ACAT-2021 IOP Publishing
Journal of Physics: Conference Series 2438(2023) 012042 doi:10.1088/1742-6596/2438/1/012042

Going fast on a small-size computing cluster

Niclas Steve Eich, Martin Erdmann, Svenja Diekmann, Manfred
Peter Fackeldey, Benjamin Fischer, Dennis Noll, Yannik Alexander
Rath

RWTH Aachen University, Physics Insitute III A

E-mail: peter.fackeldey@cern.ch

Abstract. Fast turnaround times for LHC physics analyses are essential for scientific success.
The ability to quickly perform optimizations and consolidation studies is critical. At the same
time, computing demands and complexities are rising with the upcoming data taking periods
and new technologies, such as deep learning. We present a show-case of the HH—-bbWW
analysis at the CMS experiment, where we process O(1 — 10)TB of data on 100 threads in
a few hours. This analysis is based on the columnar NanoAOD data format, makes use of
the NumPy ecosystem and HEP specific tools, in particular Coffea and Dask. Data locality,
especially 10 latency, is optimized by employing a multi-level caching structure using local file
storage and on-worker SSD caches. We process thousands of events simultaneously within a
single thread, thus enabling straightforward use of vectorized operations. Resource intensive
computing tasks, such as GPU accelerated DNN inference and histogram aggregation in the
O(10)GB regime, are offloaded to dedicated workers. The analysis consists of hundreds of
distinctly different workloads and is steered through a workflow management tool ensuring
reproducibility throughout the development process up to journal publication.

1. Introduction
Typical LHC physics analyses analyze O(1 — 10)TB of recorded and simulated data. These
large amounts of data allow new and more precise scientific findings. On the other hand, they
come with the burden of new computational challenges. The reduction of analysis turnaround
times is essential for scientific success, as more optimization cycles during development and
consolidation studies during peer review processes can be performed. Additionally, analysts
profit from increased throughput, balancing the time spent on computation and the scientific
thought process requiring computational runtimes measured in minutes. In the upcoming data
taking periods, the situation complicates as the integrated luminosity increases to 3000 fb~1.
This article shows how fast turnaround times for modern LHC analyses can be achieved on
relatively small computing clusters. First, the software and hardware environment is described in
detail. Then the data flow through the computing cluster is explained, including crucial aspects
such as the multi-level caching structure are discussed. In the end, a benchmark measurement
is shown, highlighting the runtime reduction achieved by a custom SSD caching strategy.

2. Experimental Setup
2.1. Software Environment
This analysis is purely based on python software. Especially the NumPy [1] ecosystem is
leveraged for vectorized array processing, training of deep neural networks (DNN), and data

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOIL.
Published under licence by IOP Publishing Ltd 1

ACAT-2021 IOP Publishing
Journal of Physics: Conference Series 2438(2023) 012042 doi:10.1088/1742-6596/2438/1/012042

visualization. HEP specific libraries, mainly developed by the Scikit-HEP [2] community, are also
used, in particular coffea [3], uproot [4], boost-histogram [5], and awkward-array [6]. Transparent
up-scaling of the analysis to a HT'Condor [7] batch system is achieved through dask [8] and dask-
jobqueue [9, 10]. The offloading of resource-intensive DNN evaluations to other machines is done
by TensorFlow-Serving [11].

These libraries are installed together with python 3.8 [12] using the conda package manager
from Anaconda [13].

2.2. Computing Cluster - VISPA
The computing resources of the VISPA [14] computing cluster have been used for this work.
This cluster consists of 10 heterogeneous computing nodes. Seven of these nodes, the so-called
small-workers, provide 64 GB of random access memory (RAM), eight logical CPU cores, and
two GPUs with a video RAM (VRAM) of 8 GB each. Two nodes, the so-called medium-workers,
have 192 GB of RAM, 64 logical CPU cores and three GPUs with 16 GB of VRAM each. The last
worker, named large-worker, supplies 384 GB of RAM, 64 logical CPU cores, and three GPUs
with 24 GB of VRAM each. The small-workers are additionally equipped with a solid-state drive
(SSD) of 1 TB each, while the other three hold an SSD of 4 TB each.

Besides these 10 workers, an additional machine (portal) exists, used for interactive
computations and the submission to the workers through the HT'Condor batch system.

Storage, provided through a network file system (NFS), is linked to the portal and the small-
workers with a bandwidth of 1 Gbits™! and the other three with a bandwidth of 4 Gbits™!. In
total the NFS storage accumulates to 96 TB, striped across six different 16 TB hard drive disks
(HDD). This storage is managed by a Logical Volume Manager (LVM) and accelerated by an
1TB SSD cache.

3. Data Flow
The flow of recorded and simulated data through the VISPA computing cluster can be divided
into five steps and is shown in Fig. 1.

Fig. 1 can be read from left to right, following the black arrows, which denote the flow
direction. In general, the processing is performed in the so-called ”MapReduce” fashion. Filters
and transformations are mapped onto multiple events (chunks) and then reduced into a single
output. The five processing steps are explained in the following.

1. Data and simulation, in the NanoAOD data format [15], are stored on the NFS in the
ROOT [16] file format. Dask workers fetch via network approximately 10° events, a so-
called chunk, from the NFS storage. A pre-step calculates the start and stop event number,
which is used to determine the chunk.

2. The NFS is backed by a 1 TB SSD LVM cache in order to speed up the access of frequently
accessed ("hot”) data. Here, copies of blocks of hot data are stored and can be read a
lot faster from the SSD than from the HDDs. The blocks are stored with a granularity
of 832kB. The cache behavior does not follow a first-in-first-out (FIFO) policy but the
so-called multi-queue (MQ) [17] policy. This cache behaves entirely transparent for the
user.

3. Read chunks are cached on the SSD cache on the machines of the HTCondor cluster, on
which they are processed. In contrast to the LVM cache, these SSD caches follow the FIFO
cache eviction policy. A robust assignment of chunks to workers is achieved by a custom
submission policy encoded into the Dask scheduler. The cached columns are stored in blocks
of 4kB. A more detailed description can be found in section 4. These on-worker SSD caches
also behave completely transparent in usage for the user.

ACAT-2021 IOP Publishing

Journal of Physics: Conference Series 2438(2023) 012042 doi:10.1088/1742-6596/2438/1/012042
. E --- : 5. OUtpUtS are accumulated by dask

l:{;/seer;tss :r:’eNSthr:gdln HTCondor Cluster i merger (no RAM restrictions)
read in chunks Machine N Portal
Storage (NFS) Machine 2

Machi 1 h

achine
Datasets i

Thread 1

Dask Worker 1 : s, Dask Merger 2
A\ H
Dask Worker 2 H s Dask Merger N
A |
Dask Worker N Dask Scheduler
1 A

: : — Dataflow
TensorFlow (TF) Model Server H
: : /7 Dataset

Thread N Thread 2
»

Data Flow & Cluster Sketch

2. Frequently accessed
chunks are robustly cached
in the LVM SSD Cache

3. Touched columns are 4. Chunk processing by [cache
always cached in on- dask workers + DNN
worker SSD caches inference (TF Model Server) A Dask

Figure 1. A sketch of the VISPA computing cluster including the storage (NFS), the portal
machine, the TensorFlow model server and the HTCondor cluster with all workers. The data
flow is briefly explained in five steps.

4. The Dask workers process chunks of events in parallel. In a very first step, data is
decompressed using the IO functionality of the uproot package and interpreted into awkward
arrays. Vectorized operations on these chunks, using NumPy and awkward-array, leverage
modern single instruction, multiple data (SIMD) instructions on the modern CPUs of the
workers. After applying analysis-specific event filters and reconstructions, e.g., a deep neural
network (DNN) is evaluated. This GPU- and memory-intensive evaluation is offloaded to
a dedicated external server, which simultaneously serves all Dask workers.

5. Finally, the processed chunks can be accumulated into different storage types, such as arrays
or histograms. Dedicated Dask workers run on the portal machine, the so-called Dask
mergers, are used for this accumulation. These Dask workers have no RAM limitation as
the accumulation of, e.g., highly dimensional histograms can be very memory intensive.
The final output is pickled, compressed and stored on the NFS storage.

4. Caching Strategy

A deterministic assignment between chunks and workers is needed for the efficient and robust use
of the on-worker SSD caches. This assignment is determined analytically using the L1-distance
between the hashes of chunks and workers in a periodic N-dimensional space:

N
L1 distance = me(|cl —w;|, 1 —|¢; — wil), (1)

1

where ¢ denotes a chunk coordinate and w a worker coordinate in the N dimensional space.
This is visualized in Fig. 2 for two dimensions.

ACAT-2021 IOP Publishing
Journal of Physics: Conference Series 2438(2023) 012042 doi:10.1088/1742-6596/2438/1/012042

‘O @ Machine 1
. Machine 2
Q© Dask Task N

Dim 2

A4

O

Dim 1

Figure 2. Sketch of the Dask task to machine assignment policy for a two dimensional space.

The coordinates of the chunks, or rather Dask tasks, are pictured as black rings, whereas
the ones of the machines are blue/green circles. The assignment is realized by determining
the minimal L1 distance between pairs of chunks and machines. Due to the significant
difference in the amount of machine and chunk hashes, the worker hashes are replicated to
balance this difference. Thus a smooth degradation of caching performance is obtained since
the N-dimensional space, and the coordinates do not alter under hardware changes or the
addition /removal of chunks. This policy does not depend on user information, thus automatically
enables cache sharing between multiple users. This deterministic assignment is implemented into
the scheduling policy of the Dask scheduler.

5. Benchmark Results

The performance of the on-worker SSD caches using the custom deterministic assignment
described in section 4 is measured for a dataset of roughly 1TB of NanoAOD simulation
containing approximately 4.18 x 10° events. For this benchmark, 386 GB uncompressed
simulations have been read.

The benchmark consists of multiple consecutive runs, of which the first has empty on-worker
SSD caches. Each consecutive run fills the on-worker SSD caches. This is shown in Fig. 3 for
five consecutive runs.

The blue bars depict the compressed data, which still needs to be read from NFS, that is not
yet stored on the on-worker SSD caches. The black data points show the runtime in minutes. It
can be seen that the runtime reduction follows the same trend as the reduction of data reading
from the NFS as both show an almost perfect overlay. In total, a runtime improvement of a
factor of 1.5 is achieved from the first to the fifth run. This measurement is limited by the CPU
intensive decompression of the LZMA compression algorithm, which is the default NanoAOD
compression.

The improvement comes gradually as a work-stealing algorithm breaks the custom
deterministic caching assignment when certain conditions are fulfilled, such as a Dask worker is
out of work and can take tasks from other Dask workers.

ACAT-2021 IOP Publishing

Journal of Physics: Conference Series 2438(2023) 012042 doi:10.1088/1742-6596/2438/1/012042
100 A
- 28
= 80 1
O (26
= E
= 60 £
- 24 ¢
= E
g=! 1 a et
5 - 22
o'
20 1
20

Runl Run2 Run3 Run4 Runb

Figure 3. Performance results of on-worker SSD caches for five consecutive runs.

6. Conclusion

This article describes a custom SSD caching strategy, which reduces time spent in subsequent 10
operations. A benchmark, using the small-scale VISPA computing cluster, has been performed.
It shows an improvement of a factor of 1.5 in runtime reduction for IO operations, while
vectorized array operations allow overcoming CPU-bound analysis. Numerous more analysis
cycles become possible, resulting in more studies during analysis developments and peer-review
processes.

Small-scale computing clusters can play a significant role in the current and upcoming LHC

physics analysis, making them a highly competitive choice for analysts.

References
1] Harris C R et al. 2020 Nature 585 357-362 URL https://doi.org/10.1038/s41586-020-2649-2
p g
[2] Scikit-hep website https://scikit-hep.org accessed on 12.01.2022
[3] Gray L et al. 2021 Coffeateam/coffea: Release v0.7.11 URL https://doi.org/10.5281/zenodo.5762406
4] Pivarski J et al. 2021 scikit-hep/uproot4: 4.1.9 URL https://doi.org/10.5281/zenodo.5767911
P g
[6] Schreiner H et al. 2021 scikit-hep/boost-histogram: Version 1.2.1
URL https://doi.org/10.5281/zenodo.5548612
6] Pivarski J et al. 2022 scikit-hep/awkward-1.0: 1.8.0rcl1 URL https://doi.org/10.5281/zenodo.5828686
P g
[7] HTCondor Team 2021 HTCondor URL https://doi.org/10.5281/zenodo.5750673
[8] Dask Development Team 2016 Dask: Library for dynamic task scheduling URL https://dask.org
9] dask-jobqueue source code https://github.com/dask/dask-jobqueue accessed on 12.01.2022
J p g Jobq
[10] dask-jobqueue blog entry https://blog.dask.org/2018/10/08/Dask-Jobqueue accessed on 12.01.2022
[11] Olston C, Fiedel N, Gorovoy K, Harmsen J, Lao L, Li F, Rajashekhar V, Ramesh S and Soyke J 2017
Tensorflow-serving: Flexible, high-performance ml serving (Preprint 1712.06139)
[12] Van Rossum G and Drake F L 2009 Python 3 Reference Manual (Scotts Valley, CA: CreateSpace) ISBN
1441412697
[13] 2020 Anaconda software distribution URL https://docs.anaconda.com/
[14] Bretz H P et al. 2012 Journal of Instrumentation 7 T08005—T08005

URL https://doi.org/10.1088/1748-0221/7/08/t08005

ACAT-2021 IOP Publishing
Journal of Physics: Conference Series 2438(2023) 012042 doi:10.1088/1742-6596/2438/1/012042

[15] Ehatéht, Karl 2020 EPJ Web Conf. 245 06002 URL https://doi.org/10.1051/epjconf /202024506002
[16] Brun R and Rademakers F 1997 Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment 389 81-86 ISSN 0168-9002
new Computing Techniques in Physics Research V
URL https://www.sciencedirect.com/science/article/pii/S016890029700048X
[17] Yuanyuan Zhou James F Philbin K L 2001 The multi-queue replacement algorithm for second level buffer
caches URL https://static.usenix.org/event/usenix01/zhou.html

