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Abstract. Gravitational radiation from a system of two body, one as test particle and other
as black hole (we assume, m1 is mass of the test particle and m2 is mass of black hole in
bound orbits (orbital eccentricities e < 1) and E2 < 1; E is the energy, is calculated with
relativistic correction using the method of inertia tensor and multipole formalism. Plots of
power versus eccentricity of the bound orbit of first kind are presented, and average total power
radiated as a function of eccentricity is plotted according to inertia tensor method. According to
multipole formalism the power radiated in gravitational waves from an bound orbit is given by
enhancement factor g(n,e) times the function of other parameters is plotted. The calculations
apply for arbitrary eccentricity of the relative orbit, assuming orbital velocities are small.

1. Introduction

Accelerating heavenly bodies produces a disturbance in space-time which travels with the speed
of light, called as gravitational waves. It is nothing but the perturbations of the flat space-time
[5]. One of the most promising astrophysical source of gravitational radiation is the binary star
system [4]. This system consists of binary NS, binary BH, and NS-BH binary. The binary
star inspiraling each other radiates GR and come closer to each other. Then after certain time
coalsec. The time of coalescence depends directly on the eccentricity of the orbit. The power
of emitted radiation depends on the mass of black hole and the mass of the particle. It also
depends on the semi-major axis and the eccentricity of the orbit before coalescence. Here in
this work we used two method to calculate the power generated by point particle in bound orbit
around the black hole.

2. Methodology

I. Inertia Tensor Method: Let the masses m1 and m2 have coordinates (d1 cosχ , d1 sinχ) and
(−d2 cosχ ,−d2 sinχ) in the xy plane as shown in figure 1. The origin will be taken to be at
the center of mass so that,

d1 =

(
m2

m1 +m2

)
d, d2 =

(
m1

m1 +m2

)
d (1)
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Figure 1. Coordinate system used in calculation.

Now the non-vanishing quadrupole tensor [3] are,

Qxx = µd2 cos2 χ, Qyy = µd2 sin2 χ, Qxy = Qyx = µd2 sinχ cosχ (2)

where, µ is the reduced mass of the binary system and the distance between two masses
d = d1 + d2. From kepler motion, the orbit equation is,

u =
1

l
(1 + e cosχ) (3)

where, u = 1/d, e is the eccentricity of the orbit and l is the latus rectum of the orbit.

We have equation with relativistic correction for bound orbit [1],

±dχ
dφ

= (1− 6µ+ 2µe)1/2
(
1− k2 cos2 χ/2

)1/2
(4)

where, k2 depends on reduced mass of the system and eccentricity of the orbit and given by,

k2 =
4µe

1− 6µ+ 2µe

Now, we can calculate the angular velocity (χ̇), with substitution of k2, cos2 χ/2 and dφ/dt is,

dt

dφ
=

E

Lu2(1− 2Mu)
(5)

where, L denotes the angular momentum about an axis normal to the invariant plane and M =
m1 +m2 i.e total mass of the binary system. Simplifying, we get angular velocity,

χ̇ =
√

1− 6µ− 2µe cosχ
L(1 + e cosχ)2

El2

[
1− 2M

l
− 2Me cosχ

l

]
(6)

We know that, l = a(1 − e2) where, a is the semimajor axis and e is the eccentricity of the
ellipse(orbit). The total power is calculated from [3],

P =
G

5c5
[(
d3Qxx

dt3
d3Qxx

dt3
+ 2

d3Qxy

dt3
d3Qxy

dt3
+
d3Qyy

dt3
d3Qyy

dt3
)

−1

3
(
d3Qxx

dt3
d3Qxx

dt3
+ 2

d3Qxx

dt3
d3Qyy

dt3
+
d3Qyy

dt3
d3Qyy

dt3
)] (7)
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Where, G is gravitational constant = 6.67∗10−11N.m2/kg2 and Qij are quadrupole tensors.

II. Multipole Expansion: In this method, we evaluate the m2M , in terms of Qij they are [2],

m2±2 =
ikω3

10
√

3

(
15

32π

)1/2

(Qxx −Qyy ± 2iQxy) (8)

m2±1 = 0 (9)

m20 =
−ikω3

10
√

3

(
5

16π

)1/2

(Qxx +Qyy) (10)

Where, k =
√

32πG and ω = nω0, ω0 = [G(m1 +m2)/a
3]1/2 is the average angular velocity. Qij

are calculated by using Fourier series of argument M with recursion relation of Bessel’s function.
Finally, the power radiated in the nth harmonics is,

P (n) =
32G4m2

1m
2
2(m1 +m2)

5c5a5
g(n, e) (11)

Where,

g(n, e) =
n4

32

(
[Jn−2(ne)− 2eJn− 1(ne) +

2

n
Jn(ne) + 2eJn+1(ne)− Jn+2(ne)]

2

+(1− e2)[Jn−2(ne)− 2Jn(ne) + Jn+2(ne)]
2 +

4

3n2
[Jn(ne)]2

)
(12)

3. Results

1. Inertia Tensor Method: It is straightforward to calculate the d3Qij/dt
3: and we have,

d3Qxx

dt3
=
d3Qxx

dχ3
(
dχ

dt
)3 +

d2Qxx

dχ2

d

dt
(
dχ

dt
)2 +

d2Qxx

dχ2

dχ

dt

d2χ

dt2
+
dQxx

dχ

d3χ

dt3

and similar results for other components.

We can calculate angular velocity (χ̇), using equation (6). Since, l = a(1−e2), taking semimajor
axis (a) of an ellipse as constant, we vary eccentricity and after solving equation [6],

1

L2
=

1

lM

[
1− µ(3 + e2)

]
We get,

L = l

√
m1m2

(m1 +m2)− 3m1m2 −m1m2e2

We can calculate the latus rectum for ellipse, keeping semimajor axis as a constant. We can
take a = 11.458, m2 = mass of black hole = 1, m1 = mass of test particle = 0.001

For bound orbit, e < 1 and E2 < 1, to meet this requirement we put E = 8/9. The time period
of the orbit, according to keplers law is,

T =
2πa3/2√
GM

Substituting G = 1 and a = 11.458 for simplicity, we get 1/T = 0.0041.
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Figure 2. The relative power radiated with different eccentricities (e)

We calculated the numerical values of latus rectum and angular momentum(L) for different
eccentricities. We put the numerical values for mass(M), eccentricity(e), latus rectum (l),
angular momentum then we obtained total average radiated power. We take only real part
of our calculation, because imaginary part is very-very small; at the order 10−48. The total
relative radiated power is plotted with eccentricity(e),which is shown in fig 2.

2. Multipole Expansion: From this method, we have calculated the total power radiated and we
plot it with different [g(n, e)] : that is nth harmonics, for eccentricities e = 0.2, 0.5, 0.7. We get
the following plot; fig(3) using this method.

Figure 3. [g(n, e)], the relative power radiated into the nth harmonics, for eccentricities
e = 0.2, 0.5, 0.7

4. Conclusion

1. Inertia Tensor Method

We calculated the relative total power radiated with the application of relativistic correction
in classical results. We found that the total radiated power is strongly depend on eccentricity
of the orbit. With relativistic correction, we found that with increasing of eccentricity, total
radiated power is also increasing, but on further increasing of eccentricity we found certain
decrement in total power radiated, looks local minimum in figure 2. Again, on further increasing
in eccentricity, the total relative power is steeply rising.This is from the relativistic correction
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in classical results. The nature of the plot is similar to the results of P.C. Peter’s and J.
Mathew’s result’s [3] except that the minimum doesn’t appear in Newtonian result. We believe
this minimum is due to relativistic correction. The radiation should depend so strongly on the
eccentricity is not surprising. In electromagnetic radiation, the power radiated increases for
increasing accelerations. Thus, the bodies will radiate most at their closest approach, and for
fixed energy the higher the eccentricity, the higher the power radiated will be.

2. Multipole Expansion

From this method we calculate total radiated power in terms of the g(n, e); the relative power
radiated into the nth harmonic. The plot of g(n, e) with different eccentricities e = 0.2, 0.5, 0.7
are shown in figure (3), with the increasing of harmonics (n) and eccentricity (e), we get large
and smooth curve. This explains why the higher harmonics dominate the radiation for (e) near
1. Fourier components of large (n) must be present to give such a peaking of the radiation at
one part of the path.
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