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Abstract: Quantum de Sitter geometry is discussed using elementary field operator algebras in Krein

space quantization from an observer-independent point of view, i.e., ambient space formalism. In

quantum geometry, the conformal sector of the metric becomes a dynamical degree of freedom, which

can be written in terms of a massless minimally coupled scalar field. The elementary fields necessary

for the construction of quantum geometry are introduced and classified. A complete Krein–Fock

space structure for elementary fields is presented using field operator algebras. We conclude that

since quantum de Sitter geometry can be constructed by elementary fields operators, the geometry

quantum state is immersed in the Krein–Fock space and evolves in it. The total number of accessible

quantum states in the universe is chosen as a parameter of quantum state evolution, which has a

relationship with the universe’s entropy. Inspired by the Wheeler–DeWitt constraint equation in

cosmology, the evolution equation of the geometry quantum state is formulated in terms of the

Lagrangian density of interaction fields in ambient space formalism.

Keywords: de Sitter ambient space; quantum field theory; quantum geometry

1. Introduction

The quantum de Sitter geometry or quantum gravity is a subject fraught with enigmas
that has garnered attention for over four decades. These enigmas encompass the absence
of an S-matrix, challenges in defining observer-independent gauge-invariant, the issue of
infrared divergences and renormalizability, and the construction of a complete space of
quantum states, among others. In a previous article, we delved into the study of asymptotic
states and the S-matrix operator, based on the construction of a complete Hilbert–Fock
space for massive scalar fields in the de Sitter ambient space formalism [1]. The formulation
of an observer-independent non-abelian gauge theory is also achievable using the ambient
space formalism [2,3]. Krein space quantization leads to the disappearance of infrared
divergence [4,5]. In this work, we explore the construction of a complete space of quantum
states for quantum geometry and delve into quantum state evolutions.

Recently, Morris discussed that full quantum gravity may be perturbatively renormal-
izable in terms of Newton’s constant, but non-perturbative in h̄ [6]. Morris’s interesting
idea is to use the renormalization group properties of the conformal sector of gravity.
It is well known that in quantum theory, the conformal sector of the spacetime metric
becomes a dynamical degree of freedom as a result of the trace anomaly [7,8]. Then the
metric-compatible condition is no longer valid and the simplest chosen geometry in this
situation is Weyl or conformal geometry. Weyl geometry can be described with the tensor
metric field gµν and its conformal sector, which can be expressed as a scalar field [9].

In the Landau gauge of the gravitational field in de Sitter (dS) space, the conformal
sector is described by a massless minimally coupled (mmc) scalar field φm [10]. Its quanti-
zation with positive norm states breaks the dS-invariant [11]. For its covariant quantization,
Krein space quantization is needed [4]. Using the interaction between the gluon field and
the conformal sector of the metric in Krein space quantization, the axiomatic dS quantum
Yang–Mills theory with color confinement and the mass gap can be constructed [2,3]. We
showed that the mmc scalar field can be considered as a gauge potential and the dS metric
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field and its conformal sector are not elementary fields à la Wigner sense [12]. However,
they can be written in terms of elementary fields, in which the mmc scalar field plays a
central role. We presented two different perspectives on quantum geometry, namely, the
classical and quantum state perspectives. The first is observer-dependent and the second
is observer-independent. We discussed that it is essential to use an observer-independent
formalism when considering quantum geometry. Therefore, we must use the algebraic
method in the ambient space formalism for studying quantum geometry and define the
quantum state of geometry |G⟩, which will be addressed in this paper.

In recent years, some authors have also used the idea of the algebraic approach to
consider quantum gravity. This approach takes into account an algebra of observables,
Hilbert space structure, and geometry quantum state [13,14]. By using the algebraic method,
in the previous paper, the complete Hilbert–Fock space was constructed for the massive
elementary scalar field in dS ambient space formalism [1]. Here we generalize it to construct
a Hilbert–Fock space structure for any spin fields in Section 4.1. This space is a complete
space under the action of all elementary field operators in dS space except linear gravity
and the mmc scalar field. To obtain a complete space for these two fields, we need Krein
space quantization, which is discussed in Section 4.2. We know that the QFT in Krein
space quantization combined with light-cone fluctuation is renormalizable [5]. Therefore,
the two problems of renormalizability and constructing the complete space of quantum
states for quantum dS geometry can be solved using Krein space quantization and ambient
space formalism.

In the next section, we briefly review the necessary notions of general relativity and
QFT for our discussion. All possible fundamental fields necessary for quantum geometry
are introduced and classified in Section 3. In Section 4.3, Krein–Fock space as a complete
space for quantum geometry is presented. The quantum state of geometry |G⟩ is considered
in Section 5, which can be formally written in terms of orthonormal bases of Krein–Fock
space. It is immersed and evolves in the Krein space K instead of the Hilbert space H.
Quantum state evolution is characterized by the total number of accessible quantum states
in the universe, which has a relationship with the total entropy of the universe. In Section 5,
using the Wheeler–DeWitt equation, the constraint equation for the quantum state of
geometry is formulated in terms of the Lagrangian density of interaction fields.

2. Basic Notions

Spacetime structure and observation are challenging concepts in quantum theory.
Riemannian geometry is usually employed in general relativity. In Riemannian geometry,
spacetime can be described by the metric gµν(x⃗, t) (with the metric-compatible condition)
and curved spacetime can be visualized as a 4-dimensional hypersurface immersed in a flat
spacetime of dimensions greater than 4. Although the 4-dimensional classical spacetime
hypersurface is unique and observer-independent, the choice of metric gµν is completely
observer-dependent, which is a manifestation of the general relativity principle, all observers
are equivalent (i.e., diffeomorphism covariance). However, spacetime hypersurfaces are
no longer unique in quantum geometry. In the classical perspective, quantum spacetime
is described by a sum of different spacetime hypersurfaces [12,15]. But in the quantum
perspective, the quantum spacetime is modeled by a quantum state |G⟩, which is presented
in Section 4.3.

In QFT, the physical system can be described by a quantum state vector |Ψ(ν, n)⟩,
where ν and n are the set of continuous and discrete quantum numbers, respectively. They
are labeled the eigenvector of the set of commutative operator algebras of the physical
system and determine the Hilbert space; for dS space with more details, see [1]. Al-
though the particle and tensor(-spinor) fields, Φ(x⃗, t), are immersed in a spacetime man-
ifold M, the quantum state vector is immersed in a Hilbert space H. The field operator
Φ(x⃗, t) plays a significant role in the connection between these two different spaces: a space-
time manifold M and a Hilbert space H. On the one hand, it is immersed in spacetime,
and on the other hand, it acts in Hilbert’s space, which is defined at any point in a fixed
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classical spacetime background M (of course in the distribution sense). Hilbert space can be
thought of as the “fiber” of a bundle over the spacetime manifold, where each point of the
manifold corresponds to a different fiber, H× M. The bundle is typically referred to as a
“Fock space bundle”. For a better understanding of this idea, see [16] and noncommutative
geometry [17]. The Wightman two-point function, W(x, x′) = ⟨Ω|Φ(x)Φ(x′)|Ω⟩, provides
a correlation function between two different points in spacetime and their correspond-
ing Hilbert spaces. |Ω⟩ is the vacuum state. Historically, time played a central role in
quantum theory, since the time parameter describes the evolution of the quantum state.
Time, however, is an observer-dependent quantity in special and general relativity, and for
quantum geometry to be observer-independent, the time evolution of quantum states must
be replaced by another concept, which is discussed in Section 5.

It is useful to recall that in contrast to all massive and massless elementary fields,
the mmc scalar field disappears at the null curvature limit [18]. Its quantization with
positive norm states also breaks the dS-invariant [11] and its behavior is very similar to the
gauge fields [12]. Since the collection of all these properties is the same as the properties
of curved spacetime geometric fields, the mmc scalar field can be considered as part of
spacetime geometry. This idea was previously applied to explain the confinement and
mass gap problems in dS quantum Yang–Mills theory, by using the interaction between the
vector field and the scalar gauge field, as a part of the spacetime gauge potential [3,19].

3. Elementary Fields

In the background field method, gµν = g
bg
µν + hµν, the linear gravity hµν propagates

on the fixed background g
bg
µν. The tensor field hµν can be divided into two parts: the

traceless–divergencelessness part hTT
µν , which can be associated with an elementary mass-

less spin-2 field, and the pure trace part, hP
µν = 1

4 g
bg
µνφm. In the Minkowski background

spacetime, the first part is typically denoted by hTT
µν and is referred to as the traceless and

transverse part. For simplicity, in what follows, it will be represented as hT
µν. The pure trace

part can be transferred to the conformal sector of the background metric:

gµν = g
bg
µν + hT

µν + hP
µν =

(

1 +
1

4
φm

)

g
bg
µν + hT

µν ≡ eσ(x)g
bg
µν + hT

µν. (1)

The pure trace part is also called the conformal sector of the metric, which becomes a
dynamical variable in quantum theory [7,8]. Quantum geometry is equal to the quanti-

zation of the tensor field gµν or, equivalently, g
bg
µν, hT

µν, hP
µν and φm. In quantum geometry,

the choice of the curved metric background g
bg
µν is not critical since we have simultaneous

fluctuations in g
bg
µν and hµν and it can also be considered as an integral over all possible

spacetime hypersurfaces [12,15]. For a covariant quantization of hµν, the background must

be curved [20]. The dS metric gdS
µν is selected as a curved spacetime background. The choice

of the classical dS background is motivated by its relevance in describing an accelerating
universe and its utility in inflationary cosmology, where it provides a suitable approxi-
mation for the spacetime geometry during inflation. Consequently, the dS spacetime is
considered an acceptable approximation for modeling our universe during both its late-
stage evolution and possibly its early (inflationary) stages. An extensive body of literature
exists on quantum field theory in de Sitter spacetime [21–33].

For an observer-independent point of view, we use the dS ambient space formal-
ism [2,18]. In this formalism, the dS spacetime can be identified with the 4-dimensional
hyperboloid embedded in the 5-dimensional Minkowski spacetime as follows:

MH =
{

xα ≡ x ∈ IR5| x · x = ηαβxαxβ = −H−2
}

, α, β = 0, 1, 2, 3, 4, (2)
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with ηαβ =diag(1,−1,−1,−1,−1), and H is like Hubble’s constant parameter. The metric is

ds2 = gdS
µνdXµdXν = θαβdxαdxβ

∣

∣

∣

x·x=−H−2
, (3)

where the Xµ’s (µ = 0, 1, 2, 3) form a set of 4-spacetime intrinsic coordinates on the dS hy-
perboloid, and the xαs are the ambient space coordinates. In this coordinate, the transverse
projector on the dS hyperboloid, θαβ = ηαβ + H2xαxβ, plays the same role as the dS metric

gdS
µν, and the tensor field hT

µν(X) is locally determined by the transverse tensor field KT
αβ(x)

through [18]

hT
µν(X) =

∂xα

∂Xµ

∂xβ

∂Xν
KT

αβ(x), or KT
αβ(x) =

∂Xµ

∂xα

∂Xν

∂xβ
hT

µν(X).

Similar to Equation (1), one can defined the “total” metric in ambient-space formalism as
θtotal

αβ , where the perturbation K is given by Kαβ := θtotal
αβ − θαβ. Then, K can be divided

into two part: KT
αβ and KP

αβ. In this formalism, quantum geometry is described by the

quantization of the tensor fields θαβ,KT
αβ and KP

αβ = 1
4 θαβφm (x · KT = 0 = x · KP).

Although the tensor field KT
αβ and scalar field φm are elementary fields, the background

metric θαβ and conformal sector of the metric, KP
αβ = 1

4 φmθαβ, are not elementary fields à la

Wigner sense, since [12]

θα
α = 4, KPα

α = φm, ∇⊤ · KP
·β = ηαγ∇T

α KP
γβ =

1

4
∂⊤β φm. (4)

The transverse-covariant derivative acting on a tensor field of rank-2 is defined by

∇⊤
α Kβγ ≡ ∂⊤α Kβγ − H2

(

xβKαγ + xγKβα

)

, (5)

where ∂⊤β = θαβ∂α = ∂β + H2xβx · ∂ is tangential derivative. The tensor fields KP
αβ and θαβ

can be written in terms of elementary fields: the massive rank-2 symmetric tensor field Kν
αβ

(ν2 = 15
4 ), mmc scalar gauge field φm, and massless vector field Aα = ∂⊤α φm [12].

The tensor field Kν
αβ is discussed as massive gravity in the literature, which was

studied in the previous paper [34]. The massless vector field quantization was presented
in [35]. The constant pure trace part evokes the famous zero-mode problem in linear
quantum gravity and the quantization of the mmc scalar field. The classical structure of our
universe may be constructed by the following fundamental fields, which can be divided
into three categories:

• A: Massive elementary fields with different spins, which transform by the unitary
irreducible representation (UIR) of the principal series of the dS group.

• B: Massless elementary fields with the spin s ≤ 2, which includes the gravitational

waves KT
αβ and mmc scalar fields φm. They transform by the indecomposable repre-

sentation of the dS group, where the central part is the discrete series representation
of the dS group. They play an important role in defining the interaction between
different fields as the gauge potential [12].

• C: The spacetime geometrical fields θαβ and conformal sector of the metric KP
αβ, which

are not elementary fields, but they can be written in terms of the elementary fields of
categories A and B. Although in classical field theory, they preserve the dS-invariant,
their quantization breaks the dS spacetime symmetry [12].

The quantization of the elementary massive and massless fields with the spin s ≤ 2 in dS
ambient space formalism has been previously constructed for principle, complementary,
and discrete series representations of the dS group; for a review, see [18]. The mmc scalar
field and linear gravity KT

αβ can be quantized in a covariant way in Krein space quanti-

zation [4,10]. We know that the QFT in curved spacetime suffers from renormalizability,
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and for solving this problem, Krein space quantization must be used; see [5] and the ref-
erences therein. Due to the quantum fluctuation of tensor field KP

αβ , the dS-invariant is

broken [12], which is reminiscent of the quantum instability of dS spacetime [36].

4. Quantum Space of States

Before discussing the quantum geometry space of states, Hilbert–Fock space and Krein–
Fock space constructions are briefly introduced using dS group algebra and field operators
algebra. We discuss that the Krein–Fock space is a complete space for all elementary fields
and quantum geometry.

4.1. Hilbert–Fock Space

For the dS spacetime, one can construct a one-particle Hilbert space H(1) from dS group
algebra for the principal, complementary, and discrete series UIR of the dS group [37–39]:

[Ja, Jb] = f c
ab Jc =⇒ |ν; j1, j2; mj1 , mj2⟩ ∈ H(1) ≡

⊕

ν;j1,j2

Hν ;j1,j2 , (6)

where Ja are the generators of the de Sitter group (a, b = 1, 2, · · · , 10), f c
ab are the structure

constants, and j1 and j2 are two numbers, labeling the UIRs of the maximal compact
subgroup SO(4), picked in the sequence 0, 1

2 , 1, · · · , such that −j1 ≤ mj1 ≤ j1. The νs
are sets of parameters numbering the columns and rows of the (generalized) matrices,
assuming continuous or discrete values [37].

The UIRs of the principal and complementary series are classified by the two parame-
ters j and ν, where ν is continuous and the sum is replaced with an integral [1,39,40]:

H(1) ≡
⊕

j

∫ ∞

0
dν ρ(ν) Hν ;j ≡

⊕

j

Hj, (7)

where ρ(ν) is a positive weight in the dS background [41]. ν refers to the mass parameter
and j is equivalent to the spin. They determine the eigenvalues of the Casimir operators
of the dS group. Hj ≡

∫ ∞

0 dν ρ(ν) Hν ;j is one-particle Hilbert space for a specific spin j.

A quantum state in this Hilbert space may be represented with |ν, j ; L⟩ ∈ H(1), where L is
a set of quantum numbers that concern the maximal set of commuting operators with the
Casimir operators, which represent the dS enveloping algebra [1,40]. It is critical to note that
the Hilbert space Hν ;j is not a complete space under the action of the dS group generator
Ja, but the Hilbert space H(1) is complete space [1]. The notation H(1) means it is the “one
particle state” (first quantization). Since dS group generators and field operators do not
modify the spin of the state, for a fixed spin j, the Hilbert space Hj is also a complete space.
In this study, we do not consider supersymmetry and supergravity, otherwise the sum over
the index j should be taken into account for obtaining a complete space.

There are different realizations for the bases of the one-particle Hilbert space H(1),
where some of them are presented for the scalar field (j = 0) in [1]. Formally, we define a
UIR of the de Sitter group by U(ν;j)(g(αa)) ≡ U(Jb, αa, ν, j), which is a regular function of
dS group generators and acts on the Hilbert space as follows:

|ψ⟩ ∈ H(1) =⇒ U(Jb, αa, ν, j)|ψ⟩ = |ψ′; αa, ν, j⟩ ∈ H(1), (8)

where the 10 αas are the group parameters. These parameters make up a 10-dimensional
topological space T (αa). By using the expressions of the matrix elements (∼coefficients) of
this representation,

|ψ⟩, |ψ′⟩ ∈ H(1), ⟨ψ|U(ν;j)(g(αa))|ψ′⟩, (9)

one can construct a space of square-integrable functions over some subspaces S of the
topological space T , i.e., L2(S), where S ⊂ T (αa). Takahashi discusses different subspaces
and defines the relations between some of them by the Plancherel formula [39]. The classical
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tensor (-spinor) field can be identified with some coefficients of the UIR of the dS group
in dS ambient space coordinates under certain conditions: Φ(x) ≈ ⟨ψ|U(ν;j)(g(αa))|ψ′⟩,
where x ∈ MH .

In QFT, these classical fields are assumed to be the operators, which act on a space
with the Fock structure, i.e., like the harmonic oscillators. The well-defined operators are
defined in a tempered-distributional sense on an open subset O of spacetime [41]:

Φ( f ) =
∫

dµ(x) f (x)Φ(x), (10)

where f is a test function and dµ(x) is a dS-invariant measure element [41]:

dµ(x) =
dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ dx4

d(x · x + H−2)

∣

∣

∣

∣

XH

.

As usual in Fock structure, the field operator can be written in terms of its creation part, Φ+,
and its annihilation parts Φ−: Φ( f ) = Φ−( f ) + Φ+( f ), where Φ+( f ) creates a state and
Φ−( f ) annihilates a state in the Fock space. By defining a “number” operator N( f , g) ≡
Φ+( f )Φ−(g), one can prove the following algebra, which results in the construction of the
Hilbert–Fock space [1]:







[Φ−( f ), Φ+(g)] = W( f , g)✶,

[N( f , g), Φ+(k)] = W(g, k)Φ+( f ),
[N( f , g), Φ−(k)] = −W(k, f )Φ−(g),

(11)

where W( f , g) =
∫

dµ(x)dµ(x′) f (x)W(x, x′)g(x′), and here, Φ is the tensor field. For the
fermion field, the anti-commutation relation must be used. W(x, x′) = ⟨Ω|Φ(x)Φ(x′)|Ω⟩
is the Wightman two-point function and |Ω⟩ is the vacuum state, which can be fixed in the
null curvature limit [41].

Now, using the infinite-dimensional closed local algebra (11), one can construct the
Hilbert–Fock space in a distributional sense on an open subset O of the dS spacetime [16,41]:

H ≡ F (H(1)) =
{

C,H(1),H(2), · · · ,H(n), · · ·
}

≡
∞
⊕

n=0

H(n) ≡ eH
(1)

, (12)

where C is vacuum state, H(1) is one-particle states, and H(n) is n-particle states. The n-
particle states are constructed by the tensor product of one-particle states (for bosons,
a symmetry product, H(2) = SH(1) ⊗H(1), and for fermions anti-symmetric products,
H(2) = AH(1) ⊗ H(1)). We used the Hilbert–Fock space name to emphasize that the
structure of our QFT Hilbert space is in the form of Equation (12). An overview of axiomatic
quantum fields, observable algebraic nets, and the algebraic setting of second quantization
can be found in [16]. Considering the interaction fields, it does not add any supplementary
operators but reduces the number of commuting operators. Then, we have a new algebra,
resulting in a new Hilbert space Hint. This space Hint can be immersed in the original space,
which means Hint ⊂ H. Therefore, one can use the Hilbert space (12) for the interaction
fields (for the scalar field, see [1]).

4.2. Krein–Fock Space

The above Hilbert–Fock space structure cannot be used for the mmc scalar field
operator and then for KT

αβ, θαβ, and KP
αβ. The one-particle Hilbert space of the mmc scalar

field is not a complete space under the action of the dS group generators Ja. Their action
results in the negative norm state [4]. This problem appeared as a dS-invariant breaking
and the appearance of infrared divergence in the two-point function W(x, x′) [11]. Then,
the field operator algebra (11) breaks the dS-invariant and the dS-invariant Hilbert–Fock
space structure cannot be constructed. That means that the effect of the field operator over
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some states results in states out of the Hilbert space, i.e., states with the negative norm.
These states are necessary to obtain a complete space.

This problem was solved in Krein space quantization, which is a direct tensorial sum
of a Hilbert space and its anti-Hilbert space [4]:

K(1) ≡ H(1) ⊕ [H(1)]∗. (13)

In Krein space, the decomposition of the field operator into positive and negative norm
parts is expressed as follows [4]:

φ(x) =
1√
2

[

φp(x) + φn(x)
]

,

where the two parts commute with each other, and φp(x) represents the scalar field as
utilized in standard quantum field theory (QFT), that is, in Hilbert space. In this context,
the two-point function in Krein space is given by

Wk = Wp(x, x′) +Wn(x, x′),

where Wn(x, x′) = −W∗
p (x, x′) denotes the two-point function of the negative norm states.

To maintain consistency in the formulation, Wp is relabeled as W = Wp. Thus, the Krein
space two-point function Wk emerges as the imaginary part of the two-point function
corresponding to the positive mode solutions W [42,43]:

Wk(x, x′) = W(x, x′) +Wn(x, x′) = iImW(x, x′), (14)

which is dS-invariant. If we replace the two-point function in the field operator algebra (11)
with the Krein two-point function Wk(x, x′), we can construct the following dS-invariant
Krein–Fock space structure:

F (K(1)) =
{

C,K(1),K(2), · · · ,K(n), · · ·
}

≡
∞
⊕

n=0

K(n) ≡ eK
(1)

. (15)

It is pertinent to note that the Krein–Fock space is a complete space for all massive and mass-
less elementary field operators in the dS spacetime. The Krein space can be considered the
“fiber” of a bundle over the dS base manifold, K× MH . In this complete space, the identity
operator can be defined (in the distributional sense) formally as ✶ ≡ ∑M |M⟩⟨M|, where
|M⟩ forms a complete basis of the Krein–Fock space, and M denotes a set of continuous
and discrete quantum numbers. For details on the scalar field, see [1].

4.3. Quantum Geometry Space of States

In quantum geometry, the biggest challenge appears in the quantization of θαβ. Its
quantum fluctuation breaks the dS-invariant and the concept of spacelike separation points
cannot be defined. Therefore, one cannot define the field operator algebra (11) for the
construction of the Krein–Fock space structure. This problem has a long history and we
do not want to discuss it here; instead, see [15]. We ignore this problem for now since the
Krein–Fock space (15) is a complete space for all elementary fields in dS space, and the
geometrical fields θαβ and KP

αβ can be written in terms of elementary fields. Therefore, we

can use the Krein–Fock space (15) for quantum field operators θαβ and KP
αβ. We can assume

that quantum geometry is described by a quantum state |G⟩, which is immersed in the
Krein–Fock space (15), |G⟩ ∈ F (K(1)). It can be formally written by a superposition on the
Krein–Fock space bases in the following form:

|G⟩ = ∑
M

cM(G)|M⟩. (16)



Universe 2024, 10, 70 8 of 12

The action of the field operators θαβ on |G⟩ results in a new state |G ′⟩, which is in the

Krein–Fock space: |G ′⟩ = θαβ|G⟩ ∈ F (K(1)).
Krein–Fock space in quantum geometry plays the same role as all parts of the dS

spacetime hyperboloid in classical theory. Hilbert space H may be considered the observ-
able part of space for an observer. When we discuss Hilbert space, this means we have
only positive norm states. First, let us review some facts about dS spacetime, in which
particles and fields are immersed and evolve within. The basis vectors of dS spacetime
have negative, positive, and null norms, where the spacetime interval is given by the metric
signature (1,−1,−1,−1). When we move from Euclidean geometry to Minkowskian geom-
etry, negative norm vectors appear; however, this norm’s meaning is completely different
from the Euclidean norm. There are three types of vectors in spacetime based on their
norms: light-like vectors, space-like vectors, and time-like vectors. Some regions of the
dS hyperboloid are also not observable to an observer due to spacetime curvature and the
event horizon. However, these regions are necessary to construct a covariant formalism of
the physical system.

Similarly, in discussions of quantum geometry, we must employ the quantum state
with a negative norm for covariant quantization. Consequently, the Krein–Fock space
constitutes a complete space under the influence of geometrical field operators. However,
the physical significance of this negative norm state in quantum geometry remains an open
question. In classical dS geometry, certain spacetime regions are beyond the observation of
an observer. Analogously, in dS quantum geometry, negative norm states are necessary
to achieve a complete space, yet they remain unobservable to a local observer. By imple-
menting the observer reality principle [5], these states can be excluded from the observer’s
physical space. It can be argued that the absence of interaction beyond the event hori-
zon parallels the lack of interaction between negative and positive norm states in Krein’s
space for a local observer. Similar to the negative values in the Wigner quasi-probability
distribution function in quantum optics, which signify non-classical states and quantum
interference effects, the negative norm states in the Krein quantization of geometry might
represent the non-classical and pure quantum interference phenomena, devoid of a direct
classical counterpart.

At the null curvature limit, negative norm states have negative energy [43]. For a free
particle state in flat spacetime, they have no physical interpretation and can be considered
auxiliary states for the local observer. If we assume that the gravity state contains negative
energy, the matter-radiation state carries positive energy, and their sum is zero, this hypoth-
esis is compatible with the theory of the creation of everything from nothing in cosmology;
see the similar discussion after Equation (22).

Different quantum gravity models are constructed in Hilbert space rather than Krein
space. One of them, which is very close to our model is noncommutative geometry [17],
where in the previous paper some similarities and differences were discussed [12]. The other
is higher-dimensional spacetime Md with d > 4. In this case, the field operator algebra (11)
can be defined concerning the space-like separation point in Md, which can be imagined
as a fixed background space. The quantum fluctuation of M4 may be considered as a sum
over different 4-dimensional manifolds in Md. However, higher-dimensional spacetime is
used in some theoretical models.

5. Quantum State Evolution

As time is an observer-dependent quantity, time evolution does not make sense in
quantum geometry from an observer-independent point of view. We see that the Kerin–Fock
space is constructed from the free field operators algebra, which explains the kinematics of
the physical system. Since all matter-radiation fields and geometrical fields are entangled
and the change of one has a consequence for the other, the dynamics of a physical system
may be extracted from the algebra of interaction fields. But here, for simplicity, we use
the Lagrangian density of the interaction field for defining the evolution equation of the
geometry quantum state.
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Assuming the universe’s evolution begins from the vacuum state, i.e. a quantum
state with no average number of quanta in elementary and geometric fields, |Gi⟩ ≡ |Ω⟩.
Our universe is also assumed to be an isolated system. By these assumptions, the uni-
verse began with zero entropy. Due to quantum vacuum fluctuations in all elementary
fields, and the interaction between some of the field operators in the creation situation,
the universe leaves the vacuum state and enters the inflationary phase. However, it is
understood that in the classical geometry, inflation does not emerge spontaneously from
the vacuum state of QFT and we need the supplementary axiom, i.e. it is driven by specific
mechanisms such as a slowly rolling scalar field or a cosmological constant, in the context
of cosmological models. In the classical dS spacetime geometry, the constant curvature of
spacetime, gdS

µν, can be considered as a cosmological constant and the conformal sector of
the quantum metric can play the role of the scalar field in quantum geometry. Therefore,
the dynamics of the transition from the vacuum state to the inflationary phase may be
extracted from the interaction between quantum field operators gdS

µν and φm in the quan-
tum geometry framework, which is beyond the scope of this article. However, we know
that in such mechanisms the entropy of the universe increases because isolated systems
spontaneously evolve towards thermodynamic equilibrium, which is a state of maximum
entropy. In the inflationary phase, which may be explained by dS spacetime, we have an
infinite-dimensional Hilbert space. But due to the compact subgroup SO(4) of the dS group
and the uncertainty principle, the total number of quantum one-particle states becomes
finite [44]. The finiteness hypothesis of energy results in the finiteness of the total number
of quantum states N in Fock space, which results in a finite entropy for the universe [44].

Since the universe is an isolated system and its entropy is increasing, N increases with
the evolution of the universe. Therefore, the total number of accessible quantum states in
the universe, N , may play the role of the time parameter and is used as the parameter of
quantum state evolution. We assume that the evolution of the quantum state can be written
by an operator U as follows:

|G ;N⟩ ∈ F (K(1)) =⇒ U(N ′,N )|G ;N⟩ ≡ |G ′;N ′⟩ ∈ F (K(1)), (17)

which satisfies the following conditions:

U(N3,N2)U(N2,N1) = U(N3,N1), U(N ,N ) = ✶. (18)

Due to the principle of increasing entropy, we always have N3 ≥ N2 ≥ N1. For obtaining
the evolution operator U(N ′,N ), we need a constraint equation for the quantum state.

The quantum state of the universe is a function of the configuration of all the fun-
damental fields in the universe (Section 3). Previously, we obtained these fields’ classical
action or Lagrangian density in the ambient space formalism. It can be formally written in
the following form:

S[Φ] =
∫

dµ(x)L(Φ,∇⊤
α Φ) =

∫

dµ(x)
[

L f (Φ,∇⊤
α Φ) + Lint(Φ,∇⊤

α Φ)
]

. (19)

For free field Lagrangian density L f see [18], and for interaction case Lint, see [2,18]. Since

in dS spacetime x0 plays the same role as the time variable in Minkowski space (see Section 4
in [1]), we define the conjugate field variable by Π ≡ ∇⊤

0 Φ. The Legendre transformation
of the Lagrangian density L(Φ,∇⊤

α Φ) with respect to the variable ∇⊤
0 Φ can be rewritten

in the following form:

h(Φ, Π,∇⊤
i Φ) = Π∇⊤

0 Φ −L(Φ,∇⊤
α Φ), (20)

where i = 1, · · · , 4. The explicit calculation of this function in the dS ambient space
formalism for elementary fields is possible. Its physical meaning is unclear but at the null
curvature limit it can be identified with the Hamiltonian density in Minkowski spacetime.
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From this fact, and inspired by the Wheeler–DeWitt equation, we define the constraint
equation of geometry quantum state as follows:

|G ;N⟩ ∈ F (K(1)) =⇒ H|G ;N⟩ ≡
(

H f +Hint

)

|G ;N⟩ = 0, (21)

where H(Φ, Π) ≡
∫

dµ(x)h(Φ, Π,∇⊤
i Φ). The first part encompasses free field theory,

which includes categories A, B, and C discussed in Section 3. The second part concerns the
interaction of various fields. Using Equations (17) and (21), we obtain HU|G ;N⟩ = 0 =
UH|G ;N⟩. Therefore, the simple form of U, which satisfies the conditions (18), is

U(N ,N ′) ≡ e−i
∫

dµ(x)h(N−N ′). (22)

Although the physical meaning of H is unclear, it remains constant throughout the uni-
verse’s evolution. By dividing it into geometrical part (category C of the classification in
Section 3 and the linear gravitational wave, and the mmc scalar field in category B) and
non-geometrical part (category A of the classification in Section 3 and massless fields with
spin s < 2 in category B),

H = Hg +Hng +Hint,

we have a fluctuation between these two parts under the evolution of the universe, whereby
neither is constant individually. It may be interpreted as an “energy” exchange between
our universe’s geometrical and non-geometrical parts. While the geometry quantum
state evolves in Krein–Fock space, fluctuation of θαβ breaks the dS-invariant. The explicit
calculation of Equation (22) is out of the scope of this paper and will be discussed elsewhere.

In summary, to construct the quantum geometry in this article, we used four essential
key ideas, briefly recalling them: (1) Utilizing the ambient space formalism to attain an
observer-independent perspective, which is essential for quantum geometry; (2) Substi-
tuting Riemannian geometry with Weyl geometry to describe the spacetime geometry
by the metric tensor and the mmc scalar field since the latter is also a geometrical field;
(3) Replacing the Hilbert space with the Krein space to achieve a complete space and a
covariant quantization; (4) The time parameter for quantum state evolution is replaced
with the total number of quantum states to obtain an observer-independent formalism.

6. Conclusions

In quantum dS geometry, the Hilbert space H is no longer a complete space. Instead,
it is a subspace of a complete Krein space, H ⊂ K, in which the requirement for positive
definiteness is abandoned. Replacing Hilbert space with Krein space is essential in our
quantum geometry model. Krein space quantization (including quantum light cone fluctua-
tion) permits us to construct a renormalizable QFT in curved space and quantum geometry.
The ambient space formalism allows for the formulation of quantum geometry from an
observer-independent perspective and the visualization of the many-world interpretation
of quantum geometry, or equivalently, quantum gravity, from a classical viewpoint [12,15].
Specifically, this entails considering various dS hyperboloids immersed in a 5-dimensional
Minkowski space such that each dS hyperboloid represents a classical world. It should be
noted that although the metric quantization breaks the dS-invariant, the Krein–Fock space
is a complete space for quantum geometry. The dS geometry quantum state is introduced
as a superposition of the Krein–Fock space basis, and its evolution is parametrized in terms
of the total number of quantum states. Using the idea of the Wheeler–DeWitt constraint
equation in cosmology, the evolution equation of geometry quantum state can be written
in terms of the Lagrangian density of interaction fields.
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