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ABSTRACT

Though we are extremely confident that non-baryonic dark matter exists in our universe,
very little is known about its fundamental nature or its relationship with the Standard
Model. Guided by theoretical motivations, a desire for generality in our experimental
strategies, and a certain amount of hopeful optimism, we have established a basic framework
and set of assumptions about the dark sector which we are now actively testing. After years
of probing the parameter spaces of these vanilla dark-matter scenarios, through a variety of
different search channels, a conclusive direct (non-gravitational) discovery of dark matter
eludes us. This very well may suggest that our first-order expectations of the dark sector
are too simplistic.

This work describes two ways in which we can expand the experimental reach of vanilla
dark-matter scenarios while maintaining the model-independent generality which is at this
point still warranted. One way in which this is done is to consider coupling structures
between the SM and the dark sector other than the two canonical types — scalar and
axial-vector — leading to spin dependent and independent interactions at direct-detection
experiments. The second way we generalize the vanilla scenarios is to consider multi-
component dark sectors. We find that both of these generalizations lead to new and inter-
esting phenomenology, and provide a richer complementarity structure between the different

experimental probes we are using to search for dark matter.

iii



TABLE OF CONTENTS

Acknowledgments . . . . . .. .. ii
Abstract . . . . . . . iii
List of Tables . . . . . . . . . . . . vi
List of Figures . . . . . . . . . . . . . . . e vii
1 Introduction: Vanilla Dark Matter and Beyond . . . . ... .. ... ... 1
1.1 Vanilla Dark Matter: The usual assumptions . . . . .. .. ... ... ... 3
1.2 Dark Matter Complementarity . . . . ... ... ... ... .. ....... 6
1.2.1 Direct Detection . . . . . . . . . .. . ... .. 8

1.2.2  Collider Production . . . . .. .. . ... ... .. .. .. .. ..., 13

1.2.3 Indirect Detection . . . . .. . .. . . ... ... ... ... 14

1.2.4 Relic Abundance . . . . . . . . .. ... .. 15

1.3 Beyond Vanilla Dark Matter . . . . ... .. ... ... ... ........ 17

2 Pseudoscalar Couplings: Overcoming Velocity Suppression. . . . . . . . 19

2.1 From quarks to nucleons: Velocity suppression and nucleon enhancement for
pseudoscalar couplings . . . . . . . ... 20

2.1.1 General preliminaries: Quark- and nucleon-level matrix elements and
pseudoscalar velocity suppression . . . . . . .. ... ... 20

2.1.2  An enhancement factor for pseudoscalar matrix elements . . . . . . 24

2.1.3 Pseudoscalar dark-matter /nucleon couplings and the effects of isospin
violation . . . .. L 32

2.2 CP or not CP, that is the question: An interlude on the choice of Lagrangian
OPErators . . . . . . . e e e 39

2.3 Phenomenological consequences: Direct detection and related benchmarks 43

v



2.3.1 Direct detection . . . . . . . . .o 44

2.3.2 Relicabundance . . . .. ... ... ... oL 48

2.3.3 Collider constraints . . . . . . . . .. ... 50

24 Results. . . . . o e o3
2.5 Conclusions . . . . . . . . L 56

3 A New Channel in Dark-Matter Complementarity . . . .. ... ... .. 62
3.1 Inelastic Down-Scattering . . . . . . . ... ... L 68
3.2 Asymmetric Collider Production . . . ... ... .. ... ... ....... 70
3.3 Dark-Matter Decay . . . . . . . . . . .. 71
34 Results. . . . . o e 74
3.5 Conclusions . . . . . . . . L e 79
Bibliography . . . . . . . . . 83



2.1

2.2

LIST OF TABLES

Values used in this chapter for the axial-vector coefficients Ag™). The values
for the Au™) and AdN) are taken from the recent lattice results reported
in Ref. [42], while the values for the As(¥) have been chosen such that they
lie between these lattice results and the experimentally measured values in
Ref. [40], roughly two standard deviations away from the central value ob-
tained in each analysis. . . . . . ... ... . L

Numerical values for the pseudoscalar coefficients AGYY), as obtained from
Eq. (2.15). Details concerning the calculation of these quantities and their
associated uncertainties are discussed in the text. It is readily observed
that these pseudoscalar coefficients AGYY) are larger than the correspond-
ing axial-vector coefficients Ag(™) in Table 2.1 by a factor of O(10% — 10%).
This can enhance the dark-matter /nucleon scattering amplitudes associated
with pseudoscalar interactions, and thereby potentially overcome the velocity
suppression that would otherwise render such cases unobservable in direct-
detection experiments. . . . . . .. L Lo

vi

25



1.1

1.2

2.1

2.2

LIST OF FIGURES

The complimentary processes that are related to each other through matrix
element crossing symmetries. . . . . ... ..o

Examples of processes which can create dark matter through y-quark cou-
plings at hadron colliders. The Standard Model bosons which are radiated
off the incoming beams are necessary in order to “see” the dark matter which
is produced. By detecting these Standard Model particles, we can deduce the
presence of the dark matter through missing momentum in the detector. . .

The effective proton and neutron dark-matter couplings gy, (red) and g,
(blue), plotted as functions of € for each of the three coupling scenarios
discussed in the text. Panels in the upper row show the behavior of the
pseudoscalar couplings in each scenario, while the panels in the lower row
show the behavior of the corresponding axial-vector couplings. The dashed
lines in each panel correspond to the central values for these couplings, while
the shaded regions indicate the 1o uncertainty bands around these central
values. Note that in each panel, both g,, and g,, have been normalized to
the maximum possible central value of |g,,| attainable in each scenario.

Experimental reach of direct-detection experiments, assuming pseudoscalar
interactions with the benchmark coupling structures of our Scenario I (top
row), Scenario II (center row), and Scenario III (bottom row), with § = 0
(left column), § = 7/4 (center column), and 6 = 7/2 (right column) in
each case. These coupling structures are discussed in Sect. 2.1.3, and each
panel is plotted as a function of the dark-matter mass m, and the mass scale
My, My, or My associated with the corresponding scenario. We see from
these plots that there are many situations in which upcoming direct-detection
experiments can easily reach into the range of greatest interest for thermally-
produced dark matter and its possible collider signatures — even when only
pseudoscalar interactions between dark matter and Standard-Model quarks
are assumed. . . .. ... e e e e

vii

13

60



3.1

3.2

3.3

(a) In single-component theories of dark matter, the 2 — 2 amplitudes for
dark-matter production, annihilation, and scattering are related to each other
through various crossing symmetries. These different processes correspond
to different directions (blue arrows) for the imagined flow of time through a
single four-point diagram. (b) In multi-component theories of dark matter,
by contrast, there can be many different dark-matter components y; with
differing masses m;. Taking m; # m; then changes the kinematics associated
with each of the previous complementary directions: dark-matter production
becomes asymmetric rather than symmetric; dark-matter annihilation of one
dark particle against itself becomes co-annihilation between two different
dark species; and elastic dark-matter scattering becomes inelastic, taking the
form of either “down-scattering” or “up-scattering” depending on whether
it is the incoming or outgoing dark-matter particle which has greater mass.
Even more importantly, however, the existence of a non-minimal dark sector
opens up the possibility for an additional process which is also related the
others by crossing symmetries: dark-matter decay from heavier to lighter
dark-matter components. This process corresponds to a diagonal direction
for the imagined flow of time, as shown, and thus represents a new direction
for dark-matter complementarity. . . . . ... ..o

Recoil-energy spectra for inelastic scattering x2/V; — x1Ny off a germanium
nucleus, with my # mgo = 100 GeV. Left panel: Allowed ranges of recoil
energy FEgr as a function of incoming dark-matter particle velocity v for dif-
ferent Am = mg — mq, for both “down-scattering” (Am > 0, dotted lines)
and “up-scattering” (Am < 0, solid lines). The elastic case with Am = 0 is
also shown (solid black line), as is the maximum velocity cutoff associated
with the galactic escape velocity (dashed black line). Right panel: Corre-
sponding recoil spectra dEg/dR for both down-scattering (dotted lines) and
up-scattering (solid lines), for different values of Am. The solid black curve
represents the Am = 0 elastic-scattering case. For all spectra shown, the
scattering is assumed to be spin-independent, with cross-section per nucleon
~ 1074 T2 L

Dominant dark-matter decay processes at energies E < O(10%) keV. (a)
Dark-matter decay produces two photons through an effective contact op-
erator induced in the chiral perturbation theory by integrating out heavy
hadrons. This process is the dominant contributor in the case of the micro-
scopic (quark-level) scalar interaction in Eq. (3.1). (b) Dark-matter decay
produces produces two photons via off-shell neutral-pion exchange. Both this
process and the process in (a) are the dominant contributors in the case of
the microscopic (quark-level) axial-vector interaction in Eq. (3.2). . . ...

viii

63

69



3.4

Complementary bounds on the scalar operator in Eq. (3.1) and axial-vector
operator in Eq. (3.2), plotted within the associated (A, Amis) parameter
spaces for mo = {10,100,1000} GeV and ¢® = ¢») = 1/1/2. Bounds from
inelastic-scattering direct-detection experiments (pink exclusion regions), asym-
metric collider production (blue and cyan vertical lines), and dark-matter de-
cay constraints (yellow and purple exclusion regions) are shown, as discussed
in the text; the green dashed lines denote the reaches of possible future direct-
detection experiments, while the black dashed lines indicate dark-matter de-
cay lifetime contours and the solid black triangular regions in each panel
are excluded by metastability constraints. Remarkably, the constraints from
dark-matter decay dominate in exactly those regions with relatively large
Amys that lie beyond the reach of current and future direct-detection ex-
periments, thereby illustrating the new sorts of complementarities that are
possible for such multi-component dark sectors. . . .. ... ... ... ..

X



CHAPTER 1
INTRODUCTION: VANILLA DARK MATTER AND
BEYOND

There is at this point overwhelming evidence that a substantial fraction of the energy
density of the universe is in the form of dark matter. Evidence of its existence has been
gathered at all astronomical scales through its gravitational effects on visible matter!. The
first convincing arguments indicating a substantial amount of “invisible” matter were given
by Zwicky in 1933 [2], who studied the velocities of several galaxies within the Coma Cluster.
Conservative estimates on the mass of the visible matter, based on standard expectations
of the mass-to-light ratio T, could account for at most only ten percent of the gravitating
matter in the system.

Perhaps the most well known evidence for dark matter came in the subsequent decades,
by studying galactic rotation curves. The rotational velocity of an object in orbit around a
galaxy at a radius r should scale as v(r) oc \/M(r)/r, where M(r) is the mass within the
orbit. If one expects that the mass profile in a galaxy should roughly trace the luminosity
profile, the rotational velocity of objects orbiting at radii outside of the visible portion of
the galaxy should then scale as v(r) o 1/4/r. Instead, one finds that the velocity remains
roughly constant out to much larger distances than the luminous portion of the galaxy —
the rotation curve flattens instead of falling as expected. This then implies that the visible
galaxy is only a small central region within a much larger halo of dark matter, with a
density profile that scales as p(r) o 1/r2. This effect has been observed in many galaxies,
including our own [3, 4].

On even smaller scales, it has been determined that stellar velocities in the local galactic
region, above and below the galactic disk, are too large to be accounted for by the gravita-
tional potential of the matter in the disk. Recent measurements of this effect [5] have deter-
mined the DM density in the immediate vicinity of the sun to be pjoc = 0.3£0.1 GeV /em3—

equivalent to ~3 x 10° protons in a cubic-meter box. This value is generally in agreement

'For a review, see [1]



with other methods of determining local dark-matter density (as reviewed in Ref. [6]),
including extrapolations from the expected density profile as determined from N-body sim-
ulations (see below).

The ratio of dark matter to visible matter seems to depend on the scales and types of
objects we are observing. Measurements of cosmological parameters, however, can tell us
the total amount of dark matter in the universe, which we parametrize as Qpy = ppm/ Perit
where pei¢ is the critical energy density needed for a flat universe.? The most reliable mea-

surements of Qpy come from measurements of the cosmic microwave background (CMB).

The anisotropies in the CMB spectrum are sensitive to both the total matter density 2.,
and the total baryonic density €2;,. These anisotropies encode the effects of baryon acoustic
oscillations (BAO), which essentially can be thought of as sound waves in the primordial
plasma before recombination. Gravitational attraction from overdensities in the plasma act
as a restoring force to the outward radiation pressure within these overdense regions. The
former effect is proportional to the total amount of gravitating matter, while the latter
is proportional only to the baryonic matter which interacts with the photon gas. Density
oscillations arising out of this resonating system can thus tell us about both the matter
and baryon densities in the plasma, from which we can infer the total dark matter density
though Qpy = QO — Q.

The anisotropies on the sky can be expanded as series of spherical harmonics, with
different coefficients for each mode in the series represented by the familiar CMB power
spectrum. It turns out [7] that the relative positions and heights of the first few peaks
and troughs of this power spectrum can place precise bounds on the baryon and matter
densities. The most recent measurements, determined by the Planck Collaboration [8], are
Qph? = 0.02207 £ 0.00033 and Qpyh? = 0.1196 £ 0.0031, corresponding to fractions of the

total energy density of 4.9% and 26%, respectively.

2We have determined that the geometry of the universe is very nearly flat (Qior = 1), 80 Qi = pi/perit
conveniently gives the approximate percentage of the total energy density made up by p;
3This measurement of the baryonic density is in good agreement with predictions from big bang nucle-



Further independent support for a large dark-matter component comes from N-body
simulations of large-scale structure development in our universe. Using these computational
methods allows us to study the non-linear behavior that leads to structure in universe, such
as the emergence of dark matter filaments, clusters, galactic halos, and sub-halos. These
simulations are valuable for two reasons. First, they tend to support the general picture
of cold dark matter — that is, matter that is non-relativistic during the time of structure
emergence in our universe. This can then place lower bounds on the mass of thermally
produced dark-matter particles, and simultaneously place upper bounds on the amount of
dark matter that can be made up of Standard-Model light neutrinos. Second, N-body
simulations provide us with a better grasp on the shapes of the density profiles of the dark-
matter halos on galactic and super-galactic scales [10]. Both of these pieces of information

have important implications for direct- and indirect-detection experiments.

1.1 Vanilla Dark Matter: The usual assumptions

What we know about dark matter — as described in the previous section — is very limited.
What we can take from all of the above pieces of evidence, with a good amount of confidence,

is the following:

Dark matter exists, and does not significantly interact with electromagnetic radiation.

The density of dark matter in the universe as a whole is Qpy &~ 0.25, approximately

five times the density of Standard-Model matter.

Dark matter is clustered in halos around visible astronomical objects, implying that

it is comprised of non-relativistic particles.

The local density of dark matter in the solar neighborhood is pjoc =~ 0.3 GeV /cm?.

Beyond this, the nature of the dark sector is completely unknown. It is thus necessary,

in order to make any progress, to build a general framework based on a certain set of

osynthesis [9], which independently constrain the baryon density from the observed primordial abundances
of light elements to be 0.019 < Quh? < 0.024.



assumptions about the dark sector. To use a well-known adage, if we’ve lost our keys, it
is best to first look under the illumination of the streetlight. In our case, the streetlight
essentially equates to a simple particle-physics toy model for the dark-matter particles and
their interactions. There exists a set of standard assumptions that go into constructing this

toy model that the dark-matter community has come to accept as “the vanilla scenario.”

One of the biggest assumptions that is typically made is that dark matter has some
non-zero (non-gravitational) coupling to the Standard Model. There are several reasons
why this is believed to be the case. First, there are theoretical motivations that suggest
that the dark matter particle arises out of an extension of the Standard Model electroweak
interactions. These weakly interacting massive particles (WIMPs) gained strong support
after it was realized that particles characteristic of the weak scale — with masses on the
order of 100 GeV and interaction strengths comparable to the electroweak interactions —
will be thermally produced in the right quantities in order to account for current dark
matter density in our universe. Moreover, thermal production of dark matter is itself a
strong motivation for non-zero couplings between the dark sector and the Standard Model;
it provides a nice and simple framework for generating the dark matter density in the early
universe — the so-called relic density.

Another motivation for this assumption is that a significant number of “top-down”
models that have been envisioned as natural extensions to the Standard Model tend to
predict dark matter candidates that naturally couple to visible matter. In supersymmetric
theories, the lightest supersymmetric particle (LSP) will have some non-zero coupling to the
Standard Model, and is a natural DM candidate [11]: R-parity, which is usually required
to prevent proton decay, ensures that the LSP is completely stable, and exotic isotope
searches imply that it must be neutral (the typical candidate that is considered is the
neutralino). Heavy neutrinos could also be potential dark matter candidates, and serve
as obvious candidates for the typical WIMP scenario. Other common possible candidates
which arise naturally in extensions to the Standard Model are the lightest T-odd particle

in the so-called little Higgs modes with T-parity (LHT) [12] and the lightest Kaluza-Klein



particle in theories of universal extra dimensions [13], both of which couple to the Standard
Model in potentially detectable ways.

We thus have a variety of possible, and reasonably well motivated, candidates for dark
matter which couple to the Standard Model. The way these particles couple, however,
is clearly model-dependent, proceeding through exchanges of different types of particles
coupled in various different ways. In order to probe the dark sector in the most general pos-
sible way, it is thus beneficial to hide all of these model-dependent details within an effective
dark-matter /visible-matter contact interaction. Indeed, since the interactions between the
dark and visible sectors are by definition suppressed, it is somewhat natural to think that
they are coupled through high-scale dynamics (e.g., extremely heavy mediator-particles)
which can be safely integrated out. For a (Dirac) fermionic dark-matter particle y, such

contact interactions typically involve bilinear coupling structures of the form

(xTx) @I , (1.1)

where 1 denotes a Standard-Model particle and where I" and I represent different possible
choices of Dirac gamma-matrix combinations {1, 7%, v*, v#45, o**}. Different choices
for I' and I" correspond to different Lorentz and parity properties for the underlying in-
teractions, and can thus lead to drastically different dark-matter phenomenologies (and
therefore different predictions for associated event rates) at dark matter experiments. For
this reason, coupling structures which lead to attractive phenomenologies and greater event
rates tend to be studied ubiquitously in the dark-matter literature, while those leading to
suppressed event rates are typically neglected. As we shall see, the scalar (I' = I" = 1)
and axial-vector (I' = IV = ’y,/y5) couplings generally lead to the highest event rates at
direct-detection experiments. Moreover, these types of couplings arise naturally when the
dark matter is the LSP, which is by far the most widely studied dark matter candidate. As
a result, scalar- and axial-coupled dark matter is, in a sense, synonymous with the vanilla

dark matter scenario.



Another assumption that is motivated by the various top-down models mentioned above
is that the dark matter particles making up Qpy are of a single species. This arises in these
scenarios due to the conservation of some new Z-type symmetry, such as R-parity or K K-
parity. In addition to these motivations, assuming a single component in the dark-sector
greatly simplifies analyses and search strategies. For this reason, a vast majority of research
in the field has been in the context of single-component dark matter.

We will now see how this basic single-component contact-coupled framework can be used
to probe dark-matter models in a variety of different ways. By using the generality of this

framework, we are able to cast a very wide net in our hunt for dark matter.

1.2 Dark Matter Complementarity

In recent years, many search techniques have been exploited in the hunt for dark mat-
ter [14-19]. These include possible dark-matter production at colliders; direct detection of
cosmological dark matter through its scattering off ordinary matter at underground exper-
iments; and indirect detection of dark matter through observation of the remnants of the
annihilation of cosmological dark matter into ordinary matter at terrestrial or satellite-based
experiments.

Each search technique is associated with its own set of strengths and weaknesses. Direct
detection, for instance, is rather insensitive to dark matter which couples to leptons only,
or to dark matter particles with a mass of ~5 GeV or below. In addition, the signal at
direct-detection experiments is highly sensitive to the local dark-matter density and velocity
distributions; although we have reasonable estimates for these quantities in the general
galactic neighborhood, small fluctuations in the immediate solar region could drastically
alter results. Collider production of dark matter, on the other hand, is sensitive to a wider
variety dark matter couplings, and can be sensitive to models which couple DM only to
leptons [20]. These experiments, however, would not be able to make a conclusive dark
matter discovery since there is no way to tell whether non-interacting exotic particles that

may be produced are stable on cosmological time scales (and are thus good candidates for



particles making up the cosmological dark matter density Qpyr). Lastly, indirect detection
and astrophysical probes, which are also potentially sensitive to a wide variety of DM-SM
couplings, suffer from severe uncertainties in astrophysical backgrounds. With these issues
in mind, a conclusive discovery of dark matter will most likely come from a complementary
approach, where compatible discoveries can be confirmed by two or more of the above types
of experiments.

At first glance, these different techniques may seem to rely on three independent prop-
erties of dark matter, namely its amplitudes for production, scattering, and annihilation.
However, these three amplitudes are often related to each other through various crossing
symmetries. As a result, the different corresponding search techniques are actually corre-
lated with each other through their dependence on a single underlying interaction which
couples dark matter to ordinary matter, and the results achieved through any one of these
search techniques will have immediate implications for the others as well as for this under-
lying interaction. This is the origin of the celebrated complementarity which connects
the different existing dark-matter search techniques (for a review, see Ref. [21]).

To illustrate this complementarity, let us suppose that a dark matter fermion y can
couple to a Standard-Model fermion 1, as above, through an effective four-point interaction

Lagrangian of the form

Lot = cxp (XTXx) (T ). (1.2)

Here, we note that since the combined bilinear structures are of dimension six, the coupling
constant ¢, must have units of (energy) 2. It can be instructive to think of this coupling
as arising from the exchange of a mediator of mass M*, so that c,, ~ 1/M 2

This interaction can be pictured generally by the diagram given in Fig. 1.1. This di-
agram now clearly illustrates that the three experimental processes — collider production,
direct detection, and indirect detection — are constructed out of the exact same underly-
ing interaction. Though the specific coupling in Eq. (1.2) describes only the Yx <— 1
annihilation /production process indicated by the horizontal arrows, the other directions in

the diagrams can directly be found by applying crossing symmetries to the matrix element.
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Figure 1.1: The complimentary processes that are related to each other through matrix
element crossing symmetries.

Thus, though all three processes will have different rates depending on the kinematics and
particle densities involved, the rates depend on fundamental theoretical parameters com-
mon to all processes — the coupling c,,, between the dark matter and the Standard-Model
matter, the mass m, of the dark matter particle, and the coupling structure of the theory,
which here is encoded in the gamma matrix structures I' and I'Y'. Thus, for specific choices
of these variables, we are able to predict the rates for two different processes and search for
those correlated rates experimentally.

We will now briefly review each experimental process in order to see how exactly this
complementarity can be applied in practice. Some of this will be reiterated in the chapters
to come, when we are calculating actual rates for models and applying complementarity in

practice.

1.2.1 Direct Detection

The interaction illustrated in Fig. 1.1 schematically implies that there is some non-zero
probability for a dark-matter particle to scatter off of a Standard-Model particle. The aim
of direct-detection experiments [15, 19] is to discover these potential scattering events within
a mass of detector material as galactic-halo dark matter streams through the laboratory.

Due to the extremely low cross-sections expected for these scattering events, the detector



mass typically has to be very well isolated and all backgrounds have to be known to a high
precision, or strongly suppressed.

In general, there are only three observables at direct detection experiments: directional-
ity, total event rate, and recoil energy spectra. The first of these, directionality, is extremely
valuable as it can tell us the general direction of dark matter flow in the solar neighborhood.
If we were to discover a dark matter signal with directionality consistent with the motion of
the earth through the galaxy (including the Earths annual motion around the Sun), there
would virtually be no doubt that the signal was truly dark matter and not a background.

The other two observables, total event rate and recoil energy spectra, encode all of the
particle physics that direct detection experiments are able to shed light on. The recoil
energy spectra — that is, the scattering rate at a detector as a function of recoil energy —

are given generally by,

dR Nploc /chc . < deT ) 3
— = vF (U d°v, 1.3
dER mX Umin(ER) ( ) dER ( )

where N represents the number density of nuclei in the detector, m, represents the mass
of the incoming dark-matter particle, and p'°® represents the matter density of dark matter
in our local region of the galactic halo. Here, F(¥) is the velocity distribution of the dark-
matter particles in the reference frame of the detector. Its form is typically determined
by assuming a Maxwellian distribution of velocities, with the characteristic velocity of that
Maxwellian distribution given by the expected orbital velocity around the galactic center at
the location of the Sun. As mentioned earlier, uncertainties and local fluctuations in both
p'°¢ and F(¥) can vastly alter the determinations of the fundamental parameters of dark-
matter particles which these experiments seek to detect. Also, as indicated in Eq. (1.3), the
rate depends on the local dark-matter number density ploc/mX7 so that higher-mass dark
matter candidates typically lead to lower event rates.

The integration limits deserve some further clarification. The differential event rate
dR/dER gives the rate of expected scattering events that have a specific recoil energy Epr

in the detector. The lower integration limit vy, represents the minimum dark matter



velocity needed to impart this recoil energy to a target nucleus of mass mr, and is given by
Umin = +/Ermr/ ZuiT where p,7 is the reduced mass of the x/nucleus system. The upper
limit veg. represents the escape velocity of the galaxy at our radius from the galactic center.
It can be assumed that the bulk of the dark matter in the galactic halo is captured in
stable orbits around the galactic center, which necessitates v < vege; the upper integration
limit serves as a cutoff for the otherwise continuous distribution F (7). It is typical to take
Vese & 550 km/s at our radius from the galactic center.

The remaining input to the differential event rate is the differential cross section, dor/dER,
and it is this quantity which encodes the entirety of the particle physics represented in the
coupling diagram of Fig. 1.1. For now, for the purposes of illustrating complementarity be-
tween experiments, we will qualitatively describe how we translate from a coupling structure
such as Eq. (1.2) to the differential cross section do,r/dER at a direct-detection experiment.

In the following chapters, we will calculate this transition explicitly.

From quark-level to nucleus-level couplings

Since direct-detection is essentially only sensitive to dark matter which couples to nuclei,
we will assume there is a four-point effective coupling of the form Eq. (1.2) which couples
x to Standard-Model quarks?. There are two essential steps we must take, then, before
we attempt to calculate the differential y-nucleus cross-section in terms of our fundamental
coupling coefficients c,,.

First, we must determine how the individual quark-level couplings translate to effective
nucleon-level couplings. This translation is essentially encapsulated by factors Ag®Y) which

relate the quark-level matrix elements to the nucleon-level matrix elements:
(NflaTY q|Ni) = Aq™ (Nf|NTY N|Ny), (1.4)

where N = n,p is an index labeling the nucleon type as either a neutron or a proton. It is

4For the sensitivity of direct detection to leptophilic dark matter — which couples only to SM leptons —
see, e.g., [22, 23].
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clear that, dimensionally, the A¢™) must be pure numbers. We can thus colloquially think
of the AgY) factors as the contribution of the quark ¢ to the nucleon matrix element. The
actual numerical values of the AqY) can be determined either experimentally or on the
lattice; much more will be said of these quantities in Chapter 2.

The total effective x-nucleon coupling then can be rewritten as

Eeff - ng(XFXX)(NPYN)v (15)
where,
gYN = Z chq(N). (1.6)
q=u,d,c,...

We can at this point make an important simplification. Since typical dark-matter ve-
locities are of order v < 1073, we are justified in working in the non-relativistic regime.
The full relativistic expressions for the bilinear matrix elements simplify considerably, and

can be rewritten in terms of a small set of quantities such as mass, velocity, and spin. For

instance, it is easily shown that the matrix element of the scalar bilinear reduces to

(rlls) — 2my(€5)TED, (1.7)

while, for example, the matrix element for the axial-vector bilinear reduces to

Wl Pls) — 2my(€5)15 €. (1.8)

Here, {fl} represents the two-component spinor corresponding to a fermion v of spin s.
We note that, since %(SZ/)T& fi} is the quantum mechanical spin operator, the axial-vector
coupling leads to an interaction in the non-relativistic limit which is spin-dependent. On
the other hand, (55)%3 essentially contributes unity to the squared matrix element, so that
scalar couplings involving bilinears such as Eq. (1.7) are spin-independent.

The final step in the calculation of the y-nucleus differential cross-section doyr/dEr

now involves summing individual x-nucleon couplings over the entire nucleus. We essen-
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tially need the nucleus-level matrix element of the effective nucleon operators found above,
(T¢|NTY N|T;), where T; s represents the initial and final states of the target nucleus. For
operators leading to the scalar interactions as in Eq. (1.7), the matrix element turns out to

be proportional to the sum of nucleons in the target nucleus,
M oc{gypZ + gyn(A — Z)}, (1.9)

where Z and (A — Z) are the number of protons and neutrons in the nucleus, respectively.
Thus to probe spin-independent dark-matter interactions, experiments can take advantage
of an O(A?) enhancement to the cross-section by using heavier nuclei within the detector
substrate.

For operators which lead to spin-dependent interactions, as in Eq. (1.8), the x-nucleus

matrix element is essentially

M o< {gyp(Sp) + 9xn(Sn) }s (1.10)

where (Sy) represents the total spin of the nucleons of type N within the nucleus. In order
to be in the ground state the spins tend to anti-align, so that (Sy) ~ 0 or (Sy) ~ % for
nuclei with an even or odd number of nucleons N, respectively. For this reason, there are
no O(A?) enhancements in spin-dependent scattering, so direct-detection bounds tend to
be weaker than similar bounds for spin-independent scattering.

The simple summation over nucleons described assumes coherent scattering with the
entire nucleus. However, since the Compton wavelength associated with the energy transfer
in direct-detection settings can be on the order of the size of the nucleus, there is some
coherence loss that must be taken into account. This is accomplished through energy-
dependent form factors, which vary depending on the type of interaction and target nucleus,

and will be discussed further in the chapters to come.

The rather qualititive explanation above illustrates how we can probe the mass and cou-
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Figure 1.2: Examples of processes which can create dark matter through y-quark couplings
at hadron colliders. The Standard Model bosons which are radiated off the incoming beams
are necessary in order to “see” the dark matter which is produced. By detecting these
Standard Model particles, we can deduce the presence of the dark matter through missing
momentum in the detector.

plings ¢, of a given dark-matter theory by searching for nuclear recoils at direct-detection

experiments.

1.2.2 Collider Production

If there is some non-zero coupling between dark matter and the Standard Model, it becomes
possible to directly produce dark matter at colliders. This process is represented in the
complementarity diagram of Fig. 1.1 by the left-pointing horizontal arrow.

Since, by definition, dark matter is weakly interacting, any dark matter produced by
the colliding beams will free-stream through the detector and escape detection. However,
if dark matter is produced in association with some visible initial-state radiation, one can
search for the recoil of this visible matter off of the dark matter. Thus, the main strategy
used to search for dark matter at colliders is to search for high-pr Standard-Model particles
in association with missing energy or momentum. A standard subset of event topologies is
typically searched, chosen such that background subtraction is straight-forward and can be
confidently performed. Examples of such channels, where dark matter couples to Standard-
Model quarks, are shown in Fig. 1.2. The LHC collaborations have actively searched for
such signals, reporting bounds on cross-sections for the various channels in terms of an

effective theory coupling constant c,, as defined in Eq. (1.2). These collaborations have
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typically chosen a small representative subset of coupling types — that is, choices for the
gamma matrices I'* and I'Y — and stated bounds with respect to these choices. The sub-
sets most often chosen are the scalar-scalar interaction (I' = I'Y' = 1) representative of
spin-independent scattering at direct-detection experiments, and the axial-axial interaction
('Y =TV = 4#45) representative of spin-dependent scattering. To translate these bounds
to other couplings structures, one needs to know how the event rates for one coupling struc-
ture translate to the rates for another. For basic phenomenological studies, this can be done
by calculating rates for both coupling structures using Monte Carlo event generators, thus
finding the overall scale factor between two coupling structures. Since collider searches for
dark matter experiments are essentially counting experiments (in other words, the collab-
orations simply look for an excess number of events above background estimates), bounds
on the ¢, essentially scale as the square root of the number of events.

In this way, we can find collider bounds for essentially any contact operator — even
four-point operators involving bosonic scalar- or vector-type dark matter — based on the
bounds determined by the LHC collaborations on the scalar-scalar and axial-axial operator.
We can thus place bounds on the various c,.; factors in our effective field theory, subject to
the condition that the effective field theory is a good description of the interaction at the

energies involved at the LHC.

1.2.3 Indirect Detection

The same processes which lead to a thermal relic dark-matter component also govern an-
nihilation processes which may be occurring at the present time. The relic density from
freeze-out is reliant on the fact that annihilation rates fall below the expansion rate of the
universe; annihilation ceases to occur in the early universe when this condition is reached.
The universe today, however, is a very different place, and small density perturbations have
caused matter to clump into dense stable regions in an otherwise expanding universe. Thus,
the dark matter which has collapsed into these gravitational wells may once again achieve

a density such that annihilation can again take place at observable rates. The essential dif-
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ference is that, now, the reverse process of baryonic matter-antimatter annihilation cannot
occur; some mechanism has created a matter-antimatter asymmetry.

Thus, in the present day, it is possible that dark matter could be undergoing pair-
annihilation, producing energetic photons, neutrinos, or cosmic rays. The rate of these
annihilations will depend on the square of the density of annihilating dark matter, and
also the annihilation cross-section. The former can be inferred from various astrophysical
measurements and N-body simulations as described above, and for certain astrophysical
objects these densities are known with high confidence. The cross-section, however, is
dependent on the fundamental parameters of the effective theory: mass, coupling structure,
and coupling constant c¢,,,. Thus by searching for excesses in the flux of energetic particles
from objects such as clusters or galactic cores, one can in principle place bounds on m, and

Ccyy given a choice of coupling structure rX/rv.

1.2.4 Relic Abundance

A four-Fermi interaction between dark and visible sectors assures that in the early uni-
verse, when temperatures were high enough, dark matter and Standard-Model matter were
in thermal equilibrium. Through the interactions pictured in Fig. 1.1, dark matter in the
primordial plasma would annihilate to Standard-Model particles, and Standard Model par-
ticles would in turn annihilate to dark matter particles. In the early universe, temperatures
where high enough such that the kinematics did not favor one direction over the other; even
it my > my,, the Standard-Model particles had enough kinetic energy from the thermal bath
to pair-produce heavier y particles. As the universe continued to expand and cool, however,
these mass differences became important and the dark matter fell out of equilibrium; dark
matter annihilation can still proceed to lighter particles, but the opposite process which
creates dark matter becomes Boltzman-suppressed.

If this were the entire picture, dark matter would continue to annihilate and its number
density would asymptotically go to zero. However, since the universe is expanding as it

cools, dark matter number density n, falls and thus the annihilation rate I' = n, (o4v),
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where the term in angled brackets is the thermally-averaged annihilation cross-section times
the relative velocity, falls as well. Dark matter ceases to annihilate once the annihilation
rate falls below the rate of expansion, which is given by the approximate relationship I' ~ H,
where H = a/a is the Hubble parameter characterizing the expansion rate.

This process is called thermal freeze-out, and the dark matter remaining after this process
of freeze-out, if stable enough to survive to the present time, is called a thermal relic.® It
turns out that, to first order, the dark-matter density Qpym generated through thermal
freeze-out depends only on annihilation cross-section, and not on other details such as
dark-matter mass, temperature at freeze-out, or annihilation channels; indeed, to first order,
density is given by Qpyh? ~ 3 x 10737 cm® s7! /{0 4v), and annihilation cross-sections on
order of ~1pb tend to give relic densities on the same order of what we observe today,
Qpm ~ 0.2.

Thus there is a clear correspondence between the coupling strength in our theory, ¢,
and the relic density that will be generated in the early universe. We should be careful to
note, however, that this process will not necessarily generate the entire dark-matter density
Qpwm. If, for instance, there is more than one dark-matter species that couples to the
Standard Model by such an interaction, there will be multiple contributions to the overall
dark-matter density. Additionally, there could exist stable particles which do not couple
at all to the Standard Model, but are created in the early universe by mechanisms of an
entirely different nature. These particles, of course, would also contribute to the overall
dark-matter density, diluting the components making up Qpy which are thermal relics.

All this being said, it is still important to know the thermal relic-density generated in
a certain model. This tells us an important piece of information: barring some caveats,
since the density of a thermal relic must be less than the total dark matter density, we can

calculate an upper bound to the coupling coefficients c,..

S5Freeze-out generally needs to occur before BBN at T ~ 100 keV so that annihilations do not effect the
formation of light elements. In the standard WIMP scenario of GeV-TeV scale masses, freeze-out occurs
much earlier, at temperatures ~ 10'-10% GeV

SFor instance, if there are sources which dump additional entropy s into the universe after freeze-out
(such that s — 7 - s), the actual relic density scales down as Qpm — Qpwm/v. This can occur, for example,
during a first-order phase transition after freeze-out [24].
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We now qualitatively see how the different directions in Fig. 1.1 — dark-matter produc-
tion, annihilation, and scattering — can serve as independent and complementary probes
of the fundamental parameters of a given dark-matter model. This can be advantageous in
two different ways. First, using many different search strategies such as these can greatly
increase the coverage of our model parameter space. For instance, direct-detection exper-
iments are typically only sensitive to dark-matter masses above ~5 GeV due to the kine-
matics involved in y-nucleus scattering at these experiments. Collider experiments, on the
other hand, are excellent at constraining low-mass dark matter, since there is typically more
than enough beam energy in the incoming partons to create lighter dark-matter particles.
Thus collider experiments and direct-detection experiments are very much complementary
in covering the m,-axis of the parameter space.

The second and perhaps more important reason why this complementarity between ex-
periments is advantageous to us is that it provides correlations between the various different
phenomenon. As mentioned at the beginning of this section, a claimed discovery in a single
one of these experimental routes will almost assuredly be met with a certain amount of
skepticism. Indeed, this is very reasonable; we have already mentioned that each experi-
mental channel is associated with certain assumptions and potentially severe uncertainties.
But dark matter complementarity provides us with “more handles to grasp,” so to speak,
and if a discovery in one channel is confirmed in another channel, and if the inferred values
of the model parameters (m,, ¢y, etc.) are compatible with each other, the claim of a

“discovery” will hold much more weight.

1.3 Beyond Vanilla Dark Matter

In this work, we will explore what happens when we relax certain assumptions that are typ-
ically made about the dark sector. The first is that the coupling structure at low energies
is described purely by scalar and axial-vector four-point interactions. As we have stated,
one reason why these operators tend to be studied is that they lead to two phenomenolog-

ically distinct interactions at direct-detection experiments: spin-independent interactions,
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which couple to the entire nucleon content of the target nucleus, and spin-dependent in-
teractions, which couple to the unpaired spin of the nucleons within the nucleus. We also
mentioned that these interactions arise naturally in one of the most theoretically motivated
dark matter candidates, the LSP. There is, however, a more straight-forward reason for
considering these specific operators: for other choices of I'* and I'Y in Eq. 1.2, the matrix
elements at direct detection experiments either vanish completely, or are proportional to
the relative velocity v? ~ 1075, Thus, naively these interactions are simply not-detectable
at direct-detection experiments, which essentially are the strongest corner-stones in the
complementarity relationship.

We will see in the next chapter, however, that neglecting these velocity-suppressed in-
teractions is not always justified. In some cases, specifically the case of a pseudoscalar-type
coupling, the velocity suppression is countered by a strong nuclear enhancement. Thus en-
tire operator structures that were previously ignored turn out to have potentially important
phenomenological consequences.

Next, in Chapter 3, we will explore the new phenomenology which arises when we allow
more than one dark matter particle to exist and interact with the Standard Model. We
will see that the complementarity structure becomes far more rich, and more importantly,

entire new channels open up, giving us new ways to probe the dark sector.
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CHAPTER 2
PSEUDOSCALAR COUPLINGS: OVERCOMING
VELOCITY SUPPRESSION

There are two coupling structures that are typically studied in the context of dark-
matter phenomenology: the scalar and axial-vector interactions. These particular interac-
tion structures receive the most attention because they lead to particularly strong signals
at direct-detection experiments, and are thus the most efficient at probing the parameter
space using the complementarity framework. Unfortunately, by neglecting other operators
within the class of four-Fermi effective interactions, we are leaving many “stones unturned”
in the hunt for dark matter. In particular, it may turn out that certain coupling structures
which are seemingly suppressed (and thus are not considered) are actually enhanced by
other factors. Such enhancements could conceivably overcome the apparent suppressions
associated with these operators, implying that the contributions from such operators are
not negligible after all.

In this chapter, we show that this is indeed the case for pseudoscalar coupling struc-
tures between dark matter and SM particles. The standard lore is that such coupling
structures lead to direct-detection event rates which are suppressed relative to those as-
sociated with similar axial-vector coupling structures by factors of the x/nucleus relative
velocity v ~ O(1073). However, the main point of this chapter is to emphasize that there
is a corresponding mitigating factor that can potentially overcome this velocity suppres-
sion: the process of transitioning from a fundamental pseudoscalar quark coupling to an
effective pseudoscalar nucleon coupling introduces into the corresponding dark-matter scat-
tering rate additional factors of order O(my/mg) ~ 103, where m, y are the masses of the
corresponding quarks and nucleons. Such enhancements, for example, are not present for
axial-vector interactions, which are the canonical couplings which lead to spin-dependent
interactions, and which in some ways the closest cousins to the pseudoscalar interactions.

In addition, we find that both axial-vector and pseudoscalar couplings are further enhanced
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in cases in which the dark-matter couplings are ultimately isospin-violating, with these en-
hancements becoming particularly striking in the case of pseudoscalar interactions. Thus,
contrary to popular lore, we conclude that pseudoscalar couplings between dark matter and
Standard-Model matter can indeed be probed at dark-matter direct-detection experiments.

This chapter is organized as follows. First, we discuss the origins of the quark-to-nucleon
enhancement factor that emerges for pseudoscalar interactions, and provide a careful analy-
sis of the corresponding uncertainties that are inherent in such calculations. We also demon-
strate that the possibility of isospin-violating pseudoscalar interactions only enhances these
couplings further. We then proceed to present a model-independent analysis of pseudoscalar
interactions at direct-detection experiments. In so doing, we also identify those portions of
the corresponding dark-matter parameter space which can be probed at current and future

experiments of this type.
2.1 From quarks to nucleons: Velocity suppression and nu-

cleon enhancement for pseudoscalar couplings

We begin by discussing the matrix elements and couplings that describe the contact in-
teractions between fermionic dark matter and ordinary Standard-Model matter. This will
also serve to introduce our notation and provide a point of comparison between interactions
involving different Lorentz and parity structures. Ultimately, we shall focus on the cases
of axial-vector and pseudoscalar interactions. It turns out that these two cases are closely

related, yet have different resulting phenomenologies.

2.1.1 General preliminaries: Quark- and nucleon-level matrix elements

and pseudoscalar velocity suppression

In general, we shall assume that our dark matter is a Dirac fermion y whose dominant

couplings to the visible sector are to Standard-Model quarks through dimension-six four-
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fermi contact interactions described by Lagrangian operators of the bilinear form

XY
XY q —1X —1Y
oY) = AT (XTI x) (@ q) . (2.1)

Here ¢ = u,d, s, ... specifies a particular species of quark, ¢, is the corresponding x/q
coupling, and A corresponds to the mass scale of the new (presumably flavor-diagonal)
physics which might generate such an effective interaction. The I'>Y factors are appropriate
combinations of Dirac gamma-matrices, with the X and Y indices ranging over the values
{S,P,V,A, T} corresponding to I'®) = 1 (scalar interaction), T®) = ir® (pseudoscalar),
I'V) = 4# (vector), T™) = ~#~5 (axial vector), and T = ¢" (tensor) respectively.
The form in Eq. (2.1) respects U(1)gm and SU(3)color, as required, although SU(2)weax is
broken. This is appropriate for energy and momentum scales below the electroweak scale.
The operator in Eq. (2.1) is also Lorentz invariant provided that X and Y are both chosen
from the set {S,P}, the set {V, A}, or {T}; note that in this last case, there are actually
two ways in which the spacetime indices on each tensor can be contracted (either o, 0" or
€rpTt” 0*?) when forming the Lorentz-invariant operator. In general, the operator Oi);y)
will be CP-even in all Lorentz-invariant cases except when XY = SP, PS, or TT with a
contraction through the e-tensor. In direct-detection experiments, these operators induce

scattering between the dark-matter fermion x and the individual nucleons N of the detector

substrate. The tree-level matrix element describing this x/N scattering is therefore given

by
(XY) XY < v
D o O IR xba) (N [ar™ gl V) (2.2)

q
where N denotes the particular nucleon species in question (either proton p or neutron
n). Note that because the dark matter is a U(1)gm singlet, N; and Ny are both of the
same species N and possibly differ only in their momenta and/or spins as the result of the
scattering. The same will be assumed true for x; and xr, even in cases such as those in
Refs. [25-28] in which the dark sector has multiple components.

In general, the nucleonic matrix element of the quark current gI'¥ ¢ cannot be evaluated
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analytically within a nucleonic background defined by INV; and Ny. Indeed, to do so would
require a complete understanding of the manner in which the quark degrees of freedom
are directly mapped onto those of the nucleon through the non-perturbative process of
confinement. However, it is conventional to make the assumption that the nucleonic matrix
element of the quark current is proportional to that of the corresponding nucleon current

in the limit of vanishing momentum transfer [29-32]:
(NfglY q|N;) = Aq™ (Ny[NTYN|N;) (2.3)

where Ag¢N) represents a fixed constant of proportionality that encapsulates the non-
perturbative physics inherent in low-energy QCD. Indeed, this constant of proportionality
is assumed to depend on the quark and nucleon in question, and also the specific choice
of the Dirac-matrix structure I'Y involved, but is otherwise assumed to be independent of
all other relevant variables (such as the particular spin and velocity configurations of the

(V) for the different relevant

initial and final N; and Ny states). In practice, the values of Ag
cases are calculated numerically through lattice gauge-theory techniques and/or extracted
experimentally. We should emphasize, however, that the relation in Eq. (2.3) holds only
as an approximate phenomenological “rule of thumb”, and comes with several correction
terms which can be taken to be small or even vanishing in various limits. Further details
can be found in Ref. [29].

Given the numerical values of A¢?Y) in Eq. (2.3), the rest of the matrix element (2.2)
is now in a form which can be evaluated analytically. We then find

XY 9xN — N
MR = B ORI x) (NNTY NN (2.4)

where the final dark-matter/nucleon coupling g, is given by

GYN = chXY) Ag) (2.5)
q
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In what follows, we shall be concerned with three particular Dirac-matrix bilinears: the
scalar (S), the pseudoscalar (P), and the axial vector (A). In the non-relativistic limit, the

scalar bilinear matrix element behaves to leading order as

St (Wldyl) ~ 2my (€5)1E (2.6)

where {;Z represents the two-component spinor corresponding to the fermion ¢ with spin
s, and where s and s’ represent the spins of ; and s respectively. By contrast, the
corresponding pseudoscalar and axial-vector bilinear matrix elements behave to leading

order as

P: WeldyP vl ~ (€0 — i) - F1E5
(WO yPpl) ~ 0

Wrld° Py~ 2my (§5)T5E5
(2.7)

where & are the Pauli spin matrices. Taking v to correspond to our nucleon field NV, we thus
see that both the pseudoscalar and axial-vector cases lead to a spin-dependent scattering
amplitude to leading order. It is for this reason that the coefficients AgY) for these cases
can be interpreted as characterizing the fraction of the spin of the nucleon N that is carried
by the quark ¢. Indeed, in the case of pseudoscalar couplings, it is easy to show that all
terms — and not just those at leading order — are spin-dependent; this follows directly from
the symmetry-based observation that any CP-odd Lorentz-scalar quantity which depends on
only the properties of the nucleon must involve the nucleon spin [33-36]. On the other hand,
we see that the pseudoscalar case also leads to a wvelocity suppression: the corresponding
matrix element in Eq. (2.7) is proportional to the velocity transfer Av' = ¥y — ¢, which
is O(1073) for most regions of interest involving dark-matter particles originating in the
galactic halo. It is this velocity suppression which lies at the root of the relative disregard

for pseudoscalar interactions in the dark-matter literature.
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2.1.2 An enhancement factor for pseudoscalar matrix elements

Given these observations, our next task is to determine the numerical values of the AgN)
coefficients for the different cases of interest. In this chapter, our interest in the scalar
coupling structure will be restricted to the dark-matter bilinear rather than the quark
bilinear — i.e., in the language of Eq. (2.1) we will wish to consider the case with X =S,
but never Y = S. Consequently, we shall only require the values of the coefficients Ag™Y)
for the axial-vector (Y = A) and pseudoscalar (Y = P) cases. We also emphasize that we
are not merely interested in the “central values” of these coefficients; we are also interested
in understanding their associated statistical and experimental uncertainties. As we shall
see, it is only by keeping track of these uncertainties that we can make solid statements
about the phenomenological consequences of the different couplings in each case.

(V) coefficients for the axial-vector case have

Historically, the numerical values of the Ag
been extracted through nucleon-structure scattering experiments [37—41] and through lattice
gauge-theory calculations [42]. The results that we shall use in this chapter are quoted in
Table 2.1, and represent the most current values taken from experiment and theory. In this
context, it is important to note that there are rather significant uncertainties associated
with the values of the A¢g™Y). While the measured values for Au™¥) and Ad®) tend to
agree reasonably well with results from lattice calculations, the values for As(Y) obtained
using these two methods can differ quite significantly. In this chapter, we shall therefore
adopt the Au™) and AdN) values quoted in Ref. [42], but choose values for the As®)
such that they lie between these lattice results and the experimentally measured values in
Ref. [40], roughly two standard deviations away from the central value obtained in each
analysis.

We also observe that the results quoted in Table 2.1 respect quark-level isospin invariance
— i.e., they satisfy

AuP?) = Ad™P) | AsP) = A5 (2.8)

This makes sense, as the results in Table 2.1 are derived in the limit in which the three

24



N=p N=n

Ay®) 0.787 + 0.158 —0.319 £ 0.066
Ad®) —0.319 + 0.066 0.787 £ 0.158
As®) —0.040 £ 0.03 —0.040 £ 0.03

Table 2.1: Values used in this chapter for the axial-vector coefficients Ag™). The values for

the Au™) and Ad®Y) are taken from the recent lattice results reported in Ref. [42], while
the values for the As(™) have been chosen such that they lie between these lattice results
and the experimentally measured values in Ref. [40], roughly two standard deviations away
from the central value obtained in each analysis.

light quarks are considered to be effectively massless. Likewise, in this approximation, the
remaining quarks are considered to be too heavy to contribute significantly to proton-level

and neutron-level couplings. Thus, in the axial-vector case, we shall additionally take
AcPm) = ApPm) = AP) = (2.9)

We now turn to consider the corresponding coefficients in the pseudoscalar case. In order
to distinguish these coefficients from the axial-vector coefficients above, we shall denote the
pseudoscalar coefficients as AgY).

Rather than representing an independent degree of freedom, it turns out [43-45] that

(N)

the pseudoscalar coefficients Ag\"Y/) can actually be determined theoretically in terms of the

axial-vector coefficients AgN).

This is ultimately because a general axial-vector current
jH*5 = hy#454) is not conserved in a theory in which my, # 0, but is instead related to the

pseudoscalar current j° = 1iv>1) through a divergence relation of the form
. . « ~
g = 2my §° + GG (2.10)

where the final term reflects the possible additional contribution to the non-conservation of
j*5 coming from a chiral anomaly (such as the chiral anomaly of QCD). Indeed, amongst
all the fermion bilinears Y'Y ¢y with which we started, it is only the axial-vector and pseu-
doscalar bilinears which can be connected to each other through such a direct relation.

Exploiting this observation and following Ref. [43, 44], we can now proceed to derive an
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(N)

expression for the pseudoscalar coefficients Ag'*') in terms of the axial-vector coefficients

Ag¢™). We begin by noting that

myAg™ (N} [NirP N|N;)
= LA¢™) 9, (NG [Ny NIV;)
= 10, [Ad™ (N} [Ny# NN |
= L0,(Nf[a7"7*qINy)

. o .
= mg(Nflgin°q|Ni) + 8_7T<Nf’GG’Ni> : (2.11)

In Eq. (2.11), the first equality follows from the current relation (2.10) in the nucleon-
level theory, where (since all nucleons are color-neutral) no QCD chiral anomaly exists.

(V) coefficients are

The second equality, by contrast, follows from the fact that the Agq
presumed to be constants without spacetime dependence, while the third equality follows
from the definition of A¢(N) as relating the nucleon-level and quark-level axial-vector matrix
elements. The final equality then again follows from Eq. (2.10), now evaluated in the quark-
level theory for which the QCD chiral anomaly is non-zero.

For each nucleon N, the relation in Eq. (2.11) furnishes three constraint equations
(one for each of the light quarks ¢ = u,d, s). However, recognizing that our three desired
coefficients AGN) are nothing but the ratios between the (N¢|giv>q|N;) and (N;|Niv® N|N;)
matrix elements, we see that we still have one unknown remaining, namely the matrix
element involving the QCD anomaly. An additional constraint equation is therefore called

for. Towards this end, it is traditional (see, e.g., Ref. [43, 44]) to assume that the large-N,

chiral limit is a valid approximation. This then implies the additional constraint [46]
(Nf[y*ulNi) + (Ny|dry d|N;) + (Ny[s7°s|N;) = 0. (2.12)

In principle, we could then proceed with this as our remaining constraint equation.

However, the appeal to the large-N. limit introduces a rather significant new source of
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uncertainties of order O(1/N.) into our calculation. Since we wish to keep track of these
uncertainties, we will ultimately need to find a way to parametrize the uncertainties inherent

in the relation (2.12). We shall therefore write Eq. (2.12) in the modified form

(Nylay*ul Ni) + (Nyldv>d|Ni) + (Ny[57°s|N;)

= 1 (Nf[Ny’NIN;) (2.13)

where the right side of this equation is designed to reflect this uncertainty, with the numerical
coefficient 7 assumed to have a vanishing central value but a relatively large uncertainty
dn ~ O(1/N,).

This system of equations (2.11) and (2.13) may now be solved for the coefficients AGN) =

(N¢[qiv®q|N;) /(N |Niy® N|N;) as well as an analogous anomaly coefficient

~ A <Nf’Gé‘Nz>

AGW) = == : 2.14
The results are then given by
AGN) = N A,V _ X(N)]
Mg
AGWN) = my XN (2.15)

where we have defined

- (V)
X(N>E<Zmiq> (Z Aglq)_mijv , (2.16)

q:u7d78 q:u7d78

As we see in Eq. (2.15), the natural scale of the pseudoscalar AGWN) coefficients is greater

than the natural scale of the axial-vector Ag®)

coefficients by a factor of my/mg,. This
effect thus tends to enhance the pseudoscalar couplings relative to the axial-vector couplings,
thereby giving us hope that we might eventually be able to overcome the velocity suppression

that afflicts the case of pseudoscalar scattering.

27



It is perhaps worth pausing to discuss the theoretical origin of this enhancement factor.
In general, the definition of the AgY) coefficients in Eq. (2.3) suggests that these coefficients
are fractional quantities which describe “how much” of some physical quantity associated
with the nucleon N can be attributed to a constituent quark ¢. For example, in the case
of the axial-vector coefficients, this physical quantity is spin, and the corresponding Ag™Y)
coefficient is known as a spin fraction. Naively, this would lead one to expect that the

quantities Ag®V)

should be relatively small, and certainly less than one. However, there is
also another feature whose effects are reflected in the magnitudes of these coefficients: this is
the difference in the intrinsic overall normalizations associated with the quark and nucleon
fields ¢ and N respectively. Indeed, as is conventional, each field ¢ or N is normalized to
its mass so that the corresponding state kets will satisfy relations such as (g|¢) = 2m, and
(N|N) = 2my [or equivalently, relations such as those in Eq. (2.6)]. Thus, quantities such
as the AgN) coefficients which convert from quark currents to nucleon currents will also
intrinsically include factors that reflect this change in normalization.

Given this, it might be tempting to identify the pseudoscalar enhancement factor my/mq
appearing in Eq. (2.15) as reflecting this second contribution, namely a change in normal-
ization. However, we can easily see that this is not the case: the axial-vector coefficients
A¢™) and the pseudoscalar coefficients AGYY) each already intrinsically incorporate such
normalization factors, yet our enhancement factor in Eq. (2.15) is one which rescales our
pseudoscalar coefficients relative to the axial-vector coefficients. Indeed, this is an extra en-
hancement which emerges beyond the mere effects of normalization, and which ultimately
reflects the fact that the pseudoscalar and axial-vector coefficients are locked together as a
single degree of freedom through a relation such as that in Eq. (2.10). Or, phrased some-
what differently, the factor of 2m, which appears in Eq. (2.10) — and which ultimately
leads directly to our enhancement factor in Eq. (2.15), thereby driving the AGWN) coefficients
above unity — follows not from a normalization but rather from an equation of motion.
Thus, our enhancement factor reflects far more than mere normalization conversion; it is

instead deeply rooted in the dynamics of the quark and nucleon fields and the fact that their
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N=p N=n

AaN) 110.55 + 21.87 —108.03 + 21.33
AdWN) —107.17 £ 21.14 108.60 + 21.29
As) —3.37+1.01 —0.57 +0.78
AGW) (395.2 + 124.4) MeV (35.7 4 95.4) MeV

Table 2.2: Numerical values for the pseudoscalar coefficients AGWY), as obtained from
Eq. (2.15). Details concerning the calculation of these quantities and their associated uncer-
tainties are discussed in the text. It is readily observed that these pseudoscalar coefficients
AG®™) are larger than the corresponding axial-vector coefficients Ag¢™) in Table 2.1 by a
factor of ©@(10? — 10%). This can enhance the dark-matter/nucleon scattering amplitudes
associated with pseudoscalar interactions, and thereby potentially overcome the velocity
suppression that would otherwise render such cases unobservable in direct-detection exper-
iments.
corresponding pseudoscalar and axial-vector currents are tied together through Eq. (2.10).
Using the algebraic results in Eq. (2.15) and the numerical results in Table 2.1, we can

(N) coefficients explicitly. Our results, along with associated uncertainties,

evaluate the Ag
are shown in Table 2.2. As we see, the pseudoscalar AGY) coefficients are indeed larger
than the corresponding axial-vector Ag(™) coefficients in Table 2.1 by a factor of 0(10? —
10%) in each case, as promised. Indeed, as we shall demonstrate below, it is precisely the
relatively large size of the pseudoscalar coefficients AGY) which compensates for the velocity
suppression. For these numerical calculations, we have taken n = 0.0 & 0.33, as discussed
above, and we have taken the masses of the light quarks (and their associated uncertainties)
from Ref. [9]. In particular, we have taken m, = 2.3 £0.7 MeV, my = 4.8 £ 0.5 MeV, and
ms = 9545 MeV, corresponding to the quark masses at the renormalization scale u = 2 GeV
in the MS renormalization scheme, and then rescaled each mass and uncertainty by a factor
of 1.35 in order to account for the effect of renormalization-group running down to the scale
wu~1 GeV appropriate for dark-matter/nucleon scattering [9]. All uncertainties were then
added together in quadrature in order to produce the final uncertainties quoted in Table 2.2.

As evident from Table 2.2, the results for the pseudoscalar AGY) coefficients no longer
respect quark-level isospin invariance, as defined in Eq. (2.8). [In this connection we observe
that quark-level isospin invariance would also require AG®) = Aé(“).] This is a clear

distinction relative to the axial-vector case in Table 2.1, but there are several ways in
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which to understand this result. At an algebraic level, the breaking of quark-level isospin
invariance arises because the transition from the axial-vector coefficients to the pseudoscalar
coefficients explicitly involves the quark masses; by contrast, the axial-vector coefficients
were derived under approximations in which the light quarks are effectively treated as
massless. Or, phrased somewhat differently, the leading terms in the axial-vector matrix
elements are independent of the quark masses; it is only the subleading terms which depend
on these masses explicitly. This is different from the situation one faces in dealing with the
pseudoscalar matrix elements, for which the leading terms are already mass dependent. On
a more physical level, this difference can alternatively be understood as arising from the
fact that the axial-vector current is somewhat special in that its matrix element essentially
counts the number of fermions minus anti-fermions, weighted by chirality and normalized
to the mass of the nucleon bound state. [This is analogous to the vector-current matrix
element, which also counts the normalized number of fermions minus anti-fermions but
without a chirality weighting.] As a result, the leading-order results in the axial-vector case
depend on the number and charges of the parton constituents, but not their masses. This
is to be contrasted with the pseudoscalar matrix elements, for which an additional quark
mass dependence can arise. It should also be noted that while the uncertainties quoted in
Table 2.2 are reliable in terms of their approximate overall magnitudes, there are certain
effects which we have not taken into account which might alter these results slightly. Such
effects will be discussed more fully as part of an exhaustive uncertainty analysis in Ref. [47].
For example, we have treated the uncertainties in Table 2.1 for the axial-vector Ag®Y)
coefficients as independent of each other (i.e., uncorrelated), but in truth (see, e.g., Ref. [32])
the Au™) and AdN) coefficients are actually extracted as linear combinations of two more

fundamental variables agN) and aéN). It is actually the uncertainties on these latter variables

(N) coefficients. Likewise, the uncertainties on

which are independent, not those on the Ag
the quark masses are also not independent, as these masses are typically extracted in terms
of a single reference quark mass (typically that of the down quark) and the ratios of the

other quark masses relative to this reference mass. The truly independent uncertainties
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are therefore those for the down-quark mass and the corresponding ratios. Moreover, the
uncertainties on the quark masses are not necessarily Gaussian, since they typically have
both systematic and random contributions. Combining these into a single uncertainty, as
we have done here, and then treating this single uncertainty as Gaussian when performing
a quadrature-based analysis represents yet another approximation. Indeed, 7 is an example
of a variable whose uncertainty is completely systematic rather than experimental, yet
its uncertainty is being treated as if were Gaussian as well. Finally, there is even some
leeway concerning how one treats isospin symmetry in a rigorous uncertainty analysis.
Isospin symmetry, as mentioned above, is usually invoked in order to relate quantities
such as Au® and Ad™ — indeed, it is typically the case that these quantities are not
measured independently. As a result of this presumed isospin symmetry, these quantities
are necessarily quoted as having the same central values and same quoted uncertainties,
as indicated in Table 2.1. However, it is not clear whether these uncertainties should
be treated as independent or correlated when performing a quadrature-based uncertainty
analysis of the sort we are performing here. While isospin symmetry would dictate that
these uncertainties be treated as completely correlated, we know that isospin symmetry is
only approximate in nature. Indeed, as mentioned above, the results in Table 2.2 for the
central values of our pseudoscalar AG?Y) coefficients already fail to respect isospin symmetry
because of their explicit dependence on the light-quark masses. We have therefore opted to
treat the uncertainties in Table 2.1 as completely independent and uncorrelated.

Despite these observations, the uncertainties quoted in Table 2.2 are correct in terms
of their overall magnitudes. It is also evident that the pseudoscalar uncertainties quoted
in Table 2.2 are somewhat larger, in relative terms, than the corresponding axial-vector
uncertainties quoted in Table 2.1. This is partially due to the dependence of the pseudoscalar
results on a constraint which stems from a large-N. approximation. As a result of these
larger uncertainties, we see that certain quantities in Table 2.2, such as A5™ and AG™,
are actually consistent with zero. As we shall see, these results will lead to considerably

larger uncertainties for our eventual pseudoscalar dark-matter/nucleon couplings.
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Finally, we now turn to the pseudoscalar AGWY) coefficients for the heavy quarks ¢ = Q =
¢, b,t. As we shall see, these quantities will be relevant if our dark matter couples to such
quarks. In the axial-vector case, the analogous coefficients were taken to be zero, reflecting
the fact that such quarks are heavy and make only negligible contributions to axial-vector
couplings. For pseudoscalar couplings, by contrast, the situation is different. Because of
the current-algebra relation in Eq. (2.10), we see that the pseudoscalar current is related
to the derivative of a different current involving the same heavy fermions. However, if the
fermions in question are sufficiently heavy, they will have no dynamics and this derivative

must vanish. We thus obtain the relation

. Qg -
2o (NG QIN) = - SNYIGEINY | (217)
from which we see that
(N TPQIN) = ——— 22 (NG|
mg 8
— L AGMNS NI NN | (2.18)
mq

where the values of AG?) are given algebraically in Eq. (2.15). We thus find that

1 -
AQW) = —m—QAGUV) : (2.19)

2.1.3 Pseudoscalar dark-matter /nucleon couplings and the effects of isospin

violation

We now turn to the actual quantities g,y which parametrize how the dark-matter fermion

X couples to nucleons N in the case of pseudoscalar interactions. As evident in Eq. (2.5),

(N)

these effective couplings g, n are directly determined in terms of the Ag\") coefficients for
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both light and heavy quarks:

R SETCUNE S Yy o2
g=u.d,s Q=cht @

where the numerical values of the AG®™Y) and AGW) coefficients are listed in Table 2.2.
The only task remaining, then, is to determine the values for the quark couplings ¢,

(henceforth taken to collectively denote the couplings for both light and heavy quarks). Of

course, the expression in Eq. (2.20) for the g, is completely general and applicable for any

choice of operator coefficients ¢, in the fundamental theory. In principle, any assignment

of the ¢, consistent with phenomenological constraints is therefore permitted. However, for

concreteness, we shall here focus primarily on three particular benchmark scenarios:

e Scenario I: The case in which the ¢, for all up-type quarks take a common value
cu = cc = ¢¢ and the ¢, for all down-type quarks likewise take a (potentially different)
common value ¢y = ¢s = ¢p. For this scenario, we parametrize these two independent
operator coefficients in terms of a mass scale M and an angle 6 such that c,/A? =
cosO/ME and cg/A? = sin@/M?. Tt then follows that tan® = cy/c, and M? =
A?/\/c2 + c?l. Note that for § = 7 /4, this coupling structure respects quark-level
isospin invariance. Varying 6 will thus allow us to study the effects of isospin violation

in a continuous fashion.

e Scenario II: A generalization of the oft-studied case in which the ¢, are propor-
tional to the Yukawa couplings y, between the quarks and the SM Higgs boson,
and thus to m,. This scenario is motivated by the minimal-flavor-violation (MFV)
assumption that the quark Yukawa couplings are wholly responsible for flavor vio-
lations. The generalization we consider here is one in which the ¢, for the up-type
quarks may also be scaled by an overall multiplicative factor relative to the ¢, for
the down-type quarks. Specifically, for this scenario, we define a mass scale Mg
and an angle 6 such that c¢;/A? = mgcos0/M;, for up-type quarks and c,/A% =

mgsin /M3 for down-type quarks. It then follows that tanf = (cqgmy)/(cumg) and
q 11
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MIBI = A2/\/(CU/mu)2+(cd/md)2v where ¢,/my = c./me = ¢;/my and cq/mg =

Cs/ms = cp/my.

Scenario III: The related case in which the ¢, are non-vanishing only for the first-
generation quarks — 4.e., in which ¢, and ¢4 are arbitrary, but in which ¢, =
cc = ¢ = ¢ = 0. For this scenario, we likewise define My and 6 such that
cu/A? = my, cos0/M3; and cq/A* = mgsin@/M7;. This coupling structure is of par-
ticular interest from a direct-detection perspective, implying that ¢, and c¢; uniquely
determine the effective dark-matter/nucleon couplings g, and gy, in Eq. (2.21), and
vice versa. Moreover, with the couplings for the second- and third-generation quarks
set to zero, this scenario is the only one which does not involve couplings which are
essentially irrelevant for direct detection. Since non-zero couplings for second- and
third-generation quarks could potentially have a significant effect on the rates for
dark-matter production at colliders [48], this scenario is therefore in some sense the
most “conservative” in that it does not assume any channels which might enhance
collider signatures without affecting direct-detection signals. Study of this scenario

will therefore lead to the most conservative set of limits consistent with collider data.

We emphasize that these three scenarios represent physically distinct coupling structures

between x and the SM quarks. It is for this reason that each scenario has been associated

with its own independent mass scale above.

Given these three scenarios, we can now proceed to examine the behavior of our pseu-

doscalar dark-matter/nucleon couplings as functions of # in each scenario. For Scenario I,

the results in Table 2.2 yield the effective pseudoscalar couplings

gyp = 110.2cos @ —110.6sin 0

gyn = —108.1cos @+ 108.0sind . (2:21)

Likewise, given the uncertainties in Table 2.2, we find that the associated uncertainties in

these couplings are given by rather complicated expressions which can be extremely well
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approximated as

6gxp ~ |21.79cos 6 — 21.88sin 6|

Sgyn ~ [21.32cosf —21.33sind| . (2.22)

We immediately note that both the couplings and their associated uncertainties are nearly
vanishing at the quark-level isospin-preserving point § = 7/4. Alternatively, given the
couplings in Eq. (2.21), we can solve for the value 8* at which nucleon-level isospin preser-
vation takes place — i.e., the value 0* at which g,;, = g,,. We find that in this scenario, the
nucleon-level isospin-preserving point is extremely close to the quark-level isospin-preserving
point, with only a very small net displacement §* — 7/4 ~ —8.45 x 10~* radians.

At the nucleon-level isospin-preserving point, we find that g, = g,n = —0.155 3+ 0.25
— a value consistent with zero. This is remarkable, representing a situation in which dark
matter couples to quarks, but not to nucleons! Moreover, this is to be compared with the
couplings that emerge for other, isospin-violating values of 8. For example, we find that the
proton coupling takes the value |gy,| =~ 110.6 £ 21.9 at § = /2, and reaches a maximum
value |gyp| ~ 156.24£30.9 at § ~ 37 /4. The behavior of the neutron coupling |g,s| is similar.
Thus, relative to the central values of these couplings at the isospin-preserving point # = 6*,
we see that these couplings experience a huge enhancement which can grow as large as a
factor of 103!

We therefore conclude that isospin violation in Scenario I produces a huge enhancement
in the corresponding pseudoscalar proton and neutron couplings. This is the direct result
of the relatively large pseudoscalar coefficients AGYY) in Table 2.2, operating within the
framework of the particular quark coupling structure associated with Scenario I. However,
it is important to stress that there is nothing intrinsic to the coupling structure of Scenario I
by itself which causes such large proton and nucleon couplings to emerge. For example, as
an algebraic exercise, we can calculate the proton and neutron couplings that would emerge

under Scenario I in the axial-vector case — i.e., using the axial-vector coefficients AgW)
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in Table 2.1 rather than the pseudoscalar coefficients AGY) in Table 2.2. In this case,
because of the fact that isospin symmetry is exactly preserved for the AgY) coefficients,
both quark-level and nucleon-level isospin preservation coincide exactly at § = /4. Indeed,
at this point we find g,, = g,n ~ 0.303 £ 0.12, while the maximum value taken by these
couplings for any isospin-violating value of 6 is |gy,| ~ 0.865 £ 0.15 at § ~ 2.714 and
gyn ~ 0.812 +£0.15 at 6§ ~ 1.974. Thus, for the axial-vector case, we see that isospin
violation is capable of increasing the proton and neutron couplings only by mere factors of
2.85 and 2.68 respectively.

We also note, of course, that the overall scale of the axial-vector couplings is signifi-
cantly smaller than that for the pseudoscalar couplings. While it is perhaps inappropriate
to compare the magnitudes of these different couplings against each other (because they
correspond to different operators with gamma-matrix bilinears exhibiting entirely different
tensorial properties), at a purely algebraic level this difference can once again be attributed

(N) coefficients that enter the calculation of the pseudoscalar

to the larger values of the A§
proton and neutron couplings as compared with the values of the Ag¢W) coefficients that
enter the calculation of their axial-vector counterparts.

In Fig. 2.1, we have plotted the pseudoscalar proton and neutron couplings g,, and gy,
along with their corresponding uncertainties, as functions of 8 for all three of our coupling
scenarios. For comparison purposes, we have also plotted the corresponding axial-vector
couplings as functions of the same variable 8. Moreover, in each case we have normalized
the proton and neutron couplings to the maximum value that the proton coupling ever
attains as a function of 6.

Many features of these plots are worthy of note. Focusing first on the pseudoscalar
couplings, we have already remarked that a significant degree of cancellation occurs within
Scenario I when isospin is conserved at the nucleon level: both the proton and neutron
pseudoscalar couplings, along with their associated uncertainties, become extremely small

as a result of a near-perfect cancellation between their individual up-quark and down-quark

contributions. As remarked earlier, this is then a situation in which our dark matter cou-
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ples to quarks, but not to nucleons! What is now apparent from Fig. 2.1, however, is
that this cancellation is a relatively sharp one, and that any movement away from this
isospin-conserving value of 6 in either direction results in a significant enhancement of these
pseudoscalar nucleon couplings. As indicated above, this results in an O(10%) enhancement
in the pseudoscalar couplings for isospin-violating scenarios relative to the naive isospin-
conserving case, and thus to an O(10°) enhancement in the cross-section for the scattering
of x off atomic nuclei. Thus, we see that even a relatively small amount of isospin violation
can have a dramatic effect on direct-detection rates! The above behavior occurs for Sce-
nario I. However, we now see from Fig. 2.1 that similar behavior also occurs for Scenario I11,
albeit at a somewhat shifted value of #. This feature is also easy to understand. In Sce-
nario I, the cancellation that occurs at 6* truly reflects an approximate isospin symmetry.
Indeed, while the term in Eq. (2.20) proportional to AGW) g manifestly isospin-violating,
this contribution is suppressed by several orders of magnitude compared to the contribu-
tions from the light quarks in this scenario. Moreover, since the ¢, are independent of the
quark masses in Scenario I and since the AGN) are approzimately isospin-conserving (par-
ticularly for the two lightest quarks), this cancellation occurs for a value of 6* very close
to 0 =~ /4. Of course, in Scenario III, the AGW) contribution to the couplings vanishes
outright because the dark-matter particle does not couple to the heavy quarks. However,
the above cancellation now occurs at the value 6* = tan~!(m,/my) ~ 0.45 rather than at
0* =~ m /4, for within Scenario III it is only at this shifted angle that ¢, = ¢4. Furthermore,
within Scenario I1I, we see that the uncertainties are no smaller at #* than they are at any
other angle — another distinction relative to Scenario 1.

Finally, we observe that the pseudoscalar couplings shown for Scenario II differ quite
significantly from those shown for Scenario I1I, both in terms of the locations of the nucleon-
level isospin-preserving points as well as the overall magnitudes of the associated uncertain-
ties. These differences ultimately reflect the contributions from the second- and third-
generation quarks. One notable feature in Scenario II, for example, is the fact that the sort

of cancellation which occurs for Scenarios I and III does not occur for Scenario II. The
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reason for this is also easy to understand. In Scenario II, we have ¢, oc m, for all quark
species. For such a coupling structure, it turns out that the magnitudes of the two terms on
the right side of Eq. (2.20) are roughly commensurate. Thus, even if 6 were set at a value for
which the light-quark contributions roughly cancelled, the heavy-quark contributions would
still be significant. Indeed, for this scenario, we find that nucleon-level isospin preservation
arises at 6* ~ 3.12 — a value much closer to 7 than to 7/4 — but the proton and neutron
couplings at this point are clearly non-zero.

In Fig. 2.1 we have also illustrated what occurs for the corresponding azial-vector cou-
plings in each scenario. For example, as already discussed above, we see that the isospin-
preserving points no longer correspond to vanishing proton and neutron couplings — even
for Scenarios I and III. Thus isospin violation will no longer produce as dramatic an en-
hancement for the axial-vector proton and neutron couplings as it does for the corresponding
pseudoscalar couplings, even in these scenarios. Moreover, we observe that unlike the situ-
ation for the pseudoscalar couplings, there are no values of # in Scenarios I or III for which
both gy, and g,,, vanish simultaneously. Thus, for axial-vector couplings, dark-matter cou-
plings to quarks always imply a dark-matter coupling to at least one nucleon. Furthermore,
we see that the uncertainties are so large for the axial-vector neutron coupling in Scenario I1
that the value of this coupling is consistent with zero for almost all values of #. Finally,
although it is not visible from the plots in Fig. 2.1, we again stress that the overall magni-
tude of the axial-vector couplings is a factor of O(102 — 10%) smaller than the magnitude of
the pseudoscalar couplings. This is perhaps the most important difference of all.

Despite the rather compelling nature of these differences, it is important to bear in
mind that the pseudoscalar and axial-vector couplings correspond to entirely different op-
erators. Thus, a direct comparison between these couplings is fraught with a number of
theoretical subtleties. For example, Scenarios II and III are rather unnatural within an
axial-vector framework, and it is difficult to imagine a high-scale model which might yield
such an axial-vector effective operator with the quark-level couplings of Scenarios II or 111

at lower energies. This is completely different from what happens within the pseudoscalar
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framework, where the coupling structures of Scenarios II and III are particularly well moti-
vated. Nevertheless, we have undertaken such a direct coupling-to-coupling comparison in
order to expose the primary numerical differences that emerge when the axial-vector Ag)
coefficients of Table 2.1 are replaced with the pseudoscalar AGY) coefficients of Table 2.2.
Indeed, from a purely bottom-up perspective, the coupling structures of all three scenar-
ios can be taken to represent interesting benchmarks which are introduced purely for the
purpose of studying varying resulting phenomenologies in a model-independent framework.
We have therefore chosen to study the resulting couplings free of any theoretical prejudice
stemming from considerations of high-scale physics.

Of course, what ultimately matters in each case are not the couplings themselves, but
rather the implications of these couplings for the reach of actual direct-detection exper-
iments. For example, we have seen that even a small amount of isospin violation can
dramatically enhance our pseudoscalar couplings, but it remains to be seen whether this ef-
fect is large enough to compensate for the velocity suppression which is also associated with
pseudoscalar interactions, and thereby render such interactions potentially relevant for de-
tection at the next generation of spin-dependent dark-matter direct-detection experiments.

This is therefore the topic to which we now turn.

2.2 CP or not CP, that is the question: An interlude on the

choice of Lagrangian operators

In this work, our analysis has focused on those interactions between dark matter and
Standard-Model matter which take the form of effective four-Fermi contact interactions
whose operators exhibit the double-bilinear form in Eq. (2.1). Thus far, our interest has
focused on the unique physics that emerges from assuming a pseudoscalar structure for the
quark bilinear in Eq. (2.1), and indeed all of our results thus far have relied on this choice.

However, we have yet to select a tensor structure for the corresponding dark-matter bilinear,
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and Lorentz invariance dictates that there are only two possible choices open to us:

C —_— —_—
0 = 35 () @)
C, 3 .
o) = 12z (Xi7"X) (@) - (2.23)

The first of these operators breaks CP symmetry, while the second preserves it. Unfortu-
nately, we can proceed no further in our discussion of actual direct-detection experimental
prospects without making a specific choice between these two operators. The CP-violating

operator OSIP) is often neglected in direct-detection studies, even in comparison with OQZP).

One reason for this is that OQZP) is CP-invariant and can therefore be generated at a non-
trivial level in many top-down theoretical constructions which yield a stable dark-matter
candidate, such as the constrained minimal supersymmetric model (CMSSM) in which there
is no additional source of CP violation. However, in a bottom-up effective-theory approach
such as the one we adopt here, the aim is to examine and constrain the properties of all
possible interactions which could arise between the dark-matter candidate and the particles
of the SM in as model-independent a framework as possible, without theoretical prejudice.

Indeed, while the operator OSZP) is typically assumed to be irrelevant for direct detection,

it is instructive to revisit why this is the case — and also why this is not the case for OgP),
despite the fact that the structure of the quark bilinear is the same in both cases.

Let us first consider the situation in which x couples to SM particles primarily via
OQZP). We assume for the purposes of this discussion that this operator provides the
dominant contribution both to the cross-section for nuclear scattering events at direct-
detection experiments and to the annihilation rate of xy and ¥ in the early universe. For
purposes of illustration, we also restrict our attention to the case in which y couples to only
one quark flavor; thus only one of the ¢, is non-vanishing. We have already seen for (’))((]ZP)
that both the dark-matter bilinear and the quark-bilinear give rise to a velocity suppression

in the dark-matter /nucleon cross-section for direct detection. Thus, for OQZP), the resulting
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(spin-dependent) cross-section can be expected to scale like

c [AQ(N)] ? M?CNv‘l

2,2 A4
meNA

PP: oV ~ : (2.24)
where pi, v = mympy/(my +mpy) denotes the reduced mass of the y/nucleon system.
There are clearly many unknown parameters in Eq. (2.24), making it difficult to provide
an actual numerical estimate of this cross-section. However, we may appeal to a somewhat
orthogonal constraint which applies to any thermal dark-matter candidate: that through
which the annihilation rate of x and ¥ sets an overall dark-matter abundance in the early
universe. For OQZP), the annihilation of x and X in the early universe has no chirality
suppression since the initial state is CP-odd, with quantum numbers S = 0, L = 0, and

J =0 [36]. In an s-wave annihilation scenario of this sort, the thermal annihilation cross-

section (o|v|) scales like

c2m

2
PP:  (o)v]) ~ ‘IA4X (2.25)

at around the time of freeze-out. Moreover, in order for the relic-abundance contribution
from freeze-out to agree with observation (i.e., €, ~ Qpm), this cross-section must be
roughly (o|v|) ~ 1 pb at such times.

Given this constraint, we can substitute back into Eq. (2.24) in order to find that

[AGM]” 6 o'

PP: oY) ~ (1pb)x IS
X

(2.26)

Since v? ~ O(10712), we see that extremely large values of AGYN) would be required to
overcome this velocity suppression and yield a y/nucleon cross-section of sufficient magni-
tude to be probed at any foreseeable direct-detection experiment, even for low-mass dark
matter. Indeed, since both (o|v|) and aé%N) depend on A in the same manner for a thermal
relic, this unhappy consequence exists regardless of the scale A at which €, is generated via
thermal freeze-out for a dark-matter particle with this coupling structure. Unfortunately,

(N)

we have already seen that our pseudoscalar Ag\"Y/ coefficients, although significantly en-
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hanced relative to their axial-vector counterparts, are not large enough to overcome this
degree of velocity suppression. Thus we do not expect the operator OgIP) to have much
relevance for direct-detection experiments.

Let us now turn to the situation in which x primarily couples to SM particles through
the operator O,(qup). In sharp contrast to the OgIP) case discussed above, in this case only
the quark bilinear gives rise to a velocity suppression in the cross-section for non-relativistic
x/nucleon scattering. This cross-section therefore scales like

~ 2
op. gl alAd] iy
- SD M AL

(2.27)

Moreover, in this case we see that dark-matter annihilation in the early universe is p-wave
suppressed, since the initial state is CP-even, with quantum numbers S = 1, L = 1, and

J = 0. The annihilation cross-section in this case scales like

C2m

2
SP: (o)) ~ v} ‘IA4X : (2.28)

where v, , denotes the average speed of x and %\ at freeze-out. Typically, U>2<,fr ~ 0.1.
Imposing, as before, the condition (o|v|) ~ 1 pb in order to ensure that Q, ~ Qpu, we find
that

10 [AGM)? i o
SP: O'g]()N) ~ (1 pb) x [Ad™] Hoen .

(2.29)

Since the velocity suppression v2 ~ O(1079) obtained in this case is far less severe than that
obtained in Eq. (2.26), we see that only moderately large values for the AGWN) coefficients
are required in order to compensate for this velocity suppression and render the operator
OSIP) relevant for direct detection. Moreover, as we have seen in Sect. 2.1, these coefficients
are indeed enhanced by the required amount.

We thus conclude that O§<qu), rather than (’))((]ZP), has greater prospects for being relevant

to future direct-detection experiments. As a result, we shall concentrate on OSIP) in the

remainder of this chapter.
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2.3 Phenomenological consequences: Direct detection and

related benchmarks

We now turn to investigate the direct-detection prospects for a dark-matter candidate in
each of the three benchmark coupling scenarios defined in Sect. 2.1.3. In particular, we wish
to determine the bounds imposed by existing direct-detection data on the corresponding
suppression scale My, My, or My in each of these scenarios as a function of the dark-matter
mass m,, and the coupling angle 6, and to assess the extent to which the next generation of
direct-detection experiments will be able to probe the remaining parameter space in each
scenario.

In interpreting the results of such a direct-detection analysis, it is also useful to exam-
ine the relationship between the region of parameter space accessible by direct-detection
experiments in each of these coupling scenarios and regions of parameter space which are
relevant for other aspects of dark-matter phenomenology. For example, thermal freeze-out
offers a natural mechanism for generating a relic abundance of the observed magnitude
for a massive dark-matter particle which can annihilate to SM particles. It is therefore
interesting to examine whether successful thermal freeze-out can be realized within the re-
gion of parameter space accessible to the next generation of direct-detection experiments
for a dark-matter particle which annihilates primarily via O&%P). In addition, new-physics
searches in a variety of channels at the LHC constrain the parameter space of operators
which couple the dark and visible sectors. It is therefore also interesting to examine the
interplay between these constraints and those from direct-detection data.

The plan of this section is as follows. We begin by briefly reviewing the physics of
direct detection and assessing the extent to which the next generation of direct-detection
experiments will be capable of probing the parameter space of each of our benchmark
coupling scenarios. We then identify the regions of that parameter space which yield a
thermal dark-matter relic abundance of the correct order, and discuss how LHC data serve

to constrain that parameter space. As we shall see, the magnitudes of the pseudoscalar
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AGMY) coefficients have a profound effect on the direct-detection phenomenology of a dark-

matter particle which interacts with the visible sector primarily via the OSIP) operators.

2.3.1 Direct detection

The principal physical quantity probed by direct-detection experiments is the total event
rate R for dark-matter scattering off the nuclei in the detector target. For a generic dark-
matter model, the expectation value for R at any particular such experiment is obtained
by integrating the differential rate dR/dER over the range of recoil energies Er probed by
that experiment, convolved with the appropriate detector-efficiency function £(Eg). This
differential event rate (for reviews, see, e.g., Refs. [14, 15]) is given by the general expression

N loc 00
dit -~ Doy / vf (V) <dU—XT> v, (2.30)

dE R mx >Umin

where N7 is the number of nuclei in the detector target, where plfc is the local density of x
within the galactic halo, where f(%) is the velocity distribution of dark-matter particles in
the reference frame of the detector, where v = |0, and where do,7/dER is the differential
scattering cross-section. The lower limit v,;, on the integral over halo velocities corresponds
to the kinematic threshold for non-relativistic scattering of a dark-matter particle off one
of the target nuclei.

While substantial uncertainties exist concerning many of the aforementioned quantities
which characterize the properties of the dark-matter halo, our focus here is on the pseu-

(N) and their implications for direct detection. We therefore

doscalar nucleon coefficients Ag
adopt a set of standard benchmark assumptions about the dark-matter halo. In particular,
we take pi?c = 0.3 GeVem™3; we take f() to be Maxwellian, but truncated above the
galactic escape velocity vese &~ 550 km/s in the halo frame; and we take v, = 232 km/s as
the speed of the Earth with respect to the dark-matter halo. Moreover, we focus on the case
in which x/nucleus scattering is purely elastic, for which vy, = / Ermy/ ZuiT, where mp

denotes the mass of the target nucleus and where j,7 is the reduced mass of the y/nucleus

system.
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The differential cross-section for y/nucleus scattering is given by the general expression

dO’XT . mr
dEr ~ 2m?

(IMyrl?) (2.31)

where (|M,r|?) is the corresponding squared S-matrix element, averaged over initial spin
states and summed over final spin states. For the scalar-pseudoscalar interaction we are
considering here, we recall Eq. (2.7) to find that this matrix element in the non-relativistic

limit takes the form

GxN _ —
Myr = Z %WHXX’XMTHN’PN]TZ-)

N=n,p
dm,mp , gy N oS
~ G (€T D ZTYIG SaIT) (2.32)
N=n,p MmN

where (T ]5 ~N|T;) denotes the matrix element for the nucleon-spin operator within the target
nucleus and where ¢'is the momentum transferred to the nucleus. Note that the mp/my fac-
tor in Eq. (2.32) arises due the difference in normalization between the constituent nucleons
and the bound-state nucleus, where we have retained the relativistic normalization in both
cases. Proceeding by analogy with the axial-vector case [49], we invoke the Wigner-Eckart
theorem in order to make the replacement

TlSniT) — S 1y 7y (2.33)

in Eq. (2.32), where (Sn)/Jr = (T¢|Sn|Ti)/Jr again represents the fraction of the total

nuclear spin carried by the nucleon /N. In the approximation that m, ~ m,,, this yields

dm,my

JrA2my <9Xp<5p> + an<Sn>> (gil)%i

x (Ty|q- Jr|Ty) . (2.34)
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The spin-averaged squared matrix element is therefore

9 16mim2T 2
<|MXT| >: J%(QJT-i-l)m?VA‘l gxp<5p>+9xn<sn>

< > ATy|q - JrIT)(THG - Jr|Ty)

T, Ty
16m2m|q? Jr+1 2
x'"T T Ixp 9xn
= IXp X (GN) . 2.
£ A= (2205, + 25:(50)) (2.35)

Substituting this result into Eq. (2.31) and dividing by 16mim% in order to account for
the difference between relativistic and non-relativistic normalization conventions for the
and nucleus states, we arrive at our final expression for the differential cross-section for

X/nucleus scattering:

00 mZEm Jr+1
OEr  3mv?m%  Jr
g Jvn 2 -
% (2205,) + 25(80)) FA(E) . (2.36)

where ﬁ2(ER) is a nuclear form factor. Note that we have explicitly distinguished this form
factor from the usual form factor F?(Eg) = S(Eg)/S(0) associated with spin-dependent
scattering via an axial-vector interaction. Indeed, in the axial-vector case, the scattering
cross-section depends on the projection of S n along the direction of the spin vector §X of the
dark-matter particle. By contrast, in the scalar-pseudoscalar case, the corresponding cross-
section depends on the projection of Sy along the direction of the momentum transfer [50].

A wealth of data from direct-detection experiments already significantly constrains the
set of possible interactions between dark-matter particles and atomic nuclei, and several
additional experiments are poised to probe even more deeply over the coming decade into
the parameter space of allowed couplings between the dark and visible sectors. For each
of our three benchmark coupling scenarios for scalar-pseudoscalar interactions, the relevant
parameter space comprises m,, 0, and the corresponding suppression scale Mj, My, or

M. The first of these parameters enters the expected event rate for a given detector
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in a complicated way through the scattering kinematics, while the second and third enter
through the ratios g,,/A? and gy, /A? in Eq. (2.36), as discussed in Sect. 2.1.3.

Since the y/nucleus interactions which follow from O&qu) involve the nuclear spin Sy,
the relevant constraints on these parameters are those which pertain to spin-dependent scat-
tering. Several direct-detection experiments already provide comparable, stringent limits
on spin-dependent scattering [51-53]. Moreover, the next generation of these experiments,
including COUPP-60 and PICO-250L, are projected to significantly extend the reach of
these experiments in the near future [54]. In this chapter, our primary aim is to investigate
the sensitivity of these latter experiments to scalar-pseudoscalar interactions between dark-
matter particles and atomic nuclei. We therefore focus on the results from COUPP-4, for
which the experimental setup and analysis parallel those for COUPP-60 and PICO-250L,
when discussing existing limits on spin-dependent scattering. These limits are typically ex-
pressed as bounds on the spin-dependent dark-matter /proton scattering cross-section 0)(2&
for a dark-matter particle whose interactions with nuclei are primarily due to the axial-

AA . . .
vector operators (’))((q ). This cross-section may be parametrized as

3@2 N2
AA) _ XPTXP
o = 257, (2.37)

where p, is the reduced mass of the x/proton system and where
oy = 3 A (238)

are the axial-vector analogues of the x /nucleon couplings g,y given in Eq. (2.20). Note that
because we take x to be a Dirac fermion, this expression differs by a factor of 4 from the

standard expression for a Majorana fermion. The differential cross-section for y/nucleus
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(AA)

scattering for such an interaction, expressed in terms of oy, ’, is given by

ao_;[;“A) B 20‘&?,A)mT Jr+1
OFER N 3u12)112 Jr
2
x ((Sp>+aﬂ<sn>> F*(ER) . (2.39)
Gxp

(AA)

It is therefore straightforward to convert the limits on oy, ’ into limits on the expected
event rate for dark-matter scattering off nuclei within the detector volume. The latter limits
are model-independent and applicable to any interaction between dark-matter and atomic
nuclei, including the scalar-pseudoscalar interactions which are the focus of this current
work.

The bounds implied by COUPP-4 data on the parameter space of each of our three cou-
pling scenarios, along with the projected reach into that parameter space for both COUPP-
60 and PICO-250L, will be discussed in the next section. These bounds and sensitivities
will be expressed as contours in (m,, M, ) space for each scenario and for several benchmark
values of 8, where M, denotes the corresponding suppression scale My, My, or M. In
evaluating these contours, we will make use of the DMFormFactor package [50]. We will
also include bands indicating the uncertainties in these contours which arise as a result of

the uncertainties in the nucleon couplings g, discussed in Sect. 2.1.

2.3.2 Relic abundance

Thermal freeze-out is a natural mechanism through which a sizable relic abundance can be
generated for a massive particle with suppressed couplings to SM states. It is therefore useful
to identify the regions of parameter space within which the relic abundance of a dark-matter
particle which annihilates via the OSIP) operator reproduces the observed dark-matter relic
abundance Qpy &~ 0.26 [8]. In this section, we briefly summarize the relic-abundance
calculation for an interaction of this sort. Note that we take x to be a Dirac fermion

throughout and make use of the general formalism in Ref. [55] for multi-particle freeze-out

dynamics in order to evaluate the total relic abundance of x and its conjugate ¥, which in
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this case represent distinct degrees of freedom.
The evolution of the total number density ¥ =Y, + Y5 of particles which contribute to
the dark-matter abundance at late times due to thermal freeze-out in this scenario can be

described by the single differential equation

ay

—r = sl [Y2— (veap] (2.40)

where Y% is the value which Y would have were y and X in thermal equilibrium at
time ¢; where s = 272g,s(T)T°/45 is the entropy density of the universe, expressed here
in terms of the temperature T of the thermal bath at time ¢ and the number of effec-
tively massless degrees of freedom g¢,(7T') at that temperature T'; and where (o|v|) is the
thermally-averaged total cross-section for dark-matter annihilation. The total present-day
dark-matter-abundance contribution from x and X due to thermal freeze-out is related to

the present-day value Yo of Y by

Q, = P _ Snow iy Yoow (2.41)
Pecrit Pecrit

where spow ~ 2.22 x 10738 GeV? and perit ~ 4.18 x 10747 GeV* are the present-day entropy

density and present-day critical energy density of the universe, respectively.
In the case in which x and ¥ annihilate primarily to SM quarks via (’))(ZP), we find that
the thermally-averaged annihilation cross-section for processes of the form Yy — gq is given

by
2
C
S a7

(olv]) = 256mmB Ko (x) A q(T) (2.42)

where we have defined

T, (z) = A:; ds\/s(s—4m§)3(s—4mg)f<1 <x—\/§> . (2.43)

my

In these expressions, z = m, /T, s = (py + pg)2 is the usual Mandelstam variable (not the

entropy density of the universe, and not the strange quark either), and Kj(z) and Ky(z)
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denote the modified Bessel functions of the second kind of degree one and two, respectively.

In the next section we will display contours corresponding to the condition €, = Qpy,
as well as contours of (o|v|). In accord with expectation, we will find that a relic abundance
of the correct order is obtained for (o|v|) ~ 1 pb. In interpreting these results, it should
be noted that €1, depends on m, in the usual manner, whereas this quantity depends on 6
and the corresponding suppression scale My, M, or My in each of our coupling scenarios
through the ratio ¢2/A* in Eq. (2.42). Generally speaking, Q, o (o|v]|)~! for thermal freeze-
out, and therefore a higher suppression scale corresponds to a smaller (o|v|) and a larger

relic abundance.

2.3.3 Collider constraints

Colliders offer a complementary way of probing the couplings between dark-sector and
visible-sector fields. In particular, the effective operators given in Eq. (2.1) generically
contribute to the event rate for processes of the form pp — X + Fp at the LHC — i.e.,
so-called “mono-anything” processes — where X denotes a single SM particle such as a
photon (the monophoton channel), an electroweak gauge boson, or even a “particle” such
as a hadronic jet (the monojet channel). While the results depend on the particular operator
and the relative values of the coupling coefficients (see, e.g., Ref. [56-61]), the most stringent
constraints on such operators are typically those derived from limits on monojet production
at ATLAS [62, 63] and CMS [64, 65] and from limits on the production of a hadronically
decaying W* or Z boson at ATLAS [66, 67]. We will henceforth focus on these channels,
but we also note that a combined analysis [68, 69] involving all relevant pp — X + Ep
processes would lead to a slight enhancement of the bounds from these two leading channels
individually. Moreover, we also note that searches in the mono-b and ¢t + F7 channels can
potentially supersede these limits for models in which the couplings between the dark matter
and the third-generation quarks are enhanced [48], as is the case in our Scenario II.

We now proceed to derive a set of rough limits on the corresponding suppression scale

My, My, or My associated with each of our benchmark coupling scenarios. We derive these
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limits under the assumption that a contact-operator description of the interactions between
x and the SM quarks remains valid up to the center-of-mass-energy scale /s ~ 8 TeV of
the LHC. We then return to discuss how these results are altered in cases in which the
contact-operator description is valid at scales relevant for direct detection, but breaks down
at scales well below /s.

We begin by noting that the monojet [65] and mono-W/Z [66, 67] analyses which cor-
respond to the most stringent current limits on dark-matter production at the LHC are
effectively counting experiments which serve to constrain the total cross-section for the
corresponding production processes. A lower limit M, > My, on the heavy mass scale
M, defined for the operator D3 in the standard operator-classification scheme of Ref. [70]
[which corresponds to our scalar-pseudoscalar operator qup)] from either of these analyses
corresponds to a limit My > Mpin/ 21/6 in our Scenario II with § = 7 /4. We also note that
the production cross-section for each process scales like o1(m,,, M, 0) o MI_4 in Scenario I,
whereas it scales like o 1r1(my, M, 0) o Mﬁgﬂ in Scenarios II and III. It therefore
follows that bounds on M; can be derived from the bounds on My, quoted in Refs. [65]
and [66, 67] and the ratio of the corresponding production cross-sections for the same m,,

and the same fiducial value of Mr. In this analysis, we choose 1 TeV as our fiducial mass

scale. We therefore have

MI > o1 (mX7 1 TGV, 9) 174 Mmin 3/2 . (244)
GeV ™~ [20n(my,1TeV,7/4) 10 GeV

Likewise, lower limits on My and My may be derived using the relation

o, (my, 1 TeV, §)
2 O'H(mx, 1 TeV, 7T/4

1/6
Mum 2 [ )} Mmin - (2.45)

Constraint contours corresponding to the limits on contact-operator interactions from
these most recent monojet and mono-W/Z analyses will be discussed in the next section for
each of our three coupling scenarios. The relevant cross-sections in each case are evaluated

at parton level using the MadGraph/MadEvent package [71] (with the CTEQ6L1 PDF
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set [72]) including the contribution from processes involving b quarks in the initial state.
The event-selection criteria we employ in estimating these limits are modeled on those
described in Ref. [65] for the mono-jet channel and Ref. [66, 67] for the mono-W/Z channel,
and we have verified that minor alterations in these cuts do not have significant effects on
our results.

As mentioned above, it is important to note that constraints derived in this manner are
valid only in the regime in which interactions between dark-matter particles and SM quarks
can legitimately be modeled as contact operators at energies comparable to y/s. In other
words, they are valid for processes in which the mass my of the particle ¢ which mediates
the interaction is much larger than the momentum transfer to the dark-matter system. By
contrast, for lower mediator masses mg < 1 TeV, these limits are no longer applicable —
even for mg > m,. Constraints on interactions between dark-matter particles and SM
quarks can still be derived from LHC data for theories in which mg < 1 TeV; however, such
constraints are highly model-dependent, sensitive to the full structure of the dark sector,
and frequently weaker than the naive limits one would obtain for these same channels in
the contact-operator regime [73, 74].

On the other hand, while the contact-operator approximation becomes unreliable from
the perspective of collider phenomenology for mg < 1 TeV, it remains valid for direct-
detection phenomenology down to far lower values of mg. Indeed, interactions involving
light mediators can still be reliably modeled as contact interactions at energies relevant for
direct detection, provided that mg 2 1 GeV. Moreover, the relic-density calculation in
Sect. 2.3.2 also remains qualitatively unaltered in the presence of a light mediator down to
the kinematic threshold my = m,. Below this threshold, annihilation into pairs of on-shell
mediators becomes kinematically accessible. Moreover, below this threshold, the behavior
of the thermally-averaged annihilation cross-section transitions from (o|v|) o mi /m;l5 to
(olv]y x 1/ mi because m, is always the dominant energy scale entering into the propaga-
tors for all diagrams contributing to this annihilation cross-section. Above this kinematic

threshold, by contrast, we find that the correct relic density can be obtained for perturba-
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tive couplings between ¢ and both the dark-sector and visible-sector fermions in our theory,
provided that m, < O(10 TeV).

In light of these considerations, we emphasize that the monojet and mono-W/Z limits
we have discussed here should not be interpreted as exclusion bounds, but rather as relations
which indicate the regions within which LHC data can be interpreted as requiring that the
mediator particle(s) ¢ not be particularly heavy. Indeed, the suppression scale My, Mg, or
M1 in each of our three coupling scenarios can still be large even if my is light, provided

the coupling between ¢ and either y or the SM quarks is small.

2.4 Results

In the previous section, we outlined the physics that determines the reach of various direct-
detection experiments, assuming only pseudoscalar interactions between dark matter and
Standard-Model quarks. We also outlined the physics that determines the cosmological
dark-matter abundances after freeze-out, and summarized the physics that determines the
reach of monojet and mono-W/Z searches at the LHC. As we saw in Sect. 2.3, all of these
calculations depend to varying degrees on the particular flavor coupling structure assumed
(i.e., whether we are operating within Scenario I, Scenario II, or Scenario III), and on the
particular value of 6 in each case.

The results of these analyses are shown in Fig. 2.2. The reaches of the current and
future direct-detection experiments considered in this study are shown in red, purple, and
blue (along with their associated uncertainties); for the COUPP-60 experiment we have
assumed an exposure of 10° kgd while for the PICO-250L experiment we have assumed
three years of running with a 500 kg fiducial mass [54]. Likewise, the black contour in each
case corresponds to the condition €2, = Qpy;, which one would naively expect to occur for
(o|v|) = 1 pb. The orange dashed curve, by contrast, explicitly indicates the points for which
(o|v]) =1 pb, and the peach-colored and yellow-colored bands around it correspond to the
regions within which the annihilation cross-section matches this value to within an increasing

number of powers of ten (i.e., 0.1 pb < (o|v|) < 10 pb and 0.01 pb < (o|v]) < 100 pb

93



respectively). Finally, the blue dashed curve and cyan dot-dashed curve respectively indicate
the lower limits on My, My, or My from monojet and mono-W/Z searches at the LHC in
the case of a heavy mediator.

Note that we have included the abundance and collider curves within these plots merely
in order to provide guidance when interpreting the impact of the direct-detection curves,
and to indicate regions of specific interest. In particular, the collider and abundance curves
do not represent strict bounds in any sense. For example, within each panel of Fig. 2.2, the
region of the (m,, M,) plane below the Q, ~ Qpn contour (with M, representing either
My, My, or M, as appropriate) is actually consistent with observational limits under the
assumption that some additional contribution makes up the remainder of Qpy;. Conversely,
the region above this contour can also be consistent with a thermal relic dark-matter can-
didate if the branching fraction for dark-matter annihilation into visible-sector particles is
less than unity due to the presence of additional annihilation channels. This will also be
true if an additional source of entropy production dilutes the relic abundance after freeze-
out. Moreover, as discussed in Sect. 2.3.2, the abundance-related orange and black curves
in Fig. 2.2 do not represent true relic-density limits if mg < m,. Similarly, as discussed in
Sect. 2.3, our monojet and mono-W/Z collider curves only represent exclusion bounds under
the assumption that the contact-operator description of our scalar/pseudoscalar interaction
remains valid up to the TeV scale. When this is not the case, the bounds can be far weaker
or even effectively disappear.

As we see from Fig. 2.2, the dark-matter abundance does not depend significantly on the
value of # in Scenarios I or III. By contrast, in Scenario II, our results depend sensitively
on 6 due to the enhanced couplings to third-generation quarks relative to those of the first
and second generations. Indeed, in Scenario II the abundance contours have sharp kinks or
discontinuities that are not apparent in Scenarios I or III. This behavior ultimately arises
because the couplings to the SM quarks in Scenario II are proportional to their masses,
leading to a dramatic enhancement in the annihilation rate when the thresholds for new

annihilation channels into heavy quark species are crossed. However, this assumes that
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the dark-matter coupling to these heavy-quark species is substantial — a feature that is
ultimately #-dependent.

Overall, examining the plots in Fig. 2.2, we see that there are three main conclusions
which may be drawn. The first and most significant result demonstrated in Fig. 2.2 is
that there are regions of parameter space for which a thermal abundance matching Qpyy is
not only consistent with current experimental limits on the pseudoscalar operator, but can
actually be probed by the next generation of direct-detection experiments. This does not
occur in merely one or two fine-tuned cases, but rather as a fairly generic result for all three
scenarios defined in Sect. 2.1 and for most values of 6.

Second, we observe that in some cases, the opposite is true: the reach of our direct-
detection experiments is significantly less than might be expected based on the magnitudes
of the AGWY) coefficients. This is particularly true for the 6 = /4 case of Scenario I,
or the & = 0 case of Scenario II. Indeed, in such cases, we see that the direct-detection
experiments cannot even probe that portion of the parameter space that would be associated
with a thermal relic. Moreover, we see from Fig. 2.2 that the uncertainties in these cases are
sufficiently broad that the direct-detection experiments may not even have any significant
reach at alll Ultimately, these effects can easily be understood in relation to Fig. 2.1,
where we have seen that for both of these cases the effective dark-matter /nucleon couplings
themselves come extremely close to vanishing. (A similar thing would also have happened
for 6 ~ /8 in Scenario I1I, if such a #-value were being plotted in Fig. 2.2.) As discussed in
Sect. 2.1, these are situations in which the dark matter couples significantly to quarks, but
not to nucleons. In such cases, we conclude that the non-observation of a dark-matter signal
in COUPP-4 and in future direct-detection experiments need not rule out the existence of
dark matter which nevertheless still couples to quarks and which could therefore potentially
produce a signal at collider experiments.

Finally, conversely, we see that the effects of isospin violation (i.e., variations in the
value of ) can have dramatic effects, potentially enhancing the reach of direct-detection

experiments quite significantly compared with the reach of these experiments when nucleon-
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level isospin symmetry is preserved. For example, in Scenario I, we note that the reach of
PICO-250L is approximately 20 times greater (in terms of the values of M being probed)
for # = 0 than for 6 = 7/4.

2.5 Conclusions

In this chapter, we have studied the sensitivity of direct-detection experiments to dark
matter which couples to quarks through dimension-six effective operators of the form
O)((%P) ~ ¢,(Xx)(@iv°q), utilizing (for illustrative purposes) several distinct benchmark
choices for the quark couplings c¢,. As we discussed, such effective operators give rise
to velocity-suppressed spin-dependent dark-matter/nucleon scattering. Such operators can
also give rise to Xx — ¢q annihilation from a p-wave initial state, as well as “mono-anything”
signals at the LHC.

Although it might naively be supposed that velocity-dependent spin-dependent scatter-
ing would produce an unobservably small event rate at direct-detection experiments, we have
demonstrated that this in fact need not be the case. Indeed, as we have seen, the velocity-
suppression factors that arise in the pseudoscalar matrix element can be compensated by
extra enhancement factors which also emerge in the pseudoscalar case when relating the
corresponding pseudoscalar quark currents to effective pseudoscalar nucleon currents. These
latter enhancement factors are of size O(10% —10?) relative to similar factors associated with
velocity-independent spin-dependent scattering (such as arises through axial-vector inter-
actions). As a result, contrary to popular lore, we see that velocity-suppressed scattering
may actually be within reach of current and upcoming direct-detection experiments. This
then necessitates a sensitivity study of the sort that we have performed.

Specifically, our main conclusions are as follows:

e We have shown that there exist a large class of models for which the couplings of the

O&qu) operators are consistent with a thermal relic density which matches observation.

e A subset of the above parameter space is excluded by current bounds from COUPP-4,
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and it is expected that an even larger region of this viable parameter space will be

probed by COUPP-60 and PICO-250L.

e While part of the parameter space may be constrained by LHC bounds if the contact-
operator approximation remains valid at the TeV scale, there are a wide range of
models for which spin-dependent scattering is actually the discovery channel. As we
have seen, this is true because the velocity-suppression effects normally associated
with pseudoscalar couplings can be overcome through nucleonic effects that emerge

in relating quark pseudoscalar currents to nucleon pseudoscalar currents.

e Conversely, there are special situations (often associated with isospin-preserving lim-
its) in which these same nucleonic effects render direct-detection experiments utterly
insensitive to non-zero couplings between dark matter and SM quarks. In other words,
we have seen that dark matter can have a significant, non-vanishing coupling to quarks
and yet simultaneously have no coupling to nucleons! This opens up the intriguing
possibility that collider experiments and other indirect-detection experiments could
potentially see dark-matter signals to which direct-detection experiments would be
utterly blind. This may be extremely relevant in case of future apparent conflicts
between positive signals from collider experiments and negative results from direct-

detection experiments.

e Finally, we see that isospin-violation generally tends to enhance dark-matter signals in
direct-detection experiments relative to the signals which would have been expected
if the quark/nucleon couplings were isospin-preserving. Moreover, for pseudoscalar
couplings, this enhancement is not just a factor of two or three (as would be the
case for axial-vector interactions), but a factor of ten or more. This then opens up
the possibility that direct-detection experiments can be sensitive to such pseudoscalar

couplings.

A few comments are in order, especially in relation to the last two points above. In

Scenario I, dark-matter/nucleon couplings are maximally isospin-violating when 6 =~ 0 or
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0 = m/2. Interestingly, these cases provide the greatest sensitivity for direct-detection
experiments (such as PICO-250L) which are sensitive to spin-dependent scattering. By
contrast, detectors which are only sensitive to spin-independent scattering would have no
chance of discovering such events, even if velocity-dependent effects are included. This is
because, as discussed in Sect. 2.1, all terms originating from OSIP) which contribute to the
scattering cross-section — and not just those at leading order — are spin-dependent.

On the other hand, we have seen that the sensitivity of direct-detection experiments
is especially poor in the isospin-conserving cases (such as 6 ~ 7/4 in our Scenario I) for
which the couplings to up- and down-quarks are similar. This poor sensitivity is ultimately
the result of a destructive interference amongst these quark-level couplings, resulting in a
small net coupling to both protons and neutrons. Indeed, in the limit within Scenario I for
which m, 4 < ms and AG®) ~ 0, we find Gxp» Gxn — 0 identically at 6 = 7/4. Note that
result is detector-independent: one obtains a large suppression in the event rate regardless
of whether the detector is sensitive to spin-dependent scattering from protons or neutrons.
Moreover, since the dark-matter bilinear is a scalar, dark-matter annihilation is p-wave-
suppressed. Thus, although the annihilation rate at the time of freeze-out may have been
large enough to ensure the correct relic density, the annihilation cross-section at the current
epoch would be so small as to be unobservable. Dark-matter models of this sort would be
difficult to probe via any direct- or indirect-detection experiments.

In this chapter, we considered three different scenarios for the couplings ¢, between the
dark matter and SM quarks. These correspond to different weightings for the various con-
tributions from the light quarks to the resulting dark-matter/nucleon couplings and their
associated dark-matter scattering rates. In Scenario I, for example, the dominant contri-
butions came from the couplings of the quarks of the first generation, but we found that
there also exist small contributions from the strange quark and heavier quarks. Likewise,
in Scenario I we found that g,,, gyn — 0 for § = 7/4. In Scenario III, by contrast, the
additional contributions from the strange and heavier quarks are absent. Moreover, since

the ¢, coefficients of Scenario III scale with the masses of the quarks, we instead find that

o8



Gxps Gxn — 0 for tan @ = m, /mg. In this connection, it is perhaps worth emphasizing that
it is only for the pseudoscalar interactions that there exist values of ¢ for which both g,,
and gy, vanish simultaneously. As can be seen in Fig. 2.1, this does not happen for any of
the analogous couplings in the axial-vector case.

Finally, Scenario II is an example of a class of models in which the largest dark-matter
coupling is to the strange quark or the heavy quarks. As discussed earlier, this particular
example is motivated by minimal flavor-violation. As evident from Fig. 2.2, the sensitivity
of direct-detection experiments to viable dark-matter models is suppressed for such cases.
It is clear why this occurs. In Scenario II, the largest dark-matter couplings are those
to the second- and third-generation quarks — indeed, these are ultimately bounded by
constraints on the relic density. Unfortunately, the contributions from these second- and
third-generation quark couplings to dark-matter scattering are relatively small as a result
of a suppression of the corresponding nucleon enhancement factors, while the coupling to
first-generation quarks is necessarily small by assumption in this scenario.

Depending on the details of the short-distance (ultraviolet) physics model we imagine,
dark matter which couples to quarks through an effective operator such as Og{qu) may also
be amenable to “mono-anything” searches at the LHC. In particular, for isospin-conserving
variants in which the first-generation quarks dominate the scattering, LHC searches may be
the only viable options for discovery. Moreover, LHC sensitivity may be enhanced for flavor
structures such as those in Scenario II which are motivated by minimal flavor-violation, due
to the large contribution to the LHC event rate that arises from the couplings to the heavy
quarks. Ultimately, however, LHC sensitivity depends on the details of the model, and in
particular on the flavor structure of the couplings. For the wide class of models in which
such large LHC event rates do not occur, spin-dependent direct-detection will then be the

discovery search channel.
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Figure 2.1: The effective proton and neutron dark-matter couplings g, (red) and gy, (blue),
plotted as functions of # for each of the three coupling scenarios discussed in the text. Panels
in the upper row show the behavior of the pseudoscalar couplings in each scenario, while the
panels in the lower row show the behavior of the corresponding axial-vector couplings. The
dashed lines in each panel correspond to the central values for these couplings, while the
shaded regions indicate the 1o uncertainty bands around these central values. Note that in

each panel, both g, and g,, have been normalized to the maximum possible central value
of |gyp| attainable in each scenario.
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Figure 2.2: Experimental reach of direct-detection experiments, assuming pseudoscalar in-
teractions with the benchmark coupling structures of our Scenario I (top row), Scenario 11
(center row), and Scenario III (bottom row), with § = 0 (left column), § = /4 (center
column), and € = 7/2 (right column) in each case. These coupling structures are discussed
in Sect. 2.1.3, and each panel is plotted as a function of the dark-matter mass m, and
the mass scale My, My, or My associated with the corresponding scenario. We see from
these plots that there are many situations in which upcoming direct-detection experiments
can easily reach into the range of greatest interest for thermally-produced dark matter and

its possible collider signatures — even when only pseudoscalar interactions between dark
matter and Standard-Model quarks are assumed.
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CHAPTER 3
A NEW CHANNEL IN DARK-MATTER
COMPLEMENTARITY

There are many seemingly-independent signals we can search for in the hunt for dark
matter. At colliders, we can search for dark matter production by searching for high pr jets
and W/Z bosons associated with large missing energy /momentum — a sign of the inert dark
matter streaming freely through the detector. Another possibility is the direct detection
of interactions between galactic-halo dark matter and standard model target material at
sensitive underground detectors. A third avenue involves the indirect detection of dark
matter through self-annihilations of it’s cosmological abundance into standard model decay
products. These indirect searches can be carried out by observing, with both terrestrial and
satellite telescopes, astrophysical objects expected to have high densities of cosmological
dark matter. As we have discussed, these seemingly-different processes are often related
to each other through crossing symmetries, and thus can lead to a rich complementarity
structure between the processes. In this way, we can use different experiments to cover
different areas of the parameter space and thus “cover more ground.” Alternatively, we
can use the results (ideally, the detection of dark matter) at one experiment to predict the
results of another experiment.

Most studies of this complementarity implicitly assume that the dark sector consists
of a single particle x. Indeed, many studies further focus on a particular effective 2 — 2
interaction between dark matter and ordinary matter, as sketched in Fig. 3.1(a); the three
complementary search strategies then correspond to physical processes in which we imagine
time flowing in the directions associated with the three different blue arrows. Indeed,
because of the assumed single-particle nature of the dark sector, we further observe that
the scattering that underlies direct-detection experiments is necessarily elastic. Likewise,
the dark-matter-induced production of ordinary matter that underlies indirect-detection

experiments exclusively takes place through annihilation of the dark-matter particle with
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Figure 3.1: (a) In single-component theories of dark matter, the 2 — 2 amplitudes for
dark-matter production, annihilation, and scattering are related to each other through
various crossing symmetries. These different processes correspond to different directions
(blue arrows) for the imagined flow of time through a single four-point diagram. (b) In multi-
component theories of dark matter, by contrast, there can be many different dark-matter
components x; with differing masses m;. Taking m; # m; then changes the kinematics
associated with each of the previous complementary directions: dark-matter production
becomes asymmetric rather than symmetric; dark-matter annihilation of one dark particle
against itself becomes co-annihilation between two different dark species; and elastic dark-
matter scattering becomes inelastic, taking the form of either “down-scattering” or “up-
scattering” depending on whether it is the incoming or outgoing dark-matter particle which
has greater mass. Even more importantly, however, the existence of a non-minimal dark
sector opens up the possibility for an additional process which is also related the others by
crossing symmetries: dark-matter decay from heavier to lighter dark-matter components.
This process corresponds to a diagonal direction for the imagined flow of time, as shown,
and thus represents a new direction for dark-matter complementarity.

itself or its antiparticle.

This situation becomes far richer in multi-component theories of dark matter'. In par-
ticular, if we assume that the dark sector consists of at least two different dark-matter
components x; and x; with differing masses m; # m;, then for ¢ # j the situation differs
from the single-particle case in two fundamental ways. First, the kinematics associated
with each of the traditional complementarity directions is altered: dark-matter production
becomes asymmetric rather than symmetric; dark-matter annihilation of one dark par-

ticle against itself or its antiparticle becomes co-annihilation between two different dark

For examples of top-down models which give rise to specific multi-component scenarios, see [75-80]
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species; and dark-matter scattering — previously exclusively elastic — now becomes inelas-
tic, taking the form of either “up-scattering” [25, 81-83] or “down-scattering” [27, 84-86]
depending on whether it is the incoming or outgoing dark-matter particle which has greater
mass. These kinematic changes are illustrated in Fig. 3.1(b), and can significantly affect
the phenomenology of the corresponding processes. But perhaps even more importantly, an
entirely new direction for dark-matter complementarity also opens up: this is the possibility
of dark-matter decay from heavier to lighter dark-matter components. Indeed, this process
corresponds to the diagonal direction for the imagined flow of time, as shown in Fig. 3.1(b),
and thus represents an entirely new direction for dark-matter complementarity. Such a
direction was not available in single-component theories of dark matter due to phase-space
constraints, and is ultimately driven by the non-zero mass difference between the associated
parent and daughter dark-matter particles.

Thus, if the dark sector consists of multiple components, a generic four-point interaction
of the sort shown in Fig. 3.1 will lead to an enhanced set of complementarities across dif-
ferent classes of dark-matter experiments. Direct-detection experiments will potentially be
sensitive to nuclear recoils from elastic scattering, up-scattering, and down-scattering, while
indirect-detection experiments will potentially be able to measure fluxes from dark-matter
self-annihilation, dark-matter co-annihilation, and dark-matter decay. Likewise, collider
experiments will potentially involve dark-matter production which is both symmetric and
asymmetric. Of course, neither inelastic down-scattering nor dark-matter decay will be rel-
evant for present-day experiments unless the more massive dark-matter components have
significant cosmological abundances at the present time; indeed, this already places one
set of constraints on their decay widths. In this connection, we also note that this same
four-point interaction can in principle also give rise to an additional process in which a
heavy ordinary-matter particle decays to a lighter ordinary-matter particle along with two
dark-sector particles. However, for all cases involving two quarks (which will be our main
interest in this chapter), such processes cannot occur in a flavor-conserving theory. Pro-

cesses of this type will therefore not be considered further in this work. We nevertheless
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note that in general, exotic decays of the Higgs or of Standard-Model electroweak gauge
bosons could potentially provide yet another complementary probe into the nature of the

dark sector [87-90].

Two Examples

In order to illustrate these extra complementarities and the power they provide in surveying
the parameter space of theories with multi-component dark sectors, let us imagine that the
dark sector consists of two Dirac fermions x; and x2 which are neutral under all Standard-
Model gauge symmetries and have corresponding masses mj and msg respectively, with
mg > my. We shall also assume that our fundamental four-point interaction in Fig. 3.1(b) is
described by an effective dimension-six four-fermi contact Lagrangian operator that couples
these two dark-matter particles to two Standard-Model quarks ¢. For concreteness, in this
chapter we shall consider two distinct examples of such operators, with the first taking the

form of a flavor-conserving scalar (S) interaction

©) cy
Line = Z F(Yﬂ(l)(g@ + he., (3.1)

q=u,d,s,...

and the second taking the form of a flavor-conserving axial-vector (A) interaction

A
) = Y i2)(Yz’m5><1)(G’V“’Pq) + he. (3.2)
q=u,d,s,...

We have chosen these two forms of interactions as canonical examples of operators giving
rise to spin-independent (SI) and spin-dependent (SD) interactions, respectively. In these
operators, ¢ = u,d, s, ... specifies a particular quark flavor while ¢, is the corresponding
dark-matter/quark coupling and A denotes the mass scale of the new (presumably flavor-
diagonal) physics which might generate such effective interactions. Note that these operators

are separately invariant under both charge conjugation (C) and parity (P).
Within the operators in Egs. (3.1) and (3.2), we shall make two further assumptions.

First, in each case, we shall assume a flavor structure for our dark-matter/quark couplings
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cq such that

Cu= —Cl=Co= —Cs=C = —Cy = C. (3.3)

We have chosen this flavor structure, which is maximally isospin-violating within each gen-
eration, because it ultimately maximizes the axial-vector decay rate and thereby places the
strongest bounds on our examples. Second, we shall assume (as a cosmological input) that
the heavier dark-matter particle x» is metastable and carries the vast majority of the dark-
matter abundance, i.e., Q9 = Qcpum ~ 0.26 and Q7 = 0. As we shall see, this assumption
also maximizes the rates for all relevant processes and thereby places the strongest bounds
on our examples. This assumption also simplifies our analysis somewhat. We shall therefore
take this to be a conservative “benchmark” for our study. We remark, however, that none
of the primary qualitative aspects of our results will ultimately depend on this choice, and
indeed other choices such as 1 ~ Q9 ~ Qcpnm/2 also lead to results which are very similar
to those we shall obtain here. Such general scenarios will be explored in Ref. [47].

Given these assumptions, our examples each have three fundamental parameters: the
effective coupling ¢/A?, the mass ms of the heavier dark-matter component, and the dark-
sector mass splitting Amis = mg — my. Our goal is to explore the resulting (c/A2, Amis)
parameter space for different values of mo. In this connection, however, we remark that since
the operators in Egs. (3.1) and (3.2) are non-renormalizable, they can only be interpreted
within the context of an effective field theory whose cutoff scale is parametrically connected
to A. As a result, our use of such operators when calculating phenomenological bounds
already presupposes that the energy scales associated with the relevant processes in each case
do not exceed A. Assuming O(1) operator coefficients, this requires A 2 O(GeV) for direct-
detection bounds; indeed, as we shall see, this value corresponds to nuclear recoil energies
Er < 100 keV in direct-detection experiments. Likewise, for indirect-detection bounds,
our requirement for A depends on whether we are dealing with dark-matter annihilation
or decay: for annihilation this requires A 2 O(m) where m is a typical mass of a dark-
sector component, while for a dark-matter decay of the form yo — x1gq this requires

A 2 O(Amys). Finally, for calculating collider-production bounds, the use of such operators
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is strictly valid only if A = O(TeV). If this last condition is not met, the resulting collider
bounds should be viewed only as heuristic, and one would require a more complete theory
(for example, involving potentially light mediators connecting the dark and visible sectors)
before being able to make more precise statements.

As Amqs — 0, our dark-matter production and direct-detection processes proceed ex-
actly as they would for a single dark-matter particle y of mass m = ms. Indeed, in this
limit direct detection can only proceed through elastic scattering; likewise, the interactions
in Eq. (3.1) or (3.2) do not permit dark-matter decay. Thus, the Amis — 0 limit effec-
tively embodies the physics of a traditional single-component dark sector with mass mso,
and in this case our bounds are relatively straightforward: one simply finds that direct-
detection and collider experiments place mg-dependent upper limits on the coupling c/A2.
For example, for the coupling structure in Eq. (3.3) and for mg = 100 GeV, we find from

direct-detection experiments [51, 91] that

S JA? < 28 x 10710 Gev 2|
(3.4)

/A2 < 1.1 x107° GeV™2

we likewise find from collider monojet [62-65] and mono-W/Z [66, 67] constraints that

cSA A% < 1.4 %1070 GeV™2 (monojet) ,
S /A% < 50x1077 GeV~2 (mono-W/Z) , (3.5)

~

M /A2 < 31 %1077 GeV™2 (mono-W/Z) .

However, by turning on Am;s, we can now explore the effects of non-minimality in the dark
sector and thereby assess the impact of the new kinematics and new complementarities that
arise.

With an eye towards exploring those regions of parameter space which are likely to
be of maximal phenomenological interest from a complementarity perspective, we shall

~

restrict our attention to situations with Amiy < O(MeV); we stress, however, that there
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is no fundamental reason that larger Amys cannot also be considered. Likewise, since
we are taking €27 = 0 for simplicity, the relevant dark-matter processes for the operators in
Egs. (3.1) and (3.2) are limited to inelastic down-scattering, asymmetric collider production,

and dark-matter decay. We shall now discuss each of these in turn.

3.1 Inelastic Down-Scattering

We begin by considering the bounds from direct-detection experiments through the inelastic
down-scattering process x2/N; — x1/Ny where IV; and Ny denote the initial and final states

of the nucleus N in the detector substrate. In general, the total differential nuclear-recoil

dR . Nplzoc - d0'21 3
E == . /v>v(21) ’U]:Q(U) <E d°v s (36)

min

rate is given by

where N is the number of nuclei per unit detector mass, where pk¢ is the local energy

density of x2, where F2(¥) is the distribution of detector-frame velocities ¢ for ys in
the local dark-matter halo, where v = |U], where vr(jiln) is the Egr-dependent “thresh-
old” velocity (i.e., the minimum incoming velocity for which scattering with recoil en-
ergy ER is possible), and where doy;/dER is the differential cross-section for the process
x2N; — x1Ny. When evaluating these cross-sections, we require nuclear form factors; for
this purpose we utilize the software packages associated with Ref. [50]. The corresponding
limits on our (¢/A?, Am1y) parameter space are then respectively derived using the most
recent LUX [91] and COUPP-4 [51] data for the scalar and axial-vector cases, respectively.
Roughly speaking, this data can be taken as requiring R < 1.81 x 10~*kg~!'day~! and
R < 4.97 x 1072kg~'day ™! for the recoil-energy windows 3 keV < Ep < 25 keV and
7.8 keV < Fr < 100 keV, respectively. In this connection, we note that a threshold detec-
tor such as COUPP-4 is actually sensitive to scattering events with arbitrarily large recoil
energies. However, for Er 2 100 keV, there are considerable uncertainties associated with

distinguishing these events from background. To be conservative, we therefore adopt the

above upper limit for the corresponding Er window.
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Figure 3.2: Recoil-energy spectra for inelastic scattering x2/N; — x1N; off a germanium
nucleus, with my # mgy = 100 GeV. Left panel: Allowed ranges of recoil energy ER as a
function of incoming dark-matter particle velocity v for different Am = mo — myq, for both
“down-scattering” (Am > 0, dotted lines) and “up-scattering” (Am < 0, solid lines). The
elastic case with Am = 0 is also shown (solid black line), as is the maximum velocity cutoff
associated with the galactic escape velocity (dashed black line). Right panel: Corresponding
recoil spectra dER/dR for both down-scattering (dotted lines) and up-scattering (solid
lines), for different values of Am. The solid black curve represents the Am = 0 elastic-

scattering case. For all spectra shown, the scattering is assumed to be spin-independent,

with cross-section per nucleon ~ 10746 cm=2.

While much of this analysis is completely standard, the primary new ingredient is the
change in scattering kinematics from elastic to inelastic. If the scattering had been elastic
(e.g., xjNi = x;Ny¢), the possible allowed recoil energies would have been given by the
standard expression Er = E;n(1 4 cos#) where Ejn = ,u?NvJZ/mN and 0 < 6 < 7. Here v;
is the speed of the incoming dark-matter particle in the detector frame, my the mass of the
nucleus, 6 the scattering angle in the center-of-mass frame, and p, y the reduced mass of the
x/N system. For inelastic x;N; — x; N scattering, by contrast, the possible allowed recoil
energies are instead given by Eg = E;n(1+7r++v/1+ 2r cos ) where r = [u;n /(Bujn )?]Amy;
with 8 = v;/c and Am;; = mj —m,.

There are two important consequences of this change in kinematics. First, in the case of
down-scattering, we see that for Er =~ E}, = [m;/(m; +m ~)]Amiac? the required incoming
velocity is essentially zero. Such threshold-free scattering with non-zero recoil energy would

not have been possible in the traditional case of elastic scattering, but the required input
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energy in the inelastic case comes directly from species conversion within the dark sector
(essentially from rest mass liberated within the dark sector) rather than from incoming
dark-sector kinetic energy.

Second, we also observe that for any incoming dark-matter velocity v, we have not only
a finite upper limit on the allowed nuclear recoil energy Er but also a non-zero lower limit.
This feature holds for both down-scattering and up-scattering, and in turn implies that the
corresponding recoil spectrum dR/dER is negligible not only above a maximum value of
nuclear recoil energy but also below a minimal value. Indeed, in the case of down-scattering
(i.e., Am;; > 0), this allowed range of recoil energies is centered around E7, and becomes
exceedingly narrow as the incoming velocity goes to zero. This is especially important since
v < Vese + Vg, Where vese & 540 km/s is the galactic escape velocity and vy ~ 231 km/s is
the speed of the Earth in the galactic frame. These features are illustrated in Fig. 3.2, and

will play an important role in what follows.

3.2 Asymmetric Collider Production

Multi-component operators such as those in Egs. (3.1) and (3.2) can also be probed through
the collider-production direction. However, unlike the single-component case, the produc-
tion processes induced by the operators in Egs. (3.1) and (3.2) take the form gq — x1x2.
Thus, we are dealing with asymmetric collider production of dark matter.

Despite this new feature, such dark-matter production processes can nevertheless be
most effectively constrained just as for single-component theories — i.e., through monojet
searches at ATLAS [62, 63] and CMS [64, 65] and mono-W/Z searches at ATLAS [66, 67].
Indeed, these limits are directly applicable to the asymmetric production of dark-matter
particles x1 and y2 as well as to a pair of identical dark-matter particles because the values
of Ams for which inelastic scattering can play a significant role in direct detection (and for
which ys is stable on cosmologically timescales without exceedingly large A) are negligibly
small in comparison with the energy scales relevant for collider physics. Thus, while the

kinematics associated with the asymmetric production of dark matter differs from that
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associated with the more traditional symmetric production, this difference ultimately does
not prove phenomenologically significant within the parameter ranges of greatest interest

from a complementarity perspective.

3.3 Dark-Matter Decay

We now turn to an analysis of the new (diagonal) complementarity direction which comes
into existence for non-zero Am;;, namely the possibility of decay from heavier to lighter
dark-matter components. Once again, our starting points are the operators in Egs. (3.1) and
(3.2) which describe the microscopic (short-distance) interactions between our dark-sector
particles x; and Standard-Model quarks. However, because we are considering dark-sector
mass splittings of size Amis < O(MeV), our study of the dark-matter decay induced by
the operators in Egs. (3.1) and (3.2) must instead be performed within the framework
of a low-energy macroscopic effective field theory in which the physics of Egs. (3.1) and
(3.2) is recast in terms of interactions between our dark-sector particles and the lightest
color-neutral states in the visible sector.

In order to transition between these two descriptions, we can use the formalism of chiral
perturbation theory? based on the low-energy SU(2)r x SU(2)r x U(1)y flavor symmetry
group of the light (u,d) quarks [97-99]. This technique allows us to systematically generate
a complete set of operators which capture the exact symmetry structure of our underlying
microscopic Lagrangian, up to unknown (but ultimately measurable) coefficients A; ~ O(1).
The details behind this calculation will be discussed more fully in Ref. [47]. The upshot,
however, is that the scalar interaction in Eq. (3.1) gives rise to an effective Lagrangian of

the form [100-103]

2 _ )
s)  Bgmy —mg)Aic® _
Ly = —— S2A2 X2X1
BoapmAec® »
47TA2 A2 (XQXl)FNVFu + .. ) (37)
c

2For reviews, see [92-96]
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where By = m2/(m, +mg) and where A¢ denotes the confinement scale Ac = 4w f//Ny,
with fr = 93 MeV and Ny = 2. Likewise, the axial-vector interaction in Eq. (3.2) gives rise

to an effective Lagrangian of the form

AMA 2
(A) c C mz -~ 5 0
Eeff \/§7TA2 |: + 2A%¢ 3:| (XQI.Y Y Xl)(auﬂ' )
apvAac?) =,
“ieAzar (VX (Ep 7)o (33
c

We stress, however, that there are numerous subtleties involved in extracting these terms
from the full chiral perturbation theory formalism. These will be discussed more fully in
Ref. [47].

Somewhat surprisingly, the first term of Eq. (3.7) is not an interaction term, but rather
an off-diagonal contribution to the mass matrix of the individual dark-sector components!
At first glance, this might seem to suggest that the mass eigenstates of the dark sector are
not given by the individual x12 components with which we started, but rather by some new
linear combinations of these states. However, our original supposition has always been that
x1 and yo are our physical mass eigenstates with masses mj1 and msy respectively — even in
the confined phase of QCD within which we have been operating throughout this chapter —
and we know that the mass eigenstates of our theory should not change when we reshuffle
our strongly interacting degrees of freedom from quarks to color-neutral hadrons. Thus, the
contribution from this extra mass term within Eq. (3.7) must ultimately be cancelled by
other additional mass terms (e.g., coming from ultraviolet physics and/or other hadronic
effects) so as to reproduce the mass eigenstates with which we started. That said, we might
worry whether this cancellation might involve a significant degree of fine-tuning. However,
it is easy to verify that this is not the case throughout the region of parameter space in which
we are primarily interested — i.e., that within which Amjs 2 O(keV) and A 2 O(10 GeV).
Indeed, within this region of parameter space, the degree of mixing associated with the
mass matrix within Eq. (3.7) is negligible compared to Amys.

We therefore conclude that the mass term appearing within Eq. (3.7) is relatively unim-
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portant for the present analysis in which we are focusing exclusively on dark-matter phe-
nomenology within the confined phase of QCD. However, it is perhaps nevertheless worth
remarking that terms of this sort can potentially play an important role in dark-matter cos-
mology, especially if the universe experiences a post-inflationary phase with a sufficiently
high reheating temperature 7' > Agcp. At such temperatures, the dark-sector mass matrix
could in principle differ from its present-day form in a non-trivial manner. The process of
confinement itself might then actually induce a rediagonalization of the dark-sector mass
eigenstates as part of the QCD phase transition, precisely through the appearance of terms
such as those in Eq. (3.7). As a result, the mass eigenstates of the dark sector might not
be the same before and after the QCD phase transition. In general, this is a novel effect
which arises only for multi-component dark sectors. However, this effect can have a wealth
of important theoretical and phenomenological implications, especially for dark-sector com-
ponents x; and x; whose mass splittings Am,; are extremely small. These effects will be
discussed further in Ref. [47].

The remaining terms in Eqgs. (3.7) and (3.8) are bona fide interaction terms. As we
see, they come in two types: contact operators (ultimately obtained from integrating out
heavy hadronic degrees of freedom) which directly couple our dark-sector components x; to
photons, and operators which couple our dark-sector components to off-shell pions (which
then subsequently decay to two photons). These two sets of operators are illustrated in
Fig. 3.3. Together, however, these operators allow us to calculate the widths for the decays
X2 — X177 through either the scalar or the axial-vector interaction. For Amiy < my 2, we

obtain
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These decay rates may then be compared against existing bounds on observed photon fluxes

in order to constrain our fundamental parameters (c/A2?, Amyo) for different values of mso.
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Figure 3.3: Dominant dark-matter decay processes at energies £ < O(10%) keV. (a) Dark-
matter decay produces two photons through an effective contact operator induced in the
chiral perturbation theory by integrating out heavy hadrons. This process is the dominant
contributor in the case of the microscopic (quark-level) scalar interaction in Eq. (3.1).
(b) Dark-matter decay produces produces two photons via off-shell neutral-pion exchange.
Both this process and the process in (a) are the dominant contributors in the case of the
microscopic (quark-level) axial-vector interaction in Eq. (3.2).

In particular, assuming an NFW profile for the dark-matter distribution [10], we use the
PPPC4DMID software package [104] to determine the diffuse galactic and extragalactic
contributions to the differential photon flux arising from dark-matter decay, and require
that the predicted photon count not exceed that measured in any bin at the 20 confidence
level. In this context we remark that decays to final states involving neutrinos are also
kinematically allowed. However, the contributions to the total widths from such decays are

negligible compared with the above, and are thus neglected.

3.4 Results

Combining the constraints from each of the dark-matter directions discussed above, we can
now map out the current bounds on the operators in Eqgs. (3.1) and (3.2) in the (¢/A%, Am;5)
parameter space for different values of mo. Our results are shown in Fig. 3.4 for mg =
{10,100,1000} GeV, with ¢ = (&) =1/4/2 and \; = 1 chosen as fixed reference values.
In Fig. 3.4, the pink regions are excluded by bounds on inelastic scattering from direct-
detection experiments (LUX [91] and COUPP-4 [51] for the scalar and axial-vector cases,
respectively), while the green contour indicates the projected future reach of the LZ 7.2-ton
detector [105, 106] in the scalar case and the PICO-250L experiment [54] in the axial-vector

case. Likewise, the vertical blue and cyan contours respectively correspond to LHC con-
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straints on asymmetric collider production from monojet [62-65] and hadronically-decaying
mono-W/Z [66, 67] searches. The collider analysis was performed by generating signal
events using the MadGraph 5 [71], Pythia 6.4 [107], and Delphes 2.0.5 [108] software pack-
ages, and comparing to the number of background events reported in Refs. [63, 65-67] in
order to determine the region excluded at 90% confidence level. Note that there is a ~ 40%
systematic uncertainty in the number of signal events, attributable to uncertainties in the
correct treatment of soft QCD and hadronic physics; this uncertainty can affect the bounds
on A by ~ 10%. In this connection we also remind the reader that these collider-based
bounds should be interpreted at best only heuristically if the operators in Egs. (3.1) and
(3.2) are generated by integrating out light mediators or by other new physics which ren-
ders A < O(TeV). The yellow and purple shaded regions are excluded by constraints on
dark-matter decay from the total diffuse X-ray background measurements of HEAO-1 [109]
and INTEGRAL [110], respectively, as these are the experiments which probe the particu-
lar energy region of the photon spectrum which is most relevant for the Amio range with
which we are most concerned. Finally, the diagonal dashed black lines from left to right
respectively indicate contours corresponding to dark-matter lifetimes 7 = 10?2 s, 10%* s,
and 10%° s. By contrast, the solid black triangular regions are excluded by metastability
constraints which require that 7o 2 thow, Where thon &~ 4.35 X 10'7 s is the current age of
the universe. Note that in all cases, these metastability bounds for s are superseded by
the results from dark-matter decay.

There are many important features contained within the plots in Fig. 3.4. Since Amqo
effectively quantifies departures from the standard single-component story, we shall discuss
these features “from bottom up”, in order of increasing Amys. First, for Amqis < O(10 keV),
we see that all of the features within these plots are virtually insensitive to Amis and
effectively reproduce the physics of a traditional single-component dark sector with mass
ms. This behavior is certainly expected in the Amio, — 0 limit, and as a check we see

that the middle panels of Fig. 3.4 correctly reproduce the results in Egs. (3.4) and (3.5) in

this limit. However, we now observe that these results persist all the way up to Amis <
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Figure 3.4: Complementary bounds on the scalar operator in Eq. (3.1) and axial-vector
operator in Eq. (3.2), plotted within the associated (A, Amqs) parameter spaces for
my = {10,100,1000} GeV and ¢® = ¢») =1/1/2. Bounds from inelastic-scattering direct-
detection experiments (pink exclusion regions), asymmetric collider production (blue and
cyan vertical lines), and dark-matter decay constraints (yellow and purple exclusion regions)
are shown, as discussed in the text; the green dashed lines denote the reaches of possible
future direct-detection experiments, while the black dashed lines indicate dark-matter de-
cay lifetime contours and the solid black triangular regions in each panel are excluded by
metastability constraints. Remarkably, the constraints from dark-matter decay dominate
in exactly those regions with relatively large Amqo that lie beyond the reach of current and
future direct-detection experiments, thereby illustrating the new sorts of complementarities
that are possible for such multi-component dark sectors.

O(10 keV), thereby forming an “asymptotic” region in which the physics remains largely
Amjo-independent. Thus, for the operators in Eq. (3.1) and (3.2), we see that it is only for
Amig 2 O(10 keV) that the effects of dark-sector non-minimality become evident.
Second, for Amqg &~ O(10—100 keV), we see that the bounds from direct-detection ex-
periments actually strengthen somewhat and begin to extend towards larger values of A. As

we see from Fig. 3.4, this behavior is more pronounced for the axial-vector interaction than
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the scalar interaction and for smaller values of mo rather than larger. This strengthening can
more than double the values of A probed by such experiments, and is particularly important
because it has the power to alter the identity of the specific dark-matter detection method
which provides the leading constraint on the scale A as a function of Amqs. For example, in
the case of the axial-vector interaction with mgo = 10 GeV (corresponding to the lower left
panel of Fig. 3.4), we see that the monojet and mono-W/Z collider processes provide the
strongest constraints for Amia S O(10 keV), but that the bounds from the direct-detection
processes become increasingly strong with growing Amys, ultimately matching and perhaps
even superseding the monojet collider bounds for Amjs &~ O(100 keV). This strengthening
of the direct-detection bounds as a function of increasing Amqs is a direct consequence of
the inelastic nature of the scattering process involved.

Third, moving towards even larger values Amis ~ O(100 — 1000 keV), we see that
the plots in Fig. 3.4 now reveal a dramatic feature: a “ceiling” for Amqs beyond which
direct-detection experiments cease to provide any bounds at all and become virtually in-
sensitive to the underlying dark-sector physics! This is also ultimately a consequence of
the unique kinematics associated with inelastic down-scattering. As discussed above, for
down-scattering there is a lower limit of nuclear recoil energies E}(%min) below which the dif-
ferential scattering rate dEr/dR becomes negligible. This lower limit generally increases
with increasing Am;; and is not too far below E} for the non-relativistic dark-matter ve-
locities concerned. However, a given dark-matter direct-detection experiment is typically
designed to probe only a particular window of recoil energies. While the precise window of
recoil energies depends on the type of experiment and the cuts imposed as part of the data
analysis, this window typically falls within the range 1 keV < Er < 100 keV, as discussed
above. Scattering events with recoil energies outside this range do not contribute to the
measured signal-event rate. As a result, there exists a critical value of Am1s beyond which

)

the corresponding down-scattering events have a minimum recoil energy Eg%min exceeding
100 keV, thereby escaping detection.

Fourth, moving towards even larger values Amqy < O(MeV), we see from Fig. 3.4 that
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the physics is now dominated by the constraints from dark-matter decay. Indeed, these
constraints become significantly more stringent as Amqs increases, with the maximum reach
Amnax scaling approximately as (Am12)7/ 4 and (Am12)9/ 4 for the scalar and axial-vector
interactions, respectively. It should also be noted that these decay constraints even have a
subtle dependence on mso. Indeed, although the decay widths in Eq. (3.9) are independent of
mo for Amio < mo, we see that mo nevertheless enters the calculation of the total fluxes of
the remnants of such decays through its appearance in the x3 number density ng &~ Qa/ma,
where ()5 is the dark-matter abundance which we have assumed fixed at Q9 = Qcpy ~ 0.26.
There are, of course, further mo-dependent corrections to both the decay widths and the
injection spectra which emerge once we go beyond the Amis < msy approximation; these
have been included in the plots shown in Fig. 3.4, but otherwise have a negligible effect on
our results.

Finally, although we have restricted our focus in this chapter to the region Amqio <
O(MeV), it is interesting to contemplate what occurs for even greater Amis. For Amis 2
O(MeV), additional decay channels for x5 open up in which electron/positron pairs are the
end products. This only increases the decay widths for yo, thereby strengthening the A-
reach of the decay-related bounds even further. For even greater values of Am;o, these decay
widths increase still further as additional decay channels become kinematically accessible.
Ultimately, however, Ami5 reaches a point at which even the metastability that underlies
our assumption of a non-zero present-day abundance for ys is threatened. In this connection,
it is important to note that this does not render such multi-component theories inconsistent;
indeed, for multi-component theories it has been demonstrated that dark-matter stability
is not a fundamental requirement — all that is required is a balancing of their individual
component lifetimes against their cosmological abundances [111-113]. However, this shift
does alter the initial assumptions that enter into the types of calculations we have performed
in this work. It would nevertheless be interesting to extend this type of complementarity
analysis to the constraints emerging from such a scenario.

The plots in Fig. 3.4 thus provide dramatic illustration of the new complementarities
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that emerge within the context of non-minimal dark sectors. Together, the bounds from
asymmetric collider-production processes, inelastic-scattering processes, and dark-matter
decay processes not only help to increase the coverage of the relevant parameter spaces of
these models but also provide useful correlations between these processes in those regions of
parameter space in which these constraints overlap. For example, it is somewhat remarkable
that the constraints from dark-matter decay emerge and dominate in exactly those regions
that lie just beyond the Amqs “ceiling” that caps the reach of current and future direct-
detection experiments. Perhaps even more interestingly, we see that in the axial-vector
case there even exists a small window within the “cross-over” region Amqs =~ 500 keV
(sandwiched between the bounds from direct-detection and dark-matter decay processes) in
which it is the mono-W/Z collider bounds which provide the strongest current constraints.
Taken together, this non-trivial structure is testament to the richness of the complementar-
ities that emerge when Amqs is lifted beyond the Amqo = 0 axis to which the traditional

complementarities that govern the physics of single-component dark sectors are restricted.

3.5 Conclusions

The idea of complementarity has long infused our thinking about the hunt for dark matter,
but most work on this subject has focused on the case of single-component dark sectors.
In this chapter, by contrast, we have considered the case of a multi-component dark sec-
tor, and demonstrated that there exist entirely new directions for complementarity which
are absent in single-component theories. In particular, we demonstrated that the impor-
tant class of interactions involving two dark components and two visible components can
simultaneously contribute to inelastic scattering at direct-detection experiments, asymmet-
ric dark-matter production at colliders, and indirect-detection signals due to dark-matter
decay. Indeed, the latter phenomenon is completely absent for such interactions within
single-component dark-matter theories, and thus represents an entirely new direction for
dark-matter complementarity that emerges only within the multi-component context.

We have also demonstrated the power of these complementarity relations by consider-
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ing two particular examples of such interactions, one based on a scalar (spin-independent)
interaction and the other based on an axial-vector (spin-dependent) interaction. In some
regimes involving large couplings or small cutoff scales A, we found that there is signifi-
cant overlap between the regions excluded by direct- and indirect-detection limits. Taken
together, these complementary probes of the dark sector combine to provide complete cov-
erage of the relevant parameter space in this regime. By contrast, in other regimes involving
smaller couplings and/or larger cutoff scales A, a small slice of parameter space opens up
for which the dark sector escapes detection.

The existence of such regions of parameter space provides extra motivation for the
development of new experimental detection strategies which are specifically targeted to-
wards physics in these regions. For example, it would be interesting to explore how im-
provements in, e.g., the angular resolution of future X-ray telescopes could improve the
reach of indirect-detection experiments within the parameter space of non-minimal dark
sectors. Likewise, designing a calibration for incorporating higher-energy nuclear recoils into
threshold-detector analyses of the data from direct-detection experiments also represents
a possible future method of “filling in the gap” between the bounds from direct-detection
experiments and those from dark-matter decay. Finally, we note that direct-detection ex-
periments using heavier target nuclei would in principle be capable of probing regions of
parameter space with larger Amys.

Needless to say, there are also many future theoretical directions that can be pursued.
One is to consider a wider class of operators beyond those considered here [47]. As we have
seen in Chapter 2, the case of pseudoscalar operators, in particular, may be of particular
interest due to the existence of previously unnoticed effects which are capable of overcom-
ing the velocity suppression that would otherwise affect the corresponding direct-detection
processes [114].

Another possible future direction is to consider the physics that might result from differ-
ent configurations of initial abundances 1 and 5. In this chapter, we have focused on the

case with 1 ~ 0 and Qs =~ Qcpwm, since this configuration leads to the strongest possible
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bounds for both direct- and indirect-detection experiments. Although this configuration
may initially seem somewhat unnatural or fine-tuned, one can imagine that it is realized in
cosmological scenarios in which the production of heavier dark-matter states is overwhelm-
ingly favored relative to that of lighter dark-matter states, or in which the bulk of the dark
matter is somehow excited into the higher-mass yo state after production. It is neverthe-
less of interest to explore the phenomenology associated with more general configurations,
particularly those such as Q1 ~ Qs ~ Qcpm/2 which might be imagined as emerging from
a straightforward thermal-production mechanism. Obviously, any scenario with non-zero
Q; will generally involve contributions from processes such as up-scattering (in addition
to down-scattering) and dark-matter co-annihilation (in addition to dark-matter decay).
However, it often turns out that the constraints from both of these processes are subleading
within their respective classes (direct- and indirect-detection signals, respectively); indeed,
co-annihilation will not even occur in scenarios (such as those associated with asymmetric
dark matter [115-118]) in which the abundance of dark anti-matter does not match that
of dark matter and is effectively zero at present times. Thus, in such cases, the primary
effect of shifting some abundance AQ from Q9 to €y (thereby resulting in Q) = Qy — AQ) is
merely to weaken the constraints from down-scattering and dark-matter decay by the factor

5/ =1 — AQ/Q. On logarithmic plots such as those in Fig. 3.4, such O(1) rescaling
factors are barely noticeable. Such effects will be discussed further in Ref. [47].

A third possible future direction is to realize that even though we have restricted our
attention to operators such as those in Egs. (3.1) and (3.2) which only couple x; to x;
with ¢ # j, a more general theory involving four-fermi operators of this sort is likely to
include the “diagonal” i = j operators as well. In such cases, as discussed in the Introduc-
tion, both elastic and inelastic scattering events can simultaneously occur within a given
direct-detection experiment, while dark-matter production at colliders can have both sym-
metric and asymmetric channels and the cosmic-ray fluxes relevant for indirect-detection
experiments can potentially include the products of dark-matter self-annihilation as well

as co-annihilation between different dark-matter species and dark-matter decay. It will
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clearly be of interest to study the experimental complementarity bounds that emerge when
all of these processes are included simultaneously. In particular, we note that it might
even be possible to establish correlations between the signals from dark-matter decay and
dark-matter (co-)annihilation in such a way as to potentially distinguish these signals from
those which might be produced through other, unrelated astrophysical phenomena such as
pulsars.

Finally, a fourth possible direction for future study is to recognize that a non-minimal
dark sector may have a relatively large number of individual components which could po-
tentially give rise to collective effects that transcend the two-component effects studied
here. A dramatic example of this occurs within the so-called “Dynamical Dark Matter”
(DDM) framework [111-113]; this framework gives rise to unexpected signatures not only
for collider experiments [119] but also for direct-detection experiments [120] and indirect-
detection experiments [121]. Studying the full parameter space of such models, especially

from a complementarity perspective, should be an interesting exercise [47].
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