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Introduction

Le 20eme siecle marque une période importante pour la physique. La premiere révolution concep-
tuelle vient de la relativité restreinte. Cette théorie bouleverse notre perception du temps et de 1’espace
en remettant en cause les notions de simultanéité et d’espace absolu. Le temps et I’espace deviennent
indéfectiblement liés. S’ensuivent des conséquences essentielles parmi lesquelles I’impossibilité d’inter-
actions instantanées a distance, 1’équivalence masse-énergie, 1’interdiction pour une particule massive
d’atteindre la vitesse de la lumiere et I’existence de 1’antimatiere. A la suite de 1’établissement de ce
nouveau paradigme, deux grandes théories émergent. L'une de facon indépendante, 1’autre de facon
corrélative.

D’une part, la physique quantique voit le jour. Les particules décrites jusqu’ici seulement par
leur aspect corpusculaire, sont désormais décrites également par un aspect ondulatoire. La dualité
onde-corpuscule est indispensables des lors qu’on veut dépeindre les caractéristiques exhaustives
d’une particule. Cet aspect ondulatoire donne lieu a des propriétés de délocalisation et a une facette
probabiliste. C’est une importante avancée dans notre conception du monde physique. En effet, le
principe déterministe ancré dans les lois les plus fondamentales s’en trouve partiellement déconstruit.
Et, de facon tres remarquable, le phénomene d’intrication quantique — dans lequel les particules
enchevétrées forment un systeme li€ — montre que la théorie est, en un sens, non-locale.

Le formalisme contemporain utilise abondamment la notion de champ et le concept (dont nous
verrons qu’il est en réalité non-trivial) de base d’ondes planes. De fagon générique, la quantification
s’effectue en appliquant des relations de commutation canoniques aux champs considérés et en les
promouvant au rang d’opérateurs. La procédure dite de “quantification de Dirac" permet de généraliser
la méthode a partir de la structure symplectique de la théorie considérée.

La théorie quantique des champs (TQC) permet de concilier efficacement le principe de la relativité
restreinte avec les prescriptions de la mécanique quantique. La dynamique des champs est décrite par
des équations différentes qui dépendent de leurs spins. Un champ scalaire, un tenseur de type (0, 0), de
spin entier 0, est soumis a I’équation de Klein-Gordon. Un champ électromagnétique, un tenseur de
type (0, 1), de spin 1, est soumis aux équations de Maxwell. D’un point de vue théorique, si on associe
une particule d’interaction liée a la gravité, cette particule, appelée graviton, serait un tenseur de type
(0, 2), de spin 2. Pour compléter ce panel de champs, il existe également le champ fermionique, de
spin 1/2. Ce dernier est non plus décrit par un tenseur mais par un spineur qui se transforme en son
opposé sous rotation de 2. Un champ fermionique est soumis a I’équation de Dirac et une partie de
cette these y sera consacrée a quelques considérations originales autour des propriétés de ces solutions.

Du point de vue de la physique des particules élémentaires, le formalisme se fonde sur les théories
jauge. Celles-ci utilisent des groupes de symétrie locale (groupes de Lie complexes) : U(1), SU(2),
SU(3), SUR)XSU(3), etc. Seule la gravitation fait défaut dans ce paradigme par ailleurs treés cohérent,
quoique non exempt de difficultés.
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D’autre part, en parallele, la théorie de la relativité générale (RG) s’est imposée. L’espace-temps est
courbé par I’énergie. Ainsi, un objet massif va modifier I’écoulement du temps et infléchir les distances
a ses alentours. Cela décrit une quatrieme force fondamentale conceptuellement tres différentes des
trois précédentes. En effet, les forces électromagnétiques, faible et forte décrivent la dynamique des
particules et pour cela on utilise comme référence I’espace-temps dans lequel elles sont plongées. En
gravité, on décrit la dynamique de I’espace-temps lui-méme. Il n’y a plus de référence immuable sur
laquelle s’appuyer, de structure figée : c’est ce qu’on nomme I’invariance de fond. Mathématiquement,
il est possible de décrire la dynamique d’un espace a quatre dimensions en le plongeant dans un
espace a cinq dimensions. Mais il est également possible de décrire sa courbure, par exemple, en
demeurant dans I’espace-temps lui-méme. Pour décrire la propagation des champs du modele standard
des particules en présence de gravitation, on peut utiliser la TQC en espace courbe. Cependant, lorsque
I’on veut quantifier I’espace-temps lui méme il faut faire appel a la gravité quantique. Il n’existe pas a
ce jour une unique théorie de gravité quantique consensuelle. Nous sommes encore a un stade précoce
car aucune expérience n’a sondé directement des effets de gravité quantique.

Dans ce manuscrit, nous verrons différents aspects théoriques et phénoménologiques associés a
la gravité quantique. Dans un premier temps, nous étudierons la phénoménologie de la cosmologie
quantique a boucles (LQC). Ce modele cosmologique s’inspire des travaux effectués dans le cadre de
la gravitation quantique a boucles (LQG). Cette théorie tente de quantifier 1’espace-temps de fagon
invariante de fond. En LQC, le Big-Bang est remplacé par un rebond, précédé d’une phase ou I’univers
se contracte. Il est alors possible d’étudier les conséquences de cet univers pré-rebond dans 1’univers
actuel. Nous étudierons ensuite la phénoménologie associée aux trous noirs dans le cadre de la gravité
quantique. Nous verrons les éventuels signaux émis par les trous noirs en rebond et les conséquences
de la discrétisation de 1’espace-temps sur le rayonnement de Hawking. Plusieurs de mes travaux
portent sur les modes quasi-normaux (QNMs). Ces derniers décrivent les fréquences propres des ondes
gravitationnelles émises lorsqu’un trou noir se trouve dans la phase dite de relaxation. Nous étudierons
d’abord les aspects théoriques li€s a 1’isospectralité, puis nous verrons comment la valeur des QNMs
varie en fonction des parametres de différents modeles au-dela de la RG. Enfin, nous étudierons le
formalisme polaire, qui décrit le théorie quantique des spineurs dans une plus grande généralité que la
TQC. Dans cette approche, 1’unique hypothese est la validité de 1’équation de Dirac. Nous verrons que
ce formalisme est apte a décrire I’effet Aharonov-Bohm gravitationnel ainsi que la section efficace de
diffusion pour des particules en interaction. Il semble que des effets non-triviaux échappant a la TQC
puissent étre ainsi décrits.



CHAPITRE 1

La théorie quantique des champs et la
relativité générale
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Dans ce chapitre, je vais introduire la relativité générale (RG) et la théorie quantique des champs
(TQC). La premiere étend le concept de la relativité restreinte a des espaces-temps courbes. La
deuxieme permet d’avoir une description relativiste (au sens restreint) de la mécanique quantique.
Ainsi avant de présenter ces deux théories, j’énoncerai quelques aspects de la relativité restreinte. Puis
je présenterai la gravitation quantique a boucles. Cette théorie tente de quantifier la gravité. Dans ce
manuscrit nous utilisons le systeéme d’unités naturelles, mais parfois nous écrirons explicitement la
longueur de Planck /p,. Les vecteurs, et plus généralement les tenseurs, sont notés en gras. Cepen-
dant, par abus de langage, on écrit parfois un tenseur avec ses indices sans que 1’on fasse référence
spécifiquement a une de ses composantes.

1.1 La relativité restreinte

Cette section et la section 1.3 sont inspirées du livre [1].

D’apres le principe de relativité, il n’existe pas d’observateur inertiel privilégié. Pour décrire cette
propriété, nous introduisons le groupe de Lorentz - le groupe orthogonal O(1, 3). 1l est défini par

Nab = Nea\, A%, (1.1)

avec A“, une transformation de Lorentz

11
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X = A4 x, (1.2)

et 7, la métrique de Minkowski, dans la notation index. L’intervalle d’espace-temps
ds? = ngdx®dx = di* — dx* — dy* — dz°. (1.3)

est invariant sous transformation de Lorentz. Le sous-groupe orthochrone (A% > 0) et propre (det A =
1), SO*(1, 3), est appelé le groupe de Lorentz restreint.
Une transformation infinitésimale est décrite par

Aub = 6(}; + a)ah. (1'4)

[’équation (1.1) montre que w est antisymétrique, le groupe de Lorentz possede donc six parametres.
11 décrit trois rotations dans I’espace et trois boosts. Les générateurs des rotations sont notés J' et ceux
des boosts K'. Nous explicitons par leur forme ici, mais I’algebre de Lie du groupe de Lorentz so(3, 1)
s’obtient par commutation des générateurs. L’algebre de Lorentz s’écrit

[, J7] = €k JE, (1.5)
[JI, K'] = e*K*, (1.6)
[Ki, K/] = —€* Jk. (1.7)

En introduisant &' = (1/2)e’*w/* et = 1, les transformations de Lorentz s’écrivent

A = o ial+inaK" (1.8)

On défini J tel que A = 1 — iw,,J* /2 quand w,, — 0. On peut montrer que (J*), = i(n*s’ -
n”6%). Ona J% = K’ et J;; = €;J*. En notation covariante, 1’algébre de Lorentz se lit

[Jab, ch] — i(_naCde _ nbdjac + rleJad + nad‘]bc‘)’ (19)

et un élément de I’algebre de Lorentz s’écrit

A = e 2wal” (1.10)
En définissant
+ K
L (L11)
2
I’algebre s’écrit
[JH, JHi] = jelik gk, (1.12)
[J4, I = ie*kJ=*, (1.13)
[J5, J>7]1 = 0. (1.14)

On a so(3, 1) = su(2) € su(2). Les représentations de su(2) 5 su(2) sont étiquetées par deux nombres
demi-entiers (j_, j.). (0,0) est la représentation scalaire, de dimension 1, J = 0, K = 0. Les repré-
sentations (1/2,0) et (0, 1/2) sont les représentations spinorielles, de dimension 2. Un spineur dans
la représentation (1/2, 0) est appelé spineur de Weyl gauche et est dénoté par y; et un spineur dans
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(0, 1/2) est un spineur de Weyl droit y¢. Dans la représentation (1/2,0), J~ est représenté en termes
de matrices 2 X 2 telles que J~ = 7 et J* = 0. Avec I’équation (1.8), on peut montrer que sous
transformations de Lorentz un spineur gauche va se transformer selon :

v = Augn = exp((=i8-m)- S Jon. (1.15)

Et dans la représentation (0, 1/2), un spineur droit se transforme selon

= Aate = exp (=i + 1)+ % . (1.16)

Les représentations irréductibles (1/2,0) et (0, 1/2) sont échangées sous parité tel qu’un spineur
gauche devient un spineur droit et vice-versa.
Nous définissons un champ de Dirac tel que

W = [m]. (1.17)
YR

Il possede quatre composantes complexes et fournit une base pour les transformations de Lorentz et de
parité. Il se transforme selon

AL O

— A =
1/ p¥ 0 A,

v, (1.18)

sous transformation de Lorentz. Sous parité, il se tranforme selon ¢’ = . Nous renvoyons le lecteur
au cours [2] pour plus de détails sur les différentes représentations du groupe de Lorentz.

1.2 La relativité générale

Cette section s’inspire des livres [3, 4].

En relativité restreinte, un observateur libre se déplace selon les géodésiques de la métrique de
I’espace-temps qui est plat. En relativité générale (RG), un observateur libre se déplace selon les
géodésiques mais cette fois 1I’espace-temps est courbe.

La relativité est invariante par difféomorphisme (sous une transformation générale de coordonnées).
On peut alors procéder de deux facons différentes ce qui va amener a décrire la RG avec différents
formalismes [5]. Un premier formalisme consiste a garder les points de la variété fixes mais a changer
le systeéme de coordonnées dans 1’espace R*. On fait un changement des vecteurs de base (qui vivent
dans R*) d’un méme quadrivecteur (qui vit dans M). C’est le formalisme passif (formalisme de
coordonnées). Une autre facon de procéder est de garder la base de R* fixe mais de faire bouger les
points sur la variété. On change de quadrivecteur mais on garde les méme vecteurs de base. C’est le
formalisme actif (formalisme des tétrades).

Dans la suite, les indices grecques sont des indices d’espace-temps alors que les indices latins
sont des indices de Lorentz, vivant dans I’espace de Minkowski tangent a I’espace-temps. Dans ce
manuscrit nous considérons la RG sans torsion.
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1.2.1 Les différents formalismes

Le formalisme de coordonnées, passif

L’espace-temps en représenté par la métrique g qui est un tenseur de type (0,2), symétrique et non
dégénéré. Une dérivée covariante (ou connexion) est un opérateur d’ordre 1 qui respecte la regle de
Leibniz. Soit u un vecteur de 1’espace tangent, la dérivée covariante V est définie par

V" = 01" + T gl (1.19)

Soit une courbe C de vecteur tangent #, un vecteur v suit le transport parallele sur C si

u'V,u" =0. (1.20)

Une courbe C est une géodésique si le vecteur vitesse dx/dt suit le transport parallele, ¢’est-a-dire

d*x dx*drf

ar T ar ar
Une fois la métrique donnée, il existe un choix naturel et unique pour définir la dérivée covariante,
provenant du transport parallele. Si on transporte parallelement deux vecteurs v et w sur une courbe, il
faut que leur produit scalaire reste inchangé, c’est-a-dire

(1.21)

u"Vﬂ(gaﬁv“wB) =0, (1.22)

avec v et w satisfaisant 1’équation (1.20). La regle de Leibniz nous permet d’obtenir

W' WPV 8.5 = 0. (1.23)

Cette équation (1.23) est satisfaite pour toutes les courbes et tous les vecteurs transportés parallelement
si et seulement si

Viu8op = 0u8op — gpﬁrpau - gw/’rpﬁﬂ =0. (1.24)

C’est une condition additionelle, dite condition de métricité, qui permet de définir la dérivée covariante
de maniere unique [3]. Cette derniere est appelée connexion de Levi-Civita et ses composantes sont les
symboles de Christoffel :

1 v
rﬂ(lﬁ = Eglu (aaglgy + 8ﬁgm, — Bygaﬁ). (125)
La RG nous indique que I’espace-temps est courbé lorsqu’il y a un contenu en matiere. La courbure F'
de la connexion de Levi-Civita s’écrit

Fu,v)w =V, Vyw = V,V,w =V, yw. (1.26)

On peut alors définir le tenseur de Riemann R. C’est un tenseur de type (1,3) défini tel que

RP

ouv

dx’(F(0,, 0,)0, (1.27)
0L,y = I, + 10 T =T, T (1.28)

En le contractant on obtient le tenseur de Ricci
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Ry, =R (1.29)

opv*

Puis une deuxieme contraction nous permet de définir le scalaire de Ricci

R=FR, (1.30)

Le tenseur de Weyl C est la partie sans trace du tenseur de Riemann. En quatre dimensions on a

Cp(r,uv = Rpo-yv - %(gpﬂR(rv + g(rva/z - gGprv - gpvR(r/z) + %(gppga'v - gpvga'ﬂ)R~ (1 3 1)

La matiere courbe 1’espace-temps et cette interaction est décrite par 1’équation d’Einstein

G + A8y = KTy, (1.32)

avec Gy, = R, — % guwR le tenseur d’Einstein, A la constante cosmologique, T le tenseur €énergie-
impulsion et k = 87 en unités naturelles. Cette équation (1.32) peut étre retrouvée a partir de I’action
donnée par

S = f[%((R[g] —-2A) + Lma[]d“x y—detg, (1.33)

avec L., la densité Lagrangienne de la matiere et R le scalaire de Ricci. Le tenseur énergie-impulsion
est donné par

1 1 65
T, = : (1.34)

21 \J—detg 08"

La partie gravitationnelle de I’équation (1.33) est appelée action d’Einstein-Hilbert

1
Sen = 7 f d*x /- detgR[g). (1.35)

Ainsi, I’espace-temps est décrit par une variété Riemannienne, qui se courbe selon le contenu
en matiere et cela est décrit par 1I’équation d’Einstein (1.32). Ce formalisme de tenseurs est celui
qui est le plus utilisé. Il a I’avantage d’expliciter 1’interprétation physique des équations de fagon
naturelle. Il est notamment utilisé pour décrire la RG sous le formalisme Hamiltonien qui sera utilisé
en gravité quantique a boucles (voir la section 1.5). Mais d’autres formalismes sont également utilisés
et posseédent d’autres avantages. Les formalismes suivants sont actifs.

Le formalisme des tétrades, actif, réel

Les coefficients de connexion affine I’ op SONt remplacés par des coeflicients de connexion de spin
Q“b#. Dans le formalisme des tétrades, on associe a chaque point de 1’espace-temps une base de quatre
vecteurs contravariants e“,. Ces derniers permettent de passer de 1’espace-temps a I’espace de Lorentz,
ils sont définis tels que

8op = e“aebﬂnab. (1.36)

La matrice inverse e/ est définie par
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el = et e e =5 (1.37)

(02 a

Une transformation de coordonnées est décrite par

a a
¢y = e“agx,ﬂ, (1.38)
et une transformation de Lorentz par
e, = e’ A, (1.39)

Dans ce formalisme, la condition de métricité s’ écrit

Ve, =0 e — T8 e+ Qe =0, (1.40)

a 1 1 A a _ ,a v o a v A 1 1
avec Q,° la connexion de spin donnée par Q,° = eI", e,” + €, 0,e,”. On peut définir les coefficients
de rotation de Ricci

v
Yabe = €4 €pue. - (1.41)

Ils sont antisymétriques par changement des deux premiers indices. Le tenseur de Riemann en indices
de Lorentz s’écrit

Ripea = RpO',uveapeb(Tecﬂedv (1.42)

= ~Yabed T Vabdc T ’}/baf[)/cfd - ydfc] + qucybfd - yfadybfc' (143)

Le formalisme de Newman-Penrose, actif, complexe

Le formalisme de Newman-Penrose est un formalisme des tétrades, avec un choix spécifique de
vecteurs : I et n sont réels, m et m sont complexes conjugués. Les quatre vecteurs sont nuls

Il=nn=mm=mm-=0. (1.44)
Ils satisfont a la condition d’orthogonalité
Ilm=Ilm=nm=nm=0. (1.45)
On impose également la condition de normalisation
Iln=1 et mm=-1. (1.46)

Les dérivées directionnelles sont définies par des symboles spéciaux

D=1,; A=n%0,; 6=m"d,; et & =m"o,. (1.47)

On associe également des symboles a certains coeflicients de rotation de Ricci. Ils sont appelés
coeflicients de spin
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1

K =311 P = V314 €= 5(7211 + Y341)
1

0 = Y313 M= Y243 T= 5(7212 + Y342)
1

A=Y T =712 a= 5(7214 + Y344)
1

V = Y42 T =741 B= 5(7’213 + Y343)

Dans ce formalisme, les dix composantes indépendantes du tenseur de Weyl sont représentées par
cinq scalaires complexes

Yy = _Caﬁyélamﬁpmé = Ci313,
¥, = _Caﬁyélanﬁlymé = Ci213,
¥, = —Cc,/;y(;l"mﬁn_fyn‘S = Ci342, (1.48)
Y = _Caﬁyélanﬁ m'n’ = Cip,
¥y = —Copn®m’n’m’ = Coys.

Les équations d’Einstein seront écrites avec les dérivées directionnelles, les coefficients de spin et ces
cinq scalaires.

Ce formalisme sera utilisé pour 1’article sur la section efficace des trous noirs en LQG (section 3.2)
et celui sur I’isospectralité (section 3.3.3).

Le formalisme spinoriel, actif, complexe

Ce formalisme est un cas particulier du formalisme des tétrades. Il est défini avec les quatre matrices
4 x 4 y“, elles vivent dans I’espace de Minkowski et les tétrades permettent de les décrire en espace
courbe

Y= ylet. (1.49)
Elles obéissent a I’algebre de Clifford
'y’ = 21", (1.50)
et en utilisant la propriété (1.36), on a alors
Yy =2¢". (1.51)

On peut écrire une représentation complexe de 1’algebre de Lorentz

1
o = L “7'1. (1.52)

Il est possible de vérifier que ces matrices satisfont effectivement les regles de commutation de 1’algebre
de Lorentz. Dans la représentation spinorielle, la transformation de Lorentz s’ écrit
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1
Ay = 029 (1.53)

avec wy, les six parametres du groupe de Lorentz. Les matrices y sont invariantes par rotation
simultanée de leur indices vectoriels et spinoriels [6]

A;y“A% = A" (1.54)
La connexion spinorielle est définie par
Q, = %Q“Zcrab, (1.55)
et la condition de métricité s’écrit
V=00 + 9, + [y, Q. = 0. (1.56)

Ce formalisme sera utilisé pour 1’article de I’étude des spineurs, dans des potentiels de types
hydrogene et oscillateur harmonique, qui décrira également 1’effet Aharonov Bohm gravitationnel
(section 4.3), ainsi que dans ’article sur la section efficace de la diffusion Compton (section 4.4).

Les équations d’Einstein sont non linéaires et il est tres compliqué de trouver des solutions. Grace
aux simplifications dues aux symétries, plusieurs solutions on été trouvées. La premiere solution est
celle de I'univers en expansion. La deuxieme solution est celle de trou noir (mais plus généralement
c’est une solution de corps sphériques statiques) qui décrit une région de 1’espace-temps ol la matiere
ne peut pas s’échapper. Dans les deux cas, la RG prédit une singularité. La gravité quantique pourrait,
quant a elle, permettre de résoudre ces singularités.

1.2.2 La cosmologie

On a vu précédemment que la métrique est reliée a la distribution de matiere, par les équations
d’Einstein (1.32). Pour décrire I’univers comme un tout, ce dernier est supposé homogene et isotrope a
tres grande échelle. C’est le principe cosmologique, consistant avec les observations. Ces symétries
simplifient énormément les équations d’Einstein, et il existe une solution décrite par la métrique de
Friedmann-Lemaitre-Robertson-Walker (FLRW)

dr?

1 —kr?

ds* = —N*(t)d?* + d*(1) +r° + r* sin” 6dg |, (1.57)
avec ¢ le temps cosmologique, k le facteur de courbure et a le facteur d’échelle. La fonction lapse N(t)
ne joue aucun réle dynamique, elle correspond un multiplicateur de Lagrange. Elle permet de définir
un choix de jauge pour I’évolution de la composante temporelle. L’ action est donnée par 1I’équation

(1.33). Pour un univers décrit par I’équation (1.57), le scalaire de Ricci est donné par
a @ k aN

R:6(—+—+———), 1.58

N2a N2a®> a*> aN3 ( )

et I’action d’Einstein-Hilbert Eq.(1.35) se réduit a
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|
Sen =5 (fod%R-—ZAﬁ+2K£M) (1.59)
K

avec A la constante cosmologique et £, le Langrangien qui décrit le contenu en matiere de I’univers.
La dynamique est dictée par le contenu de I’univers. On suppose que 1’univers est rempli d’un fluide
parfait, ainsi le tenseur énergie-impulsion s’écrit

T,uv = puyi, + p(guv + uyuv)a (1.60)

avec p la densité d’énergie, p la pression et u la quadri-vitesse du fluide. Les équations d’Einstein se
réduisent alors aux équations de Friedmann

o=y -

) A
4 Lp+3p+2 (1.62)
a 6 3

(1.61)

LAk
P 3

K
3 E

En multipliant I’équation (1.61) par a?, différenciant cette équation et éliminant & via I’équation (1.62),
on obtient

o+ 3H(p +3p) = 0. (1.63)

On peut alors décrire la densité d’énergie p de chaque contenu en fonction de a et du parametre d’état
w = p/p. En supposant w constant, on a

o(t) ~ a(f) 1), (1.64)

Le parametre w décrit le contenu en matiere : w = 1/3 pour le rayonnement, w = 0 pour la matiere non
relativiste et w = —1 pour une constante cosmologique. Ainsi, pour w # —1, I’expansion de 1’univers
est décrite selon

a(t) ~ 15w . (1.65)

Le cas w = —1 décrit un univers dynamique dont la densité d’énergie reste constante au cours du
temps. Cela donne lieu a une expansion exponentielle de ’univers, Eq. (1.61). Actuellement nous
observons une telle expansion. L’explication standard décrit un univers dominé par 1’énergie noire dont
les propriétés restent encore incertaines et dont les effets sont décrits par A. Une description trés rapide
du modele cosmologique serait la suivante : nous avons le Big-Bang, puis 1’univers est principalement
rempli par le rayonnement, ensuite la matiere non relativiste domine (les grandes structures se créent)
et enfin nous avons la phase d’expansion accélérée actuelle. Il y a eu une phase d’équilibre entre les
photons et les baryons, puis I’expansion de I’univers a permis aux photons de s’échapper de cette
interaction et de se propager a travers 1’univers. C’est grace a ce fond diffus cosmologique (dit CMB,
pour Cosmic Microway Background), qu’aujourd’hui nous pouvons effectuer des observations des
premiers instants de I’univers. Dans ce modele cosmologique, nous introduisons également 1’inflation.
Cette derniere décrit une phase d’expansion exponentielle (espace de de Sitter = dS) qui a eu lieu juste
apres le Big Bang. Ce modele permet de résoudre les problemes d’homogénéité, d’isotropie, d’horizon
et de platitude. De plus, cette phase d’inflation est importante pour les perturbations primordiales, que
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nous verrons dans la section 2.3.1. L’inflation permet également de décrire la création des particules
primordiales. En effet, pendant I’inflation on a un vide privilégié associé a I’espace dS, et brutalement,
on passe a un autre vide privilégié lorsque I'inflation s’arréte et que I'univers est dominé par le
rayonnement. Ainsi la transition est décrite par les transformations de Bogoliubov (1.119, 1.120).

En cosmologie standard, il n’existe aucune prédiction sur la durée de I’'inflation. Par contre, il faut
qu’elle dure assez longtemps pour permettre de résoudre le probleme de 1’horizon. Cela signifie que
I’inflation doit établir un contact causal entre des régions €loignées du CMB. La durée de I’inflation
est exprimée en nombre d’e-folds N défini tel que

N=n(2) (1.66)
ar
avec a; et ay les facteurs d’échelle au début et a la fin de I’inflation, respectivement. Cette phase

d’expansion peut étre expliquée si I’univers est rempli d’un champ scalaire ¢. C’est ce modele ci que
nous présentons, cependant il existe un large panel de modeles aptent a générer une phase d’inflation

[7].

La dynamique d’un champ scalaire minimalement couplé a la gravité, avec A = 0, est décrit par
’action suivante

1 1
S=Sgu+Sy= f d*x \/—_g(Z(R + Eaﬂ¢a,l¢ - V(¢)), (1.67)

Le tenseur énergie-impulsion correspondant se déduit en dérivant I’action par rapport a g,, (1.34), on
obtient

Ty = ——2 50 5 60,06 ¢ (16%6 b+ V(¢>) (1.68)
S e PN VR '
On en déduit
1., 1.,
p=3F V@ et P=3-V(@). (1.69)

Ainsi dans un univers homogene et isotrope, 1’équation de Klein-Gordon se réduit a

¢ +3Ho + fl—g =0. (1.70)

Dans le cas d’un régime de roulement lent (dit "slow-roll"), c’est-a-dire lorsque 1’énergie potentielle
domine par rapport a I’énergie cinétique, on a une expansion accélérée

. 1 dV
H> ~ gv et ¢ = _ﬁ% ~ constante. (1.71)

Ce modele décrit une phase d’inflation dans I’univers primordial dictée par la dynamique d’un champ
scalaire ¢.
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1.2.3 Les trous noirs

La solution stationnaire, axisymétrique et asymptotiquement plate aux équations d’Einstein dans le
vide, la plus générale décrit les trous noirs de masse M, avec une charge Q et un moment cinétique J.
Ils sont appelés trous noirs de Kerr-Newman. Ceci est confirmé par le théoreme de la calvitie : un trou
noir est caractérisé par seulement ces trois parametres : M, Q et J et ce, peu importe la facon dont il a
été formé.

Les trous noirs de Schwarzschild

Les trous noirs de Schwarzschild sont une solution statique a symétrie sphérique des équations
d’Einstein dans le vide. D’apres les symétries, cet espace-temps peut étre décrit par une variété S, X Uy,
avec S, la sphere a deux dimensions, dont la métrique s’écrit

dQ? = d6” + dy? sin® 0 (1.72)

et U, une variété a deux dimensions dont la métrique n’est pas définie. Sur U,, on peut définir des
coordonnées u et v telles que les courbes u = constante et v = constante soient de type lumiere. La
métrique s’écrit alors sous la forme de Kruskal

32M3
ds* = — 2M dudv — r*dQ?, (1.73)
r

ou restrelié a u etvvia

ro\
“o ( 2M) (1.74)

On peut ensuite effectuer une transformation conforme pour passer des coordonnées de Krushkal (u, v)
aux coordonnées cartésiennes de Penrose (U, V)

u=tanU (1.75)
v=tanV (1.76)

L’espace-temps de Schwarzschild peut étre alors représenté par un diagramme de Penrose, tracé sur la
Figure 1.1. La région I définit I’extérieur du trou noir » > 2M tandis que la région /1 est I’intérieur du
trou noir r < 2M. La région IV décrit une solution de trou blanc. Dans les régions [ et /11, on peut
poser

= e, (1.77)

et obtenir la métrique de Schwarzschild

oM |
ds? = (1 - —)dﬂ - A — PdO?. (1.78)
r

M
1 r

L’horizon des événements est une hypersurface de rayon r, = 2M, appelé rayon de Schwarzschild.
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n=0

FiGure 1.1 — Diagramme de Penrose de I’espace temps de Schwarzschild avec U et V les coordonnées
cartésiennes de Penrose reliées aux coordonnées de Kruskal par les transformations (1.75) et (1.76) [8].

Les autres solutions et la classification des trous noirs

Le modele des trous noirs de Schwarzschild est le plus simple étant donné qu’il ne dépend que
de la masse. Mais, comme on I’a vu précédemment les trous noirs peuvent dépendre de deux autres
parametres.

Un trou noir de Reissner-Nordstrom est une solution, a symétrie sphérique, des équations d’Einstein
couplées aux équations de Maxwell. Avec Q la charge électrique, la métrique s’écrit

MO |
ds® = (1 M, Q—)dt2 e dP — PO, (1.79)
r r |2, 2

Ces trous noirs possedent deux horizons : un horizon des événements, externe, et un horizon de Cauchy,
interne.

Les trous noirs en rotation sont décrits par la métrique de Kerr. Avec J le moment cinétique, dans
les coordonnées de Boyer-Lindquist, la métrique s’écrit

e (1 2Mr ) ,  4Mrasin® 6 r? +a*cos’d
s =l - ———+— - - T dr
r?> +a*cos* 0 r? + a®cos* 0 r2 =2Mr + a?
2Mra?sin 6
— (7'2 + (12 COS2 G)dgz - (7'2 + (12 + #COSZH) Sil’l2 9d¢2, (1.80)

avec a = J/M. Cette solution correspond aux trous noirs qu’on observe dans 1’univers. En effet, les
trous noirs de Reissner-Nordstrom sont instables car, de part leur charge, ils vont attirer les particules
chargées de sorte a devenir neutre.
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On classe les trous noirs selon leur intervalle de masse :

e les trous noirs supermassifs qui se trouvent aux centres des galaxies : M ~ (10° — 10°)M,, ,
e les trous noirs intermédiaires M ~ 10°M,, ,
e les trous noirs de masses stellaires M ~ 10M,, ,

e les trous noirs microscopiques.

Dans ce manuscrit, nous aborderons les trous noirs microscopiques, qui sont considérés pour le
modele des trous noirs en rebond (voir la section 3.1). Cependant leur existence n’est pas avérée. En ce
qui concerne les ondes gravitationnelles actuellement détectées, elles proviennent de la coalescence
de trous noirs stellaires. Les récentes mesures de LIGO vont peut-&tre chambouler ces catégories en
faisant apparaitre une sorte de continuum (par exemple avec les trous noirs de 100 masses solaires).

1.3 La théorie quantique des champs

Apres avoir introduit la RG pour décrire les espace-temps courbes, nous présentons quelques
aspects de théorie quantique des champs. Dans cette section, nous nous plagons en espace plat puis
nous aborderons la description des champs quantiques en espace courbe dans la section suivante. Cette
section s’appuie sur les références [1] et [6].

1.3.1 Quantification du champ scalaire

Nous considérons un champ scalaire ¢ réel de masse m. Le Lagrangian d’un tel champ s’écrit

L= %(aﬂgbaﬂgb — m*¢?), (1.81)

Les équations d’Euler-Lagrange donnent I’équation de Klein-Gordon

(0,0 + m*)¢ = 0. (1.82)

Une onde plane ¢ = A exp(ip.x) est solution si
P’y - p* =m’. (1.83)

Pour définir une solution plus générale, nous avons besoin d’un produit scalaire

(bilda) = —i f &*xp) 3o o, (1.84)
P

Cd
avec 0,8 = f0,8—(0,f)g et Z, I’hypersurface spatiale a f constant. Ce produit scalaire est indépendant
du temps si les champs ¢; et ¢, sont solutions de 1’équation de Klein-Gordon (1.82). Etant donné

(eXi%|eMiy = (Ey, + Ex,)e =B Q) 5k — k), (1.85)

un ensemble de modes orthogonaux est donné par
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ikx

e
Xy = ——. 1.86
Sl = —=o s (1.86)
Les modes sont dit de fréquence positive (respectivement négative) si

O0.fx = —iEyfy avec Ep>0 (1.87)
O fy = —iExf; avec E; <0 respectivement) (1.88)

Ainsi, une solution générale est la superposition d’ondes planes telle que

d*p : :

(x) = f—(a e +are?) | g, (1.89)

¢ (n) \2E, " v

avec E, = ++/p* + m>.

En TQC, les champs ¢ et leur moment conjugué II passent au rang d’opérateurs et on impose les
relations de commutation suivantes

[¢(2, ), T1(z, )] = i6V(x - y), (1.90)

[¢(t, %), ¢(2, )] = [11(z, %), 11(z, y)] = 0. (1.91)

Pour promouvoir le champ ¢ au rang d’opérateur hermitien, on promeut a, en opérateur et a,* en
opérateur hermitien conjugué. Ainsi, le champ scalaire s’écrit :

d3p —ipx T ipx
o(x) = fm(ape P+ a,e™). (1.92)
On a alors
lap.al] = 2n)6(p - @), (1.93)
[ap. ag] = [a}, a}] = 0. (1.94)

Les états de Fock sont décrits par I’action des opérateurs création et annihilation sur le vide. L’état du
vide |0) est choisi tel que

a,10) = 0. (1.95)

La normalisation relativiste est définie par

P1--Pu) = \2Ep, ... \[2E,,a} |0} . (1.96)

Elle est choisie ainsi pour avoir

(Pulpn) = 2E,, 217 6P (P, — p) (1.97)

car 2E,, 6*(p,, — p,) est un invariant de Lorentz. Le nombre de particules est défini par I’opérateur

Ny = a}ay, (1.98)

agissant sur 1’état du vide.
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1.3.2 Quantification du champ de Dirac

Soit un champ de Dirac, son Lagrangien s’écrit

L£=9(iy"d, - my. (1.99)

avec y* des matrices a quatre dimensions qui respectent I’algebre de Clifford (1.50). Les équations
d’Euler-Lagrange donnent 1’équation de Dirac

iy — my = 0. (1.100)

Dans la représentation chirale donnée par 1’équation (1.17), le Lagrangien s’écrit

Lp =iy 701 + gkt dx — m Ly + W) (1.101)

Sous parité on a Y, & yYgetd, & —d, (avec p € (1,2,3)) tels que 079, < 0#9,. La masse apparait
dans le terme qui mélange la partie gauche et la partie droite.

Ici nous avons présenté la représentation chirale des spineurs de Dirac définis par I’équation (1.17).
I1 est également possible de décrire les spineurs de Dirac dans une autre représentation. On peut définir
un nouveau choix de spineur tel ¥’ = Uy avec U une matrice unitaire constante. Dans ce cas on aura
' = Uy*UT ety = (')'y°. Avec la matrice unitaire

U (1.102)
V2 -1 1) '
le spineur, en représentation standard, s’écrit
1 +
w=|"|= [P, (1.103)
ve) V2 \ur -y

avec Y et Yp les parties grande et petite du spineur, respectivement. Cette représentation est bien
adaptée lorsqu’on veut passer a la limite non relativiste. En effet, dans la représentation de I’'impulsion,
I’équation de Dirac (1.100) s’écrit

Poy —my =0. (1.104)

Ainsi dans le référentiel au repos, dans la limite non relativiste, on a

(1.105)

Etant donné que la matrice y° s’écrit

b )
, (1.106)
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en représentation standard, I’équation (1.104) avec le spineur (1.103) implique que la partie petite du
spineur est nulle : Yp = 0.

Pour quantifier la théorie, on promet ¢ et ¢ au rang d’opérateurs qui satisfont les relations
d’anticommutations

Wa(x, 1), W53, 0} = 67 = y)0u, (1.107)

avec o, 8 = 1,2,3,4 les indices de Dirac, qui indiquent les composantes du spineur. Les crochets {. , .}
indiquent I’anticommutateur. Le champ de Dirac quantifié s’écrit

> (apa e + by 01 (1.108)

d’p
on [—tr_
’ (2nm)* \2Ep 55

avec u*(p) et v’(p) deux spineurs et s indique le spin. Les opérateurs a et a’ sont les opérateurs
d’annihilation et de création d’une particule et de méme, b et b', pour les antiparticules. IIs respectent
les crochets d’anticommutation :

(@, ayl} = by, b3} = 206V (p - 96" (1.109)

Apres avoir vu quelques aspects de TQC en espace plat, nous allons étendre cette théorie a des
espace-temps courbe, afin de prendre en compte certains caractéristiques de la RG.

1.4 La théorie quantique des champs en espace courbe

La TQC en espace courbe est une théorie semi-classique. Les champs sont quantifiés et ils se
propagent dans un espace courbe qui lui n’est pas quantifié. Dans cette théorie, les états du vides
sont différents en fonction de I’observateur. Quel vide correspond a 1’état fondamental ? Comment
interpréter le concept de particule ?

D’un point de vue heuristique, on passe de la TQC en espace plat a 1a TQC en espace courbe en
remplagant la dérivée partielle par une dérivée covariante. Par exemple, I’équation de Klein-Gordon
(1.82), pour un champ minimalement couplé a la gravité, devient alors

V. V¥ +m*p =0 (1.110)

avec V, la dérivée covariante. On peut définir un produit scalaire sur une base de solutions ¢, et ¢,
de I’équation (1.110). Pour une hypersurface X de type espace avec une métrique vy, et un vecteur
normal #*, on définit

(D11¢2) = —ideX(qblV,lqbZ — ¢V, 1)t +/dety. (1.111)
s

Ce produit scalaire est I’analogue de 1I’équation (1.84) dans le cas d’un espace courbe. Il satisfait

(D1ld2)" = = (P1ld3) = —(dald) et (#il¢)) = 0. (1.112)
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Les relations de commutations s’écrivent

[a(¢1), a’(¢2)] = (P1l¢2) . (1.113)

On n’a plus de séparation entre le temps et I’espace comme c’était le cas en espace plat. Le vide et les
opérateurs dépendent du choix de base f. Et il n’existe plus un choix de base privilégié. Soit {f;} et {g;}
deux ensembles complets de solutions a normes positives, {f} et {g7} deux ensembles complets de
solutions a normes négatives et { f;, f'} et {g;, g’} deux ensembles complets de solutions a I’équation
d’onde (1.110). L’ opérateur champ s’écrit alors

¢ = Z(a,f+an)—Z(b,g,+b &) (1.114)
Soit |0f) le vide associé a la base des modes f, on a
a;l0;y=0, Vi et Np=ada. (1.115)
De méme |0,) est le vide associ€ a la base des modes g et on a
bil0) =0, Vi et Ng=bb. (1.116)

Les modes g; s’écrivent comme une combinaison linéaire des modes f; et f;* et inversement. On a

g = 2j(iifi+Biif;)s (1.117)
fi = X8 —Biig)- (1.118)

Ainsi on déduit les transformations d’opérateurs
bi= ) (aja; - Byab), (1.119)
J
ai = (aib; +Bjbh). (1.120)
J

Les transformations (1.119) et (1.120) sont appelées transformations de Bogoliubov. Ceci nous permet
de calculer la valeur moyenne de 1’opérateur nombre de particules vu par un observateur qui utilise les
modes g, dans le vide des modes f,

(O7IN107) = Ob]B0) = D 1B (1121
J
Ainsi, on observe que le nombre de particules est relatif. Ce processus permet d’expliquer 1’effet Unruh

[9], dont I’effet Hawking [10] est un cas particulier. Ce dernier sera plus amplement discuté dans la
section 3.2.

1.5 La gravité quantique a boucles

Quantifier la gravité présente de nombreuses difficultés, la mécanique quantique et la gravité
reposent sur des socles tres différents. Le point clé est qu’en TQC on quantifie les champs sur un
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espace-temps fixe et plat. Or, en gravité quantique, on voudrait quantifier I’espace-temps lui-méme.
Une des premiceres tentatives de quantification est celle de Wheeler-De Witt. Cette derniere n’est
pas prédictive et utilise des objets mathématiquement mal définis. Une alternative est proposée par
la gravité quantique a boucles (LQG). Il existe deux formulations équivalentes de la LQG. Nous
présenterons la formulation canonique [5] qui est basée sur le formalisme Hamiltonien de la RG. Dans
ce cas la covariance est explicitement brisée mais rétablie par une contrainte. Nous ne présenterons pas
la formulation covariante [11], basée sur les mousses de spin, dans ce manuscrit.

1.5.1 Les théories de Yang-Mills

Une théorie de Yang-Mills est une théorie de jauge non abélienne. La relativité générale écrite avec
les variables d’ Ashtekar, introduites postérieurement, ressemble a une théorie de Yang-Mills. Ainsi, je
vais introduire succinctement la construction d’une telle théorie. On a un potentiel vecteur A, dont les
valeurs sont des éléments de 1’algebre de Lie

A, =A,T. (1.122)
avec T' les générateurs de 1’algebre qui satisfont
[T/, TX = if™ T, (1.123)

avec g la constante de couplage et f/¥ les constantes de structure de 1’algebre. La dérivée covariante
de Yang-Mills pour décrire les transformations internes dans le groupe s’€écrit

D,=0,+ i%Awa, (1.124)

On peut écrire le commutateur de deux dérivées covariantes de Yang-Mills,

8 i i
[D,. D)) = =S F', T, (1.125)
avec
Fiuv = aﬂAiv - aVAilu + geijkAj’uAky- (1126)
La dynamique est donnée par
D,F*" =0, (1.127)
et le Lagrangien est donné en utilisant la trace
L= ! d*xF! F* =0 (1.128)
- 4 uv - . .

Pour le groupe de Lie SU(2), dans la représentation fondamentale, les générateurs de 1’algebre su(2)
sont les trois matrices de Pauli o et les constantes de structure sont f/* = 2k,
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1.5.2 Le formalisme ADM

La RG décrit un systeme totalement contraint, ainsi I’Hamiltonien s’écrit comme une combinaison
linéaire de contraintes. Le formalisme ADM (Arnowitt, Deser, Misner) est une formulation Hamilto-
nienne de la RG, qui consiste a séparer 1’espace et le temps. La covariance sera rétablie a 1’aide d’une
contrainte. La variété s’écrit M = R X X, avec X, une hypersurface spatiale au temps ¢. La direction du
temps est décrite par le vecteur # dont les trajectoires sont les courbes paramétrées par ¢ et définies sur
2. Soit n* un vecteur normal a X, (de type temps) tel que g,,n*n" = —1. Dans la suite, les indices a, 8
vont de 1 a 3. Avec la convention utilisée, la métrique spatiale est définie par

Gaop = Bap — Nallp. (1.129)

Le vecteur * est décomposé en une composante tangente et une autre normale a X,

1" = Nn" + N“. (1.130)

La fonction lapse N définit un choix dans I’évolution de la composante temporelle. Le vecteur shift N
définit un choix pour I’évolution des composantes spatiales. Ce sont des multiplicateurs de Lagrange. N
est associé a la contrainte Hamiltonienne C, qui assure 1’invariance de la théorie par reparamétrisation
du temps. Les trois multiplicateurs N sont associées aux trois contraintes de moments H, qui assurent
I’invariance de la RG sous transformations de coordonnées spatiales a I’instant # donné. Un intervalle
d’espace-temps s’écrit

ds* = N*dt* — qup(N“dt + dxP)(Ndt + dP). (1.131)

Ainsi I’action d’Einstein-Hilbert peut s’écrire

1
S=— | dt f d*x(P o5 — [N“H, + NH]), (1.132)
2K R s

avec gqp la dérivée de Lie par rapport au temps telle que

Jop = LiGop = NLuqop + Lyrqap; (1.133)

et P,g le moment conjugué de g,4, C et H,, sont les densités de contrainte Hamiltonienne et de moments,
respectivement. Dans ce qui suit, nous allons décrire cette théorie avec de nouvelles variables : les
variables d’ Ashtekar.

1.5.3 Les variables d’Ashtekar

La métrique spatiale peut s’exprimer a I’aide des triades €',

Gop = € 4€'50). (1.134)

Les triades sont invariantes par rotation, ce qui rajoute trois degrés de liberté supplémentaires. Les
cotriades sont des 1-formes a valeur dans su(2). L’extension de I’espace des phases fera ainsi apparaitre
trois nouvelles contraintes : les contraintes de Gauss G;. Historiquement, Wheeler et DeWitt ont
quantifié la gravité avec la métrique spatiale g,z et la courbure extrinséque de I’hypersurface K,z.
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Néanmoins la théorie est mal définie et ces problemes sont résolus en LQG grace a I’introduction des
variables d’ Ashtekar. La premiere variable est la densité triade

ES = /det(g)e]. (1.135)
On peut ensuite définir la dérivée covariante D,, purement spatiale, telle que
B _ B k Ak B
D.E = 0.E" + & ,A" E; (1.136)
avec A* une nouvelle connexion qui dépend de la connexion de spin QY, etde Kop
Af, = QY &+ yKE, (1.137)

Cette derniere est appelée connexion d’ Ashtekar-Barbero et forme avec la densité triade les variables
d’ Ashtekar. Cette connexion transporte parallelement des spineurs chiraux. L’espace des phases est
le méme qu’une théorie de Yang-Mills SU(2). Le parametre y est un parametre libre de la théorie,
appelé parametre de Barbero-Immirzi. Ces deux variables permettent de décrire la RG mais ce qui
particulierement intéressant c’est qu’elles obéissent aux crochets de Poisson

(AT, (x), AL (0} = {E; (), E.ﬁ(y) = (1.138)
(Al (x),E’ ) = kS (x - y) (1.139)

Ainsi il est possible d’écrire I’action d’Einstein-Hilbert avec ces deux nouvelles variables
S = 2 K f & 3(2E AT, - (VG + N'H, + NH)). (1.140)
Ky

et la somme des densités de contrainte du systeme :

e la densité de contrainte de Gauss

Gi = D.E", (1.141)

qui génere les transformations de jauge SU(2) agissant sur la triade et la connexion.

e la densité de contrainte de moments

Ha = F' yE. (1.142)
e la densité de contrainte Hamiltonienne
ECE! § i ]
W aﬁ‘g]k -2(1+ Y )K :lKjﬂ , (1.143)

qui génere I’évolution temporelle

avec F', i la forme de courbure (1.126) définie telle que

Ffaﬁ = 2a[aA;;] +& jkAfaAkﬁ. (1.144)

La contrainte de difféomorphisme est définie par une combinaison linéaire de la contrainte de
Gauss et de la contrainte de moments



Chapitre 1. La théorie quantique des champs et la relativité générale 31

D, =H,-A G (1.145)

Elle génere les difféomorphismes spatiaux. Ainsi I’Hamiltonien total s’écrit comme la somme des
contraintes de Gauss, de difféomorphisme et Hamiltonienne : G[1], D[N“] et C[N].
On a

H= f dt f dx[1'G; + N*D, + NH] = G[A] + DIN“] + C[N]. (1.146)
2xy Jr b

Les équations d’Hamilton donnent lieu aux équations d’Einstein. L’algebre des contraintes est fermée.
En effet, les crochets de Poisson entre deux contraintes sont proportionnelles a une combinaison
linéaire des contraintes, elles respectent I’équation (1.123). Les contraintes sont dites alors de premiere
classe. Ainsi, on a I’hypersurface spatiale ou les contraintes sont nulles et, étant donné que 1’algebre est
fermée, on reste toujours sur cette hypersurface. Ceci nous assure que les solutions physiques restent
bien dans I’espace des phases physique au cours de 1’évolution temporelle.

La RG écrite avec les variables d’ Ashetkar s’écrit telle une théorie de jauge a valeurs dans su(2).
Ainsi il serait naturel de travailler dans la représentation des connexions et de considérer la fonction
d’onde W(A’,). Cependant elle differe d’une théorie de Yang-Mills étant donné qu’elle décrit I’espace-
temps. Par conséquent, lorsqu’une distribution de Dirac apparait, nous ne pouvons pas utiliser les
outils de régularisation de la TQC. Nous allons alors passer dans la représentation des boucles ou nous
travaillons avec les holonomies de la connexion.

1.5.4 La quantification

Dans cette section, nous introduisons I’'idée générale de la quantification, sans pour autant en
dépeindre les détails techniques. On choisit un espace de Hilbert cinématique K tel que les variables
de configuration soient les connexions. Dans la représentation des connexions, on considere un
ensemble de fonctionnelles W[A’,] de carré sommable. Les variables d’ Ashtekar sont promues au rang
d’opérateur. La connexion est un opérateur multiplicatif

Al P[A] = A’ \P[A], (1.147)

et les densités de triades sont des dérivées fonctionnelles

N oP[A
E“Y[A] = —i [_ ]. (1.148)
0A!,
Ces variables vérifient les relations de commutation
[A' (%), EZ(0)] = —ifwysid56 (x — y). (1.149)

Ensuite, il faut promouvoir les contraintes au rang d’opérateurs. La contrainte de Gauss quantique
s’écrit
oY[A]

G¥ = -iD,—— = 0. (1.150)
| 5A],




32 Chapitre 1. La théorie quantique des champs et la relativité générale

Apres avoir appliqué cette contrainte, on a un espace de Hilbert cinématique % qui est invariant de
jauge. La contrainte de moments quantique s’écrit

HY = -iFf —— =0. (1.151)

On a alors un espace de Hilbert ), invariant sous difféomorphismes spatiaux. Puis la résolution de la
contrainte Hamiltonienne permet d’obtenir 1’espace de Hilbert K des solutions physiques. Plusieurs
difficultés apparaissent lorsqu’on veut promouvoir la contrainte Hamiltonienne au rang d’opérateur.
On utilise alors les holonomies des variables d’ Ashtekar afin d’avoir un produit scalaire bien défini.
D’apres le théoreme de Giles, les traces d’holonomies constituent une base pour les fonctions de la
connexion invariantes de jauge. On peut alors écrire un état sur une base des traces des holonomies tel
que

P[A] = Z YlyIW,[A], (1.152)
Y

ou la somme s’effectue sur toutes les boucles fermées y possibles et W,, dites boucles de Wilson,
définies telles que

W, [A] = Tr(fD[ exp( - 9§7“(S)Aa(s)ds)]), (1.153)

Y
avec P I’opérateur d’ordre.

Un des résultats importants de la LQG est que 1’aire est quantifié et son spectre est donné par

A(j) = 8nyla+/j(j + 1), (1.154)

avec j = 1/2,1,... des demi-entiers. L’aire minimale est A = 4 \/gﬂylf)l.

Dans ce manuscrit, la densité critique cosmologique sera dénotée par p,,, elle est définie telle que
Per = 3H?/k. La densité critique de la gravité quantique étant la densité maximale qui peut étre atteinte
sera dénotée par p.. Elle est proche de la densité de Planck mais n’est pas forcément égale a cette
derniere.
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2.1 La théorie de la cosmologie quantique a boucles

Dans ce chapitre, je vais présenter mes diftérents travaux sur la cosmologie quantique a boucles
(LQC). Tout d’abord, comment le modele de la LQC est-il construit ? La facon la plus rigoureuse
pour décrire un modele cosmologique qui découlerait de la théorie de la LQG serait de quantifier la
théorie fondamentale puis d’appliquer les symétries d’un univers homogene et isotrope a ce systeme.
Cependant, la quantification de la contrainte Hamiltonienne pose encore probleme. Il n’est donc pas
(encore ?) possible de procéder de la sorte. On peut alors faire I’inverse : appliquer les symétries au
systeme et ensuite effectuer la quantification de ce modele simplifié. Ces deux fagons de procéder ne
sont pas toujours équivalentes. Etant donné que la premiére méthode n’est pas accessible, nous opérons
selon la deuxieme qui correspond a une approximation de mini-super-espace. La quantification de ce
systeme a symétries réduites, en utilisant les outils de la LQG, amene a un modele effectif appelé la
LQC. La présentation de cette théorie dans les sections suivantes est inspirée, en partie, des travaux
suivants : [12, 13, 14].

2.1.1 La théorie classique

Nous considérons un univers plat de sorte que 1’hypersurface 2 est de topologie R>. Etant donné que
cet espace n’est pas compact, cela va entrainer des divergences lors de I’intégration sur I’espace. On va
alors décrire le systeme sur une cellule fiducielle homogene puis décrire des résultats qui ne dépendent
pas du volume de cette cellule. Le volume comobile de la cellule s’écrit V. Pour la quantification, je

33



34 Chapitre 2. La cosmologie quantique a boucles

vais présenter la facon de quantifier la partie gravitationnelle, tandis que la partie matiere est quantifiée
de facon usuelle, dans la représentation de Schrodinger. On se place dans la cas d’un univers sans
constante cosmologique A et rempli d’un champ scalaire sans masse ¢. La métrique s’écrit

ds* = —dt* + a*§,,dx"dx’", (2.1)

avec t le temps propre, a le facteur d’échelle et g,, la métrique fiducielle de la variété spatiale.
Cependant, la théorie est indépendante du fond, donc le temps ne doit pas apparaitre. Un des champs
est choisi comme horloge interne et la dynamique des autres champs est décrite par rapport a ce dernier.
Dans ce cas, le champ scalaire ¢ sera choisi comme horloge. Etant donné qu’il satisfait a 1’équation
d’onde O¢ = 0, il est pertinent d’introduire un temps harmonique 7 qui satisfait a I’équation d’onde
également. Ce choix correspond 2 avoir une fonction lapse telle que N = a*. La métrique s’écrit alors

ds* = —a®dt* + d*(dx} + dx; + dx3). (2.2)
La métrique spatiale physique est g,, = a*§,, et le volume physique est V = a*Vj. Les variables de
I’espace des phases gravitationnel sont a et son conjugué p, = aa, avec le point qui défini la dérivée
par rapport au temps propre. Et les variables de I’espace des phases de matiere sont ¢ et p; = V. Ces
variables satisfont

K
{a, pa} = 6_V() et {¢’ P¢} = 1. (23)

La contrainte Hamiltonienne totale (en prenant en compte la gravité et la matiere), dans un univers plat
sans constante cosmologique, est donnée par

3 P V P¢,
Hy = —— a4 + =
K a 2V°
Lorsque cette contrainte est nulle, on retrouve 1’équation de Friedmann (1.61). On va réécrire cette
contrainte avec les variables d’ Ashtekar. Etant donné les symétries, on a

(2.4)

Al =cV'Po et EF = pVitPJdetgél, (2.5)

u 0 u

avec c et p la connexion et la triade isotropes, &’)f et &/ les co-triades et triades fiducielles. On a
1/3

c=vyV,"a/Net|p|= V2/ 3a?*. Nous définissons la paire de variables suivantes
3/2
= et w= sen(p) ) P ' (2.6)
Ip|'/?
Ces variables satisfont
{b,v} =2y, (2.7)
et on écrit la contrainte Hamiltonienne sous la forme
Hzot = __b2| | (2-8)

47r|v|
Les équations d’Hamilton donnent lieu a une solutlon d’univers en expansion et une solution d’univers
en contraction :

1
$== In— + bes (2.9)
127’( Uc

avec v, et ¢, deux constantes d’intégration. Ces solutions classiques possedent une singularité.
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2.1.2 La théorie quantique

Pour passer a un formalisme quantique, il faut promouvoir les variables et la contrainte Hamilto-
nienne au rang d’opérateurs. Inspirés par la LQG, nous passons aux holonomies. En effet, I’espace de
Hilbert cinématique n’admet pas d’opérateur de connexion ¢. Par contre, les fonctions exponentielles
de la connexion sont bien définies. Pour une connexion a symétrie réduite A’ > 1€ long d’un bord droit
¢/ avec une longueur fiducielle 4., I’holonomie est donnée par

Ae . (A
h,(f”) = cos (TC)I[ + 2 sin (TC)T/{, (2.10)

avec 1, = —io /2, ou oy sont les matrices de Pauli. Soit |u) les états propres de p, ils satisfont

() = Opypy- (2.11)

Ici, dans le cas des holonomies, on a un delta de Kronecker et non pas un delta de Dirac comme c¢’est
le cas pour la théorie de Wheeler-DeWitt. Les deux théories ont des espaces de Hilbert différents,
ainsi les dynamiques cosmologiques associ€es sont tres différentes. Dans la représentation des triades,
I’action des opérateurs s’ écrit

) 8nyl2
pluy = —ulu), (2.12)
Ty =+ o). 2.13)

La densité de contrainte Hamiltonienne Eq.(1.143) dépend de deux termes. Cependant les deux sont
proportionnels pour un espace spatialement plat, homogene et isotrope. Dans ce cas, la contrainte
Hamiltonienne s’écrit

1 N
C=—— f d3x( & Ei"E.V)F" . (2.14)
y? ydetg ¢ Tr
Avec les triades homogenes et la fonction lapse telle que N = a®, on a

|
— JogHg v 2k
C= WG kei ej |p| F,UV' (215)
Y Vo

Le champ de force peut s’écrire classiquement en termes d’une trace des holonomies sur une boucle

carrée O0;; sur une face d’une cellule élémentaire dont I"aire A(O) = A2 tends vers zéro. On a

(“e) _
koo . Oij koi oj
F',=-2 lim Tr(—2 T )a) W

A(D)—0 2 ey

. 2
- A
- lim ¢ &/ @JV(Sm_C), (2.16)

avec hgj) = h?“)h(jl")(hgﬂ"))‘l(hy”))‘l. Mais la limite en zéro n’est pas consistante avec 1’existence d’une
aire minimale A donnée par le spectre (1.154) de la LQG. L’aire d’une boucle pour une métrique
physique est A2|p|, ainsi on demande A, = +/A/|p|. La difficulté qui apparait est que la longueur A,
dépend de la triade donc I’action de exp(id.(p)c) sur les états propres de la triade est compliquée dans
la base |u). Par contre, si on passe dans la représentation des volumes |v) et qu’on utilise les variables
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définies par 1’équation (2.6) alors I’opérateur volume et 1’opérateur exp@ /2) (avec 2> = A) sont bien
définis

VIvy = 2rlayvl vy, (2.17)
G2 |yy = |y + Ay, (2.18)

avec v = v/yh. La contrainte classique (2.8) écrite en termes d’holonomies est inchangée. Ainsi en
utilisant les opérateurs (2.17) et (2.18), on peut trouver les solutions a H,,,¥(v,¢) =0 :

sinAb sin Ab

¥, ¢) = 3mv——y——¥(,9)
= 43%1/ v+ 209 +44,8) — 0¥, ¢) + (v = 20)P(v — 44, )
= OV, ), (2.19)
qui peut se réécrire
C* P (v + 44, ) + COP(v,¢) + C" V(v — 41,¢) = H,,, ¥ (v, 9). (2.20)

La forme de la contrainte quantique est similaire a celle de Klein-Gordon avec ¢ analogue au temps et
O® au Laplacien spatial. On choisit les états physiques comme étant les solutions dont les fréquences
sont positives

— i, ¥(v,¢) = VOY(v, ), (2.21)

avec le produit scalaire donné par
(W1, W0) = > 1, o) a2, o), (2.22)

et ¢o une constante arbitraire. On veut a présent définir des observables. On peut définir 1’opérateur
Vlg, qui correspond au volume au "temps" ¢, et I’opérateur p,, qui est une constante du mouvement,

Vg P (v, ) = 2nylre’ Vow-song(y, ), (2.23)

Pla P, 9) = YVOP(v, ¢). (2.24)

Le modele de LQC dans un univers plat avec un champ scalaire sans masse est exactement résoluble
en passant dans la représentation b. Etant donné que les fonctions d’ondes W(v, ¢) dans la représentation
de volume ont un support sur un intervalle discret v = 4nd et que b est canoniquement conjugué a
v, leurs transformées de Fourier W(b, ¢) ont un support sur un intervalle continue (0, /1) et on peut
résoudre la contrainte quantique [15]. Il est alors possible d’écrire chaque solution en termes d’une
partie pour les modes dirigés vers la gauche et une pour les modes dirigés vers la droite et obtenir un
produit scalaire. La valeur moyenne de 1’opérateur volume, au temps ¢, s’écrit alors

(V)= VeV 1 y_ g V1200, (2.25)

avec V, et V_ deux constantes déterminées par les conditions initiales. Le volume a une valeur
minimum :
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Vinin = 2(V+V—)1/2, (2.26)
et le rebond a lieu au temps
¢y = V127 In(V_/ V). (2.27)

Et I’observable densité d’énergie p|s, est bornée :

3

—. 2.28
8ry? A2 2.28)

P)g Sp. avec p. =

Pour le choix standard de LQC on a p, = V3/(327%y?). Ainsi, on observe qu’en LQC la singularité est
résolue.

2.1.3 Le modele effectif

Lorsque le modele quantique n’est pas résoluble analytiquement, il est possible de résoudre
numériquement 1’équation (2.19). Etant donné 1’état initial et la fonction d’onde associée le code
CHIMERA donne le comportement des fonctions d’ondes a travers le rebond [16]. Il est possible
d’écrire un Hamiltonien effectif qui donne de bonnes approximations des valeurs moyennes de ces
simulations numériques. Nous présentons de maniere tres succincte, la construction du Hamiltonien
effectif. L’idée générale est de projeter la dynamique quantique de I’espace des phase quantique I'y sur
I’espace des phases classique I'. Pour tout point y, = (¢7, p) € T, on associe un état quantique ¥p.
On défini un sous espace I:Q € I'p en exigeant q? =(¥Ypg;'¥p), p? = (¥,0p;¥0). On exige également
que le champ de vecteur Hamiltonien quantique soit approximativement tangent a I_“Q. Ces conditions
permettent de définir un Hamiltonien effectif tel que H*" (¢, p?) = <‘I’70F1‘I’yo>. La contrainte effective
s’écrit

3 sin’(ab)
tot — _Ev 2

+ Hypgr- (2.29)

Les équations du mouvement, avec ¢ le temps cosmologique, redonnent les équations classiques,
excepté pour I’équation

V= 3 sin(Ab) cos(Ab). (2.30)
vA

Ce qui amene a une équation de Friedmann modifiée
H? = 5p(1 - ﬁ). 2.31)
3 Pec

Ainsi, la LQC décrit un univers en contraction, qui lorsqu’il atteint la densité critique p,. va rebondir et
décrire un univers en expansion dans lequel nous sommes observateurs.
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2.2 Durée de P’inflation en LQC

La cosmologie standard et la LQC prédisent deux équations de Friedmann différentes : Eqgs. (1.61)
et (2.31) respectivement. Quelles vont étre les conséquences de cette différence ? Un premier point
concerne la durée de I’inflation.

L’équation de Klein-Gordon (1.70) peut se réécrire comme un systeme de deux équations différen-
tielles du premier ordre. Au lieu de dériver par rapport au temps cosmologique, il est plus judicieux de
dériver par rapport a 4 = Ina. On a alors

d¢/dA = p/H,
dp/dA = -3p —m*¢/H. (2.32)

On introduit les variables sans dimension suivantes

me p

X = et y= .
V2po V2p0

Ces variables seront utilisées pour 1’analyse numérique de la durée de 1’inflation. Ces variables sont
usuelles en cosmologie, elles définissent un cercle x> + y* = 1 au moment du rebond.

Dans I’approximation de roulement lent, le nombre d’e-folds N est une fonction du champ scalaire.
Il a été montré [17] que pour une température de 7 ~ 10'6 GeV au début de la période de rayonnement,
I’inflation doit durer au minimum 60 e-folds. La densité de 1’univers étant bornée a la densité de Planck,
I’inflation peut durer jusqu’a 10'* e-folds. Ainsi, la durée de I’inflation dans le modele standard n’est
pratiquement pas contrainte. Cette durée dépend des conditions initiales, x et yo. On peut montrer que
99,99% de I’espace de phases de ces parametres entraine une inflation supérieure a 60 e-folds [18].

(2.33)

Contrairement au modele standard, la LQC possede un caractere prédictif. En effet, en LQC, la
phase d’expansion est précédée d’un rebond, qui lui méme est précédé d’une phase de contraction.
Ainsi, nous pouvons étudier les conséquences de cette phase. Dans les articles [19] et [20], la phase
de contraction est supposée rempli d’un champ scalaire dans un univers homogene et isotrope, dans
la branche classique (suffisamment loin du rebond). Ainsi la phase de ce champ est aléatoire et on
peut mettre une distribution de probabilité plate sur cette phase. Cette distribution va engendrer une
distribution sur les conditions initiales et, par conséquent, sur la durée de I’inflation. Cette distribution
de probabilité sur la durée de I'inflation est tres piquée (voir I’histogramme rouge de la Figure 3).
La plupart des valeurs se trouvent entre 110 et 170 e-folds, avec une valeur moyenne de 145 e-folds
environ. Ainsi, non seulement nous avons une prédiction probabiliste sur la durée de I’inflation, mais
de plus, cette prédiction se trouve proche de la valeur minimum requise. L’intervalle sur la durée est
alors considérablement réduit.

Dans cet article, on compare deux modeles :

— dans le premier cas, on part d’une densité initiale p,. puis on applique une dynamique de type
RG avec I’équation (1.61), sans constante cosmologique et sans courbure.

— dans le deuxieme cas, on part d’une densité initiale p., étant celle du rebond, puis on applique
une dynamique de type LQC avec I’équation (2.31).



Chapitre 2. La cosmologie quantique a boucles 39

Dans les deux cas, les conditions initiales, lorsqu’on a p = p., sont données par la distribution de
probabilité prédite lorsqu’on considere une distribution de probabilité plate sur la phase du champ
dans I’univers en contraction. Ainsi, on a les mémes conditions dans les deux modeles et on étudie
comment la dynamique de fond va influencer la durée d’inflation. Par abus de langage, le premier
modele sera dénoté comme étant le modele RG. Dans ces deux modeles, on observe trois régimes : (i)
la phase pré-inflationnaire ou ¢ augmente jusqu’a atteindre un maximum, (i7) la phase d’inflation qui
commence lorsque ¢ = 0 et dure jusqu’a avoir ¢ = 0 pour la premi&re fois, (iii) le champ oscille de
facon amortie et se désintegre en particules du modele standard.

On peut montrer que dans le régime pré-inflationnaire on a

Xrc = X. + (3/1)A, (2.34)
Xroc ® X + (3/T)A+ (In2/1), (2.35)

avec I’ = \/3_,q /m et x. I’énergie potentielle initiale. Ainsi en LQC la champ scalaire est boosté dans la
phase de pré-inflation ce qui amene a avoir une énergie potentielle plus élevée au début de I’inflation.
Ceci va engendrer une différence de la durée d’inflation entre les deux modeles. Cette différence
est donnée par V8/31n2 v/Nxg. On peut donc voir que pour les mémes conditions initiales, la LQC
engendre une inflation qui dure quelques e-folds de plus qu’en RG. On observe donc que la dynamique
n’a guere d’importance.

Ainsi, la grande différence de la LQC par rapport a la RG, est non pas di a la dynamique de fond,
car le terme en p. dans I’équation (2.31) est tres rapidement négligeable, mais dans sa capacité a
prédire de fagcon probabiliste les conditions initiales.

Cet article a été publié dans Classical and Quantum Gravity [21].
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Abstract

The prediction of a phase of inflation whose number of e-folds is constrained
is an important feature of loop quantum cosmology. This work aims at giving
some elementary clarifications on the role of the different hypotheses leading
to this conclusion. We show that the duration of inflation does not depend
significantly on the modified background dynamics in the quantum regime.

Keywords: loop quantum cosmology, inflation, quantum gravity

(Some figures may appear in colour only in the online journal)

Loop quantum gravity (LQG) is a nonperturbative and background-independent quantization
of general relativity (GR). It relies on the Sen—Ashtekar—Barbero variables, that is SU(2) val-
ued connections and conjugate densitized triads. The quantization is obtained using holono-
mies of the connections and fluxes of the densitized triads. Loop quantum cosmology (LQC)
is an effective theory based on a symmetry reduced version of LQG. In LQC, the big bang is
believed to be replaced by a bounce due to repulsive quantum geometrical effects (see [1] for
a review). For the flat homogeneous and isotropic background cosmology that we consider in
this work, the effective LQC-modified Friedmann equation is

=" (1 —p),
3 o5 (D

where H = (a/a) is the Hubble parameter, p is the total energy density and pg is the critical
density at the bounce (expected to be of the order of the Planck density). The dot refers to a
coordinate time derivative. Throughout all this article we use reduced Planck units: 871G = 1.
So, in these units, the Planck mass is mp = 1/ VG = v/87. We assume that the dominating
energy component in the early universe is a scalar field ¢, with potential V = %m2¢2. As
shown in [2], a massive scalar field is now disfavored by data. This choice however remains
interesting so as to compare our study with other results (a quantitative estimate of the effect

1361-6382/17/145003+9$33.00 © 2017 IOP Publishing Ltd Printed in the UK 1
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of choosing, for example, the Starobinsky potential, used in [3], can be found in [4]). The
total energy density can be written as p = %qﬁz + V. As explained in details in [5] it should be
made clear that the existence of an inflationary phase is not in itself a consequence of LQC,
but of the choice of an appropriate scalar field as the content of the Universe. Based on cosmic
microwave background (CMB) measurements and under most reasonable assumptions for
the length of observable inflation (between horizon exit of the pivot scale and the end of the
inflationary phase), one obtains m =~ 10~ %mp;. The equation of motion for the scalar field is

é+3Hp+m’¢p = 0. )

There are different ways to statistically estimate the duration of inflation in this framework.

At a fixed energy density, pg, one can first ask the following question: for a given number of
e-folds N, what is the fraction of trajectories, i.e. solutions to equation (2), that lead to a phase
of slow-roll inflation lasting more than N e-folds? It should be noticed that the set of trajec-
tories can be parametrized by {ao, ¢o}. As the energy density has been fixed, the initial time
derivative of the scalar field, ¢, is determined in terms of po and ¢g. This also implies that ¢,
can only take values within a finite interval, ranging from —(v/2p9/m) to (v/2po/m). In a flat
universe, the value of the scale factor has no physical meaning. The number of e-folds of infla-
tion depends on ¢ but not on ap: N = N(¢o; m, po). So the fraction of trajectories that achieve
a phase of inflation lasting more than N e-folds can be written as p = (mAdo)/(2v/2p0),
where Ay is the range of initial values of the scalar field that yields the required inflationary
phase. It is then necessary to evaluate p as a function of N. There are two cases in which this
can be done analytically: (i) at low energy, py < m?, and (ii) at high energy py > m>. At low
energy, the calculation of Gibbons and Turok of the probability for inflation can be used to
show that [6]

1(N) = CmN~7 exp(—=3N){1 + 1/(6N)}, 3)

where C is a numerical factor that does not depend on m or pg. For N ~ 60 e-folds, as required
to explain the CMB temperature anisotropy, this leads to u(N) < 1. It should be noticed that
the conclusions of [6] are to be contrasted with those of [7], which shows the importance of
working with well defined probability distribution functions. At high energy, one reaches the
opposite conclusion. In this case, one can compute Ay as follows. For a massive quadratic
potential the total number of e-folds of inflation can be expressed in terms of the amplitude
of the scalar field at the start of the inflationary phase, ¢y, as N ~ (¢7/4). In turn, ¢; can be
expressed in terms of the initial value of the scalar field as [8]:

1 = do + sgn(do)/(2/3)Aresinh (F 2/ ln(z)) , @)

with z = 812 exp(v/6¢y) and I' = /3pg/m. This formula for the amplitude of the scalar
field at the start of inflation is valid in LQC, with the modified Friedmann equation given by
equation (1). For the standard flat FLRW dynamics, without LQC modifications, the analyti-
cal calculations suggest that at the start of inflation the scalar field reaches a maximum value
given by (4) minus (In2/T). In both cases, we find that the range of values of ¢, that do
not yield an inflationary phase longer than N e-folds is an interval of size 4v/N centered on
¢o = 0. Hence,

p(N) =1 —m\/(2N/po), )

and p(60) ~ 0.99999 (for py = 1) , which means that all but a tiny fraction of the possible
trajectories do not go through a long inflationary phase. It might be tempting to interpret j
as a probability measure. This is however not that simple. The phase space of the flat FLRW

2



Class. Quantum Grav. 34 (2017) 145003 B Bolliet et al

universe presents a serious ambiguity: the Liouville measure is proportional to the scale factor
and the scale factor can be rescaled arbitrarily. In addition, as explained just before, iz depends
on the choice of the surface of initial data. More importantly, the fundamental question to
ask is: is there a variable on which a flat (or at least known) probability distribution function
(PDF) can be assigned? There is no reason to assume implicitly that the initial values of the
field should have a flat PDF.

This work is somehow complementary to what was studied in [9] and sheds a new light on
the difference between different predictions made in quantum and classical cosmology.

In [10] it was argued that the two first issues mentioned above can be solved in LQC. It was
indeed claimed that the scale factor can be rigorously factored out of the Liouville measure,
and that the bounce provides a preferred choice for the surface of initial data. In this study,
following [11, 12] we choose a different perspective. We decide, the other way round, to set
initial conditions in the remote past of the contracting branch, when the Universe is classical
and well understood (py < pp). This is not only technically justified but also conceptually
necessary if the bounce has to be taken seriously in a causal way. Still, we naturally choose
a time which is close enough to the bounce so that it is reasonable to assume a scalar field as
the main component of the Universe. The phase of the oscillations of the scalar field in the
contracting branch is an obvious variable to which a flat PDF can be assigned [11]. In addition,
the key point is that this PDF is preserved over time (as long as one remains in the classical
phase when the field oscillates). The numerical analysis of [11] shows that at fixed pg, nearly
all possible initial values for the scalar field, ¢y, yield an inflationary phase whose number of
e-folds is peaked around N = 142 e-folds (with pp = 0.41mg,)).

The procedure to derive this result is simple:

e Consider an initial energy density po = pp/a?, with a large enough so that the evolution
starts in the remote past of the contracting phase.
e Choose an initial value for the scalar field and its time derivative by a random sampling

of the phase 0y between 0 and 27, where 6 is defined such as ¢ = \/g g sin 6.
e Solve the dynamics, across the bounce, until the end of slow-roll inflation in the expanding
branch.

e For each 6y, collect the corresponding number of e-folds.

Finally, one can produce the associated histogram which, in a probabilistic interpretation,
is the PDF for the number of e-folds. This is illustrated on the right panel of figure 1 where
we also present the PDFs for several initial energy densities corresponding to different values
of a = /pp1/po in order to show that for large values of « the PDF becomes independent of
the initial energy density, as explained analytically in [11]. Interestingly, the peakedness of
the PDF can be understood as follows. The calculation Gibbons and Turok is often considered
controversial in standard cosmology because they somehow set ‘initial conditions’ for the
final state. However, in the case of a bouncing Universe it implies that almost none of all the
possible trajectories, starting at low energy in the contracting branch, have a significant phase
of pre-bounce exponential contraction, that is of so-called deflation. A trajectory with defla-
tion in the contracting phase leading to (¢, (/33) can be identified with a trajectory with infla-
tion in the expanding phase with (g, —qf)B). Equation (4) can be used to calculate the value
of the scalar field at the bounce corresponding to the trajectory with no deflation. One simply
has to solve equation (4) with respect to ¢ for ¢y = 0 and ¢ < 0. In the limit of large T, the
solution is well approximated by

ST = /(2/3)In (ZF/\/E) . ©6)

3
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Figure 1. Probability distribution of the number of inflationary e-folds. On the left panel,
the black histograms corresponds to a ‘GR’ like dynamics (using the standard Friedmann
equation throughout the evolution). The red histogram is the prediction of loop quantum
cosmology. With the standard Friedmann equation the most likely value is Ny = 133,
while in LQC we find N, = 145. The right panel shows that the probability density
function does not depend on the value of the energy density as long as the surface of

initial data is set at p < pp;. The different histograms are labeled by & = +/ppi/p. The
probability density function converges as soon as o becomes larger than 10.

This can then be inserted back into equation (4), with d)B > 0, in order to obtain the value
of the field at the start of inflation in the expanding phase and the corresponding number of
e-folds of inflation. With the standard values for m and pg, this calculation yields N = 142,
in excellent agreement with the numerics (figure 1). Moreover, a closer look at Gibbons and
Turok’s PDF for the number of e-folds suggests that most trajectories starting in the remote
past have less than one e-folds of deflation, see figure 2. This means that nearly all trajectories
end up with a value of ¢ that belongs to an interval of size A¢p ~ 4 centered around ¢$T. In
terms of number of e-folds this translates into AN = 4v/N , also in agreement with the numer-
ics as can be seen on figure 1.

We shall now investigate to which extent the specific modified dynamics is responsible for
the peakedness of the probability density function of the number of e-folds in loop quantum
cosmology. The argument we have developed in the previous section did not refer to the modi-
fied LQC dynamics. It was essentially based on Gibbons and Turok’s analysis combined with
the presence of the bounce at Planckian energy density. It can therefore already be guessed
that the peakedness does not depend strongly on the LQC modification to the Friedmann equa-
tion. To address this question in more details, we consider an artificial bouncing cosmological
scenario where the Friedmann equation is left unchanged even at Planckian energy. In this
‘GR-like’ cosmological scenario, initial conditions for a given trajectory are set in the remote
past of the contracting branch at the same energy density and with the same values of ¢, and
o than for a trajectory which follows the LQC dynamics (as previously considered). The
dynamics is divided into two parts: the contracting branch with a negative Hubble parameter
and the expanding branch with a positive Hubble parameter. The evolution, starting in the
contracting branch, is artificially stopped when the energy density reaches the LQC critical
energy density pg. The values of ¢g and g are collected and used as initial conditions for the
dynamics in the expanding branch where the initial Hubble parameter is now positive. At the
junction between both phases, the Hubble parameter and therefore ¢ are discontinuous but a,
¢ and ¢ are continuous, as illustrated in figures 3, 4 and 5.

The numerical result for the PDF of the number of e-folds in the GR-like scenario is plot-
ted against the LQC prediction on the left panel of figure 1. The PDF has the same width and
shape than in LQC. This confirms that the peakedness does not depend strongly on the specific

4
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Figure 2. Probability distribution of the number of e-folds, when the surface of initial
data is set at low energy density, in a agreement with the result of Gibbons and Turok.
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Figure 3. Evolution of the potential energy parameter in the GR-like scenario (black)
compared to loop quantum cosmology (red), for different values of xg, linearly
distributed between —107% and 10~°. Dashed lines correspond to negative initial values
for xg.

LQC modified dynamics, and suggests that this feature would remain in case one incorpo-
rates additional quantum gravity corrections to the LQC effective equations. Nevertheless, the
number of e-folds corresponding to the peak of the PDF is slightly different in the GR-like
scenario than in LQC. This can be explained as follows. First, it should be noticed that the
difference between the GR-like scenario and LQC becomes significant when p & pp;. Second,
as shown in the previous sections, the fraction of trajectories that have a significant phase
of deflation in the contracting branch is tiny. This means that at high energy density, the
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Figure 4. Evolution of the scale factor (left) and the Hubble parameter (right) in loop
quantum cosmology (red) and in the GR-like scenario (black).

dynamics of most trajectories is largely kinetic energy dominated. In simplistic terms, defla-
tion can not bring the amplitude of the scalar field to large values because it stops nearly
immediately. To inverstigate the difference between the GR-like scenario and LQC, the equa-
tion of motion of the scalar field at high energy, and for kinetic energy domination, need to be
studied. It is natural to introduce x = ¢/+/2pg and y = ¢/+/2ps, the so-called potential and
kinetic energy parameters. As the duration of inflation depends on the scalar field amplitude,
it is sufficient to focus on the potential energy parameter. It is easy to show that in the regime
compatible with observations

xR~ xp + (3/T) Ina, (7a)

A€ ~ x4+ (3/T) Ina + (In2/T). (7b)

In LQC the scalar field is boosted by a short phase of super-inflation, H >0, during which
its amplitude accumulates a surplus of (In2/I') compared to the standard FLRW dynamics.
This yields a difference of 1/8/3In2,/Ngg between the number of e-folds in both scenarios.
With the standard numerical values of m and pg, one gets Npgc — Ngr =~ 13, in agreement
with the numerical results.

Although an exhaustive investigation would in principle be necessary it can be quite safely
conjectured that most results derived in this study do not depend on the details of the consid-
ered bounce scenario. Actually, the key parameter is the energy density at which the bounce
takes place.

One can also study the differences between the primordial power spectra of cosmological
perturbations in the GR-like scenario and in LQC (the interested reader can consider [13] for
a detailed study in the dressed metric approach and [14] in the deformed algebra approach).
As a toy model to focus on the difference between both background dynamics, we set initial
conditions for perturbations at an energy density corresponding to the bounce energy den-
sity, choosing the Bunch—Davies vacuum as the initial state. The resulting power spectra are
shown on figure 6 and compared with the usual slow-roll inflation expectation (dotted lines).
Such spectra (and their variants including more subtle LQC effects) are the main observables
associated with loop quantum cosmology. Assuming a Bunch Davies state is a valid assump-
tion only for modes with a wavelength small compared to the curvature radius at the bounce,
or the Planck length in the ‘GR-like’ scenario. For such modes, the Bunch Davies state is the
‘preferred’ vacuum state (selected by the regularity conditions and the symmetry group of flat

6
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Figure 5. The fraction of potential and kinetic energy in general relativity (black) and
loop quantum cosmology (red).

space-time). However, for modes with larger wavelength there is some freedom for the choice
of the initial state. Here, our goal is not to discuss the impact of different initial state on the
power spectrum, but rather to investigate the effects of two different dynamical models for the
background cosmology (‘GR-like’ and LQC) on the power spectrum resulting from the evo-
Iution of modes starting at the same energy density (Planckian) and in the same state.

The duration of inflation is crucial because it determines the location of the window of
wavenumbers relevant for the cosmic microwave background anisotropy measurements, with
respect to the characteristic LQC scale kLqc = ag+/ps. On infrared scales, the mode functions
remain in the Bunch-Davies state with (k) o k>. We see that in both LQC and the GR-like
scenario the power spectra agree with the slow-roll expectations in the ultraviolet regime.
Oscillations are present in both scenarios in the range 1073 < k/kiqc < 1. The amplitude
is larger in the GR-like scenario than in LQC, however the period of the oscillations does
not seem to be affected by the specific modified LQC dynamics. This shows that oscilla-
tions in themselves are a bounce feature but not a specific LQC feature. This motivates the
search for complementary probes such as primordial non-gaussianity [15]. For a more detailed
comparison of the different kinds of power spectra expected in LQC under different assump-
tions for the mode propagation, see [16].

The most reliable result of loop quantum cosmology is the modified Friedmann equa-
tion describing the background dynamics. It receives a quadratic correction in density which
prevents the Universe from collapsing into a singularity. In this article, we have investigated
the influence of this modified dynamics on the duration of inflation. The conclusion is that the
modification of the Friedmann equation has a very small (but non vanishing) impact on the

7
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Figure 6. Primordial power spectra of scalar (top) and tensor (bottom) perturbations
for the GR-like dynamics in black (standard Friedmann equation, initial condition
at the energy density corresponding to the energy density of the LQC bounce) and
LQC dynamics in red (initial conditions at the bounce) plotted against the slow-roll
expectation (dotted lines). On the x-axis, kLqc = ag+/ps- The spectrum becomes scale
invariant in the UV limit.

duration of inflation. The key role played by LQC in ‘predicting’ inflation—or more precisely
the duration of inflation—is not due to the modified dynamics in itself. It is grounded in two
different aspects. First, LQC sets the energy scale. This is the fundamental point. As far as
the Universe is assumed to be filled by a massive scalar field, inflation happens naturally if
the energy scale ‘before’ inflation is high enough, p > m?. But whereas starting at the Planck
energy density in GR is somehow arbitrary, in LQC the bounce energy density can be calcu-
lated (modulo some hypotheses) and derived from the full theory, providing a natural energy
scale. This is the first important aspect. Second, LQC selects favored conditions at the bounce,
see formula (6), corresponding to a favored duration of inflation N ~ 145, for pg = 0.41my,.
This is an interesting prediction rooted in the existence of a pre-bounce phase where a natural
variable to which a known PDF can be assigned was identified. This cannot be produced in
standard cosmology and is specific to bouncing models.
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2.3 Perturbations scalaires en LQC

2.3.1 La théorie des perturbations

La formation des grandes structures actuelles auraient pour origine des perturbations du champ
d’inflaton. Durant I’inflation, les fluctuations quantiques de ce champ sont excitées et leur longueur
d’onde va croitre. Si la longueur d’onde devient plus grande que le rayon de Hubble, le terme de
friction devient important et I’amplitude des fluctuations se "gele". Ces perturbations quantiques ont
des conséquences sur la métrique et sont décrites par les équations linéarisées de la RG.

Les perturbations du champ d’inflaton

On considere un champ scalaire sans masse dans un espace de de Sitter, tel que

a(t) « e, (2.36)

avec H constant. Le champ s’écrit

¢ + 0, (2.37)

avec ¢ la valeur moyenne du champ et 6¢ les perturbations qui obé€issent a 1’équation de Klein-Gordon
(1.70). Les modes de Fourier de ces perturbations s’écrivent

6 _ [k wxs 2.38
¢(x9 t) - (271_)3/26 ¢k(t)' ( . )
Leur dynamique est régie par I’équation suivante
d? d k?
—0¢x + 3H—0¢y + =00 = 0. 2.39
7720k 7,00k 700k (2.39)

Pour 1 < H~!, on peut négliger le terme de friction 3H(dd¢y/dt) et on retrouve 1’équation d’un
oscillateur harmonique ; les fluctuations oscillent. Pour A > H~!, on a k < aH, le dernier terme de
I’équation (2.38) est négligeable et les modes deviennent constants.

Les perturbations scalaires de la métrique

Les perturbations du champ scalaire 6¢ vont modifier le tenseur énergie-impulsion et donc engen-
drer des perturbations de la métrique. Ainsi, on a

8uv + 08uys (2.40)

avec g, la valeur moyenne de la métrique. A priori les deux perturbations doivent €tre traitées en méme
temps, cependant a I’ordre linéaire elles peuvent étre traitées de facon indépendante. La métrique
est décrite par 1I’équation de Friedmann (1.61) en cosmologie standard et par I’équation modifiée
(2.31) dans le cadre de la LQC. Les perturbations de la métrique peuvent étre décomposées en des
termes scalaires, vecteurs et tenseurs. En effet, a I’ordre linéaire, ces trois types de perturbations sont
découplées et peuvent donc Etre traitées séparément. Ici, nous ne considérons que les perturbations
scalaires. L’expression de la métrique perturbée est donnée par
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ds* = a*(n)| — (1 + 2¢)dn* + 28, Bdndx™ — [(1 — 203, + 20,05 Eldx"dx"|, (2.41)

avec a, B € {1, 2, 3}, ou nous avons quatre perturbations de champ scalaire ¢, B,y et E. Ici nous avons
utilisé le temps conforme 7 défini tel que dt = a(n)dn. On peut alors construire des variables invariantes
de jauge, ce sont les potentiels de Bardeen [22] :

O=¢p+(B-E)+H(B-FE), (2.42)
Y=y-H(B-E). (2.43)

avec H. = d’/a le parametre de Hubble comobile et le prime désigne la dérivée par rapport au
temps conforme. De méme, il est possible de définir les quantités invariantes de jauge pour le champ
d’inflaton :

5¢°" = 6¢ + (B — E). (2.44)

Apres avoir introduit ces quantités invariantes, nous avons la liberté de fixer une jauge, on peut
ensuite effectuer les calculs et obtenir les quantités physiques. Dans la jauge longitudinale : £ = B = 0,
on a la contrainte suivante : ¢ = . Une combinaison linéaire des équations d’Einstein nous permet
d’obtenir 1’équation du mouvement pour @ et la partie non diagonale des équations nous impose
Y = ®. En définissant

z= a% et v=adp’ + 7P, (2.45)

puis en passant dans 1’espace de Fourier, on trouve 1’équation de Mukhanov-Sasaki :
A s (2.46)
<

Pour décrire les perturbations en LQC il existe deux approches qui menent a deux équations du
mouvement différentes.

L’approche LQC de la métrique habillée

Cette approche a été développée en 2012 par Agullo, Ashtekhar et Nelson [23, 24, 25]. L’espace
de Hilbert total est donné par un produit tensoriel entre 1’espace de Hilbert du fond et celui des
perturbations. On traite les perturbations dans la représentation de Schrodinger et elles sont quantifiées
avec les techniques de TQC en espace courbe mais on n’utilise pas la métrique classique. En effet, le
fond, lui, est quantifié a la LQG et ses effets quantiques se retrouvent dans une métrique effective dite
métrique habillée

g = a*(—diy’ + 0,,dx"dx"), (2.47)

avec a et 77 le facteur d’échelle habillé et le temps conforme habillé, respectivement. Le fond est
représenté par la fonction d’onde W[a, ¢] et, a et 7 sont obtenus via

~4 =172 s47-1/2 Ny -1 \-1 = _ =271

a = <HFL§€Wa HFL%WXHFLRW) et 7 =a(Hpppy)de, (2.48)
avec Hyy gy un opérateur associé 2 la contrainte Hamiltonienne C divisé par 2 pour un fond homogéne
et isotrope. Les crochets représentent la valeur moyenne par rapport a 1’état correspondant a ‘¥[a, ¢].
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En utilisant le champ scalaire ¢ comme horloge il est possible d’établir les équations du mouvement
[23]. On obtient alors I’équation de Mukhanov-Sasaki modifiée, qui s’écrit alors

=/’

o — (k2 _ ZT)U -0, (2.49)
<

avec z une valeur habillée dans une métrique habillée. La variable 7 est initialement définie a partir
d’opérateurs, mais les calculs montrent qu’elle se réduit au z usuel et on retrouve 1I’équation (2.46).
Etant donné que les degrés de liberté du fond et les modes d’inhomogénétités sont séparés, cette
approche perd la covariance [26]. L'intérét de cette approche est qu’elle est plus « pres » de la théorie
mere, car elle tente en effet de traiter les degrés de liberté de facon quantique, mais elle a le défaut de
n’avoir pas prouver sa cohérence au sens ou il n’est pas évident que 1’algebre résultante soit clause.

L’approche LQC de I’algébre déformée

L’approche dite de 1’algebre déformée a été initiée par Bojowald en 2006 [27, 28, 29], puis étudié
en 2012 avec Cailleteau, Barrau, Mielszarek, et Grain [30, 31, 32, 33]. Dans la section 1.5, on a
vu que I’algebre est fermée sur I’hypersurface des contraintes. Ici on prend en compte la matiere,
la contrainte Hamiltonienne admet alors un terme en ¢ et p, et les crochets de Poisson s’écrivent :
{.. . ={., . hp+{., . Jsp Lorsqu’on integre la correction d’holonomie dans ces contraintes, on a
des anomalies qui apparaissent et I’algebre n’est plus fermée

{T;,T;} = ,-lj-(A, E)T + A;j, (2.50)

avec A;; les termes d’anomalies. Il est possible d’ajouter des termes dans les crochets de Poissons
(2.50) qui permettent de retrouver une algebre fermée. Par exemple, en RG, les crochets de Poisson de
la contrainte Hamiltonienne s’écrivent :

{CIN],C[M]} = =D[S*"(NO,M — MO, N)], (2.51)

avec S, = |detEM|[E/E",. En LQC, si on prend en compte la correction d’holonomie et qu’on supprime
les anomalies au second ordre on obtient

(C[N], C[M]} = QD[S* (N3, M — M3, N)], (2.52)
avece
o=-1-22 (2.53)
Pe

L’équation de Mukhanov-Sasaki modifiée s’écrit alors

77

o — (Qk2 - Z—)v 0. (2.54)
Z

Lorsque € change de signe, proche du rebond, la structure de I’espace-temps devient Euclidienne [34].

Dans les deux cas

A présent, nous souhaitons définir explicitement le potentiel effectif z//z. Pour cela on utilise la
définition (2.45) et la dynamique de fond. En utilisant les équations (2.31,1.69, 1.70) et leur dérivées,
on obtient le potentiel effectif

" p0sV 7 .o 3k, p*
=@ - V(g) +2H - 2k 20V SR + K p e d (2.55)
Z Oc

2H?[
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Etant donné que cette équation découle de la dynamique de fond, elle est valable pour les deux
approches : la métrique habillée et I’algebre déformée. Le terme € n’est pas associé a la seconde
approche, il provient de la dérivation de I’équation (2.31).

2.3.2 Le spectre des perturbations scalaires en LQC

Le spectre de puissance des perturbations primordiales est un point clé pour permettre de tester les
prédictions de LQC avec les expériences. Actuellement, les inhomogénéités scalaires du CMB sont
observables via les variations en température. Dans le futur, les inhomogénéités tensorielles seront
accessibles via la détection des modes B (mesure de la polarisation des photons). Dans cet article,
nous nous intéressons au spectre des perturbations scalaires prédit par la LQC. On considere un champ
scalaire massif avec une inflation a roulement lent. On explore différentes formes de potentiel pour ce
champ.

La perturbation de courbure i associée a la foliation de I’espace décrit par la métrique ADM
(1.131) est définie par

¢ = det(qu/a®), (2.56)

avec ¢, la métrique spatiale. Pour un temps conforme n constant dans univers plat, la courbure
intrinseque de I’hypersurface spatiale s’€écrit

4
BGp — 2
R_ng. (2.57)
On peut alors définir la perturbation de courbure comobile R telle que
0
R =+ Hf. (2.58)
Elle peut également s’écrire a I’aide des variables de Mukhanov-Sasaki
R=". (2.59)
Z

Les modes qui sont plus grands que le rayon de Hubble n’évoluent plus dans le temps. Leur amplitude
est figée dés lors qu’ils traversent ce rayon. Puis, apres I'inflation, 1’échelle de Hubble grandit plus
rapidement que les longueurs d’ondes et ces modes re-entrent dans 1’horizon de Hubble, pendant la
phase dominée par le rayonnement ou la matiere. Ainsi les modes sont dé-figés et les perturbations de
densité de matiere augmentent. Ce processus permet des créer les grandes structures. Au contraire les
modes bien plus petits que le rayon de Hubble se comportent comme des ondes planes dans un espace
de Minkowski (la courbure est négligeable pour eux). Les fonctions de corrélation a deux points de R
dans I’espace de Fourier définissent le spectre de puissance Pg tel que

(21)* Pr(ky)o(ky + k2) = (Ri, R, ). (2.60)
Dans le cas d’une inflation a roulement lent, le spectre de puissance des perturbations scalaires s’écrit
k3 k3 Uk 2 k ng—1
Ps(k) = ~— Pg(k) = ——|% :A(—) : 261
s (k) o = (k) 7|z \%. (2.61)

avec k, = 0.05 Mpc~! I’échelle de pivot.
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L’approche de la métrique habillée

Pour commencer, nous nous plagons dans le formalisme de la métrique habillée et nous considérons
un potentiel quadratique. Les conditions initiales sont choisies lorsqu’on se trouve dans un vide de
Bunch-Davies, quand le potentiel effectif est négligeable,

7z <k, (2.62)

pour qu’il n’y est pas d’ambiguité. En effet, dans ce cas, I’équation de Mukhanov-Sasaki (2.46) a
des fréquences indépendantes du temps. Ainsi, les modes ne sont pas affectés par la gravité et se
comportent comme dans un espace de Minkowski. On a alors

= L —ikn
ve(m) me . (2.63)
En cosmologie standard, le vide de Bunch-Davies est atteint de facon asymptotique lorsqu’on s’ ap-
proche du Big-Bang. En LQC, pour les perturbations scalaires, le vide de Bunch-Davies est atteint a
différents moments dans la phase de contraction. En effet, on peut voir sur la Figure 3 de I’article, le
comportement du potentiel z””/z. On a des oscillations qui s’amplifient a I’approche du rebond. On
observe que le potentiel est nul aux temps

t; = 1.46,x107, (2.64)
i =152x10". (2.65)

Ces deux instants sont des moments privilégiés pour mettre les conditions initiales. Cependant ces
instants sont proches du rebond, ou la phase quantique émerge. Ainsi, il faut tout de méme, €tre
conscient que ce ne sont pas non plus des conditions idéales mais elles restent préférables a tous les
autres choix potentiels étant donné la théorie effective. Dans la Figure 4 de I’article, on observe que
pour des conditions initiales choisies aux deux temps qui correspondent au vide de Bunch-Davies
(2.64, 2.65), le spectre de puissance est similaire. On peut observer trois comportements : la région
ultraviolette ol le spectre est proportionnel 2 k=% ; 1a région intermédiaire des oscillations et la région
infrarouge ou le spectre est proportionnel a k2. Dans la région infrarouge, la condition (2.62) sera
moins respectée quand k devient petit. Le choix du vide idéal serait quand t — —oo ainsi, le spectre au
temps (2.65) doit étre 1égerement meilleur qu’au temps (2.64). Qu’en est-il de la comptabilité avec les
expériences ? Les observations montrent un spectre presque invariant d’échelle. La partie infrarouge ne
présente pas cette invariance. La partie intermédiaire n’est pas incompatible car il est possible d’avoir
des oscillations qui en moyenne sont invariantes d’échelle. Enfin, la partie ultraviolette est consistante
avec les observations. De plus, étant donné qu’une grande partie de 1’espace des phases des conditions
initiales donne lieu a une durée d’inflation supérieure a 70 e-folds, il est tres probable que le spectre
observé se trouve dans la région ultraviolette. Ainsi le spectre de puissance de la LQC est compatible
avec les expériences.

On a également étudié€ le spectre pour des formes de potentiel plus générales :

1
W@:;@W. (2.66)

Le comportement du potentiel 7’ /z dépend de la valeur de n, comme le montre la Figure 8. Néanmoins,
il existe toujours un nombre fini de points ou on est dans les conditions du vide de Bunch-Davies. Les
spectres de puissance sont légerement différents. En fait les lois de puissance dépendent de la valeur de
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n. Mais les trois régions disparates sont toujours présentes. La région des ultraviolets est dans tous les
cas pratiquement invariante d’échelle.

L’approche de I’algebre déformée

Dans cette approche, on observe que le spectre de puissance présente une croissance exponentielle
dans la région ultraviolette (voir les Figures 12-14). De plus, ce caractere divergeant apparait peu
importe la forme du potentiel du champ scalaire. Ceci n’est pas du tout compatible avec les observations.
Cependant, on peut se poser la question de pourquoi un tel comportement apparait ? Quelle hypothese
fausse-t-elle le résultat ? Un point important, non résolu a ce jour, est le probleme transplanckien. En
effet, ici on considere la partie du spectre ou les longueurs d’ondes sont petites. Ainsi, si on remonte
suffisamment loin dans le passé, ces longueurs vont devenir inférieures a la longueur de Planck, et
dans ce cas une approche semi-classique n’est pas forcément apte a décrire la physique. Il faudrait
considérer un systeme purement quantique pour traiter le probleme.

Cet article a été publié dans Physical Review D [35].
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This article is devoted to the study of scalar perturbations in loop quantum cosmology. It aims at
clarifying the situation with respect to the way initial conditions are set and to the specific choice of an
inflaton potential. Several monomial potentials are studied. Both the dressed metric and deformed algebra
approaches are considered. We show that the calculation of the ultraviolet part of the spectrum, which is the
physically relevant region for most background trajectories, is reliable, whereas the infrared and
intermediate parts do depend on some specific choices that are made explicit.

DOI: 10.1103/PhysRevD.98.086003

I. INTRODUCTION

The calculation of primordial cosmological power spec-
tra is an important way to connect speculative theories of
quantum gravity with observations (see [1] for a recent
review). Among those theories, loop quantum gravity
(LQG) (see, e.g., [2]) has now reached the point where
explicit calculations can be performed. At this stage, it
remains, however, extremely difficult to derive rigorous
cosmological predictions from the full theory. But, in the
specific case of loop quantum cosmology (LQC), which
can be viewed as the quantization of symmetry reduced
general relativity using techniques from LQG (see, e.g.,
[3,4]), quite a lot of results have already been obtained,
beginning with the replacement of the usual big bang by a
big bounce. Recently, important improvements were pro-
posed, e.g., in group field theory [5-7], in quantum reduced
loop gravity [8—11], in refined coherent state approaches
[12], in diffeomorphism invariance derivation [13] or in
analogies with a Kasner transition [14], to cite only a few.

Together with hybrid quantization [15,16], two main
approaches have been developed in this framework to study
inhomogeneities: the dressed metric [17-19] and the
deformed algebra [20-23]. The first deals with quantum
fields on a quantum background, while the second puts the
emphasis on the consistency and covariance of the effective
theory. This led to clear predictions about the power spectra
[24-29]. Other complementary paths were also considered
to investigate perturbations [30-34].

Many works were devoted to tensor perturbations that are
easier to handle both for gauge and for anomaly issues. Scalar
modes are, however, more important from the observational
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viewpoint (see, e.g., [24,35-38] for recent works in LQC).
This article focuses on scalar spectra and aims at clarifying
how previous LQC results obtained for a simple massive
scalar field can be generalized to other monomial potentials
and to which extent the spectrum is sensitive to initial
conditions (i.e., to a vacuum choice) for perturbations. It
is essentially impossible to derive fully generic results, so we
explicitly investigate different solutions and show the asso-
ciated numerical computations so that they can be accounted
for in future studies.

II. GENERIC FRAMEWORK

We consider here a spatially flat and isotropic FLRW
spacetime filled with a minimally coupled scalar field with
a monomial potential. We neglect backreaction and trans-
Planckian effects.

We first come back to the study developed by some of
the authors of this article in [27]. As in this work, we adopt
here a causal viewpoint and put the initial conditions, both
for the background and the perturbations, as far as possible
in the contracting phase preceding the bounce.

The basic ingredients are the following. The Friedmann
equation, modified by holonomy corrections, reads as

K p
H? _p<1 —>,
3 Pe

where p.. is the critical density (expected to be of the order
of the Planck density), and H = a/a is the Hubble
parameter. The Klein-Gordon equation for the background
is given by

(2.1)

¢ ==3Hp—09,V(9), (2.2)

where ¢ is here used for ¢, the average scalar field. The
differential system for the background can be summarized
as (we choose the convention a(f,;) = 1)

© 2018 American Physical Society
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o) =22, 23)

b0 = 3HOM) - 0,Vip().  (24)

i =S (1 -2EW2EVO0)
a(t) = H(na(o). 26)

Perturbations are described in the Fourier space by the
gauge invariant Mukhanov-Sasaki equation,

"
v+ <k2 —i)vk =0,

where z = %, and the derivation is with respect to the
conformal time dy = %dt. One can easily show that

(2.7)

. oos . H . H 2 H
P P om 2T Vv —H42( ) = (28)
2 9 9 H H) H
Introducing
p
Q=1-22, 2.9
Pe 29)
and using
1.,
p=5¢+ Vo) (2.10)
leads to the final expression,
" . 8( Vv 7 )
Lo (—%V((p) +2H? — ZKQM - EKQ(pz
Z
3K 4 aep @
— Q). 2.11
+ o @" +x S (2.11)

This is the intricate effective potential that has to be dealt
with. In the next two sections, we study perturbations as
described by the dressed metric approach [17-19], which
is very close to the hybrid quantization one as far as
phenomenology is concerned [33]. Interestingly, at the
effective level, the equation of motion (2.7) is formally the
same than in general relativity, even though the value of
7"/z is of course heavily modified. We then switch to the
deformed algebra approach were an effective change of
signature shows up.

III. QUADRATIC POTENTIAL

The resulting typical evolution of the scalar field is
shown in Fig. 1: pseudo-oscillations are followed by the
bounce and by an inflationary stage. The details obviously
depend on the phase of the field during the contracting

¢ [mpl]

5

4

3

2

1

1x107  tb  2x107 3x107 axio7 LR

FIG. 1. Temporal evolution of the scalar field, for a mass
m=12x107°.

period but, as shown in [39-41], what is displayed in Fig. 1
is a quite generic behavior. The probability to have, e.g., a
phase of deflation is much smaller. All numbers are given in
Planck units.

The way to choose initial conditions for the perturbations
is more subtle. The usual Minkowski solution,

— L —ikn

Vi (71) \/ﬂ e ’ (3 : 1)
is approached in the so-called Bunch-Davies vacuum.
The main requirement to set the vacuum is that the effective
potential is negligible so that the equation of motion
becomes nearly the one of an harmonic oscillator. In
addition, if the causal evolution of the Universe during
the bounce is taken seriously and if the word “initial” is
taken literally, it makes sense to put initial conditions far
away before the bounce, this later constituting in addition
the most “quantum” and less controlled moment in the
whole cosmic history (see e.g., [42] for a discussion). As it
will become clear later, this requirement is actually in
tension with the first one (which should be considered as
the mandatory one).

The evolution of the absolute value of the effective
potential 77” is shown in Fig. 2 during the full integration
time interval. It should be noticed that it increases both in
the past and in the future of the bounce (which is located
around ¢ = 1.5 x 107 on the plot). This raises an issue
which is fundamental for bouncing models and should be
taken into account with care, as studied later in this article.

Figure 3 shows the effective potential between the
beginning of the integration interval and the bounce. The
shape is highly complex and very different from what
happens either in standard cosmology or in LQC for tensor
modes. In the standard cosmological model it vanishes
when going backward in time, deep into the de Sitter
inflationary phase. This is also true for bouncing models
when going far away in the past of the contracting phase,
but only for tensor modes. In the considered case, due to the
large (negative) value taken by the potential in the remote

086003-2
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FIG. 2. Temporal evolution of the absolute value of effective
potential %’ over the full integration interval.
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FIG. 3. Temporal evolution of the effective potential & between

the beginning of the integration and just before the bounce.

past it is impossible to put stable initial conditions very far
from the bounce. Strictly speaking, it might make sense to
set initial conditions in this way but the interesting selection
criterion associated with the Bunch-Davies vacuum would
be lost. If one wants to remain in a framework where a
Bunch-Davies—like initial state—which is at least justified
to compare with other results—is used, there are two
moments which can be chosen such that %" vanishes.
However, those points are not far from the bounce and
the fact that “initial” conditions have to be set at very
specific moments is something that deserves to be better
understood in the future and should be, at this stage,
considered as a weakness (at least at the heuristic level) of
those models.

As a first step in a better understanding of the situation,
we present in Fig. 4 the primordial power spectra resulting
from a full simulation of the evolution of perturbations
with initial conditions set both at the first zero, i.e., at
t; = 1.46 x 107, corresponding to the earliest time in
cosmic history, and at the second zero of the effective
potential at ¢; = 1.52 x 107.

First, it should be emphasized that the ultraviolet (UV)
part of the spectrum is the same for both ways of putting
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FIG. 4. Primordial scalar power spectra, as a function of the
comoving wave number, for a quadratic potential and initial
conditions put whether at the first zero of 17'/, ie,t; =146 x 107
(lower plot in the IR, black disks), or at the last zero of %, ie.,

t; = 1.52 x 107 (upper plot in the IR, green triangles).

initial conditions and is compatible with observations, that
is nearly scale invariant with a very slight tilt due to the
slow roll of the field during the inflationary stage. This is
particularly important as the UV part of the spectrum is
most probably the one which is experimentally probed.
This last fact entirely depends on the number of e-folds of
inflation: the conversion of the comoving wave number
into a physical wave number requires the knowledge of the
expansion factor of the Universe. Except if the background
initial conditions are hyper-fine-tuned, inflation lasts long
enough [39-41] so that the observational cosmological
microwave background (CMB) window clearly falls in the
UV part of the spectrum. In principle, this would require a
specific trans-Planckian treatment (see [28,43] for first
attempts in this direction) which is not the topic of this
study and which is anyway partially accounted for in the
dressed metric approach. The oscillations in the intermedi-
ate part of the spectra—due to quasi-bound states in the
effective Shrodinger equation—are basically the same in
both cases, together with the deep infrared (IR) part
(throughout all the article we call “infrared” the rising part
of the spectrum and “ultraviolet” the scale-invariant one).
However, some differences do remain in the junction
between the IR and the oscillatory regimes. We have
checked that they are not due to numerical issues.
Although this is not of high phenomenological signifi-
cance, this shows that the way initial conditions are set,
even around a vanishing effective potential, can influence
the resulting power spectrum.

We have also checked that when moving slowly away
from the exact point were %”: 0, the spectrum slowly
changes. This is obviously expected but the details of the
changes are very hard to guess as the effective potential is
very complicated. Basically, the spectrum evolves from a
full k¥ to a full k* behavior in the IR. Figure 5 presents an
intermediate case, and this should be taken into account
when interpreting results given in [27].
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FIG. 5. Primordial scalar power spectrum, as a function of the

comoving wave number, for a quadratic potential and initial condi-
tions set 0.61p before the Bunch-Davies vacuum at t;=1.46x10’.
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FIG. 6. Primordial scalar power spectrum, as a function of the
comoving wave number, for a quadratic potential and initial
conditions at local extrema far away from the bounce, at
t; = 2.00 x 10°. From the dot line to the plain line, one goes
deeper in the remote past.

Finally, in Fig. 6, the spectrum is plotted for initial
conditions set at a local extremum further away from the
bounce, at ¢; = 2.00 x 10°. The plain line corresponds to a
point deeper in the past than the dotted line.

This shows that although the global shape of the spectrum
is under control—especially in the region of phenomeno-
logical significance—the detailed structure is quite sensitive
to the way initial conditions are set. In models where the
effective potential does not vanish in the remote past, this
raises nontrivial issues. This means by no way that those
approaches are inconsistent but that some uncertainties
associated with the loss of a strong selection criterion on
initial conditions have to be included in the analysis.

IV. GENERALIZED POTENTIALS

It is important to investigate whether the scalar spectra
obtained hold for other inflaton potential shapes (not to be
confused with the effective potential felt by pertubations),

¢ [mpl]

t
5%10° 1107 ~_Ap 1.5x107 [te]

FIG. 7. Evolution of the scalar field for n = 3.

beyond the massive scalar field which is not favored by data
[44]. The case of plateaulike potentials is very specific in
bouncing models (see [41]), so we restrain ourselves to
confining monomial potentials of the form:

Vig) =

n

A" (4.1)

No general analytical solution in the deep contracting
phase can be found anymore but it is still possible to set
initial conditions for the background as done previously.
The evolution of the scalar field is qualitatively weakly
depending on n. As an example, we show the result for
n =3 in Fig. 7.

The situation is more complicated when one considers
the details of the effective potential. Figure 8 shows the
evolution of z”/z up to the respective bounces for n = 3, 4,
4/3,5/2.

Clearly, the shape of the behavior of the effective potential
depends on the value of n. The number of points were the
potential identically vanishes is finite in each case, leading to
a finite number of ways to set a rigorous instantaneous
Bunch-Davis vacuum. In all cases, there is also an infinite

z; [me®]

2.x107°

tlte]

5.0x10° 1.0x107 2.0x107

1.5x107
0 ;

-2.x107°
-4.x107°
-6.x107°
-8.x107° (\
-0.00001" A (\

FIG. 8. Evolution of — in the contracting universe up to the
respective bounces for V(p) =11,¢" and n =3 (blue dotted

line), n = 4 (red dashed line), n = 4/3 (black solid line) and
n =5/2 (green solid line).
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FIG. 9. Evolution of %”, together with its envelop, in the
contracting universe, up to the bounce on a wide time interval.

number of local minima that can be used as approximate
vacua, depending on the range of wave numbers relevant for
the considered study. We insist once more that the details of
the spectrum do depend on this choice.

Figure 9 shows the envelope of the effective potential for
n = 3 when going deeper into the past. It can be empiri-
cally fitted by a power law (¢ — t,)*%. The oscillations
themselves get quite chaotic, reflecting the nonlinearity of
the equations. The situation is very different from what
happens for the effective potential of tensor modes. It might
be that, from the bounce, time flows in two opposite
directions. Then it would make sense to put initial con-
ditions at the bounce, as in [17-19]. If, however, the
evolution remains globally causal with a unique time
direction, the questions raised here cannot be ignored.

As “extreme” examples, we show in Fig. 10 (respec-
tively, Fig. 11) the scalar spectra for n = 4/3 (respectively,
n = 5/2) with initial conditions set close to the bounce and
in the deep past. This reinforces the previous conclusions:
the “small scales” part of the spectra is nearly scale
invariant in all cases (although small differences do exist),
making the results compatible with observation for the vast
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FIG. 10. Spectrum for n :§ with initial conditions whether
close to the bounce, at t; = 1.87 x 107tp, (lower plot in the IR,
black disks), or far from it at #; = 1.49 x 107 (upper plot in the
IR, green triangles).
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FIG. 11. Spectrum for n :% with initial conditions whether

close to the bounce, at t; = 1.35 x 107 (k? behavior in the IR,
black disks), or far from it at #; = 1.35 x 10°¢p, (k* behavior in
the IR, green triangles).

majority of the parameter space which leads to an infla-
tionary stage so long that the observable part falls in the
deep UV range. However, the IR part and some of the
oscillations can sensitive to the details of the inflaton
potential shape and to the way initial conditions are set.

V. DEFORMED ALGEBRA

Another approach to LQC, the so-called deformed
algebra, relies on a different view of the situation [20-23,
45,46]. In this case, the emphasis in put on the consistency
of the effective theory. The Poisson brackets are calculated
between (holonomy) quantum corrected constraints.
Anomalies do appear in general. To ensure covariance,
counter-terms with a vanishing classical limit are added to
the constraints, so that the system remains “first class” in
the Dirac sense. The resulting algebra (including the matter
content) is closed and reads as

{DINT], [N5]} =0, (5.1)
{H[N]. DIN“)} = —H[5N“0,6N]., (5.2)
(H[N,].H[NJ]} = D Q%@a(aNz —6ND |, (5.3)

where D[N'] is the full diffeomorphism constraint and
H[N] is the full scalar constraint. The important feature
it the Q = (1 —-2p/p.) term in the last Poisson bracket.
It becomes negative close to the bounce and leads to an
effective change of signature. The Mukhanov equation of
motion in Fourier space reads, in this framework, as

. » _H\ . k2

R — (3H +2m L 4 22 )R+ Q5 R =0, (5.4)

7 H a

with
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FIG. 12. Spectrum for n =% within the deformed algebra

approach and initial conditions set at t; = 1.87 x 107.

R=", (5.5)
Z

where v is the gauge-invariant perturbation and z is the
background variable. Phenomenologically, the main con-
sequence of this model, if a causal view is chosen and a
massive scalar field is assumed to fill the Universe, is an
exponential growth of the spectrum in the UV [26,27]. It
is obviously not compatible with data [29], but this
conclusion clearly relies on heavy assumptions that might
be radically altered when considering trans-Planckian
effects [28] or other ways of setting initial condi-
tions [47,48].

We have readdressed the question of the propagation of
scalar perturbations in the deformed algebra framework
with new potentials. As can be seen in Figs. 12—14, the UV
rise of the spectrum clearly remains present whatever the
chosen potential. All the conclusions about the features of
this model, therefore, remain valid beyond the massive
scalar field approximation. The subtle modifications of the
IR shape are actually due to the way the initial vacuum is
chosen which is inevitably impacted by the choice of the
potential.
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FIG. 13. Spectrum for n =3 within the deformed algebra
approach and initial conditions set at #; = 1.17 x 107.
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FIG. 14. Spectrum for n =4 within the deformed algebra
approach and initial conditions set at #; = 1.19 x 107,

VI. CONCLUSION

In this article, we have addressed the question of the
primordial power spectrum of scalar perturbations in a
bouncing universe described by loop quantum cosmo-
logy by studying the gauge-invariant Mukhanov-Sasaki
equation with the appropriate effective potential associ-
ated with different inflation potentials. A full numeri-
cal simulation was developed. The conclusions are the
following:

(i) the temporal behavior of the effective z”/z potential
is, in general, highly complicated with a pseudo-
periodic structure which depends on the details of the
inflaton potential V(¢).

(ii) the ultraviolet part of the power spectrum, which is
the most relevant one from the observational per-
spective, is mostly independent of the way initial
conditions are set and of the choice of the potential.
This makes the main LQC predictions robust.

(iii) the intermediate and infrared parts of the spectrum
do depend on the initial conditions and on the
inflaton potential. The IR slope varies between k?
and k* depending on the type of vacuum chosen and
the amplitude of the oscillations can vary substan-
tially.

This study shows that the main conclusions regarding the
compatibility of the spectrum with CMB observations (for
most of the parameter space span by initial conditions for
the background) in LQC are reliable. However, if the initial
values for the inflaton field and its momentum are fine-tuned
so that the number of e-folds of inflation is small, the
observational window might fall on the intermediate or IR
part of the spectrum. In that case, LQC predictions do depend
on the way initial conditions (for perturbations) are set and
on the choice of the inflaton potential. This should be taken
into account in future studies.
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2.4 Distance de luminosité dans un univers en contraction

L’émergence d’un univers en contraction précédent la phase d’expansion ouvre de nouvelles
perspectives. Ce scénario d’un univers en rebond existe également en dehors de la LQC. Est ce que des
observables issues de 1’univers pré-rebond pourraient persister dans I’univers actuel ? Dans cet article
nous investiguons le comportement de la distance de luminosité dans un univers en contraction. Le
flux observé d’une source astrophysique est donné par

L
2 2
drDy
avec L la luminosité de la source et D, la distance de luminosité. Cette dernicre permet de décrire la

distance parcourue par un signal étant donné que 1’univers est dynamique. Dans un univers plat, elle
s’écrit

f= 2.67)

Z dzl
Dy =c(1 , 2.68
L=c( +Z)j(: H(Z) ( )

avec z le redshift et H le parametre de Hubble. On peut I’écrire comme une fonction du temps
a(t)? (" dt

DL =cC a(te) . % (269)

avec t, et t, le temps cosmologique d’émission et de réception, respectivement. Soit ¢ = 0 le temps
de rebond et un univers qui se contracte selon a(—t) = k(—t)". Ici k est une simple constante de
proportionnalité, et ne doit pas étre confondu avec le facteur de courbure, qui lui est nul. Soit #, et 7,
négatifs, tel que 7, < ¢,, dans la phase de contraction, alors on a

(_tr)zn (_tr)l_n _
=1Ly

D, = (-t,)72]. (2.70)

Il existe trois comportements de la distance de luminosité en fonction de la valeur de n. Ces
comportement sont mis en évidence par la Figure 1 de I’article :

1. Pour n < 1/2, la limite est donnée par
lim D; = oo. (2.71)
tl,—>—oo
La distance de luminosité augmente lorsque I'intervalle de temps augmente.
2. Pour n = 1/2, il est intéressant de constater que la limite est donnée par
) 2cal(t,)?
lim DL = T (272)
te——00

Cette valeur de n correspond a un univers dominé par le rayonnement. On observe qu’il existe un
régime asymptotique a partir du quel la luminosité observée ne dépend plus du temps d’€mission.

3. Pour n > 1/2, cette limite est

lim D, =0. (2.73)

te——00
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De facon intuitive, la distance de luminosité diminue des lors que I'univers se contracte plus
rapidement que le signal ne se propage. Soit une source observée a t = f,, si elle a été émise
peu de temps avant, la distance de luminosité va croitre avec I’intervalle de temps At = |t, — 1.
Cependant si cet intervalle continue de croitre, alors la distance de luminosité va ensuite diminuer.
En effet, le maximum est atteint lorsque

2n — 17w
—1, = [ ] (—t). (2.74)
n
Ainsi apres ce maximum, une source apparaitra d’autant plus brillante qu’elle n’a été émise
loin de le passé. Cet effet sera évidemment amplifié dans le cas d’un univers en contraction
exponentielle.

Dans certains cas, la distance de luminosité diminue ou atteint une valeur asymptotique avec
le temps. Cela souleve un paradoxe : un univers infiniment en contraction avec des objets dont la
luminosité explose n’est pas viable. En considérant la gravité quantique, la contraction entraine une
croissance de la densité d’énergie jusqu’a atteindre la densité critique p.. Des lors, les effets quantiques
répulsifs vont dominer et on aura le scénario du rebond. Ainsi, cette étude sur la distance de luminosité
permet de contraindre le passé asymptotique pour certains types de contenus.

La distance de luminosité n’est pas une observable additive. Un effet intégré engendre qu’une
source émise dans la phase de contraction peut voir sa distance de luminosité diminuer autant qu’elle
ne sera ensuite augmentée dans la phase d’expansion de sorte qu’elle est la méme luminosité a la
réception. Evidemment, ici, les effets du rebond sur la propagation du signal ont été omis. Toutefois,
en premiere approximation, on observe que des sources pré-rebond peuvent émettre des signaux qui
perdurent dans 1’univers post-rebond, de fagcon non négligeable. C’est le cas des ondes gravitationnelles.
En effet leur amplitude est inversement proportionnelle a la distance de luminosité

2
3

h

5
ML
—Mﬂﬂ 8. D)), (2.75)

a DL[ c?
avec M la "chirp mass", f la fréquence des ondes gravitationnelles,g une fonction qui dépend de la
polarisation, 7 I’angle du plan orbital et ®(f) la phase.

Du point de vue observationel, I’amplitude d’ondes pré-rebond sera fortement atténuée par la phase
d’inflation. Cependant, plusieurs modeles a rebond peuvent résoudre les problemes d’homogénité,
d’horizon et de platitude sans avoir recours a I’inflation [36, 37]. Nous nous plagons dans ce cadre-ci
et nous étudions un modele simplifié. Soit une phase de contraction dominée par le rayonnement,
puis une phase stationnaire pour le rebond, suivi d’une phase dominée par le rayonnement, puis la
matiére. On a considéré des ondes gravitationnelles émises par la coalescence de trous noirs de 10°
et 10® masses solaires (voir la Figure 4). Etant donné, le contenu en rayonnement dans la phase de
contraction, la coalescence peut avoir lieu arbitrairement loin avant le rebond. L’ amplitude des ondes
h est tracée en fonction de la température de 1’univers au moment du rebond. On observe que pour
des températures raisonnables, I’amplitude est constante et ses valeurs sont d’ordre comparable aux
amplitudes prochainement détectables. Evidemment, la formule de I’amplitude est valable seulement
en régime perturbatif. Mais pour des températures faibles le régime perturbatif est valide.

Ainsi par cette étude nous avons étudié le comportement de la distance de luminosité dans un
univers en contraction. En fonction du contenu elle peut augmenter, mais également stagner ou
diminuer. Dans les deux derniers cas, ceci engendre un régime a haute densité d’énergie, ou une
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description quantique serait de rigueur, qui permet de décrire la phase de rebond. Le comportement de
la distance de luminosité permet notamment d’envisager que des ondes gravitationnelles pré-rebond
pourraient avoir des amplitudes non négligeables aujourd’hui, selon les modeles. Qu’en est-il de leur
fréquences ? Sont-elles dans un intervalle mesurable ? Cela dépend du temps d’émission. Par exemple
dans la cas d’un univers parfaitement symétrique au rebond, un signal sera autant "blueshifté¢" dans la
phase en contraction, que "redshifté" dans la phase en expansion. Donc la fréquence observée sera
celle émise. Ainsi, on observe d’ores et déja qu’il existe plusieurs cas possibles ou la fréquence se
situerait dans I’intervalle des fréquences mesurables mais une étude plus précise serait profitable.

Cet article a été publié dans Physical Review D [38].
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I. INTRODUCTION

The big bang is a prediction of general relativity (GR) in
a regime where the theory is not valid anymore.
Singularities are most probably pathologies of the models,
not of spacetime itself. It is therefore natural to consider
alternatives to the naive big bang image. Importantly, most
models replacing the initial singularity by “something else”
were not designed to this aim but produce this desirable
effect as a consequence of their application to the early
universe (see [1,2] and references therein for recent
reviews). Among the countless ways to obtain a cosmo-
logical bounce, one can mention the null energy condition
violation [3], the strong energy condition violation with a
positive curvature [4], ghost condensates [5], galileons [6],
S-branes [7], quantum fields [8], higher derivative terms
[9,10], non-standard couplings [11], supergravity [12], and
loop quantum cosmology [13,14]. These are only some
examples among a much longer list which also includes, in
a way, the ekpyrotic and cyclic scenarios [15,16], together
with string gaz cosmology [17]. Bouncing models are
natural extensions of the big bang scenario and it comes as
no surprise that they arise in many theories beyond GR.
(Interestingly, those ideas are also being investigated in the
black hole sector, see [18] for a recent review).

All those models are obviously missing an observational
confirmation or, at least, strong experimental constraints. As
a legitimate step in this direction, many efforts were recently
devoted to the calculation of primordial cosmological power
spectra. Predictions for the cosmological microwave back-
ground (CMB) were made for nearly all the above-mentioned
models (as examples for specific settings, explaining the
global strategy, one can consider [19,20]).

In this article we follow another path. We investigate the
unusual luminosity distance behavior in a contracting
universe. We show that it is highly nontrivial. As a
consequence, we raise some consistency issues for bounc-
ing cosmological models. We finally suggest possible
observational footprints of the contracting phase that could
be observed through “usual” gravitational waves.
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II. THE LUMINOSITY DISTANCE
IN A CONTRACTING UNIVERSE

As far as observations are concerned, an important
parameter is the luminosity distance D;. It is defined by
f = L/(4xD?), where f is the observed flux from a given
astrophysical source and L is its luminosity. Intuitively, the
luminosity distance is the “equivalent” distance at which an
object of the same luminosity should be in a usual
euclidean space to lead to the same observed flux. In a
flat expanding universe (in the presence of spatial curva-
ture, the general expression involves trigonometric and
hyperbolic functions [21]), it reads as

e )

Dy =c(1+2z) ) HEZ)

where H is the Hubble parameter and z is the redshift. For
our purpose, it is convenient to rewrite this formula as a
function of time:

Dy =cli+2)at) [ @)

ioa(t)’

where 7, and ¢, are the emission and reception cosmic times
of the considered signal and a(7) is the scale factor. To
study a contracting universe it is even better to get rid of the
redshift and write the expression as

~a(n,)? [ di
DL_CMA ok 3)

When one considers the contracting branch of a bouncing
scenario, interesting and unusual phenomena can take place.
Let us choose ¢ = 0 at the bounce time and assume that the
universe contracts as a(t) = k(—t)" before the bounce (with
n = 2/3 for a matter-dominated phase and n = 1/2 for a
radiation-dominated phase). The detailed evolution around
the bounce could be e.g., given by the loop quantum
cosmology modified Friedmann equation [22]

© 2017 American Physical Society
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)

where p,. depends on the details of the model but can be
guessed to be close to the Planck density. However we have
checked that the observables calculated in this article do not
depend on the detailed shape of the modified equation of
motion. We therefore approximate the scale factor by a
constant function between —¢5 and ¢g. Let 7, and ¢, both be
negative—that is in the contracting branch—with 7, < ¢,. It
is then easy to show that:

(_tr)zn (_tr)l_n

n—1 (_te)n

When n < 1/2, D; — oo when ¢, — —oo. This is in agree-
ment with the intuitive behavior.

However, when n > 1/2, D; — 0 when f, - —o0. This
is one of the important results we want to stress here. This
strange behavior never happens in an expanding universe. It
means that, for a fixed reception time ¢,, an event that took
place earlier in the contracting phase will be seen as
brighter. Of course, the luminosity distance first increases
with higher values of —f,, reaches a maximum, and then
decreases. The maximum can be shown (when n # 1) to be
reached when

DL:C

~) )

2n — 17
o= [, ©

When n=1/2, D; — 2ca(t,)>/k* when t, - —co.
This means that events arbitrarily far away in the past will
be detected at the same brightness once the asymptotic
regime is reached.

Figure 1 shows the luminosity distance evolution for
three different values of n. It can be seen that D; is

luminosity distance

8x108}
6x108}
X108}
2x108
time
-100 -80 -60 -40 -20
FIG. 1. Luminosity distance (m) as a function of the emission

time 7, (s) in the contracting branch for the power law contraction.
The reception time ¢, has been set to 1 second before the bounce.
The lower curve corresponds to n =2/3, the mid curve to
n = 1/2 and the upper curve to n = 0.45.
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asymptotically constant in the remote past when n = 1/2
and tends to 0 when n > 2/3. The numerical values are not
relevant and the plot aims at showing the global behavior.

In Fig. 2 we consider the luminosity distance between an
event in the contracting phase and the contemporary
universe, as a function of the “bounce duration.”
Figure 2 shows that the detailed value of 7; does not care
in the following analysis: the contribution of the bounce
phase to the full integral is negligible.

Finally, it is worth considering the cosmological constant
case, a(t) = ke ™™, where a =|H| > 0. The luminosity
distance then reads

ea(re—Zr,)
D, = c——— [e%r — e%e]. (7)

Clearly, in this case again, D; — 0 when t, > —oc0, as
illustrated in Fig. 3. Sources located in the remote past have
their flux intensely amplified.

Luminosity Distance
5.474646600x 1033

5.474646500% 1053

5.474646400x 1033
5.474646300x 1033
5.474646200x 1033
5.474646100x 1033

Bounce duration

5.474646000x 1033
1071 109 107 107® 0.001 0.100 10

FIG. 2. Luminosity distance (m) as a function of the bounce
duration (s) between an event in the contracting phase and the
current universe (including radiation dominated and matter
dominated phases).

luminosity distance

6x107
4x107}
2x107}
n | L time
-8 -6 -4 -2
FIG. 3. Luminosity distance (m) as a function of the emission

time f, (s) in the contracting branch for an exponential con-
traction. The reception time ¢, has been set to 1 second before the
bounce and a was arbitrarily set to 1 in order to increase the
readability.
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III. CONSISTENCY CONDITIONS

The results given in the previous section do raise some
questions. The case n > 1/2 is in no way exotic from the
point of view of the equation of state. It actually corre-
sponds to a usual matter dominated universe, as naively
expected far away from bounce. The behavior of the
luminosity distance is then such that sources that have
emitted light in an arbitrary distant past will lead to a
measured flux which is arbitrarily amplified by the con-
traction of the scale factor. This basically means that the
energy density will diverge at all points in space, leading to
a kind of new Olbers paradox worsened by the contraction.
In addition the frequency will also become arbitrarily high.
As a consequence, the Universe cannot have been forever in
a contraction phase with n > 1/2 and filled with objects
emitting energy. The energy density growth would anyway
trigger the bounce—at least in quantum-gravity models
where the energy density is bounded from above by
quantum geometry repulsive effects. This consistency
condition has to be taken into account when building a
consistent bouncing universe.

The case n = 1/2 is not fundamentally different. The
luminosity distance being nearly constant, the energy
amount received by each space point would also diverge
in a forever-contracting universe. It should be pointed out
that even for n < 1/2 the space integral of any homo-
geneous source term will obviously diverge, as this is
already the case in a static Minkowski universe.

The exponential contraction case is slightly more subtle.
The luminosity distance is rapidly going to zero. The
amplification due to the fast contraction of the Universe is
thus very intense. However the horizon and physical
distances relative evolutions are such that the comoving
Hubble radius is shrinking when going backward in time in
the contracting branch (as when going forward in time in
the expanding branch). The number density of sources
causally linked to any space point will therefore also tend to
zero and eventually solve the apparent paradox.

IV. SEEING THROUGH THE BOUNCE

Those considerations raise the important question of the
possible observation of events having taken place before
the bounce. Obviously, most signals or objects possibly
existing in the contracting branch will be destroyed
of washed out by the huge density reached—in most
models—around the bounce time. The only exception
could be gravitational waves. This is the only signal
coupled weekly enough to matter so that it could propagate
through the bounce (the details depend on the specific
model considered). This has been investigated in different
cases (see, e.g., [23,24]) but focusing only on geometrical
aspects—ignoring the aforementioned amplification—and
considering consequences on the cosmological microwave
background (CMB) spectra.

PHYSICAL REVIEW D 96, 123520 (2017)

Let us consider here a different scenario. The hypothesis
is that an event emitting intense gravitational waves has
taken place before the bounce, e.g., the coalescence of two
massive black holes (BHs). Clearly we do not know what
the Universe looked like before the bounce. We however
assume here that events comparable to what happens in our
expanding branch took place in the contracting branch. At
the lowest order the wave amplitude produced by a binary
system and observed far away can be written [25]:

4 3 3
o |5 [ oo @
L C

C

h

where M is the chirp mass, f is the gravitational wave
frequency at the observer location, g is a sum and product
of trigonometric functions (different for different polar-
izations) depending on 7, the angle of the orbital plane, and
on the phase ®(f).

As quite a lot of bouncing models are justified as
alternatives to inflation (although bounces are compatible
with inflation [26]), it is instructive to focus on a non-
inflationary scenario and to study whether a pre-big bounce
signal can be detected. (An inflationary phase would
obviously dilute the signal to a vanishingly small ampli-
tude.) We consider the following toy model: a contracting
radiation-dominated phase, followed by a stationary bounc-
ing phase, followed by the usual radiation-dominated and
matter dominated stages. The number of efolds between the
bounce and today is of course a relevant parameter that we
express through the temperature of the Universe at the
bouncing time. On Fig 4, we have plotted the amplitude of
gravitational waves emitted by the coalescence of 100 mil-
lions and one billion solar masses BHs as a function of the
bouncing temperature. Interestingly, for a radiation domi-
nated contracting phase, because the luminosity distance
rapidly reaches an asymptotic value, it is not necessary to
specify the merging time as long as it is far enough before
the bounce. As it can be noticed from the curves, as soon as
the temperature is chosen at a reasonable value, the

h
5.x10721

1.x10721
5.x10722

1.x10722
5.x10723

1.x10°28 L Temperature

10716 1076 104 1014

FIG. 4. Gravitational wave amplitude today as a function of the
bounce temperature (GeV). The upper curve is for 10° solar
masses BHs and the lower curve for 10® solar masses BHs, both
merging in the contracting phase.
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FIG. 5. Gravitational wave amplitude at the bounce time as a

function of the bounce temperature (GeV). The upper curve is for
10° solar masses BHs and the lower curve for 10% solar masses
BHs, both merging in the contracting phase.

amplitude is constant and becomes non-negligible and
comparable to the sensitivity of current or next-generation
experiments. The h asymptotic behavior—which might
appear as quite strange at first sight—is just due to the
converging property of the integral of 1/a which enters the
definition of the luminosity distance.

An obvious limitation of this calculation comes from the
perturbative treatment. As it can be seen in Fig. 5, as long as
the bounce temperature is set much above the nucleosyn-
thesis temperature, the gravitational waves amplitude at the
bounce becomes too large to justify a perturbative calcu-
lation. This is a limitation to the presented study—which
requires a deeper treatment for this case—but not to the
presented idea in itself.

However, if the bounce temperature is set to the lowest
possible one, the amplitude at the bounce is marginally
compatible with a perturbative approach and this study
shows—in a consistent way—that, in principle, gravita-
tional waves from events occurring in the contracting phase
of bouncing models could be detected in the contemporary
universe.

One could also consider a phase of matter domination
preceding the radiation dominated era in the contracting
branch. If sources are located in this matter dominated
phase, the amplitude does depend on the time at which the
coalescence takes place. It is then possible to achieve nearly
any value by choosing an emission time in the deep past.
But the breakdown of the perturbative treatment would
them become drastic and the whole result would be
questionable. We therefore restrict ourselves to the radia-
tion dominated case.

Another limitation is associated with the homogeneous
and isotropic treatment of the bouncing universe. This
should be considered as a toy-model approximation. It is

PHYSICAL REVIEW D 96, 123520 (2017)

however not fully irrelevant. First, it should be pointed out
that many bouncing models have been shown to resist the
inclusion of anisotropies (see, e.g., [27] for the case of loop
gravity) with a quite minor modification of the Friedmann
equation [28]. Anisotropic stress on gravitational waves
could even be a way to discriminated between models. The
homogeneous treatment is harder to justify and should
obviously be seen as a first step. Recent calculations [29]
have however shown that exact solutions describing a
regular lattice of black holes in a cosmological bouncing
background do exist.

V. CONCLUSION

In this article we have shown that the luminosity distance
in a contracting universe has a highly nontrivial behavior.
Because of the “competition” between the expanding wave
dilution and the amplification due to the decreasing scale
factor, in some cases (n > 1/2), the luminosity distance
between two events in the contracting branch does decrease
with an increasing time difference.

As a consequence, some violent events releasing gravi-
tational waves and taking place in the contracting branch of
the Universe could be detected today. The question of
their frequency is hard to be answered unequivocally as it
obviously depends on the precise emission time which, in
the case n = 1/2, has strictly no impact on the luminosity
distance. We leave for a future study the associated
statistical analysis, together with the systematic study of
the characteristic signatures of “prebounce” signals.

It can already be underlined that several possible ways of
discriminating between ‘“prebounce” events and usual
“postbounce” events do exist. The most obvious approach
is purely statistical: the number of events should simply be
higher than expected if sources located before the bounce
contribute to the measured events. Beyond this obvious
statement, one should also look for the absence of electro-
magnetic counterparts. Although not demonstrated, electro-
magnetic signals are usually expected to be associated with
merging supermassive BHs. Third, the measured luminos-
ity distances for some events should lie outside of the usual
range (either too large or to small). Finally, the measured
luminosity distance (inferred from the frequency, the
frequency evolution and the amplitude, see e.g., [30] or
[31]) might mismatch the real one in a way which is
observationally measurable.
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CHAPITRE 3

Les trous noirs
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3.1 Les trous noirs en rebond

Le modele de cosmologie quantique a boucles décrit un univers en contraction, puis, lorsque la
densité critique p. est atteinte, les effets de gravité quantique génerent une force effective de répulsion
qui contrebalance I’attraction gravitationelle et I’univers s’expand. L’idée des trous noirs en rebond
est basée sur le méme principe [39, 40]. Un trou noir est soumis a I’effondrement gravitationnel, puis,
lorsqu’il atteint une certaine densité, 1’effondrement est contrebalancé par les effets quantiques. 11
transite alors vers une solution de trou blanc par effet tunnel. La singularité est alors évitée. Pour que
ce processus puisse exister, il faut qu’il y ait des effets quantiques qui englobent 1’horizon. Or, dans
cette région la courbure est faible, donc on pourrait penser que les effets quantiques sont négligeables.
Cependant, ces effets quantiques peuvent se cumuler dans le temps. Ainsi, proche, mais en dehors, de
I’horizon [41], ces effets peuvent peut étre devenir importants. En effet, si I’on considere le modele
de désintégration radioactive, un atome d’uranium est stable par unité de temps. Néanmoins, apres
plusieurs milliards d’années, 1I’atome finira par se désintégrer par effet tunnel. Le modele de trou noir
en rebond est analogue. La probabilité de transiter vers un trou blanc est faible, mais cumulée dans le
temps, le trou noir finira par transiter vers cet état par effet tunnel. Ce modele a ensuite été amélioré
pour corriger les instabilités [42]. Le temps de rebond 7 est proportionnel a la masse du trou noir, M,
au carré [43] : T = kM? avec k le facteur de proportionnalité (pris de I’ordre de 1). D’autre part, le
temps d’évaporation d’un trou noir est proportionnel 2 sa masse au cube M?>. Ainsi un trou noir va
rebondir avant de s’étre totalement évaporé et son rayonnement thermique est vu comme un processus
dissipatif faible.
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Plusieurs études sur la phénoménologie de ce modele ont été effectuées [44], notamment sur leur
capacité a expliquer les sursauts radio rapides (FRBs pour fast radio bursts) [45, 46]. Ces études
montrent que les trous noirs en rebond ne peuvent pas étre une explication viable. Cependant, dans
ces articles, en premiere approximation, le temps de vie était présumé déterministe. Or, du fait qu’il
s’agisse d’un effet tunnel nous devons prendre en compte 1’aspect probabiliste. C’est le point clé de
I’article ci-joint.

La probabilité qu’un trou noir n’ait pas encore rebondi a I’instant ¢ est donnée par

1

P(f) = Te%’, 3.1

comme dans le cas de la désintégration nucléaire. Ainsi le nombre de trous noirs a avoir rebondir apres
un temps 7y (le temps de Hubble) par unité de temps dt est

dN = %e‘k%dn (3.2)
avec Ny le nombre de trous noirs initiaux. Les trous noirs qui ont le plus de probabilité de rebondir
aujourd’hui seraient les trous noirs formés dans I’univers primordial. L’existence de ces trous noirs pri-
mordiaux (PBHs pour primordial black holes) n’est pas confirmée a ce jour. Cependant, les contraintes
sur ces derniers ont récemment été actualisées [47]. Le spectre de masse des PBHs est noté dN/dM.
Le signal des photons émis par un trou noir rebondissant est modélisé par une fonction Gaussienne

dNBH _(E—EO)2
d; =Ae T, (3.3)
avec Ey = 1/2Rg = 1/4M. L’ amplitude A est fixée de sorte que
d NBH
E—-dE =M. 3.4
f B (3.4)
Le signal total émis pour une distribution locale de trous noirs en rebond est donnée par

dNy ) _(E—Ezo)2 dN 1 .
— = Ae bt —(M)——=e 2. 35
dE fM,,, ¢ aMare (5-)

Si les PBHs sont produits par un événement ponctuel, de type transition de phase, alors leur spectre
sera piqué, tel que

AN Yl
w7 & 2y (3.6)

Il n’y pas d’a priori sur la masse M, autour de laquelle le spectre est piqué. Si cette masse correspond
a M,, (la masse définie telle que le temps de rebond est celui de Hubble), le flux sera plus important.
Cependant, étant donné 1’aspect probabiliste, pour des masses M, supérieures a M,,, il y aura des
trous noirs (dans I’intervalle associé a la queue de la distribution) qui vont rebondir aujourd’hui.
Nous pouvons constater par exemple, sur la Figure 1 de I’article, que lorsque la masse centrale vaut
M, = 1000M,,,, le pic du flux émis se trouve dans I’intervalle d’énergie (10~%eV) correspondant a celui
des FRBs.
Dans d’autres modeles, nous avons un spectre large, tel que
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dN
= Mo :
v (3.7)

Pour une formation de PBH a partir des fluctuations primordiales dans la phase de domination par le
rayonnement @ = —5/2. Mais d’autres processus, comme des transitions de phase, peuvent conduire a
des valeurs différentes. La normalisation entre les courbe est choisie telle que la masse totale allant
dans les trous noirs est la méme :

< dN
f M— = cte. (3.8)
My AM
Nous avons également considéré la normalisation telle que le nombre de trous noirs total est le méme :
“ dN
f N _ cre. (3.9)
Mpi M

Ces deux normalisations amenent a des résultats presque identiques. Pour ce type de spectre, la
phénoménologie associée est différente. Les prédictions (voir Figure 2) sont un flux qui augmente en
loi de puissance avec I’énergie, et la pente varie en fonction de la puissance @ du spectre de masse.

Ainsi, on a pu observer, qu’en prenant en compte 1’aspect probabiliste de la transition d’un trou
noir vers un trou blanc, le signal émit peut se trouver dans I’intervalle de fréquences des FRBs. En
fonction de la forme du spectre de masse des PBHs, les prédictions sur la forme du signal sont
différentes. Evidemment, les trous noirs en rebond ne sont pas 1’explication la plus argumentée pour
expliquer la présence des FRBs. D’autres sources astrophysiques peuvent tout aussi bien en étre la
cause. Cependant, contrairement aux €tudes ou le temps de rebond était pris comme déterministe,
dans le cas probabiliste I’hypothese n’est pas écartée. De plus, il est intéressant de noter que les trous
noirs en rebond ont une signature différente de celles des sources astrophysiques ou de physique des
particules. En effet, plus un trou noir rebondit loin (donc plus son énergie sera "redshiftée"), plus son
temps de rebond est petit (donc plus son énergie sera grande). Or il a été montré [48] que ces deux
effets se compensent de sorte que le signal ne possede pas beaucoup de dépendance en redshift.

Cet article a été publié dans Physical Review D [49].
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Nonperturbative quantum gravity effects might allow a black-to-white hole transition. We revisit this
increasingly popular hypothesis by taking into account the fundamentally random nature of the bouncing time.
‘We show that if the primordial mass spectrum of black holes is highly peaked, the expected signal can in fact
match the wavelength of the observed fast radio bursts. On the other hand, if the primordial mass spectrum is
wide and smooth, clear predictions are suggested and the sensitivity to the shape of the spectrum is studied.
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I. INTRODUCTION

Finding observational consequences of quantum gravity is
obviously a major challenge. In the last decade most
attempts have focused on the early Universe, evaporating
black holes, or Lorentz invariance violation (see Ref. [1] for
a recent overview). In the last years, the idea that quantum
gravity effects could be seen in higher-mass black holes has
attracted a lot of interest [2—6]. In particular, it was suggested
that the quite mysterious fast radio bursts (FRBs) [7] could
be explained by bouncing black holes [8]. There are
unquestionably simpler astrophysical explanations that we
consider to be more probable, but this hypothesis is worth a
deeper look. At the heuristic and intuitive level, this bounce
can be understood as a phenomenon quite similar to what is
expected to happen to the Universe in loop quantum
cosmology [9,10]. In the cosmological framework, the
classically contracting branch is linked to the classically
expanding one by a quantum tunneling, whereas in the black
hole sector the classically collapsing solution is glued to the
classically exploding one (on the double cover of the
Kruskal map [3]). The usual event horizon is replaced by
a trapping horizon [11]. In this brief article we revisit this
hypothesis by taking into account the fundamental random-
ness of the tunneling process that was previously ignored. In
Sec. I we assume a peaked mass spectrum for the bouncing
black holes and show that the 3 orders of magnitude in
energy thought to be missing to explain FRBs can easily be
accounted for. In Sec. III we consider a wide mass spectrum
and investigate the sensitivity of the signal to the spectral
index. We show that the expected emission remains com-
patible with measurements and make clear predictions.

II. PEAKED MASS SPECTRUM

The heuristic arguments given by Rovelli, Haggard, and
Vidotto in the previously mentioned articles suggested that

2470-0010/2018/97(6)/066019(4)
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the black hole lifetime could be of the order of M? in Planck
units (those units are used throughout the rest of the article
except otherwise stated). As this is shorter that the Hawking
evaporation time (of the order of M?), this means that black
holes might bounce before they evaporate: the Hawking
effect would just be a dissipative correction. An exact
calculation of this lifetime is in principle possible in loop
quantum gravity (see, e.g., Ref. [12]), but it is still hard to
perform accurately at this stage [13]. The previous phe-
nomenological works around this hypothesis have focused
on gamma-ray bursts [14], FRBs [8], the space-integrated
signal [15], and trying to explain the Fermi excess [16]. In
all of them the lifetime was taken (as a first approximation)
to be deterministic, fixed at the value = = kM? where k was
chosen to be of the order of 0.05 (however, in one of the
studies [15] its value was varied). We also assume this value
in the present article as it the most phenomenologically
interesting one (and the smallest one theoretically allowed).
However, as the black-to-white hole transformation is to be
understood as a tunneling process, the lifetime of a black
hole should be considered as a random variable.

The probability that a black hole has not yet bounced
after a time ¢ is given by

P(1) = %e—%. (1)

This is the usual “nuclear decay” behavior which comes
directly from the fact that the number of bouncing black
holes during a time interval dt is proportional to the full
number of black holes and to dt. We focus in this study on
local effects and neglect the redshift integration as this will
play only a minor role in the analysis carried out. The black
holes we are interested in can be considered to have been
produced in the early Universe, as the range of masses (far
below a solar mass) leading to bounces occurring in the

© 2018 American Physical Society
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contemporary Universe can only be associated with pri-
mordial black holes (PBHs; see Ref. [17] for a rather recent
review on the limits on the PBH abundance and references
therein for possible formation mechanisms). In general, the
number of black holes of a given type bouncing after a time
ty (taken to be the Hubble time as we are considering
present-day phenomena) in a time interval df is

Ny _m
dN = kTwOZe wdt, (2)
where N is the initial abundance. The exponential function
entering this calculation comes directly from the random
nature of the bounce, as in the previous formula. Let us
assume that the initial differential mass spectrum of the
considered PBHs is given by dN/dM.

In this study, we focus on the so-called bouncing black
hole low-energy component as this is the one that is
relevant for a possible link with FRBs. This specific
component is based on a simple dimensional analysis:
photons are assumed to be emitted with a characteristic
wavelength that is of the order of the size of the black hole,
which is the only length scale of the problem. As in
Ref. [16], we model the shape of the signal emitted by a
single black hole by a simple Gaussian function:

dNBH _(E*EU)Z
L= Ae e (3)

where Eq = 1/(2Rg) = 1/(4M), Ry is the Schwarzschild
radius, and M is the mass of the considered black hole. This
choice is arbitrary and simply taken as an example. The
width is typically fixed to be o5 = 0.1E,, but the results do
not critically depend on this value or the detailed shape of
the distribution.

The full signal due to a local distribution of bouncing
black holes is given by

dN o ERE N 1w
—T— [ Ae e (M) ——e . (4
dE /M ¢ oM pee W

The point we want to raise in this study is that the mean
energy of the detected signal might nor be the naively
expected one, that is, may notbe E ~ 1/(4M,, ), where M,
is the mass satisfying ¢t = kM?H (this would correspond to
black holes having a characteristic lifetime equal to the age
of the Universe). The naive expectation E ~ 1/(4M,,) is
not in the radio band, but rather 3 orders of magnitude
higher in energy, in the infrared band. If the initial mass
spectrum is peaked around a value M,, e.g., according to

AN  Uon?

d_M X e 2”/214 B (5)
which can in principle be different than 4/t /k, the energy
will however be peaked around 1/(4M) which can differ

from 1/(4M,, ). This is possible precisely because of the
distributional nature of the actual bouncing time.

Considering a peaked mass spectrum is not arbitrary and
can be justified if PBHs are created, for example, because
of a phase transition in the early Universe (see, e.g.,
Ref. [18]). As the primordial cosmological power spectrum
is now clearly known not to be blue [19] (at least on large
scales), the naturally expected density contrast is not high
enough to produce PBHs [20] and specific post-inflationary
phenomena are generically required (see, e.g., Ref. [21]).

In Fig. 1, the expected emitted flux is shown for
different values of the central mass M, of the initial
mass spectrum: M, , 10M,, , 100M, , and 1000M, . As
expected, this shows that the energy of the signal depends
on the mass spectrum even if the parameters of the model
are fixed. Naturally, when the mass spectrum is peaked at
masses well above M, , the amplitude of the expected
signal decreases as BHs that are exploding today constitute
an increasingly smaller fraction of the full population.
However, the key point we stress here is that a given mean
lifetime 7 = kM? does not imply a fixed expected energy.

In particular, it was previously emphasized that the
expected mean wavelength (obtained by fixing 7 = ) of
the electromagnetic emission associated with bouncing black
holes was basically one thousand times smaller than required
to explain the FRBs. If the mass spectrum is peaked at masses
higher than M, , it is however perfectly possible to precisely
account for the expected wavelength. The curve on the left in
Fig. 1 is peaked around 1.5 GHz, which corresponds to the
typical wavelength of FRBs. At this stage, there is no obvious
motivation for choosing a specific value for the peak mass.
Interesting proposals were recently suggested, for example,
in the framework of critical Higgs inflation [22], but (as
pointed out in the mentioned reference) the actual peak value
could differ from the naively calculated one by several orders
of magnitude due to accretion and merging, and many other
models do exist that suggest other mass values.

1010 [
2 105t
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1076 1078 1074 0.001
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FIG. 1. Differential electromagnetic flux emitted by bouncing

PBHs for a central mass M equal (from right to left) to M,,,
10M,,,, 100M,,, and 1000M,,, . The normalization is such that the
total mass going into PBHs is the same in all cases.
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In Fig. 1 the normalization between the different curves
is such that the total mass going into black holes is the
same:

"M aN _ cte. (6)
Mp d
This is somehow justified if ones tries to account for dark
matter with PBHs. The point we want to stress with this
remark is simply that the decrease in flux when one moves
below the “natural" mass My, is not drastic. Accounting
for the observed events by shifting the peaked mass to
higher values requires a higher density of PBHs. This
cannot be done up to arbitrary values, as the upper bounds
on the density of PBHs would then be violated. However,
orders of magnitude show that the density of PBHs required
to account for observed events is very far below the known
bounds, and this does not limit the present proposal as the
rate of FRBs is actually very small [23]. There is no point in
performing a detailed normalization of the expected spec-
trum at this stage, as the initial mass spectrum normaliza-
tion is totally unknown and the calculation of any
observable would directly depend on it.
We have also considered a second normalization, such
that the total number of black holes is the same,

© dN
— = cte, (7)
v

and this basically leads to the exact very same results.

Beyond FRBs—which can be explained by astrophysical
phenomena—the point raised here is simply the fact that
when the probabilistic nature of the bouncing time is
accounted for, the mean energy of the emitted signal is
also determined by the mass spectrum and not only by the
lifetime of the black holes.

II1. WIDE MASS SPECTRUM

It is also possible that the mass spectrum of PBHs is quite
wide. As a toy model, if it is directly produced by scale-
invariant density perturbations in a perfect fluid with
equation of state w = p/p, the mass spectrum can be
approximated by [20]

— o« M (8)

In this study, we just consider (as a first approximation) a
spectrum

dN

— o M, 9

T ©)
where « is an unknown parameter. In Fig. 2 we present the
expected signal for @ = {-3, -2, —1,0} (a spectrum rising
with an increasing mass on a wide interval would be rather
unphysical). Once again, the shape of the mass spectrum

1000.0f \
01}

1075

¢ (arbitary units)

1070+

1076 1075 1074 1073
E (eV)

FIG. 2. Signal expected from a wide mass spectrum, with a =
{-3,-2,-1,0} from the lower curve to the upper curve at
1076 eV.

does influence the expected signal as the probabilistic
nature of the lifetime is now taken into account: black holes
with masses smaller or larger than M, do also contribute to
the emitted radiation, and changing their relative weights
does change the result.

This leads to another way of addressing the discrepancy
between the “natural” wavelength (around 0.02 cm~
2 x 107% eV) of bouncing black holes and the observed
wavelength (around 20 cm ~ 2 x 1073 eV) of FRBs. It could
indeed be that most bouncing black holes do lead to a signal of
wavelength ~0.02 cm and that only the tail (which exists
because of the probabilistic nature of the lifetime) of the
distribution is observed in the radio band. If the peak is in the
infrared—which should occur if the mass spectrum is wide—it
might be that it is simply unobserved today. Detectors in the
infrared band have proper time constants that are much to high
to allow for the measurement of such fast transient phenomena
and there are no deep surveys being carried out.

In this case, as shown in Fig. 2, a clear prediction of this
model for future observations is that one should expect a
higher flux as the energy increases (up to the infrared
band). The slope of this increase reflects that of the mass
spectrum. This is qualitatively quite independent of the
details of the mass spectrum.

IV. CONCLUSION

The possible existence of a black-to-white hole transition
through a kind of tunneling process has recently received a
lot of attention in quantum gravity. In this brief article we
have taken into account the fundamentally random nature
of the black hole lifetime in those models. We showed that
this can induce a substantial shift with respect to previous
studies in which the characteristic lifetime 7 [either derived
from the full theory (first attempts can be found in
Ref. [13]) or inferred by heuristic arguments] was taken
as an actual bouncing time.

In a Poisson process, the distribution of time intervals is
wide and exponentially decreasing. A bounce can occur
after a time which is very different from its characteristic

066019-3
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timescale, with the smallest time being always the most
probable one. This should be taken into account (and this
was indeed accounted for in Ref. [24]).

Beyond this quite trivial statement, we have shown that,
because of this stochastic process, the mean energy of the
emitted signal can be different than that previously con-
sidered. In particular, if the mass spectrum of PBHs is
peaked, it is perfectly possible to match the observed FRBs.

In addition, if the mass spectrum of PBHs is wide and
continuous it is still possible to explain the data, and a
prediction was suggested for future observations.

The main point of this study was not to revive at any
price the hypothesis that FRBs are due to bouncing black
holes. Our point was to show that the randomness of the
lifetime of black holes in quantum gravity can drastically
change the spectral characteristic of the expected signal
when the mass spectrum is highly peaked and can lead to
interesting predictions in any case.
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3.2 Propagation de champs quantiques dans un modele de trous
noirs en LQG

Nous avons vu dans la section 1.4 qu’en espace courbe le nombre de particules est relatif a I’état de
vide qu’on choisit en tant qu’état fondamental. Ainsi, pour faire ce choix, il faut étudier les symétries
afin d’écrire le champ sous forme d’états propres tels que les valeurs propres soit des constantes du
mouvement. Ces constantes sont données par les vecteurs de Killing.

Proposition : Soit £ un champ de vecteur de Killing et y une géodésique avec pour vecteur tangent u.
Alors la quantité {,u* est constante le long de .

Ainsi, un choix de vide peut s’effectuer en identifiant les vecteurs de Killing de type temps globalement.
On associera alors la coordonnée temporelle au vecteur de Killing et on définira les énergies positives
et négatives sur chaque foliation de 1’espace a un instant ¢ fixé. Lorsqu’il n’existe pas de vecteur
de Killing de type temps global, on peut considérer un vecteur de Killing dans une région. Dans le
cas d’un trou noir de Schwarzschild le vecteur de Killing de type temps {Z) défini tel que gg)a,, =0,
permet de définir les fréquences pour un observateur lointain. Pour cet observateur un champ scalaire
¢ quantifié va étre défini avec les opérateurs création et annihilation pour les modes entrant et sortant.
Lorsque 1’on considere 1I’émission de particules par effet Hawking nous prenons en compte seulement
les modes sortants. Les fréquences positives vont étre définies par d,¢ = —iw¢. Cependant si cet état
du vide est choisi comme état fondamental, on observe qu’a I’horizon le tenseur 7, diverge, alors que
ce n’est pas une singularité fondamentale donc il est préférable de choisir un autre état fondamental.
Par exemple, il y a les fréquences de 1’observateur en chute libre a I’horizon des éveénements. Elles
sont tres différentes des précédentes et ceci est a I’origine de 1’effet Hawking que nous allons décrire
plus en détails dans la section suivante 3.2.1.

3.2.1 D’effet Hawking

Pour décrire I’effet Hawking nous nous placons dans le cadre d’un champ scalaire ¢ décrit dans un
espace-temps de Schwarzschild. Nous suivons ici la description décrite dans [50].

Nous avons 1’habitude, en TQC en espace plat, de développer I’opérateur champ en modes et
ensuite d’associer les opérateurs création a' et annihilation a 4 ces modes. Mais en espace courbe
il n’existe pas un ensemble naturel de modes en particulier. Comme nous I’avons déja mentionné,
une décomposition en mode permet d’avoir une base dans 1’espace des solutions mais ne possede par
un caractere fondamental. Ainsi il est possible de procéder différemment et de commencer par une
solution de paquet d’onde individuel. Soit f une solution classique complexe de 1’équation (dans ce cas,
I’équation de Klein Gordon) et ¢ I’opérateur de champ. On peut alors définir I’opérateur annihilation
de la fagon suivante,

a(f) = {fl¢) . (3.10)

Etant donné que f et ¢ satisfont tout deux 2 1’équation d’onde, cet opérateur est bien défini et
indépendant de la surface ou le produit scalaire est évalué. Le caractere hermitien de I’opérateur de
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champ ¢ induit

a'(f) = —a(f"). (3.11)

Comme nous venons de le voir, il y a deux notions de fréquences pertinentes :

— les "fréquences de Killing" : infiniment loin, ces fréquences coincident avec les fréquences vu
par un observateur de Minkowski au repos par rapport au trou noir.

— les "fréquences de chute libre" : vues par un observateur en chute libre qui traverse I’horizon.

On considere un trou noir formé par un effondrement gravitationnel avec un état quantique [if).
Bien longtemps apres 1’effondrement, on veut définir les observables pour un paquet d’onde P sortant,
a fréquences de Killing positives, d’'un champ quantique loin du trou noir. Le nombre moyen de
particules de ce paquet d’onde sera décrit par :

WINP)lW) avec N(P) = a'(P)a(P). (3.12)

L’ opérateur annihilation correspondant au paquet d’onde normalisé P est donné par

a(P) = (P, ¢)s, , (3.13)

évalué sur X, I’hypersurface spatiale, loin du trou noir. Unruh a montré que [51] I’on peut évaluer la
valeur moyenne de N(P) sur X, en utilisant nos connaissances sur X;, une hypersurface assez loin dans
le passé de X, mais tout de méme bien apres la formation du trou noir. Sur X, on a le paquet d’onde
P qui ne contient que des modes sortants. En propageant en arriere ce paquet d’onde via I’équation
de Klein Gordon, il se sépare en une partie R réfléchie par la barriere de potentiel du trou noir et une
partie T transmise qui se dirige vers 1’horizon :

P=R+T. (3.14)

Le support de R est sur la partie spatiale loin de 1’horizon et le support de T est sur une petite région
proche, mais en dehors, de I’horizon. Le produit scalaire (3.13) peut étre évalué sur Z;, car entre les
deux hypersurfaces ¢ et P satisfont I’équation de Klein Gordon, donc a(P) ne va pas €tre modifié. On
peut alors séparer I’opérateur annihilation en deux parties

a(P) = a(R) + a(T), (3.15)

et le nombre moyen de particules (3.12) s’écrit

WINPIY) = W@ (R) + a(T))(aR) + a(T))l) . (3.16)

La métrique du trou noir étant stationnaire, les fréquences de Killing, dans les solutions de
I’équation de Klein Gordon, sont conservées. Ainsi R et T ont les mémes fréquences positives que P.
Infiniment loin du trou noir, on a la partie réfléchie et les fréquences positives sont celles d’un espace
de Minkowski asymptotiquement. Etant donné qu’il n’y a pas de mode entrant, on a

alR) ¥y =0, (3.17)

on en déduit

WINPY = Wla" (T)a(TH|) . (3.18)
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Par contre, I’observateur en chute libre, de temps propre 7, a I’horizon des événements verra des
fréquences positives et négatives pour le paquet d’onde 7. Au point 7 = 0 lorsqu’il traverse 1’horizon,
I’hypersurface X; intersecte 1’horizon. Derriere I’horizon, pour 7 > 0, le paquet d’onde 7" sera nul
(car il n’a pas de support). On sait que si une fonction s’annule sur un arc continue du domaine ou la
fonction est analytique (ici ce sera 1’axe réel positive de 7) , alors par prolongement analytique elle est
nulle partout dans le domaine. Ainsi n’importe qu’elle fonction a fréquences positives

h(t) = f ) dwe " h(w) (3.19)
0

est analytique dans le demi plan de partie imaginaire négative et si A(t) = 0 pour 7 > 0, on aura
également A(7) = 0 pour 7 < 0 pour I’observateur en chute libre. On peut alors décomposer le paquet
d’onde T en une partie a fréquences positives et une autre a fréquences négatives par rapport a T

T=T"+T" (3.20)

et on a également
a(T) =a(T*) +a(T") (3.21)
=a(T*) —a'(T7)). (3.22)

Pour I’ observateur, en chute libre, a 7 < 0, les paquets d’onde 7" et (77)" ont des tres hautes fréquences.
Ainsi, a courte distance, on peut considérer que ces paquets d’onde sont dans leur états fondamentaux
etona

a(T) ) =0, (3.23)
a(TH)") ) = 0. (3.24)

En utilisant les équations (1.112),(1.113), (3.22) et (3.24), on obtient que le nombre moyen de particules
s’écrit

WINP)WY = Wla(T™)a" (T ) (3.25)
= Wlla(T™)",a"(T7)* 1) (3.26)
=TTy, (3.27)
=(T T )s, (3.28)

Dans le cas d’un trou noir de Schwarzschild, la symétrie sphérique permet de décomposer le champ
en harmoniques sphériques. De plus, étant donné que la métrique est statique la dépendance en temps
des modes sortants a I’infinie s’écrit e’ et a I’horizon e " avec u = t — r*. La coordonnée u diverge
a I’horizon, elle est relié au temps propre de 1’observateur en chute libre 7 traversant I’horizon. On a

T~ —Tge ™, (3.29)

avec 7o une constante qui dépend de la vitesse de I’observateur en chute libre et 1/4M représente la
gravité de surface d’un trou noir de Schwarzschild. On considere le paquet d’onde P longtemps apres
I’effondrement gravitationnel qui est piqué en la fréquence de Killing w, puis on le propage en arriere
et on regarde la partie 7" a I’horizon. Sa dépendance en 7 pour un observateur en chute libre s’écrit
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T ~ exp (i4Ma) ln(—T)), (3.30)

pour T < 0 et s’annule pour 7 > 0. On passe alors dans le plan complexe et par continuité analytique
I’extension des fréquences positives de 7'(7) pour 7 > 0 s’obtient en remplacant In(—7) par In7 + i :
on a alors 7'(—7) exp(—4Mnw) pour T > 0. Pour les fréquences négative 1’extension avec Int — in
donne T(-7) exp(4Mnw) pour T > 0. On définie T tel qu’on passe de T i I’extérieur de I’horizon 2
exp(+4Mnw) i Iintérieur de I’horizon. Le support de T est défini seulement a I’intérieur de I’horizon
ot il est constant pour les lignes de lumiére sortantes avec T(r) = T(—7) pour 7 > 0. Les paquets
d’ondes

T = co(T + e*™T), (3.31)
T~ =c (T +e™™T), (3.32)
définissent les fréquences positives et négatives, respectivement, de 1’observateur en chute libre. Pour

avoir la continuité avec T en dehors de I’horizon, les constantes ¢ — + et c_ s’écrivent

c_ = (1 = Moyl (3.33)

cy = c M, (3.34)

Etant donné que T et T possédent deux supports qui ne s’intersectent pas, on a (T|T')y = 0 et (T|T) =
—(T|T). Ainsion a

i (TT)
TT") = ————. 3.35
(T = s (335)
On obtient alors I’expression pour le nombre de particules
WINPW) = =TT )s, (3.36)
(TT)

Cette valeur moyenne (3.37) correspond a 1’état thermique a la température de Hawking 7y = 1/87M
multipliée par le facteur de corps gris :

I'=/(T|T). (3.38)

En toute généralité ce facteur de corps gris dépend de la masse du trou noir M, de I’énergie de la
particule w et de son spin s. Il correspond au produit de la section efficace d’émission avec le terme
d’espace des phases. Ainsi on peut réécrire le spectre différentiel

dN _ o(M,s,w) &k
i E e

(3.39)

La partie thermique ne dépend que de la masse du trou noir et ne nous indique aucune information sup-
plémentaire sur ce dernier. Par contre la section efficace dépend de la forme du potentiel gravitationnel
et permet de renseigner sur la géométrie du trou noir. Ainsi, des métriques différentes de trous noirs
sont distinguables par le calcul de sections efficaces. Dans 1’article suivant, nous avons calculé o~ pour
un modele de trou noir provenant de la LQG. Nous présentons ce modele dans la section suivante.
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3.2.2 Le modele des trous noirs quantiques a boucles

Nous avons vu la quantification polymérique utilisée pour quantifier la LQC. Il existe également
un modele de trous noirs en LQG qui utilise un procédé similaire [52]. On consideére les trous noirs
de Schwarzschild, écrit avec les variables d’ Ashtekar a symétrie sphérique et homogenes. On a un
parametre de polymérisation ¢ qui définit le pas du réseau et la contrainte Hamiltonienne est exprimée
en termes d’holonomie 4¥(A). L’homogénéité implique que la contrainte de difféomorphisme est
nulle. L’espace-temps considéré est de Kantowski-Sachs : homogene, anisotrope dont la topologie de
I’espace est donné par R x S2. Ainsi, la contrainte de Gauss est également nulle. Il faut maintenant
imposer que la contrainte Hamiltonienne s’annule et étendre la solution a tout I’espace. La métrique
résultante est donnée par

2
ds* = G(r)df* - % — H(r)dQ?, (3.40)
_ _ 2
G(r) = (r r+)(:4 +rc_l())(r +7y) ’ (341)
_(r=rr-rort
Fn = (r+r)(r +a; (3.42)
2
H(r) =71+ i—;’ (3.43)

avec r, = 2m et r_ = 2mP?* deux horizons, et r, = +/r,7_. La fonction polymérique est définie telle
que P= (VI +e—-1)/(V1+ €+ 1)avec € = yo. Le parametre a est relié a I’aire minimale du spectre
d’aire (1.154), ay = A,,;,/87. Le parametre de masse m est relié 2 la masse ADM M = m(1 + P)%. Le
modele décrit un trou noir de Schwarzschild, qui prend en compte la discrétisation de 1’espace-temps,
avec 0, et I’existence d’une aire minimale, avec a,. La création de particules par effet Hawking de ce
modele de trous noirs a été étudié [53].

3.2.3 Lerayonnement émis par les trous noirs quantiques a boucles

Le calcul de la section efficace dépend du type de particules considéré car il implique 1’équation
radiale du mouvement. Nous nous sommes d’abord intéressés au cas d’un champ scalaire puis a celui
d’un champ spinoriel. Les résultats sont similaires, ainsi je vais seulement exposer la cas des particules
de spin 1/2.

Pour étudier la propagation des fermions en espace courbe, il est nécessaire d utiliser un formalisme
de tétrades. Le formalisme Newmann-Penrose est particuliecrement bien adapté étant donné que
I’on considere un trou de type D, dans la classification de Petrov. Les champs fermioniques ¢ sont

représentés par une paire de spineurs P4 et @A avec A,A’ = 0, 1. On écrit alors I’équation de Dirac
dans le formalisme de Newman-Penrose. Ceci correspond aux équations (21 — 24) de I’article. Les
symétries du trou noir justifient d’écrire le champ sous la forme : (¢, 7, 6, ¢) = R(1)S (6)e"“ ¥ avec
w I’énergie et m’ un nombre entier. Une étape clé est de remarquer que les équations sont séparables
en une partie radiale et une partie angulaire seulement si on fait I’ansatz suivant :
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P% oc R,.(r)S .(0), (3.44)
P' « R_(NS_(6), (3.45)
0"« R.(NS_(0), (3.46)
0 «R.(NS.(0). (3.47)

Ainsi les dégrées de liberté des parties radiales et angulaires des particules et anti-particules de spin up
et down se mélangent. Une particule de spin up aura la méme partie radiale qu’une anti-particule de
spin up mais la méme partie angulaire qu’une anti-particule de spin down. Cet ansatz permet d’obtenir
des équations purement radiales et purement angulaires. Les dernieres sont les mémes que dans le
cas d’un trou noir de Schwarzschild. Il en résulte que A, la constante de séparation, est donnée par
A% = (€ + 1)? avec £ le moment angulaire. L’équation radiale pour R, pour un fermion sans masse est
donnée par

VHFD( VHFD'R,) - ¥R, = 0 (3.48)
avec D un opérateur radial donné par
G F iw
D:5r+(___)+ 3.49
8G 8F VGF ( )

et D' son complexe conjugué.

Nous considérons le rayonnement émis par un trou noir, qui se diffuse sur la barriere de potentiel. Par
conséquent, nous cherchons les solutions de I’équation (3.48) qui correspondent aux conditions aux
bords suivantes :

— modes entrants et sortants a 1’horizon,
— modes sortants a I’infini spatial.

Et nous cherchons le coefficient de transmission. Cependant, par symétrie, ce coefficient sera le méme
que celui calculé du point de vue d’un champ absorbé avec les conditions :

— modes entrants a 1’horizon,
— modes entrants et sortants a 1’infini spatial.

Ici nous adoptons le point de vue de I’absorption. On fixe alors les conditions initiales a 1’horizon,
puis on résout I’équation jusqu’a une distance considérée comme étant I’infini. Puis, a cette distance,
on ajuste notre solution numérique avec les conditions a I’infini pour avoir acces au coeflicient de
transmission. Ce dernier est relié a la section efficace par le théoreme optique

e s = Y EEDT 4, e (3.50)
= ¢

Le coefficient de transmission diminue fortement pour les grands ¢. Dans la pratique, nous avons
sommé jusqu’a £ = 10. Les résultats sont dépeins sur les Figures 2 (pour les scalaires) et 3 (pour les
fermions) de I’article. On observe que par rapport aux trous noirs de Schwarzschild, les trous noirs
quantiques a boucles ont une section efficace plus faible. Plus la valeur du parametre de discrétisation
o0 est élevée plus la section efficace diminue. Ainsi plus la discrétisation de 1’espace se ressent a
grande échelle, moins le flux sera transmis par la barriere de potentiel. Cependant, pour des valeurs

raisonnables sur le parametre ¢ la différence est tres faible.

Cet article a été publié dans Classical and Quantum Gravity [54].
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Abstract

The description of black holes in loop quantum gravity is a hard and tricky
task. In this article, we focus on a minisuperspace approach based on a
polymerization procedure. We consider the resulting effective metric and study
the propagation of quantum fields in this background. The cross sections for
scalar particles and fermions are explicitly calculated. The Teukolsky—
Chandrasekhar procedure used to derived the fermionic radial equation of
motion for usual spacetimes is entirely generalized to a much larger class.
The resulting radial equation can be used in quite a lot of other contexts.

Keywords: black holes, loop quantum gravity, greybody factors

(Some figures may appear in colour only in the online journal)

Introduction

Loop quantum gravity (LQG) is a mature framework which is mathematically consistent and
can be approached by several complementary paths, from canonical quantization to spin-
foams (see, e.g. [1-4] and references therein). The ideas of the theory have been successfully
applied to the Universe, leading to the loop quantum cosmology (LQC) paradigm (see, e.g.
the reviews [5—12], and references therein) and to black holes (BHs) (see, e.g. the reviews
[13-17], and references therein).

In this article, we focus on the BH issue and consider the propagation of quantum fields.
There are many different attempts to deal with BHs in LQG and to describe their dynamics.
In this study, we use an effective corrected metric derived in [18]. This spacetime structure is

3 Author to whom any correspondence should be addressed.
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in no way a final word on the question of the exterior background of an LQG BH. It relies on
heavy hypothesis that should be questioned. But it constitutes an interesting phenomenologi-
cal framework to investigate the questions of cross-sections and greybody factors in an effec-
tive quantum gravity-corrected background. Within this spacetime, we investigate in details
the scattering of quantum fields. We first draw the general picture used to model BHs in this
framework. Then we explain how cross sections are calculated and their meaning. We turn to
the explicit computation for scalar particles. Finally, we derive the propagation equation for
fermions. Conclusions and perspectives are outlined.

Black holes in loop gravity

BHs are fascinating objects that have been intensively investigated in the framework of LQG
[13-17]. To give just one example, the Bekenstein—-Hawking entropy is now correctly recov-
ered, although different ways to compute it are still considered (see, e.g. [17]). In microca-
nonical calculations taking into account only the quantum geometrical degrees of freedom
[19] this requires a specific fixing of the Barbero-Immirzi parameter, depending on the details
of the state counting [20]. This is not anymore the case in recent holographic models [21-25].

In this study, we use the metric obtained in [18], building on [26]. This framework was
precisely set-up to investigate the creation of BHs and their subsequent Hawking evaporation.
This question is intimately related to the information paradox which is itself closely linked to
the singularity resolution. An interesting approach consists in using the 4-dimensional static
model derived in [26] and to make it dynamical. This allows one to reproduce the Hawking
calculation of particle creation in a classical BH background and to demonstrate that the whole
process is unitary. The spirit of the framework in the line of the long history of ‘non-singular’
BHs (see, e.g. [27-30], and references therein).

In canonical LQG, the basic variables are the holonomy of the Asktekar connexion and the
flux of the densitized triads. In the covariant formulation, space is described by a spin network
whose edges are labelled by irreductibles representations of SU(2) and nodes are intertwiners
[31]. Intuitively, the edges carry quanta of area and the vertices carry elementary volumes.
One of the most important result of LQG is that the area is quantized according to:

A(j) = 8T/ + 1), (1)

where v is the Barbero-Immirzi parameter, /p is the Planck length and j is a half-integer. In
[18], several hypotheses were made to describe LQG BHs beginning, as expected, by spheri-
cal symmetry which is used to reduce the number of variables. In addition, instead of all a
priori possible closed graphs, a regular lattice with edges of lengths §;, and .. has been chosen.
Details on the structure of lattices possibly used can be found in [32]. The resulting dynamical
solution inside the horizon was then analytically continued to the region outside the horizon,
showing that it is possible to reduce the two unknown parameters by requiring that the mini-
mum area in the solution is equal to minimum area of LQG (exactly as done in LQC). The
remaining free parameter &, will now be called  and referred to as the ‘polymeric parameter’.
Together with Ay, = A(1/2), it determines how ‘different’” from the usual general relativity
(GR) solution the considered BH is.

In practice, the procedure consists in first defining the Hamiltonian constraint by the use
of holonomies along the considered fixed graph. It is important to underline that the influence
of the choice of a specific graph has not been studied in details and this should be considered
as a weakness of the considered approach. Both the diffeomorphism and Gauss constraints
are identically vanishing: the first one is zero because of homogeneity and the second one is
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zero because the spacetime is of the Kantowski—Sachs form. The Hamiltonian constraint is
solved after replacing the connection by the holonomy. Finally, the solution is expanded to the
full spacetime, leading to the effective LQG-corrected geodesically complete Schwarzschild
metric:

2 _ N 2
ds® = G(r)dt H(r)dQ",

F(r)
o) = e = Yo
(r=r)(r=ro)rt
FO) = s
H(r)=r"+ f—j @

where dQ? = d6? + sin® #d¢?, r; = 2m and r_ = 2mP? are the two horizons (being respec-
tively future and past horizons for observers in the two asymptotically flat regions of the
associated causal diagram), and r, = ,/r 77— = 2mP, P being the polymeric function defined
by P=(V1+€e—1)/(V1+ €+ 1), with € = vd, and the area parameter a, is given by
ap = Amin/87. In principle € is not bounded but the approach is rigorous only when € < 1
(at this state no phenomenological bound has been derived on €). The parameter m in the
solution is related to the ADM mass M by M = m(1 + P)? (inferred from what is observed at
asymptotic infinity). This metric should be considered as a ‘toy model” and not taken as a final
statement about the spacetime structure around an LGQ BH. It is however very convenient and
meaningful for first phenomenological investigations. The associated Penrose digram is given
in figure 1. From now, we use only Planck units.

Let us discuss a bit more this solution. The considered spacetime is a particular example of
a Kantowski—Sachs spacetime. In the construction, the interior of a spherically symmetric BH
is treated as homogeneous, but not explicitly as isotropic. As usual, the connection is replaced
by the holonomy in the Hamiltonian constraint and the equation of motion are solved, together
with the Hamiltonian constraint. The outcome is an exact solution of a minisuperspace model
valid inside the event horizon [26]. Finally, the solution is analytically extended to the whole
spacetime. In other words, the metric was assumed to be valid everywhere and it was explicitly
proven with a coordinate transformation that the singularities at the two horizons (event hori-
zon and Cauchy internal horizon) were just coordinate singularities. The resulting metric has
a simple, geodesically complete, analytic form in the whole spacetime. The weaknesses are
the following. First, the metric cannot be considered a rigorous ‘full LQG’ solution, although
it captures some features of LQG as the minimum area and the use of holonomies. Second,
this metric builds on the initial version of LQC. In the future it would be interesting to replace
the polymeric parameter by a rescaled one, in the same sense than the py scheme in LQC has
been replaced by the zi one (see [6]). Finally, it is assumed that matter couples minimally to
the effective metric.

It should me underlined that the model considered in this article is far from being the only
possible one within the LQG framework. It is somehow ‘unusual’ in the sense that it might
lead to possible large quantum gravity effects outside the horizon. Although not something
fully exotic (this possibility is e.g. advocated on a different grounding in [33]), it is fair to say
that this is not a generic prediction. It is however the specific case where quantum gravity
might have an impact on observations and this is why we focus here on this specific setting
which is anyway quite well justified in its physical motivations.
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Figure 1. Penrose diagram for the metric considered in this study. The horizons are
denoted as v, and r_.

Cross section for evaporating black holes

The Hawking evaporation [34] (as a specific case of the Unruh effect [35]) is one of the most
important aspects of BH physics. Although it can be described as semi-classical process in
the ‘large mass’ regime, it requires a quantum gravity treatment near the endpoint. Several
attempts to describe it in the framework of LQG were made [36-38]. In this study we focus
on another aspect. Basically, the ‘naive’ Hawking spectrum is described by a blackbody law,
in agreement with the Unruh effect which predicts that an accelerated observer sees a bath of
thermal particles with temperature T = a/(27). In the case of black holes, the temperature
is Ty = 1/(87M): the lighter the BH, the highest its temperature, which makes the whole
process very explosive in the last stages (a BH with a mass above the mass of the Moon has a
temperature smaller that the one of the cosmological microwave background). However, the
real spectrum is slightly more complicated as the emitted particles have to cross a potential
barrier before escaping to infinity. This induces a modification, captured by the cross sec-
tion o, to the pure blackbody spectrum which is known to encode quite a lot of information on
the gravitational theory or spacetime structure considered. The spectrum reads as:

dN 1 d*k
= o a1 M e ®
with M the BH mass, s the particle spin, w its energy and k its momentum.

Cross sections have already been calculated for many metrics, beginning by the pioneering
works on Schwarzschild, Kerr, and Reisner—Nordstrom BHs in the case of scalar, fermion and
vector fields [39-41]. They have also been investigated for extra-dimensional Schwarzschild—
de-Sitter black hole [42], for lovelock gravity [43], for tachyonic fields [44], for scalar fields
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in an Einstein-Maxwell background [45], for f(R) gravity minimally coupled to a cloud
of strings in 2 + 1 dimensions [46], for Einstein—-Gauss—Bonnet—de Sitter black holes [47],
for black strings [48], for Einstein—Born—Infeld dilaton spacetimes [49], for dRGT massive
gravity [50], for Reissner—Nordstrom—de Sitter black holes [51], for extra-dimensional Kerr
black holes [52], for Myers—Perry black holes [53], for dilatonic black holes [54], for rotating
charged Goedel black holes [55], to cite only a few remarkable results. In each case the cross
section captures some specific and non-trivial characteristics of the considered spacetime. In
this article, we calculate the cross sections for a so-called loop BH (LBH), as described by the
metric (2), which is static and spherical symmetric. Given those spacetime symmetries, and
according to the optical theorem, the cross section reads

= (2j+ D
o5 =S FET . )
=0

where A, is the transmission coefficient of the angular momentum mode /, and j = [ 4 s is
the total angular momentum.

Massless scalar field

The dynamics of a massless scalar field minimally coupled to the gravitational field is
described by the generalized Klein—-Gordon equation:

1
——0,(g""\/—g0,®) =0, 3
N &)
where ® = ®(t,r, 0, ¢). Since we work within a static and spherically symmetric setting, the
scalar field can be written as:

O(r,0,¢,1) = R(r)S(f)e!«+'9), (6)

where w is the frequency and m’ is an integer. When inserting this ansatz in the Klein-Gordon
equation (5) with the metric (2), the radial equation reads

VGF 0 (H ﬁaRm) N <w2 St 1)> R(r) = 0, ™)

H Or or

with [ the orbital quantum number. This result uses the squared angular momentum operator
2 . .

12— _ [ﬁa‘% + =2 (sin 0%)} whose eigenvalues are /(I + 1).

As usually done to study this kind of problems, we introduce the tortoise coordinate.
Focusing on the two non-trivial coordinates, the metrics (2) reduces to

ds*> = —G(r)df* + ar 8
- F(r)’ ®
and the null geodesics are given by ds?> = 0, that is df> = dGL; = dr*? with r* the tortoise coor-

dinate. This new coordinate tends to —oo when r tends to 7, . By introducing a new radial field
U(r) = vHR(r) and writing equation (7) with respect to r*, we obtain:

82 2 *
<8r*2 +w = V(r )> U(r) =0, 9)
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G 1 /GF 0 |GF OH

The potential V(r) vanishes at the horizon r and at spatial infinity.
At the horizon 7 , v/H tends to the constant \/H(r,) and the radial part of the wavefunc-
tion R is a plane wave with respect to the tortoise coordinate:

R(r*) = Al el 4 A emiwr an

with A (respectively A" ) the probability amplitude for the incoming modes (resp. outgo-
ing modes) at the horizon. For convenience, we choose the absorption point of view. With
this convention, there are incoming and outgoing modes infinitely far from the BH and only
incoming ones at the horizon. We therefore impose A”, = 0.

Infinitely far away from the horizon, v/H tends to r and the radial wavefunction is a spheri-

cal wave with respect to the coordinate r:

A© A®
R(r) = el 4 “ottemir, (12)

For a scalar particle, the transmission amplitude for the mode / is given by:

n 2 2

in

S5
Ain

o0
A out

AP =1
AT

13)

The calculation of the cross section relies on the following steps. For each quantum num-
ber [, we solve the radial equation (7) so as to determine the transmission coefficients A>°.
Numerical computations must be performed from the horizon (where the radial wavefunction
takes the form of equation (11)) until infinity (where the radial wave function takes the form
of equation (12)). In practice, the numerical solving begins at 7ini = 7+ + 10~3r4 and stops
sufficiently far at repg & 300/w which can be considered as infinity at the chosen accuracy.

We decompose the radial wavefunction R(r) into its real part U(r) and its imaginary part
V(r). At rini = 74, the normalization condition R(ri,;) = 1 ensures that there are only incom-
dR(rimi) _ iw

dr \/G(rini)F("ini)

The radial equation is solved with a fifth order Runge Kutta method until re,q. The radial
wavefunction is fitted with the function given by equation (12) so as to obtain the coefficients
ASS and AZ°. Then the |A;|* can be obtained from equation (13). The bigger the /, the smaller
the |A;|> and numerical investigations have shown that stopping at / = 10 is sufficient. Finally,
equation (4) is used to evaluate the cross section. The results are presented in figure 2.

The cross section does decrease when € increases. One can also notice a slight energy
shift of the pseudo-periodic oscillations toward a lower frequency (in Mw) when € increases.
When e < 1078 it is hard to distinguish between the solutions. As far as phenomenology
is concerned, it seems that taking into account the quantum corrections does not influence
substantially the cross section of a scalar field for reasonable values of e (that is € < 1). The
main trend is however clear.

ing modes and . Technical details are given in appendix A.

Spin } field

For spacetimes such that ds*> = f(r)d> — f~!(r)dr* — r*dQ?, the radial equation is given by
the Teukolsky master equation [56]. The metric given by equation (2), without any speci-
fied expressions for G(r), F(r) and H(r), is however more general and basically includes

6
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Figure 2. Emission cross section for a scalar field with energy w in the background
spacetime of a LBH of mass M for different values of € (e = «é measures the
‘quantumness’ of spacetime). From bottom to top: € = 10{=0-3=0.6:-08,-1.=3} ‘e pJye
line, corresponding to e = 103 is superposed with the cross section for a Schwarzschild
BH.

all the static and spherical spacetimes. To the best of our knowledge, the fermionic radial
equation for such spacetimes has not been explicitly derived. In the following, we derive this
equation by generalizing the Teukolsky—Chandrasekhar procedure [57]. This can be used in
other contexts.

To this aim, we have used the Newmann—Penrose formalism [58], which is, among other
desirable properties, well-suited for spherical BHs. In this formalism, we have chosen a null
basis consisting of a pair of real null vectors 1 and n and a pair of complex conjugate null vec-
tors m and m:

l-l=n-n=m-m=m-m=0. (14)
The orthoganility conditions are imposed:

I m=1l'm=n-m=n-m=0. (15)
We also require the following normalization:

l'n=1and m-m= —1. (16)
This normalization condition is not necessary in the Newmann—Penrose formalism, but it is

convenient for our purpose. Any basis with the properties given by equations (14)—(16) can be
used. We choose the basis vectors:

l":% (\%,—x/f,o,o), 17)
A A

W= <ﬁ,ﬁ,0,0), (18)
i L RS

" _ﬂ(o’o’ \/17\/ﬁsin0)’ (1%
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; 1 1 —i
m 7 (0,0, ik \/ﬁsinﬁ) . (20)
When § tends to zero and ag vanishes, this basis tends to the Carter tetrad, which can be
used to describe a Schwarzschild BH [59]. However, usually, the Kinnersley tetrad is pre-
ferred for Schwarzschild BHs [57]. Different choices for the tetrads will lead to different spin
coefficients and finally to apparently different, but actually equivalent, radial equations,
For spin % fields, the wavefunction is represented by a pair of spinors, P4 and @A , with

A =0,1and A’ = 0, 1. The Dirac equation in the Newmann—Penrose formalism can be writ-
ten as [57]:

(D+e—p)P°+ (6" +7—a)P' =ip.Q , (2D

(At p—P + 6+ 8- 1)P° = -0, (22)

(D+¢€* — p*)@O/ +(+7" = a*)@l/ = —ip, P!, (23)

(At p =70 + @ +8 70" =inP @4
with

D=10; A=nd; 6=md; & =mo, (25)

145 18 related to the mass of the fermion m, by (1xV2 = m,. The spin-coefficients are derived
from the rotation coefficients. In the tetrad formalism (for more details, see, e.g. [57]), the
A-symbols are defined as:

Aave = eviglenel — ejel], (26)

the a, b et ¢ indices do indicate the vector of the basis, while the i and j indices are the coordi-

nates. The correspondence reads as e; = I, e; = n, e3 = mand e = m with e! = e,, e* = e,

e3 = —e4 and e* = —e;. For example, e} 3 represents the second composant of 1, derived with

respect to 6. The rotation coefficients are defined as:
Yeab = elz‘eak;iez- (27)
Then, from the A-symbols, the rotation coefficients are obtained with the relation:
1
E(Aabc + )\cab - >\bca)' (28)

The A-symbols (26) and the rotation coefficients (27) should not be confused with the
spin coefficients A and ~. The spin coefficients are defined with the rotation coefficients (see
appendix B). So first we have calculated the A-symbols and then we have deduced the spin
coefficients:

Yeab =

k=0c=A=v=1=71=0, (29)
VFH'
p=p= (30)
2v2H
FG'
627:—L, (31)
42G
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cotl
2V2H'

Given the symmetries, the wavefunctions can be writtenas (¢, r, 0, ¢) = R(r)S(0)e! (@ +m'é)
where, as for scalars, w is the frequency and m’ is an integer. We use the following ansatz:

a=-f=- (32)

po S s, (33)
) (G(F ()
plo S s, (34)
) (G(F ()
¢ =~ H(ij::(r:;:(r))éR+(F)S‘(9)’ >
v ei(wt+m’$)
= JanGmEe 5O .

This is useful as it makes the system separable into a radial and an angular parts. The
normalisation with 1/(/H(r)(G(r)F(r))#) is only chosen for convenience. By inserting the
previous expressions in Dirac equation (21), we obtain:

—(VHFD'R, + im,vVHR_)S, + R_LS_ =0, (37)
with D a radial operator
G F iw
D = ar o~ or >
+ <8G SF) + CF (38)
and £ an angular operator
/
L=+ 2 (39)
sin 0 2

DT is the complex conjugate of D and L is —£ once replacing 6 by = — 6.
Equation (37) implies:

LS = NSy, (40)

VHFD'R, + im.VHR_ = \{R_, 41

with A\ a constant of separation. Proceeding in the same way with equations (22)—(24), three
other constants of separation do appear: respectively denoted A,, A3 and A\4. Among the eight
equations, there is some redundancy and only four are actually independent. The consistency
implies: \; = A, = A3 = A4 = A. This separation constant A is neither a A-symbol nor a spin
coefficient, we simply use the notation of [57].

The Dirac equations finally reduce to the following radial and angular systems:

(_(A\/ﬁp (A + img\/ﬁ)> <R> o

—imVH)  VHFD! R, (42)
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Figure 3. Emission cross section for a fermionic field, with energy w, in the background

spacetime of a LBH of mass M. From bottom to top: € = 10{-03-06-08,-1.=3} Tpe
dashed dark curve corresponds to the Schwarzschild cross section.

£=A (5 _,
A oct)\sy ) T “3)

By eliminating R_ in equation (42), we obtain the radial equation for R, :

;
VHFD (%m) — (A +im,VH)R, = 0. (44)
"im,

The radial equation for R_ is the conjugate of equation (44). This equation generalizes the
Teukolsky equation [56]. The separation constant A is obtained by solving the angular equa-
tion, which is the same than in the Schwarzschild case: A2 = j(j + 1) — s(s — 1) [60], that is
A? = (I + 1)? for fermions.

Setting m, = 0 leads to:

VHFD (VHFD'R,) = MRy = 0. 5)

This equation of motion can be used to determine the fermionic cross section. We study the
asymptotic solutions, near the horizon and at spacial infinity. The function R is splitted into its
real part U and its Imaginary part V. Both equations are then solved thanks to equation (44).

For a massless fermionic field, at the horizon, equation (44) tends to:

82R+ + 1 3R+ + w2 + W R+ 0 46
hndI s
or:  2(r—ry) Or Ci VG ) (r=r)? 7 (46)
—r_ 27‘4 . . . .
with C; = % With respect to the tortoise coordinate r*, equation (46) reads as:
1 O’°R, 1 ORy w? w
— — — +i—— | Ry =0.
¢ o a2y o T\er Ty ) “n
The determinant of the characteristic equation of equation (47) is det = w.

There are two roots but, from the absorption point of view, there should be only an incoming

10
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Figure 4. Emission cross section for a fermionic field, with energy w, in the background
spacetime of a LBH of mass M, for € = 107%3, The dashed curved corresponds to

ap = 0 and the plain curve to the usual LQG value, ag = Apin /87 = \ﬁ'y/Z.

mode at the horizon. The root x; is therefore chosen with a positive imaginary part. Near the
horizon, the radial part reads as:

Ry (r) = Ae""", (48)

with A a complex number. As before, we normalize such that R (ri;) = 1, which leads to

AR+ (i) 21 At spacial infinity, the solution is a plane wave
dr VG (rini)F (rini) P Y P '
It has been shown in [61] that the transmission coefficient for spin 1/2 fields is given by:
2
Al
A = |3 (49)

As for the scalar case, we numerically solve equation (44), fit the solution in order to obtain
A for each [ < 10, and then obtain the cross section. The result is shown in figure 3. Once
again, the general trend is to decrease the cross section when the ‘quantumness’ increases.
As the relative effect is getting bigger with an increasing energy of the emitted particle, this
should leave a footprint through a distortion of the instantaneous Hawking spectrum which
will exhibit slight suppression of its UV tail.

Finally, in figure 4, we show that the effect of sending to 0 the minimum area ay does not
have a dramatic effect. However, choosing a non-vanishing a leads to a slight increase of the
cross section on the first peak. The cross section itself is of course a continuous function of ay.
This parameter has a clearly different influence than the polymerization parameter.

Conclusion

In this article, we have studied the propagation of quantum fields in the vicinity of a black
hole undergoing quantum gravity corrections. It is shown that the effects are generically small
but the trend is quite clear. Phenomenologically, large values of the polymerization parameter
could be probed by a decreased cross section, together with a slight frequency shift for fermi-
ons. In addition, the non-vanishing minimum area leaves a specific footprint on the first peak.

1
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This sets a framework for futures studies, both in LQG or in modified gravity. In the spe-
cific case of loop black holes, it would be most interesting to investigate, using the tools
developed in this study, the cross sections for recent BH models published in [62] and [63,
64], among others.

As the Hawking evaporation of a black hole is considered to be one of the rare possible probes of
quantum gravity, it is mandatory to calculate the cross sections for quantum fields in the associated
background spacetime. This article is only a first step in this direction for LQG. It already shows
that different quantum corrections—still in the LQG framework—will lead to different effects on
the behavior of cross section. This is both useful for accurate calculations of the Hawking spectrum
(to refine, e.g. what was done in [65]) and as a probe, in itself, on the intricate spacetime structure.
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Appendix A
The initial conditions for solving the radial equation (7) are R(riy) zAf‘nei“”* =1 and
w = \}%F To solve this complex equation, both the real and the imaginary parts have to

be solved. Writing R(r) = U(r) 4 iV(r), the initial conditions are:
U(rmi) = 1, V(rmi) - O,

dU(rini) dV(rim-) w

—0, i)Y (A1)
dr dr v/GF
Far from the BH, we have:
b

U(r) = a cos(wr) + — sin(wr), (A2)
r r
ar b2 .

V(r) = = cos(wr) + - sin(wr), (A.3)

with a3 = R(AP) + R(ASS), b1 = S(A) — SAX),  a = S(AP) + S(ASS)  and

out out

by = R(AY) — R(ASS). With a fifth order Runge Kutta method, we solve the real and imagi-

out
nary parts of equation (44) with the initial conditions given by equation (A.1). At renq, wWe fit

the solutions of U and V with functions given in equations (A.2) and (A.3) to obtain the coef-

ficients ay, by, a,, and b, so as to deduce A° and ASy,.

Appendix B

The spin coefficients defined with the rotation coefficient are given by:

1
K=711 p=7314 €= 5(’7211 + Y341)

1
O =713 HU="7243 7= 5(’)’212 + Y342)

1
A=Y T=mpnp o= 5(7214 + V344)

1
V=14 T=41 B= 5(7213 + Y343)-

12
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Chapitre 3. Les trous noirs 99

3.3 Les modes quasi normaux

3.3.1 Point de vue théorique

Lorsqu’un trou noir est perturbé, et ce peu importe de quelle fagon, il aura une phase de relaxation
("ringdown" en anglais) avant de se stabiliser. Lors de cette derniere étape, il va émettre des ondes gra-
vitationnelles amorties dont les fréquences propres wy et leur amortissement w; dépendent uniquement
des caractéristiques du trou noir et non du processus qui I’a perturbé. Dans cette phase, on se trouve
dans le régime perturbatif. Les modes propres sont solutions des équations des perturbations avec les
conditions aux bords suivantes :

— onde purement rentrante a 1’horizon,

— onde purement sortante a I’infini spatial.

Les fréquences w sont appelées modes quasi normaux (QNMs pour quasi normal modes) [4, 55, 56].
Pour les trous noirs stationnaires, la dépendance en temps est donnée par

iw

e t: ei(a)R+iw1)t. (3.51)

Il existe deux types de perturbations. Pour appuyer leur différence mathématique, considérons les
perturbations d’un trou noir stationnaire a symétrie sphérique. La métrique peut s’écrire sous la forme

ds* = e*dr* — e (dp — q,dt — q,dr — qod8)* — e dr* — e**do. (3.52)

La symétrie sphérique impose que les coefficients ¢;, ¢,, et g soient nuls. Les perturbations telles que
ces coeflicients prennent une petite valeur non nulle sont appelées les modes axiaux. Ils entrainent une
faible rotation du trou noir. D’autre part, lorsqu’on rajoute une petite incrémentation oy, o, oy et oY
aux coeflicients déja non nuls, nous décrivons les modes polaires. Ces deux types de perturbations
vont se transformer différemment sous parité. Pour un moment angulaire £ donné, les perturbations
axiales se transforment en (—1)’*!, alors que les perturbations polaires se transforment en (—1)°. La
partie radiale de ces deux types d’ondes est décrite par une équation de type Schrodinger, avec des
potentiels V(r) différents

2

d*z
—— +W*Z-V(NZ =0, (3.53)
dr?

avec r* la coordonnée tortoise qui tends vers —co quand r tends vers 1’horizon. Par exemple pour les
trous noirs de Schwarzschild, on a

ds* = f(r)dt* — f(r)"'dr* — r*dQ?, (3.54)
et la coordonnée tortoise est définie par dr* = f~'dr. Les modes axiaux sont solutions lorsqu’on a le

potentiel de Regge-Wheeler

2M)[@ _om (3.55)

v =(1- )5 - 5

avec ¢ > 2. Les modes polaires sont solutions pour le potentiel de Zerilli
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Ficure 3.1 — Le potentiel V en fonction de la coordonnée tortoise r* [60].

2 2M M? +3L*°Mr? + L*>(1 + L)r* + OM°L
( ) OM? +3L*Mr* + L*(1 + L)r + 9M*Lr (3.56)

VA(r) = = [1- 22| x :
() r3 r (BM + Lr)?

avec L = {(¢ + 1)/2 — 1. Nous verrons, dans la section 3.3.3, qu’il existe des transformations qui
relient les solutions des deux équations (Regge-Wheeler et Zerilli). Cette caractéristique est appelée
isospectralité.

Pour calculer la valeur des QNMs, il est possible de déterminer leur valeur numériquement mais
il est également intéressant de les calculer semi-analytiquement avec des méthodes d’approximation.
Il est pertinent de calculer leur valeur avec une bonne précision car un important changement sur
les parametres du trou noir induit seulement une faible déviation dans les QNMs. Les méthodes
semi-analytiques sont comparées aux calculs purement numériques afin d’établir leur précision. Il
existe différentes méthodes approximatives qui permettent de calculer ces QNMs [56] avec une bonne
précision. Dans les articles des sections 3.3.4 et 3.3.7, nous utilisons la méthode de WKB [57]. C’est
une méthode semi-classique applicable lorsqu’on a une barriere de potentiel dont les valeurs a 1’horizon
et a 'infini spatial sont constantes. Elle permet d’obtenir une approximation a la solution d’une équation
différentielle linéaire dont le terme de dérivée d’ordre supérieur est multipli€ par un petit parametre €.
L’ approximation WKB pour le calcul des QNMs des trous noirs de Schwarzschild a initialement été
introduit par Schutz, Will et Iyer [58, 59, 60]. Dans ces papiers, 1’approximation WKB est effectuée
jusqu’au 3eme ordre. Plus tard, Konoplya a prolongé 1’approximation jusqu’au 6eme ordre [61].

Le terme d’ordre supérieur de 1’équation (3.53) est multiplié par un parametre de perturbation € tel
que

2
62

Z sk
2 Q02 =0, (3.57)

avec Q(r*) = w? — V(r*). Ce "potentiel" est constant en r* = +oco, mais pas nécessairement le méme aux
deux bords. L’espace est séparé en trois régions en fonction du potentiel, comme on peut 1’observer sur
la Figure (3.1). Dans les régions I et 111, les solutions sont approximées par une exponentielle

| = |
Z(r') ~ exp (5 > 5"5,,(r*)) quand & — 0. (3.58)
n=0

avec ¢ le parametre WKB qui indique I’ordre d’expansion. On peut alors dériver cette expression par
rapport a r* et trouver
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625,2 2 2 ’ ’ 2 ’” ’”
0 45508+ %SO + 8" +... quand & — 0. (3.59)

o) = — + =

Si on suppose que le terme le plus grand est

2¢72
€S,

62’

(3.60)

alors Q(r*) ~ €S /6% Donc, on a S, ~ /62Q/€* et S, = 6Q/2¢. D’apres I’équation (3.59), on en
déduit

Q=Q+2e\/§Sl+§\% (3.61)
~Q quand € — 0. (3.62)

Ainsi I’hypotheése émise (3.60) est totalement cohérente. Si, on avait supposé que le terme le plus
important était

2

%(2555’1 +S0), (3.63)

alors I’équation (3.59) donnerait

0= ( f Q(x)dx)2 + €0, (3.64)

ce qui n’est pas cohérent lorsque € — 0. Cette méthode, dite de balance dominante, nous permet de
déduire le terme le plus important et en déduire € ~ ¢ [62]. La premiere équation

S¢ =00 (3.65)

amene a I’équation eikonal

So= if VO(x)dx. (3.66)

La deuxieme équation

28,8, +S,=0 (3.67)
amene a I’équation de transport
1
S = —Zln 0. (3.68)

On peut continuer ainsi de suite pour avoir les termes S ,,. Dans la région II, Q(r*) est approximé par
un développement de Taylor autour du maximum du potentiel Vj,. Puis, lorsque I’on fait coincider ces
solutions, on trouve, au 6eme ordre
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6
. 1 1
wz:vo-l,/—zvo(;Aj+n+§) (3.69)

ou les expressions A ; sont données dans [61]. Ainsi grice a I’expression du potentiel et de ses dérivées
au maximum de la barriere de potentiel, on a acces aux valeurs approximatives des QNMs. La valeur
des QNMs dépend donc de deux nombres entiers : les harmoniques n (overtone en anglais) et du
moment angulaire £ qui caractérise le potentiel.

3.3.2 Point de vue expérimental

Est ce que ces QNMs sont/seront détecter avec les interférometres actuels et futurs ? La phase de
relaxation est caractérisée par une sinusoide amortie qui est une somme pondérée de tous les QNMs.
Le poids, dans la reconstruction du signal, le plus important est pour le mode fondamental n = 0 et
¢ = 2. La possibilité de mesurer expérimentalement les QNMs commence a peine a émerger. En effet,
dans I’événement QW 150914, un ajustement de la sinuisoide amortie a pu étre effectué pour obtenir la
fréquence et son temps d’amortissement pour le QNM fondamental et pour la premiere harmonique
n =1et{ =2 [63]. L'intervalle de confiance étant de 3.50. Cependant la précision n’est pas assez
grande pour identifier une faible déviation comparée au modele classique. Mais le mode fondamental a
déja permis de tester certains modeles exotiques. Par exemple le modele "gravastar" ne permet pas
d’expliquer les données de I’évenement GW 150914 [64]. Dans les expériences futures, telles que le
Einstein Télescope, il sera possible de mesurer avec plus de précision la premiere harmonique n = 1 :
de quelques dizaines de pourcents la précision atteindra quelques pourcents.

3.3.3 L’isospectralité des trous noirs de Schwarzschild-de Sitter et Schwarzschild-
Anti-de Sitter

Nous avons vu qu’il existait deux types de perturbations : axiales et polaires. A priori, ces per-
tubations ne possedent pas le méme spectre de fréquences propres. Cependant, il a ét€ montré que
les trous noirs de Schwarzschild [65], Reissner-Nordstrom [66] et Kerr [67] possedent la propriété
d’isospectralité. C’est-a-dire que, les modes axiaux et polaires ont le méme spectre. Cependant pour
d’autres modeles avec des métriques effectives, 1’isospectralité n’est pas respectée. A vrai dire, cette
propriété d’isospectralité a été peu investiguée et lorsqu’elle a été étudié c’était de facon numérique
principalement. Les seules preuves analytiques sont celles données par Chandrasekhar citées précé-
demment. Ainsi, le but de cet article est d’approfondir la preuve analytique d’isospectralité pour voir si
elle peut s’étendre a une catégorie plus générale de trous noirs.

Deux types de perturbations sont isospectrales, si leurs parties radiales Z; et Z, obéissent a
I’équation (3.53) avec leurs potentiels respectifs V; et V, et ont pour solutions les mémes fréquences w.
Pour que cect ait lieu, trois conditions doivent étre respectées [4]. Il faut qu’il existe deux fonctions p
et g telles que :
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az
. Zi=pZs+q—0, (3.70)
dr*
2dp 1d%
2. Vi=Vo+ - + - , 3.71
: ? gdrs  qdr? G-71)
d d
3. P+ (p 1 _ —pq) — (Vs — ) = C* = ce. 3.72)
dr* dr*
On considere la métrique suivante
ds* = B(r)dt* — B(r)"'dr* — r*dQ)?, (3.73)

sans préciser la forme de la fonction B(r) pour le moment. On utilise le formalisme de Newman-Penrose.
Etant données les symétries, le seul scalaire de Newman-Penrose (1.48) non nul est

P, = —2+2B(r) = 2rB'(r) + r*B"(r)

:T 1272 ’
Les perturbations sont les quatre scalaires ¥y, ¥, ¥; et ¥, (ré-échelonnés en ®@;) et les quatre
coeflicients de spin «, o, A et v (ré-échelonnés en k, s, [ et n). On établit les équations de Bianchi et de
Ricci linéarisées qui décrivent ces perturbations

(3.74)

3
LoDy — (z)o ; —)cbl = 6°Wk + V2HR,]. (3.75)
r
Br(D] - §)®0 + L5 @) = —6r°%,s - 217[Ry), (3.76)
r
3 ®
(1)0 + —)s —Lok= =2 (3.77)
r r
(Z)O - §)(1)4 — .£_1(D3 = —61’3\le + 1’4[R3], (3.78)
-
- Br2 + 3 3 35
£2®4 + 7(@_1 + ;)@3 = —6r Yon + \/Er [R4], (379)
®
BrR(o, + §)l +Lon=—2, (3.80)
r r

avec D et L des opérateurs radial et angulaire respectivement définis tels que

iw B'(r) 2)
=0, + — z 81
D, 8r+3(r)+”(3<r)+r’ (3.81)
L, =0 + —— + ncoté, (3.82)
sin 8

avec DZ le complexe conjugué de D, et LZ(G) = —L,(m—0). Les termes [R;] sont des combinaisons du
a

tenseur de Riemann. En appliquant Lil a I’équation (3.75) et (Z)o + %) ’équation (3.76) on obtient

L 0,0, + (1)0 + %)[Brz(.@; _ 3)(1)0] -

r

6r3‘P2[£Lk _ (1)0 + é)s] — 650,(P¥) + LT (VIIR]) - 2(1)0 + é)(rZ[RZ]). (3.83)
r r
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Il est intéressant de remarquer que si 7°\P, est une constante et que [R;] et [R,] sont nuls, alors la partie
gauche de I’équation (3.77) apparait et peut étre remplacée par ®y/r. On obtient alors une équation
découplée pour @

L L0+ (1)0 ; %)[Bﬁ(z); - %)cpo] — _6°°%,D,, (3.84)

De facon similaire on peut obtenir une équation découplée pour @, avec les équations (3.78), (3.79) et
(3.80). Les conditions pour découpler les équations sont donc les suivantes

P, =cte et [R;]=[R,]=[R;]=[R4]=0. (3.85)

Ces deux conditions restreignent 1’espace-temps a celui de Schwarzschild-de Sitter et Schwarzschild-
Anti-de Sitter :

2M
B(r)=1-=—-Ar, (3.86)
r

avec A la constante cosmologique. Mais ces conditions ne sont pas respectées pour des espace-temps
plus généraux. A partir des équations découplées, il est possible de faire plusieurs transformations
et changements de variables de sorte a trouver les fonctions g et p qui respectent les conditions
d’isospectralité (3.70), (3.71 ) et (3.72) qui relient les perturbations axiales Z~ et polaires Z*. On
obtient

g=2y et p=«k+29f (3.87)

avec > = 0(€+ 1) = 2,v*> = 36 M?, k = u*(2 + p?) et f = B/(u*r* + 6Mr).
Les potentiels s’écrivent sous la forme générales

af + v + «f, (3.88)
dar*

ce qui nous permet de les réécrire sous leur forme explicite

V* =ty

2M 1 M
Vo= (1 M Arz)[w D _oM (3.89)
r r2 3
(3.90)
et
3 2 2 2 3 2 _ 2
o 3(1 +2_M+Ar2)x OM? + 3L2M7> + L2(1 + L)r* + OM*r(L — Ar?) o
/3 ¥ (Lr + 3M)?

avec 2L = u?. Ce qui cloture la preuve analytique de I’isospectralité pour les trous noirs de Schwarzschild-
de Sitter et Schwarzschild-Anti-de Sitter. Un des points initiaux clé a la preuve est de pouvoir découpler
les équations, afin d’effectuer toutes les transformations qui suivent. Ce découplage ne peut pas étre
effectué dans le cas d’espace-temps plus généraux. Mais il est possible de les découpler autrement,
en utilisant la jauge "fantdme" (phantom gauge). Cependant dans ce cas, nous ne pouvons pas faire
certaines hypotheses qui conduisent a la preuve.

Cet article a été publié dans General Relativity and Gravitation [68].
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1 Introduction

The direct measurement of gravitational waves emitted by the coalescence of black
holes (BHs) is now possible. Since the seminal detection by LIGO [1], several other
events were recorded and a catalogue is already available [2]. The recent improvement
in sensitivity has even led to a dramatic increase in the detection rate. The recorded
gravitational waves carry fundamental informations about the structure of spacetime,
BHs being vacuum solutions of the Einstein field equations. Three phases can be
distinguished during a coalescence: the inspiral, the merger and the ringdown. The
later can be partially treated perturbatively as a superposition of damped oscillations
with different complex frequencies, called quasinomal modes (QNMs). An intuitive
introduction can be found in [3] and a review in [4]. The ringdown does not lead
to pure “normal” modes because the system looses energy through the emission of
gravitational waves. The equations for the metric perturbations are somehow unusual
because of their boundary conditions: the waves have to be purely outgoing at infinity
and purely ingoing at the event horizon. The radial part can schematically be written
as ¢ ox e i = ¢TH@rH®OD! where wp is proportional to the frequency and w; is
the inverse of the decaying time scale. The process is stable when w; < 0. Basically,
QNMs are characterized by their overtone and multipole numbers: n and £.

The determination of QNMs have driven a huge amount of efforts (see, e.g., [5] for
a historical review, [6,7] for an example of quite recent results based on a numerical
approach and [8—14] for WKB treatments). This article is not about the calculation of
the complex frequencies but about a remarkable—and quite strange—property. The
perturbations of the metric are described by two different equations depending on
their parity: whether polar or axial, they do not fulfill the same equation. They both
obey a Schrodinger-like equation (Eq. 7) but with different potentials. For a spherical
time-independent metric, one can write

ds® = e*di* — e*V (d¢ — qidt — qrdr — qod0)?
— M dr? — M gp2. (1)

For the special case such that

Q2 — o721 — B(r), o2 — 2. (2)
eV =r’sin*(0) and g, =g, =gy =0, (3)

the perturbations will be described by ¢;, g, and gg, being first order small quantities,
and s, ur, e, and ¥ which receive small increments 8, Su,, Sig and §vr. The
former lead to a non-static stationary distribution of mass-energy leading to a rotating
BH. They are called the axial perturbations. The latter do not imply any rotation and
are called the polar perturbations.

In the Schwarzschild case, the Regge-Wheeler potential (for the axial parity) is

given by
VERW(r) _ (1 B 2M> [Z(ﬁ +1) B 6M:| ’ @

r 1’2 }"3
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and the Zerilli potential (for the polar parity) reads

2 ( 2m> OM3 +3L2Mr? + L2(1 + L)r3 + 9M2Lr )
X 9

vz =—1—-—
¢ r3 r 3M + Lr)2

with L = £(€ 4+ 1)/2 — 1. The remarquable fact—known as isospectrality—is that
those equations share the same spectrum of quasinormal modes. This is also true for
the Reissner-Nordstrom and Kerr metrics. This might appear as a kind of “miracle”
when using the standard tensor formalism where the axial and polar perturbations are
teated independently. However, when one actually works in the Newmann—Penrose
(NP) formalism [15], isospectrality comes as a quite natural feature. This property
remains however true only for very specific spacetimes. It is not yet fully clear whether
1sospectrality is generic or happens as an incredible “stroke of luck™ for classical BHs.

In [16], it was shown that isospectrality is broken down for general f(R) gravity.
In the case of Lovelock black holes, isospectrality is roughly recovered but not exactly
[17]. It fails in Chern-Simons gravity [18]. The presence of a dilatonic field also
breaks isospectrality [19,20]. Actually, a perturbative analysis shows that isospectrality
seems to be quite generically lost in theories beyond GR [21]. However, it seems
that Schwarzschild-(anti)-de-Sitter (S(A)dS) black holes are isospectral, although the
situation is not fully clear [22-25].

In this article, we try to make clearer the quite involved historical derivation by
Chandrasekhar [26] and extend it as far as it can be using the original argument.
Although no spectacular new results is obtained, we elegantly end up with an analytical
explanation of the isospectrality of SAS and SAdS black holes. We begin with a general
metric of the form

ds*> = B(r)dt* — B(r)"'dr? — r?dQ?, (6)

and explicitly show that if B(r) describes a SdS or SAdS spacetime, the isospectrality
property holds. This does not rigorously mean that it is a necessary condition in general
but it is one if we rely on the historical strategy to approach isospectrality. The proof
can be straightforwardly extended to the case of a charged BHs (the steps are the same
than for going from Schwarzschild to Reissner-Nordstrom).

Our aim here is just to slightly generalize the original derivation and to explain in
details each step of the proof. This is mainly useful for pedagogical, methodological
and historical purposes. Modern and extremely efficient methods are given in [27,28].
In these references, new results are obtained on the isospectrality, traced back to the fact
that the Zerilli and Regge-Wheeler equations are related by a Darboux transformation.
More precisely, it is shown that although standard and binary Darboux transformations
ensure isospectrality, generalized ones—associated with long-range potentials—do
not solve exactly the problem. Such methods are powerful and well suited for most
complex problems. They also open fascinating mathematical questions that are still
unanswered. We however will not use them here and will remain close to the original
derivation. The small generalization that we provide is already non-trivial.

@ Springer
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In the first section, we review sufficient conditions for isospectrality. Then, we
introduce the NP formalism which will be used to determine the radial equation. We
finally proceed to the full calculation and conclude.

2 Conditions for isospectrality

To study black hole perturbations, we separate the radial and angular parts so as to
obtain a wave equation for radial and time variables. This equation has a Schrodinger-
like form:

d*z
dr*Z

+w?Z-VZ=0, (7)

with r, the tortoise coordinate defined by dr, = dr/B(r). The eigenvalue w is the
frequency of the wave satisfying the boundary conditions given in the introduction
and detailed in the following sections. In full generality, if Z, satisfies Eq. (7) with a
potential V5, then

Z) = = (8)
1 e

with p and ¢ two functions, also satisfies Eq. (7) with V7 if [26]

Vimv g 2dr 14 )
b= gdr*  qdr*?’
and
2, P L d*q d’p o) 2dV2 _o (10)
Par T Pgm2 = g dr*

We don’t use here an index for w as the isopectrality precisely means that w; = w».
Equation (10) is equivalent to

dg  dp
2 2 2y 2 _
p-+ (pdr* — dr*q> —q° (V2 —w”) = C” =cte. (11)

To show that Egs. (9) and (10) imply isospectrality, we use the fact that Z, satisfies
Eq. (7), which implies

d*z,  ,dzZ, dV, dZ,
— —V
dr*3 o dr* dr* 2 2dr*

—0. (12)
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When replacing Z; and V) by their expressions given by Eqgs. (8) and (9), we are
led to

d*Z d? 2p d d?
L’z —wvizy = (S L 229 P29,
dr+2 dr*2 g dr* q dr*? (13)
dVs dqg d*Z,
ta dr* 22+ 2% dr¥?’

Using Egs. (10) and (12), one can conclude that Z; satisfies Eq. (7) with V7.

We first establish the equations governing the gravitational perturbations, we then
expose the conditions required to transform it into a wave equation. Finally, we show
isospectrality for SdS and SAdS spacetimes by finding the functions p and ¢ satisfying
Egs. (9) and (11) for the potentials of axial and polar perturbations. It should be
emphasized that we do not assume a S(A)dS spacetime from the beginning but, instead,
are led to it by the requirement that isospectrality emerges—at least in this approach.

3 The Newman-Penrose formalism

To go ahead, the perturbations need to be analyzed in the NP formalism [15]. This is
a special case of the tetrad formalism (see, e.g., [29]). To guide the unfamiliar reader,
we make every step leading to the result explicit in a pedagogical perspective. In this
approach, one needs to set up a basis of four null vectors at each point of spacetime.
This basis is made of a pair of real null vectors 1 and n and a pair of complex conjugate
null vectors m and m:

Ill=nn=mm=mm=0. (14)

Im=Im=nm=nm=0. (15)
We also require the normalization
In=1 and m.m = —1, (16)

but this latter condition is less crucial in the NP formalism. The number of equations
is conveniently reduced thanks to the use of complex numbers. Any basis with the
properties given by Egs. (14), (15) and (16) can be considered. For example, in the
Schwarzschild case one usually works with the Kinnersley tetrad and sometimes the
Carter one [30]. Here, we choose a Kinnersley-like tetrad:

l' _ 1
l — ’110’0 ) (17)

B(r)
nl = (1,—3(”,0, 0), (18)
2’2

@ Springer



82 Page6of22 F. Moulin, A. Barrau

. 1 i
m' = (0,0, , , (19)
( N2 A 2r sin@)
: 1 —1
m =10,0, , . 20
< «/Er ﬁsin@) 0

In the NP formalism, the directional derivatives are usually denoted by the following
symbols:

D=19: A=nd; s§=md; & =my. 21)

The equations will be written with the so-called spin coefficients [31] carrying
(roughly speaking) the information on the Riemann tensor. To make things explicit,
we switch, here, to the more general framework of the standard tetrad formalism. The
four contravariant vectors of the basis are eﬁl, where a, b, ¢ ...are the tetrad indices,
indicating the considered vector and i, j, k ...are the tensor indices, indicating the con-
sidered componant (alternatively, one can also think to the lower index as an internal
Lorentz one and consider the upper index as a coordinate one). The correspondance
reads as ey = I, e = n,e3 = m and eg = m with el = €3, €2 = €1, &6 = —ey
and e* = —e3. For example, e/, 3 represents the second componant of 1, derived with
respect to 6. We define the Ricci rotation coefficients (the symbol ““;” referring to a
covariant derivative)

Veab = €rear;iel,, (22)
or equivalently
Cakii = € Veab®] - (23)
These coefficients are antisymmetric with respect to the first pair of indices:
Ycab = —VYach- (24)

Let X,Yand Z be contravariant vector fields: X)Y, Z € T%). The Riemann tensor
field R is of type (1, 3):

R:T{xTyxT\— T}. (25)
It is defined as
R(X,Y)Z = VxVyZ — VyVxZ, (26)
with the Ricci identity
RiuZi = Zjikit = Zji:k- (27)
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This leads, for Z = ¢, to
Rijkle; = €qj;k;l — €aj;l;k- (23)

We project this identity on the tetrad frame and use Eqgs. (22), (23) and (24). The
projected Riemann tensor depends only on the rotation coefficients and their deriva-
tives:

Rabea = Rijkzeéeéefeil
= [eaj:k:l — €ajitkle) el
= <_ [Vafgejfe}g];l + [Vafge{e}g];k>e;ieléeld

= —Yabe,d + Vabd,c + )/baf()/c]; - )/dfc)

+ J/fach]; — VfadVbJ;- (29)

The spin coefficients of the NP formalism are also defined through the rotation
coefficients:

1
K =931, P =734, €= 5()/211 + v341),

1
0 =V313, K =)u3, Y= 5()/212 + v342),

1
A=1Vou4, T=Y312, 0= 5(7214 + V344),

1
V=1V, T =)yu, P= §(V213 + ¥343).

The 36 equations (29) can be written as 18 complex equations. The 10 independent
components of the Weyl tensor C,4 are represented by five complex scalars:

Vo = —Ci1313 = —Cpgrsl’mil"m?,

V) = —C1213 = —CpyrslPnil"m?,

V) = —Ci3g2 = _Cpqrslpmqmrns’ (30)
W3 = —Cio42 = _Cpqrslpnqmrnsa

Wy = —Couo4 = —Cpgrsn’min"m?,

and the 20 linearly independent Bianchi identities can be written as eight complex and
four real equations. As it will be useful later we also define the following scalars:

Dgp = _%Rll; Dy = —%R22§ Dy = _%R33;
®r9 = —5Ru; P11 = —1(Rio+ R3s); @1 = —3Ri3;
Do = —%Rm; O = —%R23§ P2 = —%R24. (3D)
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4 Preliminaries on isospectrality
4.1 Derivation of the radial equation

We assume that the perturbations have a r and ¢ dependance given by ¢/ (“/T®) and
we define the following operators (n being an integer):

B iw B'(r) %
Dn_8r+—B(r)+n(—B(r) +r), (32)
and
L =g+ — (©) (33)
n = 9—|—Sin(9)+n.co .

The prime denotes the derivative with respect to . Let DZ be the complex conjugate
of D, and E}; (0) = —L,,(r — 0). Itis interesting to notice that

Br’D,., = D,Br’. (34)

The directional derivative given by Eq. (21) reads

B

D =Dy, A=-— ;r)DS,

1 . 1 (35)
8 = £ , 8* — /:,
Noa Jar !
The five scalars are:
—2+2B(r) — 2rB'(r) + r*B"(r)
= . , (36)
12r

Vo=V =W3 =Py =0. (37)

As Wy, Wy, W3 and Wy vanish but W, doesn’t, the spacetime defined by Eq. (72)
is a Petrov type D spacetime. A corollary of the Goldberg-Sachs theorem [32] shows
that this implies that «, o, A, and v do vanish. The explicit calculation indeed leads
to:

kKk=0c=A=v=0, (38)
tT=mn=€=0 (39)
and
1 B B’
pP="5% K=7%. V=7
_ _p_ _ cotd
oa=—p= EWorS (40)
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There are 6 linearized equations, 2 from the Ricci identities (43,46) and 4 from the
Bianchi identities (41,42,44, 45):

and

with

(8* —4a)Vy — (D — 4p)¥| = 3k, + [R1],
(A —4y + ¥y — (8 4+ 2a)¥| = 30W; + [R2],
(D —2p)o — (8 + 2a)k = W,

(D — p)Wy — (8" + 20) W3 = =31 + [R3],
(0 —4o)Wys — (A +2y +4u)W3 = —3vW) + [R4],
(A 421 +29)A — (8" + 2a+)v = —Wy,

[Ri] = —D®g1 +Pop +2pDo1 +20D10 — 2k D11 — kP2

[R2]

[R3]

[R4]

= 25[2-2B(r) +r*B" ()]

= —D®gy + 8Do; + 2a Do) — 2k D1y — ADgo + 20 D11 + pDoy
= 73[2=2B(r) +r*B" ()]

= —A®Dgp + 8Dy + 20Dy +2vD 1) + oDy — 24D — udyg
= 25[2—2B(r) +r*B" ()]

= ADy; — 5Py +2(u + y) P21 —2vP 1 — v Dy + 24D 2

= 25[2-2B(r) +r*B" ()],

(41)
(42)
(43)

(44)
(45)
(46)

(47)

(48)

(49)

(50)

where Vg, W, W3, Wy, k, 0, A, and v are the perturbations. Using Egs. (36), (38) and
(40), we obtain:

1 4
2<£0 +2C0t@)\1—’0 — (Do + —)‘IJl =3k + [R1],
r r
Blpr 2 Ny - L (2 —coto)w
- = — +- — —co
2 0 B r 0 r\/i 0 !

=30V + [R2],

2 1
Do+ — o — [,T—cot0>/<:\11,
(o) (s ;

1 1
Do + —)\IJ4 - — (ﬁo — cot9>\113 = —3W0A + [R3],
( r r\/i

! ) t9w+BDT /+4\p
co — - — 4+ -
rv2 0 4 2 0 B r 3

= —3Wov + [R4],

(5D

(52)

(53)

(54)

(55)
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B( + B 2 1
r

We proceed to the following change of variables:

Dy = Wy, D = Urv2, k= . (57)
r
D, = Uyt @ \11r31A ol (58)
= r, = =" = n— —.
4 4 3 3ﬁ NG
This leads to:
3
Lrdg — (D() + —)Cbl = 6r3\112k + «/Er[Rl], (59)
r
3 .
r2<D§ — —>q>0 + L7, @) = —6r*Wys — 2r%[Ry], (60)
r
3 o
(Do+—> — Lok =2, (61)
r r
3
('D() — ;)@4 —L_ P53 = —67’3\1121 + r4[R3], (62)
i Br?( i 3 3 5
L34+ —— D)+ ) @3 =—6r Won + /2[Ry, (63)
r
3 P
Brz(DL + —)l Lo = —, (64)
r r
By applying £T_1 to Eq. (59) and (Dg + %) to Eq. (60), we are then led to:
i 3 2 i3
L LDy + | Do + - Bro\ D, — - D
3 t 3 3
=6r"W (L k— Do+ = |s| — 650, (r"W¥7)
r
+ L7 (V2r[R]) —2(Do+ )(r [R2]). (65)

It should be noticed that if 73 W, is a constant and if [R;] and [R>] do vanish, then
the left part of Eq. (61) does appear and can be replaced by ®(/r which leads to a
decoupled equation for ®g:

3
ET_IEZCD() + <D() + ;) |:Br2 (D; — —)CD()] = —61’2\112@0. (66)

r
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In the same way, by applying £_1 to Eq. (63) and Br? (DT_I + %) to Eq. (62), we

can obtain a decoupled equation for @4 if, in addition, [R3] and [ R4] are zero:
Br2<DL + %) [(Do — %)cm] + L LDy = —6r2 WDy, (67)

where Eq. (64) has also been used. To summarize, one is led to two decoupled equa-
tions, for ®g and Py, if:

W, = cte (68)
and
[R1], [R2], [R3], [R4] = 0. (69)

The first condition, Eq. (68), implies that the metric must have the form
B(r)y=1+ —+ Cor + Csr-, (70)
r
while the second condition, Eq. (69), implies
B(r)y =14 — + Dor=, (71)
r

with C; and D; some arbitrary constants. The latter condition (which contains the pre-
vious one) corresponds to Schwarzschild-de Sitter and Schwarzschild-Anti-de Sitter
spacetimes:

oM,
B(r)=1-"=—Ar?, (72)
r

with A the cosmological constant.

In the Reissner-Nordstrom case, it is possible to find new variables that mix the ®;
functions with the spin coefficients so that a separation is possible [26]. This works
because W does not vanish and this implies two more equations which lead to a radial
equation of the form of Eq. (87) such that P and Q lead to isospectrality. As far as
our argument is concerned, the extension from the Schwarzschild case to the charged
case is therefore straightforward.

5 Proof of isospectrality

The Egs. (66) and (67) read
[z’f_lcz + Br’D\D} — 6(Ar + ia))r] ®y = 0, (73)
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[L_IQ + Br’D! Dy — 6(Ar — ia))ri| @y = 0. (74)

If we set
Dy = Ri2(r)S42(0), P4 = R_2(r)S—2(0), (75)

they are separable with a separation constant 2. This leads to:

LT L2810 = —p*S 4o, (76)
_Br2D1D§ — 6(Ar + iw)r]R+2 = u’Ry, (77)
é_lﬁgs_z = %S, (78)
—Br2D*_1D0 — 6(AT + ia))ri| R_» = u’R_,. (79)

The separation constant is calculated with Eq. (76)—or Eq. (78)—by requiring the
regularity of S;, at & = 0 and & = 7. The angular equation is the same than in the
Schwarzschild case, which gives uw>=1I1l+1) —2=2L.

We set

1 |
Do = —=A4, D)= —A_. 80
0 B + 0 B (80)

Using the the tortoise coordinate rx* (with % = Bf—r), we are led to

d d
Ay = +io, A =-——io and A =ALA_, (81)
that is
Ax = Az £2iw. (82)

The operator A2 has no link with the cosmological constant (and cannot be confused
with it as the cosmological constant never appears squared in this article). It should
be pointed that the equation

[Brzp_lpg — 6(AF + ia))r:|B2r4R+2 = u’B**R, (83)

is the same than Eq. (77). Using the properties of Eq. (34), we obtain

1
Br?D_ D! = (Br2)2poﬁpg — r4BA+( A ) (84)

32}’2 -
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Defining Y as
Y = B%rR o, (85)

we are led to

A(a )= Zav+ L (I Va v+ 2+ ()
—_— _\r = — _— —_— _ — _— — .
*\ Br2 B2 dr*\ B2 B " Tar+\B

(86)

By calculating the derivative and replacing A+ by A_ + 2iw in Eq. (86), we find
that Eq. (83) is equivalent to

A’Y + PA_Y — QY =0, (87)
with
4B )
Pp=(——-2B
r
B? d [r*
= Tw?(ﬁ) (88)
d rt
= dr* log B2))
and

3 , B
QO =(=BB +6BA+u*— ). (89)
r r

For the same reasons, Y_» = r > R_», satisfies
A’Y o+ PALY »— QY_»,=0. (90)
Equation (87) needs to be transformed into a wave equation in one dimension:
AN’Z=VZ. 91)

The functions Y and Z both satisfying a second order equation, we write Y as a
linear combination of Z and its derivative:

Y =¢A AN Z+WALZ
=C¢VZ+ (W4 2iwt)ALZ, 92)
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with ¢ and W two functions of *. Applying A_ to Eq. (92) yields

ALY = [i(gV) + WV}Z + [;v + L ows 2ia)§)}A+Z
dr* dr*

2

B
r
with
d .
R=¢V+—W+2wt), (94)
dr*
__ (4 CV)+ WV (95)
Y= B2\ dr* ¢ ’

By applying again A_ to Eq. (93), we obtain

B®> dR . B* dy B? d (B?

On the other hand, one can notice that Eq. (87) leads to:

A_A_Y = —(P +2i0)A_Y + QY = [— (P +2io)R + Q(W + 2ia>§):|A+Z
) (97)
. VB

Identifying Eqgs. (96) and (97), and by using the definition of P given by Eq. (88),
we find:

dy B? d (B?
Tar ot Vam\A ) TRV
d r*\\ v B
= ?(log <ﬁ>>r—4+ otV (98)
4 (B? +ocv
o ydr* r4 v
which gives
dy B?
-7 =0 =RV, (99)
and
dR B? : :
Y= QW +2iw¢) — (P +2iw)R, (100)
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r* dR i r*d I P4 R
— 4+ ——{ log | — =
Bdr " Brar\ 2\ B2

I"4 r4
Y+ 5 QW + 2iwr) — 2w R, (101)
d (r* R) — ré . .
e (ﬁ ) =y + E(Q(W +2iwe) — 2sz). (102)

The combination ¢V x Eq. (102) + Rx Eq. (95) - y x Eq. (94) - ;—‘;(W + 2iw) x
Eq. (99) leads to

v d (r4 R>+ r4Rd(§V)

A o)
(W 4+ 2i00) + (W + 2iw) 2L = 0.
that is to say
4
ER{V—I—V(W-I—%w{):K:cte. (104)

As we have written Y as a linear combination of Z and A4 Z in Eq. (92), it is
possible to write Z as a linear combination of Y and A Y. Using Egs. (92) and (93):

4
KZ = %R;VZ +y (W +2iw0)Z

A 4 2

r ) B
= —RY — E(W-I—le;)(A_Y—l— yr—42)

B2 (105)
+y(W +2iwt)Z

1 4

= ﬁRY — E(W +2iw¢)A_Y,

and
pe
KA Z = ER(VA+Z +y(W +2iw¢)A+ Z

. e B2

:E§VA_Y+E§er—42+yY—ygvz (106)
.

= ﬁgVA_Y +yY.

By requiring y = cte and ¢ = 1, Eq. (99) leads to
R =0, (107)
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and from Eq. (94) one obtains

V=0 aw (108)
N dr*’
Equation (102) then leads to
d_(r P\ Z + rt oW (109)
ars\B2") TV TR
and Eq. (104) yields
4
EQV—l—yW:K—Zz’a)y:K:Cte. (110)
Defining
Fel 0 (111)
=m<
Equations (109) and (110) lead to
W = L(dF (112)
-~ F\dr* Y )
and
dw
FV+yW=F Q_d* +yW =k, (113)
r
FO Fd 1dF vy +y dF (114)
— - - — =K,
dr*| Fdr* F F\dr* 4
which gives
1 (dF\* d*F B?> , 2
—N—) - —+—=F" == : 115
F(a’r*) dr*? + r4 F T (115)

There exist constants ¥ and « such that Eq. (115) is satisfied by the function (111).
Depending on the square root of 12 chosen (—y or +y), one is led to the equation for
axial or polar perturbations. With

Wi—l dF (116)
F dr*:Fy ’
then
d (1dF
Vi=0- —(|=— . 117
0 dr*(F dr :FV) (17
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Defining f = +,
df
VE=dy 4y, (118)
and
Y = VEZE + (WE 4 2i0) AL Z7F, (119)
32 + +
AY =Fy—7%+ QA 7%, (120)
K* =k £2iwy, (121)
4
K*z* = %[QY — (WE £ 2im)A_Y], (122)
4
-
KEALZF = ﬁViA_Y + y7. (123)

By inserting Egs. (119) and (120) in Eq. (122), one obtains

4
K7 = %[Q[VJ’TL F(WF 4+ 2i0)AL 2]
B* + +
- W™ +2i0)—y—FZ" + QAL Z
( lw)[ Vr4 Q + ]] (124)
4
= [%QW +y(WT +2iw) —y(WT — W‘)]Z+
+ FIWH — WAL ZT,
which simplifies to
: _ 2 " dzZ*
(k —2iwy)Z =k +2y° )27 — ZyF. (125)
r
Equivalently, one can show that
: + 5 _ dZ~
(k +2iwy)ZT = (k +2y°f)Z™ + 2y e (126)
By identification with the previously given condition we are led to
g =2y and p=u«+2y°f. (127)

Conditions given by Egs. (8), (9) and (10) are therefore respected. In [26], it is
shown that if w is a characteristic frequency and Z~ (w) is a solution belonging to
it, then the solution Z* (w) in accordance with the relation (126), will satisfy the
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boundary conditions of the quasi normal modes:

Zt > AT (w)e ' (ry — +00) (128)
N et (ry > —00) (129)
with .
n _ Kk —2iwy
At (@) = A= (0)———=. (130)
Kk + 2wy

The values of k¥ and y when the metric function B(r) is defined by (72) now need
to be determined. First, one can notice that:

- d? o F 1 (dF\* d°F 130
— 0 [ - —,
dr*? £ F \dr* dr*?

which implies that Eq. (115) reads as

d> B2 2
—F|:dr*2<logF>—r—4F:|=F+K. (132)

Moreover, F is given by

F= %(;ﬂr +6M). (133)
This leads to
BAF _wr 1 _4M (134)
—_—— — _— —— r,
F dr F r r2
and

d (BdF\ _ 1+8M+A+u2 . r dF
dr\Fdr) 2 3 F F dr
2

)4 (135)
L3 o (omr —ons® 7
e — _— r — ro— ’
r2 r3 FBr? F
together with
rpl(BdF +B2F2_ sy
dr \ F dr 4t " H
12M? 2Mu?  6M 42
- A 2 emar+ B (136)
r2 r r F
36 M2

4 2
_ 2 .
w2t +
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Identifying with Eq. (132), this means
y?=36M> | k=224 ud). (137)

The functions p and g are now explicitly given thanks to Egs. (127) and (137),
which proves the isospectrality for a metric such that B(r) satisfies Eq. (72).

The potentials can also be explicitly determined, from Eq. (118), for both pertur-
bations. The axial perturbation are described by:

oM IA+1) 6M
V‘:(l—i———i—Arz)[(—z ) _ 3], (138)
r r r

while the polar perturbations feel the potential

2 oM
V+:—3<1+——|—Ar2> X
r r

OM3 +3L2Mr?2 + L2(1 + L)r3 + OM?r(L — Ar?)

(Lr +3M)? (139)

6 Phantom gauge

In this section, we briefly discuss the Phantom gauge. As we deal with six equations,
namely Eqs. (59-64), and eight unknown variables, the solutions involve two arbitrary
functions. This comes from the degrees of freedom associated with the rotation of the
chosen tetrad. If first order infinitesimal rotations of the tetrad basis are performed,
U, and Wy are affected at the second order level while W and W3 are affected at the
first order level (the interested reader can find a clear proof in [26], Chapter 17.(g) or
through Eq. (7.79) in [33]). At the linear order which is considered here, Wy and Wy
are therefore gauge invariant (not affected by infinitesimal rotations), contrarily to W
and W3. We have chosen a gauge such that

v =V3 =0. (140)

The vanishing of W and W3 does not affect the behavior of Wy and W4. This gauge
leads to the radial equations (66) and (67) .

Another meaningful choice could have been done: the so-called “Phantom Gauge”.
The previous gauge was useful to separate the equations when conditions given by
Egs. (68) and (69) were fulfilled. However, if these conditions are not respected it is
still possible to obtain two decoupled equations. Thanks to the freedom associated
with the rotation of the tetrad, one can impose two additional ad hoc constraints. By

applying Br? (D; — %) to Eq. (59) and £, to Eq.(60), it is possible eliminate ®.
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Indeed the condition

—Br2<D§ - §) (6r3k\112 + ﬁr[Rﬂ)

-
—L (6r3s\l’2 + 2r2[R2]> = 6rB'®, (141)
gives
[Br*DiDy — 6iwr + L2L£7 101 =0, (142)
and therefore
[Br*DiDy — 6iwr]R; = 0. (143)

The same procedure can be followed for ®3. This gauge might have appeared to
be well suited to derive isospectrality for more general metrics, that is beyond the
conditions Eqs. (68) and (69) . The radial equation (143) can be written in the form of
Eq. (87) with Y defined by

Y =rBRy, (144)
as well as P and Q expressed by:
po Lo (145)
= O — 1,
dr* g B
and
B / 2 nplt 2
Q= —=@rB +r°B"+2B+ ). (146)
r

However, in that case, it seems difficult (if not impossible) to find p and g so that
Eq. (9) and Eq. (10) are fulfilled. One could follow the same procedure than previously
and replace Eq. (94) and (95) with

d :
RpG = ¢pcV + (W + 2iwtpg), (147)
I (P (148)
vrG = —p | 73 ¢PG :
where % appears instead of ;—z. Then, Eq. (104) is replaced by
2
ERPGCPGV +yvrc(W +2iowlpg) = Kpg = cte. (149)
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It is however not anymore possible to require ypg = cte and {pg = 1 as it has
been previously done for y and ¢. Indeed, if {pg = 1, then ypg = r%y which cannot
be constant. The phantom gauge does not seem to bring any new convenient way to
go ahead in this approach.

7 Summary and conclusion

Let us summarize the main ingredients of the calculation. The conditions (68,69)
allow to decouple equations (59—61) in the form of Eq. (87) with functions P and Q so
that Eq. (104) is fulfilled. These conditions lead to the Schwarzschild-(anti-)de Sitter

metric (72). This allows to write —F [d‘f—iz<log F ) — %F ] as cte + %e/ yielding

explicit expressions for p and g which show the isospectrality.

In this article, we tried to go a bit deeper into the original argument from Chan-
drasekhar so as to make it accessible to the reader who wants to apply the method to
a specific spacetime structure. We show explicitly what are the conditions to prove
isospectrality in this framework. As a result, S(A)dS black holes emerge naturally as
being isospectral. This also led us to obtain the exact form of the potential for the polar
and axial perturbations.

Isospectrality is a beautiful property which seems to be true only for very spe-
cific geometries. As far as we know, no analytical proof of isospectrality (or of the
breakdown of isospectrality) as been produced yet in full generality. This article goes
slightly beyond Schwarzschild and points out the difficulties one has to face when
trying to extend the proof to more general spacetimes.
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3.3.4 Les modes quasi normaux dans les différents modeles au dela de la RG

Etant donné que la fenétre des observations expérimentales de QNMs s’ouvre, il est intéressant
d’étudier comment la valeur des QNMs varie en fonction des différents modeles au dela de la RG.
Plusieurs modeles possedent une métrique de la forme

ds* = f(rydt* — f(r)'dr* — r*dQ? (3.92)

avec f(r) des fonctions modifiées comparé a I’expression pour Schwarzschild. Pour ces modeles, le
potentiel des perturbations axiales s’écrit :

A+2(f(n -1 f'(r))
r? r

Vo) = 1)

avec A = {(¢ + 1). Pour d’autres modeles, toujours statiques a symétrie sphérique, la métrique est plus
générale telle que

(3.93)

ds* = A(r)dr® — B(r)"'dr* — H(r)dQ>. (3.94)

C’est le cas du modele de trou noir en LQG considéré dans la section 3.2. Il faut alors déterminer le
potentiel via les équations de perturbations. En considérant une dépendance en temps donnée par ¢’
et en définissant la coordonnée tortoise telle que dr* = dr/ VAB, j’ai montré que le potentiel s’écrit

| (dHY 1PA 1 &
V() = — _ VA), 3.95
") 2H2(dr*) TH \/_Hdr*z( ) (3.95)

avec u = (£ — 1)(€ + 2). Le calcul explicite se trouve dans ’article. Grace aux expressions de potentiel
nous pouvons calculer les QNMs avec la méthode WKB au 6eme ordre.

3.3.5 Les modes quasi normaux dans les différents modeles de gravité

L’étude effectuée est une étude préliminaires dans le sens o, en pratique, les trous noirs possedent
un moment cinétique. Cependant, en premiere approximation, nous pensons que I’ordre de grandeur
des variations demeure comparable. Ainsi nous €tudions des trous noirs statiques a symétries sphérique
et on va pouvoir comparer les prédictions des différents modeles par rapport aux trous noirs de
Schwarzschild. Dans toutes les Figures, les QNMs de Schwarzschild sont représentés par les points
noirs. Nous avons investigué des modeles dont la métrique a une expression explicite afin d’utiliser
I’approximation WKB au 6eme ordre. Le poids des QNMs, dans la reconstruction du signal, est
d’autant plus grand lorsque 7 et £ sont petits. Le poids prépondérant est pour le mode fondamental
n = 0et{ = 2. Nous avons calculé les QNMs pourn =0et £ = 2,3,4.

Gravité massive

Tout d’abord nous considérons le modele de la gravité massive. Dans cette théorie, il n’y a qu’un
type de graviton et il possede une masse m. Contrairement a la gravité bimétrique ou il y a un graviton
massif et un sans masse. Un point intéressant de la gravité massive est que la masse du graviton va
naturellement engendrer une expansion accélérée de I’univers. Une solution de trou noir s’écrit avec
une métrique telle que (3.92) avec
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2M AP
f(r) = 1—7+Tr+yr+e, (3.96)

avec A, y et € définis par

A =3m*(1 +a+b),
vy = —em*(1 + 2a + 3b), (3.97)

€ = ?m*(a + 3b)

avec a et b deux constantes, sans dimension, arbitraires et ¢ défini positivement. On observe qu’effecti-
vement la masse du graviton donne lieu a la constante cosmologique A.

Gravité scalaire-tenseur-vecteur

Dans la théorie de gravité scalaire-tenseur-vecteur (STVG pour scalar-tensor-vector gravity, appelée
également MOG pour Modified Gravity), I’existence d’un champ vectoriel est postulée tandis que les
constantes sont promues au rang de champs scalaires dynamiques. Loin des sources la gravitation est
plus élevée qu’usuellement - ce qui permet d’expliquer les courbes de rotation des galaxies - mais a
petite échelle I’effet est contrebalancé par le champ vectoriel qui produit une force répulsive [69]. La
principale conséquence est que la loi d’accélération est modifiée. Ce qui est intéressant c’est que cette
derniere est en concordance avec les courbes de rotation des galaxies, sans avoir a ajouter de la matiere
noire non baryonique. Pour des champs gravitationnels faibles, un échange de boson massif de spin
1 (dont le couplage et la masse varient en fonction de la distance) entraine un potentiel de Yukawa
répulsif. Pour décrire cette théorie, I’action va €tre modifiée par 1’ajout de termes contenant le champ
vectoriel ¢,. Les nouvelles équations de champ qui apparaissent possédent une solution statique et
sphérique [70] décrite par

2
f(r)zl_z_MJrM‘
r r

La force de répulsion gravitationnelle se retrouve dans le terme «, la charge de cette force s’écrit

0 = \JaGyM (3.99)

avec G = Gy(1 + @) (ici, Gy dénote la constante de Newton). Cette solution possede deux horizons
pour a < a. = 0.67.

(3.98)

Gravité Horava-Lifshitz

Etant donné que la RG n’est pas renormalisable, I’idée de la théorie de Horava-Lifshitz [71] est de
rendre la théorie renormalisable en ajoutant des termes d’ordre supérieur de courbure et de dérivées
temporelles dans 1’action de Einstein-Hilbert. Une conséquence est que I’invariance de Lorentz est
brisée a I’échelle ultraviolette mais peut €tre retrouvée dans I’infrarouge. Une solution de trou noir
s’écrit [72]

2(r? — 2Mr + )

7+ 28 + 8BMr

avec B = 1/(2w), w étant une constante de couplage qui apparait dans les termes d’ordre supérieur de
I’action.

fr) = (3.100)
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Correction 7

Dans [73], une métrique avec une correction quantique effective est construite. Pour modéliser
cette derniere, les contraintes a respecter sont les points suivants :

— reproduire la limite Newtonienne avec une correction en 7 (notamment dans le potentiel Newto-
nien [74] ),

— reproduire les résultats sur I’entropie des trous noirs,

— les géodésiques des particules test dans cette métrique doivent €tre cohérentes.

Le résultat final est décrit par la fonction

f=1- 2 2
r
Des indications amenent a considérer le parametre y comme étant négatif. Plusieurs valeurs sont
proposées dans la littérature, la derniere étant v = —41/10. Dans I’article ci-dessous, on a choisi
différentes valeurs espacées linéairement dans I’intervalle des y proposés.

: (3.101)

73

Gravitation quantique a boucles

Ici, nous considérons le métrique construite dans le cadre de la LQG, qu’on a déja considéré dans
la section 3.2. Nous rappelons que la métrique s’écrit

2
ds* = G(r)df* — % — H(r)dQ?, (3.102)
_ _ 2
Gry=" ”)(:4 :;Zz(r * ) (3.103)
_(r=rr—rort
F(r) = Crr T (3.104)
2
H() = 1 + 20 (3.105)
I

avecr, = 2m, r_ =2mP?, r, = \rir_, P = (N1 +e—-1)/((V1 + €+ 1) avec € = y3, ag = Ain/87
avec A,,;,, I’aire minimale du spectre de la LQG.

3.3.6 Les résultats

Dans le modele de gravité massive (Figure 1), on observe que globalement la fréquence des QNMs
augmente avec la masse du graviton. L’amortissement augmente également 1égerement avec la masse,
mais pas de facon significative. Nous observons également que la pente entre les harmoniques n varie
quand la masse du graviton augmente. Dans le modele scalaire-tenseur-vecteur (Figure 2), on a un
comportement similaire au cas précédent. La valeurs réelle des QNMs augmente lorsque @ augmente
mais il n’y a aucun changement pour la valeur imaginaire. La pente entre les harmoniques reste
cependant la méme pour les différentes valeurs de a. Dans le modele de Horava-Lifshitz (Figure
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3), on observe également un déplacement des QNMs vers des plus grandes valeurs réelles quand 8
augmente. Mais on remarque également, qu’en parallele, la partie imaginaire va diminuer ce qui est
caractéristique de cette théorie. On observe pas de changement sur la pente des harmoniques. Dans
le modele avec une correction quantique en 7 (Figure 4), on observe que contrairement aux modeles
précédents, la déviation par rapport a Schwarzschild se fait vers la gauche. Etant donné que y apporte
une contribution négative a la métrique plus la valeur absolue de y est élevée plus la partie réelle des
QNDMs diminuent. Ainsi, ce modele se distingue des autres. De plus la pente des harmoniques varie.
Dans le modele des trous noirs quantiques a boucles (Figure 5), on a un léger décalage des fréquences
vers la droite et la pente des harmoniques reste inchangée en fonction de ¢, qui caractérise 1’échelle de
discrétisation.

Cet article a été publié dans Universe [75].
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Abstract: As gravitational waves are now being nearly routinely measured with interferometers, the
question of using them to probe new physics becomes increasingly legitimate. In this article, we rely
on a well established framework to investigate how the complex frequencies of quasinormal modes
are affected by different models. The tendencies are explicitly shown for both the pulsation and the
damping rate. The goal is, at this stage, purely qualitative. This opportunity is also taken to derive
the Regge-Wheeler equation for general static and spherically symmetric metrics.

1. Introduction

General relativity (GR) is our best theory of spacetime. While the Lovelock theorem [1] ensures
that it cannot be easily modified, there are quite a lot of attempts to relax some hypotheses and build a
deeper model to describe the gravitational field. From effective quantum gravity to improved infrared
properties, the motivations to go beyond GR are countless. So are the situations, both in astrophysics
and cosmology, where extended gravity theories can, in principle, be tested. In practice, reaching the
level of accuracy useful to probe the relevant range of parameters is obviously far from trivial. In this
article we focus on a specific aspect of gravitational waves that would be emitted during the relaxation
phase of a deformed black hole (BH).

We will consider quasinormal modes associated with the ringdown phase of a BH merger.
The modes are not strictly normal due to energy losses of the system through gravitational waves.
The boundary conditions for the equation of motion are unusual as the wave has to be purely outgoing
at infinity and purely ingoing at the event horizon. The time component of the radial part reads
(an introductory review can be found in [2]):

e—iwt — e—i(wR-i-iwl)t, (1)

the complex pulsation w being split into a real part wg, which corresponds to the frequency, and
an imaginary one wj, which is the inverse timescale of the damping. Stability requires w; < 0.
While real-life BHs are spinning, we focus on Schwarzschild solutions in this article. The details of
these predictions can not be used to directly compare with observations. We, however, expect the
general tendencies and orders of magnitudes to remain correct, as they can be checked for the general
relativistic case in [3].

Whether one considers “axial” or “polar” perturbations, the linearized Einstein equations lead
to wave equations with different potentials. In GR, the (so-called Regge-Wheeler) potential for axial

perturbations is:
2MN [L(£4+1) oM
ViC(r) = (1 - r) {72 - 1,3:| , 2)
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while the (so-called Zerilli) one for polar perturbations is:

2 2M
V(Z(T)—rg’(l—r>><

IM3 + 3a>Mr? + a*(1 4 a)r® + 9IM?ar
(BM + ar)? ’

©)

where a = ¢({+1)/2 — 1. Throughout the paper we use Planck units. In the purely gravitational sector,
one needs ¢ > 2. Interestingly, both those equations have the very same spectrum of quasinormal
modes (QNMs). This property, called isospectrality [4], is not always true in modified gravity (see [5]
for an extension and a discussion of the original proof). Basically, quasinomal modes are described by
their multipole number ¢ and their overtone number 7. The fundamental quadrupolar mode (n = 0
and £ = 2) for a Schwarzschild BH in GR is given by Mw ~ 0.374 — 0.0890:.

There are many different ways to calculate the QNMs: Continued fractions, Frobenius
series, Mashhoon’s method, confluent Heun’s equation, characteristic integration, shooting,
Wentzel-Kramers-Brillouin (WKB) approximations, etc. In this article we focus on the last approach.
For most models considered here, the QNMs have already been calculated in previous studies.
However, this has most of the time been done for s = 0 or s = 1, not for s = 2 as we have done it
here. More importantly, it is in addition very useful to rely on the very same method to investigate all
models so that the differences underlined are actually due to physical effects and not to numerical
issues. Even when the same approach is considered, the way it is implemented is often different
enough, between articles, so that it is hard to directly compare the results. This is why we have
here tried to methodically consider several modified gravity models with a well controlled WKB
approximation scheme used in the same way in all cases so as to compare the tendencies between
modified gravity proposals. This is not mandatory for this qualitative step but this will become useful
in future quantitative studies.

The determination of the complex frequencies of QNMs is difficult (see [6,7] for historical reviews
and [8,9] for results based on numerical approaches). This work is based on the WKB approach
described in [10]. Following the pioneering work in [11], the WKB method for QNMs was developed
in [12-15]. This formalism leads to fairly good approximations, especially for high multipole and low
overtone numbers. In the following, we restrict ourselves to n < [ and use the sixth order WKB method
developed by Konoplya [10] (see also [16-18]). This allows one to recast the potential appearing in the
effective Schrodinger equation felt by gravitational perturbations in a complex but tractable form.

The aim of this introductory paper is to investigate how several modified gravity theories impact
the QNMs at the qualitative level. There are several ways to go beyond GR: Extra dimensions, weak
equivalence principle violations, extra fields, diffeomorphism—invariance violations, etc. Beyond those
technicalities, there are strong conceptual motivations to consider extended gravity approaches, from
the building of an effective quantum gravity theory to the improvements of the renormalisation
properties, through the implementation of a dynamical cosmological constant. Among many others,
examples of recent relevant works on QNMs can be found in [19-22].

2. Perturbation Dynamics

The QNMs are solutions of a perturbation equation with the specific boundary conditions given
in the previous section. The radial and angular parts can be separated. The radial part is governed by
a Schrodinger-like equation:

iz
Frins V(r)Z =0, 4)
where Z is the radial part of the “perturbation” variable, assumed to have a time-dependance ¢/, and

r* is the tortoise coordinate. For a metric such that:
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ds®> = f(r)dt* — f(r)~dr* — r*d6* — r*sin 0d¢?, )

the tortoise coordinate is defined by:

dr* = ——dr.
r N (6)

It tends to —oo at the event horizon and to +-cc at spatial infinity.

As explained previously, BH gravitational perturbations can be of two different types
distinguished by their behavior under a parity transformation. For an angular momentum [, axial
perturbations transform as (—1)! under parity, while polar perturbations transform as (—1)"+1.
This leads to the two different potentials in Equation (4). The potential for the gravitational
axial perturbations reads in full generality (see [2] and references therein) for the metric given by

Equation (5):

V(T) — f(i’) <)&+2(f(7’) — 1) _ f/(i’)> . (7)

72 T

In this work we will not consider the isospectrality-violation issues and we will focus only on
such perturbations. It should anyway be kept in mind that, in principle, isospectrality might not hold.
The boundary conditions can be expressed as:

Z e Ty o, 8)

Z~e S foo. 9)
We shall now derive the Regge-Wheeler equation for the more general (spherical and static) metric:

ds*> = A(r)dt* — B(r)"'dr? — H(r)d6* — H(r) sin® d>¢. (10)
For this metric, the tortoise coordinate is defined by:

d d
= VABL. (11)

The general form of an axisymmetric metric can be written as [4]:

ds? = e2(dx0)? — e2¥(dx! — odx® — godx® — g3dx3)?
—e?#2(dx?)? — &3 (dx3)?, (12)

1

where t = 9, ¢ = x!, 7 = x2 and 6 = x3. For the metric given by Equation (10), the correspondence is:

e® = A(r), e %2 =B(r),
e = H(r), e* = H(r)sin0, (13)

A perturbation of this kind of spacetime is described by o, g, and g3, assumed to be first order
quantities, and by infinitesimal increments, dv, duy, du3, of the other quantities. We focus here on axial
perturbations. The point is to linearize the field equations about the solution given by Equation (10),
considering components where ¢, g2 and g3 are only functions of ¢, x*> and x°. The equations governing
0, g2 and g3 are described by the vanishing of the Ricci tensor components:
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Ry =Ry3 =0. (14)

For Equation (12), one has [4] :

Ry = %e_zw_v_m X
(2771241 Qpp) g — (X125 Qn) 5], 15

with:
Qu = Qab — 9ba and Qg = Ga0 — O for a,b=2,3. (16)

where the comma indicates the derivative. The notation Qy, is used to mean —Q,9. The component
R13 is also given by Equation (15) by switching indices 2 and 3.

The perturbed field equations are obtain by 6R,s = 0. After replacing v, yiz, i3 and ¢ by their
expressions, 6R1p = 0 leads to:

(Hsin® 0V ABQp3),3= —H?sin® 64/ ggm. (17)
By defining:
Q = VABHQy3sin’ 6, (18)
one obtains:
A 1 0Q
D ——— . 1
VB i2sidg 90~ 2200 (19)
For 6Rq3 = 0, one is led to:
VAB 0
— o _ —Q30,0- (20)
Hsin® @ or
We assume that perturbations have a time dependance given by: ¢/’!. This implies that Equations
(19) and (20) read:
A 1 90 5 .
VB o as T ey
VAB 0Q 2 .
— =w iwo 3. 22
Hsin3 9 or 13 i3 @)

Taking the derivative of Equation (21) with respect to 6 and the derivative of Equation (22) with
respect to 7 and combining the results leads to:

. 3.0 1 0Q H?B o (VABaQ QH
399 9 H™b J (VADbIY 2 0

sin 989<Sin3989>+ A ar( H 81’)+U a Y (23)

As suggested in [4], one can then separate the variables r and 6 using:
Q(r,0) = R(r)C3*(0) (24)

with C}/' the Gegenbauer function satisfying:

4 Gnemg L n(n +2m)sin®" 9 ) C™(9) = 0 (25)

a6 a6 " '

Inserting Equation (24) into Equation (23), one is led to following radial equation:
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HZBE’(VABaR(”)) +E(72;42R

Aor\ H or A (r) =0, (26)

where 2 = (I — 1)(I + 2). Defining Z so that R = v/HZ and using the tortoise coordinate, we are led
to a Schrodinger-like equation:

a2z

- 2 — —
T T (= V()2 =0, (27)
where the potential is:
1 (dH\?> 12A 1 & [ ~
V(r)_2H2<dr*> TH \/Hd7*2< H)' @

The potential reduces to Equation (7) for A(r) = B(r) and H(r) = r?. This derivation is useful to
calculate QNMs for general static and spherically symmetric metrics.

3. The WKB Approximation

The WKB approximation [12-14] is known for leading to good approximations (compared to
numerical results) for the QNMs. The potential is written using the tortoise coordinate so as to be
constant at r* — 0 (which represent the horizon of the BH) and at #* — +oo0 (which represents spatial
infinity). The maximum of the potential is reached at r;. Three regions can be identified: Region I
from —oo to rq, the first turning point (where the potential vanishes), region II from rq to 7, the second
turning point, and region I1I from r, to +oo. In region I1, a Taylor expansion is performed around r.
In regions I and 111, the solution is approximated by an exponential function:

Z ~ exp [i Y e”Sn(x)], € —0. (29)
n=0

This expression can be inserted into Equation (4) so as to obtain S; as a function of the potential
and its derivative. We then impose the boundary conditions given by Equation (9) and match the
solutions of regions I and I1I with the solution for region II at the turning points r; and r,, respectively.
The WKB approximation has been usefully extended from the third to the sixth order in [10].

This allows one to derive the complex frequencies as a function of the potential and its derivatives
evaluated at the maximum. For the sixth order treatment, one is led to:

6
wzzvo—i./—2v5/<]§/\j+n+;>, (30)
where the expressions of the A;s can be found in [10]. In the following, we use this scheme to compare
different modified gravity models and we present results only in the range of validity of the WKB
approximations.

Interesting recent considerations on the convergence on the WKB series are given in [23].
Details on the expansion parameter used in this work can be found in [17]. The consistency of
the WKB approximation has been checked for the presented results.

4. Modified Gravity Models and Results

Throughout this section we investigate some properties of the QNMs for several extended gravity
approaches. We pretend in no way to do justice to the subtleties of those models and, when necessary,
we explicitly choose specific simplified settings to make the calculations easily tractable.

As we focus on phenomenological aspects, the more interesting mode is the fundamental one:
n = 0and | = 2. We therefore focus on a few points around this one (keeping in mind that the accuracy
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is better for higher values of [). In all the figures, the lower overtone # is the one with the smallest
imaginary part.
We first consider models with a metric of the form:

ds? = f(r)dt> — f(r)~1dr* — r*d6? — r* sin® 0d2¢, (31)

and then investigate a model with two different metric functions, using the result obtained in
Equation (28).

4.1. Massive Gravity

In GR, the graviton is a massless spin-2 particle. One of the first motivations for modern massive
gravity—which can be seen as a generalization of GR—was the hope to account for the accelerated
expansion of the Universe by generating a kind of Yukawa-like potential for gravitation [24]. The initial
linear approach to massive gravity contained a Boulware-Deser ghost, which was cured in the dRGT
version [25-28]. Massive gravity also features interesting properties for holography (see, e.g., [29]).

Starting from the action:

S= ﬁ /d4x¢?g <R+m2L{(g,4>”)>, (32)

where R is the Ricci scalar and U is the potential for the graviton, the following black hole solution can
be derived [30,31]:

2M  Ar?
f(r):1—7+7r+ryr+e, (33)

where A, 7 and € are, respectively:

A =3m*(14+a+0),
v = —cm?(1 +2a + 3b),
€ = c?m*(a +3b), (34)

with a and b being two dimensionless constants and ¢ being positive. It should also be pointed out
that a positive value of y might raise consistency issues [31].

The results are presented in Figure 1. The values chosen for the constants do, of course, change
the amplitude of the displacement of the QNMs. The global trend, which is the point of this study,
however, remains the same. Increasing the graviton mass m tends to increase the real part of QNMs,
that is the frequency of the oscillations. The difference in frequency between the fundamental and the
first overtone also increases with m. The effect on the imaginary part is hardly noticeable on the plot,
even though a slight increase, which is actually 50% less important, in relative variation, than the shift
in frequency, should be noticed. The values considered here for the mass are, of course, way out of the
known bounds, but this is clearly not the point. As a specific feature, one can notice that the frequency
shift due to massive corrections decreases for higher overtones. The shift patterns are mostly the same
whatever the multipole number considered.
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Massive Gravity
-Im(w)
0.8:'

0.7}

0.6}

0.5}
0.4}
0.3}
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Figure 1. Quasinormal modes (QNMs) in massive gravity. The left block is for I = 2, the middle

Re(w)

one corresponds to | = 3 and the right one is for | = 4. The dark points correspond to the
Schwarzschild QNMs. The arbitrary constants 4, b and c have been taken to one. From left to right:
m = {15,30,45,60,75} x 1073,

4.2. Modified Scalar-Tensor—Vector (STV) Gravity

The scalar-tensor-vector modified gravitational theory (MOG) allows the gravitational constant,

a vector field coupling, and the vector field mass to vary with space and time [32]. The equations

of motion lead to an effective modified acceleration law that can account for galaxy rotation curves

and cluster observation without dark matter. While it has recently been much debated and put under

pressure, the theory is still worth considering seriously. We consider the field equation for the metric
tensor [33] :

Ryy = —8nGTypuy, (35)

where the gravitational coupling is G = Gy(1 + «), with Gy being the Newton’s constant.
The gravitational strength of the vector field ¢, (spin 1 graviton) is Q; = /aGyM. With By, =
9Py — dyPy, the energy-momentum tensor for the vector field is :

1 1
Ty = = 1~ (By"Buw — 78wB*" Bap), (36)

with the constant w of [32] being set to one. Solving the vacuum field equations:

V,B" = \/iigav(, /—gBM") =0, (37)

and:
VeBuy + VyuBye + VyBoy =0, (38)

with the appropriate symmetry leads to the metric:

fr)=1-——4 = (39)
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We focus on the case where the field equations for By, are non-linear, as the phenomenology
is then richer, and we consider the relevant choice & < a, = 0.67 where there are two horizons and
appropriate potential behavior for the WKB approximation to hold. An up-to-date investigation of
QNMs in MOG can be found in [34].

The results are given in Figure 2. The imaginary part of the QNM:s is nearly the same whatever
the value of a: The modified metric has no effect on the damping rate. However, increasing a does
increase of the real part, that is the frequency. The effect is important for values near the critical value
«c. The slope of the Imaginary part versus the real one, at a given I for different values of , is nearly
independent of «. This slope is not directly observable but it shows how the structure of the QNMs
changes with the overtone number. The curves remain here parallel one to the other: This means that
increasing the deformation parameter does not change the frequency shift between overtones.

Modified Gravity

-Im(w)
0.8t
0.7}
0.6}

0.5}

o.4§— \
I
0.1 . | i i

0.7 0.8 0.9
Figure 2. QNMs in modified SVT gravity. The left block is for | = 2, the middle one corresponds to

I = 3 and the right one is for I = 4. The dark points correspond to the Schwarzschild QNMs. From left
to right: & = {1,2,3,4,5} x 1071

e

e(w)

4.3. Hotava-Lifshitz Gravity

Hoftava-Lifshitz gravity bets on the fundamental nature of the quantum theory instead of relying
on GR principles. It is a renormalizable UV-complete gravitational theory which is not Lorentz
invariant in 3 + 1 dimensions [35]. The relativistic time with its Lorentz invariance emerges only at
large distances. Black hole solutions have been found [36-38] and QNMs were studied [39].

Using the ansatz:

dr? 2¢ 102 .2 2
—— +r7(d6” + sin” 0d¢p~) (40)

2 N2(p) A2
ds® = N()dt+f(r)
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in the action, one is led to the Lagrangian:

_— K?u?N A=1_p 2Mf-1),
b= 8(1—37\)\/f‘< 7/ ! )
o _1)\2
24 132(f 1) 2w(1frf’)>, )

where w = 8u?(3A — 1) /2. For A = 1, the solution is:

_2(rP—2Mr+p)
r2 428+ /r* + 8pMr’

with g = 1/(2w), w being the deformation parameter enterring the action given in [37]. There are two
horizons for M? > B.

The results are given in Figure 3. The frequency increases with an increase of B. Interestingly,
the imaginary part of the overtones is highly sensitive to B. This remains true for higher multipoles.

N% = f(r) (43)

The relative variation of the imaginary part is nearly the same whatever the overtone number.
It therefore becomes large in absolute value for high n values.

Horava-Lifshitz
-Im(w)
0.8:‘

0.7}

N \

Figure 3. QNMs in Horava-Lifshits gravity. The left block is for I = 2, the middle one corresponds to
I = 3 and the right one is for [ = 4. The dark points correspond to the Schwarzschild QNMs. From left
to right: B = {15,30,45,60,75} x 102,

Re(w)

4.4. h Correction

It has been known for a long time that quantum corrections to the Newtonian gravitational
potential can be rigorously derived without having a full quantum theory of gravity at disposal (see,
e.g., [40-44] to cite only a few works from a very long list). Recently, a quite similar approach was
developed [45] requiring that the quantum mechanically corrected metric reproduces the corrected
Newtonian limit, reproduces the standard result for the entropy of black holes including the known
corrections and fulfills some consistency conditions regarding the geodesic motion.

The resulting metric is:
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f(r)zl———!—’yr—B. (44)

We use, as previously, natural units and the coefficients of the last term, v, is proportional to 7 in
these models. It is worth noticing that there has been a long controversy about the value and the sign
of the 7y factor. From the phenomenological perspective, we do not fix it to a particular value but we
keep it negative, in agreement with the latest expectations.

The results are given in Figure 4. For large values of v, the effects are noticeable on the frequency.
It is remarkable that, from our analysis, the real part of the complex frequency is only decreased,
which is not the case for the other models that have been considered in this study. The higher the
absolute value of 7, the larger the difference of frequency between the fundamental and the overtones.
This effect, however, remains quite subtle.

Quantum Correction
-Im(w)
0.8t

0.7}
0.6}
0.5
0.4f
0.3}
N \\\\ \
0.1} \o
1 1 1 1 1 1 J Re ( w)
0.3 0.4 0.5 0.6 0.7 0.8 0.9
Figure 4. QNMs in quantum-corrected gravity. The left block is for I = 2, the middle one corresponds
to I = 3 and the right one is for | = 4. The dark points correspond to the Schwarzschild QNMs.
From left to right: v = {-5, —4, -3, -2, —1}.

4.5. LQG Polymeric BH

Loop quantum gravity (LQG) is a non-perturbative and background-independant quantum theory
of gravity [46]. In the covariant formulation, space is described by a spin network [47]. Each edge
carries a “quantum of area”, labelled by a half integer j, associated with a irreducible representations
of SU(2). Each node carries a “quantum of space” associated with an intertwiner. A key result is that

the area is quantized according to:
A(j) = 8mypr/j(i +1), (45)

with ypj being the Barbero-Immirzi parameter. Black holes are usually described in LQG through an
isolated horizon puncturing a spin network [48] and the phenomenology is very rich, depending on
the precise setting chosen [49]. We focus here on the model developed in [50], as this is the one leading
to metric modifications outside the horizon, where a regular lattice with edges of lengths J; and J,
is considered. Requiring the minimal area to be one derived in LQG, one is left with only one free
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parameter 6. From this minisuperspace approximation, a static spherical solution can be derived and
is given by:

dr?
ds* = —G(r)dt* + 0] + H(r)dQ?,
C(r=rp)(r—ro)(r+1)?
G(r) = - 4 + a2 ’
=) -
R AL e
HO) =P+ %, (46)

where dQ? = d6? + sin? 9d¢>2, r4+ = 2m and r_ = 2mP? are the two horizons, and r, = T+7— =2mP,
P is the polymeric function defined by P = (vV1+¢€2 —1)/(V1+ €2+ 1) with € = 3;d, and the
area parameter ag is given by ag = Ay, /87, Apiy being the minimum area appearing in LQG.
The parameter m in the solution is related to the ADM mass M by M = m(1 + P)2.

The results are given in Figure 5. The damping rate does not depend at all on the polymerization
parameter. The real part of the complex frequency does, however, first decrease with 6. Noticeably, the
slope is unchanged, and varying the deformation parameter just leads to a horizontal translation of the
QNM frequency in the complex plane. This means that the frequency shift between the fundamental
and the overtones does not depend on the amplitude of the quantum gravity corrections, as in modified
gravity. Interestingly, for higher values of J, the frequency begins to increase. This is the only model
considered in this study with non-monotonic behavior. For § ~ 107%7 the “polymerization” effect
nearly exactly compensates the “area discretization" effect and one recovers the GR frequencies (and
damping rates).

LQG Polymer

-Im(w)
0.8t
0.7}
0.65—
0.5
0.45—
0.35—
E \
0.2 \
S |
0.1}
- ' ' ' ' ' Re(w)
0.4 0.5 0.6 0.7 0.8

Figure 5. QNMs in loop quantum gravity (LQG) (polymer black holes (BHs)). The left block is for
I = 2, the middle one corresponds to I = 3 and the right one is for [ = 4. The dark points correspond
to the Schwarzschild QNMs. The parameters are a9 = 1 and from left to right: e = 107" with
xe{-1,-08,-0.6,—04,—0.2}.
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5. Conclusions

This study shows the evolution of the complex frequency of quasinormal modes of a
Schwarzschild black hole for the fundamental and the first overtones for a few multipole numbers.
We have considered massive gravity, STV gravity, Hofava-Lifshitz gravity, quantum corrected gravity
and loop quantum gravity. All the results were derived using the very same WKB approximation
scheme which makes a meaningful comparison possible. It will be especially useful for future
quantitative studies.

Obviously, distinguishing between those models with observations is more than challenging.
First, because there exist degeneracies, for given overtone and multipole numbers, between the
models—when taking into account that the values of the parameters controlling the deformation are
unknown. Second, because the intrinsic characteristics of the observed black holes are also unknown,
which induces other degeneracies. In addition, this study should be extended to Kerr black holes,
which also add some degeneracies in addition to the complexity.

Some interesting trends can, however, be underlined. For all models, the effects of modifying the
gravitational theory are more important for the real part than for the imaginary part of the complex
frequency of the QNMs. Stated in another way, the frequency shift is more important than the change
in the damping rate. Obviously, it does not make sense to quantitatively compare the results from
various models, as the deformation parameters are different. However, the “trends” are clearly specific
to each studied theory and there is no need to define comparable “steps” in the deformation parameters
(which do not have the same units anyway) to draw significant conclusions about the directions in
which the different models considered deviate from GR. In addition, the sign of the frequency shift,
and its dependance upon the overtone and multipole numbers, is characteristic of a given extension of
GR. The accurate patterns are never the same, which is an excellent point for phenomenology. It can
basically be concluded that a meaningful use of QNMs to efficiently investigate modified gravity
requires the measurement of several relaxation modes. This is in principle possible [51], but way
beyond the sensitivity of current interferometers. If features beyond GR were to be observed, the
direction of the frequency shift in the complex plane would already allow the exclusion of models, as
this article shows. The goal of this study was not to perform a detailed analysis of the discrimination
capabilities of gravitational wave experiments, it simply aimed at exhibiting the main tendencies for
currently considered extended gravity models, as an introduction to this special issue on “probing
new physics with black holes”.
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Chapitre 3. Les trous noirs 145

3.3.7 Les modes quasi normaux pour un modele jouet de trou noir avec des
effets quantiques cumulatifs

Nous avons vu précédemment que des effets quantiques pouvaient exister et se cumuler en dehors
de I’horizon. Dans cet article, nous étudions si ces effets quantiques pourraient étre percus dans
les modes quasi-normaux. Pour cela nous investiguons un "modele jouet" développé dans [76]. On
considere un trou noir de Schwarzschild, avec des effets quantiques qui ont une empreinte sur la
métrique a I’extérieur de 1’horizon des événements. Le parametre quantique qui décrit ces effets est

q(r) = IpRt =

M( 2M)1/2z (3.106)

el il
r3 r

avec R le scalaire de Kretschmann, décrivant I’échelle de courbure, 7 le temps propre et ¢ le temps
de Schwarzschild. Ce parametre est maximal a la distance r = 2M(1 + é). Les effets quantiques sont
représentés par une Gaussienne centrée en ce point telle que la métrique modifiée (3.92) s’écrit

£ = (1 - ZTM)(l s AT )2. (3.107)

Cette forme particuliere de métrique effective est justifiée seulement pour tenter de dépeindre les effets
quantiques. Le parametre u décrit la distance ou les effets seraient maximum. Le parametre o désigne
I’écart-type qui caractérise 1’étalement de des effets sur la métrique. Le but de cet article est de voir la
tendance générale, qualitative, que les effets quantiques pourraient présenter par rapport a la théorie
classique. Pour ce faire nous avons calculer les QNMs pour la métrique (3.107) avec la méthode WKB
au 6eme ordre.

Dans la Figure 1, on observe la valeur des QNMs pour Schwarzschild et pour le modele jouet consi-
déré. La différence relative des fréquences propres entre ces deux modeles Re(Aw/w) est représentée
sur la Figure 2. Elle est donnée en fonction de u et o. La différence est maximale lorsque la Gaussienne
est centrée en yu = 3M. Ceci n’est pas surprenant étant donné que cela correspond a la sphere de photon
(Ie maximum du potentiel). Dans la Figure 3, on observe le déplacement relatif de la partie imaginaire
Im(Aw/w). L’amplitude A de I’équation (3.107) représente le poids de I’effet quantique, qui sera
d’autant plus grand que I’accumulation est pérenne. On a pu vérifier que le déplacement des QNMs
s’effectue de facon linéaire par rapport a A. On Re(Aw/w) = xA et Im(Aw/w) = yA. On observe sur
les Figures 5, 6, 7 et 8§ comment varient x et y en fonction de £, pour différentes valeurs de u et de o
Sachant que la différence relative et que les coefficients de pente sont de 1’ordre de 1, I’amplitude est
du méme ordre également. L’amplitude A peut étre grossierement apparentée au parametre quantique
q et les effets quantiques sont maximums pour
3 1 ¢
anas = (3 )y 5775 (3.108)
En fixant r a I’4ge de I'univers, on remarque que les effets quantiques sont observables pour un trou noir
de 1078 masse solaire. Les trous noirs qu’on observe actuellement sont bien plus massifs cependant il
est intéressant de noter que les effets quantiques apparaissent pour des masses bien plus élevées que
celle de Planck.

Cet article a été publié dans Physics Letters B [77].
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1. Introduction

Naively, quantum gravity is expected to show up at very small
physical scales, around the Planck length (see [1] for a recent re-
view of the phenomenology of quantum gravity). This is indeed
where predictions become precise and might lead to a clear dis-
crimination between models. In the black hole (BH) sector, it has
therefore been widely believed that quantum gravity effects are
confined to the vicinity of the central singularity. This is clearly
the most conservative and natural hypothesis. In such a case, quan-
tum modifications to the spacetime structure are screened by the
event horizon and the external observer is not expected to no-
tice any measurable effect, at least for macroscopic black holes. In
this article, we focus on a different perspective, namely the possi-
bility that quantum corrections to the metric “leak” outside the
horizon, even for stellar or supermassive BHs. This is obviously
motivated by phenomenological reasons. There are, however, quite
good physical motivations to consider quantum gravity effects well
beyond the vicinity of the singularity. Studying their impact, in a
very simple model, on the ringdown phase of BHs is the purpose
of this study.

It has recently been argued in [2] and [3] that the observa-
tion of black holes with the Event Horizon Telescope might reveal
quantum gravity effects. Consistency between general relativity
(GR) and quantum mechanics (QM) might require quantum effects

* Corresponding author.
E-mail address: barrau@in2p3.fr (A. Barrau).

https://doi.org/10.1016/j.physletb.2019.06.033

at very large scale. Interestingly, the authors suggest that the time
dependence of the shape and size of the shadow that a black hole
casts on its surrounding emission might be seen around the BH
at the center of the M87 galaxy (which has recently been effec-
tively observed [4,5]). On the extreme other side, in the firewall
proposal, the usual geometry might break down a Planck length
away from the horizon [6,7]. Many other possibilities with strong
metric modifications outside the horizon (or what replaces it) have
been considered: gravastars [8], fuzzballs where string theory con-
figurations replace the smooth manifold outside the horizon [9], or
massive remnants [10]. The study of maximally entangled states of
black holes has even shed a new light on the possibility of more
drastic geometric effects far away from the horizon [11]. To give
a final example, bouncing black holes - with quite different time-
scales - are also intensively considered [12,13].

In this article, we focus on a different approach which is based
on heuristic considerations [14]. This is to be considered as a toy-
model or a kind of “prototype” of what could be expected in
optimistic quantum gravity scenarii. Our aim is to calculate the
displacement of quasinormal modes and quantify the amplitude
of the metric modification that would be required for an experi-
mental detection. This might be used beyond this specific model.
Focusing only on non-rotating BHs we do not search for accurate
results, that would be meaningless at this stage, but just try to es-
timate the orders of magnitude for future studies. In the next sec-
tion we briefly explain the method used to evaluate the frequency
and amplitude of the ringing modes of BHs. Then, we explain the
model used and explicitly show our results.

0370-2693/© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by

SCOAP3.
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2. Quasinormal modes

Quasinormal modes (QNMs) are the decaying modes of black
holes. As BHs are vacuum solutions of the Einstein field equation,
QNMs can be regarded as the intrinsic vibrational and damping
properties of spacetime itself. After a BH has been perturbed, three
phases can be distinguished: the transient event, the quasinormal
mode ringdown, and the damped tail.

The ringdown phase of a BH does not lead to precisely “nor-
mal” modes because the system looses energy through gravita-
tional waves. The wave equation for the metric perturbation is
unusual because of its boundary conditions: the wave should be
purely outgoing at infinity and purely ingoing at the BH horizon.
The radial part of the oscillation can be written (see [15] for an
intuitive introductory review) as ¢ o e~i®t = p~i@rH@N \here
the complex pulsation @ decomposes in a real part wg and an
imaginary part wj, which is the inverse timescale of the damping.
The process is stable only when w; < 0. Technically, the calculation
of QNMs is quite reminiscent of the one of greybody factors (see,
e.g., [16] for a recent derivation with a quantum-gravity modified
metric) which describes the scattering of quantum fields in a BH
background.

The perturbations of the Schwarzschild metric are of two differ-
ent types. One is called “axial”, it gives small values to the metric
coefficients that were zero, inducing a frame dragging and rota-
tion of the black hole. The other is called “polar” and gives small
increments to the already non-zero metric coefficients. They are
governed by two different equations. Perturbations with the axial
parity are given by the Regge-Wheeler equation with the potential

2M L+ 1 6M
V:}G(r)=<1_7> [g_ﬁ} , (1)

r2

while perturbations with the polar parity are given by the Zerilli
equation with potential

7 2 2m
Vg(r):r—3 1—T X

OM3 + 3a2Mr? + a2(1 + a)r® + 9M?2ar
X
(3M +ar)?

where a = ¢(£+1)/2—1. For gravitational perturbations, one needs
¢ > 2. Importantly, those equations have the same spectrum of
quasinormal modes. This isospectrality property [17] is not always
true in modified gravity (those considerations are well beyond the
scope of this article and will be studied in another paper [18]).
Quasinormal modes are characterized by their overtone number
n and their multipole number ¢. For example, the fundamental
quadrupolar mode (n =0 and ¢ = 2) for a Schwarzschild BH is
given by Mw =~ 0.374 — 0.0890i.

The calculation of quasinormal modes is nearly an art in itself
(see [19,20] for historical reviews and [21,22] for an example of
more recent results based on numerical approaches). In this study,
we use a WKB approach described in [23] for D-dimensional BHs.
The WKB method for QNMs was first introduced in [24-27] and
has then been widely developed. The WKB formalism is very use-
ful to obtain good approximations without having to rely on heavy
numerical techniques. The higher the multipole number and the
lower the overtone, the better the accuracy. We restrict ourselves
to n <[ as the approximations otherwise break down. Details on
the validity of the WKB approximation can be found in [24] but,
in any case, it requires the multipole number to be smaller than
(or equal to, if the accuracy requirement is relaxed) the overtone
number, otherwise the basic condition |k'| <« k? (where k? is the
potential of the considered effective Schrodinger equation) does
not hold.

9 (2)

In order to have a good numerical accuracy, we have used the
6th order WKB method developed by Konoplya. It is presented
in details in [23] (see also [28]). This allows one to recast the
potential appearing in the effective Schrodinger equation (‘(1127‘21’ =
k(x)¥(x)) felt by gravitational perturbations in the form

iko

where the terms A; are complicated - but known - expressions
given in [23] whereas kg stands for the maximum of the potential
and the derivative is to be understood with respect to the tortoise
coordinate r, (defined by dr, =dr/f where f is the metric func-
tion).

1
—A2—A3—A4—A5—A5=n+§, (3)

3. The model and its consequences

We now focus on the toy model developed in [14]. The idea
is very simple. The curvature scale is of the order of Iz ~ R~1/2,
where the Kretschmann scalar is R? := R, RVP*. If one esti-
mates the intensity of quantum gravitational effects through the
ratio of Planck length over the curvature scale, the result is van-
ishingly small for stellar or supermassive BHs. This vision however
disregards possible cumulative effects (also considered in [29-32]).
Dimensional arguments lead to the conclusion that the “quan-
tumness” of spacetime, integrated over a proper time 7, might
be given by q =Ip R t. As the proper time is related to the
Schwarzschild time by

=1y (4)
r

one is led to

M M\ 2
an="3 (1 - —) r (5)
r r

Throughout all this study, we use Planck units. The maximum of
this function is reached for r = 2M (1+ 1) and this is therefore
where quantum gravity effects could be expected to be intense.

The arguments previously given are obviously purely heuristic
and should be considered as a rough indication of what might hap-
pen when time-integrated quantum corrections are optimistically
considered. To remain quite generic, we parametrize a possible
metric modification outside the horizon by a simple Gaussian func-
tion:

ds* = — f(ndt? + f~1 (ndr? —r?dQ?, (6)
with

2M _eu?\?
fr)= (1 - T) (1 +Ae” 202 ) . (7)

This Gaussian truncation of the Schwarzschild metric is not jus-
tified by any serious theoretical arguments. It should be seen as an
effective metric encoding possible cumulative quantum effects out-
side the horizon. In addition it has the advantage not to shift the
event horizon position. By varying the parameters A, i, o, one can
explore different shapes and positions for the “quantum bump”. In
the following, we shall quantify the displacement of the real and
imaginary parts of the QNMs as a function of the parameters (u
and o are expressed in units of M).

The complex frequencies are displayed in Fig. 1. The black dots
correspond to the general relativistic case whereas the blue ones,
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Fig. 1. Quasinormal mode complex frequencies for different multipolar orders (from
£ =2 to £ =7 from the left to the right) and for different overtone numbers n
(increasing from the lower points to the upper points). The black dots on the left
correspond to the usual Schwarzschild case and the blue dots on the right corre-
spond to the modified metric with u/M =2.3 and 0 /M =1.5.
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Fig. 2. Relative displacement of the real part of the quasinormal mode (¢ =8,n=0)
as a function of u and o for A=0.01.

on the right, correspond to the considered modified case with yu =
(7/6)Rs, A=0.01, and 0 /M =1.5.

In Fig. 2, the relative displacement of the real part of the quasi-
normal mode (¢ =8,n =0) is displayed as a function of £ and o
for A =0.01. The trend does not radically depend on the specific
mode chosen. We have therefore plotted here a quite high multi-
polar number as the WKB approximation is more reliable in this
case. Interestingly — but not that surprisingly - it appears that the
maximum displacement is obtained for p ~ 3M. In the limit of
very large [, the value tends exactly to 3M, which corresponds to
the photon sphere and to the maximum of the potential. We have
also considered in this figure a case where the maximum of the
quantum correction is inside the horizon. Then, only the “tail” of
the Gaussian does affect the external spacetime. Even if the ef-
fect is smaller, it is still clearly non-vanishing. Interestingly the
2-dimensional surface is actually an ensemble of Gaussian func-
tions whose width on the p axis happens to be (non trivially)
equal to the considered value of o.

In Fig. 3, the relative displacement of the imaginary part of the
quasinormal mode (¢ = 8,n = 0) is displayed as a function of u
and o for A =0.01. For quite low values of o, the displacement
can be either positive or negative for different values of w. This
means that depending on its position the “metric bump” can either
increase on decrease the damping of gravitational waves.

Fig. 3. Relative displacement of the imaginary part of the quasinormal mode (¢ =
8,n=0) as a function of u and o for A=0.01.

Fig. 4. Relative displacement of the real part of the quasinormal mode (¢ =8,n=0)
as a function of w and o for A=0.01 (upper curve at i =3) and A= —0.01.

Finally, Fig. 4 shows the influence of the sign of the parameter
A. The displacement is basically symmetrical.

For most of the considered parameter space, the displacement
of the real part - that is of the frequency - is of the same order
than the one of the imaginary part - that is of the damping time.
The easiest effect to measure is probably a frequency shift which
happens to be always positive. Quite obviously, when the metric
perturbation is very wide, its precise position looses any notable
influence.

4. Observability

Although gravitational waves have been “detected” decades ago
thanks to the Hulse-Taylor binary pulsar, the recent LIGO-Virgo
detections (see [33] for the seminal paper and [34] for a first
catalogue) have completely changed the game. Real astrophysical
objects have spin and a modified Kerr solution should be con-
sidered, which is far beyond this prospective study. However, the
global trends are expected to be the same and the orders of mag-
nitude of the effects should be correct. Surprisingly, the very first
event measured, GW150914, has already led to a detection of the
fundamental quasinormal mode. It is not obvious to determine
precisely the accuracy at which the characteristics of the QNMs
are constrained by the current measurements. A relative accuracy
of 50% is a conservative estimate. In the future, the Einstein Tele-
scope (ET) should lead to a one order of magnitude better preci-
sion [35].

The most important parameter for this study is obviously the
constant A which determines the amplitude of the correction. We
have checked that the displacement of the QNMs complex fre-
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Fig. 5. Slope x of the real part of the quasinormal modes (n = 0) relative frequency
evolution as a function of A for 0/M = 1.5. The different curves correspond to
different values of p.
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Fig. 6. Slope y of the imaginary part of the quasinormal modes (n = 0) relative fre-
quency evolution as a function of A for o /M = 1.5. The different curves correspond
to different values of u.

quency is linear as a function of A over the interesting range. In
Fig. 5, we plot the slope of the real part of the QNM displacement
versus A (ie. the x parameter of Re(Aw/w) = xA) as a function
of ¢, for /M = 1.5. The different curves correspond to different
values of the position p of the quantum bump. In Fig. 6, the very
same thing is represented for the imaginary part of the QNM (i.e.
the y parameter of Im(Aw/w) = yA). In Fig. 7 and Fig. 8, the value
o /M =4 is instead chosen. It should be pointed out that in some
cases the lowest values of ¢ are not displayed as the WKB approx-
imation breaks down and calculations could therefore be dubious.

Let us now get an order of magnitude of how those estimates
relate to the toy model previously considered. As the x and y
slopes are of order one, and as the relative displacement that could
be measured is also of order one, this means that the A parameter
has to be of order unity so that the kind of quantum gravity effects
studied here could be measured. If A is assumed to be roughly
comparable to the “quantumness” q introduced in the second sec-
tion, one is led to the conclusion that q should be of order one. It
is easy to check that

3\’ [1 ¢
qmax = 7 T2 (8)

If one sets t to be the age of the Universe, the mass value re-
quired so that the quantum gravity effects can be observed is of
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Fig. 7. Slope x of the real part of the quasinormal modes (n = 0) relative frequency
evolution as a function of A for o /M = 4. The different curves correspond to differ-
ent values of L.
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Fig. 8. Slope y of the imaginary part of the quasinormal modes (n = 0) relative
frequency evolution as a function of A for o /M = 4. The different curves correspond
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the order of 108 (or less) solar mass, that is roughly the mass
of the Moon. Although far smaller than the mass of stellar black
holes, this value is not ridiculously small and way higher than the
Planck mass. An important property of the QNMs lies in the fact
that the relevant value is the one of Mw: it is the product of the
mass by the frequency that has a given (complex) value. The char-
acteristics of the QNMs of a lighter BH are exactly the same than
those of a heavier one, they are simply shifted to higher frequen-
cies by the mass ratio. Some quantum corrections might explicitly
break this scaling law. This is the case of the Hayward metric con-
sidered below.

It should first be pointed out that the work presented here aims
at being quite generic and is not directly linked with the proposal
[14]. The plots previously shown can be used to get an estimate
of the QNMs displacement for any model with a roughly gaussian
modification to the metric. In addition, and very speculatively, it
could be argued that the maximum possible time to be used to
evaluate the mass (the higher the time, the higher the mass) is
not necessarily bounded by the age of the Universe: in quantum
gravity a “bounce” is possible [36] and black holes could survive
during this bounce [37]. In principle it is therefore conceivable that
a time much larger than the inverse Hubble parameter could used
[38,39], leading to measurable quantum gravity effects in QNMs at
much higher masses
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5. The Hayward metric

Recently, an effective metric for Planck stars [13] has been pro-
posed in [40]. The idea is to cure two usual inconsistencies of most
metrics: the absence of a correct treatment of the time dilatation
between the center and infinity and the failure to reproduce 1-loop
quantum corrections (as calculated e.g. in [41]). As a step in this di-
rection, the authors make use of the Hayward metric (revived in a
quantum gravity context [42]):

Fr)y=1- Zmr(r) ) 9)

Several proposals were made for the function m(r). We consider

here the original version [43] where
Mr3

r3+2ML?’

where L has the dimensions of a length. We consider only the case

where L < %M , otherwise there is no horizon. We have investi-

m(r) = (10)

gated the displacement of QNMs as a function of L - which intu-
itively quantifies the scale of “quantumness” - for a given mass.
As expected, the minimal required value of L, for a given relative
QNM move, is proportional to M. If we require (%) to be of the
order of a few percent (that is in the ET sensitivity range), the min-
imum value of L is of the order of 0.7 mass units. More specifically
(%) ~ 5% is achieved for L/M ~ 0.72. For a macroscopic BH, this
is much larger than the Planck length and this means that in such
approaches the quantum modifications would need to be extend-
ing substantially beyond the usually assumed length scale.

6. Conclusion and prospects

We have shown that if quantum gravity effects leak outside the
horizon of a Schwarzschild black hole, the quasinormal modes can
- as expected - be substantially modified. Using a gaussian trun-
cation of the metric structure, we have studied the influence of all
the parameters describing the perturbations. In particular, we have
quantified the amplitude of the quantum bump required for obser-
vation. Using a toy-model, we have translated the derived values
into an upper limit on the mass leading to observable effects.

In the future, this approach should be refined by considering
a rotating black hole. It would also be important to estimate de
possible degeneracies: could the change in frequency and damping
rate mimic a usual BH of different mass and spin?

Finally, it would be welcome to consider more realistic metrics
based on heuristic quantum gravity arguments, in particular based
either on loop quantum gravity black holes (see [44] for a review)
of on string black holes (see [9] for interesting new ideas).
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Ficure 3.2 — La surface d’un trou noir en LQG, caractérisée par I’ensemble des aires qui intersectionnent
les liens du réseau de spin a I’horizon du trou noir [78].

3.4 Revue sur les différents aspects des trous noirs en LQG

Dans cette revue, on présente plusieurs caractéristiques associés a la LQG sur la phénoménologie
des trous noirs. Certains aspects ont déja été abordés dans les articles précédents : la phénoménologie
des trous noirs en rebond (section 3.1) et la section efficace des trous noirs quantiques a boucles
(section 3.2). Le reste ne concerne pas mes travaux directement ainsi je ne vais pas m’étendre sur cette
revue. Cependant, je vais tout de méme présenter un aspect important.

En LQG, nous avons vu qu’un des résultats majeurs était la quantification de I’aire (1.154). On peut
alors définir I’aire d’un trou noir en LQG comme la somme des aires associées aux liens (du réseau de
spin) qui intersectent la sphere d’horizon du trou noir (voir Figure 3.2). On a

N

Aj= 8”72 VinGn + 1), (3.109)

n=1

avec N le nombre de liens qui intersectent la surface. Ainsi I’évaporation d’un trou noir en LQG ne
s’effectue pas de facon continue mais par transition d’aires discretes (parmi les aires autorisées du
spectre (1.154)).

Cette structure discrete va se retrouver dans le rayonnement de Hawking. Pour étudier ce phénomene,
une simulation Monte Carlo a été effectuée

— une particule aléatoire est choisie selon son poids en dégrées de liberté dans le modele standard ,

— la probabilité de passer d’une aire A a une autre est décrite par
P(A—> A-6A)=Te™, (3.110)

avec I qui dépend de la particule et S 1’entropie.

— I’énergie de la particule émise donnée par la perte de masse du trou noir : E = dM.
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Sur la Figure 1 de I’article, on présente le nombre de trous noirs qui devraient étre observés afin de
distinguer le modele classique du modele LQG a partir du spectre de photon émis en fonction de
I’erreur relative sur la reconstruction en énergie. La théorie classique décrit la relation entre A et S via
I’équation de Hawking-Bekenstein

S == (3.111)

En LQG, le parametre de Barbero-Immirzi y est un parametre a priori libre de la théorie. En prenant
en compte la dégénérescence de la matiere, ce parametre modifie la relation aire/entropie

A A
S =2+ |2+ o(VA). (3.112)
4 6y
Sur la Figure 3, on observe comment le spectre intégré dépend de y. Le fond du spectre correspond a
la partie continue du modele classique mais a cela s’ajoute pics qui caractérisent la discrétisation du
modele.

La gravité quantique n’est pas élaborée totalement, il existe d’ailleurs plusieurs modeles. Du point
de vue expérimental, il semble presque impossible de pouvoir sonder directement des effets de gravité
quantique. Mais on observe que grice aux trous noirs (et également la cosmologie), de tels effets
pourraient étre observables. Du point vue théorique, la LQG connait encore des difficultés. Néanmoins,
a partir de la théorie mere il est déja possible de décrire des modeles simplifiés auxquels on peut
associer de la phénoménologie. Et il apparait que ces prédictions sont différentes de celle décrites
par la RG. Ainsi, la phénoménologie des trous noirs fait de la LQG, non plus un simple modele
mathématiques, mais la fait rentrer dans le domaine de la science grace a ses prédictions a priori
observables.

Cet article a été publié dans Universe [79].
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1. Introduction

The Planck length is 10'°-times smaller than scales probed at colliders. Linking quantum
gravity with observations is therefore extremely hard (see, e.g., [1] for a recent review and [2—4]
for complementary viewpoints). Most works devoted to the connection of quantum gravity with
experiments are focused on cosmology or astroparticle physics. In the cosmological sector, the main
goal consists of calculating scalar and tensor power spectra (see, e.g., [5,6]), together with the
background dynamics (see, e.g., [7,8]). In the astroparticle physics sector, the main idea is to investigate
the possible consequences of the granular structure of space (see, e.g., [9] for a recent investigation).

Although black holes (BH) have been intensively studied in quantum gravity, those investigations
were mostly disconnected from observations and focused on consistency issues. Recovering, at the
leading order, the Bekenstein-Hawking entropy is, for example, obviously a major requirement for all
tentative theories (see, e.g., [10] and the references therein). Curing the central singularity—understood
as a classical pathology—is another one (see, e.g., [11,12]). Solving the information paradox
(see, e.g., [13] and the references therein) would also be highly desirable (this is clearly connected to
the previous issues).

In this article, we focus on black holes as possible probes for loop quantum gravity (LQG).
We begin by a very short summary of the basics of black hole physics in this framework. We then
switch to consequences for the Hawking evaporation, considering different possible perspectives.
The quite recent (within the LQG setting) hypothesis of black holes bouncing into white holes is
presented with the possible associated signals. Finally, we critically review the possible links with dark
matter and conclude with the prospect for gravitational waves.

2. Basics of Black Holes in Loop Quantum Gravity

The study of black holes is an incredibly fruitful field of theoretical physics. Black holes are simple
objects. They are pure geometry. There is no equation of state needed: they are just vacuum solutions

Universe 2018, 4, 102; d0i:10.3390 / universe4100102 www.mdpi.com/journal/universe
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to the Einstein equations. This is their first fundamental characteristic. The second specificity of black
holes lies in the fact that they are (classically) scale invariant [14]. They can, in principle, exist at
any mass.

As far as quantum gravity is concerned, the major breakthrough came from black hole
thermodynamics. Because of the no-hair theorem, in Einstein gravity, the most general stationary
black hole geometry is described by the Kerr-Newman (KN) solution with mass M, electric charge q
and angular momentum j as the only parameters. One can define three length scales characterizing
the BH [14]: m = GMc™2, Q = VGgc™2 and a = jM~!c~!. There exists a BH solution only when
Q? + 2 < m?. One can show, from the area expression, that:

d(Mc?) = OdA + ®dQ + Qdj 1)
with

® = *(2GA) ' (rg—m), )

D = qre(rg+a>)7!, (©)

Q = jmil(ré—i—az)*l, 4)

re = 2m being the gravitational radius. The parameters ©®, ® and () can be understood as the surface
gravity, the electrostatic potential and the angular momentum.

As Mc? is the energy, this equation looks like the first law of thermodynamics TdS = dE — ®dQ —
Qdj. This led to the introduction of a temperature:

Ty = (2ch/A)/ M2 — Q% — 42, (5)

and entropy:
v Spr = A/40p?, (6)

yielding the evaporation process [15]. The second BH law expresses the fact that the sum of the BH
entropy together with the entropy outside the BH cannot decrease (from now on, unless otherwise
stated, we use Planck units).

The description of BHs in LQG heavily relies on the concept of isolated horizons (IH) [16-20].
This is an intrinsically quasilocal notion, which has the advantage of not requiring the knowledge
of whole spacetime to determine whether horizons are present, as is the case with event horizons.
The most important characteristics of isolated horizons are [10]: their quasilocality, the availability of
a Hamiltonian description for the sector of GR containing the IH, the possibility of finding physical
versions of the laws of BH thermodynamics and the existence of local definitions of the energy and
angular momentum.

This article focuses on the consequences and not on the theoretical definition of an LQG BH,
but recent pedagogical reviews on BH in LQG can be found, e.g., [21-27].

Very schematically, the isolated horizon plays the role of a boundary for the underlying manifold
before quantization. Given the area A of a Schwarzschild BH horizon, the geometry states of the BH
horizon arise from a punctured sphere. Each puncture carries quantum numbers (see, e.g., [28-31] for
details): two labels (j, m), where j is a spin half-integer carrying information about the area and m is
the corresponding projection carrying information about the curvature. They fulfill the condition:

A—=N<8yY (\/ipljp+1) < A+A, )
p

where 7 is the Barbero-Immirzi parameter entering the definition of LQG (see, e.g., [32]), A is the
“smearing” area parameter (or coarse-graining scale) used to recover the classical description and p
refers to different punctures. In addition, one requires:
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Zmp =0, (8)
p

which means that the horizon has a spherical topology. Many aspects of the BH entropy were studied
in this framework, and we shall mention some of them in the following.

3. Modified Hawking Spectrum

One cannot directly measure the entropy of a BH. Therefore, even if some quantum gravity
approaches do predict some corrections with respect to the Bekenstein-Hawking law, this can hardly
be considered as a smoking gun for observational aspects of quantum geometry. On the other hand,
one might observe the evaporation of a black hole. This would require light black holes (the temperature
of a solar-mass BH is far below the one of the cosmological microwave background) whose existence is
far from obvious. At this stage, the Hawking evaporation of BHs therefore remains purely theoretical
(although there are some hints that this could have been observed in analog systems [33]). However,
it is in principle observable and might constitute a path toward experimental quantum gravity.

There exist quite a few attempts to deal with evaporating black holes in effective approaches
to quantum gravity. Among such attempts, one can mention results derived from the generalized
uncertainty principle, which aims at generalizing the Heisenberg uncertainty relation by introducing
gravity effects. In this framework, one case shows that there exist a maximum and a minimum
temperature for BHs [34-36]. Some models also lead to a vanishing temperature close to the end of
the evaporation (see, e.g., [36,37]). The path considered in the following is different and tries to use
the exact area spectrum form the full theory. There are no bounds on the temperature (beyond trivial
ones), but the energy spectrum of emitted particles can become discrete and keep the footprints of the
underlying quantum gravity theory.

3.1. Global Perspective

The first obvious idea to investigate LQG footprints is to consider the deep Planckian regime of
an evaporating BH by taking into account the discrete structure of the area operator eigenvalues in
LQG. An edge with spin representation j of SU(2) carries an area of eigenvalue:

Aj=8mry/j(j+1), ©)

where j is, again, a half-integer. A BH surface punctured by N edges therefore exhibits, as explained

previously, a spectrum given by:
N

Aj =81y Y \/jn(in+1), (10)

n=1
where the sum is carried out over all intersections of the edges with the isolated horizon. As the area
spectrum in discrete, BHs can only make discontinuous jumps, and the evaporation spectrum will
inevitably be modified.

In [38], a Monte Carlo simulation was carried out to investigate to what extent the associated line
structure can be discriminated from the usual continuous (envelope of the) spectrum. The algorithm
was based on an improved version of the method given in [39], enhanced by an efficient numeration
scheme based on a breadth-first search. The probability for the transition from a BH state to another is
expressed as the exponential of the entropy difference, weighted by the greybody factor. As the optical
limit was not satisfactory to derive accurate results, the full greybody factor obtained by solving the
wave equation in the (classical) Schwarzschild background was used. The simulation was started at
200 Ap;, where Apy is the Planck area.

At each step n of the simulation, starting from a BH mass M;, a new mass M,,;; is randomly
determined within the available spectrum, according to the probability law previously given. A particle
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type is then randomly selected from the standard model, according to the weighted number of internal
degrees of freedom (and among those with a mass smaller than AM). The available energy M,, — M, 11
is assigned to this particle, and the process is repeated. The analysis presented in the following was
carried out considering only the emitted photons, that is approximately 1.5% of the emitted quanta.
This choice is motivated by the fact that they keep their initial energy (quarks and gluons lead to jets),
and they are easy to detect (neutrinos are not), stable (muons or tau leptons do decay) and unaffected
by magnetic fields (electrons are).

The simulation was repeated many times to account for different possible realizations of the
process. As expected, the time-integrated spectrum exhibits lines that are not present in the standard
Hawking spectrum. The time integrated differential Hawking spectrum scales as E~3, where E is
the energy of the emitted photons. In this case, it becomes a truncated power-law as the available
energy is limited. To test to what extent the LQG spectrum can be distinguished from a standard
Hawking spectrum, a Kolmogorov-Smirnov (K-S) test was implemented. The K-S statistics measures
the distance between the cumulative distribution functions of the considered distributions and can be
used for a systematic study of discrimination capabilities.

Figure 1 shows the number of evaporating BHs, seen in their final stages, that would be required
to discriminate at a given confidence level between the Hawking spectrum and the LQG spectrum,
depending on the experimental uncertainty of the measure of the energy of the detected photons.
This latter parameter is mandatory. If the resolution were infinite, a single photon could nearly allow
one to discriminate, but this is obviously never the case. The results are theoretically appealing,
but experimentally challenging.

Discrimination LQG/Hawking
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Figure 1. Number of BHs that would have to be observed as a function of the relative error on the energy
measurement for different confidence levels (the color scale corresponds to the number of standard
deviations). Upper plot: discrimination between loop quantum gravity (LQG) and the Hawking
spectrum. Lower plot: discrimination between LQG and the Mukhanov-Bekenstein hypothesis [40].
From [38].
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Another interesting feature is the following. The end of the evaporation in the LQG framework
consists of the emission of a few particles, whose energies are given by the mass difference between
BH states. In the usual Hawking view, the situation is very different. The evaporation is expected
to stop somehow slowly (when compared to the previous stages). Because the energy available
inevitably becomes, at some point, smaller that it should be (in the sense that M becomes smaller that
the associated temperature 1/(871M)), the process slows down and the energy of the emitted particles
decreases. In [38], it was shown that this might be used as another discrimination tool between models.

It could also be that a periodicity with broader peaks does appear in the emitted spectrum,
due to the “large scale” structure of the area spectrum. This has been discussed in [39]. In that case,
the Hawking /LQG spectra could also be discriminated for higher mass black holes [38]. This possibility
is however extremely unlikely, and we will not discuss it further, as a damping in the pseudo-periodicity
is expected to take place [41-43].

This analysis was pushed further in [44], where recent results are accounted for. The fundamental
excitations are now better understood as living on the horizon and as being elements of the Hilbert
space of a SU(2) Chern-Simons theory [45,46]. The quantization of such a Chern-Simons theory
with a compact gauge group is well defined, and the kinematical characteristics of a quantum black
hole become quite clear [47—-49]. The role of the Barbero-Immirzi parameter 7y was studied in detail,
and recovering the Bekenstein—-Hawking entropy has been considered as a way to fix its value. It is
however the coupling constant with a topological term in the action of gravity, with no consequence
on the classical equations of motion. The strong dependence of the entropy calculation on < therefore
remains controversial. Much progress has been recently made [50-54]. The canonical ensemble
formulation of the entropy making use of a quasi-local description shed a new light on the subject.
The semi-classical thermodynamical properties can actually be recovered for any value of 7 if one
assumes a non-trivial chemical potential conjugate to the number of horizon punctures. A possible
fundamental explanation to the exponential degeneracy would be to consider the area degeneracy as an
analytic function of v and to make an analytical continuation from real  to complex . This suggests
that the quantum gravitational theory, defined in terms of self-dual variables, could account for the
holographic degeneracy of the area spectrum of the BH horizon.

Two models of black holes were studied by a full MC simulation in [44]. The first is based
on the naive microcanonical view. It takes into account only the quantum geometry excitations,
leading to [55]:

_ YT A
S = ey +o(log(A)), (11)

where 7 is of order one. Then, holographic black holes, where one uses the matter degeneracy
suggested by quantum field theory with a cut-off at the vicinity of the horizon (that is, an exponential
growth of vacuum entanglement in terms of the BH area), were considered. The entropy becomes:

s=4. E+o(\/Z). (12)

The simulation has been performed with 107 evaporating black holes. Figure 2 shows the
results for different values of the Barbero-Immirzi parameter . This v dependence interestingly
shows up even though the leading order term of the black hole entropy, which mainly governs the
transitions during the evaporation process, does not depend on . This phenomenon is fully quantum
gravitational in nature and is both due to the fact that y enters in the discretization of the area spectrum
and shows up in the sub-leading corrections to the entropy. The effects of a detector finite energy
resolution are shown in Figure 3.

This shows that the Hawking spectrum of a LQG BH has two distinct parts: a nearly continuous
background corresponding to the semi-classical stages of the evaporation and a series of discrete peaks
associated with the deep quantum structure. Interestingly, v has an effect on both parts and becomes
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somehow measurable. In all cases, there are significant differences with the usual Hawking picture in

the last stages.
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Figure 2. Spectrum of a holographic black hole for different values of -y as a function of AA. From [44].
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Figure 3. v dependence of the integrated spectrum, as function of the energy of the emitted particle,

in the holographic model, with a detector energy resolution of 5%. From [44].

3.2. Greybody Factors

When dealing with evaporating black holes, a key element is the greybody factor; closely related
to the absorption cross-section. The Hawking effect is approximated by a blackbody spectrum at
temperature Ty = 1/ (8wM) with M the mass of the BH. However, the emitted particles have to cross
a (gravitational and centrifugal) potential barrier before escaping to infinity. This induces a slight
modification of the spectrum, captured by the cross-section . The spectrum reads as:

dN 1 d3k
= ——0(M,s,w) 2y

dt eﬁil

(13)
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with s the particle spin, w its energy and k its momentum. The cross-section is, in general, given by:

O'(CU)S = i 7(2] :;21)71'

I=0

2, (14)

‘Al,s

where A is the transmission coefficient of the mode with angular momentum / and j = [ + s is
the total angular momentum. It has been shown, in many different frameworks, to encode much
information on the chosen gravitational theory or on the underlying background spacetime. In the
framework of LQG, those cross=sections have been studied only in [56].

The emphasis was put on BHs as described in [57,58], where, instead of all a priori possible
closed graphs, a regular lattice with edges of lengths J; and J. was chosen. The resulting dynamical
solution inside the horizon is analytically continued to the region outside the horizon. Requiring
that the minimum area is the one found in the LQG area operator spectrum, the model is reduced to
one free parameter J, the so-called dimensionless polymeric parameter. The effective LQG-corrected
Schwarzschild metric is then given by:

ds®> = —G(r)dt* + ;I(r:) + H(r)dQ?,
r—rg)(r—ro)(r+rs)?
PR ESURAES

4

Fr) = ((:—i-r:*gz(zr‘*la)%r)

7

2
H(r) =r*+ L (15)
rz’

where dO? = d6? + sin? 9d¢2, r4+ = 2m and r_ = 2mP? are the two horizons and r, = VT+7— =2mP,
P being the polymeric function defined by P = (V1+€% —1)/(vV1+ €2+ 1), with € = 94, and the
area parameter 4, is given by ag = A,;,/87. The parameter m in the solution is related to the ADM
mass M by M = m(1+ P)2.

The case of massless scalar fields is quite easy to deal with. Since the BH is static and spherical,
the field can be written as ®(r,0,¢,t) = R(r)S(0)e!@+"?) and the generalized Klein-Gordon
equation is:

L
V=8

Leading the metric given in Equation (15) to the radial equation:

(g \/—g3,®) =0, (16)

VGF 9 oR(r) » G
Using the tortoise coordinate dr*? = ‘éié, one can impose the appropriate boundary conditions,

fit the asymptotic solutions and sum over the different values of / to get the final cross-section, which is
given in Figure 4.
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Figure 4. Emission cross-section for a scalar field with energy w for a loop BH of mass M for different
values of €. From bottom to top: € = 10{-03,-06,-08-1,-3} The blue line, corresponding to € = 1073,
is superposed with the cross-section for a Schwarzschild BH. From [56].

The cross-section decreases when € increases. One can also notice a shift of the pseudo-periodic
oscillations toward a lower frequency (in Mw). When € < 107°8, it is hard to distinguish between
the solutions. From the phenomenological viewpoint, it seems that taking into account the quantum
corrections does not substantially influence the cross-section of a scalar field for reasonable values
of € (that is € < 1). The main trend is however clear, and if the actual value of € happened to be
unexpectedly high, it could be probed by a reduced cross-section.

The case of fermions is more complicated, and a specific derivation of the Dirac equation in the
Newman-Penrose formalism had to be developed in [56].

The Dirac equation in the Newman-Penrose formalism reads:

—1/

(D4e—p)P° 4 (6" +m—a)P! = in.Q , (18)
(b+p=—P +(E+p-DP = —inQ’, (19)
(D+e—p)Q" + G+t —a)Q" = i P, (20)
(A + ,’l/l* . ’Y*)Ql, + (5* + IB* - T*)GO/ _ i]l*PO, (21)
Using the tetrad given in [56] and the following ansatz:
ei(wt+m'¢)
PO = TR+(r)5+(6), (22)
H(r)(G(r)E(r))8
L ei(wt+m’¢)
P = 1 R_(r)S-(0), (23)
H(r)(G(r)E(r))8
, i(wt+m' )
oV ¢ TR (r)S-(0), (24)
H(r)(G(r)E(r))8
—1 ei(wt+m/¢)
- R_(r)S+(6), 25)
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which makes the system separable. Basically, one is led to the following equation for the Ry component
of the Dirac spinor (the equation for R_ is the conjugate):

VﬁPD(AJiTjHRJ—4A+hm¢Hm+:0, (26)

with D a radial operator:

(27)

/ ! :
D_&+<G F) 1w

sc st)t/GE

The separation constant A is obtained by solving the angular equation, leading to A? = (I +1)? for
fermions. Results are given in Figure 5. Once again, the general trend is a decrease of the cross-section
when the “quantumness” increases. In addition, it was shown that the existence of a non-vanishing ag
is the reason for the slight increase of the cross-section on the first peak. The polymerization parameter
and the minimal area do have different consequences.

g

26}
24
22
20}
18
16}
0.0 0.2 0.4 0.6 0.8 1.0
Figure 5. Emission cross-section for a fermionic field, with energy w, for a loop BH of mass

M. From bottom to top: € = 101-03,-06,-08-1,-3} ' The dashed dark curve corresponds to the
Schwarzschild cross-section. From [56].

The considered polymerized model [57] is just a first attempt and by no means a final statement
on the quantum corrected geometry around an LQG BH. The same work on greybody factors should
be carried out for models like [59-61], to cite only a few. This however shows that some non-trivial
features can be expected.

3.3. Local Perspective

The previous view is based on the idea that the Hawking evaporation should be considered as
a global phenomenon. The BH emits a particle and undergoes a transition from one area eigenstate
to another one. When the BH is large, the density of states grows exponentially and reads (we make
the Newton constant dependance explicit here) as p(M) ~ exp(My/48G/3), which means that the
spectral lines are virtually dense in frequency for high enough masses. No quantum gravity effects are
therefore expected well above the Planck mass.
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This view is however not that straightforward. When the BH undergoes a transition from the
mass M; to the mass M, which is extremely close to M; if the black hole is massive, the quantum
state after the jump is—in the global perspective—completely different from the initial one. The final
state corresponds to values of the spins (labeling the SU(2)representations of the edges puncturing
the horizon or colors of the graph) that are generically deeply different from the ones of the initial
state. Assuming that the quasidense distribution of states is correct requires a full reassigning of the
quantum numbers for every single transition, which is in tension with a quantum gravitational origin
of the evaporation process. As we will explain later, if, instead, one assumes that the evaporation is
due to a change of state of an “elementary area cell”, there is no reason for all of the other surfaces
paving the horizon to change simultaneously their quantum state (as argued, e.g., in [62]). This even
raises a causality issue: how can a “far away” elementary cell know how it should change to adjust to
the others?

Another view, to account for this issue, was however suggested in [63] (somehow in the line
of [64]), assuming that each particle emitted is basically due to the relaxation of the BH following a
change of state of a single elementary cell. This was called a local quantum gravity dynamics. This does
not assume that local processes magically know the global BH quantities like temperature, entropy
and mass: after the quantum jump, without any a priori knowledge of the picture, the BH relaxes
through a semiclassical process consistent with the energy available. This naturally leads to a spectrum
whose properties fit the Hawking description.

This hypothesis leads to phenomenological results comparable to those of [40], but with a clear
foundation in the LQG framework. The key point is that the same change of area dA (~ Ap;) implies
a relative peak separation in the spectrum dE /T, which is independent of the BH mass. Quantum
gravity effects can therefore be expected to be measured for masses arbitrarily far above the Planck
mass. This deeply contrasts with what was believed to be expected in initial LQG studies. The density
of reachable states is no longer quasidense.

The eigenvalues of the area operator given by Equation (44) are not equally spaced: only in the
large-j limit does a regular line spectrum arise. It is shown in [63] that this interesting feature could
allow one to distinguish between different LQG models of black holes (in particular those in the line
of [28] favoring low spin values and the holographic ones [51] where higher spins could dominate).

If one calls nA(/2 the area variation associated with one quantum jump, n being an integer and
Ay the basic area ~ Apj, the relative variation of energy of the emitted particles between emissions
is AE/E ~ nAy/(2A). The change in energy is therefore negligible, and the line structure should be
observable if it exists: the BH mass evolution during its evaporation does not erase this feature.

The criterion for the detection of a signal coming from an evaporating primordial black hole
(PBH) [65] consists of asking for a mean time At between two measured photons smaller than a given
reference time interval Aty. This allows one to estimate a maximum distance for detection of:

| SAt
Ripax =~ 70 (28)

The realistic case however corresponds to the signal emitted by a distribution of PBHs with
different masses. Does the global line structure remain? It was shown that if the temperature of the
universe does not change by more that 5-10% during the formation of the considered PBHs, the line
structure holds.

Another issue had to be considered seriously: when the temperature of the BH is higher than
the quantum chromodynamics (QCD) confinement scale, the evaporating BH also emits partons that



Universe 2018, 4, 102 11 of 26

will fragment into hadrons. Some of those will then decay into gamma-rays, denoted as “secondary”.
The secondary instantaneous spectrum reads as:

dzN’Y *© Q 2. -1
dEdt ]Z/Q_E“frj(Q,T) (ET —(=1) f) (29)

where j = 1,...6 is the flavor, s; = 1/2 Vj, dg(Q, E) /dE is the normalized differential fragmentation
function (determined using the “Lund Monte Carlo” PYTHIAcode [66]), Q being the quark energy,
T the temperature of the black holes, « the number of degrees of freedom, I the cross-section and E the
photon energy. The time-integrated spectrum is then given by:

dN. My g2N.
= _/ f 7£ (30)

dE  Jm, dEdtdM

Those secondary photons will obviously not exhibit the line structure of quantum gravitational
origin. The numerical simulation performed in [63] however shows that, quite surprisingly,
those electromagnetic quanta are not numerous enough to wash out the primary signal and its
line structure, which could indeed still be measured. The amplitude of the secondary component is
indeed comparable to the amplitude of the primary one.

If this local view for the evaporation of black holes is correct, this means that this should lead to a
line structure in the spectrum, even arbitrarily far away from the Planck mass.

4. Bouncing Black Holes

4.1. The Model

Recently, the possibility that black holes could actually be bouncing objects has been revived.
In its current “LQG-compatible” version, the model was first introduced in [67], and its consequences
were studied in [68]. It was then refined in [69,70]. Basically, the idea is that what happens to the
Universe in LQC, that is a bounce, should also happen to black holes. As the contracting Friedmann
solution is connected to the expanding one by a quantum tunneling, the classical black hole solution
is expected to be glued to the white hole one by quantum gravitational effects. This is in line with
other works based on different assumptions, e.g., [71,72]. The process takes a time proportional to M?,
whereas the Hawking process requires a time of order M3. Black holes would therefore bounce before
they evaporate, and the Hawking radiation would be seen as a kind of a dissipative correction.

The important result of [69] is that a metric exists for a bouncing black-to-white hole. It is a solution
to the Einstein equations outside a finite region and beyond a finite time duration. This means that it is
possible to have a bounce from a black hole into a white hole without any spacetime modification at a
large radius. The quantum region extends slightly outside the Schwarzschild radius and can have a
short duration. The associated Penrose diagram is shown in Figure 6.

Because of the gravitational redshift, the bounce is seen as nearly “frozen” by a distant observer,
but it is extremely fast for a clock co-mobile with the collapsing null shell. In this sense, a BH is a star
that is collapsing and bouncing, seen at very slow motion from the exterior.

The key-point is to assume that classicality might not be determined by, e.g., the Kretschmann
invariant (R? = R%%R 1), but by:

g=15"R1, (31)

with b of order unity and T the (asymptotic) proper time. In this expression, units have been reinserted
for clarity. This opens the door to a possible cumulative effect like in the decay of an unstable nucleus.
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Figure 6. Causal diagram for a bouncing black hole, from [69]. (I) is flat; (II) is Schwarzschild; and (III)
is the “quantum gravity” region.

The metric is entirely determined by two functions of u and v,
ds*> = —F(u,v)dudv + r*(u,v)(d6? + sin 0dp?), (32)

whose explicit expression has been calculated in [69]. Interestingly, this also means that strong quantum
gravity effects may appear outside the event horizon (which becomes, in this context, a trapping
horizon) at R = (7/6)Rg [73]. As far as this study is concerned, the key-point is that the bouncing
time is given by T = 4kM? (although this expression is hard to recover from the full theory [74]). The k
parameter has a lower bound (k > 0.05) and will be varied in the next sections.

4.2. Individual Events and Fast Radio Bursts

The question of the detectability of those bouncing black holes naturally arises. At this stage,
a detailed model for the emission from the white hole is missing. Two hypothesis can however
reasonably by made.

The first one is simply based on dimensional analysis. The hole size is the only scale of the
problem. It is therefore expected that the wavelength of the emitted radiation is of the order of the
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bouncing BH diameter. This makes clear sense, and this is in agreement with what happens, e.g.,
during the Hawking evaporation. The associated signal is called the low-energy component.

The second hypothesis relies on the symmetry of the process (this might not be completely
true [75], but this does not change the argument). What goes out of the white hole is what went in the
black hole. In this model, the bouncing star is formed by a collapsing null shell. The energy of the
emitted radiation should therefore be the same as the one of the incoming photons. If we consider
PBHs formed in the early universe by the collapse of over-densities, the correspondence between the
mass and the time is known. Time is also in one-to-one correspondence with the temperature of the
Universe. Therefore, for a given BH mass, one can calculate the energy of the emitted radiation, called
the high-energy component.

The idea of explaining fast radio bursts (FRBs) by bouncing black holes was suggested in [76].
Basically, FRBs are intense radio signals with a very brief duration. Events were, among others,
observed at the Parkes radio telescope [77-79] and by the Arecibo Observatory [80]. Could they be
explained by (the low-energy component of) bouncing black holes?

As mentioned before, the bouncing time can be estimated to be of the order of:

T = 4k M>. (33)

For the phenomenology of FRBs, one sets the parameter to its lowest possible value: k = 0.05.

PBHs with an initial mass around:
_ |tH 26
M, =1/ P 10 g, (34)

where ty is the Hubble time, would therefore be expected to explode today. One can notice that,
naturally, this mass is much higher than M, ~ 10'° g, corresponding to black holes that would require
a Hubble time to evaporate by the Hawking process. In the case of the low energy channel of bouncing
BH, the emitted radiation wavelength should be of the order of 200 microns, three orders of magnitude
below the measured 20 cm of FRBs.

This apparent discrepancy has been addressed and solved in [81]. The key idea lies in the fact
that if the black-to-white hole transition is to be understood as a tunneling process, the lifetime of a BH
should be considered as a random variable. The probability for a black hole not to have bounced after
a time ¢ is given by:

1
P(t) = —e (35)

Let us model the shape of the signal emitted by a single black hole by a simple Gaussian function
of width or. The full signal due to a local distribution of bouncing black holes is given by:

(E-Eg)?
el A A 20 L T2 . Z,
iE I, i ™M et (36)

The key-point is that the mean energy of the detected signal is not necessarily the naively expected
one, that is may not be E ~ 1/(4M;,;) where My, is such that ty = 4kaH (this corresponds to BHs
having a characteristic lifetime of the order of the age of the Universe, leading to the emitted wavelength
three orders of magnitude too small to account for FRBs). If the mass spectrum of PBHS is however
peaked around a mass M),

_(M—Mp)?
%“e M (37)

which can be different than M;,,, the mean emitted energy will be around 1/(4My), which can differ
from 1/(4My,, ). This happens because of the distributional nature of the bouncing time.
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In Figure 7, the emitted photon flux is shown for different values of the mean mass My of the mass
spectrum: M;,,, 10M;,,, 100M;,, and 1000M;,,. This shows that the energy of the radiation does depend
on this value, even if the parameters of the model are otherwise fixed. Since a given mean lifetime
7 =4 kM? does not imply a fixed expected energy, the three orders of magnitudes needed to match the
measured energy of FRBs can be accounted for with a mass My = 1000M;,,, which corresponds to the
left curve in Figure 7.

¢ (arbitary units)
1010
105 L
1L
1079 ¢
10710 ‘ ‘ X ‘ E (V)
106 1070 1074 0.001

Figure 7. Electromagnetic flux emitted by bouncing BHs for a mean mass M of (from right to left)
My, 10My,,, 100My,; and 1000My,;, normalized such that the total mass going into primordial black
holes (PBHs) is the same. From [81].

This explanation for FRBs is unquestionably exotic when compared to more conventional
astrophysical interpretations (especially when considering that one “repeater” has been observed; it
could however well be that there are different populations of FRBs). What makes the scenario however
meaningful is that it is testable, due to a specific redshift dependance. When observing a galaxy at
redshift z, the measured energy of the signal emitted by any astrophysical object (including decaying
dark matter) will be E/ (1 + z) for a rest-frame energy E. This is not the case for bouncing black holes:
BHs that have bounced far away and are observed today had a shorter bouncing time and consequently
a smaller mass. The energy of the emitted radiation is therefore higher, and this compensates for the
redshift effect. The observed wavelength of the signal from an object at redshift z can be written as:

2Gm
ABH C—z(lJrz) X (38)

-1 O, \1/2
0 b 22A -3/2
sinh z+1 ,
6k /2 [<0M> S

where we have reinserted the physical constants; Hy, Q4 and Qy being respectively the Hubble rate,
the cosmological constant and the matter density. This is to be contrasted with what happens for
standard sources whose measured wavelength is related to the observed wavelength by:

Aother — (1 + Z)Aother (39)

obs emitted ’

as shown in Figure 8.
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Figure 8. Measured wavelength, normalized to the rest-frame one, as a function of the redshift.
The upper curve is for a conventional astrophysical signal, and the lower one is for bouncing black
holes. Reproduced from [82], with the permission of AIP Publishing.

Importantly, is was also shown in [81] that even if the mass spectrum is wide, it could still be
possible to explain FRBs. It could be that most bouncing BHs lead to a signal of a wavelength of
0.02 cm and that only the tail (whose existence is due to the probabilistic nature of the lifetime) of
the distribution is actually detected by radio-telescopes. If the real emission peak is in the infrared
band—which should naturally occur if the mass spectrum is, itself, not peaked—it could very well be
that it is just unobserved today. Observatories in the infrared have time constants that are too high
to allow for the measurement of fast transient phenomena, and no large survey is being carried out.
In this case, a prediction of the model is that one should expect a higher flux as the energy increases.

Finally, it is worth considering the high-energy emission. The bouncing BHs then act as “redshift
freezing machines” for collapsing fields, which are emitted back at the energy they had when being
absorbed. However, in the meantime, the age of the surrounding Universe has grown tremendously.
In simple models, PBHs form with a mass of the order of the Hubble mass at the formation time.
For BH masses as considered here (around 10%° g), this corresponds to a temperature of the Universe
around the TeV. New very high energy telescopes, like the Cherenkov Telescope Array (CTA), could
detect bursts is this energy range, as suggested by this model.

The redshift dependance for this component is qualitatively the same as for the low-energy one,
but for different reasons. For a BH exploding at redshift z and cosmic time ¢, the energy is determined
by the temperature of the Universe when the formation took place. It is proportional to the inverse
square root of the time, which is in turn proportional to the horizon mass, that is to the BH mass.
Therefore, the emitted wavelength is proportional to the square root of the mass of the BH. This leads
to an observed wavelength:
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Aops & (14 z2) (sinh_ll(g;;) 7(Z + 1)‘4) . (40)

As previously stated, this is a flatter dependance than for astrophysical effects.

It is meaningful to evaluate the maximal distance at which one could observe a bouncing black
hole. This question was addressed in [83], allowing the k parameter, which determines the bouncing
time, to vary. The minimum value of k is such that the quantum effects have enough time to make
the bounce happen, and the maximum is such that the bouncing time remains smaller than the
Hawking time. The study was carried out taking into account the size of the detector (and its detection
efficiency), the absorption during the propagation over cosmological distances and the number of
measured photons required for the detection to be statistically significant. As k increases, the global
trend is a decrease of the maximum distance at which the bouncing BH can be observed. This comes
both from the fact that BHs are lighter for higher values of k (for a given bouncing time) and from the
fact that they emit higher energy (and therefore fewer) particles. However, quite subtle effects also
appear. For example, the distance can slightly decrease above the threshold of emission of a new stable
particle (leaving less energy available for the considered photons), whereas it can increase when new
particles decaying into gamma-rays are produced. For k varying between 0.05 and 10?2, the maximum
detectable distance varies from the Hubble scale to 10'° m for the low-energy component, as shown in
Figure 9, and from 10%4~10'® m for the high energy component.

1028
102 | Hubble radius
E 102
o
1022
Galactic scale N
1020 \\1 \

k 1 104 108 1012 106 100
E [eV] 2.7 2.7x10% 2.7x10* 2.7x10%° 2.7x108

Figure 9. Maximum distance at which a single bouncing BH can be observed through its low-energy
component, as a function of the k parameter, from [83] (Copyright IOP Publishing. Reproduced with
permission. All rights reserved.).
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4.3. Background

It is also important to consider a possible background emission. In this case, one does not look
for a single event, but from the diffuse emission due to a distribution of BHs. The number of photons
detected per time unit, surface unit and energy unit is given by:

dNipes
dEdtdS

- /CDl-nd((l +2)E,R)-n(R) - A(E) - f(E,R)dR, 41)

where ®;,;(E, R) is the flux emitted by a single BH at distance R and at energy E, n(R) is the number
of BHs bouncing at distance R per unit time and volume, A(E) is the acceptance of the detector
convoluted with its efficiency and f(E, R) is the absorption. The 7n(R) term does depend on the shape
of the initial mass spectrum of PBHs, which is unknown. It has however been checked that varying
this shape has no significant impact on the results.

The study was carried out for both the low-energy and the high-energy components. In this
latter case, it is important to take into account the hadronization of emitted quarks that will produce
hadrons potentially decaying into gamma-rays. This was modeled using the PYTHIA Monte Carlo
program [66]. Quite surprisingly, the result is that, due to a kind of redshift-compensation effect,
the integrated signal is very similar to the single event one. It basically appears as a distorted Gaussian
function [83].

This also raised the question about whether it could be possible to explain the gamma-ray excess
coming from the galactic center, as observed by the Fermi satellite. This has been reported in [84-86]
and even observed at higher galactic latitudes [86,87]. Once again, many astrophysical interpretations
have been suggested. Millisecond pulsars are probably the most convincing hypothesis (see, e.g., [88]);
it is however not yet fully satisfactory [87], and their is room for new physics. Interestingly, it was
demonstrated in [82] that bouncing BHs can indeed explain the Fermi excess if the k parameter is
chosen at its higher possible value. It is worth noticing that the values required to explain either
the FRBs or the GeV gamma-ray excess are not “random”, but either the smallest or the highest
possible ones.

In [82], the secondary spectrum, mostly due to the decay of neutral pions, was shown to be well

approximated by:
b 2 3
_ae Y ~(%)
Ee)=— |——5—5|€¢ \E/, 42

f(Ere) ny{(eeo)2+72} 4
E being the quark energy, € the photon energy, a = 50.7, b = 0.847, y = 0.0876 and ¢y = 0.0418 (the
energies being in GeV), whereas the direct emission due to the low-energy component (the high-energy
component cannot be smaller than a TeV and is not relevant for this study) is given by:

)

(e—E)?

g(E,e) = Ae” 27 +3NV2mAcf(E,e), (43)

where N is the number of flavors of quarks with m < E.

The best fit is shown in Figure 10. The fact that the bouncing BH signal can account for the data
is in itself non-trivial. It is, for example, absolutely impossible to reproduce the measurements with
evaporating BHs. In addition, the most important result here lies in the amplitude of the little bump
on the left of the plot. It is associated with the secondary emission (that is the one coming from the
hadronization and subsequent decay of emitted partons). As the number of emitted quarks and gluons
is much higher than the number of directly emitted photons (responsible for the main bump), it could
have been (wrongly) expected that this indirect emission conflicts with the background displayed as
the horizontal green dashed line on the plot. Due to the subtle energy distribution in the jets, this is
not the case, and at this stage, the explanation by bouncing BHs does work satisfactorily.
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Figure 10. Fit to the Fermi excess with bouncing black holes. Reprinted from [82].

5. Dark Matter

The idea that if bouncing BHs are a substantial part of dark matter (DM), this might have an effect
on galaxy clustering was introduced in [89]. Several possible constraints were considered.

Only recently, however, was a new scenario for the evolution of black holes proposed [90],
with possible important consequences for DM, but in a different way than what was suggested
in [91,92]. In this model, a black hole first evaporates, according to the usual Hawking process.
The whole process preserves unitarity. When it becomes Planckian, the tunneling probability to turn
into a white hole, estimated to be of the order of:

P~e M, (44)

becomes large. Old black holes have a large interior volume [93]: even if the Schwarzschild radius is
fixed, the “physical” volume available inside does increase with time. This remains true for the formed
white hole, although its mass is small (the volume is of the order of M? where M; is the initial mass).
The white hole lifetime is also of the order of M}. This scenario meets the conditions required to solve
the information paradox.

It can be seen as a “less radical” proposal than the one presented in the previous sections. There is
still a black-to-white hole transition, in agreement with the arguments given before, but instead of
the very small bouncing time M?, it takes the time suggested by the usual instanton solution. This is
probably a more conservative and natural scenario.

In addition, following [91], it was suggested that dark matter could be formed by such white hole
relics [94]. In [95], the central argument is pushed forward. For those objects to be still present in the
contemporary Universe, one needs their lifetime to be larger than the Hubble time ¢y, that is:

M > ty. (45)
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On the other hand, for those relics to be formed by evaporated black holes, one needs:
M? < ty, (46)
where M? is the Hawking evaporation time. This leads to:
109 g < M; <105 g, (47)

It is argued in [95] that this corresponds to typical Hubble masses at reheating, making the
scenario convincing.

It should be emphasized that quite a few models leading to stable relics at the end of the Hawking
evaporation process have been proposed so far, relying on many different assumptions (see [37,96-108]
to mention only a few historical references among many others). In those models, the relics are
completely stable. This makes the situation easier: the only constraint is then that initial primordial
black holes did evaporate within the Hubble time, but there is no lower bound on M;. From this point
of view, the new model [95] is more challenging than the usual pictures, which does not make it wrong.

The key-point is of course to find a way to produce enough primordial black holes so that the
white hole relics account for dark matter, without relying on too exotic physics, as this is one of the
motivations for this new scenario. As the CMB-measured amplitude and slope of the primordial
power spectrum would lead to a vanishingly small number of primordial black holes, an extra input
is obviously needed. A possibility would be to follow [109] and use Starobinsky’s broken scale
invariance spectrum [110]. The main idea is that power is increased at small scales through a step in
the power spectrum.

Let us call My , the Hubble mass at the end of inflation, p? the ratio of the power on large scales
with respect to that on small scales, 6,,;,, the minimum density contrast required to form a black hole,
My the mass of the white hole, Q%,\, HO the abundance of white holes today, LW the Lambert-W
function and oy the mass variance. One can then show that:

CMB -6 211015013
émin ZNQWH,O Mp MH,E

Requiring Qo ~ 0.3, 6,in ~ 0.7 and My ~ M, allows one to perform an explicit evaluation of
p, and this fixes the parameters of the scenario assuming that the reheating temperature is high enough.

However, a major problem remains to be solved. If the white hole relics are to be made by
primordial black holes with initial masses between 10'° g and 10> g, one must consider the severe
constraints associated with nucleosynthesis. The D/ H, Li®/Li’ and He?/ D ratios must not be distorted
by the evaporation of black holes (assumed to be the “seeds” of the white hole relics) beyond observed
values [65]. This forbids the easy formation of enough relics, unless a way to evade those constraints is
found. This is the major challenge for future studies (which is fortunately easier to deal with when
extended mass functions are taken into account [111]).

Another possibility was imagined in [112]. Here, the objects are assumed to be formed before the
bounce in a cosmological model where the Big Bang singularity is replaced by a tunneling between
the classically contracting and the classically expanding Friedmann solutions, as suggested by loop
quantum cosmology [113]. This is in principle consistent, and other theories of quantum gravity might
lead to this new paradigm. This evades the previously mentioned problem. However, in a different
setting, the possibility was already considered in [114-116].

Very interestingly, the proposal is also related to the idea that the entropy and arrow of time could
be perspectival [117]. This approach sheds new light on the old paradox of the apparently low entropy
of the initial state of the Universe: the Universe is not anymore homogeneous at the bounce, and our
observed entropy is determined by the fact that we cannot access the huge volume inside the abundant
white hole remnants. It might seem puzzling that the authors explain the “un-naturally” low entropy
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of the Universe by arguing that the probability for us to be where we are (outside of a relic) is only one
part in 10120, It is however meaningful in the sense that a special position is much more anthropically
“acceptable” than a special state.

More importantly, it seems hard for the dark matter remnants to be already present at the
bounce time. The current density of the universe is pg ~ 10730 g cm~3. If we assume the usual
cosmological evolution, we had at least 60 e-folds of inflation followed by approximately 60 e-folds of
radiation, matter and cosmological constant-dominated expansion. This means that the scale factor
has increased by at least a factor 10°? since the bounce. The density of remnants should then be at least
1016 x 10730 = 10'26 g.cm 3 at the bounce, that is 10%3pp;. Leaving apart the fact that this value is
probably unphysical (the bounce would have happened before when thinking in the positive time
direction), this is anyway incompatible with Planck mass and Planck size remnants (which cannot lead
to a density higher than the Planck density without merging).

This could be evaded by assuming that no inflation took place, but this would require a quite
exotic cosmological evolution. A nice feature of bouncing models is precisely to be compatible with
inflation [7,8,118-120]. However, a possible way out could be to focus on a matter bounce (as white
hole remnants would probably behave as pressure-less matter from the viewpoint of cosmological
evolution) [121]. This requires a much lower-than-Planckian density at the bounce time.

The new scenario put forward in [90] constitutes an exciting new paradigm in black hole physics.
It would be very nice to link it with the dark matter mystery, but quite a great deal remains to be understood.

6. Gravitational Waves

Gravitational waves from merging black holes are now observed for real by interferometers [122-126].
This opens a new era with important interesting constraints on black hole physics and modified gravity.

6.1. Spin in Gravitational Wave Observations

For a rotating black hole, the Bekenstein-Hawking entropy is given by:

S(M,j) =2 M?(1+4/1 - j2), (49)

where j = ]/ M? is the dimensionless spin parameter. It follows from Equation (49) that, at fixed
mass M, BHs with larger spin have a smaller entropy. If one assumes that PBHs were indeed formed
in the early Universe, following a microcanonical ensemble statistics, and if we make a statistical
interpretation of the BH entropy in terms of microstates, the previous statement indicates that there are
fewer microstates with large spin than with small spin. In this context, the existence of a population
of black holes with nearly vanishing spins is naturally predicted [127]. This is to be contrasted with
astrophysical black holes, formed by the collapse of rotating stars, which are expected to be generically
rotating quite fast.

If gravitational wave interferometers were to observe a specific distribution of events with very small
spins, this would both be evidence for the primordial origin of the considered BHs (at microcanonical
equilibrium) and for the physical relevance of the Hawking—Bekenstein entropy formula.

To go in this direction, one would need to consider the entropic factor e5("™/) as the weighting
of a spin distribution of PBHs determined by the physical process responsible for their creation.
This distribution is however not known at this time (which means in no way that it can be approximated
by a flat distribution).

6.2. Quasinormal Modes

In the current LIGO/Virgo era, it would be highly desirable to make clear predictions about
gravitational waves in LQG. The possibility of detecting gravitational waves emitted by BHs before the
bounce was mentioned in [128]. This could be extremely promising for opening a new window on the
pre-bounce Universe thanks to the non-trivial behavior of the luminosity distance in the contracting
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phase, leading to a natural amplification of the signal (if the Universe is, e.g., matter dominated).
This, however, does not address the question of the specific modification to the gravitational wave
shape induced by LQG corrections.

The best way to face this difficult question is probably to focus first on quasinormal modes
(QNMs). They correspond to the ringdown phase between the transient and the exponential or power
law tail in a BH merging. The radial part of the perturbed metric is described by:

¥y _ Ae—iwt — Ae—i(wR—i-icu[)t, (50)

where wp characterizes the oscillations and wj the characteristic damping timescale T:

Very importantly, the frequencies of the QNMs form a countable set of discrete frequencies [129].
There are actually two types of perturbations (axial and polar) in the linearized Einstein field equations
described by the Regge-Wheeler and Zerilli equations. In GR, those equations are isospectral, but it is
not clear whether this fundamental property still holds in LQG.

The Regge-Wheeler equation is very close to the one used to calculate greybody factors (although
the question is different: the problem of QNM is to study the relaxation of the BH itself, not the way it
scatters a quantum field). It reads for a Schwarzschild BH:

) (1_ ZM) [€(€+1) - 6M] ,

r 72 = (1)

for a mode of angular momentum ¢. The know-how recently gained on greybody factors could
therefore be usefully recycled for this purpose. It should however be clear that the technique is
different (one does not search for the solution of an equation for all frequencies, but for the values
of the frequencies allowing for a solution with different boundary conditions) and that only models
leading to substantial metric modification around the horizon might lead to observational effects. This
is one of the most promising ways to relate LQG corrections to BHs with observations.

7. Conclusions

The description of black holes in loop quantum gravity has much improved in the last years.
A globally consistent picture is now emerging. In this article, we have reviewed its possible
experimental consequences.

The main results are the following:

o  First, the Hawking evaporation spectrum should be modified in its last stages. We have shown that
it could not only allow for the observation of a clear signature of LQG effects, but also, in principle,
to the discrimination between different LQG models. In particular, holographic models lead to
specific features. The value of the Barbero-Immirzi parameter could even by measured.

e  Second, attempts to calculate the greybody factors were presented. They should keep a subtle
footprint of the polymerization of space and of the existence of a non-vanishing minimum area gap.

e  Third, it was emphasized that a local quantum gravity perspective would lead to an observable
modification to the Hawking spectrum (line structure), even arbitrarily far away from the Planck
mass. This prediction is not washed out by the secondary emission from the BH.

e  Fourth, a model with BHs bouncing into white holes with a characteristic time proportional to
M? was presented and shown to have astrophysical consequences. It can be fine-tuned to explain
ether fast radio bursts or the Fermi gamma-ray excess, depending on the values of the parameters.
The possible associated background was also studied. A specific redshift dependence allows one
to discriminate the model from other possible explanations.
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Fifth, the possibility of having a large amount of dark matter in the form of white holes appearing
after quantum gravitational tunneling is presented together with possible weaknesses and future
improvements of the model.

Sixth, observable effects on gravitational wave detections associated with the BHs’ spin
distribution expected are presented.

Seventh, promising prospects for quasinormal modes are outlined.

It could be that black holes will play a major role in making quantum gravity become an

experimental science.
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3.5 La matiére noire faite de reliques de trous noirs microsco-
pique

Les évidences de I’existence de la matiere noire sont nombreuses [80]. Cette matiere noire est
contrainte d’étre électriquement neutre et non-baryonique. Mais de quoi est elle constituée ? Quelle est
son origine ? Ces questions restent ouvertes mais de nombreux candidats et modeles sont étudiés.

Dans cet article, on s’intéresse au scénario ou la matiere noire serait constituée de reliques de
Planck. Dans I’univers primordiale, si deux particules trans-Planckiennes entrent en collision et que le
parametre d’impact est plus petit que le rayon de Schwarzschild, alors ce processus inélastique mene a
la formation de trou noir. La production de trou noir est décrite par la section efficace suivante

a(s) = F(s)nR} (3.113)

avec /s I’énergie du centre de masse, R, le rayon de Schwarzschild et F(s) de I’ordre de 1. La gravité
quantique doit étre prise en compte pour une description plus rigoureuse mais les caractéristiques
principales sont indépendantes du modele. Ici, nous ne considérons pas la production de trous noirs
microscopiques lié a I’existence de dimensions supplémentaires ou d’une énergie de Planck basse. La
fin du processus d’évaporation ne peut pas €tre traitée de fagcon semi-classique. Dans les théories au
dela de la RG, beaucoup d’entre elles argumentent qu’un trou noir ne s’évapore pas totalement mais,
au contraire, existe sous la forme d’une relique de Planck stable (ou a long temps de vie) [81]. Dans ce
cas, il serait possible de résoudre le paradoxe de 1’information.

Soient des trous noirs primordiaux (PBHs) formés par des particules trans-Planckiennes pendant la
période de réchauffement. Les reliques qui en découlent sont constituées de matiere non-relativiste
et leur densité se comporte comme a~>. La densité du fond, constitué de rayonnement, se dilue plus
rapidement en a~*. Ainsi on peut avoir

Prel

cr

Qrel =

~ 1, (3.114)

avec p,.; la densité des reliques et p,, la densité critique cosmologique définie telle que p., = 3H?/«
(elle représente la densité pour définir un univers plat, elle est différente de la densité p. définie en
LQC). L’amplification relative de la densité des reliques par rapport au fond de rayonnement est donné
par

Trir/Tog = 3 X 10 Tgy (3.115)

avec Ty la température de réchauffement et 7, la température au temps de 1’équilibre. Le nombre de
particules avec une énergie au dela de la température moyenne décroit de fagcon exponentielle. Ainsi
pour que, dans la queue de distribution, il y ait suffisamment de trous noirs formés pour rendre compte
de la matiere noire, il faut que I’énergie de I’inflation soit plus élevée que celle usuellement considérée.
C’est I’unique hypothese exotique de I’article ci-joint. En effet, I’échelle d’énergie de 1’inflation est
contrainte expérimentalement par le ratio scalaire-tenseur mais

— si on considere une inflation a champs multiples on peut avoir un ratio faible et une échelle
d’énergie élevée,

— si la gravité n’est pas quantifiée, alors il n’y a pas de mode méme a une énergie d’inflation haute.
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Soit E, I’énergie des particules pour former un trou noir, on a une distribution de Maxwell-Boltzmann
pour décrire le nombre de particules d’énergie supérieure a E,
B
Npart  TrpeTrH . (3.116)
Pour une section efficace de collision oy, indépendante de I’énergie en premiere approximation, la
densité relative au temps d’équilibre est donnée par
_ 2B
eq __ 3OO—BHmrel . e Tk
el 1.66m2g> " T Tay,
avec m,,; la masse des reliques et g. le nombre total des degrés de liberté sans masse (pour décrire les
radiations) [82]. La densité relative de reliques en fonction de la température de réchauffement est
tracée sur la Figure 1, avec un zoom sur la Figure 2. Ainsi on observe qu’avec une température de
réchauffement de ’ordre de 1072 en unités de Planck, on obtient une fraction de reliques proche de 1,
ce qui permettrai d’avoir assez de reliques pour rendre compte de la quantité de matiere noire.
Il serait possible de détecter de telles reliques si deux d’entre elles coalescent. Le taux de coales-
cence actuel, a ¢ = 1, est donné par

) (3.117)

Nimerg = 3_[—18 g d_P’
811G m,; dt
avec H, le parametre de Hubble actuel et P la probabilité de coalescence. Ce taux est de I’ordre de
107®m=3s7!. Avec un instrument tel que Euso-like et en utilisant les planétes géantes en tant que
détecteurs cosmiques on pourraient atteindre 12 évenements par an ce qui est tres faible mais tout de
méme dans la fenétre de ce qui est expérimentable.

(3.118)

Cet article a été publié dans Physical Review D [83].
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The idea that dark matter could be made of stable relics of microscopic black holes is not new. In this
article, we revisit this hypothesis, focusing on the creation of black holes by the scattering of trans-
Planckian particles in the early Universe. The only new physics required in this approach is an unusually
high-energy scale for inflation. We show that dark matter emerges naturally and we study the question of
fine-tuning. We finally give some lines of thoughts for a possible detection.
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I. INTRODUCTION

Dark matter is a very old problem. On the experimental
side, it is being actively searched for, by direct detection
(see, e.g., [1-3] for reviews), by indirect detection (see, e.g.,
[4-6] for reviews), and by accelerator production (see, e.g.,
[7,8] for reviews). Many “little anomalies” are known, from
the Fermi excess of GeV gamma rays [9] to the PAMELA
and AMS-02 overabundance of positrons [10-12]. All of
them can however be quite simply accounted for by
conventional astrophysical processes and at this stage no
clear signal for nonbaryonic dark matter has been unam-
biguously recorded.

On the theoretical side, many hypotheses are being
considered. They are actually too numerous to be exhaus-
tively mentioned here (see, e.g., [13] for an introductory
review). From supersymmetry [14] to axions [15], most
of them imply some amount of “new physics.” Recent
developments even include an impressive list of highly
speculative hypotheses.

Obviously, estimating the “exoticity” of a model is quite
subjective. In this brief article, we revisit the idea of dark
matter made of Planck relics and we argue that this scenario
might be much less exotic than most models. The only
nonstandard hypothesis is a higher than usual reheating
temperature.

II. TRANS-PLANCKIAN SCATTERING

Most studies considering primordial black holes (PBHs)
are relying on production mechanisms that involve the

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010/2019/100(12)/123505(6)

123505-1

collapse of overdense regions (see, e.g., [16] for an early
detailed calculation, [17,18] for studies of phase transitions,
and [19,20] for reviews). Those scenarios are however very
unlikely as the density contrast required to form a PBH is
close to 1, whereas the primordial power spectrum mea-
sured in the cosmological microwave background (CMB)
has a much lower normalization. This bound could have
been circumvented by a blue power spectrum as the scales
involved in the formation of PBHs are much smaller than
those probed by the CMB. The actual spectrum, however,
happens to be red (n; =~ 0.965) [21], making the production
of primordial black holes by “historical” mechanisms very
difficult. Other scenarios like the collapse of cosmic strings
were also considered [22] but they are also disfavored—if
not ruled out—by recent measurements. Interesting new
ideas are, however, now being considered [23,24].

Nevertheless, there exists a very different way to produce
small black holes, namely, through the scattering of trans-
Planckian particles. As initially argued in [25], when the
impact parameter is smaller than the Schwarzschild radius
(associated with the considered center-of-mass energy of a
particle collision), the cross section for the scattering of
trans-Planckian particles is dominated by an inelastic
process leading to the formation of a single black hole.
The key point is that the main features of high-energy
scattering above the Planck energy can be studied from
semiclassical considerations in general relativity and are
therefore reliable.

Basically, at impact parameters greater than the
Schwarzschild radius, elastic and inelastic processes (gravi-
tational radiation, bremsstrahlung for charged particles,
etc.) are described by solving the classical equations of the
low-energy theory with initial conditions described by a
pair of shock waves with appropriate quantum numbers.
At smaller impact parameters, scattering is dominated by
the resonant (in a sense different from the classical Breit-
Wigner one) production of a black hole with mass equal to

Published by the American Physical Society
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the center-of-mass energy. The elastic cross section is
suppressed by a Boltzmann factor and the incoming
particles never get close enough together to perform a
hard QCD scattering. In this limit the eikonal approxima-
tion for the initial state becomes valid and is described by a
metric containing a pair of Aichelburg-Sexl shock waves
with the associated impact parameter.

In [26], the study was refined and it was also concluded
that the cross section for black hole production should be
of the order of 6(s) = F(s)nR%(s) with F(s) being factor
of order 1, /s the center-of-mass energy, and R the
Schwarzschild radius. The details obviously depend on the
considered quantum gravity theory but the main features
are basically model independent.

Those ideas were applied to the possible production and
observation of microscopic black holes at colliders (see,
e.g., [26-29] for early works) in theories with a low Planck
scale—typically in the TeV range (usually associated with
the existence of large extra dimensions [30] or with many
new particle species [31]). A nice review including astro-
physical effects, like those mentioned in [32], can be found
in [33]. In this article, we do not rely on the existence of
extra dimensions and we do not assume a low Planck scale.

III. STABLE RELICS

The Hawking temperature Ty = 1/(8zM) [34] is van-
ishingly small for astrophysical black holes but becomes
significant for very small black holes. The mass loss rate
during the evaporation is proportional to M~2 and the
process is therefore highly explosive. In itself, the evapo-
ration mechanism is well understood from many different
perspectives and is very consensual (see, e.g., [35] for a
simple introduction). Although it has not been observatio-
nally confirmed, there are indications that it might have
been revealed in analog systems [36].

The status of the end point of the evaporation process is
less clear. Obviously, the semiclassical treatment breaks
down in the last stages and the divergence of the temper-
ature together with the appearance of a naked singularity is
nonphysical. Many different arguments have been pushed
forward in favor of the existence of stable Planck relics at
the end of the evaporation process (see [37-50] to mention
only a few historical references, among many others).
There are excellent arguments from quantum gravity, string
gravity, or modified gravity theories in favor or remnants.
Those are however obviously based on new physics. One of
the best arguments for Planck relics using only known
physics was given by Giddings in [51]. Locality, causality,
and energy conservation considered within the information
paradox framework (see, e.g., the first sections of [52] for a
precise description) do suggest that the time scale for the
final decay of BHs is larger than the age of the Universe.

Although no clear consensus exists on the status of BHs
at the end of the evaporation process, it is fair to suggest
that the existence of relics is somehow simpler from the

viewpoint of usual physics. A recent review on the pros
and cons of stable remnants can be found in [53]. It is
concluded that if relics contain a large interior geometry—
which is supported by [54,55]—, they help solve the
information loss paradox and the firewall controversy.

IV. REHEATING SCALE

The idea that dark matter could be made of Planck
relics was first suggested in [56]. This seminal work was,
however, focused on PBHs formed by the collapse of
overdense regions (or similar mechanisms), which is now
believed to be extremely unlikely as previously pointed out.
We focus here on the possibility that PBHs are formed by
the collision of trans-Planckian particles in the early
Universe. This has already been considered in [57] and
in [58,59] (see also references therein) for the case with
extra dimensions.

In this work, we do not assume a lower than usual Planck
scale due to extra dimensions. We quite simply consider the
standard cosmological scenario in a (3 + 1)-dimensional
spacetime and just take into account the “tail” of trans-
Planckian particles at the reheating time. The key point lies
in the fact that the potentially produced relics behave
nonrelativistically and are therefore much less diluted (their
energy density scales as a~>) than the surrounding radiation
(whose energy density scales as a~*). Hence, it is possible
to reach a density of relics (normalized to the critical
density) close to 1, Q. = pa/pe = 1, With only a tiny
fraction of relics at the formation time. The relative
“amplification” of the relics density compared to the
radiation density between the reheating and the equilibrium
times is given by Tgry/Teq 3 x 107 Ty when Tgy is
given in Planck units. To fix ideas, for a reheating temper-
ature at the grand unified theory (GUT) scale, a relics
fraction of only 1072* at the formation time would be
enough to nearly close the Universe at the equilibrium time.

For a thermal distribution of particles at temperature 7,
the number of particles above Ey > T is exponentially
suppressed. This is why, even with the amplification factor
given above, the scenario presented here requires a reheating
temperature not much below the Planck scale. This con-
stitutes, in our view, the only “nonstandard” input of this
model. The Planck experiment final results lead to an upper
limit on the tensor-to-scalar ratio of primordial perturbations
r < 0.1 [60], which is even tightened to r < 0.064 by
combining the data with the BICEP2/Keck Array BK14
measurements. This is usually interpreted as an upper limit on
the energy scale of inflation around the GUT scale (the higher
the energy scale, the larger the normalization of tensor
modes), which is too low for the process considered here.
There are, however, at least two ways to circumvent this
bound (we assume for simplicity a sudden reheating).

The first one consists in noticing that the upper limit
on the energy scale of inflation holds firmly only for
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rudimentary models. In k& inflation [61], the relation
basically becomes r = —8Cgn, (instead of r = —8n,),
where 7, is the tensor index and Cg < 1 is the speed of
sound for perturbations. This relaxes the bound. In two-
field inflation [62], the upper limit is also relaxed to
r = —8n,sin*(6), where 6 accounts for the possible evo-
Iution of adiabatic scalar modes on super-Hubble scales.
In multifield inflation the relation between r and n; even
becomes an inequality.

A second and probably more provocative argument
would be the following. Whereas temperature anisotropies
originate from usual quantum physics, namely, from the
quantum fluctuations of the inflaton field, the tensor
perturbations leading to B modes in the CMB should come
from the quantum fluctuations of the polarization modes
of the graviton. In a sense (and although some counter-
examples have been constructed but for artificial models),
B modes would be a signature of perturbative quantum
gravity (dimensional arguments are given in [63]).
Quantum gravity is a fascinating area of research but it
has still no connection with experiments and assuming
gravity not to be quantized is also legitimate, especially
when considering how difficult and paradoxical the quan-
tization of the gravitational field is [64]. It is therefore
meaningful to consider the possibility that no B mode is
produced, even with a very high-energy scale for inflation,
just because gravity might not be quantum in nature (this
would also raise many consistency questions but is obvi-
ously worth being considered, as advocated in [65,66]). In
such a case, the usual upper bound could also be ignored.

Obviously, the normalization of the scalar spectrum
would also be in tension with such a high scale (violating
the slow-roll conditions in the most simple cases). We do
not mean that a higher than usual energy scale for inflation
is unavoidable or even favored. We simply state that this is
not ruled out by the tensor-to-scalar ratio and might be, in
our opinion, less “exotic” than most assumptions required
for usual DM candidates.

V. DARK MATTER ABUNDANCE

The threshold energy E, to produce a BH in a head on
collision of particles is expected to be of the order of the
Planck energy but, depending on the details of the
considered model, might be slightly different and we keep
it as a free parameter. To estimate the number density of
particles above FE,, one simply needs to integrate the
thermal distribution, which leads to

Npart Trye ™5/ T,
where we use Planck units (as everywhere in this work
except otherwise specified). Obviously, if the reheating
temperature is too small when compared to the threshold
energy of BH production, the number of PBHs will be
exponentially suppressed and the process will be inefficient.

The cross section, in principle, depends on the energy of
the collision but, as a fist step, can be assumed to be a
constant ogy above the threshold. The collision rate is
therefore given by I' = np, 60 ~ npopy. The energy
density of radiation is
2
Pr = 309 T

with g, being the total number of effectively massless degrees
of freedom, that is, species with masses m; << Try. The
Hubble parameter is

H = 1.66g)*T2,,.
If relics are assumed to have a mass m,, (necessarily lower

than Ey,), the energy density of relics is given by

_2E
~ npanmrelr ~ e TRHOBY M

Pral X
rel H 1.669}/2

The relative density of relics at the formation time is

26,

7 30opumyy e Tru

rel 16677293:/2 TﬁH 9

leading, in agreement with [59], to a relative density at the
equilibrium time of

2E,

eq _ 30O-BHrnrel e "R

e 1.667[291/2 TequgH ‘

Let us first assume that the cross section is of order 1 in
Planck units (o ~ Ap;) above the threshold and that the
mass of the relics is also of order 1 in Planck units
(my ~ mp). In Fig 1, the relative abundance of relics at
the equilibrium time is plotted at the function of the
reheating temperature. Figure 2 is a zoom on the relevant
region. For a reheating temperature slightly above 1072,

10%°

10° S

107
10-%

10 -90
10-120

eq 107150
10-180
10-210

10-240
10-270

107300 . - - — —
1072 107! 10°
T rh
FIG. 1. Fraction of relics at the equilibrium time as a function of
the reheating temperature (in Planck units).
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FIG. 2. Zoom on the fraction of relics at the equilibrium time as
a function of the reheating temperature (in Planck units), around
the relevant zone.

one is led to a density of relics that can account for
dark matter.

Although the influence is negligible, from now on we
use the cross section o(s) = F(s)zR%(s), where Rg = 2s.
We set F' = 1 above the threshold, but with the dependency
being linear it is easy to extrapolate to any reasonable value.
In Fig. 3, we show the influence of the threshold energy.
The influence of the threshold energy is—as expected—
very large. Interestingly, if nonperturbative effects were to
lower the threshold by 1 order of magnitude with respect
to the expected value, a reheating temperature around
the GUT scale would be enough to produce the required
density of remnants.

It is worth noticing that in the case with extra dimensions
[59], the “allowed” parameter space is defined by ensuring
that the Hubble rate during inflation H;, together with the
maximal temperature are smaller than the D-dimensional
Planck scale. Meanwhile H; must remain much larger
than the nucleosynthesis temperature. The formed relics
account for dark matter basically between a Hubble rate
of 107! (in usual four-dimensional Planck units) for a
D-dimensional Planck scale of 1077 to a Hubble rate of
1073 for a D-dimensional Planck scale equal to Mp,.

10% — T=0.001
4 8 — T=0.002
10 T=0.005
1073¢ —— T=0.01
< — T=0.014

10-%° — T=0.02
10—90
10—120
10-150
10—150
10—2]0
10-240
10-270

10-300

Q eq

107t 10° 10!
E t

FIG. 3. Fraction of relics at the equilibrium time as a function of
the energy threshold for different reheating temperatures (in
Planck units), from 1073 to 2 x 10? from bottom to top.

VI. THE FINE-TUNING ISSUE

The model presented here seems to require a high level
of fine-tuning. In particular, as the dependency upon the
reheating temperature is exponential, varying slightly its
value leads to a large variation in the density of relics. One
can easily check that

dTru _ dQg (2Er 3 -l Ty dQY 104
Try QY 2Er QY ,

Try

to remain in agreement with data. Unquestionably, the
model requires a very high level of fine-tuning.

The question of fine-tuning is, however, tricky. It is only
well defined relatively to an a priori specific state. In the
cosmological framework, the value Q = 1 is clearly such a
special case. As is well known, inflation fixes a vanishing (or
nearly so) curvature. Basically, as (' — 1) = —¢ ;;‘az with
p remaining constant and the scale factor increasing by at
least 60 e-folds, 2 is fixed (close) to 1 at the end of inflation.
There is obviously nothing magical here as Q involves a nor-
malization to the critical density that, itself, depends on the
Hubble parameter. Should the content of the Universe be
different, we would still have Q = 1, with a different
expansion rate. This means that changing the parameters
of this model would, in fact, not drive the Universe out of the
specific situation Q = 1. In this sense it does not require fine-
tuning.

One might argue that if the reheating temperature were
different, other parameters of the Universe—e.g., the (un-
normalized) matter density, the equilibrium time, etc.—would
be different. This is correct. But, in our opinion, this is not a
fine-tuning issue. This is just the obvious statement that things
could have been different and that changing parameters do, of
course, change the final state. This is not problematic as long
as the “lost” state was not a very peculiar one.

To summarize, the parameters of the model need to be
fine-tuned so that the relic density closes the Universe at the
equilibrium time—which is a contingent fact—but not to
ensure Q = 1, which is indeed the a priori specific feature.

VII. DETECTABILITY

Testing this model is challenging. A Planck relic has the
weight of a grain of dust and no other interaction than
gravity to reveal itself to the outer world. Even though the
Planck mass is very small from the gravitational viewpoint,
it is very large from the particle physics viewpoint. The
number density of relics is therefore extremely small, even
if they are to account for all the dark matter. A density of
107'8 relics par cubic meter—that is, one relic per volume
of a million times the one of planet Earth—is enough to
close the Universe. Detection seems hopeless. The cross
section (or greybody factor) hopefully does not tend to O for
the absorption of fermions in the low-energy limit [67].
However, even avoiding this catastrophic suppression
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(which does exist for higher spins), the area involved is of
the order of the Planck one, 107% cm?, which indeed
makes direct detection impossible in practice.

We consider here another possibility associated with the
coalescences of relics that have occurred during the history
of the Universe. Contrarily to what is sometimes done for
PBHs we shall not focus on the emission of gravitational
waves whose amplitude would be negligible and frequency
way too high for any detector. However, something else is
also expected to happen in this model. When two remnants
merge, a higher-mass black hole is formed and evaporates
until it reaches again m, ~ mp; assumed to be the minimal
one. This should happen preferably via the emission of one
(or a few) quantum close to the Planck energy. Each merging
should therefore emit about a Planck-energy particle, which
is, in principle, detectable. This sketch should of course be
refined but the hypothesis is realistic enough to investigate
whether this path is potentially fruitful.

We estimate the merging rate following [68], which
builds on [69]. It is not hard to show that the probability of
coalescence in the time interval (¢, 7 + dt) is given by

3 138 t\3/37] dt
dP = — |~ (= — a
sl )

where T = x* 35 (Gmy) 7,

_ ( M,y >‘/3 1 <8ﬂGmre]>1/3
X = = _—
prel(zeq) (1 + Zeq) 3H(2) Qrel
being the mean separation of relics at the equilibrium time.

In those formulas, we have reinserted the constants to make
the use easier. The event rate is then given by

3H2 Q. dP
n =
MerE T 87 G My di

fo

This is of the order of 10™* m~3s~!. It is then straightfor-
ward to estimate the measured flux on a detector of surface
S, and solid angle acceptance Q,.., integrated up to a
distance Ry,

T e s C )
mes 0 merg® d 4r .

Although it is well known that TeV photons are absorbed
by interactions with the infrared background and PeV
photons by interactions with the CMB photons, there is no
strong absorption to be expected for Planck-energy pho-
tons. The wavelength of the background photons that
would lead to a center-of-mass energy close to the electron
mass is way larger than any expected background. The
R .x value can therefore be assumed to be much larger than
for usual high-energy cosmic-ray estimations. For detectors
like Auger [70], the expected flux is too small for a
detection. For Euso-like instruments [71]—looking at
the atmosphere from the space station—we are led to an

order of magnitude not far from a fraction of an event per
year. For speculative ideas about using giant planets as
cosmic-ray detectors [72], we reach a dozen events per
year. This is obviously a hard task but, interestingly, the
model is clearly not unfalsifiable.

Furthermore, the idea that the Hawking radiation due to
the formed black holes before they become stable relics
might play a role in baryogenesis was considered in [73].
The possibility that they might have an effect on the
primordial nucleosynthesis should also be considered. In
the case considered in this article—with a true Planck scale
at the four-dimensional value—, the relics are so heavy and
heir number density so small that it is easy to check that the
associated signal would be entirely negligible.

VIII. CONCLUSION

The idea that dark matter could be made of Planck relics is
not new. Nor is the possibility that black holes could be formed
by the scattering of trans-Planckian particles in the early
Universe. In this article we have gathered all the ingredients
and argued that the resulting model is not (that) exotic.
Unquestionably, the very high reheating temperature required
raises questions. We have however explained that the upper
bounds usually considered can be circumvented. Still, build-
ing a consistent cosmological model with such a high scale for
inflation is not trivial and should be considered as a challenge.

There is no obvious solution to the dark matter problem,
which is one of the oldest enigmas of contemporary
cosmology. The scenario suggested here is based on a
minimum amount of new physics, if not only on known
physics. It requires a quite unusual cosmological behavior
but no new particle physics input is needed. From this point
of view, it might be worth being considered seriously.

Several developments would be worth being considered.

(1) The possibility that nonthermal processes do happen
during the reheating, eventually enhancing the high-
energy tail of the distribution, should be studied
with care.

(i) The model presented in this article should be
investigated in the context of noninflationary bounc-
ing cosmologies, expected to be more favorable to
this scenario.

(iii) The experimental possibilities that were outlined
should be made more precise thanks to Monte Carlo
simulations.

(iv) in addition to the possible detection of extremely
high-energy gamma rays, it might be interesting to
consider a possible low-energy (in the 100 MeV
range) signal due to the disintegration of neutral
pions produced by the hadronization of quarks or
gluons emitted by the merging of relics.
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CHAPITRE 4

Le formalisme polaire
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4.1 La forme polaire

Avec I’étude des spineurs en espace courbe dans la section (3.2), on a pu voir que seulement une
séparation de variables tres précise (3.44,3.45,3.46,3.47) permettait de découpler les équations. Les
spineurs sont des objets tres sensibles a la structure de 1I’espace-temps, il est donc intéressant de les
étudier pour mieux appréhender leur interaction avec ce dernier. Un spineur est un objet a quatre

composantes

complexes

¥
5}
Vg
Y

17[/:

qui lors d’une transformation de Lorentz se transforme selon

Y= Ay,

avec A% définie par (1.53). Un spineur obéit a I’équation de Dirac

iV Y +iwF,, oy —myr=0.
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avec F, le potentiel d’un champ externe, ou on a utilisé la notation de [84]. Dans ce cadre, F, ne
représente par le tenseur électromagnétique, sa forme pour 1’ oscillateur harmonique sera explicitée
dans la section (4.3.2). L’équation (4.3) est invariante sous transformation de Lorentz. Il existe 16
générateurs des matrices 4 X 4

a ab

I ¢, o%, 7/5 et )/“75. 4.4)

avec o = %[y“, ¥*1. Avec le spineur y et son adjoint ¢ = 7y,, on définit les quantités suivantes

O =y, 4.5)
O=iyyy, (4.6)
U’ =yy“y, 4.7)
S =gy Yy, (4.8)
M =2iga™y, . 4.9)

Ce sont tous des tenseurs réels. Les spineurs de Majorana et de Weyl sont décrits par ® = ® = 0 et
les spineurs de Dirac par @ # 0 ou ® # 0. Nous considérons, ici, le cas des spineurs de Dirac. On a
respectivement un scalaire, un pseudo-scalaire, le vecteur de la densité de vitesse, le vecteur axial de la
densité de spin et un tenseur antisymétrique de rang 2. Les identités de Fierz donnent

UU" = -S,5 =0+ @, (4.10)

Uu,S*=0. (4.11)
Ainsi nous avons

u,u*>0 et S,5<0. (4.12)
Nous précisons qu’on travaille avec la convention +, —, —, —. Donc U est de type temps et nous

pouvons toujours trouver un référentiel tel que sa partie spatiale soit nulle. De méme S ¢ est de type
espace. Ainsi il existe trois boosts tels que U' = U? = U? = 0 et S° = 0. De plus, il existe deux
rotations telles que S! = 2 = 0 et enfin, nous pouvons effectuer une rotation autour de 1’axe 3 pour
supprimer la phase. Apres avoir utilisé les six libertés des transformations de Lorentz, le spineur s’écrit

v=¢| 5 (4.13)

en représentation chirale. Il reste deux dégrées de libertés qui sont scalaires, on ne peut donc pas
les éliminer. Le parametre ¢, le module, décrit I’amplitude du spineur et le parametre 3, 1’angle
d’Yvon-Takabayashi, décrit une phase entre la partie gauche et droite du spineur. Lorsqu’on utilise
I’hypothese de I’onde plane en TQC cela revient a supposer que 1I’amplitude ¢ est constante et I’angle
B est nul. Les quantités (4.5)-(4.9) s’écrivent
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® = 2¢° cos 3, (4.14)
0 = 2¢sinf, 4.15)
U = 2¢%u", (4.16)
S =2¢%s", 4.17)
M =2¢*(cos Bu jsie™* +sin fuls™). (4.18)

Les identités de Fierz s’écrivent alors

uu = —s,8“ =1, (4.19)
uys* = 0. (4.20)

Oupo

1 b . . Lo
Théoreme : 11 existe toujours une matrice de Lorentz A 1 =e2 telle qu’un spineur puisse s’écrire

sous la forme polaire

1
_BY 10

Y=Aige 2 : = Ao, (4.21)
0

avec Y, le spineur dans le référentiel tel qu’on a utilisé les trois boosts pour avoir U' = U? = U = 0
et S° = 0, deux rotations telles que S' = §2 = 0 et une troisiéme rotation pour enlever la phase. Etant
donné que les équations sont covariantes, on peut toujours se placer dans le référentiel ou le spineur
s’écrit sous sa forme polaire (4.21) pour faire les calculs.

4.2 Les équations polaires

La dérivée covariante en représentation spinorielle s’écrit

L
Vil = 9 + Qb = b + 5 QY + igA L, (4.22)

avec €, la connexion de spin déja définie par I’équation (1.55). Ici, nous avons également pris en
compte I’électromagnétisme avec g la charge et A, le potentiel vecteur. La transformation de Lorentz
en représentation spinorielle A% peut étre définie telle que

1
A3 =8, AT + Eaﬂeabaab. (4.23)
2

En utilisant la dérivée covariante (4.22) sur la forme polaire du spineur (4.21), nous avons

V=V, In¢l-1V,By° —iP,I- 1R, 0 )y, (4.24)
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avec

P, = 9,1 - qA,, (4.25)
Riju = 0,0 — Qijus (4.26)

I’impulsion et la connexion tensorielle respectivement. A partir de (4.24), on peut montrer que

V,ity = Rigu, (4.27)
VSa = Rigs'. (4.28)

On peut voir qu’avec ce formalisme I’interaction électromagnétique et ’interaction gravitationnelle
sont trait€ées de facon similaire. Mais le point le plus intéressant concerne 1’objet R;j,. En effet, il
est composé de d,6;; et €;;, qui individuellement ne sont pas des tenseurs. Par contre R;j, est un
tenseur. La connexion €;;, contient I’'information sur la force inertielle et sur la gravité. L’objet d,6;;
contient I’information sur le repere. De sorte, que méme en I’absence de gravité, 1’objet R;;, contient
de I'information sur la force inertielle mais c’est un tenseur. C’est pour cela qu’on dit que c’est
une force inertielle covariante et que R;j, est appelé la connexion tensorielle [85]. C’est I’analogue
gravitationnel de ce qu’est le moment P, pour I’électromagnétisme. Le tenseur R;j, est antisymétrique
par permutation des deux premiers indices. Dans le cadre de la TQC, avec 1’hypothese d’onde plane,
onaR;;, =0, ¢ = constante et § = 0, ainsi on a également V,In¢ = 0 et V8 = 0. Alors que dans le
cadre du formalisme polaire, on ne fait pas de telles hypotheses et le calcul montre que dans certains
cas ¢ et 8 ne sont effectivement pas constants. C’est ce que nous verrons dans 1’article suivant.

On insere I’expression (4.24) dans I’équation de Dirac (4.3). Puis, on applique la décomposition de
Gordon, ¢’est-a-dire on multiplie le coté gauche par yI, ¥y*, Yo, ¢y’ et yy“y’. Ceci donne 16
équations complexes. La partie imaginaire des quatre équations multipliées par yy“ est

Va¢ - Z(JO-/MV#(// - V“JO'WW) =0. (4.29)

La partie réelle des quatre équations multipliées par ¢y“y> est

Vo® = 2i( Y0y’ V' — VY0 40y ) + 2mS , = 0. (4.30)

Ces huit équations permettent de trouver les 32 équations de la décomposition de Gordon et sont
donc strictement équivalentes a I’équation de Dirac. On peut alors écrire les équations (4.29) et (4.30)
sous la forme polaire. Ensuite on diagonalise en prenant les deux combinaisons linéaires suivantes :
cos X (4.29) +sin Bx (4.30) et sin Bx (4.29) —cos % (4.30). Ceci donne les deux équations covariantes
suivantes

1
= 2wF,,u” sin B—weppe Fu” cos B + ESWWR‘”‘ =2Pu s,y + V,B+2s,mcos =0 4.31)
2wF 1" C0S B—weypno FP"u” sin B+ R, = 2P U"s" £y + 25,msinf+V, In #*=0 (4.32)

Les huit équations (4.31) et (4.32) sont totalement équivalentes aux huit équations (4.3) [86]. Ceci nous
permet donc d’avoir les équations de Dirac sous une nouvelle forme qui révele les dégrées de liberté
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physiques du spineur : ¢ et 8. Du point de vue de I’interprétation, on observe que sans les termes de
potentiel F,, I’angle B apparait dans le terme de masse. En effet, comme nous I’avions vu dans le
Langragien (1.101), 'interaction entre la partie droite et gauche du spineur n’apparait que dans le cas
d’un spineur massif.

L’interprétation du terme R;j, n’est pas encore entierement comprise. Dans les articles [87, 88], on
observe qu’une solution exacte de I’équation de Dirac a les termes R,;, Ry, Roi €t Ry qui dépendent
du parametre €. Ce dernier est une énergie négative qui décrit une force attractive sur le spineur méme
dans le cas d’un systeme sans source. L’interprétation donnée est donc la présence d’une force attractive
qui tend a localiser la particule. En fait, en TQC on sait que I’hypothese d’onde plane est une tres
bonne approximation mais on sait également que dans la réalité les particules sont localisées dans une
région. Ainsi on voit que les termes R, permettent d’expliquer cette localisation. D’autres termes
du tenseur R;j, vont étre interprété€s dans la section suivante 4.3 pour décrire I’effet Aharonov-Bohm
gravitationnel.

Dans les articles suivants, on utilise une notation légérement différente. La matrice y° est notamment
dénotée par le symbole et la transformation de Lorentz A 1 est dénoté par S. Les vecteurs sont indiqués
avec une fleche et le gras est utilisé pour les matrices. Dans la présentation des articles je garderais
néanmoins la méme notation que précédemment, ainsi le gras désigne les vecteurs spatiaux.

4.3 Vers un effet Aharonov-Bohm gravitationel

Dans cet article, on montre que méme en absence de gravité, c’est-a-dire avec un tenseur de
Riemann nul R/ w = 0, certains termes de la connexion tensorielle sont non nuls et cela donne lieu a un
effet Aharonov-Bohm gravitationnel. Nous étudions le cas d’un potentiel d’hydrogene et d’oscillateur
harmonique. Nous écrivons en parallele le cas électromagnétique pour mettre en avant I’analogie. Le
tenseur €lectromagnétique F,, en fonction de potentiel vecteur A, s’écrit

F,, =0,A, —-0,A,. (4.33)
11 est également possible d’écrire le tenseur de Riemann R’ juv €0 fonction de la connexion spinorielle

Ql

Jv

i i i i Ok i Ok
R, =0, -9, +Q) QY - Q) Q. (4.34)
A partir des relations (4.33) et (4.34), on peut en déduire
quv = _(Vqu - VVPﬂ)' (4.35)
i i i i pk i pk

Nous allons étudier deux types de potentiels : I’atome d’hydrogene [86] et 1’oscillateur harmonique.

4.3.1 L’atome d’hydrogene

Le potentiel de Coulomb est décrit par
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gA, = —%, (4.37)

avec « = ¢* la constante de structure fine. L’ équation de Dirac (4.3) s’écrit

(E+9) I O o 0 o-r o — 0 (o-r)(o-L) =0
= = W= —myr=
10 -I N=or 0 "\ =(o-r) (o-L) 0

On se place dans le référentiel ou le spineur est sous forme polaire et les deux dégrées de liberté sont
calculés

B=- arctan(% cos 0), (4.38)
¢=r""e VA (4.39)

avec I' = V1 —a? et A(6) = 1/4/1-a?|sinB]>. On observe, comme précédemment mentionné, que
I’amplitude ¢ et I’angle 5 ne sont pas constants. L’angle 8 n’a pas de dépendance radiale, ce qui est
cohérent avec le fait que pour un potentiel d’hydrogene I’amplitude on peut effectuer une séparation
des variables r et 8. L'impulsion est donnée par

P.=FE+a/r, (4.40)
P,=-1/2, 4.41)

et on observe que bien qu’il n’y ait pas de courbure, certains termes R, sont non nuls

R, ,9=—arsinfcos f|A], (4.42)
R.g9=—r(1-T|A]%), (4.43)
Rypp=—rlsin 6, (4.44)
Rgpp=—71"sinfcos 6. (4.45)

On peut également calculer d’autres scalaires notamment la trace du tenseur énergie-impulsion définie
telle que T = L + m¥YY , avec L le Langrangien. On obtient

T = 2¢*AE. (4.46)

Le comportement de 7 a petit et grand r est similaire, ce qui ne sera pas le cas pour 1’oscillateur
harmonique. Le calcul d’autres scalaires montre qu’ils ont tous le méme comportement radial.

4.3.2 Doscillateur harmonique

Dans le cas de I’oscillateur harmonique, le potentiel est donné par [84]

F,=v,x,—v,x,, 4.47)
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avec v, un vecteur de type temps et x, le vecteur position. Avec v, = (1,0, 0, 0), I’équation de Dirac

s’écrit
N I O lﬁ“‘i 0 o-r o0
0 -I N-or 0 '

; 0 (o-r)(o-L) i 0 or =0 (4.48)
—L — W —myr=0. .
"\ =(o+r) (o-L) 0 or 0

Comme précédemment, nous nous placons dans le référentiel ou le spineur est dans sa forme polaire et
nous calculons les scalaires

2ar cos 9
B=arctan (—r2 — ), (4.49)
p=Ke 2" \[A/2, (4.50)

avec K une constante, a = (E — m)/2w et A une fonction telle que A(r,6) = \/ r* + a* + 2r2a? cos(20).
On a la limite r = a ou la densité scalaire @, défini par I’équation (4.14), change de signe. Pour
I’impulsion et la connexion tensorielle on obtient

P,=E, 4.51)

P,=-1/2, (4.52)
Riy0==2ar* sin 6 cos 6(r* +a*)A™?, (4.53)
Rgo=—2r[r*+a° cos (20)]A72, (4.54)
R, =2arlsin 6 (r*—a*)A™, (4.55)
R.oy=—2a°r* sin (20)A72, (4.56)
Rygp=—rlsin 6, (4.57)
Rogo= —r?sin6cos 6. (4.58)

La trace du tenseur énergie-impulsion s’écrit

T = 2¢°A"'(PE - a*m), (4.59)

on observe que le signe de ce scalaire change a r = a Vm/E. Pour des petits r on a T ~ —2¢*m alors
que pour des grands r,ona T = 2¢2E . La limite non relativiste, telle yp — 0, est décrite, dans le
formalisme polaire, par 8 — 0. On en déduit a = 3/2m, ce qui entraine qu’on a la limite non relativiste
lorsque la masse est grande. On peut séparer 1’espace en trois régions, on a une premicre sphere
avm/E, puis une région entre cette sphere et la sphere a et enfin la région extérieure. Dans la limite
non relativiste, les spheres r = a ou ®@ change de signe et r = a Vm/E ou T change de signe coincident.
Il existe une sphere de rayon a vm/E a I’intérieur de laquelle les effets relativistes ne peuvent pas étre
supprimés. Dans cette sphere les effets de la dynamique interne sont dominants. Ils sont d’autant plus
important lorsque 8 = m, c’est a dire lorsque la partie gauche et droite sont en opposition de phase.
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4.3.3 DL’effet Aharanov-Bohm

Dans les deux études précédentes, on a pu voir que certaines composantes des tenseurs P, et R,
sont non nulles méme en 1’absence de courbure. Du point de vue de I’électromagnétisme, pour P, ce
phénomene est déja connu comme étant I’effet Aharonov-Bohm. D’un point vue gravitationnel cet
effet a déja été étudié [89, 90]. Ici, on propose de I’étudier avec le tenseur R, avec lequel on peut
faire un parallele franc avec le cas électromagnétique.

Lorsque le spineur se trouve dans sa forme polaire, on observe que les équations (4.27, 4.28) se
réduisent a

V.si=Rsjy, (4.60)
V#ui:ROiﬂ. (461)

Ainsi la dynamique de la vitesse u, et du spin s, dépend uniquement des composantes de R;j, avec
i = 0, 3. Etant donné que ce dernier est antisymétrique par permutation des deux premiers indices, les
termes R, n’apparaissent jamais dans les équations de la dynamique de la vitesse et du spin, comme
c’est le cas pour P, en électromagnétisme. En intégrant (4.25) on a une phase AA. L’intégrale sur une
boucle fermée donne

SE(Pﬂ +qA,)dx" = 56 8,Adx" =27n, (4.62)
Y Y

avec n un nombre entier. De facon analogue 1’intégrale de (4.26) pour Af,, donne

56(R12,1+912y)dX” = 95(9,191201)6" =—4nn. (4.63)
y y

Dans le cas ot I'impulsion et la connexion tensorielle sont nulles, avec y = S, le théoréme de Stoke

donne
qSE A-dx= qffrotA~dA£:27rn, (4.64)
s

as
Qp-dx= ffrot912~dA;:—47m. (4.65)
as s

Ainsi les équations (4.64) et (4.65) décrivent respectivement I’ effet Aharonov-Bohm électromagnétique
et gravitationnel. Méme en 1’absence de source, le potentiel gravitationnel peut donner lieu a un
déphase du champ. On peut alors écrire

w — e—i/le—%glzo'lzwpol’ (466)

avec ¥, le spineur sous forme polaire (4.21). On a une phase abélienne A et une phase non abélienne
01> qui peuvent étre présentes méme sans champ électromagnétique et gravitationnel.

Cet article a été publié dans European Physical Journal C [91].
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Abstract Spinor fields are written in polar form so as to
compute their tensorial connection, an object that contains
the same information of the connection but which is also
proven to be areal tensor. From this, one can still compute the
Riemann curvature, encoding the information about gravity.
But even in absence of gravity, when the Riemann curvature
vanishes, it may still be possible that the tensorial connection
remains different from zero, and thih can have effects on mat-
ter. This is shown with examples in the two known integrable
cases: the hydrogen atom and the harmonic oscillator. The
fact that a spinor can feel effects due to sourceless actions is
already known in electrodynamics as the Aharonov—Bohm
phenomenon. A parallel between the electrodynamics case
and the situation encountered here will be drawn. Some ideas
about relativistic effects and their role for general treatments
of quantum field theories are also underlined.

1 Introduction

Quantum field theory (QFT) is one of the most impressive
successes of contemporary science. From the standard model
of particle physics to condensed matter theory, this frame-
work works remarkably well and delivers high-precision
predictions. The mathematical foundations of QFT however
remain quite confusing. Some of the best known problems
are the following (see [1]): all calculations are performed
by expanding fields in plane waves, which are not square
integrable (and do not really exist as physical objects); in
this expansion the coefficients are interpreted as creation
and annihilation operators, lacking a precise definition [2];
and the calculations rely on the so-called interaction picture,
which is in tension with the concept of a Lorentz-covariant
field theory [3]. For all those reasons, it is clearly mean-

2e-mail: fabbri @dime.unige.it

ingful to consider a more general framework than ordinary
QFT. This is the setting used in this work. As QFT works
extremely well in all know situations, possible new results
will obviously arise only in subtle cases.

As it is well known, Dirac spinor fields can be classified
using the so-called Lounesto classification according to two
classes: singular spinor fields are those subject to the condi-
tions i Yy =0 and ¥ =0 while regular spinor fields are all
those for which the two above conditions do not identically
hold [4-10]. For the regular spinor fields, it is possible to per-
form what is known as the polar decomposition of the Dirac
spinor field [11]: this is the way in which it can be written
in the Madelung form, that is with all the complex quantities
expressed as a real module times a unitary complex exponen-
tial (21) while respecting the transformation properties of a
1/2-spin spinor field. In this form, the 8 real components of
spinors are re-arranged so as to show the physical informa-
tion: of these 8 components in fact, 3 are shown to be the
spatial directions of the velocity, 3 are the spatial directions
of the spin, 1 is the usual expression of the module, and a
last 1 is a phase shift between left-handed and right-handed
chiral parts of the spinor. This exhibits a possible an intern
dynamics, not taken into account in QFT. New effects can be
associated with this phase.

Details about the spinor field equations in this form can
be found in [12]. By implementing the Madelung form, so
as to write every spinorial component as a module times a
unitary exponential, and using the Gordon decompositions,
S0 as to respect covariance, it is possible to convert the Dirac
spinor field equation into a pair of coupled and non-linear
vector field equations which are equivalent to the Dirac one.

These field equations determine the dynamics and the
structure of the degrees of freedom of the spinor field in
terms of two quantities collectively called the tensorial con-
nection. They are built in terms of the connection but are also
proven to be real tensors [13]. In [14], we eventually proved

@ Springer
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that with the tensorial connection it is possible to calculate
the Riemann tensor, which represents the space-time curva-
ture thus deciphering the information about the gravitational
field.

In absence of gravitation the space-time curvature van-
ishes, and the Riemann tensor becomes zero identically. In
this case, just as the connection, the tensorial connection
may still be different from zero, but just like any tensor,
if the tensorial connection happens to be non-zero then it
will remain such in any system of reference: if this were to
happen, we would be in presence of an object which, on the
one hand, would represent a potential having a non-trivial
structure, while on the other hand, it would have a vanishing
strength.

This circumstance is the sourceless case, that is when the
gravitational impact of the considered matter is identically
zero (the Riemann tensor vanishes, so the Ricci tensor van-
ishes, which means that the energy density is not large enough
to source gravity). Nevertheless, an influence on matter can
still arise if the tensorial connection is not identically equal
to zero.

As far-fetched as this situation may look, we will show
that it is indeed what might happen in two notable examples,
given by the two integrable cases known: the hydrogen atom
and the harmonic oscillator.

These two examples, both from some remarkable physi-
cal potentials, and both exact solutions, should convince the
skeptical reader of the fact that the structure of the wave func-
tion of a relativistic quantum matter distribution is in fact due
to the non-vanishing tensorial connection even when it has
no space-time curvature.

One should also keep in mind that a similar situation is
already known. In the same way in which a relativistic quan-
tum matter distribution can be affected by a non-vanishing
connection, even when it has no space-time curvature, it can
also be affected by some non-zero potential even when it
has no gauge curvature. This is the Aharonov—Bohm effect,
which happens when wave functions display a phase-shift
due to potentials even in regions where they give rise to no
electrodynamic forces. Thus, in a way, we may say that what
we are going to present consists in exhibiting the effects on
matter of a gravitational Aharonov—Bohm effect.

This effect for gravity seems to be richer than for electro-
dynamics as in this case the full wave function, and not only
its phase, can be modified. A comparative analysis of the two
Aharonov—Bohm effects will be given.

As a bonus, we will show how it could be possible to
obtain, in analogy to the Born rule for the discretization of
electrodynamic degrees of freedom, a kind of Born rule for
the discretization of gravitational degrees of freedom.

Some comments regarding the non-relativistic limit will
eventually be sketched in one final section.

@ Springer

2 Polar spinors
2.1 Kinematic quantities

We will consider the Clifford matrices y“ from which
[Va?s] =404 and 2i6 4 = eapeamo defining the o4
and 7 matrices (this latter is what is usually called y> or Vs
with a sign ambiguity that has to be fixed by convention).

As known, Clifford matrices account for a total of 16 lin-
early independent generaotrs for the space of 4 x 4 complex
matrices, given by

I y* o™, =, y'n (1)
and it is possible to prove that they verify
ViV Ve = Viljk — Y ik + Vinij + iijrgmy? 2)

which is a spinorial matrix identity (notice that this identity
shows the pseudo-scalar character of the = matrix).

Given the spinor field v, its complex conjugate spinor
field ¥ is defined in such a way that bi-linear quantities

2 =296 ry 3)

M =2iy ety 4)
with

St =yyry )

Ut=yy'y ©6)
as well as

O=iymy (7

o=y ®)
are all real tensors, and it is possible to prove that they verify

1 ..
Eabz—ieabu Mij (9)
1 .

M = Eg“bu % (10
together with

Map®—Zap® = U’ S jrap (1)

MupO+Zup®=UuSp) (12)

alongside to

MU' =08, (13)

iU =®S; (14)

M S'=0OU; (15)

Tir St =dUy (16)
and also
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% abM“”:—%EabE“bztbz—Gz (17)

% BbE?P=-200 (18)
and

U, U =—5,5=0+ &> (19)

U,S*=0 (20)

called Fierz re-arrangement identities.

These identities are important because in the general case
of regular spinors, for which iyymy # 0 or ¥ # 0, we
can use (19) to see that the U? vector is time-like. Three
boosts can therefore be used to remove its spatial components
and two rotations can be used to rotate S along the third
axis, while the third one eliminates the general phase. When
these operations are performed, the most general spinor field
compatible with those restrictions is

v =pe 2T S Q1)

S = O =

in chiral representation. The matrix S is a generic complex
Lorentz transformation, § called Yvon-Takabayashi angle
and represents the phase shift between right-handed and left-
handed chiral parts of the spinor while ¢ is the module.
The full spinor field is then said to be in polar form [11].
In this polar form, the two antisymmetric tensors reduce
to

2 =2¢?(cos Bu'“s?! —sin ﬁujskejk“b) (22)
M =2¢%(cos Bu jspe’ P +-sin pulds!) (23)

with the two vectors

54 =2¢%s5° (24)

U®=2¢u" (25)
and the two scalars

©=2¢sin B (26)

d=2¢%cos B (27)

in terms of the Yvon-Takabayashi angle and module.
All Fierz identities trivialize except for

Uqgu® =—s,5%=1 (28)

Ugs® =0 (29)

which show that the velocity and the spin are constrained,
so that in general they amout to three components each. The
most general spinor therefore possesses four components,
or eight real components, given by the three real compo-
nents of the velocity and the three real components of the

spin, which can always be boosted or rotated away, plus the
Yvon-Takabayashi angle and module, whose scalar charac-
ter makes them impossible to be removed with a choice of
frame. The latter are therefore the only two real degrees of
freedom of the spinor field.

From the metric, we define the symmetric connection as
usual with A, from which, with the tetrads, we define the
spin connection Q) =&, &7 (A —£7 0, £!). With the gauge
potential, we then define the spinor connection

Q —19“% +igA,l (30)
n= 5% abTlqAy

needed to define

VuUr=0,y+2,¢ (€28

which is the spinorial covariant derivative.

Writing spinor fields in polar form does not only allow
us to distill the spinor components into the real degrees of
freedom, but it also provides the definition of the S matrix,
which verifies

1 .
$9, 8! =i0,l+50,6,0" (32)

where A is a generic complex phase and 6;; = —0;; are the
six parameters of the Lorentz group. It is then possible to
define

0,0ii —Q4ju=Riju (33)
ourA—qA, =P, (34)

which can be proven to be real tensors. The spin connection
2;j,, carries information about gravity and coordinate sys-
tems while the derivative 9,,0;; carries information about the
coordinate system, and therefore R;;, carries information
about gravity and coordinate systems. However, while inde-
pendently non-tensorial quantities, their combination makes
the non-tensorial spurious terms cancel, and the result is
that R;j,, is a real tensor. This is the reason why it is called
tensorial connection. Similarly, gA,, contains information
about electrodynamics and gauge phases while d,A about
gauge phases. While independently they are not gauge invari-
ant, their combination P, is a real gauge-invariant vec-
tor. This is why it is called gauge-invariant vector momen-
tum. Due to their analogy, we will collectively call them
tensorial connections, for simplicity [13]. One can show
that

. 1 B
V= (Vu In ¢H—l§vu/3” —iPuH_ERijMUU> v 35
from which

@ Springer
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Vs

Vi

= RjiMSj (36)
=Rji u’ (37)

which are valid as general geometric identities.
2.2 Dynamical equations

The commutator of spinorial covariant derivatives can be
used to define

R, _aﬂsz' -9, szim+sz"kuszkjv —sz"kvszkm (38)
Fuy=0,A,—8,A, (39)

which are the space-time and gauge curvatures.
It is straightforward to prove that

j i
R, =—(VuR};

qF,=

. Dk A
—VVR’.,-M—i-leMR jv—R’kva) (40)
—(VMPV—VVPM) 41

showing that the Riemann tensor can be written in terms
of the tensorial connection while the Maxwell tensor can
be written in terms of the gauge-invariant vector momen-
tum. The tensorial connection and the gauge-invariant vec-
tor momentum are therefore the potentials of the gravita-
tional and electrodynamic fields [14]. However, in absence
of gravity or electrodynamics, when the curvatures vanish
identically, differently from the connection and the gauge
potential, which can always be vanished with a choice of
frame or gauge, there is no way to vanish the tensorial con-
nection and the gauge-invariant vector momentum, if they do
not vanish identically already.

For the matter field, the dynamics is defined in terms of
the Dirac spinor field equation

YRV U HiwF, o™y —my =0 (42)

in which the w term is an additional potential describing the
coupling of the dipole moment of the spinor to an external
field, which will be used to represent the potential of the
harmonic oscillator later in this work.

It is now possible to substitute (35) into (42) to write the
Dirac spinor field equation in polar form. We then proceed
to the Gordon decomposmon by multiplying on the left with
U,y Yo Y and Yy®r so to get 16 scalar equations,
and then we split into real and imaginary parts getting 32 real
scalar equations. Of these 32 real equations, we must expect
that 8 taken together will be equivalent to the 8 real compo-
nents of the Dirac equation (42). These 8 equations are those
obtained by selecting the imaginary part of the contraction
with y“ and the real part of the contraction with with y“m:
multiplying the first by cos 8 and the second by sin 8 and
adding them and multiplying the first by sin 8 and the second
by cos 8 and substracting them produces the diagonalization
that leads to

@ Springer

—2wF,,u" sin B—weupne FPu’ cos B
1
+§5/wzvt Y —2P'u ULSp) (43)
+VuB+2s,mcos f=0
2wF,,u” cos B—we,pne FPu’ sin B
+Rza—2Ppu”s°‘8W,W (44)
+2s,msin B+V,, In¢* =0

which can be proven, in return, to derive the polar form of
the Dirac spinor field equation. This proves the equivalence
between (44, 45) and (42) itself. So the four spinorial field
equations, which are eight real field equations, can be con-
verted into one vector field equation and one axial-vector
field equation, specifying the first-order derivatives of the
module and of the Yvon-Takabayashi angle, determining the
dynamics of the real degrees of freedom [12].

3 Application to two systems

The theory developed so far is general, but applications can
also be studied so as to better understand what are the prop-
erties of the tensorial connections: our goal is to see what
happens in the sourceless case, that is in situations where the
energy density is not large enough to be a source of gravita-
tion. We can assume that there is no gravity, a flat space-time,
and an indentically vanishing Riemann tensor (40). The ten-
sorial connection can however still be different from zero. In
this case we would have some non-trivial potential with no
strength.

To prove that such a non-vanishing tensorial connection
can have an effect on a relativistic quantum matter distribu-
tion, we consider explicit examples. To make our examples
stronger, we will choose exact solutions of integrable poten-
tials: one is given by the Coulomb potential, leading to the
description of the hydrogen atom; and the other is given by
the elastic potential, leading to the description of the har-
monic oscillator.

Both cases are interesting because they account for all
integrable potentials known in physics. In the following we
start by reviewing the case of the hydrogen atom as it was
treated in [14]. Then we consider the harmonic oscillator in
three-dimensional case as presented in [15].

The harmonic oscillator has not yet been studied in the
polar form, and thus we will present it with more details.

3.1 Non-trivial integrable cases
3.1.1 The hydrogen atom model

The case of the hydrogen atom is very widely known and can
be found in common textbooks.
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The interaction is given in terms of the Coulomb poten-
tial, that is the temporal component of the gauge potential
vector

qA;=—a/r (45)

where o = g2 is the fine-structure constant given in units in
which it is the square of the electric charge.

Looking for solutions in stationary form id;y = Evr and
with the choice of spherical coordinates

7 sin @ cos ¢
7=\ rsinfsing (46)
r cos6

the Dirac spinor equations are written according to

.
i 0 G7L

] SR —myr =0 47
rz(—(rra-L 0 )I/f my “7)

i sin @dp F +i cot O cos pd, F
—i cos pdg F+i cot 0 sin iy, F (48)
—i0y F

for any function F, given in terms of the elevation and
azimuthal angles. This form is well suited to study all cases
where a separation of variables is possible.

We will focus on the ground-state, the 1.5 orbital.

In this case, defining the constant ' =+/1 — a? as well as
the function A(8)=1//1—a?|sin 0|2 of the elevation angle
alone, it is possible to see that the energy is given by E=mI
and the spinor

1+T
: 0
_ 1 I'—1_,—amr _ ,—iEt
w—mr ¢ ¢ i cosf “49)
i sinfel?

is an exact solution of (47) with (48). To see this, one can
insert (49) into and (48) and (47) and check directly.

This is the standard treatment, but equations (47, 48) are
just the Dirac spinor equations (42) for w = 0 written in
spherical coordinates

gn=1 (50)
8rr=— 1 (5 1)
goo=—1" (52)
8pp=—r"Isin O] (53)
with connection
g 1
Ay, = - 54)
Npg=—r (55)

1
Air = - (56)
_ : 2
Agw =—r|sin 0| (57)
A$9 =cotf (58)
0 _ a2
Ay, =—cotf|sinf| (59)

in the case in which the tetrad vectors are chosen to be

N=1 (60)
e}:sin@cosw er2=sin0 sin ¢ ef:cos@ (61)
ed=rcosfcosg ei=rcosfsing e;=—rsind  (62)
ei,:—r sin 6 sin ¢ eé:r sin 6 cos ¢ (63)
and
en=1 (64)
el=sinfcosyp e,=sinfsing e5=cosh (65)

1 1 1
e?:—cos@cosga egz—cosé‘sin(p egz——sine (66)
r r r

1 1

¢ sing €5 =

61:

- 0S¢ (67)
rsin@

 rsing
as the choice for which the spin connection vanishes.
Nevertheless, another specific choice is possible. It con-

sists in taking the tetrad vectors as

=N e’=—asinfA (68)
el =TsinfA e>=cosHA (69)
el=rcosOA ej=—TrsinfA (70)
e2=—ar|sin0|2A eé:rsin@A 71)
and

eh=A éy=asinfA (72)
e1=TsinfA e5=cosfA (73)
o_ 1 0 r.

elz;coseA e3=—7s1n9A (74)
p_ ¢ ¢ 1

=—A = A 75
€0 r © rsin 6 (75)

which means that we are in the system of reference where
the spinor field is in polar form.
We have then that

B =— arctan (% coS 9) (76)
and
p=r""lem " ) /A (77)

for the Yvon-Takabayashi angle and module.
Then we can compute

Riyo =—ar sin6 cos 6| A|? (78)
Rego=—r(1-T|A%) (79)
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Rypp=—rlsin6|? (80)

Rgyy=—r*sin6 cos 0 (81)
and

Pi=E+a/r (82)

P,=—1/2 (83)

as it is well known for the momentum.

One can check that the pair of equations (44, 45) is satis-
fied, as expected since (42) is equivalent to (44, 45).

For more details on the hydrogen atom we refer to [14].

3.1.2 The harmonic oscillator model

The case of the harmonic oscillator is also well known
although its relativistic treatment is not so thoroughly inves-
tigated. In the following we will refer to [15].

The interactions are given in terms of a coupling between
the dipole moment of the spinor and an external field, like
the one given in (42):

Fuy=v,x,—vyxy (84)

with vy, a time-like vector and x,, the position vector. In the
case we intend to study, the time-like vector will be chosen
in the configuration in which only its temporal component
remains and is normalized to unity.

We still look for solutions in the stationary form and in
spherical coordinates, where (42) is given by

I 0),,if( 0 &7
E(o —H)‘H?(—a.? 0 >a””

_ia)< 9 &67>1ﬁ—m1ﬁ20 (85)

and as it is easy to see, this form is well suited for a sep-
aration of variables. However, we shall not implement this
separation because it is known that this property does not
hold for the harmonic oscillator, in the general case, when
no non-relativistic limit is taken.

As before, we focus only on the ground-state.

Defining the constant a = (E —m) /2w together with the
function A(r,0) = /r*+a*+2r2a?cos (20) of the radial
coordinate and elevation angle, one can see that the energy
is given by E?=m?+46w with the spinor given by

@ Springer

rcosf
rsinfe'?
—ia

0

w — Ke_%wrze_iE[ (86)

as an exact solution of (85) for any constant K.

Equations (85) are the Dirac spinor equations (42) with
no electric charge and written in spherical coordinates in the
case in which the tetrad vectors are chosen as before.

And as before, another possibility is to Lorentz transform
everything so to get the polar form. To this purpose, one first
needs to implement a rotation along the third axis so as to
perform a shift of ¢/2 giving

rcosd

rsin 6

Y=Ke 10 gmi(E1=$) (87)

—ia
0
in standard representation. With this solution we can calcu-

late all bi-linear spinor quantities

O=K2"" (% — a? (88)
_ 2 —wr?

d=K~e (2ar cos0) (39)

U0=K2e=7 (12 — a?) (90)

Ur=K2e=" (2ar sin6) 1)

S = K2 (2r2 sin (26)) (92)

S3= K2 (+2 cos (26) + a?) (93)

and with U' = U3 = §° = §2 =0 identically. In order to force
U?=51=0 too, the only transformations of interest remain
the boost along the second axis and the rotation around the
second axis, given by

cosh& 0 sinh& O
0O 1 0 O

B, = sinh& 0 cosh& 0 o
0 0 0 1

and
1 0 0 0

|0 cosx Osiny

RB=10 0 1 0 ©3)

0 —sin x O cos x

in terms of the rapidity

—2ar sin
tanhé = ———— 96
o2 o
and the angle

—r2sin(26)
t =\ 97
anx <r2cos(29)+a2> ©7

precisely because these are the rapidity and angle in terms of
which B; and R; vanish U? and S' identically, respectively.
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This would mean that we have boosted into the rest frame
and rotated the spin along the third axis, and therefore that
we have written the spinor in polar form, which reads

NG
Y=g FTS 8 (98)
0

in standard representation. Here S= B, IRZ_ ! Ry ! with

2ar cos 6
B =arctan W 99)
and
p=Ke 2" JA2 (100)

for the Yvon-Takabayashi angle and module.

The same rapidity and angle, but for the real representation
of Lorentz transformations, would boost and rotate tetrads so
as to write them according to

=?4+a*A™" e =—2arsinfA~! (101)
el =—sinf(r?—a)A™' el=cosO(r*+aPHAT!  (102)
eé:rcos@(rz—i—az)A_l eé’:rsin@(rz—az)A_1 (103)
eg=—2ar’|sin0’ A™" e =rsin0(>+a AT (104)
and

eb=0*+a*)A™" e =2arsingA™! (105)

ef=—sinf(r*—a?)A™! =cosO(r*+a* A~ (106)

e
1

e =—sin0(@r*—a®) A~ (107)
r

1
e?:—cos@(r2~|—az)A_l
r
1
ed =2aA7" & =——(*+aHA™! (108)
rsin@

and in terms of which it is now possible to calculate R;j,
with (33) getting

Riyo =—2ar?sin6 cos 0 (r> +a*) A~> (109)
Ryo9 =—2r[r>4a® cos (20)]A~2 (110)
Riyr =2ar|sin 0> (r* —a®)A™2 (111)
Ryor =—2a’r?sin (20)A™2 (112)
Rygp=—rlsinf|* (113)
Rgyy=—r"sin6 cos 6 (114)
while we also have
P,=E (115)
P,=—1/2 (116)

as it is again well known for the momentum.

One can see that the pair of equations (44, 45) is satisfied,
as expected since (42) is equivalent to (44, 45).

With the case of the harmonic oscillator completed it is
now possible to compare the two physical examples.

3.2 The comparison in parallel
3.2.1 Bi-linear invariant quantities

In order to make the comparison meaningful, it is easier to
consider quantities that are free of any superfluous informa-
tion. For this reason, we focus on scalars, since they are the
only quantities that can be invariant while still being non-
trivial. To make the comparison easy to read, in the follow-
ing, we express the considered quantities for the hydrogen
atom first and for the harmonic oscillator just below.
To begin, the Yvon-Takabayashi angles are

B =arctan (—%cos@) (117)
2ar cosf
,3=arctan w (118)
and the modules are
qb:rl"—le—amr/\/x (119)
d=Ke 2" /A2 (120)

where some information already becomes visible: for instance,
the Yvon-Takabayashi angle must be an odd function of cos 6
because of its pseudo-scalar character, and we see no radial
dependence in the Yvon-Takabayashi angle in concomitance
with the separability of variables of the module in the case
of the hydrogen atom, while no such feature exists for the
harmonic oscillator.

This is obvious from the fact that whenever the separability
of variables is demanded, the module must be a product of
the form ¢ = R(r)Y (6) while at the same time the Yvon-
Takabayashi angle must be a sum of the form g = S(r)+Z(0)
since it is the argument of an exponential function. Because
under parity the Yvon-Takabayashi angle flips its sign, we
then must have S =0 necessarily.

It should however be noticed that when the separation of
variable does not hold, as for the harmonic oscillator, the
radial dependence can carry surprises: for instance, it is easy
to see that at r = a the Yvon-Takabayashi angle is equal to
47 /2. This defines the boundary between the regions where
cos 8 is positive and regions where it is negative. Because
of this, the sphere of radius a is the limit through which the
scalar density ® changes sign.

The five scalars coming from the squares of the tensorial
connections are given by

, 1
RaCCR‘”i=—ﬁ[(2—FA2)2+|cot9|2] (121)
. 1
R, CRY, =4(a*—2r")A™2 — (122)
1 . 1
—Riij“bcsp”kspabc=—r—2a2|c059|2A4 (123)

4
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1

ZRiijabcé‘pijkEpabc = —4612A72 (124)

1 ijk_ L 2 204 2.2

ERiijlj :r—zl:a |COS€| A —(I_FA) _|Sin9|2

(125)

1 . 1 )?

—Rii Rk =4a2=r2ya 2= 126

2 ijk (@ —=r) rsin6 (126)

1 . 1

5 Roq Rijke? M = —acos 0422 -TA%) (127)

1 )

EquqRijkep”kzéﬁarcos@A_z (128)

1 o 2

ZRijCquceupq =—acos A% (1-TA?) (129)
r

1 -

~RijcR,, “eP!=8ar cos O A~* (130)

4

and something interesting is also emerging here: while in the
large-r regime, in both cases, all scalars tend to zero, in the
small-r region, for the hydrogen atom all scalars behave as
1/r* whereas for the harmonic oscillator only RS, R% and
RijxR7* behave as 1/r2. As it is expected, both pseudo-
scalars tend to zero with a linear behaviour in the radial
coordinate but R;jx R?%CePiike . &~ —16/a” and the fact
that some scalar tends to a non-vanishing constant looks a
very astonishing circumstance.

This is a consequence of the fact that for the hydrogen
atom all scalars must have the same radial behavior to ensure
dimensional consistency while for the harmonic oscillator the
constant a has the dimension of a length and can therefore
be substituted to the radial coordinate in some expressions.
Nevertheless, for cases in which there is a natural constant
with the dimension of a length, we do not think that it is
possible to guess the actual radial behavior. There is in fact
no a priori difference between the three scalars and still one
of them has a radial behavior that is very different from the
one of the others.

3.2.2 Energy density tensor components

Albeit scalars are the invariants of the theory, it might also
be instructive to see what happens for a non-scalar quantity.
Even if we are considering situations where the energy is
not large enough to be a relevant source for the gravitational
field, it can still be different from zero and as such, it may
contain some interesting information.

The energy density tensor which is the source term of the
Einstein field equations is given, in polar form, according to

1 .
Tya =20° (sqvaﬂ/2+qua+ZskiqukR” a) (131)
and it results in
T, =2¢>A(E+a/r) (132)
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T =2¢> A~ (r’+a®)E (133)
Tip=—¢*A(1—T)[sin 0| (134)
Trp=—2¢>A"'r?|sin 0| (135)
T, =0 (136)
T, =2¢>A"'a (137)
Tyo = Aar (138)
Too =20 A" ar? (139)
Ty =—2¢> Aar|sin 0> (E+a/r) (140)
Ty =—4¢> A ar?|sin0°E (141)
Ty =¢> Aar|sin 6| (142)
Typy=2¢> A ar?|sing? (143)

in which an obvious lack of symmetry can be noticed in
the fact that in the case of the hydrogen atom there is no
radial-radial component is once again a consequence of the
separability of variables.

It is possible to compute the traces, which give

T =2¢>AE
T=2¢>A""(r’E—a’m)

(144)
(145)

and exhibit an interesting property: while for the hydrogen
atom the large-r and small-r behaviors are the same, for the
harmonic oscillator the large-r behavior is T =2¢?E but the
small-r behavior becomes T = —2¢?m flipping the sign of
the scalar trace of the energy density.

So the sphere of radius a+/m/E defines the limit through
which the scalar trace of the energy density 7' changes from
positive values to negative values. Because the trace is such
that T =.% + myr with .Z the Langragian functional, we
may think at the energy trace as what encodes information
about the total energy.

4 The tensorial connections

In the first section we have seen that R;j; and P, have the
character of connections while being true tensors: R;jy is
the tensorial connection in a strict sense since it is directly
related to the Lorentz transformation while P, is called the
gauge-invariant vector momentum to highlight its relation to
the gauge transformations. Although the concept of a tenso-
rial connection seems a contradiction, because connections
can be vanished with a choice of frame whereas tensors can-
not, this should not appear as something drastically new: the
orbital angular momentum can be vanished when calculated
in specific points but the spin cannot. The tensorial connec-
tion and the spin share this property of being truly covariant.

However, tensorial connections still behave as connec-
tions in their lacking of couplings to sources. In fact, the
components of R;jx and P, might well be different from zero
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but their curvatures are vanishing if, respectively, no gravity
or no electrodynamic phenomenon is present.

Situations where some physical effects can be ascribed to
potentials that are present (as non-zero connections) despite
having no strength (since they have zero curvature) is some-
thing that may be strange for R; j but for P, is that we already
know as Aharonov-Bohm effect.

For P, the technicalities can be worked out by taking
expression (34) and integrating it as
/(PM+qAM)dx“:f 8,L)»dx“:/ dr=AM\ (146)

Y Y Y
along the trajectory y, and where the last term is just the dif-

ference of phase between the starting and the ending points.
Similarly, from (33) we get

f(RijM+QijM)dxM:/ aﬂeijdleZ/injZA@ij (147)
14 Y Y

in total analogy with the case above. Recall that Lorentz
indices designate quantities that are tensor under a (local)
Lorentz transformation but scalar under coordinate transfor-
mations. The integral is therefore well-defined.

When the spinor is in polar form, (36, 37) reduce to

(148)
(149)

Vusi=R3;,
V,ui=Roiy

showing that the dynamics of the velocity vector or of the
spin axial-vector is determined only by those components of
R;j,, for which the first index is equal to either zero or three.
The antisymmetry in the first two indices implies that any
of the first two indices has to be either zero or three, so that
Ry3,, never appears. This makes this component somehow
analogous to the momentum since P, never appears in the
dynamics of the velocity vector and of the spin axial-vector
in the first place.

This is in line with the fact that for a spinor that is an eigen-
state of the spin, that is for rotations around the third axis, as
the one in the polar form, rotations around the third axis have
the same effect than gauge shifts: in fact, a suitable rotation
around the third axis generates a component of R, which
is related by Rz, = —2P,, to the momentum generated by
an equivalent gauge shift.

If the trajectory is a close circuit, Af is just a whole turn
times an integer

%(PM—{—qAM)dx“:Znn (150)

Y

and analogously for A6, we have

f(R]zﬂ-i—Q]zﬂ)dxM:—‘l-ﬂ’n (151)
Y

where n is usually called winding number.

4.1 Discretizing the connection

If we consider the free cases, requiring the electromagnetic
field to vanish means that

% Pudx*=2mn (152)
¥

while requiring the gravitational field to vanish means that it
is always possible to find a frame where

f Rippdxt=—4mn (153)
y

as it is clear because of the formal analogy. Whereas the
former is clearly the Born rule for discretizing momenta
in closed orbits, the latter should be regarded as the Born
rule for discretizing some components of the connection in
closed orbits. Such an occurrence brings about an important
point in the discussion around the quantization of gravita-
tional degrees of freedom, because the tensorial connection
is precisely where the geometrical information is encoded.
The process of discretization is entirely independent on the
structure of the tensorial connection.

Much in the same way in which tensorial connections can
be discrete in the free case, the same might happen even
if gravity were present. In this case the quantization would
happen on the gravitational degrees of freedom. We do not
claim that this approach solves the long standing problem of
quantum gravity. It might however give some hints about the
fundamentally quantum nature of some geometrical degrees
of freedom.

4.2 Aharonov—Bohm Effects
If the gauge-invariant vector momentum and the tensorial

connection happen to vanish, and we choose a close circuit
to be the boundary of a given surface y =9, then

q7€ A-di=2mn (154)

S

and analogously

f Qup-dx =—4nn (155)
S

in which we accounted for the spatial parts only. Using the
Stokes theorem we obtain

q// rotA-dS=2mn (156)

S

and analogously

// rotQy2-dS=—dmn (157)
S
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where we now have fluxes on the left-hand side. While the
former is recognized to be the condition giving rise to the
Aharonov—Bohm effect, the latter should be interpreted as
the condition giving rise to the gravitational analogous of
the Aharonov—Bohm effect. This would not only entail the
quantization of the electromagnetic as well as of the grav-
itational fluxes, as discussed above. But it also means that
there can be a phase-shift in the wave function of the matter
field due to the electromagnetic as well as to the gravitational
potentials even in regions with neither electromagnetic nor
gravitational forces.
In fact, writing (21) in the form

Y= Swpol

where Vo1 is the spinor in full polar form, we have that

(158)

S=e e 200" (159)
in terms of one phase-shift of abelian type in A and another
of non-abelian type in 615 which, according to the above
(156, 157), can be present even in regions where no electro-
dynamic or gravity are present. However, electrodynamics or
gravity must be present in nearby regions so to let the fluxes
be non-zero at least somewhere.

The analogy of the two types of Aharonov—Bohm effect,
electrodynamic and gravitational, can be appreciated in its
full extent in the fact that in (159) both abelian gauge phase
and third-axis rotation angle have identical impact on the
structure of the spinor field matter distribution.

Nevertheless, it is important to stress that the usual elec-
trodynamic Aharonov—Bohm effect parallels only one of the
six vector potentials describing the gravitational Aharonov—
Bohm effect, and therefore the latter is inevitably richer in
potential physical applications.

5 Special approximations

As concluding remarks, we would like to investigate what
happens in the case of specific limits. A first approximation
is the one for which the two coupling constants are small:
in such a case, the above solution for the hydrogen atom
automatically reduces to the non-relativistic solution for the
considered system. Instead, the solution for the harmonic
oscillator has a ~ % which reduces to the non-relativistic
solution only in the case of large masses. In fact, even if the
mass is large, it would still be possible to consider radial dis-
tances small enough, and the non-relativistic approximation
still fails.

In fact, quite generally, for the harmonic oscillator we
can always find regions where relativistic effects cannot be
suppressed. To see this, just consider the scalar quantity cos
and the energy trace 7. The first changes sign on the sphere
of radius a and the second changes sign on the sphere of

@ Springer

radius as/m/E with a > a/m/E since w is positive. For
small values of w, we can expand the energy and write it
according to

2 ( 3wr2)

T ~2¢" ( mcos B+ (160)
Am

which isolates the kinetic energy m cos  from the potential
energy 3wr?A~!'/m. The kinetic energy becomes negative
across the sphere of radius a/m/E and it becomes negative
and large enough so to overcome the positive potential and
make the total energy negative as well across the sphere of
radius a > a/m/E. Apart from this shift due to the poten-
tial, the reason for which both the energy and the modu-
lus become negative is the same, that is the fact that cos 8
becomes negative. As cos § — —1 then § — 7 which means
that left-handed and right-handed chiral parts are in maximal
phase opposition with respect to one another. The deep inter-
pretation of such unusual new effects is still to be understood
but, at the heuristic levels, calculation of observables are in
principle possible.

Because the Yvon-Takabayashi angle is what describes
the differences between the two chiral parts even in the rest
frame, it can be interpreted as what describes the internal
dynamics of spinor fields. Thus, close to the center of the
matter distribution, where 8 tends to its maximal value, there
appears a region where the internal dynamics is dominant.
This is the region where relativistic effects can never be sup-
pressed, as we argued above.

Such an internal dynamics is confined within a sphere
whose radius can be evaluated, for small values of w, to be
approximately one fourth of the Compton wavelength.

From the viewpoint of ordinary QFT, this is a strange
occurrence as the scalar density @ is always assumed to be
strictly positive in QFT. This implies that the harmonic oscil-
lator has solutions which, as fields, cannot be quantized, or
at least not with usual methods.

We will not deal, however, with second quantization.

6 Conclusion

In this work, we have shown that when the spinor fields
are written in polar form, it becomes possible to define a
pair of objects that contain the very same information of
the space-time connection and the gauge potential but which
are covariant under Lorentz and phase transformations: they
are called tensorial connection and the gauge-invariant vec-
tor momentum. We have discussed that they are generally
non-zero even when they have neither space-time curvature
nor gauge curvature: this means that they can have effects
even when sourceless. Although this may look surprising,
we have shown that it consistently happens in specific cases,
such as the Coulomb and elastic potentials. A final compari-
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son between the hydrogen atom and the harmonic oscillator
was also performed, in particular for the scalars and for the
energy density tensor.

The fact that there could be non-trivial effects even when
considering sourceless actions is not new, since a phase shift
can occur in what is known as the Aharonov—Bohm effect.
We have shown that such a phenomenon occurs not only
for the gauge-invariant vector momentum but also for the
tensorial connection. To highlight this, we have built a par-
allel between the two cases. We have also underlined that
as the Aharonov—Bohm effect can entail information about
the quantization of electromagnetic fluxes, the gravitational
version of the Aharonov—Bohm effect may encode informa-
tion about the quantization of at least some of gravitational
fluxes.

We have concluded with comments on non-relativistic
limits, and in particular we have underlined the fact that for
the harmonic oscillator it is not possible to get non-relativistic
approximations in regions that are too close to the center of
the matter distribution because these are the regions where
the internal dynamics is dominant.

The fact that for the harmonic oscillator, both the energy
and the modulus may become negative seems to lead to some
conceptual problems in the perspective of QFT, since several
results of QFT are based on assumptions that we show not to
be fulfilled in general. For example, some hypotheses of spin-
statistic theorems, like the positivity of energy and norms,
should be questioned when harmonic oscillations are taken
into account. Nevertheless, while critical in QFT, these fea-
tures of the harmonic oscillator are a consequence of exact
solutions in presence of elastic potentials within the Dirac
equation, and so there does not seem to be much room for
improvement.

The only possibility could be that the problems come from
the elastic potential, but the elastic potential is just a dipole
coupling to an external tensor field, like the one that occurs
in presence of radiative processes.

We leave such considerations, and possible experimental
signatures, for a future work.
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4.4 La section efficace Compton dans le formalisme polaire

Ici le quadri-vecteur vitesse est dénoté par g au lieu de u“ étant donné que usuellement la lettre u
est utilisée pour indiquer un spineur en TQC.

Dans cet article, nous étudions la section efficace associée a la diffusion de spineurs dans le cadre
du formalisme polaire et on observe les différences avec les résultats de 1a TQC. Nous rappelons que,
sans potentiel externe, I’équation de Dirac s’écrit

'V —my =0, (4.67)

avec la dérivée covariante telle que

. __—
V= (V, Ingl - %V,ﬁys ~ Pl = SRy = 0. (4.68)

On retrouve la TQC pour ¢ = constante, 8 = 0 et R;;, = 0. On a vu que I’équation de Dirac est
équivalente aux deux équations du formalisme polaire (4.31, 4.32). Sans le terme de potentiel F,,, ces
équations se réduisent a

B,—-2P'gs,+V, B+2s,mcos =0, (4.69)
R,—2P°g"s"&,pya+25,msinf+V, In¢* =0, (4.70)

avec B, = %SWWR“V‘ et R, = R,,". Avec les équations (4.69, 4.70), on peut écrire I'impulsion

Pt =mcos Bg" —yr stk g —xis g1, 4.71)

avec x; = %(Vk In¢? + Ry) et y, = %(Vkﬂ + B;). En TQC, ces deux derniers sont supposés nuls. Ici, ce
n’est plus le cas et 'impulsion n’est plus proportionnelle a la vitesse, mais dépend également du spin
s“. On observe encore une fois que 1’angle 5 apparait dans le terme de masse, ainsi I’interaction des
parties gauche et droite change de facon effective la masse du spineur. Dans le cadre de la TQC, on a

PH = mg/l’ (4.72)

ces quatre conditions impliquent que I’équation de Dirac (4.69, 4.70) (soit huit équations) avec
¢ = constante et § = 0 est vérifiée. Si I’équation (4.72) était valide, il serait toujours possible
d’effectuer un boost dans le référentiel ou la limite non-relativiste serait retrouvée, ce qui n’est pas
le cas. En effet, cette limite n’est pas retrouvée car méme dans le référentiel au repos il existe une
dynamique interne due au spin s“ et a I’angle S.

Ici, on souhaite prendre en compte x; et y, dans I’amplitude de diffusion. L’équation de Dirac
s’écrit donc

(Fey*+yy*y —myy =0, (4.73)

avec Fy =Py + ix;. Ainsi le propagateur G va €tre modifié et €tre solution de 1’équation
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(Fkyk +yk)/ky5 -m)G=1 “4.74)

On trouve que le propagateur s’écrit

G:(|F2+yz+mz|2 — |2F-y|2 —4F?m?)"! x [Fkyk — yk)/kys —m] X [(F? + y2 +m?) + 2F-y)/5 + 2mF y“).

On retrouve effectivement le propagateur de la TQC pour x; = y, = 0.

On veut calculer I’amplitude de transition pour I’effet Compton. Les particules initiales sont un
photon d’impulsion k et un électron dans un potentiel d’hydrogene d’impulsion p. A I’état final on a
un photon d’impulsion k£’ et un électron d’impulsion p’. L’ amplitude pour le canal s est donnée par

1 Sl ML= ST S ()Y G@y'S (p)v.Gla | (4.75)

avec g = p + k et S(p) la somme sur les spins. Dans le formalisme polaire, on a

S(p)= ) v = Py + ). (4.76)

spins

En considérant seulement les corrections au premier ordre, on a

S(p) = ¢2(g +1- iﬁys), 4.77)
S(p) = ¢’2(g’ 41— iﬁ’yS) = myg’ +nl, (4.78)

car I’électron final est libre donc on a 8’ = 0 et ¢'> = m. Au contraire, I’électron initial orbite autour du
proton, et I’angle d’ Y von-Takabayashi est donné par

B = —arctan (% cos 9), 4.79)
avec « la constante structure fine et '= V1—a?. L’amplitude s’écrit

¢ = Vmr' e [ VA, (4.80)

avec A(6)=(1-|a sin 9|2)‘%. Etant donné la performance des résultats de la TQC, on peut en déduire que
les valeurs de x; et y; sont petites. On effectue une approximation au premier ordre pour le propagateur
et on obtient

G(q)~(g*—m® + 4ig-x)™" X | WL+ X" + Yoy*y + Zuo ™y’ |,

avece
Wem+ % (4.81)
X, = G+ ix, + 2i(x n‘g o (4.82)
Vo= aom [=(q” + m)ya + 20y - 9)qal, (4.83)
Zup = ﬁyaqb. (4.84)
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En TQC, il n’y a pas de terme imaginaire au dénominateur et on le rajoute a la main pour utiliser
le Lemme de Jordan. Or on remarque ici que le terme 4ig - x apparait naturellement. En utilisant
I’équation (4.71), on calcule I'impulsion de 1’électron initial

P’ m+ <
! —sing/(2rsin@
P || smelGrsmb)) (4.85)
p? cos ¢/(2rsin6)
p’ 0
Sa vitesse g est donnée par
g’ 1
! —a'sin @ sin
o P . (4.86)
g’ asinfcos ¢
g 0
La section efficace différentielle est donnée par
do 1 1 , 1 w?
| M({k, p} = {K', p'}) [ (4.87)

= — X— ,
dcos® 2w2m+alr) 4n2ma/r — 1/Q2rsin0)? + 2w(m + a/r)

le terme | M({k, p} — {k’, p’}) | dans le cadre du formalisme polaire se différencie du terme de TQC
car on ne peut plus remplacer p par mg, ainsi les produits scalaires vont avoir des valeurs différentes.
Dans la limite r — oo, on en déduit la section efficace différentielle

do na? )
— = 1+ YHw —mY - D + YH* + (Y — 1’0’
dY mw(m+w—Yw)3[m( J = m( X Jor +( yo
+ V1 - Y2asinfsin @ x (m3 +m*(3 = 2Y)w + m(Y — 1)2w2)]. (4.88)

avec Y = cos @', 8 étant I’angle de diffusion du photon final défini sur la Figure 1 de I’article. Ainsi,
avec le formalisme polaire on peut calculer la section efficace lorsque I’électron initial n’est pas libre,
mais se trouve dans un potentiel d’hydrogene. Dans ce cas, il y a une dynamique interne entre les
parties droite et gauche de 1’électron qui se traduit par un angle 8 non nul et une brisure de la symétrie
sphérique. On retrouve, en effet, les résultats de la TQC lorsque a tend vers zero. La section efficace
(4.88) dépend des angles 6 et ¢ étant donné la brisure de symétrie. Cependant, en pratique, nous
effectuons une étude statistique et la section efficace (4.88) doit étre moyennée sur 6 et ¢. 1l en résulte
que statiquement il n’existe pas de correction en « et on retrouve la section efficace calculée en TQC.

Dans cet article nous avons utilisé le formalisme polaire pour décrire la diffusion de spineurs. Dans
ce cadre I’expression générale du propagateur a été calculée. La partie imaginaire du dénominateur
usuellement ajoutée pour effectuer le calcul des poles apparait ici naturellement. De plus, avec ce
formalisme, il est possible de décrire la diffusion pour des champs en interaction ce qui n’est pas le cas
en TQC. Il en résulte que la probabilité d’interaction pour un événement va étre modifiée par cette
interaction. Cependant, d’un point de vue statistique, les résultats de la TQC sont retrouvés.
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We consider the theory of spinor fields written in the polar formalism. The components are given
as a module times a complex unitary phase respecting full Lorentz covariance. In this formalism,
spinors can be treated in their most general mathematical form, without the need to restrict them to
the case of plane waves. As a consequence, calculations of scattering amplitudes can be performed
by employing new fermion propagators and spin-sum relationships. In this article, we perform such
calculations for two processes: the electron-positron and Compton scatterings. We show how the
results differ from the ones calculated by using only plane waves, as usually done in quantum field

theory.

I. INTRODUCTION

Quantum field theory (QFT) is a magnificent theory
in its predictive power. It has successfully passed all ex-
perimental tests put forward up to now. Its core consists
in taking plane-wave solutions to the fundamental equa-
tions, promoting fields to be operators and expanding
scattering amplitudes in terms of radiative corrections
(or loop diagrams).

In this framework, predictions for the anomaly of
the magnetic moment of leptons and for the hyper-fine
splitting of hydrogen-like atoms have been confirmed
to an astonishing precision. The philosophy that lies
at the foundations of QFT is that, in the perturba-
tive expansion, all propagators are given for the free
fields, the full information about the interactions being
encoded through quantization protocols within the
vertices. Giving propagators in terms of free fields is
the reason why plane-wave solutions can be used, and
having all the information contained in the vertices is
the reason why radiative corrections account for the full
interaction. Naively, one may consider the process as a
Taylor expansion of the entire interaction.

Nevertheless, the mathematical structure still needs a
proper definition. Inconsistencies range from the fact
that equal-time commutation relationships may lack a
precise sense [1]| to the fact that the interaction picture
used for the perturbative expansion may not, and in fact
in some cases does not, exist [2]. Even worse may be
the fact that all calculations are done in terms of plane-
wave solutions, which are not square-integrable so that,
strictly speaking, are not physically acceptable.

In this respect, one may wonder if, to describe a given
interaction, it could be possible to get rid of the per-
turbative series of vertex corrections, since they are not
necessarily well-defined on free propagators, and find a
way to describe the interaction as a whole.

This means that one would have, first, to find the most

general expression of interacting propagators and, then,
should recover the results of QFT in some limit.

In this study, we present the most general expression
of the interacting propagator for fermion fields. Then,
we use it to calculate some processes typically calculated
in QFT: the Bhabha (electron-positron) scattering and
the Compton scattering in the specific case where the
electron is in a hydrogen-like potential. Finally, we make
some comments on the comparison between what we ob-
tain and QFT in its standard form.

In order to get the general propagator for spinors, we
need to make a considerable use of the so called polar
form, the form in which spinor fields can be written in
such a way that each of their components is a module
times a complex unitary phase.

Generally speaking, this process spoils manifest covari-
ance. However, recent developments made it possible to
use an explicitly covariant approach. We thus take ad-
vantage of this formalism, and the ensuing polar form, for
the calculation of the general spinor propagator together
with the scattering amplitude.

II. GENERAL SPINOR THEORY

To treat spinors, we begin by introducing the Clifford
matrices v* satisfying the Clifford algebra

{7~} =2n""1, (1)
in terms of which
o =1 [v~'] (2)

are the generators of the complex Lorentz group,

b

S[A]=e2bare”’ (3)

where 0,, = —0,, are the parameters of the real Lorentz
transformation A mentioned above. The relation

ViYi Ve = Yiljk — Yiik + ViNij + i€ijrgm™y?  (4)



implicitly defines the odd-parity « matrix (which is
usually referred to as -5 but since, in the 4-dimensional
space-time, this index has no meaning we prefer to use
a notation with no index at all).

A spinor field v is defined as a vector field in the space
of spin, or complex Lorentz transformations. It is a “col-
umn” of 4 complex scalars satisfying

=Sy (5)

as a general transformation law. Its adjoint ¢ =1t~q is
defined in this way because then the spinorial bi-linear
quantities

i ®rp =M, (6)
Pytmy =59, (7)
Yy =GT, (8)
ipmp=0, 9)
PY=2>, (10)

are all real tensorial quantities.
The dynamical character is determined by the Dirac
spinor field equation

V'V b —map =0, (11)

where m is the mass of the field. This field equation
could be complemented by additional interaction terms,
but for our purpose we will need nothing more.

Using the bi-linear quantities, one may perform a clas-
sification of spinor fields. For instance, if © and ® do not
both vanish identically, the spinors are called regular and
they are essentially the Dirac spinors. If they both vanish
identically, then they are called singular, or flag-dipole,
and split in further sub-classes. If, in addition, M van-
ishes, then they are the so-called “dipole”. In this class,
one finds Weyl spinors. If S vanishes, then they are the
“flagpole”. In this class one finds Majorana spinors. Con-
sequently, it is not generally possible to dismiss singular
spinors as a whole. In this article, our interest will how-
ever be focused on regular spinors. For those spinors, it
was shown in [3] that it is always possible to write them
as

—_ O =

Y=de 3778 (12)

0

in the chiral representation, where ¢ is called the module,
[ is the Yvon-Takabayashi angle, and S is a generic spin
transformation. For regular spinors, one has

Map=(2°+0%) "GV Sejrar®+ G5y ©),  (13)

showing that only the vector and axial-vector with scalar
and pseudo-scalar are independent. The spin transfor-
mation S is the one that takes the most general spinor in

the frame in which its velocity vector G® loses its spatial
part and where the spin axial-vector S* is aligned along
the third axis. We can normalize these vectors as

Se=2¢2s2, (14)
Ga:2¢2 a’ (15)
where
0=2¢sin g, (16)
& =2¢2 cos 3, (17)

and show that the two scalar fields ¢ and ( are the only
true real degrees of freedom of the spinor. The spino-
rial field consists in 8 real components, and the above
form makes their meaning clear: the scalar ¢ is what in
non-relativistic quantum mechanics gives the amplitude
of probability while § describes the dynamics between
right-handed and left-handed chiral projections. As such,
the latter disappears in the non-relativistic limit. The 3
components of the velocity and spin are described as ra-
pidities and angles in terms of the parameters of the S
transformation and thus can always be transferred to the
underlying space-time structure, as we will see.

Among other useful relationships, one should mention

V=56 [(gall+5am)y e P (1—2g, 5,0 )], (18)

which is valid in the most general case, and in terms of
which it is possible to see that the spin-sum relationships
are given by

Zspin 1/@E¢2(9a’7“+6*i5”)7 (19)
where the sum is performed on all spin states [4].

By considering the polar form (12) and since in general
SauS’lziaﬂﬂ]IJr%a#@ijaij, (20)

where 0 is a generic complex phase and 0;; =—6;; are the
six parameters of the Lorentz group, we can define

0u0i—iju=Rijp, (21)
0,0—qA,=P,, (22)

with the gauge potential ¢gA, and the spin connection
Q. Because equations (21,22) contain the same infor-
mation than the gauge potential and the spin connec-
tion but are proven to be real tensors, they are called
the gauge-invariant vector momentum and the tensorial
connection. Writing the spinor field in polar form thus
consists in re-arranging the components so as to isolate
the real degrees of freedom from the components that
can be transferred through the frame into the underlying
space-time structure where they combine with the gauge
potential and the connection leading to (22,21). Using
those variables, the spin covariant derivative is given by

V,=(V,Ingl— %Vuﬂﬂ'_ipu]l_ %Rijﬂaij)l/’ (23)



in the most general case. We therefore have

Vyusi=Rjius, (24)
V,u9i=Rjing’, (25)

as general identities on the velocity and spin. The Dirac
spinor field equations are equivalently written according
to

B, —2P'g;,5,)+V ,B+2s,mcos =0, (26)
R, —2Pfg"s% ppa+2s,msin 4V, Inp? =0, (27)

where we have called %EWWRO““ =B, and R,,“ =R,
for simplicity. The Dirac spinorial field equations are
8 real equations that, in polar form, are converted
into 2 vector equations that specify all the space-time
derivatives of the two real degrees of freedom. The angle
B is the phase-shift between the chiral parts and, as
such, it encodes the information about the mass term,
as it has been discussed in [5].

One can also to prove that
R VHRij,,—VVRijlt+RikuRkjy—RikVRkju) (28)
qFu=—(VuP, =V, P,), (29)

jp,z/:_(

leading to the Maxwell strength and Riemann curvature
of the underlying gauge and space-time structures. A
gauge-covariant type of electrodynamic information is
therefore encoded in (22) while (21) encodes a covari-
ant type of gravitational and inertial acceleration. From
(28,29), one can see that the physical information is still
the one that enters the strength and curvature, so that
the non-zero solutions of equations

7 7 7 k i k _
VuR,~V, R AR, RE, ~Ry R =0, (30)
V,.P,~V,P, =0, (31)

describe a covariant type of gauge potential and inertial
acceleration that are not related to sources [6].

For electrodynamics such a strenghtless gauge poten-
tial is known to be related to the Aharonov-Bohm effect.
A similar phenomenon is expected in the gravitational
sector for the curvatureless covariant inertial acceleration

[7]-

Finally, one notices that by combining the Dirac equa-
tions in polar form (26,27) it is possible to establish a
link between P, and R;ji as

PH=mcos fgt —ygsF gt —ay.s; g, (32)

having set zj, = %(Vk In¢? + Ry) and yp = %(Vkﬂ + Byg)
for the sake of simplifying the form of the expression. It
should be noticed that these two terms are proportional
to an interaction between the velocity and the spin. In
fact, the angle [ intervenes to change the length of the
momentum while z; and y; intervene in concomitance

with the spin to change the direction of the momentum

(5]

In view of the QFT treatment, it is also important to
establish the most complete form of the propagator for
the spinor field. For this purpose, we write the Dirac
spinor field equation in polar form (23) as

(Fev* +yrpy*m—m)y =0, (33)

where F = P + ix) in terms of the momentum. The
propagator is hence the solution of the equation

(Fiy* +ypy*m—m)G =1, (34)
and is found to be given by

G=(|F*+y?+m? 2 — [2F y|* — 4Fm?) !
X[Fry® — yeyFm —m]
X[(F? 4y + m?)I+ 2Fym + 2mF,y°), - (35)

as proven by a direct substitution.

We will have the opportunity to use this expression in
the next sections when dealing with scattering processes.
It is however also necessary to see how QFT happens to
be recovered from this more general approach.

III. REDUCTION TO QFT

As mentioned in the introduction, the computations
are carried out in QFT by considering plane-wave solu-
tions of the fundamental equations. The implementation
of this requirement is performed by using

iv/ﬂ/}:[j/ﬂ/}a (36)

which has to be compared with the general form (23). It
is easy to see that

(VuIn¢l—4iV,Br—1R;;,07)) =0, (37)

which has to be true for any spinor field. Then, because
o, T and 7 are linearly independent we must have
Rij,, = 0 with ¢ and (B constant. Since a constant
pseudo-scalar has to vanish we get that QFT essentially
requires ¢ to be constant with 8 and R;;,, equal to zero.

For the spin-sum relationships, and with the commonly
used normalization ¢?=m, one would be led to

D spin VU= (Pay® +ml), (38)

in which we have used the fact that according to (32) we
do have in this case

Pr=mg", (39)

as widely used in QFT calculations. It should be however
noticed that (39) cannot account for the full dynamical
behavior of the Dirac spinor because its validity implies



the one of the Dirac spinor field equations. However a
set of four conditions can not imply the validity of a
system of eight equations in general. In this case, the lost
information is the one involving the internal dynamics.
In fact, if it were possible that P* =mg* then any boost
in the rest frame, which is always possible for a massive
particle, would also mean a boost into the frame in
which the non-relativistic limit is recovered exactly. As
a consequence, for a massive particle, it would always be
possible to have a non-relativistic description, which is
not true. Thus, the proportionality between the velocity
and the momentum cannot hold in general. In general,
boosting to rest frame does not mean boosting to the
frame in which the non-relativistic approximation is
accurate because even in their rest frame particles still
have an internal dynamics. It is solely when the internal
dynamics is lost, by requiring the spin to vanich, that
(32) can be approximated by (39), as we would have in
QFT.

To conclude this section, we must show that the prop-
agator found above indeed reduces to the propagator of
QFT. The conditions for the restriction to QFT are, as
we said, R;;, = 0 with 3=0 and ¢ constant, which means
Tq=1Yoa=0. As, then, Fy, = P} identically, the propagator
reduces to

G:(|P2+m2\2 _ 4P2m2)71
x[Pey® — m][(P? + m?)I + 2mP,~°]
= (Pz—mz)_l[Pk’yk + ml], (40)

which is in fact the propagator of QFT exactly.

The conditions R;j, = 0, §=0 and V,¢=0 are there-
fore those implementing the reduction to QFT from the
most general case, whether it is in terms of the covariant
derivative of the spinor, the spin-sum relationships or the
propagator.

The vanishing of the Yvon-Takabayashi angle and of
the tensorial connection might appear as a reasonable
assumption. Its validity however leads to a number of
disturbing consequences. One is that under those hy-
potheses, the Dirac-Maxwell system of field equations has
no solution [9].

That tensorial connection and Yvon-Takabayashi angle
are quite generally different from zero is clear from the
fact that they are non-zero in some remarkable situations
such as those given by the integrable potentials associ-
ated with the hydrogen atom and the harmonic oscillator

[7]-
IV. SCATTERING PROCESSES

We now proceed to calculate the transition amplitude
for the Bhabha and Compton scatterings.

A. Bhabha scattering

To begin with, we consider an electron-positron scat-
tering, which is simpler since, in this case, the propagator
is a photon and no correction is taken.

For this process, we focus on the two main usual Feyn-
man diagrams. The matrix element is the sum

iMyi = iM3; 4+ MY, (41)

where s and t refer to the photon channels. We will
compute the two channels separately, although calcula-
tions are analogous. The momenta of the particles are
given by (32).

The calculation of the amplitude leads to

o= [t ot | 22| [Tter um)

62

= ——u(g) v (a2)vp)y"u(pr), (42)

and to

N —
M5, = =Su(p)y v(p)v(e)wul(ar),  (43)

as it is well known in QFT.
However, differently from what is done in standard

QFT, we consider a more general spin-sum: for the par-
ticle u we have

D epin WU =% (gay" +e )
~ ¢*[¢+1(1-pB%/2)—ifm], (44)

while for the antiparticle v with v = wu we have

D epin V0= (gay* —e~F7)
~ ¢*[¢—1(1-pB%/2)+ifm], (45)

up to second order in 3, which is the level of approxima-
tion we consider here.

From these spin-sums, we get the transition amplitudes
E S MO = S8
[+ 10-52/2) — i8]y
th =101~/ + i, |
xTr [[gé —1(1-5%/2) + iBw]y"

gt + T(1—52/2) - www} , (46)



and

4,8

LY apin M2 = 52
xTr[[hﬁ +1(1-6%/2) — iBw]y,

g +1(1—52/2) wwm]
xTr {[g/g —1(1-52/2) + iBm]|y*

o — 10— 62/2) + wﬂﬂ , (47)

with g and h the velocities associated with the momenta
p and q respectively. It is easy to check that QFT results
are recovered if we normalize ¢> =m with p = mg and
q = mh with §=0. Calculating the traces shows that, up
to a second-order correction, all 8 terms disappear and
one is left with

*ZIM * =

spin

+(g2-h2)(g1-h1) + (91-92) + (h1-h2) +2} (48)

[@2 B (1)

and

7Z|Mt|2

spin

+(g92-h2)(g1-h1) — (h1-g1) — (h2-g2) + 2}7 (49)

[(92 B (1)

showing no difference with respect to the result of stan-
dard QFT. We have also explicitly checked that this re-
mains true for the interference term.

B. Compton scattering

We now move to the Compton scattering. This process
is more complicated because it involves the evaluation
of traces that contain the propagator of the fermion
which, in our case, are given by intricate expressions.
The generalization appears through corrections in the
Yvon-Takabayashi angle. We consider an incident pho-
ton with momentum k% and an electron in a hydrogen
potentiel with momentum p® given by (32). The final
particles are a photon with k'@ and an electron with p/“.

We still consider the two usual main Feynman dia-
grams. The matrix element in the s-channel is given by

L Sl Me P = T[S0 Gla)y S (0)1G @) | (50)

as it is well known with ¢ = p + k.
For the spin-sums we take first-order corrections

S() = (g +1- ww), (51)

and

S(p) =92 (g’ +1- iﬁ’ﬂ') =mg +ml  (52)

since 3’ is the Yvon-Takabayashi angle of the scattered
electron, which can be considered as free. For 3, one has
to consider the Yvon-Takabayashi angle of the electron
orbiting the nucleus, which is given in spherical coordi-
nates by

[ = — arctan (% cos 9), (53)

with o the fine-structure constant and I' = v/1—a? for
hydrogen-like atoms. The values of the modules are given
by ¢ 2=m and

6 = Vi e VA (54)

with A(f)=(1—]asin 6|2)~= a function of the elevation
angle, as it has been found in reference [(]. It is quite an
interesting fact that [, In¢ and their derivatives are of
the same order than the fine-structure constant.

The propagators are given by (35) and the first-order
truncation leads to

G(q)=(¢*—m? + 4q-xi)~"
WI + X v + Y~ + Zypo®m (55)
with
2im(z - q)
We=mt s (56)
. 2i(z - q)
Xa = (q + 14 + mqa, (57)
1
Vo= st + 2 el 68)
4m
Zap = mya%' (59)

It is worth noticing that starting from our general
expressions and taking the first-order perturbative
expansion, we obtain the imaginary term 4¢q-xi in the
denominator of the scalar factor without the necessity
to postulate it as done in QFT. This term is needed to
remove the poles and it is naturally present in the most
general formalism used here.

At first-order in z, y, and 8 we have

W (q)W*(q) = m?, (60)
X(q)X*(q) = ¢*, (61)
W)X () + W*(q)Xa(q) = 2mqa, (62)
W(q)X:(q) — W*(q9)Xalq) = —2imza,  (63)



Figure 1: Compton scattering in the lab frame.

so that
1 s12 _ 4(]52777/64
|-

X [4m2 +4¢* —4m(g-q) — ¢*(9-9")
—4m(g'-q) + m*(g-9') +2(9-9)(¢"-q) (64)

for the s-channel.
For the u-channel, calculations are analogous and give

1 w12 4¢?me*
ZZ‘M | :(fQ_mQ)Q
spin

x {4m2 +4f2 —4am(g-f) — f*(g-9)
—4m(g'-f) +m*(g-g') +2(g- /)9 )|, (65)

as it is easy to check, with f =p — k.
For the interference term, we obtain
4¢*me* 1
(f2 =m?) (¢* —m?)

1 SAfU) —
ZZscz(M M) =

spin

x{2m2+m2(g~g’)+
Tm(g 1) -(g+9)+ (g N1 —2g- g’>>].

At this order, it should be noticed that the physical
changes are not due to the new propagator but to the
presence of the hydrogen potential, which is naturally
accounted for in this framework.

To compute the cross section we pick the lab frame as
in Fig. 1. The photon has momentum k* = (w, 0,0, w)
and the electron is such that, in Lorentz indices, it reads

p° m+ <

pt| [ —sinp/(2rsind) 66
p? | | cos p/(2rsind) (66)
p’ 0

To recover the free case, as in QFT, one should consider
a — 0 and r — +oo. At first order in a, we have p? =
m? + 2ma/r — 1/(2rsin@)?. The term 2ma/r is due
to the potential energy of the hydrogen atom, while the
term 1/(2rsin#)? is due to the kinetic energy generated
by the interaction with the hydrogen nucleus.

For the outgoing particles, the photon momentum is
ke = (W', w'sinf’ 0,0 cos@’) and a free electron has
p? = m?,

The cross section is

1 1

do = 2w 2(m + a/1)

d®o| M ({k, p} — {K',p'}*, (67)

as easily shown by textbook calculations [10].
The explicit expression of d®s is obtained using

dgp/ 3 73 2 2 /

5F = dpdp05(p0 _Ep)e(po)
p

= /d?’p’dp65(p52 —p2—p")O(pp)

_ / P s lp — p2)Owh),  (68)

so that
1 A3y d3K'
/dq’2 ~(2n)? / 2E, 2 O +p' —k—p) (69)
1 d3E
O(w+ E, —w')

2(21%)2/w'dw’d§25<2ma/r
—1/(2rsin6)? + 2w(m + a/r)
—W'2(m+ a/r)+2(1 — cos§)w
singpsin@']>

rsin 6

:% /dcos o (71)

’
w 2

x 2ma/r —1/(2rsin0)2 + 2w(m + a/r)’

and eventually

do 1 1
—=—— | M ’oo 2
dcos @’ 2W2(m+a/r)| {k,p} = {K,p'}) |
1 w'2

“Ix Zmafr —1/@rsm 4 2(m o) )

where |M]| is the only unknown.

To evaluate | M|, the scalar products have to be explic-
itly performed. In [6], the velocity of the initial electron



is given in Lorentz indices. As we keep only the first

order in o we have,

9° 1
1 . .
g'| | —asinfsing
¢?>| | asinfcosy |- (73)
g9 0

m+ 5 +w
—sing/(2rsin )
cos /(2rsinf)
w

(74)

Defining Y = cos €’ and considering the limit r — oo,
we obtain:

o e
dY — mw(m+w—Yw)3
—m(Y = D1+ YHw? + (Y — 1)%?

[m2(1 +Y?Hw

+v1—Y?2asinfsing
X <m3 +m?(3 —2Y)w +m(Y — 1)2w2)] . (75)

When « tends to zero, we find back the usual QFT re-
sult. However, in general, the result is different, as a con-
sequence of the interaction. That is, individually, if one
photon hits an electron within the hydrogen potential,
the probability of diffusion depends on where the electron
is (through the 6 and ¢ dependance). In an hydrogen-
like potential, 8 is indeed non-vanishing and describes an
internal dynamics between the left and the right parts of
the electron. This breaks down the spherical symme-
try. If, however, we assume a statistical phenomenon —
as implicitly done here —, the situation is different. For
example, the spin-sum relationships that were used in
(19) are statistical in nature. In this case, one needs to
average the cross section (75) over 6 and ¢. The inter-
action term then cancels which, quite hopefully, leads to
the usual result. Statistically, there is therefore no cor-
rection term at the first order in « that appears because
of the electron-proton interaction.

V. CONCLUSION

The first result of this study is the derivation of the
expression of the propagator for a fermion. The expres-
sion obtained is more general than the one of QFT. It is
interesting to notice that, in this generalized approach, a
“small” imaginary term elegantly appears in the denom-
inator. In QFT, one has to put it by hand to carry out
the calculations. Then, we have seen that in the Bhabha
scattering case, the transition amplitude terms appear
to be the same than in ordinary QFT. Even if some (2
terms are cnosidered, they do compensate each other. In
the case of the Compton scattering, considering only the
first order, we observe that the cross section is modified
by the derivative of the amplitude and the phase shift
of the spinor. There are some corrections at first order
in «, the fine structure constant. It is worth underlining
that, considering the most general description of a spinor
with ¢, 8 and their derivatives, the a-correction appears
even when considering only the lowest order in Feynman
diagrams. This is different from the standard QFT cor-
rections in « that are present in the g-factor once loops
are added to the diagrams. However, the o corrections we
get, due to the interaction, do cancel under the averaging
procedure. It is important to mention that in this more
general formalism, one can in principle describe fields in
interaction, which is not possible in QFT as the plane
wave approximation suppresses 3, z and y. As a result,
we have shown that the non-zero § of the initial electron
breaks down the symmetry. Consequently, the diffusion
probability for a single event in principle depends on the
electron localisation in the hydrogen potential. However,
statistically, the interaction term cancels and one finds
back the QFT result. In a way, this provide an expla-
nation of the reason why considering free fields is such
a good approximation. One could possibly investigate if
this results should lead to a widening of the experimen-
tally measured distributions but this remains beyond the
scope of this work.
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218 Chapitre 4. Le formalisme polaire

4.5 Conclusion sur le formalisme polaire

La mécanique quantique révele la dualité onde-corpuscule des particules. En pratique, dans le
cadre de la TQC, I’aspect ondulatoire est décrit par 1I’approximation de I’onde plane et 1’aspect
corpusculaire par I’approximation de la particule ponctuelle. En réalité, nous savons que I’onde n’est
pas délocalisée jusqu’a I’infini spatial et qu’a partir d’une certaine distance la particule ne peut pas
étre considérée comme un point. Le formalisme polaire permet de décrire les particules sans utiliser
ces deux approximations. En effet, on pu voir dans la section 4.3, que pour des potentiels de Coulomb
et d’oscillateur harmonique, il existe des solutions a I’équation de Dirac décrites par une amplitude
non constante. L amplitude diminue avec r et, pour 1’oscillateur harmonique, on a également une
brisure de symétrie sphérique. Ainsi le gradient V,¢ permet de décrire une particule qui n’est pas
étalée sur I’infini spatial mais localisée. De plus, une particule n’est pas ponctuelle et possede une
structure interne. Grice au formalisme polaire on a pu décrire la dynamique interne des spineurs. En
effet, a 'intérieur du spineur, il y a une interaction entre ses parties droite et gauche qui est décrite par
I’angle 5. Cette dynamique diminue lorsqu’on s’éloigne du centre de la particule. Pour conclure, ce
formalisme offre une excellente description des spineurs en utilisant pour unique hypothese la validité
de I’équation de Dirac.



Conclusion

La gravité quantique a longtemps été considérée comme une chimere qui ne pourrait pas étre
sondée par des expériences. Il existe différents modeles pour décrire la gravité quantique. Les travaux
théoriques actuels sont assez €élaborés pour permettre d’ores et déja d’étudier certains aspects phéno-
ménologiques associés a la gravité quantique. Dans ce manuscrit nous avons étudié principalement la
LQG et ses propriétés associées a la cosmologie et aux trous noirs.

En LQC, nous avons vu que I'univers en contraction permet de prédire une distribution de proba-
bilité sur la durée de I'inflation. Cette distribution réduit considérablement la fenétre sur le nombre
d’e-folds. Cette derniere est piquée aux alentours de 145 e-folds et se trouve donc proche mais au
dessus de la limite minimale qui est de 60 e-folds. La perspective d’un univers en contraction avant le
rebond ouvre également la possibilité de détecter des signaux pré-rebond. Nous avons étudié le com-
portement de la distance de luminosité dans un univers en contraction. Il est intéressant de noter que,
en fonction du contenu en matiere, la luminosité d’un signal peut augmenter avec 1’intervalle de temps
entre I’émission et la réception. Ainsi, malgré une amplitude fortement diminuée par I’expansion de
I’univers actuel, des ondes gravitationnelles pré-rebond pourraient tout de méme avoir des amplitudes
raisonnables. Enfin, nous avons pu observer que la LQC prédit des spectres de puissances différents de
ceux du modele standard de la cosmologie. Dans le cadre de 1a LQC, la fagon de choisir les conditions
initiales est plus ambigiie car plusieurs instants peuvent &tre approximés par un vide de Bunch-Davies.
Cependant, on a pu voir que, pour les perturbations scalaires, les différents instants impliquent des
spectres de puissance similaires.

Nous avons étudié différents aspects associés aux trous noirs. Lorsqu’on prend en compte les
effets quantiques, un trou noir qui atteint une densité importante pourrait transiter vers un état de trou
blanc, par effet tunnel. Le signal €émis par ces derniers dépend du contenu, de quand et comment ils
ont été formés. Etant donné que le temps de rebond est long, nous nous sommes intéressés aux trous
noirs primordiaux. Pour différents spectres de masse initiaux, nous avons pu voir comment le flux
varie avec I’énergie. On observe que dans certains cas, un signal est émis dans 1’échelle d’énergie des
sursauts radio rapides et ce signal se distingue des autres sources possibles de part sa dépendance en
redshift. Un autre article concerne la sections efficace associée au rayonnement de Hawking. On a
considéré un modele de trou noir qui s’inspire des travaux de la LQG. Ce modele décrit un trou noir
proche de celui Schwarzschild, qui prend en compte la discrétisation de 1’espace et 1’existence d’une
aire minimale. L’ échelle de discrétisation tend a diminuer la section efficace. Les effets sont d’autant
plus grand que la discrétisation est ressentie a plus grande échelle. Ensuite, j’ai étudié la propriétés
d’isospectralité. Les perturbations des trous noirs classiques (Schwarzschild, Reissner-Nordstrom,
Kerr) sont isospectrales. Pour d’autres types de trous noirs, des travaux numériques ont été effectués.
J’ai repris la preuve analytique de Chandrasekhar pour voir si 1’isospectralité pouvait s’appliquer
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a des cas plus généraux. Il se trouve que pour des trous noirs sans charge ni moment cinétique, la
preuve s’étend aux trous noirs de Schwarzschild-de Sitter et Schwarzschild-Anti de Sitter. Par la suite,
j’ai étudié comment la valeur de QNMs varie en fonction des différents modeles au dela de la RG.
Leurs valeurs a été calculées pour les modeles de gravité massive, de gravité scalaire-tenseur-vecteur,
de gravité de Horava-Lifshitz, un modele avec une correction en 7 et un modele de trous noirs type
LQG. En comparant ces valeurs a celles d’un trou noir de Schwarzschild on observe la prédiction de
fréquences plus élévées ou plus faibles en fonction du modele considéré. Cela ouvre une fenétre vers
la discrimination de certaines théories lorsqu’expérimentalement les QNMs seront mesurés avec plus
de précision. Nous avons étudié¢ un modele jouet plus particulierement. Ce dernier tente de dépeindre
les effets quantiques qui pourraient apparaitre en dehors de 1’horizon, apreés une accumulation dans
le temps. La différence relative par rapport aux trous noirs de Schwarzschild est d’autant plus élevée
lorsque les effets quantiques se trouvent proche de la sphere de photon. Ces effets quantiques pourraient
étre observés pour des trous noirs de masse bien plus élevée que celle de Planck. Enfin, nous avons
investigué la possibilité que les origines de la matiere noire actuelle soient des reliques de trous noirs
microscopiques, formés par la collision de particules trans-Planckiennes. Si 1’échelle d’énergie de
I’inflation est suffisamment élevée, la densité de reliques peut rendre compte de la quantité de matiere
noire.

Enfin j’ai étudié le formalisme polaire qui permet de décrire la dynamique des spineurs. En utilisant
les six dégrées de liberté associés aux transformations de Lorentz, nous pouvons décrire les spineurs
dans un référentiel ou seulement deux dégrées résiduels persistent. Ce sont leur vrais degrés de liberté
car ce sont des scalaires et ils ne peuvent pas étre effacés par des transformations. On a alors I’amplitude
¢ et ’angle d’ Yvon-Takabayashi g ainsi que leur dérivée. Nous avons étudié le cas des spineurs de
Dirac et montré que sous un potentiel de Coulomb ou d’oscillateur harmonique, ¢ n’est pas constant et
B n’est pas nul contrairement aux hypothese de la TQC. Certains coefficients de la connexion tensorielle
R;j, sont également non nuls et cela permet de décrire I’effet Aharonov-Bohm gravitationnel. Nous
avons également utilisé ce formalisme pour décrire la section efficace Compton dans le cadre d’un
électron en interaction avec un proton. On a pu observer, que contrairement a la TQC, ce formalisme
était apte a décrire des sections efficaces pour des champs non libres. Le calcul de I’expression du
propagateur fermionique permet de montrer que I’astuce mathématique de TQC qui consiste a ajouter
un terme imaginaire au dénominateur apparait ici naturellement. L.’angle 8 qui traduit un déphasage
entre la partie droite et gauche du spineur décrit une dynamique interne. Du fait de cette derniere,
la probabilité d’interaction avec un électron sous un potentiel de Coulomb dépend de sa position, la
symétrie sphérique est brisée. Cependant d’un point de vue statistique, la section efficace sera la méme
que celle calculée en TQC.

Perspectives

Un des points importants pour I’étude des perturbations primordiales en cosmologie concerne la
durée de I’inflation. En effet le spectre de puissance est tres différents en fonction de la fenétre du
nombre d’onde considérée. L’étude qu’on a effectué sur la LQC apporte une prédiction probabiliste
sur sa durée et I’étude de la distance de luminosité ouvre la perspective d’observer des traces de
la période pré-rebond. Cependant dans les deux cas nous avons négligé les conséquences dues au
rebond ou les effets de gravité quantique sont les plus importants. Le rebond pourrait completement
changer les grandeurs physiques qui le traversent et 1’approximation de coller deux solutions classiques
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pourrait €tre une mauvaise approximation. Cependant, a ce jour les connaissances sur la gravité
quantique ne sont pas apte a décrire le rebond de fagon rigoureuse. D’un point de vue expérimental,
beaucoup d’espoir se portent vers la mesures des spectres de puissance. La connaissances du spectre
des perturbations tensorielle pourrait clairement réduire le nombre de théories plausible. Cette mesure
pourrait étre effectuée dans les prochaines décennies. Pour I’étude des perturbations il serait intéressant
de prendre en compte des relation de dispersion modifiées pour les effets transplanckiens.

Les études sur la phénoménologie des trous noirs en rebond restent préliminaires. En effet, le temps
de rebond proportionnel a la masse au carré du trous noirs a été déterminé par analyse dimensionnelle
et plus tard, des articles ont argumenté que le trou blanc pourrait émettre des signaux par oscillations
sur des période proportionnelles a la masse. Il serait intéressant de faire une étude prenant en compte
les différents parametres du modele : le temps de vie, le facteur de proportionnalité de ce dernier ainsi
que les rebonds a grandes distances. De plus, le modele de trou noir en rebond admis actuellement
possede au contraire une probabilité de transition en exp(—M 2), ainsi il serait intéressant d’étudier la
phénoménologie associée a ce modele. Pour 1’étude de la section efficace des trous noirs quantiques
a boucles, on pourrait étudier d’autres modeles provenant de la théorie mere. Il serait également
intéressant d’étudier la propagation des champs électromagnétiques. Concernant 1’étude des QNMs,
I’i1sospectralité incluse, la prochaine étape sera d’étudier le cas des trous noirs en rotation.

Dans le cadre du formalisme polaire, les termes de la connexion tensorielle manquent encore
d’interprétation. Certains impliqueraient la localisation de la particule. Nous avons pu voir aussi que
d’autres seraient responsables de I’effet Aharonov-Bohm gravitationnel. Il serait pertinent de calculer
la section efficace d’autres processus que la diffusion Bhabha et Compton. Nous pourrions également
aller plus loin en étudiant le cas des corrections quantiques avec une ou plusieurs boucles. Un autre
point qu’il serait important d’étudier serait de considérer la probabilité de diffusion dans le cas d’un
unique évenement. Comme nous 1’avons vu des différences entre la TQC et le formalisme polaire
pourraient apparaitre. Cependant dans notre étude nous avons considéré un moyennage sur les spins
ainsi, il serait intéressant de ne pas utiliser cette hypothese statistique dans le calcul des sections
efficaces.
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