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Abstract

The description of quarks and gluons, using the theory of quantum chro-
modynamics (QCD), has been known for a long time. Nevertheless, many
fundamental questions in QCD remain unanswered. This is mainly due to
problems in solving the theory at low energies, where the theory is strongly
interacting. AdS/CFT is a duality between a specific string theory and a
conformal field theory. Duality provides new tools to solve the conformal
field theory in the strong coupling regime. There is also some evidence
that using the duality, one can get at least qualitative understanding of
how QCD behaves at strong coupling. In this thesis, we try to address
some issues related to QCD and heavy ion collisions, applying the duality
in various ways.
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Chapter 1

Introduction

The fundamental theory describing quarks and gluons is quantum chromo-
dynamics (QCD). The first hints of QCD arose in the sixties, when particle
physicists tried to understand the origin of large and ever-growing number
of particles observed in particle accelerators. The variety of these parti-
cles, hadrons, could be explained when one assumed that they were built
from more fundamental particles, quarks and gluons, which interacted very
strongly with each other.

Even though the formulation of QCD has been known for a long time,
many questions still remain unanswered. This is mainly because the theory
is very difficult to solve. The standard method of quantum field theories,
i.e. perturbation theory, works only in the regime of high energy QCD. This
is due to the flow of the QCD coupling constant — when particles interact
with high energies, the interactions between particles are weak, and the
expansion as a power series in the coupling constant is possible. However,
when energies become smaller, the strength of the interaction grows and the
problem becomes non-perturbative. Therefore, for example, the confinement
of quarks inside hadrons cannot be understood in terms of perturbative
calculations.

There exist different methods for approaching the non-perturbative part
of QCD. The most used approach is lattice QCD — for a review on the
subject, see e.g. [1]. In lattice QCD, one studies the theory on a discrete set
of space-time points and uses computers to obtain numerical results to wide
range of different problems. Other methods include effective theories, like
chiral perturbation theory (see [2] for a review), where the degrees of freedom
are no longer quarks and gluons but small-mass pseudoscalar mesons, the
effective degrees of freedom of QCD in the low-energy domain.



Prior to the discovery of QCD, particle physicists found that many
strange properties of these hadrons could be explained if one assumed that
the particles were not point-like, but like strings with a finite length [3, 4, 5].
However, when the theory describing strings was quantized, it become clear
that the theory had much more structure than what was needed to describe
just the observed particles. The spectrum included, for example, a massless
spin-2 particle — the graviton. Also it was found out that the theory was
not consistent in four dimensions, but needed extra dimensions to be well
defined. However, these observations were not fatal for the theory — on
the contrary — string theory has been an extremely studied branch of the-
oretical physics since. It is a theory for quantum gravity and also naturally
includes the structure necessary to produce standard model -like theories,
therefore it is even today our best candidate for unified quantum description
of gravity and the standard model.

The string-like properties of hadrons can be quantitatively understood
in the language of QCD, even though analytic calculations remain out of
reach. The endpoints of the strings can be understood as quarks. In QCD,
quarks are electrically charged, but in addition have a new kind of charge,
the color charge. The color force between two color charges, is mediated
through gluons. The color force holds quarks tightly close to each other.
When one tries to pull the quarks from each other, the energy stored in the
color field becomes greater and concentrates on a line between two quarks,
forming the so called flux-tube. From the QCD perspective, the flux-tube
is effectively the explanation for the stringy properties of hadrons. It acts
like a spring between two quarks, resisting when stretched.

The stringy behavior of hadrons remained as an inspiration for some phe-
nomenological models of strong interactions, such as the Lund string model
[6], but QCD soon established its status as the correct theory describing
strong interactions. However, the paths of these theories started to con-
verge again, when Juan Maldacena [7] in 1998 proposed a very interesting
conjecture stating that type IIB string theory on an AdSs x S® background
is dual to 3+1 dimensional N' = 4 supersymmetric SU(N) Yang-Mills the-
ory. The duality was further formulated in papers [8] and [9]. It states that
these two very different theories should be in fact equivalent, in the sense
that there is a dictionary between the two theories — one can calculate
something on the string side and predict something on the field theory side,
and vice versa.

Maldacena’s original conjecture is just one example of the so called
AdS/CFT dualities — or gauge/gravity dualities more generally. AdS/CFT
duality relates a gravity theory on an anti de Sitter (AdS) spacetime to a



conformal field theory (CFT) living on the boundary of the spacetime. This
duality has been an extremely active subject of research ever since its dis-
covery. Even though the conjecture has not been rigorously proven, it has
been verified in a huge number of different tests, see e.g. [10, 11, 12, 13] or
[14] for a review.

String theory is known to be notoriously difficult to quantize in curved
backgrounds, such as the anti de Sitter space. However, in the limit when
the radius of the anti de Sitter spacetime £ is much bigger than the string
length v/o/ and the number of colors N goes to infinity, string theory can
be approximated using supergravity, which is a classical theory that is much
easier to deal with. On the field theory side, the relation £2 > o’ translates
to A = g&,;N > 1, where X is the 't Hooft coupling. It is the effective
coupling constant of the theory, when N — oo. This gives an opportunity to
study the strong coupling regime of 3+1 dimensional N' = 4 supersymmetric
SU(N) Yang-Mills theory, using methods of classical gravity.

The applications of this revolutionary duality to QCD are mainly three-
fold: first, even though A/ = 4 supersymmetric Yang-Mills theory is a theory
different from QCD, it still shares some properties with QCD and one can
argue that in certain situations these theories are close enough so that one
can use the results of the duality to understand QCD at strong coupling.
Second, it seems that the gauge/gravity duality can be expanded to a variety
of directions. This gives a possibility to search for a field theory that is
closer to QCD and that has a gravity dual. One could even try to go a
step further and try to find an exact dual string description of QCD. Third,
one can also take the gauge/gravity picture as a motivating framework to
construct phenomenological models in extra-dimensions which qualitatively
produce some features of QCD.

In summary, the gauge/gravity duality offers variety of methods to study
phenomena in QCD at strong coupling. Also, it offers an intriguing possi-
bility to find and exact string description of QCD.

1.1 Organization of the thesis

The thesis consists of four articles and of an introductory part, divided in
four Chapters. The introductory part is intended as an overview of some of
the essential tools to study strongly interacting field theories, and QCD in
particular, using gauge/gravity dualities.

In the second Chapter of the introductory part, we present the AdS/CFT
duality and discuss how it can be used to study phenomena in the boundary



theory.

In the third Chapter, we present the hydrodynamical description of hot
strongly interacting matter in the heavy ion collision context. The rest of the
Chapter three considers the application of AdS/CFT to heavy ion collisions.
Finally, the Chapter four is the summary.

The four articles provide the core part of this thesis. In the first article,
a phenomenological holographic model is constructed to describe some ther-
modynamical properties of QCD. In the second paper, an exact five dimen-
sional time-dependent gravity solution is presented and the corresponding
time-dependent behavior of the boundary theory is studied. In the third and
in the fourth article, we consider a 141 dimensional boundary theory having
a particular time-dependent flow and present the exact time-dependent grav-
ity solution which correspond to this flow. In the third article, the boundary
flow is a 14 1 dimensional version of the Bjorken flow. In the fourth article,
the flow on the boundary is of the most general type of conformal flow in
1+ 1 dimensions.



Chapter 2

AdS/CFT duality

In this chapter, we introduce AdS/CFT duality and review some properties
of black holes. We also introduce the anti de Sitter black hole solution.

2.1 Black holes

Black holes have been in the center of interest in theoretical physics for a
long time. The reason for this is not just that black holes are mysterious
and intriguing objects, but that they are objects of extremes and their de-
scription pushes our theories to their limits. Also, to describe a black hole,
one does not need just general relativity, but also quantum physics and ther-
modynamics. Therefore to understand truly the dynamics related to black
holes one would need the full quantum theory of gravity. Nevertheless much
can be learnt just by using more standard theories, such as general relativity
and quantum field theory.

2.1.1 Black holes and the Schwarzschild solution

Black holes arise as solutions to theories of gravity. These spherically sym-
metric solutions (for non-rotating black holes) describe the structure of the
curved spacetime around a black hole. For example, the four dimensional
asymptotically flat black hole solution, known better as the Schwarzschild
solution, can be written:

2M dr?
ds? — — <1 _ G‘*) a2+ 42 (d02 + sin? 0d¢>2) ,(2.1)
T



The parameter M is the mass of the black hole and G4 denotes the four
dimensional Newton’s constant. When r — oo the metric (2.1) reduces
to the flat Minkowski metric. At the Schwarzschild radius, rs = 2M Gy,
the metric (2.1) diverges. This singularity is, however, only a coordinate
singularity and all curvature invariants are finite at r = r.

At the Schwarzschild radius lies the event horizon. The event horizon
is the boundary of a black hole — it is a spacelike hypersurface separating
spacetime points that are connected to infinity by a timelike path from those
that are not. Therefore nothing can escape from the black hole, once it is
inside the event horizon. At r = 0 lies a true curvature singularity and the
curvature invariants, like the Kretschmann scalar R, o R**7, diverge at
this spacetime point.

In the seventies, it was found that the properties of black hole can be
described using laws of thermodynamics [15, 16, 17, 18, 19]. Black holes are
systems that can be in general described using only few variables, namely
using mass M and angular momentum and charge parameters J and Q.
The situation is similar to thermodynamics, where complex systems can be
described using only few state-variables like pressure, temperature etc. In-
deed, it was found in [18, 19] that black holes radiate and have well defined
temperature. Also black holes have an entropy that is proportional to the
area of the event horizon [15, 16, 17]. There exists even a consistent formu-
lation of the zeroth, first, second and third laws of thermodynamics in the
context of black hole system, see for example [20, 21, 22].

To study thermodynamics related to black holes, one can use the Eu-
clidean path integral approach [23, 24]. In this approach, one calculates
the thermal partition function of quantum gravity, summing over all geome-
tries with an Euclidean time coordinate that has the period 5 = 1/T. The
partition function can be approximated using the saddle point approach:

7 = /Dge_SEH ~ e—SEH(on—shell)7 (22)

where the Fuclidean version of the Einstein-Hilbert action should be evalu-
ated using the classical black hole solution, with an imaginary time v = 4t.
The partition function is related to the free energy F' of the system by the
simple thermodynamical formula:

BF = —log Z. (2.3)

The easiest way to calculate the temperature of the black hole is to
consider the Euclidean black hole metric. Consider as an example the metric



(2.1) near the Schwarzschild radius ry = 2M Gy:

ds? ~ r—rsd72+ Is

Ts T —Tg

dr® 4 r2dQ3. (2.4)

If one now makes the coordinate transformation:

472 + p?
= - 2.5
" drg 7 (25)
one obtains that the ~, p -part of the metric becomes:
0
ds® = “=dy* + dp*. (2.6)

— 102
4rs

This metric has a conical singularity unless v has a period 8 = 4nr,, and
thus (B/2rs = 2n. Therefore, one obtains that the temperature of the
Schwarzschild black hole is Ty = 1/ =1/(8TMGy).

Also, from the partition function one can directly calculate the entropy
of the black hole using the thermodynamical formula: S = a%(T log 7).
This entropy is the same as the Bekenstein-Hawking entropy which can be

generally written as
A

4Gy’
in d dimensions. In this formula, the area A denotes the area of the event
horizon and G is the d-dimensional Newton’s constant.

Spy = (2.7)

2.1.2 The anti de Sitter black hole

The metric (2.1) describes a black hole in flat spacetime. Consider now a
black hole in a five dimensional spacetime with the negative cosmological
constant A = —6/£2. In this case, the black hole solution is the anti de
Sitter black hole:

2 dr?
A = — (S +1-L)a?+ ——— 12402 (28)
L2 r? (ﬁ +1— ﬁ)
£2 r2

The parameter £ denotes the curvature radius of the anti de Sitter space.
The Ricci scalar is R = —20/L£2, for all solutions of the five dimensional
Einstein equations in vacuum with A = —6/£2.

The metric (2.8) has also a curvature singularity at » = 0 and a horizon

£ (] )

7

at



In the limit » — oo, the metric (2.8) reduces asymptotically to anti de Sitter

spacetime with the boundary R x S3, where S? is the three-sphere.
Following the arguments used in the last section, one can calculate the

temperature of the AdS black hole. One finds that in this case,

27T7’h

Ty = ——5——.
H 1+ 2r2/L2

(2.10)
The parameter p is related to the mass M of the black hole through the

relation?! : G
— 5 M

3m

One can consider further the limit M — oo. In this limit, the black hole

horizon becomes larger and appears locally as flat. As discussed in [25], the

conformal boundary at r — oo is in this case R13. The metric in the large
mass limit therefore reads:

(2.11)

PET LAy P dr® SN g2 2.12
Tt )T oy ey B
72 2 i=1
and now )
L
Ty = L, where 77 = Lu'/?. (2.13)
Th
If one further makes the coordinate transformation,
L? 4 2 L2
r=—/1+ 2—4, where zg = V2 , (2.14)

one obtains the AdS black hole metric in Fefferman-Graham coordinates
26],

2
2 (1 — zé) A\ 3
ds® = =5 | —~—2—dt? + [ 1+ = | Y daf + dz?| . (2.15)
z 1+ 27 20/ =1
0

2.2 AdS/CFT duality

In this section, we are going to briefly introduce the main points of AdS/CFT
duality, related to the thesis. For more detailed reviews on the subject, see,
e.g., [14, 27, 28, 29, 30].

LThis can be verified by evaluating the Euclidean version of the action, and by using
the formula F = Mgy = TQ% log Z.



The most important form of AdS/CFT duality states that type IIB string
theory on AdS5 x S® background? is dual to N = 4 supersymmetric SU(N)
Yang-Mills theory in 3+1 dimension [7, 8, 9]. Duality means that these two
theories are equivalent and one can use gauge theory to calculate processes
in the string theory side and vice versa.

Most of practical calculations in AdS/CFT, and calculations relevant
to this thesis, are done in the supergravity approximation of string the-
ory. Supergravity can be obtained from string theory when considering the
propagation of strings in background of massless fields (garn, Byn, @, - - -),
i.e. when considering the propagation of strings in the ”condensate” of its
own massless modes. When requiring conformal invariance at quantum level,
one finds that these background fields must obey certain equations — the
supergravity equations of motion. These equations can be derived as an
expansion in o/, when o/ — 0, encoding the long-wavelength limit of string
theory.

One can also derive supergravity equations of motion from an effective
action — the supergravity action. Consider the following part of the bosonic
sector of IIB supergravity 2 action in the Einstein frame:

1

1
- 10, /= _ 2 2+ g2
16 10/d T/ g{R 2(Vgi)) 4'5!F5 +. . (2.16)

In the action (2.16), ¢ is the dilaton field and Fj the five-form field strength,
for which one further has to impose the self-duality condition F5 = %F5.

The equations of motion derived from this action have a solution which
describes a 3+ 1 dimensional brane embedded in ten dimensional spacetime.
The metric part of the solution reads:

Siip =

3
ds?> = H-'2(r) [—f(r)ah‘2 + Z dz?

+ HY? [f—l(r)er + erQE] . (2.17)

=1
with o A
.
Hir)=1+—7  f(r)=1-1. (2.18)

This solution describes the classical geometry of a stack of non-extremal
D3-branes, i.e., thermally excited D3-branes (see e.g. [31, 32]). The metric
(2.17) has a horizon at r = ry.

2In the more general case, the spacetime needs to be only asymptotically (when z —
0) AdS space. Also the compact part can differ from S°. Therefore, more generally
the spacetime needs to be asymptotically AdSsxX5 spacetime, where X® is some other
compact manifold. For simplicity, we only consider here the case where X® is S°.

3Type IIB supergravity is the effective long-wavelength description of type IIB string
theory.



Consider now the limit < £. The metric in this region can be approx-
imated by the metric

2

ds® = % [— ( ) dt* + de ] + <1di4) + L£%dQs. (2.19)

One notices that this metric is a product of AdS black hole in the large mass
limit (2.12) and of the five sphere S°.

It is convenient to make a further coordinate transformation r = £2/z.
The anti de Sitter part of the metric becomes now:

£2

22

ds® =

7
20

24 dz?
—(1-2)d? +d?+ ——— . 2.20
[ -5 T (2:20)

In this coordinate system, the AdS black hole has a horizon at z = zp and
the temperature Ty = 1/7zp.

The AdS/CFT conjecture was motivated by the observation that there
seems to be two distinct ways to describe the stack of N coincident D3-
branes. On one hand, the stack of D-branes can be described using su-
pergravity, when NN is large and one considers the system at low energies,
i.e., one considers only the massless excitations of the closed string spec-
trum. The near horizon region of the metric (2.17) can be described using
AdSs x S® metric as shown above. On the other hand, a D-brane is an end-
point for the open strings and these open strings describe the excitations of
the brane. The massless spectrum of open string oscillations living on the
D3-brane worldvolume is that of N' = 4 supersymmetric Yang-Mills theory
in 341 dimensions. This led Maldacena originally to propose the conjecture
[7].

The Bekenstein-Hawking entropy of the black hole can be calculated from
the area of the horizon, i.e., from the volume of the spacelike hypersurface
with z = zg and ¢t = const:

A

Spgp = —— 2.21
BH 4G10’ ( )

where GG1g is the ten dimensional Newton constant and G119 = 87T60/4g§. For
the metric (2.20), the area A of the horizon is

3 3 8
A= /dQ5dx1d:r2dac3\/ - lz=20 = VOI[S5] X V3§ = T ‘/gﬁ . (2.22)
20 20

10



Here V3 denotes the volume in x1, x2, x3 -directions and -y is the determinant
of the induced metric 7;; on the corresponding hypersurface. AdS/CFT also
provides the relation £* = 47 Ngsa'? [32]. Using this formula and the result
that zo = 1/7T, one obtains:

7T2
S = ?N“‘ng‘*. (2.23)

The value of the Euclidean effective supergravity action I, with the black
hole solution (2.20), can be identified with the free energy F' of the system
according to the formula I = F/T, as discussed in the section (2.1). There-
fore the entropy of the system can also be calculated using the standard
thermodynamical relation S = —0F/JT.

In terms of AdS/CFT, this implies that the free energy calculated from
the supergravity action, can be identified with the free energy of the thermal
N = 4 gauge theory [25]. Therefore the entropy of the black hole can be
interpreted as the entropy of thermal CF'T matter, with the temperature 7.
This simple calculation gives directly the entropy of N' = 4 gauge theory
(2.23) in the strong coupling regime.

The main content of AdS/CFT duality can be expressed in terms of the
fundamental relation:

Zoprlon) = [ DOCSHIONE [ Bee00) — 7, o2 —0) = gu(x)]
(2.24)

On the left hand side one has the generating functional of the CFT —
O(x) represents the operators of the theory and the sources are denoted by
¢o. The expectation value of the operator (O) can be obtained in the usual
way varying the generating functional with respect to the source terms ¢g:

B [DO OeiScrr(0]
(O(2)) = f’DOeiSCFT[O}

(2.25)

On the right hand side of the equation (2.24) one has the partition
function of string theory. As discussed, it can be approximated using the
supergravity action Zging ~ eiSSugm, evaluated with the classical solution
of the supergravity equations of motion, with the boundary conditions that
the bulk fields ¢(x, z) reduce on the boundary z — 0 to the sources ¢o(z).

The effective action is:

Sp = / d02\/=G Lsugra [be(@), Dute(2), . ], (2.26)

11



where the index ¢ denotes that the action is to be evaluated with the classical
values of the fields. One can also do the Kaluza-Klein reduction of the fields
over the S®-part to obtain a five-dimensional action [14, 33, 34].

To get the action as a functional of the sources only, one needs to in-
tegrate over the z-coordinate also. One therefore proceeds to solve the z-
dependence of the fields and then integrates over the coordinate. In this way
one obtains the supergravity action as a functional of the boundary values
of the fields only. After this, it is, at least in principle, straightforward to
do the variation with respect to the sources ¢o(x) on the right hand side of
the equation (2.24) and obtain the result for the CFT correlation function.

In the course of the integration, one finds, however, that the integration
gives an infinite result — this is because there is a 1/z? factor in front of
the metric and the integration starts from z = 0. The way out of this is
that one needs to regulate the integral, considering the boundary to be at
some finite z = €. After the regularization, one introduces covariant counter
terms to the action that together with the original action give a finite result,
when calculating the limit ¢ — 0. This procedure is called the holographic
renormalization.

2.3 Holographic renormalization

As described in the last section, according to the AdS/CFT prescription, the
expectation value of an operator in the boundary theory can be calculated
by varying the on-shell action with respect to the boundary value of the
dual bulk field. For the stress-energy tensor, the dual field is the bulk
metric. Therefore, one can determine the boundary stress-energy tensor by
calculating the functional derivative of the on-shell gravitational action with
respect to the boundary metric.
Consider the five dimensional gravity action:

1
S =
& 167‘(‘G5

(/M d®zvV/~G (R —2A) — 2 /BM d%ﬁK) : (2.27)

The metric v, is the induced metric on the boundary of the manifold M
and K = vy K, is the trace of the second fundamental form K,,. This
boundary term guarantees that the variational problem is well defined [23].

From the action, one can derive the Einstein equations, with the cosmo-

logical constant A = —6/L?, for the five dimensional metric G yn:
R — 1R G — EG =0 (2.28)
MN = 5 MN = mGuN =0 .

12



As discussed, the anti de Sitter spacetime is a solution to the equation

(2.28), )

ds® = GyndzMdzN = 5—2 [nuyd:z“d:z:” + sz] . (2.29)
On the boundary 4, the metric (2.29) corresponds to an empty spacetime,
(T,,) = 0, with the Minkowski metric 7, .

However, one can also consider the case when the boundary metric is
something more complicated, say g,(P), and the expectation value of the
boundary energy-momentum tensor is also non-vanishing. In this case, the
bulk metric changes correspondingly.

In the general case, one can write the bulk metric in Fefferman-Graham

coordinate system as follows:

s L°

ds® = yl [g#,,(:n,z)dx“dx” + dz2] . (2.30)

The function g, (z, 2) can be now expanded as a power series in z 5,

Guv(x,2) = ggf,) () + gfﬁ,) (z)2 + gl(ﬁ,) (z)zt + ... (2.31)

The expansion (2.31) can be inserted to Einstein equations and the coeffi-

cients g,(ﬁ) can be solved order by order in z.

One finds, in general dimensions, that all functions g,([;) can be expressed

in terms of the boundary metric gl(f,),) and gl(fll,) only, where d is the dimension

of the boundary theory. The functions gfLO,,) and gl(fll,) serve as the boundary
conditions for the problem and when these are given, the bulk metric can
be constructed order by order in z.

The function g,(g,) is related to the expectation value of the energy-
momentum tensor (7),,). Using AdS/CFT duality (2.24), one can write

that [35]:

2 %% (2.32)
—det g

<ij> - 59(0)MV'

However, using simply the gravity action (2.27) here, one finds that (7T},,)
diverges. These divergences correspond to the ultraviolet divergences in the

4The Greek indexes denote the boundary coordinates i, v = 0, .., 3, where as the Latin
indexes denote the bulk coordinates M, N =0, .., 4.

5In the expansion, there is in addition a possibility for a logarithmic term, but we will
neglect it in here for simplicity. See [35], for more on the subject.
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field theory. As is well known on the field theory side, one needs to first
renormalize the theory, in order to get finite results. This is the case in
the gravity side also — one needs to first regulate the gravity action (2.27),
before applying the formula (2.32).

The renormalization is done in following way: first one regulates the
action by changing the lower limit of the integration from z = 0 to z = e.
The boundary term is, correspondingly, evaluated at z = €. Then one adds
to the action (2.27) counterterms which are localized on the hypersurface
z = € and which are constructed in such way that they cancel the divergences
of the original action in the ¢ — 0 limit.

For example, in four dimensions, the counterterm for the gravity action
(2.27) is:

L 1 3 L
See = p—en /HM, . d*z/—~ (4R—|— £2’> + cloge - e /d4x\/—g(0),
(2.33)
where R is the Ricci scalar constructed from the induced metric v, on
the z = € boundary and c is a coefficient that will cancel the logarithmic
divergence in the action (2.27).
The renormalized gravity action is therefore

Sgr,ren - (Sgr + Sct) . (234)

One can now safely calculate the expectation value of the boundary energy-
momentum tensor, using the formula:

-2 ]
(T ) ren = lim Sersen_ (2.35)
e—0 \/—det g(z, €) 0g* (x,€)
After a long calculation [35], one finds that in four dimensions,
L? 1 1 1
— (4) _ 2,00 (202 _ @N21) — = ()2 2@y @
(T = e |98 = 5ol (TP = T ((6@)) - 5 (62)2),, + 39 Trg®]

From the gravitational point of view, (T},).,.. can be understood as the
Brown-York quasi-local energy-momentum tensor describing the gravita-
tional energy on the boundary of the spacetime [36], [13].

If the boundary metric gl(f,),) is flat, then gl(f,,) is identically zero in four
dimensions. In this case one obtains simply that:

3
£ @,
4Gy MY

(Tpw)ren = (2.36)
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The gf?,) dependent part describes the conformal anomaly of the theory
which vanishes if the boundary metric is flat.

The previous analysis can be done also in other dimensions, see again
[35] for details. In the case of 1 + 1 dimensional boundary theory, or 2 + 1
dimensional bulk, the corresponding relation is [35]:

L
(Tpv)ren = 8§17 [g/(f,/) - g!(f,)/)Tr [g(2)]} , where p,v=0,1,2 (2.37)

or correspondingly,

L
(2)
8mG3 I

v

(Tv)ren = if gLO) is flat. (2.38)

In this way one can construct the bulk metric if the boundary metric
and the expectation value of the energy-momentum tensor on the boundary
are known. Or vice versa, if one knows the bulk metric, one can extract the
boundary (T}.,).

The holographic renormalization method can be applied to other fields
in the bulk as well. After renormalizing the corresponding supergravity
action, using similar counterterm methods, one can extract the renormalized
expectation value of the dual operator on the boundary, using the formula
(2.24) [37, 38].

In AdS/CFT the extra dimensional coordinate z corresponds to the
energy-scale of the boundary theory. The z = € regulator in the gravity
side can be understood as a UV cut-off on the boundary. The region z ~ 0
corresponds to the UV-region of the theory and the region deep in the AdS-
space describes the IR-region. Similarly, if the anti de Sitter space contains
a black hole which has a horizon at some fixed z = zg, this corresponds to
thermal field theory, with a temperature 7' = 1/mz. The deeper the horizon
is in the AdS space, the smaller is the temperature T

The fact that in AdS/CFT the boundary is defined to be at z = 0 ensures
that gravity cannot propagate from the bulk to the boundary. This is due
to the infinite redshift factor £/z in front of the metric. A bulk mode, with
an energy Fy at z = z; would have energy E = ZZ—SEO at z. One observes
that when z — 0, E — 0.

However, it is possible to consider AdS/CFT duality with a boundary
at z = ¢, i.e., at the regulated surface, but now keeping the regulator e
finite. In this case the gravity action does not diverge and there is no
need for the local counterterms. One finds that the boundary theory now
includes also gravity and that it is induced from the bulk. This framework is
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known as the cut-off AdS/CFT. More discussion on this can be found e.g. in
[39, 40]. For example, the Randal-Sundrum model [41, 42] and other brane
world scenarios can also be understood in terms of the cut-off AdS/CFT
description.

2.4 AdS;/CFT; duality

As discussed, the most explored realization of gauge/gravity duality is the
duality between string theory in AdSs x S® spacetime and 341 dimensional
N = 4 super Yang-Mills theory. However, gauge/gravity duality can be
realized in many other cases also.

In this section, we briefly discuss the duality between type IIB string
theory on AdSs x S*xM?* and a specific two dimensional conformal field
theory, conjectured already in [7]. In here M* is a four dimensional compact
manifold. See, e.g., [43] for a review on the subject. The duality between
type IIB string theory in AdSs x S® background and the N' = 4 SYM theory
was originally motivated by the two distinct ways that could be used to
describe a stack of N D3-branes. In the same way, one can motivate the
AdS3/CFTy duality by studying a system of Nj D5-branes and N; D1-
branes.

The interest in the D1-D5 system arose before the discovery of AdS/CFT
duality itself, in the context of black hole physics. One of the deep mys-
teries in theoretical physics has been the Bekenstein-Hawking entropy for
the black hole Sppr = A/4G — entropy of a black hole is proportional to
its area. This implies that the number of different possible microstates that
create the entropy is proportional to g ~ e4/4G. Physicists have been ever
since pondering about this mysterious result. Standard field theory intuition
would say that the entropy of a system should be extensive and the number
of microstates describing the system should behave as g ~ e, where V
is the volume of the system and ¢ is some constant. String theory, being
a theory of quantum gravity, should be able to reproduce the black hole
entropy from first principles.

In the D1-D5 system, Db5-branes are extended along the dimensions
g, T1, T2, 3,24, x5 and D1 branes along xg,x1. Here xg denotes the time
direction. The directions x9, 3, 24, x5, that label the M? part, are now con-
sidered to be compact. Also the x; direction is now compactified as S'. The
system seems, therefore, as a point like one for an observer living in the
five dimensions xq, zg, T7, T8, Tg9. It is a string theory construction of a five
dimensional black hole.
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This system can be described in two complementary ways — using the
supergravity description of the near horizon region of the branes or using
the theory of massless open string modes on the intersection of D1 and D5
branes. The 141 dimensional CFT arising on this intersection is a very
complicated theory and still not well understood [44]

The entropy describing this system has been calculated first in [45] using
the conformal field theory description, defined by the low energy limit of the
open string modes on the branes. One finds that

S = 27v/N1 N5 Npn, (2.39)

when Ni, N5, N,, > 1, Here, the parameter N,, describes the momentum
number along the S; direction. One should note that this black hole is
still an extremal black hole, even though it has non-zero entropy due to the
momentum N,,.

The D1-D5 system has also a supergravity description. One finds that
the solution has a horizon and one can calculate what is its area. Using
the Bekenstein-Hawking formula for the entropy one finds that the entropy
from the gravity calculation matches the result of (2.39). Therefore the
result (2.39) is a string theory derivation of the black hole entropy.

Consider the case, where N, = 0. The metric describing the D1-D5
system is now:

—-1/2 1/2
ds® = (Hl(T)H5(7”)> [—dtZ + dl‘ﬂ + <H1(7“)H5(7‘)> [dr2 + r2dQ§] :
(2.40)
where
r? 2
Hi(r)=1+ 5, H(r)=1+ 3, (2.41)
and A 5
p2 = 0mgsNam N (2.42)

V )
Here V is the volume of the M* part [46] which has been integrated out.

Consider now the limit r? < r%,r%, i.e., the region near the wrapped
branes. The metric (2.40) in this limit takes the form:

2

ds? = = [-dﬁ + da;2] + L—er2 1 L2402 (2.43)
L2 1 72 ’ ’

which can be recognized as the AdS3 x S metric with an AdS radius £2 =
rirs = 16mtg2a/* N1 N5/ V.
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Similarly, considering the near-horizon region of the non-extremal D1-D5
system, one ends up with the metric [47]:

2
dsQ:—<T—M>dt2+

2 +r2de? + L£2dO3. (2.44)

.
r2/L2 — M
This is the product of the non-spinning BTZ black hole and three-sphere
S3. The BTZ black hole is the anti de Sitter black hole in three dimensions

and the dimensionless parameter M is proportional to the mass of the black
hole [48].

2.5 AdS/CFT and quantum phenomena in the bound-
ary theory

One of the most striking features of AdS/CFT duality is that although
string theory can be approximated using only classical gravity, one can make
predictions about quantum properties of the boundary theory. The simplest
example of this is, of course, the possibility to calculate correlation functions
on the boundary by varying the classical effective supergravity action (2.24).
A more non-trivial example of this property is the conformal anomaly that
we will consider next.

2.5.1 Conformal anomaly

In AdS/CFT correspondence, the boundary theory is a conformal field the-
ory and therefore, in the case of a flat boundary metric, the expectation
value of the trace of the energy-momentum tensor is zero. However, when
the background metric for the conformal field theory is curved, the former
is not generally true — one obtains a non-trivial contribution to the trace
of the energy-momentum tensor due to the curved background metric [49].

The general formula for the conformal anomaly can be expressed in terms

of the curvature invariants, constructed from the four dimensional metric
(0)

Guv':
1
(T") = aOR+ 3 (RpURP” - 3R2> . (2.45)
In the case of N' = 4 theory, the parameters o and 3 are:
N%Z -1

These results have been also reproduced using the AdS/CFT duality [12].
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The conformal anomaly arises when one renormalizes the quantum energy-
momentum tensor on a curved background. In the flat case, one finds that
a quantum field theory action is formally divergent — this is because there
ab initio is no upper limit on the energy of the field modes. The standard
way to proceed is to renormalize the theory.

In the case of curved background metric, the renormalization is, how-
ever, more difficult. This is because the UV-divergences obtain a contri-
bution from the curved background metric. The expectation value of the
renormalized energy-momentum tensor can be calculated from the quantum

effective action W,
2 W

e
where W is constructed from the renormalized action on the curved space-
time [49]. If one computes (T),,),.. on a curved background metric and

compares the result to the flat case, one generally finds a finite difference
between the results.

(Tyw)ren = (2.47)

2.5.2 Casimir energy

In the case of conformal anomaly, the contribution to <TW>ren due to the
non-trivial background metric, was induced because of the difference in local
physics, namely in the UV-part of the spectrum. The contributions which
arise in this way can be expressed in terms of geometrical quantities, i.e.,
in terms of curvature invariants. However, a non-trivial background space-
time can also give another kind of contribution to the expectation value of
the energy-momentum tensor — this contribution can appear if the global
structure or the topology of the spacetime is non-trivial. The corrections
coming from the global properties are usually finite and cannot be expressed
in terms of local geometrical quantities. These corrections are inherited from
differences in the IR-physics and typically are more subtle to calculate.

Probably the most striking feature of these quantum field theory prop-
erties on a non-trivial background® is that corrections to (Ty1)) ven, compared
to the Minkowski spacetime, can appear even in the case of flat spacetime
if the global structure is non-trivial. Maybe the simplest example of this is
the Casimir energy [50].

51n the literature, the formalism that deals with the problems discussed in this subsec-
tion is usually called the quantum field theory in curved spacetime. Nevertheless, in this
Thesis we try to avoid this name, because the formalism gives also examples where a flat
spacetime can induce new quantum effects.
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In the Casimir effect, one has two parallel planes in a flat spacetime.
These planes give non-trivial boundary conditions to the quantum fields;
the fields must vanish at the planes. The planes force the field modes to
form a discrete set in the direction orthogonal to the planes.

For example, if the planes are at distance L from each other, orthogonal
to the direction !, one obtains that in d-dimensions:

1 0 0 .0
0 —(d—1) 0 ... 0
clo o 1.0
<T€L/>Casimir = <0L |Tllﬁ‘ 0L> - <0 |T/1j’ O> ~ ﬁ . 0 ’
0 0 0 1

where c is a positive coefficient, depending on the dimension of the spacetime
and the number of degrees of freedom associated with the field configuration
between the planes. For example, for a scalar field in 3 4+ 1 dimensions one
obtains that ¢ = 72/1440.

In the case of Casimir energy associated with electromagnetic fields,
the Casimir energy has been experimentally verified [51, 52]. In this case
conducting metal plates provide a suitable physical realization of boundary
conditions.

In the expression for the Casimir energy, ¢, = —(T %)cmmir denotes the
physical vacuum energy between the planes for an observer which would
observe zero vacuum energy in the Minkowksi space. One finds that the
physical quantum vacuum is altered |0) — |0.) due to non-trivial boundary
conditions. This observable difference in the vacuum energy density is called
the Casimir energy. Notice that (T#)c.qmi IS traceless in all dimensions.

2.5.3 Quantum fields in Milne spacetime

Let us consider closer a more specific example of quantum field theory on
a non-trivial background, a scalar field in 1+1 dimensional Milne spacetime
with the metric

ds* = —dr* + 7%dn?. (2.48)

If the timelike coordinate 7 is interpreted as the cosmic time, this space-
time is a 1+1 dimensional Robertson-Walker spacetime with the scale factor
a(t) = 7 and a singularity at 7 = 0. Transforming,

t =7coshn, x=r7sinhn, (2.49)
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one obtains simply:
ds® = —dt* + dz?, where 0<t<oo, —t <z <t. (2.50)

However, even though the metric is simply Minkowskian, the coordinates do
not cover the entire spacetime, but only a wedge of the Minkowski spacetime,
the region corresponding to the future light-cone of an observer sitting at the
point ¢ = 0,z = 0. Thus an observer in the Milne coordinates 7, n perceives
universe to expand, starting at 7 = 0.

Let us now consider a 1+1 dimensional scalar field action:

S — / Pay/—g (— %g’”’vugbqub - ;m2¢2) . (2.51)

From the action one can derive the field equations and solve them. Using
the solution, one can construct the energy-momentum tensor and calculate
its expectation value. One finds that there are, however, two different sets
of solutions to the field modes [49]. The first set of solutions describes the
modes which have a positive frequency with respect to the time coordinate
7 (and t). These modes define the adiabatic vacuum |0), or the Minkowski
vacuum. However, the other set of solutions describes field modes that have
a positive frequency with respect to the conformal time coordinate p, which
is related to the Milne time coordinate 7 through the relation e’ = cr,
where ¢ is some constant 7. This other set of modes define the conformal
vacuum |0).

One expects that an observer which does not observe any vacuum energy
density in the adiabatic vacuum, would observe non-zero vacuum energy
density in the Milne conformal vacuum. Indeed, one finds that the difference
is non-zero [53]:

- - 1 -1 0
<orTf;o>—<0\T*;ro>—W< . 1). (252)

Interestingly, the coordinate system used usually in the context of ul-
trarelativistic heavy ion collisions is very similar to the Milne metric. In
fact, if one considers a 141 dimensional analogy of a heavy ion collision,
the metric is exactly the Milne metric. In a heavy ion collision, instead of a
big-bang at ¢ = 0 there is a little bang, i.e. the explosion from the collision.
Therefore, the question rises: should one get in this case also similar quan-
tum effects due to the non-trivial choice of the vacuum state? Indeed, using

"In the conformal coordinate system, the metric is ds* = e2*°(—dp* + ¢~ 2dn?), and
—o0 < p < 00,
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gauge/gravity duality, one observes that this seems to be the case, at least
in the 141 dimensional case [54].

2.6 AdS/QCD

AdS/CFT duality gives a prescription to calculate correlation functions of
N = 4 theory in terms of supergravity. However, as one knows N’ = 4 theory
is not a correct theory to describe the observed particles in real world. Even
though A = 4 Yang-Mills theory can be used as a model, when describing
some finite temperature QCD phenomena, one would like to have something
more.

As discussed in the introduction, one can modify AdS/CFT duality to
obtain theories with less supersymmetry, broken conformal symmetry etc,
see for example [55, 56, 57, 58]. In this way, one can can obtain boundary
theories that resemble QCD more than the A/ = 4 theory. One can also try
to directly find a string background which would describe full QCD (some
attempts in this direction have been made, e.g., in [59, 60]).

2.6.1 AdS/QCD models

One can also consider a more phenomenological viewpoint in the study of
QCD. One can assume that in similar fashion to AdS/CFT, there could be
a corresponding dual gravity theory for large N QCD and that a relation,
similar to (2.24), would hold also in this case. One can then ask what
properties should the gravity theory have, in order to produce the observed
behavior of QCD in the field theory side? For example, one can ask what
should be the field content of the gravity theory to give the required QCD
operators on the boundary or what should the structure of the metric be.

This phenomenological viewpoint was first considered in [61] and in [62].
These holographic models are generally referred to using term AdS/QCD. A
motivation for the holographic description was discussed in [63]. In this pa-
per, Son and Stephanov showed that in the effective field theory description
of hadrons and mesons and in the limit of infinitely many hidden local sym-
metries, a holographic description arises naturally in the continuum limit.

In the simplest case, the holographic model of QCD has the following
5-dimensional action:

1
S = /d%dz,ﬁ—gTr [—|D<I>|2 + 3|02 — e (F2+ Fg)} , (2.53)
5
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where D, ® = 0,®(z) — iAp ,P(2) — iAR,®(2) and F),, = 0,A, — 0,A, —
i[Ap, Ay, Ay = ART® for Ap, and Ap.
In the model, one also assumes the metric to be of the form

ds® = w(z)? (nm,dx“dx” + dz2) : (2.54)
The simplest choice for the function w(z) is,
£2
w(z) = —, where 0<2z< 2. (2.55)
z

The coordinate z is restricted to the interval 0 < z < z,,, as e.g. in [61].
The z,, denotes the position of the IR-brane which functions as an IR-cutoff
scale for the theory.

In this model, the gauge fields A} and Af;, are dual to the operators
ary*qr and gry*qr in QCD. The scalar ®(z) is correspondingly dual to
the operator grqr. The correlation functions for the operators can be now
calculated in similar fashion to AdS/CFT duality varying the on-shell action
with respect to the boundary value of the bulk fields.

The AdS/QCD models [61, 62], and their successors (see for example [64,
65, 66, 67]) encode surprisingly well some properties of QCD. For example,
fitting the three free parameters of the model in [61], gave seven observed
quantities, such as p meson mass, with a surprisingly good accuracy of
O(10%).

However, one of the problems of these models was that they predicted a
meson mass spectrum which grows with respect to the excitation number n
as:

M? ~n?, (2.56)
In reality, the mass spectrum should behave as M2 ~ n. Using the phe-
nomenological approach, one can add further terms to the action and try to
remedy the situation. Indeed, in [68] a dilaton, with a certain profile was
added, and the behavior:

Mg g~ (n+5), (2.57)

was obtained. The parameter S describes the spin excitation. Therefore the
model [68] also correctly produced the linear Regge behavior for the meson
masses.

The AdS/QCD models seem to capture surprisingly well many phenom-
ena relevant to QCD. Still, these models are quite ad hoc; for example, the
action of the model is postulated and not derived from some supergravity
theory. Nevertheless, the models seem to suggest that there might be some
truth hidden in the five dimensional gravity description of QCD.
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Chapter 3

QCD and heavy ion collisions

Quantum chromodynamics is a theory describing quarks and gluons. In
QCD there are three colors for the fundamental quarks and eight for gluons,
as the gauge group is SU(3). The N = 4 theory seems very different when
compared with QCD — for example, the N' = 4 theory is highly supersym-
metric and there are fermions and scalars in the adjoint representation, but
no fundamental quarks. Also the theory is a conformal field theory and has
the gauge group SU(NV).

Nevertheless, there seems to be a certain regime, where these theories
behave in a similar fashion. This is the regime when the interactions between
particles are strong, but the temperature of the system is at the same time
high 1.

At finite temperatures, supersymmetry is broken and the conformal de-
scription of QCD thermodynamics seems to be a reasonable approximation
at the high temperature regime, see e.g. [69]. It has also been known for a
long time that the large N approximation of QCD, i.e. QCD with the gauge
group SU(N), gives a quite accurate description of QCD in many cases [70].

Heavy ion collisions probe exactly the high temperature and strongly
interacting regime of QCD. Therefore it seems natural to apply duality to
study phenomena related to heavy ion collisions. In this chapter, we give
an introduction to this subject and discuss the gravity description of heavy
ion collision.

!But not too high, so that QCD is strongly coupled.



3.1 Heavy ion collisions

An ultrarelativistic heavy ion collision is a process in which two heavy ions,
typically gold or lead ions, collide head-on with highly relativistic speeds.
A typical heavy ion consists of approximately 200 nucleons. Because of the
high velocity, the ions are strongly Lorentz contracted in the longitudinal
direction of the motion, and the collision appears more or less as a collision
of two disks. In the collision, the disks smash into one another and then pass
through each other. In this violent process, some part of the collision energy
is transformed into heat and new particles. Heavy ion collision experiments
have been carried out recently at RHIC and in future will be carried out at
LHC.

At low temperatures and densities, quarks and gluons are tightly bound
together as hadrons. In the collision, the pressure and temperature is huge
and the protons and neutrons can "melt”. Quarks and gluons form a new
state of matter called quark-gluon plasma (QGP).

There is compelling evidence that QGP is formed in heavy ion collisions
and that it can be described as strongly interacting fluid [71, 72, 73, 74]
(see [75] for a review on the subject). After the collision, the plasma starts
to rapidly expand and it cools down. When the temperature drops down
to approximately T, ~ 175 MeV, or about 2 x 10'? Kelvin, the plasma
hadronizes. In the hadronization, the matter goes through a phase transition
and quarks and gluons coalesce into hadrons.

3.2 Hydrodynamical description of heavy ion col-
lisions

In the hydrodynamical description of matter one assumes that the system
can be modeled in terms of only a few variables, such as energy density €(z),
pressure p(z) and velocity vector u,(x) of the fluid.

In the ideal fluid case, one can write the energy-momentum tensor as

Tuu = (5 + p)u,uuu + PGuv- (3'1)

In the rest frame of the fluid, it has the form:



Further, the energy-momentum tensor is conserved, i.e., it obeys the con-
servation equation
Vi = 0. (3.2)

However, in reality, the fluid is not ideal 2. The first order deviation
from the ideal fluidity can be expressed as:

Tyw = (e + p)uptn + PG — Wy, (3.3)

where
2
W =n(Vyuy + Vouy,) — (377 + C) (V- u) (g + upun) (3.4)

denotes the first order correction to the ideal fluid behavior. The shear
viscosity i and the bulk viscosity ¢ describe the dissipative forces that affect
the flow.

If the fluid is conformal, i.e. T}, is traceless, then the bulk viscosity is
identically zero. In the context of AdS/CFT duality this is usually the case,
because the boundary theory is in most cases a conformal field theory 2.

In [76] the following viscosity bound was conjectured:

> (3.5)

» |3

1

4
for all relativistic quantum field theories at finite temperature and zero chem-
ical potential. The conjecture also stated that this inequality is saturated
by theories with gravity duals, such as N’ = 4 Yang-Mills theory. This con-
jecture has been verified for large class of field theories with gravity duals
[77, 78, 79].

Interestingly, all known hydrodynamical systems seem to obey the in-
equality (3.5). Also, the current data is compatible with the assumption that
the ratio /s for the QGP is a small number, close to the value 1/47, see [75].
This can be interpreted as a further evidence that perhaps N = 4 matter is
reasonable approximation for the collective behavior of quark-gluon plasma
at high temperatures and at strong coupling.

ZNevertheless, the ideal fluid behavior seem to be a good approximation in the case of
quark-gluon plasma.

3However, in the case of curved boundary metric, one obtains a conformal anomaly
to the energy-momentum tensor. In this case, the energy-momentum tensor can have a
non-vanishing trace.
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3.2.1 Boost-invariant fluid

In the study of evolution of expanding quark-gluon plasma, one would like
to know how do the energy density e(x) and the pressure p(z) vary as func-
tions of the coordinates x*. The problem is in the most general form quite
complex. However, in the so called mid-rapidity region* the problem can be
simplified using the following scaling ansatz, introduced first by Bjorken in
1983 [80]:

€(t7$’y7z) = E(T)7 pw(t7m’y’2) pr(T)’ pT(t7m7y7z) EpT(T)’ (3'6)

In here x is the longitudinal direction and 7 is the proper time 7 = v/t2 — 2.

In general, the longitudinal pressure p, and the transversal pressure pr can
differ from the each other.

Take now new variables ¢ = 7coshn and z = 7sinhn. The Minkowski
metric now has the form:

ds® = —dr?* 4 7%dn? + di>. (3.7)

Assume that the energy-momentum tensor can depend only on the vari-
able 7 and that it has translational and rotational symmetry in the trans-
verse directions and that the system is also symmetric in reflections: y —
—y. One finds that the most general traceless (conformal) and conserved
energy-momentum tensor respecting these symmetries can be written as:

f(7) 0 0 0
B e R e 0 0
w1l o 0 F()+ 3 f(o) 0
0 0 0 fr)+3rLf(r)

Assuming that the weak energy condition holds, i.e., T),,t#t” > 0 for all
light like vectors t#, one obtains further restrictions for the function f(7):

f(ry=0,  f(r)<0,  7f(r) = —Af(7). (3.8)

If one makes the further assumption that the fluid is perfect, one obtains
the constraints: 7)) = T = T;. Now one can solve the equation for f(7)
and one ends up with,

£7) = e ()4/3 | (3.9)

4The mid-rapidity region describe the part of the expanding plasma that has small
longitudinal velocity after the collision.
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One can also study f(7), in the presence of the first order correction,
due to the shear viscosity. In the co-moving coordinates, 7, n-coordinates,

the velocity-vector is:
w = 1.0.0,0) (3.10)
dT ) ) b * .
Therefore in these coordinates each fluid element is at rest. One can now
calculate the first order correction II,,, to the energy-momentum tensor in
the boost invariant case, using equation (3.4).

After a short calculation, one finds that:

00 0 O
2n 1 0 2 0 O
po— 2
=510 0 -1 o0 | (3.11)
00 0 -1
and therefore
—e(T) 0 0 0
| 0 )=k 0 0
v 0 0 (1) + 5% 0
0 0 0 p(7) + 2%
The continuity equation now reads:
de(r) | 4n(7)
/
vV, T = —€(r) - 3 + 32 = 0, (3.12)

where the relation p(7) = €(7)/3 has been applied. Also one knows that in a
conformal field theory €(7) = 3aT*(7) and n(7) = 1o T3(7). Therefore, one
can solve the temperature from the equation (3.12). One obtains that:

T(r) =T (T(])l/g _ Ml (3.13)

T 6a T

and thus the late time (7 — oo) expansion is

0\ %3 T 1

When generalizing the analysis to arbitrary dimensions [87], one finds
that the corresponding late time expansion is:
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and ¢; are constants.

From the expression (3.15) one notices the uniqueness of the 141 di-
mensional Bjorken flow. In this degenerate case v = 0, and all terms in the
expansion come at the same order. Therefore in 141 dimensional Bjorken
flow one has:

70

T(r) =Ty (T) and €(7) = € <T>2, (3.16)

at all times.

In general, however, any choice of f(7) that obey the conditions (3.8),
give a proper solution in terms of the conservation equation and the trace-
less condition. Not all of these solutions are physically interesting or are
produced naturally from the dynamics of the gauge theory. Therefore, one
can ask the question: does the gauge/gravity duality give any restrictions
for the function f(7)?

3.3 Gravity dual of boost-invariant fluid

In heavy ion collisions one has observed that hot and expanding quark-gluon
plasma is produced. There is also evidence that this expanding matter can
be modeled using the fluid description of the plasma. An interesting question
then is whether one can construct a gravity solution which describes the
expanding N' = 4 gauge theory fluid using gauge/gravity duality? Even
though one does not have a dual gravity description for QCD, one can try
to use N = 4 theory to model quark-gluon plasma at temperatures T > T,
as discussed earlier.

One relevant solution would be the dual solution describing a boost-
invariant expansion on the boundary. One starts using an ansatz for the
metric that respects the symmetries of the problem:

LQ

ds® = {—a(r, 2)dr? + 72b(1, 2)dn? + (1, 2)d73 + dzz} . (3.17)

22

This simplified ansatz, when inserted to Einstein equations, however,
produces complicated nonlinear partial differential equations. To obtain the
full exact solution to these equations seems to be an overwhelming challenge.
Nevertheless, progress can be made.

Janik and Peschanski assumed in [26] that at late times, i.e. when
T — o0, f(7) behaves as f(7) ~ 77° in the leading order. The holo-
graphic renormalization techniques, reviewed in section (2.3), give a tool
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to address the problem of constructing the gravity background correspond-
ing to the field theory setup at hand. In this case, one wants to find a bulk
background that produces f(7) ~ 7% and gl(fl),) = diag(—1,7%,1,1) as the
boundary metric. Because the boundary metric is flat, only a coordinate
transformation from the Minkowksi metric, the relation between the expec-
tation value of the energy-momentum tensor and the metric is particularly
simple:
ES

<Tul/> = 47TG5g’(ﬁj)’ (3.18)

as discussed in the section (2.3). The conditions for g,(f)y) and f(7) provide

enough information to construct the bulk metric as a power expansion in z,
and to obtain the metric to arbitrary order in z — the solutions parameter-
ized in terms of s only.

However, one can even do better than just solve the equations order by
order. This is because one finds that the expansion has schematically the
following structure:

-1 z 4 C1 z 6 C3
a(t,z) =1+ i c0+T—#+... + ey cQ+T—#+... +...,
(3.19)

where # denote some positive coefficients. The same behavior is found also
for the functions b(7, z) and ¢(7, 2).

One observes that in the scaling limit, 7 — oo, z — oo and z/7
constant, one is left with functions that depend only on the combination
v = z/7%/*. This motivates one to use the following scaling ansatz for the
metric (3.17):

s/4

a(t,z) = ap(v) + C’)(Tl#> + ...,

b(t,2) = bo(v) + O<7_l#> + ...,

c(r,2) =co(v) + O (7_1#> + ..., (3.20)

and to study the Einstein equations when v = fixed and 7 — oo. The partial
differential equations reduce to ordinary differential equations and one can
solve the functions ag(v),bo(v) and co(v) analytically for arbitrary s °.
However, the functions ag(v), bo(v) and cg(v) seem to have a singularity
at a critical value v = v.(s). In here, the critical value v. depends on the

"We do not give here the expressions for the the functions ao(v),bo(v) and co(v) for
general s for simplicity. They are written explicitly in [26].
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parameter s. To check if the singularity is a true curvature singularity, one
must calculate the curvature invariants. One finds [26] that in 7 — oo limit,

1
R:—20+O<T#)+..., (3.21)

and ) )
RNVPWR,u,l/p’Y = mf(?}, S) + O <7#> + .. .y (322)

where f(v,s) is now a finite function of v and s. Thus there seems to be a
true curvature singularity at v = v,.

Janik and Peschanski argued that the physical late time solution should
have a non-singular bulk metric, i.e., a metric without naked singularities®.
Indeed, one finds that there is a specific value of s that gives a finite curvature
everywhere — the value s = 4/3.

When s = 4/3, the function f(v,4/3) cancels the fourth order pole and
gives

RMYPTRypy = 112, at v = v.. (3.23)

Therefore, one can argue that the gravity duality predicts perfect fluid flow
at late times.
The full late time solution can be now written explicitly:

4 \2
L2 (1_c i/S) 24
2 _ _ T 2 2.2 | 72 2
ds” = 2 1+CT'Zj3 dt” + 14—07_4/3 (7’ dn +dacT)+dz )

(3.24)
where c is an arbitrary integration constant.

The similarity between the anti de Sitter black hole metric in Fefferman-
Graham coordinates (2.15) and the metric (3.24) is very interesting. It
suggests that the late time metric (3.24) has an horizon at zy = ¢~ 1/471/3,
Applying naively the formula for the static AdS black hole temperature,
T ~ 1/zy, one finds that:

1 1

(3.25)

As e ~ T* and € ~ 77%/3, the result (3.25) seems to be consistent.

SThat is, singularities that are not behind an event horizon.

" Although strictly speaking there are two caveats: first, all singularities in the metric
do not correspond to true event horizons. Second, in time dependent case, the black hole
thermodynamics is a subject that is generally not well understood. Therefore the exact
definition for time-dependent temperature for a black hole is unknown.
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The argument that the solution corresponding to a physical realistic
solution on the boundary, should be non-singular in the bulk, has been
applied further in series of papers [81, 82, 83, 84, 85] 8.

The metric (3.24) describes the leading behavior in 7 — oo limit. How-
ever, there are also subleading corrections to f(7). When s = 4/3, these
corrections come as power series in 7723, as shown in [90]. The first sub-
leading corrections to the solution (3.24) were first calculated in [91]. In [90]
it was shown that in order that the singularities in R**#7 R, , would cancel
also at the order O(7~%3), the ratio n/s must take the value /s = 1/4r,
and in this way reproduced the well known result of N' = 4 theory.

The main restriction of the above analysis is that one does not have any
understanding of the global properties of the spacetime nor the definitions
of temperature and entropy in a time dependent setup. In the papers II-IV
of this thesis, the main goal was to study exact solutions, where the global
structure of the spacetime is better in control, and try to shed some light on
the questions mentioned above. Because of the problems in solving the exact
Einstein equations, when using the ansatz (3.17), one needs to simplify the
problem, in order to obtain some progress. This can be done, for example, by
studying a simplified ansatz in five dimensions or by reducing the dimensions
of the bulk spacetime.

In the paper II, we study an ansatz for the five dimensional AdS gravity
equations, where the metric has only two unknown functions. In this case,
an analytical solution with non-trivial time dependence can be obtained. In
the papers III and IV, we study also exact solutions, but in this case for the
three dimensional Einstein equations.

In the paper III, we even show that the time dependence can be trans-
formed away, by performing a specific coordinate transformation. In this
case, the static form of the metric turns out to be the BTZ black hole met-
ric [48]. As the temperature, mass and entropy of a static BTZ black hole
can be easily calculated, using the methods presented in the chapter 2, it is
also possible to identify the corresponding quantities in the time dependent
coordinate system. This is because one can trace back the coordinate trans-
formation, and identify the correct black hole mass parameter in the time
dependent metric.

8See also [86, 87, 88, 89] related to the subject of dual description of heavy ion collisions.
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Chapter 4

Conclusions

Gauge/gravity duality provides powerful methods for the study of strongly
interacting gauge theories. The duality between type IIB string theory on
anti de Sitter background and A = 4 supersymmetric Yang-Mills theory in
3+1 dimensions, makes it possible to analyze the non-perturbative regime
of the gauge theory, using methods of classical gravity only.

As there is evidence, that at strong coupling and at finite temperature
N = 4 theory and QCD behave in similar fashion, one can also try to apply
the methods of AdS/CFT to study QCD in this regime.

The gauge/gravity duality framework also gives a chance for a true string
description of QCD. The success of some phenomenological AdS/QCD mod-
els [62, 63] and the fact that there is a wide range of different realizations
of gauge/gravity duality, suggest that maybe also QCD can be formulated
in terms of strings on some higher dimensional curved background®.

The evidence seems to point out [71, 72, 73, 74, 75] that in heavy ion col-
lisions hot and strongly interacting quark-gluon plasma is produced. There-
fore, heavy ion collisions provide an ideal context to apply AdS/CFT duality
to QCD. Using AdS/CFT, one can study the expansion and dynamics of the
plasma in a meaningful way, as is discussed in the chapter 3. The hydrody-
namical properties of the expanding plasma, such as the viscosity and the
evolution of the energy density, can be obtained consistently.

In the context of applications of AdS/CFT to heavy ion collision, many
interesting questions remain to be answered. A better understanding of
the dual gravity background corresponding to the 3+1 dimensional Bjorken
expansion would be highly desirable. For example, the global properties
of this dual gravity background should be better understood. Of course,

!This was actually suggested already in 1981 by Polyakov [92].



it would be best if one could discover an exact analytic solution, but this
seems unlikely due to the complexity of the problem.

In the introductory part of this thesis, we have reviewed some back-
ground and tools needed in the study of strongly interacting gauge theories
using gauge/gravity dualities — especially we reviewed some applications
of AdS/CFT to QCD and heavy ion collisions. The second part of the the-
sis consists of four papers, where the gauge/gravity duality framework is
applied to QCD in various ways.
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