres de puissance. La connaissances du spectre
des perturbations tensorielle pourrait clairement réduire le nombre de théories plausible. Cette mesure
pourrait être effectuée dans les prochaines décennies. Pour l’étude des perturbations il serait intéressant
de prendre en compte des relation de dispersion modifiées pour les effets transplanckiens.

Les études sur la phénoménologie des trous noirs en rebond restent préliminaires. En effet, le temps
de rebond proportionnel à la masse au carré du trous noirs a été déterminé par analyse dimensionnelle
et plus tard, des articles ont argumenté que le trou blanc pourrait émettre des signaux par oscillations
sur des période proportionnelles à la masse. Il serait intéressant de faire une étude prenant en compte
les différents paramètres du modèle : le temps de vie, le facteur de proportionnalité de ce dernier ainsi
que les rebonds à grandes distances. De plus, le modèle de trou noir en rebond admis actuellement
possède au contraire une probabilité de transition en exp

(
−M2

)
, ainsi il serait intéressant d’étudier la

phénoménologie associée à ce modèle. Pour l’étude de la section efficace des trous noirs quantiques
à boucles, on pourrait étudier d’autres modèles provenant de la théorie mère. Il serait également
intéressant d’étudier la propagation des champs électromagnétiques. Concernant l’étude des QNMs,
l’isospectralité incluse, la prochaine étape sera d’étudier le cas des trous noirs en rotation.

Dans le cadre du formalisme polaire, les termes de la connexion tensorielle manquent encore
d’interprétation. Certains impliqueraient la localisation de la particule. Nous avons pu voir aussi que
d’autres seraient responsables de l’effet Aharonov-Bohm gravitationnel. Il serait pertinent de calculer
la section efficace d’autres processus que la diffusion Bhabha et Compton. Nous pourrions également
aller plus loin en étudiant le cas des corrections quantiques avec une ou plusieurs boucles. Un autre
point qu’il serait important d’étudier serait de considérer la probabilité de diffusion dans le cas d’un
unique évènement. Comme nous l’avons vu des différences entre la TQC et le formalisme polaire
pourraient apparaître. Cependant dans notre étude nous avons considéré un moyennage sur les spins
ainsi, il serait intéressant de ne pas utiliser cette hypothèse statistique dans le calcul des sections
efficaces.
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