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PREFACE

1. Chapter  2 briefly reviews the basic ideas of classical and quantum information theory.

2. Chapter  3 reviews completely positive maps and their duals in von Neumann algebras.

3. Chapter  4 reviews the basics of quantum error correction (QEC). In particular, op-

erator algebra QEC is introduced. The sections about the passive QEC and active

QEC are based on the appendices from my paper [ 1 ].

4. Chapter  5 is based on my two papers [  1 ] and [ 2 ]. We studied the QEC structure in

real-space renormalization group theory.

5. Chapter  6 is based on my two papers [  3 ] and [ 4 ]. We studied the information mea-

sures in the presence of charges and proposed generalized measures which capture the

entanglement due to the pairs of charges. Moreover, we proposed the multiparameter,

multistate generalization of quantum relative entropy.
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ABSTRACT

Holographic duality as a rigorous approach to quantum gravity claims that a quantum

gravitational system is exactly equal to a quantum theory without gravity in lower space-

time dimensions living on the boundary of the quantum gravitational system. The duality

maps key questions about the emergence of spacetime to questions on the non-gravitational

boundary system that are accessible to us theoretically and experimentally. Recently, vari-

ous aspects of quantum information theory on the boundary theory have been found to be

dual to the geometric aspects of the bulk theory.

In this thesis, we study the exact and approximate quantum error corrections (QEC)

in a general quantum system (von Neumann algebras) focused on QFT and gravity [  1 ].

Moreover, we study entanglement theory in the presence of conserved charges in QFT [  3 ]

and the multiparameter multistate generalization of quantum relative entropy [  4 ].
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1. INTRODUCTION

In 1997, Maldacena conjectured that quantum gravity in the Anti-de Sitter space is equivalent

to a conformal field theory. This conjecture is known as the AdS/CFT correspondence 

1
 [ 5 ].

The statement of AdS/CFT is that any theory of quantum gravity in asymptotically d+ 1

dimensional anti-de Sitter space  

2
 is equivalent to a conformal field theory in d-dimension

without gravity. There are two requirements for this duality to hold; i) A sparse spectrum

of low-dimension operators, ii) A large number of local degrees of freedom. In other words, a

strongly coupled CFT with a large number of degrees of freedom is dual to a weakly coupled

gravitational theory. In this sense, AdS/CFT can be understood as a weak/strong duality.

In this thesis, our discussion of AdS/CFT is primarily concerned with the bulk/boundary

dictionary. According to the extrapolate dictionary, to every local field φ in the bulk there

corresponds an operator O in the boundary theory [  6 ],

lim
r→∞

r∆φ(t, r, x) = O(t, x) (1.1)

where ∆ is a conformal weight, and φ(t, r, x) is the local bulk operator at (r, x) on a Cauchy

slice at time t. Here, r is the radial coordinate of the spacetime. O(t, x) is the corresponding

CFT primary operator. We want to know how to reconstruct the local operators deep in

the bulk in a general asymptotically AdS geometry. This type of problem is called the

bulk reconstruction. In the strict N → ∞ limit, we can construct a smearing function

K(t′, x′|t, r, x) such that

φ(t, r, x) =
∫
dx′K(t′, x′|t, r, x)O(t′, x′). (1.2)

It is, in a sense, the inverse of the bulk to boundary propagator[ 7 ]–[ 9 ].

In the N → ∞ limit, there are two ways to reconstruct the operators deep in the bulk:

1) the global reconstruction and 2) the causal wedge reconstruction. One of the procedures,

the so-called global reconstruction, represents the bulk operator φ(t, r, x) as a non-local
1

 ↑ We use holography and AdS/CFT interchangeably.
2

 ↑ AdS(Anti-de Sitter) space is the maximally symmetric solution of Einstein equation with a negative cos-
mological constant.
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(a) (b)

Figure 1.1. The cylinder is a Penrose diagram of AdS3. The position of the
bulk operator is denoted as a black dot. (a) The red-dotted horizontal circle
denotes the boundary Cauchy slice. The boundary support is colored pink.
(b)The boundary subregion on the constant time slice is denoted as a red line.
The domain of dependence of A is within the green lines. The causal wedge is
the bulk domain of dependence whose boundary is the blue and red line.

CFT operator supported on a full Cauchy slice of the boundary, fig.  1.1a [ 10 ]. This procedure

has the non-local CFT operators supported on the boundary region that is space-like to

the position of the bulk operator. On the contrary, in the causal wedge reconstruction,

we reconstruct a bulk operator with the CFT operators supported only on the boundary

subregion, fig. 1.1b [ 10 ].

The reconstruction maps above obscure the bulk locality. Consider the bulk operator

φ(x) deep in the bulk, and a boundary operator O(x′), where we have absorbed all the

coordinates into the single variable. φ(x) and any boundary operators O(x′) are space-like

separated. Then, bulk locality requires them to commute. Hence, the boundary repre-

sentation φ(x) → Oφ(x) should commute with all the boundary operators. This seems to

contradict the following axiom of the boundary quantum field theory [  11 ]: there exist no

non-trivial bounded operators which commute with all local operators. In other words, the

commutator cannot hold as an operator statement, i.e., [Oφ(x),O(x′)] 6= 0. Quantum error
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correction (QEC) offers a resolution to this seeming paradox by stating that the bulk locality

only requires the operators to commute projected into a “code” subspace.

Quantum error correction (QEC) is one of the essential frameworks and the pillar of quan-

tum information theory. For example, in quantum communication, signals traveling through

a fiber are disturbed by the interactions between the fiber and the environment. This results

in the deterioration of the signal. In quantum computations, avoiding or correcting errors

is essential for fast and high-precision simulations. To model a quantum error correction

code, we need 1) an encoding map 2) an error map, 3) a recovery map, and 4) a decoding

map. In the Heisenberg picture, the procedure above is often referred to as the operator

algebra quantum error correction (OAQEC)[ 12 ]–[ 14 ]. Consider a set of quantum states that

one wants to simulate and a set of errors. These states are called logical states which span a

logical space. The encoding map encodes the logical states into a code subspace which is a

vector subspace where all the states are correctable. In OAQEC, one starts with the logical

operators that act on the logical space. These operators are encoded into a code/correctable

subalgebra. Note that in a general QEC, the set of correctable operators need not generate

an algebra. In chapter  4 and  5 , we work on the case where the set of correctable operators

form an algebra.

In AdS/CFT [  15 ]–[ 17 ], the error map is, for instance, the erasure of a boundary subre-

gion. The bulk-to-boundary dictionary is the encoding map. The logical operators are bulk

operators. Hence, the logical space is the bulk Hilbert space. The logical operators encoded

in the boundary theory turn out to be the boundary operators acting on the code subspace

in the boundary Hilbert space. Any states in the code subspace or operators acting on the

code subspace are correctable against the erasures, fig. 1.2a .

As an example, consider the AdS3 spacetime and partition it into three regions as depicted

in fig.  1.2b . Consider the error that is the erasure of region A1. Since the correctability only

holds in the code subspace, the radial locality is the statement within the code subspace[ 15 ]–

[ 17 ];

Pcode[Oφ(x),O1]Pcode = Pcode[O23,O1]Pcode = 0 (1.3)
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(a) (b)

Figure 1.2. (a)A schematic picture of quantum error correction in holography
in the Schrödinger picture. In the case of the Heisenberg picture, the order
of “Errors" and “Recovery" switches. (b) A1, A2, and A3 are the boundary
subregions. The causal wedge of each boundary subregion lives between the
blue curve and its boundary. The operator φ(x) lies near the center of the
bulk.

where O23 is the boundary operators supported on A2 and A3, whereas O1 is supported only

on A1. Pcode is the projection on the code subspace.

Up to here, we have used the causal wedge reconstruction map to map the bulk oper-

ators to the boundary ones. However, there is a more general reconstruction the so-called

entanglement wedge reconstruction[ 18 ] was discovered. It reconstructs bulk regions deeper

than the causal wedge.

The entanglement wedge is the bulk domain of dependence of the region between a

given boundary subregion and a codimension two bulk surfaces homologous to the boundary

region. The codimension two bulk surfaces are called the Ryu-Takayanagi (RT) surface.

They are determined by extremizing the boundary entanglement entropy, RT formula [ 19 ].

HRT formula[ 20 ] is its covariant generalization to the time-dependent case;

SA = Area[χA]
4GN

(1.4)
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where GN is a gravitational constant. Area[ · ] is an area functional of codimension two bulk

surfaces χA. Since the entanglement wedge always contains the causal wedge [  21 ], [ 22 ], we

can recover the bulk operators in the entanglement wedge, but not in the causal wedge.

Next, we want to understand the recovery map in the holographic QEC code. As briefly

mentioned above, there are four maps in quantum error correction; 1) an encoding map 2) an

error map, 3) a recovery map, and 4) a decoding map. In AdS/CFT, encoding or decoding

is considered as a map from bulk to boundary, or vice versa. In general, an error map

on a set of density matrices {ρ} is correctable if there exists a recovery map satisfying the

equation R∗ ◦ Φ∗(ρ) = ρ for all the density matrices. When the recovery is approximate, i.e.

R∗
U ◦ Φ∗(ρ) ≈ ρ, the best recovery map R∗

U constructed is called the universal recovery map.

Constructions and discussions of the universal recovery map on the entanglement wedge are

discussed in [  23 ], [  24 ].

As seen above, the applications of quantum error corrections to AdS/CFT are inevitable.

However, the conventional theory of quantum error correction is mostly constructed for

algebra types that are not the same as the algebras of quantum field theory associated with

local regions of spacetime. In general, the local algebras of quantum fields in spacetime

are known to be a type-III von Neumann algebra which differs from a finite-dimensional

von Neumann algebra. For instance, type-III algebras do not admit a trace, or any density

matrices [ 11 ], [  25 ]. One needs to reformulate a theory of QEC and recovery map without

assuming the existence of trace or density matrices. This motivates us to study quantum

error correction in an arbitrary von Neumann algebra (a general quantum system).
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2. “INFORMATION IS PHYSICAL”

“Information is physical” [  26 ] is the title of a paper published by Landauer in 1961. The paper

claims that “Information” is always encoded in a physical system and there are fundamental

energy costs to processing information. For example, the erasure of information encoded

in a system surrounded by a heat bath at temperature T always requires an energy cost of

kBT ln 2  

1
 per single unit of “information”, which is known as Landauer’s principle  

2
 .

In general, a quantity is said to be physical if we can measure and manipulate it in a lab.

Hence, any operation (e.g. transfer, processing, or computation) on “information” encoded in

a physical system should be constrained by the physical laws of nature. Landauer’s principle

is the manifestation that information is physical. This led to solving Maxwell’s demon

problem[ 28 ], [  29 ], and the generalization of the second law of thermodynamics including the

physical effect due to the information erasure[  30 ].

So far, we have naively used the word “information”. If information is physical, we need

to define it sharply. In 1948, Shannon quantified the amount of “information” and formu-

lated the theory of information processing, and communication, in the presence of noise[  31 ].

At the time, in physics, there was already a well-founded theory of quantum mechanics,

made mathematically rigorous by John von Neumann in the 1920s. However, Shannon was

only concerned with information in classical systems. Hence, we call Shannon’s theory the

classical information theory. It took a few more decades until the essence of information

theory was generalized to the quantum realm. In 1984, the first quantum cryptographic

protocol, BB84, was developed by Charles Bennet and Gilles Brassard [  32 ]. The proposal of

a quantum teleportation protocol by Jozsa, William K. Wootters, Charles H. Bennett, Gilles

Brassard, Claude Crépeau, and Asher Peres in 1993[  33 ] was another seminal work that laid

the foundation of the quantum information theory.

In this section, we briefly review the definition of classical and quantum entropy, dis-

tinguishability measures, and channels. For classical information, two measures that play

key roles in classical information theory are the Shannon entropy and the Kullback-Leibler

divergence. Their quantum analogs are called the entanglement entropy and the quantum
1

 ↑ kB is the Boltzmann constant.
2

 ↑ For the beautiful and concise discussions, see [ 27 ].
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relative entropy. We also discuss a one-parameter family of entropic measures that generalize

entropy, Rényi measures. Information processing is described by “channels”. However, we

postpone its detailed properties and discussions to chapter  3 .

2.1 Classical information: Shannon entropy and classical channels

We start this section with the definition of Shannon entropy, as the average “information”

or “surprise” associated with a random variable. Intuitively, one can think of the entropy of

a random variable as the amount of information we need to know the value of the random

variable. Equivalently, it is the amount of surprise one gets after learning the value of

the random variable. Consider a probability p(x) of an event x. Then, the amount of

“information” or the surprisal is defined as

log( 1
p(x)) = − log(p(x)). (2.1)

The base of the logarithm defines the unit of information content. In binary systems, it is

customary to use base two logarithms and call the unit of information a bit. When p(x) is

close to 1, the surprisal is close to 0, and there is almost no information in learning the value

of the random variable. That is, there is no surprise. On the other hand, if the probability

p(x) is close to zero, the surprisal becomes very large. In other words, one has a huge surprise

after observing an event that is expected to happen rarely.

Consider, for example, a coin. It has two events {head, tail}, and the associated probabil-

ity distribution is {phead = 1/2, ptail = 1/2}. The information of each event is equally log2, or

1 bit. On the contrary, if the associated probability is uneven, i.e. {phead = 1/4, ptail = 3/4},

the surprisal of the event “head” is larger than that of the event “tail”. It means that one

gets surprised more after observing the head.

Shannon entropy is an expectation value of the surprisal.
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Definition 2.1.1 (Shannon entropy). Given a set of discrete n events {xi}ni=1  

3
 and a discrete

probability distribution 

4
 {p} = {p(xi)}ni=1, Shannon entropy is given by

H({xi}ni=1) ≡ E{p}[ − log p({xi}ni=1)] = −
n∑

i=1
p(xi) log p(xi) (2.2)

where E{p} is an expectation value associated with the probability distribution.

Next, to make the notion of information processing sharp, we define channels. Consider

two probability distributions of two random variables {p(xi)}ni=1, {p(yi)}ni=1. The information

of each probability distribution is measured by Shannon’s entropy. Information processing is

the transition from one probability distribution {p(xi)}ni=1 to the other {p(yi)}ni=1. Hence, the

channel in information theory is modeled by the map between the probability distributions.

In classical information theory, conditional probabilities provide us with the definition of a

classical channel. For the probability distributions, {p(xi)}ni=1, {p(yi)}ni=1, the conditional

probability is defined by

p(yj|xi) := p(yj, xi)
p(xi)

(2.3)

where p(yj, xi) is a joint probability. A family of conditional probabilities {p(yj|xi)}ni=1 of

the initial events {xi}ni=1 and the final events {yi}ni=1 is called a conditional probability distri-

bution. We define a classical channel between {p(xi)}ni=1 and {p(yi)}ni=1  

5
 by the conditional

probability distribution {p(yj|xi)}ni=1.

Definition 2.1.2 (Classical channel). Given two classical probability distributions {p(xi)}ni=1

and {p(yi)}ni=1. The classical channel is the conditional probability distribution {p(yj|xi)}ni=1

where {p(yi)}ni=1 is obtained by

p(yj) =
n∑

i=1
p(yj|xi)p(xi) (2.4)

3
 ↑ To be precise, x is a random variable on a sample space with n events. xi are the realizations of the

random variable x. We are using the events and the realizations of the random variable interchangeably.
4

 ↑ In this definition, we have a discrete probability distribution. However, one can, of course, have a version
of the continuous probability distribution.
5

 ↑ Note that one can have a continuous version of the above. In stochastic theory, the multiple steps for
some time intervals are considered. In this case, the conditional probability is often called propagator which
is familiar from classical field theories.
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Figure 2.1. The probability distribution {p(xi)}ni=1 is mapped to {p(yi)}ni=1 by the
binary symmetric channel {p(y0|x0) = 1 − q, p(y1|x0) = q, p(y0|x1) = q, p(y1|x1) =
1 − q}.

for all j = 1, · · · , n.

For example, let us consider a binary symmetric channel of a single bit, fig. 2.1 . Suppose

the initial probability distribution is given by {p(x0) = p, p(x1) = 1 − p} where 0 ≤ p ≤ 1

is the probability of the bit in the state of 0. Suppose the classical channel is {p(y0|x0) =

1 − q, p(y1|x0) = q, p(y0|x1) = q, p(y1|x1) = 1 − q}. Under the classical channel, the final

probability distribution as the output is

{p(y0) = (1 − q)p+ q(1 − p), p(y1) = qp+ (1 − q)(1 − p) }. (2.5)

2.2 Quantum information: von Neumann entropy and quantum channels

In quantum mechanics, the non-commutative analog of a probability distribution is a

density matrix ρ on a Hilbert space K defined by

ρ =
∑

i
pi |i〉 〈i| (2.6)

where |i〉 〈i| are projections on K. In analogy to the classical case, the projections |i〉 〈i|

correspond to the events where {pi} is its probability distribution. A density matrix is
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a positive operator because its eigenvalues are positive real numbers 

6
 . Moreover, for the

eigenbasis {|i〉} ∈ K,

tr(ρ) =
∑

i
〈i| ρ |i〉 < ∞. (2.7)

Such an operator is called a trace-class operator 

7
 . Roughly speaking, it is normalizable with

a trace. ρ is called a pure state if it cannot be written by a convex composition of any other

states. Since the pure states are a one-dimensional projection, they satisfy ρ2 = ρ. This

is sometimes called a purity of the density matrix. Otherwise, a density matrix is a mixed

state, and ρ2 ≤ ρ.

In quantum information theory, the notion of subsystem plays a significant role in un-

derstanding the correlation structures in quantum systems. To define the subsystem, we use

partial trace. Consider a density matrix ρAB of a quantum system AB. We partition the sys-

tem into A and B. The density matrices of subsystem A and B are defined by ρA = trB(ρAB)

and ρB = trA(ρAB). Conversely, one can compose systems by a tensor product. For example,

consider two density matrices ρA and ρB. One can compose them, and get, for instance,

ρAB = ρA ⊗ ρB.

One can calculate the quantum information of density matrices similar to Shannon en-

tropy in the classical case. In the quantum case, von Neumann entropy generalizes Shannon

entropy.

Definition 2.2.1 (von Neumann entropy). Given a density matrix ρ, von Neumann entropy

is defined as

S(ρ) = − tr(ρ log ρ). (2.8)

It satisfies the following properties;

1. Additivity:

S(ρ⊗ σ) = S(ρ) + S(σ); (2.9)

2. Subadditivity (SA):

S(ρA) + S(ρB) ≥ S(ρAB) (2.10)
6

 ↑ A operator is positive if 〈Ψ|ρ|Ψ〉 ≥ 0 for ∀ |Ψ〉 ∈ K.
7

 ↑ It is also called L1 bounded operator since L1-norm is the trace norm. Note that trace norm does not
depend on the basis.
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3. Concavity: For a set of positive numbers pi such that ∑i pi = 1,

S(
∑

i
piρi) ≥

∑
i
piS(ρi). (2.11)

In addition, its upper-bound is provided by

S(
∑

i
piρi) ≤

∑
i
piS(ρi) −

∑
i
pi log pi =

∑
i
piS(ρi) +H({p}). (2.12)

In the quantum case, the basic idea of a “channel” is a map between non-commutative

probability distributions. A quantum channel is a map between density matrices. Quantum

channel represents quantum information processing. To define quantum channels, we need

to introduce two concepts, i) completely positive maps, and ii) trace-preserving maps. We

briefly discuss them here since we will study them in detail in chapter  3 .

First, a density matrix is a positive operator. A linear map that sends a positive operator

to another one is called a positive map. Thus, quantum channels should be at least positive

maps. Consider a density matrix ρSR of a system S and a dR-dimensional reference system

R. A positive map Φsch  

8
 on the system is a completely positive map when

(Φsch ⊗ IR)(ρSR) (2.13)

is positive for all dR. The transpose map is an example of a positive map, but not a completely

positive map.

Second, a quantum channel ΦSch is trace-preserving if

tr(Φsch(ρ)) = tr(ρ). (2.14)

This is a physical requirement that total probability is preserved under the quantum channel.

We summarize the above discussion into the following definition.
8

 ↑ In this section, a quantum channel on a density matrix is denoted as Φsch where the subscript indicates
the Schrödinger picture. Similarly, we denote a quantum channel on an observable by ΦH which is in the
Heisenberg picture.
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Definition 2.2.2 (Quantum channel). Consider {ρA} the set of density matrices of system

A and {ρB} the set of density matrices of system B, then a quantum channel Φsch is a

completely positive and trace-preserving map from ρA → ρB.

The simplest quantum channel is a unitary transformation UρU † for a density matrix ρ.

For instance, the time evolution of a closed quantum system is a unitary flow generated by

the Hamiltonian. A general quantum channel models non-unitary and irreversible dynamics

as well. Hence, it is suitable to describe the interactions between a system and, for instance,

an external system.

To make this statement explicit, let us introduce and construct so-called Kraus represen-

tation  

9
 in a simple example below. For a quantum channel and a density matrix, in general,

the Kraus representation is defined by

Φsch(ρ) ≡
∑
k

MkρM
†
k . (2.15)

Mk are non-unitary operators called Kraus operators and satisfy ∑kM
†
kMk = I.

Consider a system S and, for instance, a reservoir R. Given a total Hamiltonian Htot =

HS ⊗ I + I ⊗ HR + HSR where HS and HR are the Hamiltonian of the system and the

reservoir. HSR is the interaction Hamiltonian. Let ρS(0) be the initial density matrix of

the system, and |r0〉 〈r0| is a projection consisting of the lowest eigenvalue of HR. Then, the

density matrix of the system after time t under the time evolution defined by the unitary

Utot = eitHtot is obtained by

ρS(t) = trR
(
UtotρS(0) ⊗ |r0〉 〈r0|U †

tot

)
=
∑
k

〈rk|Utot |r0〉 ρS(0) 〈r0|U †
tot |rk〉

=
∑
k

MkρS(0)M †
k

(2.16)

where we put Mk = 〈rk|Utot |r0〉.
9

 ↑ For its full definition and discussion, see theorem  3.2.2 .
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For the simplest case, let |Ψ〉 〈Ψ| be an initial pure density matrix of a single qubit system

where |Ψ〉 = p |0〉 + (1 − p) |1〉 for 0 ≤ p ≤ 1. Consider a CNOT gate as a dynamics on a

two-qubit system, i.e.,

Utot = |00〉SR 〈00| + |01〉SR 〈10| + |10〉SR 〈11| + |11〉SR 〈10| (2.17)

where |ij〉SR = |i〉S ⊗ |j〉R (i, j = 0, 1) are the sigmaz basis of the system qubits and resevoir

qubits. The Kraus operators in a basis {|0〉R , |1〉} are

M0 = 〈0|U |0〉 = |0〉 〈0| , M1 = 〈1|U |1〉 . (2.18)

Thus, we get ∑
k

Mk |Ψ〉 〈Ψ|M †
k = p |0〉 〈0| + (1 − p) |1〉 〈1| . (2.19)

The non-unitary process decoheres the system and is irreversible.

2.3 Classical and quantum correlations

Quantum information can be encoded into, for instance, a set of two-level quantum

systems. This is often called a qubit system. When one encodes the information to a set

of d-level quantum systems, we call it a qudit system. The correlation structures of these

systems are governed by how they interact. In quantum information processing, we actively

manipulate the correlation structures to achieve communication or computation protocols.

This is how quantum information technologies are built on quantum systems.

In a bipartite system, there are four types of correlation structures that are important to

us; i) product states (no correlations), ii) separable states (classical correlations), iii) entan-

gled states (quantum correlations), and iv) classical-quantum states. When the subsystems

do not have any correlation or are decorrelated, the density matrix of AB is a product state,

ρAB = ρA ⊗ ρB. (2.20)
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The density matrix is a separable state if it is written by

ρAB =
∑

i
piρAi ⊗ ρBi (2.21)

for a probability distribution {pi}. If density matrices cannot be written by any of the two

forms, they are called entangled states. When the system has both classical and quantum

correlations, the density matrices are written by

ρAB =
∑

i
piρABi (2.22)

for a probability distribution {pi}.

To gain intuition as why each form of the density matrices has the corresponding cor-

relations, we now discuss the measures of correlation. One might think that von Neumann

entropy is enough. However, as we will see, it is a measure of correlations only for pure

bipartite systems.

Consider ρAB to be a pure state. In general, von Neumann entropy of ρA measures total

correlations between subsystem A and B. It can capture all the correlations between A and

B with neither over-counting nor miss-counting, fig. 2.2 , because we have S(ρA) = S(ρB)

from the subadditivity ( 2.10 ). However, when ρAB is a mixed state, it cannot capture the

correlations properly. For example, even if one has a product state ρAB = ρA ⊗ ρB, the von

Neumann entropy S(ρA) is not equal to zero despite the fact that there is no correlation

between A and B. Hence, von Neumann entropy is not a good measure of correlations of

mixed states.

Instead, we define mutual information by

I(A : B) := S(ρA) + S(ρB) − S(ρAB). (2.23)

It is a measure of correlations of both pure and mixed states. For the product states, it always

vanishes. Thus, there is no correlation. For the separable states, it equals Shannon entropy.

Thus, only the classical correlations exist. For the entangled states, it is calculated by the
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this is what vN entropy is calculating

A B A B

Figure 2.2. A system is partitioned into subsystem A and B. The dots represent,
for instance, local lattice sites. The black lines represent the quantum correlations
between the lattice sites. Intuitively, what contributes to the von Neumann entropy
is the number of free legs.

combination of von Neumann entropy following its definition. In the next section, we will

see that there is a much more fundamental information measure than mutual information,

which is called relative entropy.

2.3.1 Relative entropy

Among the measures, an information measure that is central to the thesis is relative

entropy. This is a distinguishability measure. It compares two probability distributions

and quantifies how distinguishable they are. It generates other information measures, for

instance, mutual information. Moreover, it provides operational interpretation for various

information and correlation measures  

10
 .

In [  35 ], the relative entropy for the classical probability distributions was proposed by

Kullback and Leibler. It was originally proposed for the continuous probability distribution.

Here, we give the definition with the discrete probability distributions.
10

 ↑ For the summary of the role of relative entropy in information theory and physics, see [  34 ].
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Definition 2.3.1 (Classical relative entropy/Kullback-Leibler (KL) divergence). For two

probability distributions, {p(xi)}ni=1, {q(xi)}ni=1, the Kullback-Leibler (KL) divergence is de-

fined by

DKL({q}|{p}) =
n∑

i=1
q(xi) log

(
q(xi)
p(xi)

)
(2.24)

which satisfies the following properties

1. If p(x) = 0, q(x) = 0, then

log(q(x)/p(x)) = 0 (2.25)

2. If p(x) 6= 0, q(x) = 0, then

log(q(x)/p(x)) = ∞ (2.26)

In the quantum case, the relative entropy is defined between two density matrices.

Definition 2.3.2 (Quantum relative entropy). For two density matrices, ρ, σ, on a Hilbert

space K,

S(ρ‖σ) =


tr
(
ρ(log ρ− log σ)

)
if supp(ρ) ⊆ supp(σ)

+∞ otherwise
(2.27)

Let us mention the properties of the quantum relative entropy and its relevance to other

information measures. First, the relative entropy is a function from density matrices to the

positive real number R+. That is, S(ρ‖σ) ≥ 0. Note that S(ρ‖σ) = 0 if and only if ρ = σ.

The remarkable property is the monotonicity under a quantum channel. Consider a quantum

channel Φ acting on two density matrices, ρ, σ. Then,

S(ρ‖σ) ≥ S(Φ(ρ)‖Φ(σ)). (2.28)

This implies that the density matrices become less distinguishable after the dynamics mod-

eled by the quantum channel.

It is a quantum generalization of the second law in thermodynamics. Consider σ to be

a density matrix that follows the Gibbs distribution and ρ to be a density matrix out of

equilibrium. The relative entropy S(ρ‖σ) measures how far is ρ from equilibrium. Suppose
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a quantum channel is modeled to be a thermalization process. Then, the monotonicity

provides the second law 

11
 .

An information measure that satisfies the monotonicity under a local quantum chan-

nel is sometimes called a correlation measure. A notable correlation measure is a mutual

information I(A : B) as discussed above.

Under a local quantum channel Φ on ρA, the correlation between subsystem A and B

only decreases. This can be seen from the monotonicity of relative entropy, i.e.,

I(A : B) = S(ρAB‖ρA ⊗ ρB) ≥ S((Φ ⊗ id)(ρAB)‖Φ(ρA) ⊗ ρB) = IΦ(A : B) (2.29)

where IΦ(A : B) is the mutual information of the density matrix (Φ ⊗ id)(ρAB).

There are two important inequalities obtained from the relative entropy,

1. Subadditivity (SA):

S(ρA) + S(ρB) ≥ S(ρAB) (2.30)

2. Strong subadditivity (SSA):

S(ρABC‖ρA ⊗ ρBC) ≥ S(ρAB‖ρA ⊗ ρB) (2.31)

Subadditivity is obtained from the positivity of relative entropy or mutual information be-

tween ρAB and ρA⊗ρB, i.e., I(A : B) = S(ρAB‖ρA⊗ρB) = S(ρA)+S(ρB)−S(ρAB) ≥ 0. The

SSA follows simply from the monotonicity under the partial trace trC on C as a quantum

channel.

The strong subadditivity is saturated on a special class of quantum states called Markov

state. A tripartite density matrix ρABC is a Markov state if it saturates the strong sub-

additivity. This is a special example of quantum error correction where the error erases

subsystem C. Consider a partial trace on C, trC , as a quantum channel. Then, the SSA

holds from the monotonicity of relative entropy (  2.28 ). When the SSA saturates, it is known
11

 ↑ For the simplest example, take σ = I/d to be a maximally mixed state. Then, the relative entropy is
S(ρ‖σ) = log d− S(ρ). Under the thermalization process, von Neumann entropy increases. Thus, S(ρ‖σ) ≥
S(Φ(ρ)‖Φ(σ)) = log d− S(Φ(ρ))
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that there always exists a map from B to BC that can reverse the erasure of C[ 36 ]. In

other words, one can construct the recovery map that recovers the initial state. In this case,

the recovery map recovers ρABC from ρAB and ρA ⊗ ρBC from ρA ⊗ ρB. In general, density

matrices that saturate the SSA are always correctable under the erasure error of A or C.

Such density matrices are Markov states, and they always admit an expansion of the form,

ρABC = ⊕piρ
AB1
i ⊗ ρB2C

i (2.32)

where pi ∈ R+, ∑i pi = 1 and B1B2 = B. ρABC is the density matrix on the Hilbert

space KABC which saturate the SSA. In this case, the Hilbert space splits into two KABC =

⊕iKAB1i ⊗ KB2Ci, and ρAB1
i and ρB2C

i are supported on KAB1i and KB2Ci, respectively.

Its physical intuition can easily be grasped by considering another information measure

called conditional mutual information(CMI) defined by

I(A : C|B) := I(A : BC) − I(A : B)

= S(ρABC‖ρA ⊗ ρBC) − S(ρAB‖ρA ⊗ ρB)

= S(AB) + S(BC) − S(B) + S(ABC).

(2.33)

It measures the correlation between subsystem A and C conditioned on B. The saturation of

the SSA implies that I(A : C|B) = 0. Physically, this implies that all correlations between

A and C go through B. By staring at (  2.32 ), one can notice that there is no quantum

correlation between A and C but the classical correlation provided by the classical mixtures

{pi}. One should note that this is a special class of density matrices in the class of separable

states ∑i piρi ⊗ σi.

2.3.2 Rényi measures

We have studied two main quantum information measures, von Neumann entropy, and

quantum relative entropy. However, there are various other kinds of information measures,

such as max-entropy[ 37 ], min-entropy, and collision entropy[ 38 ]. Each of them has its own
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interpretation. Do they satisfy any relations? Is there a way to interpolate among these

information measures? The answer is provided by the construction of Rényi entropy [  39 ].

In [  39 ], Rényi entropy was constructed for a classical probability theory. For a classical

probability distribution {p} = {p(xi)}ni=1, and a parameter θ ∈ (0, 1) ∪ (1,∞),

Hθ({p}) = 1
1 − θ

log2

( n∑
i=1

pθ(xi)
)
. (2.34)

This can be generalized to the quantum case. For a density matrix ρ, and a parameter

θ ∈ (0, 1) ∪ (1,∞),

Sθ(ρ) = 1
1 − θ

ln tr(ρθ). (2.35)

In the limit θ → 1, the classical Rényi entropy reduces to Shannon entropy, and the quantum

Rényi entropy reduces to von Neuamnn entropy. The beauty of quantum Rényi entropy is

once we know tr(ρθ) for any θ, we get the whole spectrum of ρ.

Again, in our work, the relative entropy is the central information measure. There are

two one-parameter generalized measures of quantum relative entropy. One is called the Petz

divergence[ 40 ], and the other is called the sandwiched Rényi divergence[ 41 ]. For density

matrices, ρ, and σ, and a parameter θ ∈ (0, 1) ∪ (1,∞),

Petz divergence : Dθ(ρ‖σ) = −1
1 − θ

log tr(ρθσ1−θ)

Sandwiched Rényi divergence : Sθ(ρ‖σ) = −1
1 − θ

log tr
(
(σ

1−θ
2θ ρσ

1−θ
2θ )θ

)
.

(2.36)

The Petz divergence satisfies the monotonicity for θ ∈ (0, 1) ∪ (1, 2) while the sandwiched

Rényi divergence satisfies it for θ ∈ (1/2, 1) ∪ (1,∞), fig.  2.3a .

θ-r-Rényi divergence was proposed to interpolate the above two one-parameter diver-

gences[ 42 ],

Sθ,r(ρ‖σ) = −1
1 − θ

log tr
[(
σ

1−θ
2r ρ

θ
rσ

1−θ
2r
)r]

. (2.37)
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Figure 2.3. (a) Monotonicity of Rényi divergences holds inside the colored regions
of the (θ, r) parameter space. The red line represents the Petz divergence. The green
line represents the sandwiched Rényi divergence. The black line represents the so-
called reverse sandwiched Rényi divergence[ 42 ]. The pink dot is where quantum
relative entropy is placed at. (b) It shows the relations among (θ, r)-Rény divergence,
sandwiched Rényi divergence, Petz Rényi divergence, and quantum relative entropy.

When θ = r, it reduces to sandwiched Rényi entropy. When r = 1, it reduces to Petz

divergence, fig.  2.3a . When, r = 1 − θ, one gets reverse Sandwiched Rényi divergence defined

by

Ŝθ(ρ‖σ) = 1
α− 1 log tr

(
ρ

θ
2(1−θ)σρ

θ
2(1−θ)

)1−θ
. (2.38)

It has the following symmetry relation;

(θ − 1)Ŝθ(ρ‖σ) = (−θ)Sθ,r(ρ‖σ). (2.39)

In chapter  6 , we further generalized it to multiparameter multistate Rényi relative entropy.
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3. COMPLETELY POSITIVE MAPS AND THEIR DUALS IN

VON NEUMANN ALGEBRAS

Our discussion on the information theory in the previous chapter was based on the Schrödinger

picture where classical probability distributions and density matrices are dynamical. In this

thesis, instead, we work in the Heisenberg picture where operators are dynamical, and the

probability distributions and density matrices are stationary. We model the dynamics of

observables in the Heisenberg picture by linear maps on C∗-algebras and von Neumann al-

gebras. Thus, the main purpose of this chapter is to provide a brief review of these linear

maps and their “dual” linear maps which will be defined later. We first answer the following

questions: i) what are those operators? ii) do they form an algebra? iii) if so, what are the

types and properties of the algebra?

The outcome of a measurement is an event with a particular probability associated with

it. In other words, we measure expectation values and the fluctuations of observables. We

model observables by Hermitian, or self-adjoint operators a on a Hilbert space K  

1
 . Consider

the spectral decomposition of a Hermitian operator a on K, i.e.,

a =
∑

i
λi |i〉 〈i| (3.1)

where |i〉 ∈ K and λi ∈ R are eigenvalues of a. The expectation value of the projection |i〉 〈i|

in a state |η〉

〈η|(|i〉 〈i|)|η〉 = | 〈i|η〉 |2 =: pi (3.2)

gives the probability of the physical state to be |i〉 〈i| 

2
 . Then, the expectation value of a is

given by

〈η|a|η〉 =
∑

i
piλi. (3.3)

1
 ↑ Self-adjoint is defined for both bounded and unbounded operators. Hermitian operators are bounded

self-adjoint operators.
2

 ↑ This is sometimes called Born rule.

37



One can construct a ∗-algebra A including a set of the Hermitian operators to algebraically

model physics 

3
 . However, in the infinite-dimensional case, the ∗-algebra is not enough for

the purpose. For any sequence {an} in the ∗-algebra, we should include in the algebra

an operator a that satisfies the limit with respect to the so-called weak operator topology

(WOT),

lim
n→∞

〈η1|an|η2〉 = 〈η1|a|η2〉 (3.4)

for ∀ |η1〉 , |η2〉 ∈ K. Intuitively, it implies that every matrix element of an should converge

to that of a in large n. If the closure  

4
 of the ∗-subalgebra A of B(K) contains an identity

operator I, A is called a von Neumann algebra.

3.1 von Neumann algebras

In this section, we will provide the definition of C∗-algebras and vN algebras. von Neu-

mann (vN) algebras are a special class of C∗-algebras.

Definition 3.1.1 (C∗-algebra). A C∗-algebra on K is a ∗-subalgebra A of B(K) such that

1. it is closed under norm topology, i.e., for any sequence of an ∈ A, there exists a limit

a ∈ A,

lim
n→∞

‖an − a‖ = 0; (3.5)

2. C∗-property: for a ∈ A

‖x†x‖ = ‖x†‖‖x‖ = ‖x‖2 (3.6)

If C∗-algebra contains an identity I, it is called a unital C∗-algebra. In this thesis, we

always assume C∗-algebra to be unital.

Definition 3.1.2 (von Neumann algebras(vN algebras)). A von Neumann algebra on K is

a ∗-subalgebra A of B(K) such that
3

 ↑ Since mathematicians denote the dagger action by ∗, it is called ∗-algebra. As a physicist, should we call
it †-algebra?
4

 ↑ Including all the limits with respect to convergence is called closure. One can choose how operators
converge. As we see below, operators in C∗-algebras converge in so-called the norm topology.
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1. it is closed under weak operator topology, i.e., for any sequence of an ∈ A, there exists a

limit a ∈ A,

lim
n→∞

〈η1|an|η2〉 = 〈η1|a|η2〉 (3.7)

for ∀ |η1〉 , |η2〉 ∈ K.

2. I ∈ A

There is a powerful theorem that characterizes ∗-algebras of B(K) that are von Neumann

algebras. It is called the double commutant theorem [ 43 ]. For a ∗-algebra, the commutant A

is the set of all operators in B(K) that commute with all the operators in A, i.e.,

A′ = {a′ ∈ B(K)|[a, a′] = 0,∀a ∈ A}. (3.8)

The double commutant A′′ is the commutant of A′. In general, A ⊂ A′′. We do not state

the theorem here. Instead, we adopt it as the definition of vN algebras.

Definition 3.1.3 (von Neumann algebras(vN algebras)). A ∗-subalgebra A of B(K) is a vN

algebra if

A = A′′. (3.9)

The center Z(A) of a vN algebra is defined by

Z(A) = A ∩ A′. (3.10)

If the center of vN algebra A contains only a scalar multiple of an identity operator, i.e.,

Z(A) = {CI}, A is called a factor.

3.2 Positive maps, n-positive maps, and completely positive maps

Before we go into the details of representations of vN algebras and Tomita-Takesaki

theory, we discuss positive linear maps, n-positive maps, and completely positive maps. In

addition, we study the representations of completely positive linear maps.
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3.2.1 Definitions and properties

Consider a d×d matrix algebra A on a Hilbert space K. We study linear maps that map

from an algebra A to i) complex numbers C, ii) a vector space, and iii) another algebra B or

itself A. Especially, for iii), we sometimes call such a linear map as a superoperator. A trace

is an example of a linear map from an operator to a complex number, tr : a ∈ A 7→ α ∈ C.

The linear maps from an algebra A to a vector space K can represent operators as vectors,

a 7→ |a〉. The linear maps from one algebra to another algebra or to itself make the story

“dynamical”. For example, complex conjugation on the operators a 7→ a∗
 

5
 for a ∈ A is a

linear map. The dagger operation is also a linear map a 7→ a†. For a unitary U , a unitary

transformation U †aU is also a very basic linear map. Among various kinds of linear maps,

we study positive linear maps, n-positive maps, and completely positive maps.

The positivity of a linear map is characterized by a positive operator in an algebra because

positive linear maps map a positive operator to another one or itself.

Definition 3.2.1 (Positive operators). An operator a on a Hilbert space K is positive 

6
 if

〈Ψ|a|Ψ〉 ≥ 0 (3.11)

for all |Ψ〉 ∈ K.

An example of a positive operator is a density matrix ρ. When an operator is positive,

we denote it by a ≥ 0. Or, we will write it by a+, and a set of all positive operators of A

by A+. In operator algebras, a linear map from an algebra to complex numbers C is often

called a linear functional. With the notion of positive operators, positive linear functionals

are defined by as follows.

Definition 3.2.2 (Positive linear functional). Let A be a C∗-algebra 

7
 . A linear functional

ω : A → C is said to be positive linear functional if ω(a+) ≥ 0 for a+ ∈ A+.
5

 ↑ We denote the complex conjugate on operators as a∗ for a ∈ A, and that on complex numbers c ∈ C as a
bar c.
6

 ↑ “Positive” in this thesis means the semi-definite positive.
7

 ↑ or a vN algebra
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For a self-adjoint operator a = a†, ω(a) is a real number. In addition, it preserves the †

action, ω(a†) = ω(a). If a positive functional satisfies the normalization condition, i.e.,

‖ω‖ ≡ sup
a∈A,‖a‖≤1

|ω(a)| = 1, (3.12)

we call it a state which is used to evaluate an expectation value ω(a) of an operator a ∈ A.

We will return to the state in section  3.3.2 . For the simplest example, consider an algebra

of d × d complex matrices Md(C). We can easily see that the normalized trace, tr((·)I/d),

is a state on the algebra Md(C). The positivity of the trace can be directly checked. For

a = ∑
ij αij |i〉 〈j| where |i〉 〈j| are operator basis in Md(C) and αij ∈ C,

tr((aa†)I/d) = 1
d

∑
i,j

|αij|2 ≥ 0. (3.13)

Thus, the trace, tr(I/d(·)), is a state. In a qudit, the normalized trace is understood as

a maximally mixed state. As one can easily check, tr(ρ(·)) for a density matrix ρ is also

a state. The notion of a state as a positive functional is the key ingredient to study the

representations of vN algebras and C∗-algebras.

As a generalization of positive linear functionals, we define a positive linear map from

one algebra to another one.

Definition 3.2.3 (Positive linear map). Let A and B be C∗-algebras 

8
 . A linear map π :

A → B is said to be positive if π(a+) ≥ 0 for ∀a+ ∈ A+.

Let us discuss three important examples of positive linear operators, i)∗-homomorphisms,

ii)conjugating operators, iii)transpose. Let A and B are C∗-algebras 

9
 .

∗-homomorphisms

A ∗-homomorphism π : A → B is a structure-preserving map. It is used to describe

representations of C∗-algebras and vN algebras in section  3.3 , and defined in subsection

 3.3.1 . It is a positive map because
8

 ↑ or vN algebras
9

 ↑ or vN algebras
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π(aa†) = π(a)π(a†) = π(a)π(a)† ≥ 0. (3.14)

A ∗-homomorphism and its variants, such as ∗-isomorphism, and ∗-automorphism, will fre-

quently appear in this thesis. For example, for a representation of an algebra, ∗-isomorphism

represents every single operator. The central theorem  3.5.1 of Tomita-Takesaki theory claims

that, given a von Neumann algebra with a choice of a state, there always exists a canonical

∗-automorphism group called the modular automorphism group  

10
 .

Conjugations

The second example is a conjugation π(b) = a†ba, a, b ∈ A. This is also a positive linear

map because

π(b†b) = a†b†ba = (ba)†ba ≥ 0. (3.15)

Transpose

The last example is the transpose, i.e., π(a) = aT .

π(a†a) = (a†a)T = aT (a†)T = aT (aT )† ≥ 0. (3.16)

Transpose as a positive map in quantum information theory provides numerous tools to

study entanglement theory, such as entanglement witness  

11
 .

It is important to see that a direct sum of positive maps is again another positive map.

Let Ai and Bi be C∗ algebras 

12
 , and πi : Ai → Bi for (i = 1, 2) be positive maps. The direct

sum of the positive maps defined by

(π1 ⊕ π2)(a1 ⊕ a2) ≡ π1(a1) ⊕ π2(a2) (3.17)

is a positive map because the direct sum of positive operators is positive, i.e.,

(π1 ⊕ π2)((a1 ⊕ a2)†(a1 ⊕ a2)) = π1(a†
1a1) ⊕ π2(a†

2a2) ≥ 0. (3.18)
10

 ↑ see section  3.5 for the details
11

 ↑ Unfortunately, we do not discuss entanglement witness in this thesis. For interested readers, see [ 44 ].
12

 ↑ or vN algebras
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Now, is the tensor product of positive maps positive again? The answer is no. For example,

consider a tensor product π1 ⊗ π2 of an identity map, π1 = id, and a transpose, π2(·) = (·)T ,

on the following positive matrix,



1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1


=

1 0

0 0

⊗

1 0

0 0

+

0 1

0 0

⊗

0 1

0 0



+

0 0

1 0

⊗

0 0

1 0

+

0 0

0 1

⊗

0 0

0 1

 .
(3.19)

Then,

(π1 ⊗ π2)



1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1


=



1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


. (3.20)

The resultant matrix is not positive anymore. Hence, the tensor product of positive maps is

not necessarily positive. There is a special class of positive maps called completely positive

maps where the tensor-product of two completely positive maps is again completely positive.

This is an essential mathematical object to describe the dynamical evolution in physics.

To define a completely positive map, we provide the notion of amplification. Given a

C∗-algebra  

13
 , an amplification of the algebra by Mn(C) is the set of n × n matrix Mn(A)

whose entries are the operators in the algebra A, i.e.,

Mn(A) ≡ Mn(C) ⊗ A =




a11 · · · a1n
... . . . ...

an1 · · · ann

 | aij ∈ A, i, j = (1, · · · , n)


. (3.21)

The idea of amplification corresponds to the extension of a physical system. Suppose one

has an algebra of a single qubit system, which is just a collection of 2 × 2 complex matrices,
13

 ↑ or a vN algebra
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M2(C). One can extend the algebra to the 1+k-qubit system by tensor-producing the algebra

of another k-qubit system, M2k(C) ⊗ M2(C). The notion of complete positivity guarantees

that the local action of a linear map Φ on the operators of an extended system is positive,

i.e., suppose Φ : M2(C) → M2(C) be a completely positive

M2k(C) ⊗M2(C) → I2k ⊗ Φ(M2k(C) ⊗M2(C)) ≥ 0 (3.22)

for all k. Now, we define the completely positive maps.

Definition 3.2.4 (n-positive map, completely positive map). Let A and B be C∗-algebras 

14
 ,

and Φ : A → B a linear map. Consider the matrix Mn(A) and Mn(B), the amplification of

A and B, and Φ(n) : Mn(A) → Mn(B) be a linear map which acts on each matrix elements

aij ∈ A (i, j = 1, . . . , n) of Mn(A), i.e.,

Φ(n)


a11 · · · a1n
... . . . ...

an1 · · · ann

 =


Φ(a11) · · · Φ(a1n)

... . . . ...

Φ(an1) · · · Φ(ann)

 . (3.23)

A linear map Φ is a n-positive map if Φn is a positive map on Mn(A). It is a completely

positive map if Φn is a n-positive map for all n.

Let us work with some examples of a completely positive map.

∗-homomorphisms

First, one can easily see that ∗-homomorphism is a completely positive map. Let A and

B be C∗-algebras 

15
 , and π : A → B is ∗-homomorphism. Then, π(n) : Mn(A) → Mn(B) is

14
 ↑ or vN algebras

15
 ↑ or vN algebras
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again a ∗-homomorphism because, for a positive matrix in Mn(A), π(n) is positive for all n

as follows;

π(n)



a11 · · · a1n
... . . . ...

an1 · · · ann


†

a11 · · · a1n
... . . . ...

an1 · · · ann




=


π(a11) · · · π(a1n)

... . . . ...

π(an1) · · · π(ann)


†

π(a11) · · · π(a1n)
... . . . ...

π(an1) · · · π(ann)

 .
(3.24)

Thus, ∗-homomorphisms are completely positive maps.

Conjugations

Next, we see that the conjugation,

Φ(a) = x†ax (3.25)

for a, x ∈ A, is a completely positive map. The action of Φ(n) on Mn(A) can be achieved by

the conjugation of the diagonal matrix whose diagonal entries are x. That is,

Φ(n)



a11 · · · a1n
... . . . ...

an1 · · · ann


 =


x†a11x · · · x†a1nx

... . . . ...

x†an1x · · · x†annx



=



x† 0 · · · 0

0 x† . . . ...
... . . . . . . 0

0 · · · 0 x†




a11 · · · a1n
... . . . ...

an1 · · · ann





x 0 · · · 0

0 x
. . . ...

... . . . . . . 0

0 · · · 0 x



(3.26)

45



For a positive matrix in Mn(A), there should exists a matrix [fij] such that


a11 · · · a1n
... . . . ...

an1 · · · ann

 =


f11 · · · f1n
... . . . ...

fn1 · · · fnn


†

f11 · · · f1n
... . . . ...

fn1 · · · fnn

 . (3.27)

Then,

Φ(n)



a11 · · · a1n
... . . . ...

an1 · · · ann




=


f11 · · · f1n
... . . . ...

fn1 · · · fnn





x 0 · · · 0

0 x
. . . ...

... . . . . . . 0

0 · · · 0 x


†


f11 · · · f1n
... . . . ...

fn1 · · · fnn





x 0 · · · 0

0 x
. . . ...

... . . . . . . 0

0 · · · 0 x


.

(3.28)

Thus, the conjugation is also a completely positive map. Similarly, consider a conjugation

by a linear operator V that maps from a Hilbert space H to another Hilbert space K. Then,

the map Φ(a) = V †aV from B(K) 3 a to B(H) is completely positive. We will frequently

use it for representations of completely positive maps below.

Positive linear functionals

At last, we observe that positive linear functionals are completely positive maps as well.

This is the key property in the studies of representations of C∗-algebras and von Neumann

algebras. By definition, if [aij] ∈ Mn(A) is a positive operator, then

〈η|[aij]η〉 ≥ 0 (3.29)
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for all |η〉 ∈ Cn. For |η〉 = ∑
i ηi |i〉 where |i〉 are basis of Cn and ηi ∈ C, the above condition

can be equivalently written as  

16
 



∑
ij η

∗
i ηjaij 0 · · · 0

0 0 ...
... ... ...

0 · · · 0



=



η∗
1 · · · η∗

n

0 · · · 0
... . . . ...

0 · · · 0




a11 · · · a1n
... . . . ...

an1 · · · ann




η1 0 · · · 0
... . . . ...

ηn 0 · · · 0

 ≥ 0.

(3.30)

This implies that ∑ij η
∗
i ηjaij ≥ 0. Let ω be a positive linear functional on A, and ω(n) as a

linear map from Mn(A) to Mn(C). Then, it is easy to see that ∑ij η
∗
i ηjaij ≥ 0 is replaced by∑

ij η
∗
i ηjω(aij) ≥ 0. Since ω is linear, ω(∑ij η

∗
i ηjaij) ≥ 0. Therefore, a positive linear functional

ω is completely positive.

We can check that the composition of CP maps gives another completely positive map.

Given a composition Φ2 ◦ Φ1 of two CP maps Φ1 : A1 → A2, Φ2 : A2 → B. Let Φ1(n) :

Mn(A1) → Mn(A2), Φ2(n) : Mn(A2) → Mn(B), and (Φ2 ◦ Φ1)(n) : Mn(A1) → Mn(B). By

definition, (Φ2 ◦ Φ1)(n) = Φ2(n) ◦ Φ1(n). Since the composition of positive maps is positive,

and Φ1(n) and Φ2(n) are positive on each domain for all n, the composition Φ2 ◦ Φ1 of the CP

maps is completely positive.

The above definition of completely positive maps is cumbersome to work with because

one needs to check the positivity of Φ(n) for all n. There is a powerful yet simple theorem

to characterize completely positive maps, known as Choi’s theorem.

Theorem 3.2.1 (Choi’s theorem on completely positive maps[ 45 ]). Let Φ : Mn(C) → Mn(C)

be a linear map, and |i〉 〈j| be an operator basis of Mn(C). The followings are equivalent:

1. Completely positive: Φ is completely positive;
16

 ↑ Since [aij] = [fij]†[fij] for [fij] ∈ Mn(A), ([ηi][fij])†[ηi][fij] ≥ 0. Here, we denoted the matrix with ηi in its
first column as [ηi].

47



2. n-positive: Φ(n) ≡ idn ⊗ Φ : Mn(C) ⊗Mn(C) → Mn(C) ⊗Mn(C) is a positive map;

3. Positivity of Choi’s matrix: Choi’s matrix,

σΦ = Φn(|e〉 〈e|) = idn ⊗ Φ(
∑

ij
|i〉 〈j| ⊗ |i〉 〈j|) =

∑
ij

|i〉 〈j| ⊗ Φ(|i〉 〈j|) (3.31)

where |e〉 = ∑
i |i〉 ⊗ |i〉, is positive.

Proof. 1 → 2: 1 implies 2 by the definition.

2 → 3: One can check that

|e〉 〈e| ≡
∑

ij
|i〉 〈j| ⊗ |i〉 〈j| (3.32)

is a positive operator because |e〉 〈e| = 1/n(|e〉 〈e|)† |e〉 〈e| where n = dim(Cn) > 0. Since Φ

is n-positive, or idn ⊗ Φ is positive, Choi’s matrix σΦ is positive.

3 → 1: First, from (  3.31 ),

Φ(|i〉 〈j|) = (〈i| ⊗ I)σΦ(|j〉 ⊗ I). (3.33)

Since σΦ is positive, there is a eigenvalue decomposition

σΦ =
∑
k

λk |φk〉 〈φk|

|φk〉 =
∑
iα
ϕ

(k)
iα |i〉 ⊗ |α〉 ∈ Cn ⊗ Cn

(3.34)

where, for all k, λk ≥ 0 are the eigenvalues, and |φk〉 are the eigenvectors of Cn ⊗Cn. Define

a linear map Mk : Cn → Cn to be

M †
k ≡

∑
iα
ϕ

(k)
iα |α〉 〈i| (3.35)

so that

|φk〉 = I ⊗M †
k |e〉 . (3.36)
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Then, Choi’s matrix becomes

σΦ =
∑
k

λk(I ⊗M †
k) |e〉 〈e| (I ⊗Mk). (3.37)

From (  3.33 ),

Φ(|i〉 〈j|) =
∑
k

(λ1/2
k Mk)† |i〉 〈j| (λ1/2

k Mk). (3.38)

As discussed in (  3.25 ), each term (λ1/2
k Mk)† |i〉 〈j| (λ1/2

k Mk) is completely positive. Moreover,

the convex compositions of completely positive maps are completely positive. Therefore, Φ

is completely positive.

Choi’s theorem says that there is a canonical choice of an operator, whose positivity

implies that the map Φ is CP. The equivalence (1 ↔ 3) between a completely positive map

and a positive operator is known as Choi-Jamiołkowski isomorphism.

Since |i〉 〈j| is an operator basis of Mn(C), (  3.38 ) can be written as

Φ(a) =
∑
k

M †
kaMk (3.39)

for a ∈ A where we absorbed λk intoMK , i.e. λ1/2
k Mk → Mk. This is the Kraus representation

and is proved as a result of Choi’s theorem.

Theorem 3.2.2 (Kraus representation). Let A be a C∗-algebra on a Hilbert space K. A

map Φ : A → B(K) is a completely positive and 0 ≤ tr(Φ(b+)) ≤ 1 for any normalized

positive operator, i.e., tr(b+) = 1 for b+ ∈ A, if and only if

Φ(a) =
∑
k

M †
kaMk

∑
k

M †
kMk ≤ IH

(3.40)

for all a ∈ A. For an unital CP map, i.e., Φ(I) = I , ∑kM
†
kMk = I.
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The Kraus representation of a CP map is non-unique. Let us introduce an auxiliary

Hilbert space KR with an orthonormal basis {|k〉}. A CP map can be written as

Φ(a) =
∑
k

M †
kaMk = V †(IR ⊗ a)V

V =
∑
k

|k〉 ⊗Mk.
(3.41)

Let us define Ṽ = ∑
k UR |k〉 ⊗Mk. We can see that

Φ(a) = V †(IR ⊗ a)V = Ṽ †(IR ⊗ a)Ṽ . (3.42)

Since Mk = (〈k| ⊗ I)V , for Ṽ , we get another Kraus operator

M̃k = (〈k| ⊗ I)Ṽ =
∑
r

UR,krMr. (3.43)

In physical applications, an unital CP map represents dynamics in an open quantum

system. For example, consider a CP map on a matrix algebra Mn(C)S of a system. The

CP map can be expressed with Kraus operators defined by a unitary U on the algebra of a

system and a reservoir system, Mn(C)R ⊗Mn(C)S, as follows.

Φ(a) = trR(U †(IR ⊗ a)U) =
∑
kl

〈l|U †|k〉 a 〈k|U |l〉 =
∑
kl

N †
klaNkl. (3.44)

where Nkl = 〈k|U |l〉 

17
 . Again, non-uniqueness comes from the freedom of local unitary

dynamics in the reservoir. That is, for a unitary UR on a reservoir,

Ñkl = 〈k|(UR ⊗ IS)U |l〉 =
∑
m

〈k|(UR ⊗ IS) |m〉 〈m|U |l〉 = UR,kmNml. (3.45)

Physically, the non-uniqueness of the Kraus representation describes that different physical

global processes on a system and a reservoir can provide the same process on the system  

18
 .

17
 ↑ We can put the indices k, l together as s = {k, l} without loss of generality so that Φ(a) =

∑
s N

†
saNs.

18
 ↑ For the simple example, see chapter 8 in [ 46 ].
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Because CP maps describe open quantum dynamics, they can model errors in the quantum

error correction conditions.

The representations of CP maps and the above discussions are summarized and general-

ized into so-called Stinespring representation.

Theorem 3.2.3 (Stinespring representation). Let A be a C∗-algebra 

19
 and Φ : A → B(K)

a completely positive map. Then, there exists a Hilbert space Ĥ, an unital ∗-representation

π : A → B(Ĥ) and a linear map V : K → Ĥ such that

Φ(a) = V †
π(a)V (3.46)

for every a ∈ A. In particular, ‖φ‖ = ‖V ‖2 = ‖V †V ‖ = Φ(I).

If Φ is unital, i.e., Φ(IA) = IB(H), then V is an isometry and V V † = P is a projection

onto P Ĥ ⊂ Ĥ.

We provide the proof for an unital CP map. We consider representations of A ⊗ B(K).

Choose two vectors |φ〉 and |ψ〉 in K. Given a CP map, we can define a new inner product 

20
 :

〈a1, φ|a2, ψ〉Φ ≡ 〈Φ(a†
2a1)φ|ψ〉 = 〈φ|Φ(a†

1a2)|ψ〉 . (3.48)

If there are a ∈ A such that Φ(a†a) = 0 then the resulting vector |a, φ〉 has zero norm.

We quotient by such zero norm vectors to obtain the Hilbert space Ĥ. When Φ is faithful

Ĥ = HA ⊗ K and the representation π(a) = a⊗ IA′K. The isometry V : K → HA ⊗ K acts as

V |φ〉 = |e, φ〉

π(a1) |a2, φ〉 = |a1a2, φ〉 . (3.49)
19

 ↑ or a vN algebra
20

 ↑ The standard inner product is the special case when the CP map is Φ(a) = tr(a). It leads to the Hilbert
space HA ⊗ K:

〈a1, φ|a2, ψ〉 = tr(a†
1a2) 〈φ|ψ〉 = 〈a1|a2〉 〈φ|ψ〉 . (3.47)
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From the inner product in ( 3.48 ) it follows that V † acts as

V † |a, φ〉 = Φ(a) |φ〉 . (3.50)

As a result, the CP map factors as

Φ(a) = V †
π(a)V . (3.51)

Note that the projection P = V V † satisfies

P |a, φ〉 = (Φ(a) ⊗ I) |1, φ〉

P (a⊗ I)P = Φ(a) ⊗ |e〉 〈e| . (3.52)

Note that Stinespring representation admits freedom in the choice of Ĥ. When {π(a)VK}

is dense in H, the Stinespring representation is called the minimal Stinespring representa-

tion. Among different minimal Stinespring representations, for instance, (π1, V1,H1) and

(π2, V2,H2), there always exists a unitary that relates them, i.e.,

U : H1 → H2, UV1 = V2, Uπ1U
† = π2. (3.53)

For non minimal Stinespring representations (π, V,H), π(a)VK are only dense in a subspace

H̃ of H = H̃⊕H̃⊥ where H̃⊥ is the orthogonal subspace of H̃. In this thesis, we only consider

minimal Stinespring representations.

Completely positive maps Φ : A → B satisfy so-called the Schwartz inequality,

Φ(a1)Φ(a2) ≤ Φ(a1a2) (3.54)

for a1, a2 ∈ A.
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For a given CP map Φ : A → A of a C∗-algebra 

21
 , we study two subalgebras; i) invariant

algebra AI , and ii) multiplicative domain AM . In general, AI ⊂ AM ⊂ A, and they are

defined by

AI ≡ {c|Φ(c) = c, ∀c ∈ A}

AM ≡ {m|Φ(m1m
†
2) = Φ(m1)Φ(m2)†,Φ(m†

1m2) = Φ(m1)†Φ(m2), ∀m1,m2 ∈ A}
(3.55)

The action of Φ restricted to the invariant algebra AI and the multiplicative domain AM

saturates the Schwartz inequality by its definition. The invariant subalgebra AI satisfies the

so-called bimodule property, i.e., for c1, c2 ∈ AI , and a ∈ A

Φ(c1ac2) = c1Φ(a)c2. (3.56)

The multiplicative domain of Φ also satisfies the bimodule property: for all m ∈ AM and

all a ∈ A we have:

Φ(m†a) = Φ(m†)Φ(a)

Φ(a†m) = Φ(a†)Φ(m) . (3.57)

To prove this, we use the fact that Φ(2) = Φ⊗ id2 is also a CP map that satisfies the Schwartz

inequality. Consider the operator X ∈ A⊗M2 (M2 is the algebra of complex 2×2 matrices)

X =

 0 m†

m a

 (3.58)

for some a ∈ A and c ∈ AM . The Schwarz inequality gives

Φ(m†m) Φ(m†a)

Φ(a†m) Φ(mm† + a†a)

 = Φ(2)(X†X) ≥ Φ(2)(X†)Φ(2)(X) (3.59)

=

Φ(m†)Φ(m) Φ(m†)Φ(a)

Φ(a†)Φ(m) Φ(m)Φ(m†) + Φ(a†)Φ(a)


21

 ↑ or a vN algebra

53



This implies that

 0 Φ(m†a) − Φ(m†)Φ(a)

Φ(a†m) − Φ(a†)Φ(m) Φ(a†a) − Φ(a†)Φ(a)

 ≥ 0 (3.60)

which is possible if and only if its off-diagonal terms are exactly zero which proves (  3.57 ).

3.2.2 Conditional expectations

In this section, we focus on a special class of unital CP maps, conditional expectations.

Definition 3.2.5 (Conditional expectation). Let AI be ∗-subalgebra of another ∗-subalgebra

A ⊃ AI on B(K). A completely positive map E : A → AI is said to be a conditional

expectation when

1. Unital: E(I) = I;

2. Bimodule property: E(c1ac2) = c1E(a)c2 for c1, c2 ∈ AI and a ∈ A.

Consider a d× d complex matrix algebra A ≡ Md(C) ⊗Md(C) and its subalgebra AI ≡

Md(C) ⊗ I. A simple example of a conditional expectation E : A → AI is

E(x1 ⊗ x2) = x1 ⊗ I tr(x2/d) (3.61)

for x1 ⊗ x2 ∈ A and x1 ⊗ I ∈ AI where x1, x2 ∈ Md(C). It is obviously unital. We can check

its bimodule property;

E
(
(x1 ⊗ I)(x2 ⊗ x3)(x4 ⊗ I)

)
= x1x2x4 ⊗ I tr(x3/d) = (x1 ⊗ I)E(x2 ⊗ x3)(x4 ⊗ I). (3.62)

A conditional expectation is called ω-preserving conditional expectation Eω : A → AI if

it preserves the density matrix ω or a state tr(ω(·)), i.e., for all a ∈ A,

tr(ωEω(a)) = tr(ωa). (3.63)
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The conditional expectation in ( 3.61 ) preserves the maximally mixed density matrix I/d.

Below, we discuss ω-preserving conditional expectation Eω in matrix algebras.

We start with a CP map ιω : A1 → A1 ⊗ A2 given by

ιω(a) = a⊗ ω, (3.64)

where ω is a positive operator with eigenvectors {|k〉} and eigenvalues λ2
k. The Stinespring

dilation of this map factorizes as a representation on K1⊗K3 and the isometry W : K1⊗K2 →

K1 ⊗ K3:

ιω(a) = W †(a⊗ I3)W

W =
∑
k

λk(I1 ⊗ |k〉3 〈k|2)

I3 =
∑
k

|k〉3 〈k|3 . (3.65)

The Kraus operators are Vk = λk(I1 ⊗ 〈k|2). The dual map ι∗ω : A1 ⊗ A2 → A1 is

ι∗ω(a1 ⊗ a2) =
∑
k

Vk(a1 ⊗ a2)V †
k = a1 tr(ωa2), (3.66)

with the Stinespring dilation

ι∗ω(a1 ⊗ a2) = W †(a1 ⊗ a2 ⊗ I3)W

W =
∑
k

λk(I1 ⊗ |kk〉23) (3.67)

The map ιω is unital when ω = I2. In this case, it is an embedding of A1 in A1 ⊗ A2:

ι1(a1a2) = ι1(a1)ι1(a2) . (3.68)

55



The dual ι∗1 is a quantum channel (trace-preserving CP map) A1 ⊗ A2 → A1 that is partial

trace over A2:

tr(ρ12 ι1(a)) = tr(ι∗1(ρ12)a)

ι∗1(ρ12) = (I1 ⊗ 〈e|23)ρ12(I1 ⊗ |e〉23) = ρ1 . (3.69)

The map ιω is a quantum channel (CP and trace-preserving) when ω is a density matrix:

tr(ω) = 1. This channel prepares a density matrix ω on K2. The composition of two CP

maps is also a CP map. For instance, the composite map ι∗ω ◦ ιω(a1) = a1 tr(ω) multiplies

operators by a positive constant, whereas ιω ◦ ι∗ω(a1 ⊗ a2) = (a1 ⊗ ω) tr(ωa2). An important

composite map for us is

Eω ≡ ι1 ◦ ι∗ω : A1 ⊗ A2 → A1 ⊗ I2

Eω(a1 ⊗ a2) = (a1 ⊗ I2) tr(ωa2) . (3.70)

It has the property that when ω is a density matrix it leaves the subalgebra A1 ⊗I2 invariant

Eω(a1 ⊗ I2) = a1 ⊗ I2 . (3.71)

It is the simplest example of a ω-preserving conditional expectation [  3 ].

The conditional expectations in ( 3.70 ) are labeled by density matrices ω on A2. In fact,

these are the only conditional expectations from A1 ⊗ A2 to A1 ⊗ I2. To see this, we use the

bimodule property:

E(a1 ⊗ a2) = (a1 ⊗ I)E(I ⊗ a2) = E((I ⊗ a2)(a1 ⊗ I)) = E(I ⊗ a2)(a1 ⊗ I) . (3.72)

Therefore, E(I ⊗ a2) commutes with all a1 ⊗ I and has to take the form

Eε(a1 ⊗ a2) = (a1 ⊗ I) ε(a2), (3.73)
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where ε(a2) is an unital CP map from A2 → C which is in one-to-one correspondence with

density matrices on A2: 

22
 

Eω(a1 ⊗ a2) = (a1 ⊗ I) tr(ωa2) . (3.74)

The conditional expectation Eω preserves all states of the form ψ ⊗ ω. Moreover, given

a product state ψ ⊗ ω the conditional expectation Eω that preserves it is unique. However,

for a generic ω12 there does not exist a conditional expectation that preserves it.

To gain more intuition about conditional expectations E : A → AI in finite-dimensional

matrix algebras consider their Kraus representation E(a) = ∑
r V

†
r aVr. The Hilbert space K

decomposes as K = ⊕qKq
1 ⊗ Kq

2 such that

c = ⊕qc
q ⊗ Iq2 ∀c ∈ AI

Vr = ⊕qIq1 ⊗ V q
r ∀r . (3.75)

A conditional expectation E projects every operator in A to its invariant subalgebra AI .

Denote the projection to the subspace Kq
1 ⊗ Kq

2 by P q. Since P q ∈ AC from the bi-module

property ( 3.2.5 ) we have [  47 ]

E(a) = E

∑
q′q

P q′
aP q

 =
∑
q

P qE(a)P q =
∑
q

Eq(a)

Eq(a) = E (P qaP q) , (3.76)

where we have used P q′
cP q = δq′qc

q for all c ∈ AI . As a result, every conditional expectation

E : A → AI decomposes as a sum of conditional expectations Eq : B(Kq
1 ⊗Kq

2) → B(Kq
1)⊗Iq2.

However, we already showed that the conditional expectations Eq are labelled by density

matrices ωq2:

Eqω(aq1 ⊗ aq2) = tr2 ((Iq1 ⊗ ωq2)(aq1 ⊗ aq2)) . (3.77)
22

 ↑ ε(a2) is a continuous linear functional on A2 which by Riesz representation theorem can be associated
with a unique vector |ε〉 ∈ K2 such that ε(a2) = 〈ε|a2〉.
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As a result, the conditional expectations from A → AI are in one-to-one correspondence

with unnormalized states ω = ⊕qIq1 ⊗ ωq2 on the commutant (AI)′:

Eω(a) = tr2(ωa) ⊗ I2 = ⊕q tr2 ((Iq1 ⊗ ωq2)P qaP q) ⊗ Iq2 . (3.78)

This conditional expectation preserves every state of the form ψ = ⊕qpqψ
q
1 ⊗ ωq2:

tr(ψEω(a)) =
∑
q

tr(ψEqω(a)) =
∑
q

pq tr ((ψq1 ⊗ ωq2)a) = tr(ψa) . (3.79)

If a state does not have the form we postulated for ψ there exists no conditional expectation

that preserves it. The restriction of the state ψ to the subalgebra AI is

ψ0 = ⊕qpqψ
q
1 ⊗ Iq2 . (3.80)

The discussion above was restricted to finite-dimensional matrix algebras. In theorem  4.4.3 ,

we show that the necessary and sufficient condition for the existence of a ψ-preserving con-

ditional expectation is

ψ1/2cψ−1/2 = ψ
1/2
0 cψ

−1/2
0 . (3.81)

This condition holds trivially for ω and ω0 in the example above.

3.3 States and representations of von Neumann algebras

In this section, we discuss how to represent a von Neumann algebra on a Hilbert space.

For a representation of a von Neumann algebra A, we input a pair (A, ω) of a von Neumann

algebra A and a state ω ( 3.12 ), and obtain three objects; i) a linear map πω : A → πω(A), ii)

a representation space Hω, and iii) “vacuum” state |Ωω〉. For any ∗-algebra, GNS construc-

tion is a canonical way to construct the representation of A. Before we discuss the GNS

construction, let us briefly study the linear map πω and the representation space Hω  

23
 .

23
 ↑ Since the discussion is generally true for any choice of states, we omit the subscript of the linear map and

the representation space in the next section. It will revive when we study the GNS construction.
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3.3.1 Basics of representations

To represent C∗-algebras and vN algebras A, we want to at least preserve its algebraic

structure in π(A). Hence, the linear map π should satisfy the following properties. For a

linear map π : a ∈ A 7→ π(a) ∈ π(A),

1. π(α1a1 + α2a2) = α1π(a1) + α2π(a2)

2. π(a1a2) = π(a1)π(a2)

3. π(a†
1) = π(a1)†

where a1, a2 ∈ A and α1, α2 ∈ C. Such a map is a ∗-homomorphism in which we found a

completely positive map in ( 3.2 ).

In addition to the above, we introduce the kernel

kerπ := {a|π(a) = 0, a ∈ A}. (3.82)

If ∗-homomorphism π has a non-trivial kernel, all the operators in the kernel of π are elim-

inated. We want the representation to be one-to-one. This holds if and only if kerπ = {0}.

In such a case, π is known as a faithful representation.

Cyclic representation is another one that is defined by the linear map π, the Hilbert space

H, and, in addition, a cyclic vector |Ω〉. A vector |Ω〉 is cyclic for π(A) if {π(A) |Ω〉} is dense

in H  

24
 . Roughly speaking, it means that one can find a vector from the set {π(A) |Ω〉} that

can arbitrarily well approximate any vector in the Hilbert space H  

25
 .

Definition 3.3.1 (Cyclic representation). A cyclic representation of a C∗-algebra 

26
 is defined

by the triple (π,H, |Ω〉) where (H, π) is a representation of A and |Ω〉 is a vector in H which

is cyclic for π(A).
24

 ↑ {π(A) |Ω〉} is dense in H if the closure of {π(A) |Ω〉} with respect to the L2-norm of H is equivalent to H.
25

 ↑ In the context of quantum field theory, the cyclic vector provides a crucial property in the application to
local QFT known as Reeh-Schlieder theorem.
26

 ↑ or a vN algebra
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3.3.2 Gelfand-Naimark-Segal(GNS) construction

We first give the definition of a state.

Definition 3.3.2 (State). A state ω on a C∗ algebra 

27
 A is an unital positive linear functional

on A, i.e.,

1. Linear: for a1, a2 ∈ A, and α1, α2 ∈ C,

ω(α1a1 + α2a2) = α1ω(a1) + α2ω(a2) (3.83)

2. positivity: for a ∈ A,

ω(a†a) ≥ 0 (3.84)

3. normalization:

‖ω‖ ≡ sup
a∈A,‖a‖≤1

|ω(a)| = 1 (3.85)

or, equivalently, for I ∈ A,

ω(I) = 1. (3.86)

Theorem 3.3.1 (GNS representation). For any state ω on a C∗-algebra 

28
 A, there exists

a Hilbert space Hω, a representation πω of A on Hω, and a unit vector state |Ωω〉, i.e.,

〈Ωω|Ωω〉 = 1, that satisfy the following conditions;

1. for any a ∈ A,

ω(a) = 〈Ωω|πω(a)Ωω〉 ; (3.87)

2. |Ωω〉 is a cyclic vector for πω(a) ∈ B(Hω), i.e.,

πω(A) |Ωω〉 ≡ {πω(a) |Ωω〉 | a ∈ A} (3.88)

is dense in a Hilbert space Hω.
27

 ↑ or a vN algebra
28

 ↑ or a vN algebra
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Any triple (Hω, πω, |Ω〉) is unique up to unitary. That is, consider another triple (H̃ω, π̃ω, |Ω̃ω〉)

that satisfies the above two conditions. Then, there exists a unitary U such that, for a ∈ A,

Uπω(a) = π̃ω(a)U, U |Ωω〉 = |Ω̃ω〉 . (3.89)

We will not give the full proof of theorem  3.3.1 because the GNS representation is the

special case of minimal Stinspring representation (  3.46 ). Recall that the state is a CP map.

Hence, by applying theorem  3.2.3 , for a ∈ A and ω : A → C, there exists V : C → Hω  

29
 and

πω : A → B(Hω) such that

ω(a) = V †
πω(a)V = 〈Ωω|πω(a)Ωω〉 (3.90)

where V = |Ωω〉. Cyclicity of the vector |Ωω〉 comes from the fact that the GNS representa-

tion is the minimal Stinespring representation. That is, {πω(A)V } = {πω(A) |Ωω〉} is dense

in Hω.

If the kernel of the state is trivial, it is called a faithful state.

Definition 3.3.3 (faithful state). A state ω on a C∗-algebra or vN algebra A is faithful if

ω(a+) > 0 for all nonzero a+ ∈ A+.

In GNS representation, ω is faithful if and only if the vector |Ωω〉 is separating for A.

Thus, if we construct the GNS representation with a faithful state, the GNS vacuum is cyclic

and separating.

In vN algebras, there is a special class of states called normal states.

Theorem 3.3.2 (normal state). Let ω be a state on a von Neumann algebra acting on a

Hilbert space H. The following conditions are equivalent:

1. ω is normal;

2. ω is σ-weakly continuous;
29

 ↑ Below theorem  3.2.3 in section  3.2 , the domain of V was denoted as K. In GNS representation, obviously,
K = C.
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3. there exists a density matrix ω, i.e., a positive trace-class operator ω on H with tr(ρω) = 1,

such that

ω(a) = tr(ρωa) (3.91)

As we will see in section  3.5 , the GNS representation of a von Neumann algebra with

respect to a faithful normal state provides us deep and beautiful theory known as Tomita-

Takesaki theory or modular theory.

3.3.3 Examples: finite dimensional von Neumann algebras

In this section, we observe the GNS representation of a d×d matrix algebra over complex

number C on a Hilbert space K. We denote A as the ∗-subalgebra of d× d complex matrix

algebra B(K) on Hilbert space K. Physically, A corresponds to the algebra of a d-level

quantum system.

Maximally mixed state

For the representation of A, consider a maximally mixed state tr(I/d(·)). Then, the

operators a ∈ A are represented by the vectors |a〉 ∈ Htr

a 7→ |a〉 ≡ πtr(a) |e〉 = a⊗ I |e〉 (3.92)

where |e〉 = ∑
i

1√
d

|ii〉. Similarly, operators in the commutant a′ ∈ A′ are represented by the

vectors |a′〉tr ∈ Htr

a 7→ |a′〉 ≡ πtr(a′) |e〉 = I ⊗ a′ |e〉 . (3.93)

One can easily check that

1
d

tr(a) = 1
d

〈e|a⊗ I|e〉 = 1
d

∑
i

〈i|a|i〉 . (3.94)

Moreover, it is simple to see that Htr is equipped with the inner product

〈a|b〉tr = 1
d

〈e|a†b⊗ I|e〉 = 1
d

tr(a†b). (3.95)
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Density matrix

For the representation of A, consider a state tr(ω(·)) with a density matrix ω  

30
 . Then,

the operators a ∈ A are represented by the vectors |a〉ω ∈ Hω

a 7→ |a〉 ≡ πω(a) |Ωω〉 = a⊗ I |ω1/2〉 (3.96)

where |Ωω〉 = |ω1/2〉 = ω1/2 ⊗ I |e〉 

31
 . Similarly, operators in the commutant a′ ∈ A′ are

represented by the vectors |a′〉ω ∈ Htr

a 7→ |a′〉 ≡ πω(a′) |Ωω〉 = I ⊗ a′ |ω1/2〉 . (3.97)

One can easily check that

tr(ωa) = 〈ω1/2|a⊗ I|ω1/2〉 . (3.98)

Then, it is simple to see that Hω is equipped with the inner product

〈a|b〉ω = 〈ω1/2|a†b⊗ I|ω1/2〉 = tr(ωa†b). (3.99)

3.4 Representing superoperators as the operators on a GNS Hilbert space

Consisder von Neumann algebras A and B with faithful normal states ωA on A and ωB

on B. Let HA ≡ HωA and HB ≡ HωB are the GNS Hilbert spaces. Suppose Φ : A → B is a

CP map. In this section, we construct the GNS operator F : HA → HB by the Stinespring

representation of Φ. This provides the map from a superoperator to an operator on the GNS

Hilbert space, i.e.,

Φ : A → B 7→ F : HA → HB. (3.100)

This is similar to ( 3.92 ) and (  3.96 ) where operators are represented as vectors in the GNS

Hilbert space.
30

 ↑ From now to below, we represent both a state ω and its corresponding density matrix by ω.
31

 ↑ |Ωω〉 can be considered as a purified state of the density matrix ω. Suppose the density matrix is written
in its eigenbasis ω =

∑
i λi |i〉 〈i|. With the Schmidt basis, we have |Ωω〉 =

∑
i λ

1/2
i |ii〉

63



By the GNS representations, one has

ωA(a) = 〈ΩA|πA(a)ΩA〉

ωB(b) = 〈ΩB|πB(b)ΩB〉
(3.101)

for a ∈ A, b ∈ B, |ΩA〉 ≡ |ΩωA〉 ∈ HA and |ΩB〉 ≡ |ΩωB〉 ∈ HB are the cyclic and separating

vectors, and πA and πB are the representations of each algebra. We use the Stinespring

representation to represent πB ◦ Φ : A → πB(B) by

πB ◦ Φ(a) = FπA(a)F † (3.102)

where F : HA → HB. In the following discussion, we use the following notation interchange-

ably;

|a〉A = a |ΩA〉 = πA(a) |ΩA〉 . (3.103)

First, we show that F is a contraction, i.e., ‖F‖ ≤ 1 with respect to the operator norm. In

this notation, we have F †F ≤ IA from the Schwartz inequality in (  3.54 ). Then,

‖Φ(a) |ΩB〉 ‖2 = ‖FaF † |ΩB〉 ‖2

= | 〈FaF †ΩB|FaF †ΩB〉 |2

= | 〈ΩB|Fa†F †FaF †ΩB〉 |2

≤ | 〈ΩB|Fa†aF †ΩB〉 |2

= ‖aF † |ΩB〉 ‖2

(3.104)

for all a ∈ A. Thus, by the definition of the operator norm 

32
 ,

‖F‖ = sup
a∈A

‖FaF † |ΩB〉 ‖ ≤ sup
a∈A

‖aF † |ΩB〉 ‖ ≤ 1. (3.105)

32
 ↑ The operator norm makes sense only when {aF † |ΩB〉} is dense in HA. Here, {aF † |ΩB〉} is always dense

in HA since we are assuming the minimal Stinespring representation.

64



When a CP map is unital, i.e., Φ(IA) = IB, then, FF † and F †F act trivially on the cyclic

and separating states |ΩA〉 and |ΩB〉, i.e.,

FF † |ΩA〉 = |ΩA〉 , F †F |ΩB〉 = |ΩB〉 . (3.106)

When a CP map satisfies

ωA = ωB ◦ Φ, (3.107)

we define its GNS operator by

Φ(a) |ΩB〉 = FωaF
†
ω |ΩB〉 . (3.108)

We can simply show that

Φ(a) |ΩB〉 = Fωa |ΩA〉 ,

F †
ω |ΩB〉 = |ΩA〉 .

(3.109)

From ωA = ωB ◦ Φ ( 3.107 ),

〈F †
ωΩB|aF †

ωΩB〉 = 〈ΩA|aΩA〉 (3.110)

for ∀a ∈ A. This implies that

F †
ω |ΩB〉 = |ΩA〉 (3.111)

resulting in

Φ(a) |ΩB〉 = FωaF
†
ω |ΩB〉 = Fωa |ΩA〉 . (3.112)

If a CP map Φω is unital in addition to the condition (  3.107 ),

Fω |ΩA〉 = |ΩB〉 . (3.113)
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Table 3.1. : Linear maps of the operator algebra (superoperators) correspond to operators
in the GNS Hilbert space. Above is a list of some important superoperators and their
corresponding operators. In matrix algebras, this correspondence is one-to-one.

Superoperator GNS Operator
(anti-)linear T (anti-)linear T

linear CP

unital Φ (FF † − 1) |Ωω〉 = 0
ω-preserving Φ Fω : (F †

ω − 1) |Ωω〉 = 0
unital ω-preserving Φ Fω |Ωω〉 = |Ωω〉 and F †

ω |Ωω〉 = |Ωω〉
conditional expectation E projection E2 = E

isometric embedding ι isometry W
(faithful representation) W †W = 1

ρ-dual Φ′
ω co-isometry F †

ω

Petz dual ΦP
ω JBF

†
ωJA

linear non-CP relative modular operator Dψ|ω ∆ψ|ω = ψ ⊗ ω−1

anti-linear Tomita map Sω Tomita operator Sω
non-CP modular conjugation Jω modular conjugation Jω

Consider the special case where the vN algebras A ⊂ B are represented on the same

GNS Hilbert space Hω with respect to a faithful normal state ω. We say that Φω is a

state-preserving or ω-preserving if

ω ◦ Φ = ω. (3.114)

Similar to the above, we have

Φ(a) |Ωω〉 = Fωa |Ωω〉

F †
ω |Ωω〉 = |Ωω〉 .

(3.115)

3.4.1 Examples

In this section, we study the GNS operators of an isometric embedding and a conditional

expectation. In table  3.1 , we list the various GNS operators including the ones appearing in

the later sections. We will refer to the table in the later sections whenever needed.

Isometric embedding
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An isometric embedding of vN algebras from A to B is a one-to-one linear map, but not

necessarily onto. Consider its GNS operator W defined by

ι(a) |ΩB〉 = WπA(a)W † |ΩB〉 . (3.116)

where |ΩB〉 ∈ HB is a cyclic and separating vector in HB associated to a state ωB. We

assume πA : A → B(KA) is a ∗-isomorphism from A to B(KA) without loss of generality.

Then, W : KA → HB is an isometry, i.e., W †W = IA ∈ B(KA) and WW † is a projection on

HB.

ω-preserving Conditional expectations

Consider a ω-preserving conditional expectation Eω : B → A from vN algebra B to vN

algebra A such that ω ◦ Eω = ω. Let Eω be its GNS operator on Hω defined by

Eω(b) |Ωω〉 = Eωb |Ωω〉 (3.117)

where we have used E†
ω |Ωω〉 = |Ωω〉. From the bimodule property in definition  3.2.5 , for any

a1, a2 ∈ A,

〈a1|Eωa2〉ω = 〈Ωω|a†
1Eω(a2)Ωω〉 = 〈Ωω|Eω(a†

1Eω(a2))Ωω〉

= 〈Ωω|Eω(a†
1)Eω(a2)Ωω〉 = 〈a1|E†

ωEωa2〉ω .
(3.118)

Hence, Eω = E†
ωEω. Together with E2

ω = Eω, we get Eω = E†
ω. Therefore, Eω is a projection

on Hω.

3.5 Tomita-Takesaki theory/Modular theory

Tomita-Takesaki theory or modular theory was initiated by Tomita in unpublished notes

in 1967. It was reformulated by Takesaki in [ 48 ] in 1970. The main theme of the modular

theory is the algebraic relation between a vN algebra and its commutant. The relation is

manifested by the antilinear S known as the Tomita operator. It was proved that S is an
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unbounded, but closable, and invertible operator  

33
 . This led to the polar decomposition

S = J∆1/2 where the anitunitary J is called the modular conjugation and the positive

definite operator ∆ is called the modular operator. A similar mathematical structure was

found by Haag, Hugenholtz, and Winnik in the algebraic formulation of a thermal equilibrium

system[ 49 ]. Their work formulated Kubo-Martin-Schwinger condition using a vN algebra.

This work showed the deep and close relation between vN algebras and quantum statistical

theory.

In an algebraic formulation of quantum field theory, the relation between a vN algebra

associated with a local region of spacetime and its commutant was found to be geometric

for a certain setup, which is known as Haag’s duality. It is proven for a free scalar field on

causal diamonds by Araki in [  50 ], a free field in Rindler wedges by Bisognano and Wichmann

[ 37 ], [  51 ], and conformal field theory by Brunetti, Guido, and Longo in [ 52 ]. In the work by

Bisognano and Wichmann, they proved the action of the unitary flow defined by the modular

operator called modular flow ∆is(·)∆−is for ∀s ∈ R corresponds to the boost transformation

of the Rindler wedges in flat spacetime. Moreover, the geometric action of the modular

conjugation was found to be charge-reflection-time (CRT) conjugation. Recently, the devel-

opment of vN algebras associated with a local region of spacetime in the presence of a black

hole and a local region of de Sitter spacetime is attracting the great attention[ 53 ]–[ 57 ].

In the next sections, we provide a minimal review of modular theory 

34
 with the following

setup: For a von Neumann algebra A with a faithful normal state ω, we have the GNS

representation (πω,Hω, |Ωω〉),

πω(a) |Ωω〉 ∈ Hω,∀a ∈ A, (3.119)

where πω is a faithful representation on the GNS Hilbert space Hω, and |Ωω〉 is a cyclic

separating state. We use the notations below interchangeably;

πω(a) |Ωω〉 = a |Ωω〉 = |a〉ω . (3.120)
33

 ↑ We will describe what it means in the following section.
34

 ↑ For the details, see [  43 ], [ 58 ]–[ 61 ].

68



Especially, for a finite-dimensional case, we write the GNS vacuum by |Ωω〉 = |ω1/2〉.

3.5.1 Tomita operator, modular conjugation, modular operator

We start with defining the anti-linear operator called the Tomita operator Sω associated

with the GNS representation of a vN algebra A with respect to a faithful normal state ω. It

is defined by

Sωa |Ωω〉 = a† |Ωω〉 (3.121)

for a ∈ A. One should note that Sω depends on the state ω.

The Tomita operator is an unbounded operator 

35
 .Fortunately, it is a closable operator  

36
 

From (  3.121 ),

S2
ω = I. (3.122)

where I ∈ A. Moreover,

Sω |Ωω〉 = |Ωω〉 (3.123)

since I is self-adjoint.

One can define the Tomita operator S ′
ω of the commutant A′ in the same way. One can

show that

S ′
ω = S†

ω (3.124)

where S†
ω is the adjoint of Sω  

37
 . For a ∈ A and a′ ∈ A′

 

38
 ,

〈S ′
ωa

′|a〉ω = 〈a′†|a〉ω = 〈a†|a′〉ω = 〈Sωa|a′〉ω = 〈a|S†
ωa′〉ω = 〈S†

ωa
′|a〉ω . (3.126)

35
 ↑ Unbounded operators are not bounded operators. A momentum operator in quantum mechanics is an

example of an unbounded operator.
36

 ↑ An operator is closable if, for any sequence {|an〉ω} in a domain of Sω, D(Sω) = {a |Ωω〉 , a ∈ A}, there
exists a vector |a〉ω ∈ D(Sω) and Sω |a〉ω in the sense of norm convergence. Intuitively, there is a vector on
which the action of an unbounded operator is well-defined.
37

 ↑ S†
ω is well-defined. This is because D(Sω) is dense in Hω. It is so since |Ω〉 is a cyclic state for A.

38
 ↑ We used the definition of the adjoint of an antilinear operator in the fourth inequality, i.e., for vectors

|ψ〉 , |φ〉, and an antilinear linear operator T ,

〈ψ|Tφ〉 = 〈T †ψ|φ〉. (3.125)
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It implies S ′
ω = S†

ω because |Ω〉 is cyclic and separating.

From (  3.122 ), the Tomita operator is invertible. It has a unique polar decomposition

Sω = Jω∆1/2
ω (3.127)

where Jω is antiunitary, and ∆ω is self-adjoint and positive definite. They are called modular

conjugation and modular operator, respectively. Here, we summarize the properties of three

central operators in modular theory,

1. Tomita operator: Sω = Jω∆1/2
ω , S ′

ω = S†
ω = Jω∆−1/2

ω = ∆1/2
ω Jω

2. modular operator: ∆ω = S†
ωSω, ∆′

ω = ∆−1
ω = SωS

†
ω

3. modular conjugation: Jω = J ′
ω = J†

ω, J
2
ω = I, ∆−1

ω = Jω∆ωJω

In addition,

∆ω |Ωω〉 = |Ωω〉 . (3.128)

For any function f ,

f(∆ω) |Ωω〉 = f(1) |Ωω〉 . (3.129)

We will frequently see the function f(∆ω) = ∆is
ω for ∀s ∈ R.

Now, we state the principal result of Tomita-Takesaki theory.

Theorem 3.5.1 (Tomita’s fundamental theorem). Let A be a von Neumann algebra with a

cyclic and separating vector |Ωω〉, and let ∆ω be the associated modular operator and Jω the

associated modular conjugation. It follows that

JωAJω = A′ (3.130)

and

∆is
ωA∆−is

ω = A (3.131)

for ∀s ∈ R.
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Here, we briefly mention the superoperator corresponding to the Tomita operator, mod-

ular conjugation, and modular operator using finite-dimensional algebra. In the GNS repre-

sentation ( 3.96 ), one has

Sω(a⊗ I) |ω1/2〉 = a† ⊗ I |ω1/2〉 , (3.132)

The superoperator Sω is a antilinear map, i.e., Sω(a) = a†. For the modular conjugation Jω,

Jω(a⊗ I)Jω = I ⊗ aT , (3.133)

the superoperator Jω is an antiunitary map, i.e.,

Jω(a) = aT ∈ A′. (3.134)

where aT is the transpose of the operator a. For the modular operator,

∆ω(a⊗ I)∆−1
ω = ωaω−1 ⊗ IK. (3.135)

Motivated by the above, the superopertor Dω of the modular operator ∆ω is

Dω(a) = ωaω−1. (3.136)

Similarly, (  3.131 ) can be written as

Dis
ω (a) = ωisaω−is (3.137)

for s ∈ R. The action of Jω and ∆ω to the center Z(A) of the algebra A is trivial to

understand.

Proposition 3.5.1. If a ∈ Z(A) = A ∩ A′, then

Dis
ω (x) = ∆is

ωa∆−is
ω = a, JωaJω = a† ∈ Z(A) (3.138)

for all s ∈ R.
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Because ∆ω > 0 is a positive definite operator, Dω(·) = ∆is
ω (·)∆−is

ω defines a unitary flow

in physics. It forms a one-parameter group called the modular automorphism group, which

is our next topic.

3.5.2 Modular automorphism group and Kubo-Martin-Schwinger (KMS) bound-
ary condition

Definition 3.5.1 (Modular automorphism group). Let A be a von Neumann algebra, ω a

faithful normal state on A, (Hω, |Ωω〉) the pair of the corresponding GNS Hilbert space and

the cyclic and separating vector, ∆ω the modular operator associated with the pair (Hω, |Ωω〉).

Then, ∗-automorphisms of A, i.e.

∆is
ωA∆−is

ω = A, (3.139)

forms the one-parameter group s 7→ Dis
ω (·) = ∆is

ω (·)∆−is
ω . The group is called the modular

automorphism group of the pair (Hω, |Ωω〉).

The state ω is invariant under Dis
ω by definition  3.5.1 , i.e.,

ω(Dis
ω (a)) = 〈Ωω|∆is

ωa∆−is
ω Ωω〉 = 〈Ωω|Ωω〉 = ω(a) (3.140)

for a ∈ A. We define the subalgebra ADω that is invariant under the modular automorphism

group by

ADω ≡ {a| Dis
ω (a) = a, ∀a ∈ A,∀s ∈ R}. (3.141)

One can find that it matches with so-called centralizer, Aω.

Definition 3.5.2 (Centralizer of a faithful normal state). For a faithful normal state ω of

a von Neumann algebra A, a centralizer Aω is a subalgebra of A which is a set of operators

c ∈ A such that

ω(ac) = ω(ca) (3.142)

for ∀a ∈ A. That is,

Aω ≡ {c| ω(ac) = ω(ca),∀a ∈ A} ⊂ A (3.143)
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We introduce the Kubo-Martin-Schwinger (KMS) condition.

Theorem 3.5.2 (KMS condition/Modular condition). Consider a von Neumann algebra

A and a state ω. Let {Dis
ω } for ∀s ∈ R be a modular automorphism group of A and ω.

Then, the state ω is said to satisfy the Kubo-Martin-Schwinger(KMS) condition with respect

to {Dis
ω } if for any a1, a2 ∈ A there exists a complex function Fa1,a2(z) which is analytic

on the strip S = {z ∈ C| − 1 < Imz < 0} and continuous on the closure of this strip

S = {z ∈ C| − 1 ≤ Imz ≤ 0} such that

Fa1,a2(s) = ω(a1Dis
ω (a2)) = 〈Ω|a1∆is

ωa2Ω〉 , Fa1,a2(s− i) = ω(Dis
ω (a2)a1) = 〈Ω|a2∆−is

ω a1Ω〉

(3.144)

for ∀s ∈ R. Especially, when s = −i,

ω(a1D−is
ω (a2)) = ω(a2a1). (3.145)

The restriction of ω to the centralizer Aω leads ω to behave as a tracial state. The

modular operator ∆ω captures the non-tracial character of a faithful normal state ω. A state

ω is tracial when

ω(a1a2) = ω(a2a1) (3.146)

holds for all a1, a2 ∈ A. For a von Neumann algebra A, suppose ω is a tracial state. Then,

consider

ω(a†
2a

†
1a1a2) = 〈a1a2|a1a2〉ω (3.147)

where a1, a2 ∈ A. One can show that

〈a1a2Ωω|a1a2Ωω〉 = 〈a2∆ωa
†
2|a

†
1a1〉ω . (3.148)

Since ω is tracial, one also has

〈a1a2|a1a2〉ω = 〈a2a
†
2|a

†
1a1〉ω . (3.149)
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Because |Ω〉 is cyclic and separating, one obtains ∆ω = I for a tracial state ω. Together with

the properties above, it implies Sω = S ′
ω = Jω. Therefore, the modular operator captures

the non-tracial character of a state ω.

It becomes clearer in a finite-dimensional case  

39
 . Suppose A ⊂ B(K) is an algebra of

d× d complex matrices. A state ω(·) can be written using the density matrix ω  

40
 , tr(ω(·)).

From (  3.96 ), the algebra A is represented by

a 7→ |a〉 = a⊗ IK |ω1/2〉 ∈ Hω ≡ K ⊗ K (3.150)

where |ω1/2〉 = ω1/2 ⊗ I |e〉, and |e〉 = ∑
i |ii〉. The modular operator ∆ω can be expressed by

∆ω = ω ⊗ ω−1. (3.151)

If the state is tracial, ω = IK/d. Equivalently, the state is literally a normalized trace, i.e.,

ω(·) = tr(IK/d(·)). Then, ∆ω ∝ IK ⊗ IK = IH. This applies to the modular automorphism

group as well. If the state is tracial, then, the modular automorphism group is trivial,

Dis
ω = id. In this case, the centralizer matches with the whole algebra, i.e., Aω = A.

Before we move on to define the positive cones associated with vN algebras, we provide

the important statements about automorphism groups of a given von Neumann algebra, and

the uniqueness among the modular automorphism groups of a state without the proofs.

Theorem 3.5.3. Consider ω is a faithful normal state of a von Neumann algebra A. Suppose

there is an one-parameter group {αt} of ∗-automorphisms of A. If it satisfies the KMS

condition relative to ω, then it is the modular automorphism group relative to the state ω.

That is,

{αs} = {Dis
ω } (3.152)

Moreover, the modular automorphism group of a state is unique.

Theorem 3.5.4. To each faithful normal state of von Neumann algebra A, there exists a

unique modular automorphism group.
39

 ↑ We will not provide the proof of the following finite dimensional expression. For the proof, see [  58 ]
40

 ↑ ω represents both a state and its corresponding density matrix.
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In short, if one has a one-parameter automorphism group on a given von Neumann

algebra, which satisfies KMS and modular condition with respect to a faithful normal state,

it is a unique modular automorphism group.

3.5.3 Positive cones associated with a von Neumann algebra

In this section, we study a particular set of vectors in Hilbert space Hω. It is called

positive cones or convex cones defined as follows. For a vN algebra A and a faithful normal

state ω, let A+ be a set of positive operators. A positive cone or convex cone C is a subspace

of the GNS Hilbert space Hω defined by the set of vectors 

41
 

Pω = {|a+〉ω = a+ |Ωω〉 , ∀a+ ∈ A+} (3.153)

where |Ωω〉 ∈ Hω is a cyclic separating vector. For the positive cone P , the dual positive

cone is defined by

Po
ω = {|η〉ω ∈ Hω| 〈a+|η〉ω ≥ 0, ∀ |a+〉ω ∈ P}. (3.154)

If Po
ω = Pω, Pω is called self-dual cone.

In the theory of vN algebras and modular theory, there is a one-parameter generalization

of the positive cones. We start with a unique self-dual positive cone called the natural positive

cone.

Definition 3.5.3 (Natural positive cone). The natural positive cone P\
ω associated with a

von Neumann algebra A on Hω with a cyclic and separating vector |Ωω〉 is defined as the

closure of the set

P\
ω ≡ {aJωa |Ωω〉 |a ∈ A}. (3.155)

The elements of the natural positive cone can be written as

P\
ω ≡ {∆1/4

ω aa† |Ωω〉 |a ∈ A}. (3.156)
41

 ↑ To be more precise, the positive cone is a closure of {a+ |Ωω〉 , ∀a+ ∈ A+}.
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It is invariant under ∆is
ω and Jω, i.e., ∆is

ωP\
ω = P\

ω and JωP\
ω = P\. In [  62 ], [  63 ], one-parameter

family of positive cones is constructed; for β ∈ [0, 1/2]

Pβ/2
ω = {∆β/2

ω a |Ω〉 , 0 ≤ β ≤ 1, a ∈ A}. (3.157)

Its dual positive cone is similarly defined by

P1/2−β/2
ω = {∆1/2−β/2

ω a |Ω〉 , 0 ≤ β ≤ 1, a ∈ A}. (3.158)

3.5.4 Relative modular operator

We studied a von Neumann algebra with a single faithful normal state and its associated

GNS representation and modular theory. If one has two faithful normal states for a von

Neumann algebra, we get two GNS representations and modular theories. In this section,

we review the relations between GNS representations and modular theories with two different

states.

Consider a von Neumann algebra A and two faithful normal states ψ and ω. For a pair

(A, ψ), one has a cyclic separating vector |Ω〉ψ and the GNS Hilbert space Hψ. Similarly,

for a pair (A, ω), one has a cyclic separating vector |Ωω〉 and the GNS Hilbert space Hω.

For each GNS Hilbert space, one can define the Tomita operator as discussed above, i.e.,

Sψ = Jψ∆1/2
ψ and Sω = Jω∆1/2

ω .

In [  64 ], [  65 ], Araki defined the relative Tomita operator and the relative modular operator.

The relative Tomita operator Sψ|ω is defined by

Sψ|ωa |Ωω〉 = a† |Ωψ〉 . (3.159)

Then, the relative modular operator ∆ψ|ω is defined by

∆ψ|ω = S†
ψ|ωSψ|ω. (3.160)
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In finite-dimensional case, the relative modular operator can be written using density

matrices as

∆ψ|ω = ψ ⊗ ω−1. (3.161)

Thus, its superoperator is

Dψ|ω(·) = ψ(·)ω−1. (3.162)

This defines the relative modular flow

Dis
ψ|ω(·) = ψis(·)ω−is (3.163)

for ∀s ∈ R.

3.6 Duality and positivity

A simple dual linear map of a given CP map is the adjoint map with respect to the inner

product of a Hilbert space. Consider the GNS representations of von Neumann algebras A

and B with a maximally mixed state tr(I/d(·)),

|a〉tr = a⊗ I |e〉 , |b〉tr = b⊗ I |e〉 (3.164)

for a ∈ A and b ∈ B. Let Φ : A → B be a linear map. Then, the trace-dual map Φ∗
tr of Φ is

defined with respect to the trace-inner product, i.e.,

〈b|Φ(a)〉tr = 1/d · tr(b†Φ(a)) = 1/d · tr(Φ∗
tr(b†)a) = 〈Φ∗

tr(b†)|a〉tr . (3.165)

The trace dual is familiar to physicists as the Heisenberg-Schrödinger duality. Consider a

unitary time-evolution U on a density matrix ρ. Then,

〈UρU †|a〉tr = 〈ρ|U †aU〉tr . (3.166)

Since UρU † defines the forward time-evolution of the density matrix ρ, its trace dual U †aU

on an operator defines the backward time-evolution. For open quantum dynamics, the
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dynamics are described by a completely positive trace-preserving map ΦSch on a set of density

matrices in the Schrödinger picture. With its Kraus representation ΦSch(ρ) = ∑
kMkρM

†
k ,

the dynamics ΦH in the Heisenberg picture is described by

〈ΦSch(ρ)|a〉tr = tr(
∑
k

MkρM
†
ka) = tr(ρ

∑
k

M †
kaMk) = 〈ρ|ΦH(a)〉tr . (3.167)

A trace daul map can be a recovery map that reverses an error map 

42
 . Consider a unitary

time-evolution U †(·)U as an error map. Obviously, U(·)U † is a recovery map that reverses

the unitary time-evolution, i.e.,

〈U †a1U |U †a2U〉tr = 〈UU †a1UU
†|a2〉tr = 〈a1|a2〉tr . (3.168)

If the error map is an isometry, we have

〈V †a1V |V †a2V 〉tr = 〈Pa1P |a2〉tr . (3.169)

The information in the subspace orthogonal to the support of P is erased and cannot be

recovered.

In general, a dual map of a given CP map Φ with respect to a non-tracial state is not

necessarily CP. In [  66 ], Accardi and Cecchini provided a way to construct the dual CP maps

which we call them the state-dual and the Petz dual map. In the next section, we review

them.

3.6.1 State-dual, Petz dual and their positivity

Consider von Neumann algebras A and B with faithful normal states ωA on A and ωB

on B. Let Φ : A → B be a linear map. Then, its dual linear map with respect to the inner

product of the Hilbert space HA and HB is

〈b|Φ(a)〉ωB = 〈Φ∗
ω(b)|a〉ωA (3.170)

42
 ↑ One should note that this way of using dual is distinct from Heisenberg-Schrödinger duality because the

Heisenberg-Schrödinger duality relates the state space and algebras. Φ : A → B. Φ∗ : S(B) → S(A).
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Unfortunately, the dual operator Φ∗
ω is not completely positive. This is due to the non-

tracialness of a state ω. To see this, first, let us start with the trace dual. The trace dual

map of Φ is defined by

〈b|Φ(a)〉trB = 1/d · tr(b†Φ(a)) = 1/d · tr(Φ∗
tr(b†)a) (3.171)

for b ∈ B, a ∈ A. One can see that the trace-dual map Φ∗
tr is completely positive 

43
 . For

faithful normal non-tracial states ωB on B and ωA on A, since

〈b|Φ(a)〉ωB = 〈Φ∗
ω(b)|a〉ωA = tr(ωAΦ∗

ω(b†)a) (3.172)

for all a ∈ A, we get

Φ∗
ω(b†) = ω−1

A Φ∗
tr(ωBb†). (3.173)

Apparently, Φ∗
ω is not necessarily a completely positive map.

In [ 66 ], Accardi and Cecchini proved and provided the procedure to construct the dual

linear map of a completely positive map which is completely positive.

Proposition 3.6.1 (State-dual map, Proposition 3.1 in [  66 ]).

Let A and ωA, and B and ωB are von Neumann algebras and states. Consider their GNS

Hilbert space HA and HB with the corresponding cyclic and separating vectors |ΩA〉 and |ΩB〉

where ωA(a) = 〈ΩA|aΩA〉 for a ∈ A and ωB(b) = 〈ΩB|bΩB〉 for b ∈ B. For a completely

positive map Φ : A → B such that

ωB ◦ Φ = ωA, (3.174)

there exists a state dual map, or ω-dual map, which is a unique completely positive map

Φ′
ω : B′ → A′, defined by

〈b′|Φ(a)〉ωB = 〈Φ′
ω(b′)|a〉ωA . (3.175)

If Φ is unital, i.e., Φ(IB) = IA, then Φ′
ω(IA) = IB and Φ′

ω is faithful. Here, IA ∈ A and

IB ∈ B are the identity of the algebras.
43

 ↑ Let Φ(a) =
∑

k M
†
kaMk be the Kraus representation of Φ. The trace dual map has the Kraus represen-

tation, Φ∗
tr(b) =

∑
k MkbM

†
k .
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In short, for a completely positive map Φ : A → B, we obtain the dual CP map Φ′
ω :

B′ → A′ from the above theorem. Is there a way to construct a dual CP map that maps

from B to A? The answer to the question is yes. Such a question naturally arises in the

QEC picture. Let a CP map Φ : A → B be an error map. A recovery map should be a map

from B → A where the range of the recovery map does not have to be the whole algebra A.

Consider a completely map Φ′ = JB◦Φ◦JA : A′ → B′ where A′ and B′ are the commutant

of A and B, and JA and JB are the modular conjugations associated with ωA and ωB. By

theorem  3.6.1 , we obtain the dual CP map, which we call the Petz dual map, ΦP
ω : B → A

of Φ′ defined by

〈b|Φ′(a′)〉ωB = 〈ΦP
ω (b)|a′〉ωA . (3.176)

The left-hand side of ( 3.176 ) becomes

〈b|Φ′(a′)〉ωB = 〈b|JB ◦ Φ ◦ JA(a′)〉ωB = 〈JB(b)|Φ′(a′)〉ωB = 〈JA ◦ Φ′
ω ◦ JB(b)|a′〉ωB . (3.177)

Hence, from (  3.176 ),

ΦP
ω = JA ◦ Φ′

ω ◦ JB. (3.178)

Therefore, we conclude that, for a given completely positive map Φ : A → B, we can

construct a dual CP map ΦP
ω : B → A, see fig.  3.1 .

3.6.2 GNS operator of the Petz dual map

In the GNS Hilbert space, we define the GNS operators of CP map Φ : A → B and the

Petz dual map ΦP
ω : B → A by

Φ(a) |ΩB〉 = FaF † |ΩB〉 , ΦP
ω (b) |ΩA〉 = F P

ω aF
P †
ω |ΩB〉 (3.179)

for a ∈ A. Here, we study the properties of the GNS operator F P
ω . We assume Φ is unital

and CP, and satisfies the condition

ωA = ωB ◦ Φ. (3.180)
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Figure 3.1. The state-dual map of a CP map Φ : A → B is Φ′
ω : B′ → A′. The

maps Φ and Φ′
ω are represented by the red arrows above. The state-dual map of a

CP map Φ′ : A′ → B′ is ΦP
ω : B → A. The maps Φ′ and ΦP

ω are represented by the
blue arrows above. ΦP

ω is a Petz dual map of Φ. From the above figure, the Petz
dual map can be obtained from the state-dual map Φ′

ω, i.e. ΦP
ω = JA ◦ Φ′

ω ◦ JB.

Thus, we have

F †
ω |ΩB〉 = |ΩA〉 , |ΩB〉 = Fω |ΩA〉 (3.181)

From theorem  3.6.1 , ΦP
ω is again unital and faithful. This implies F P

ω F
P †
ω |Ω〉 = |Ω〉.

From (  3.176 ) and (  3.179 ),

〈JAF †
ωJBbJBFωJA|a′〉ωB = 〈F P

ω bF
P †
ω |a′〉ωA . (3.182)

for b ∈ B and a′ ∈ A. Since |ΩA〉 and |ΩB〉 are cyclic and separating,

F P
ω bF

P †
ω = JAF

†
ωJBbJBFωJA (3.183)

for b ∈ B. ΦP
ω satisfies ωA ◦ ΦP

ω = ωB because

ωA ◦ ΦP
ω (b) = 〈ΩA|F P

ω bF
P †
ω ΩA〉 = 〈JBFJAΩA|bJBFJAΩA〉 = 〈ΩB|bΩB〉 = ωB(b) (3.184)

for ∀b ∈ B. Since ΦP
ω is unital and satisfies the condition ωA ◦ ΦP

ω = ωB, we have

F P
ω |ΩB〉 = |ΩA〉 , |ΩB〉 = F P †

ω |ΩA〉 . (3.185)
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Then, ( 3.182 ) reduces to

〈bΩB|JBFJAa′ΩA〉 = 〈bΩB|F P †
ω a′ΩA〉 (3.186)

for ∀a′ ∈ A′ and ∀b ∈ B. Then,

F P †
ω = JBFωJA, F

P
ω = JAF

†
ωJB or JBF

P †
ω = FωJA (3.187)

because |ΩA〉 and |ΩB〉 are cyclic and separating. Moreover, for ∀a ∈ A,

SBFa |ΩA〉 = SBΦ(a) |ΩB〉 = Φ(a†) |ΩB〉 = FSAa |ΩA〉 . (3.188)

This implies that

SBF = FSA. (3.189)

From (  3.187 ) and (  3.188 ),

∆1/2
B F = F P

ω ∆1/2
A . (3.190)

One should note that we do not have JBF = FJA and ∆1/2
B F = F∆1/2

A . These are the

stronger conditions which we call Takesaki’s condition. We will study them in section  4.4.1 .

Below, we summarize the properties of the GNS operator F P
ω of the Petz dual map.

Corollary 3.6.0.1 (GNS operator of Petz dual map). For von Neumann algebras A, B, and

the faithful normal states ωA and ωB, consider an unital CP map Φ satisfying

ωA = ωB ◦ Φ (3.191)

for b ∈ B. Let its GNS operator F : HA → HB is defined by, for a ∈ A,

Φ(a) |ΩB〉 = FωaF
†
ω |ΩB〉 (3.192)

82



where |ΩB〉 is a cyclic and separating vector. It satisfies

F †
ω |ΩB〉 = |ΩA〉 , |ΩB〉 = Fω |ΩA〉 (3.193)

where |ΩA〉 is also a cyclic and separating vector.

The Petz dual map is an unital CP map satisfying

ωA ◦ ΦP
ω = ωB. (3.194)

The GNS operator F P
ω : HB → HA of the Petz dual map is defined by

ΦP
ω (b) |ΩA〉 = F P

ω aF
P †
ω |ΩB〉 (3.195)

and satisfies

F P
ω |ΩB〉 = |ΩA〉 , |ΩB〉 = F P †

ω |ΩA〉 . (3.196)

Furthermore, the GNS operator F P
ω : HB → HA satisfies

JBF
P †
ω = FωJA, SBFω = FωSA. (3.197)

As a result,

∆1/2
B Fω = F P †

ω ∆1/2
A . (3.198)
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4. OPERATOR ALGEBRA QUANTUM ERROR

CORRECTION (OAQEC)

The main purpose of this section is to study the QEC conditions in the language of von

Neumann algebras and modular theory. In section  4.1 , we review QEC in the Schrödinger

picture. Our first step to the construction of QEC in a general quantum system (vN algebra)

is the transition from the Schrödinger picture to the Heisenberg picture. For this purpose,

in section  4.2 , we discuss the relation between the Schrödinger and the Heisenberg picture

of QEC. QEC described by operator algebras is called the operator algebra quantum error

correction (OAQEC). At the end of this section, we provide the definition of OAQEC and

its exact QEC conditions. In QEC, there are two types; i) passive QEC, and ii) active QEC.

One has the passive QEC if there is no need for a recovery process even after an error occurs.

This is possible only when there is a clever way to encode a logical information so that the

information can be unaffected by the error in an encoded system. In the active QEC, one

needs to provide a recovery process to undo an error. In section  4.3 and  4.4 , we study passive

and active QEC in OAQEC, respectively.

4.1 Quantum error correction in the Schrödinger picture

Definition 4.1.1 (Exact quantum error correction in Schrödinger picture).

Consider a set S(Klog) of density matrices ρlog on Hilbert space Klog of a logical system.

Given an error map Φ∗
log as a completely positive and trace-preserving (CPTP) map on

ρlog ∈ S(Klog). Consider an isometry V : Klog → K, i.e., V V † = PC is a projection, as a

choice of encoding from the logical system to a physical system. This code can correct an

error map Φ∗ on S(K) if there exists a recovery map R∗
V such that

R∗
V ◦ Φ∗(ρC) = ρC (4.1)

for ∀ρC ∈ S(KC) where

S(KC) ≡ {ρC |PCρCPC = ρC ,∀ρC ∈ S(KC)} ⊆ S(K). (4.2)
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Equivalently, for Φ∗
log(·) ≡ Φ∗(V (·)V †) and R∗

log(·) = V †R∗
V (·)V ,

R∗
log ◦ Φ∗

log(ρlog) = ρlog (4.3)

for ∀ρlog ∈ S(Klog).

If an error map Φ is correctable, KC is called a code subspace. If the recovery map R∗
V

can correct an error map Φ on all the density matrices in S(K), i.e. S(K) = S(KC), then,

one can exercise the error correction without the need for encoding, i.e. PC = I.

Passive QEC has a trivial recovery map. This is possible when an encoding map embeds

logical information into a physical system so that the information is untouched. One example

is called the subsystem QEC code [ 67 ]–[ 69 ]. In chapter  5 , we observe that the QEC code

constructed through the real-space renormalization group theory, in particular, continuous

multiscale entanglement renormalization ansatz (cMERA), is passive. On the contrary, active

QEC requires the construction of a non-trivial recovery map. We will come back to the

construction of passive QEC code in section  4.3 and active QEC code in section  4.4 , but in

the Heisenberg picture or OAQEC.

Now, we will provide two of the well-known error-correcting conditions below. These

statements are equivalent to the condition of the existence of a recovery map stated in the

definition  4.1.1 .

Theorem 4.1.1 (Exact QEC conditions in the Schrödinger picture).

Following the notation and setup in definition  4.1.1 , the error map Φ∗ is correctable

1. [Knill-Laflamme condition] [ 70 ] if there exists λkl ∈ C such that

PCM
†
kMlPC = λklPC (4.4)

where Mk are Kraus operators of the error map Φ∗, i.e. Φ∗(·) = ∑
kMk(·)M †

k such that∑
kM

†
kMk = I.
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2. [Saturation of monotonicity of relative entropy] [ 71 ], [ 72 ] if

S(ρC‖σC) = S(Φ∗
V (ρC)‖Φ∗

V (σC)) (4.5)

for density matrices ρC , σC ∈ S(KC).

4.2 Operator algebra QEC: from the Schrödinger picture to the Heisenberg
picture

The transition from the Schrödinger picture to the Heisenberg picture is done by the

trace dual as discussed in section  3.6 . Consider an algebra A ⊆ B(K) of d × d complex

matrices on a Hilbert space K, and a set of density matrices ρA ∈ S(A) on K. In the

Schrödinger picture, a unitary U can represent a time evolution of density matrices UρU †.

The Heisenberg picture is obtained by

tr(aUρAU †) = tr(U †aUρA) (4.6)

for a ∈ A. The trace dual Φ : A → A of a quantum channel (CPTP) Φ∗ : S(A) → S(A)is

defined by

tr(aΦ∗(ρA)) = tr(Φ(a)ρA) (4.7)

for a ∈ A and ρ ∈ S(A). For an error map (CPTP) Φ∗ : S(A) → S(A) and a recovery map

(CPTP) R∗
V : S(A) → S(A) with a choice of encoding V , the transition of QEC from the

Schrödinger picture to the Heisenberg picture is achieved by

tr(aR∗
V ◦ Φ∗(ρA)) = tr(Φ ◦ RV (a)ρA). (4.8)

for a ∈ A and ρA ∈ S(A). Here, the trace dual error map Φ : A → A and the trace dual

recovery map R : A → A are unital CP maps on A. They are unital because, for any CPTP

map Φ∗,

tr(ρ) = tr(Φ∗(ρ)) = tr(Φ(I)ρ) (4.9)

for all ρ in S(K).

86



In general, we define an error map on algebras, Φ : A → B. Then, the recovery map

should be constructed as RV : B → A. To make our story simpler, we mainly work on a

physical system rather than starting from a logical system unless we explicitly need them.

Then, the definition of OAQEC for the general quantum system (vN algebra) is given by

the following.

Definition 4.2.1 (OAQEC). Given von Neumann algebras A and B and an unital CP map

Φ : A → B as an error map. The error Φ is correctable if there exists R such that

Φ ◦ R|C = idC (4.10)

restricted to the subalgebra BC ⊂ B where R : B → A. idC is an identity map on BC ⊂ B,

i.e., idC(c) = c for ∀c ∈ BC. BC is a code/correctable subalgebra of B.

We first derive the so-called recovery equation which is the equivalent statement to ( 4.10 ).

Consider a faithful normal state ωB and its associated GNS vacuum |ΩB〉 in the GNS Hilbert

space HB. Let c1, c2 ∈ BC be the operators of the correctable algebra that satisfies ( 4.10 ).

Let us denote the code subspace as HC that is spanned {|c〉B = c |ΩB〉 , ∀c ∈ BC}. Here,

|ΩB〉 is the GNS vacuum associated with the state ωB on B. From (  4.10 ),

Φ ◦ R(c1) |c2〉B = c1 |c2〉B . (4.11)

Suppose the Kraus representation of Φ is written as

Φ(·) =
∑
k

M †
k(·)Mk (4.12)

where Mk are the Kraus operators. Then, by (  4.11 ) and (  4.12 ),

∑
k

M †
kR(c1)Mk |c2〉B =

∑
k

M †
kMkc1 |c2〉B

=>
∑
k

M †
k(R(c1)Mk −Mkc1) |c2〉B = 0

(4.13)
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for all c1, c2 ∈ BC . This implies that

R(c)Mk = Mkc (4.14)

for all k and c ∈ BC  

1
 . We call (  4.14 ) the recovery equation. This is equivalent to ( 4.10 ) in

the definition. We will use this equation frequently to prove the first QEC condition listed

below. It is also useful to identify the nature of error and recovery maps, see section  4.4 .

Theorem 4.2.1 (Exact OAQEC conditions). Following the notation and setup in definition

 4.2.1 , the unital completely positive map Φ is correctable

1. [commutator]

if and only if

[c,M †
kMl] = 0 (4.15)

for all k, l and for c ∈ BC ⊂ B. Mk are the Kraus operators of Φ, i.e. Φ(·) = ∑
kM

†
k(·)Mk.

2. [Saturation of monotonicity of relative entropy]

S(ρC‖σC) = S(Φ∗(ρC)‖Φ∗(σC)) (4.16)

In section  4.3 and  4.4 , we study condition 1. This approach is the summary of the known

results on the exact OAQEC[ 73 ]. condition 2 will be discussed in chapter  5 .

4.3 Passive QEC

One of the easiest ways to protect against errors is to find an encoding of the algebra

Blog into the algebra that is immune to errors so that we do not need to correct it at all. We

achieve this if we choose the encoding ι : Blog → BI from Blog to the subalgebra BI that is

invariant under the action of the error map, i.e., Φ(b) = b for all b ∈ BI . We call such an

algebra the noiseless algebra. The noiseless algebra can be characterized by the commutation

relation between Kraus operators of a given CP map.
1

 ↑ Obviously, this holds only within the code subspace HC
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Theorem 4.3.1 (Noiseless algebra). Every operator c ∈ BI ⊂ B in a noiseless algebra BI of

an unital CP map Φ : B → B with the Kraus representation, Φ(·) = ∑
kM

†
k(·)Mk, satisfies

[b,Mk] = [b,M †
k ] = 0 (4.17)

for all k and for all c ∈ BI .

Proof. For b1, b2 ∈ BI , we have

Φ(b1) |b2〉B = b1 |b2〉B (4.18)

where |bi〉B = bi |ΩB〉 (i = 1, 2) are the states in the GNS Hilbert state HB. Using the Kraus

representation of Φ(·) = ∑
kM

†
k(·)Mk,

∑
k

M †
kb1Mk |b2〉B = M †

kMkb1 |b2〉B . (4.19)

Then, ∑
k

M †
k(b1Mk −Mkb1) |b2〉B = 0 (4.20)

for all b1, b2 ∈ BI . Hence,

b1Mk = Mkb1 (4.21)

for all b1 ∈ BI . The commutator between BI and M †
k follows from the same logic.

In the passive QEC, the invariant subalgebra BI is the code subalgebra of a given CP

map Φ. In this case, we can construct the conditional expectation from Φ. For an unital CP

map Φ that preserves some faithful state ω, i.e., ω = ω ◦ ω,

Eω(b) = lim
n→∞

1
n

(b+ Φ(b) + Φ2(b) + · · · + Φn−1(b)) (4.22)
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is a conditional expectation that projects B down to the invariant subalgebra BI of Φ. To

see this, consider the Stinespring representation Φ(b) = Fπ(b)F †. Since Φ is unital, F is

coisometry. Because π and F are norm non-increasing resulting in ‖Φ(b)‖ ≤ ‖b‖, we have

‖Φ(Eω(b)) − Eω(b)‖ = ‖ lim
n→∞

1
n

(Φn(b) − b)‖

≤ lim
n→∞

1
n

(‖Φ(b)‖ + ‖b‖) ≤ lim
n→∞

2
n

‖a‖ = 0.
(4.23)

We find that the range of Eω is BI . This map is evidently CP and leaves every operator in

BI invariant. Therefore, it is a ω-preserving conditional expectation.

4.4 Active QEC

As opposed to the passive QEC, the active QEC requires one to construct a non-trivial

recovery map to undo a given error map. In this section, first, we characterize the correctable

algebra by condition 1. in theorem  4.2.1 . Its proof is basically similar to that of theorem

 4.3.1 . Second, we explore the nature of an error map and recovery. Third, in section  4.4.1 ,

we discuss Takesaki’s condition which allows us to construct a unique recovery map. At the

end of this section, we study condition 2. known as the sufficiency condition.

Theorem 4.4.1 (Correctable algebra). Every operator c ∈ BC ⊂ B in a correctable algebra

BC of a pair (Φ,R) satisfies

[c,M †
kMl] = 0 (4.24)

for all k, l and for all c ∈ BC.

Proof. For c1, c2 ∈ BC , from

Φ ◦ R(c1) |a2〉B = c1 |c2〉B , (4.25)

we have the recovery equation

R(c1)Mk = Mkc1 (4.26)

as discussed in ( 4.14 ). Multiply the equation from both sides by M †
l , we have

M †
l R(c1)Mk = M †

lMkc1. (4.27)
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Repeat the above with c†
1 and take †,

M †
l R(c1) = c1M

†
l . (4.28)

Again, multiply the equation from both sides by Mk,

M †
l R(c1)Mk = c1M

†
lMk. (4.29)

Therefore, by (  4.27 ) and (  4.29 ), we have

M †
lMkc1 = c1M

†
lMk. (4.30)

Now, let us discuss the nature of a given error map and the corresponding recovery map.

We observe the following three things;

1. A recovery map R is unique and unital if the kernel of a given error map is trivial.

2. The range of a recovery map, AC ≡ R(BC), is the multiplicative domain of Φ.

3. The unique unital recovery map R is a faithful representation on BC .

First, for example, if a given unital CP map Φ : A → B has a non-trivial kernel, there

are two recovery maps R : B → A and R̃ = R + χ : B → A where the range of χ is in the

kernel of Φ, i.e., Φ(χ(c)) = 0 for c ∈ BC . In the QEC, any operators in the kernel is deleted

and never be able to recover. Hence, we can remove the kernel from our story. Let P be

the projection on A such that it removes the kernel. We redefine the error map using the

projection; ΦP : PAP → B. This allows us to write the following two recovery equation; for

c1, c2 ∈ BC ,

R(c1)PMk |c2〉B = PMkc1 |c2〉B

R̃(c1)PMk |c2〉B = PMkc1 |c2〉B .
(4.31)
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This implies that the recovery map is unique within the code subspace HC = {PMk |c〉B , ∀k, ∀c ∈

BC}, i.e.,

R(c1)PMk = R̃(c1)PMk (4.32)

for all k, and all c1 ∈ BC .

For the unital CP map Φ with a trivial kernel, Φ acts faithfully on A. Hence, the operator

acted by Φ resulting in the identity operator should uniquely be the identity operator.

Because Φ ◦ R|C = idC by the definition of correctability, R should be unital.

Now, let us explicitly consider the range of the recovery map, i.e., AC = R(BC). We

show that AC is the multiplicative domain of an unital CP map Φ with a trivial kernel, i.e.,

Φ(R(c1)R(c2)) = Φ(R(c1))Φ(R(c2)) (4.33)

for c1, c2 ∈ BC , and hence R(c1),R(c2) ∈ AC . For the left hand side, for all c1, c2, c3 ∈ BC ,

Φ(R(c1)R(c2)) |c3〉B =
∑
k

M †
kR(c1)R(c2)Mk |c3〉B

=
∑
k

M †
kR(c1)Mkc2 |c3〉B

= Φ(R(c1))
∑
l

M †
lMlc2 |c3〉B

= Φ(R(c1))Φ(R̃(c2)) |c3〉B

(4.34)

where R̃ is another recovery map. In the second and fourth equality, we used the recovery

equation (  4.14 ). Since we are assuming that the unital CP map Φ has a trivial kernel, the

recovery map is unique. Hence, R = R̃. Therefore, AC ≡ R(BC) is the multiplicative

domain of Φ.

We have seen that the recovery map R of the error map (unital CP) with the trivial

kernel is unique and unital. To show that R is the faithful representation of BC into AC , we

need to show that it is injective, or one-to-one, i.e. R(c1c2) = R(c1)R(c2) for c1, c2 ∈ BC .
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First, one should notice that BC is the multiplicative domain of Φ ◦ R. Together with the

fact that AC is the multiplicative domain of Φ, one can show that

Φ ◦ R(c1c2) |c3〉B = Φ(R(c1)R(c2)) |c3〉B (4.35)

for all ci ∈ BC (i = 1, 2, 3). Thus, we get

R(c1c2)Mk = R(c1)R(c2)Mk (4.36)

for all k and all c1, c2 ∈ BC . Therefore, R : BC → AC is the faithful representation on the

Hilbert space spanned by {Mk |c〉B , ∀k, ∀c ∈ BC}. We summarize the discussion into the

following theorem.

Theorem 4.4.2. Consider an unital CP map Φ : A → B with the trivial kernel. If there

exists a recovery map R satisfying (  4.10 ) with BC being the correctable algebra, it is a unique

faithful representation R : BC → AC ≡ R(BC).

4.4.1 Takesaki’s condition

Takesaki’s condition will be used to prove that the Petz dual map of a given error

map is the unique recovery map if there exists one in the next section. The condition

claims a necessary and sufficient condition of the existence of a state-preserving conditional

expectation. In particular, for an unital CP map Φ : A → B between vN algebras and

faithful states ωB and ωA = ωB ◦ Φ, we show that R ◦ Φ is the conditional expectation

that preserves ωA. Then, we discuss how it is related to Takesaki’s condition. We provide

Takesaki’s condition in the case of matrix algebras and an arbitrary vN algebra.

First, we show that R◦Φ is a conditional expectation. For the unital CP map Φ : A → B

with a trivial kernel, the recovery map R : B → A is a faithful representation that satisfies

Φ ◦ R(c) |ΩB〉 = c |ΩB〉 (4.37)
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for all c ∈ BC . By definition, for AC ≡ R(BC),

R ◦ Φ(R(c)) |ΩA〉 = R(c) |Ω〉 (4.38)

for all R(c) ∈ AC . Since both Φ and R are unital and CP, R ◦ Φ is an unital and CP map.

To show that it is a conditional expectation from A → AC , we need to check its bimodule

property 

2
 , i.e.,

R ◦ Φ(R(c1)aR(c2)) = R(c1)R ◦ Φ(a)R(c2) (4.39)

for R(c1),R(c2) ∈ AC and a ∈ A. Using the recovery equation ( 4.14 ),

R ◦ Φ(R(c1)aR(c2)) |ΩA〉 = R
[∑

k

M †
kR(c1)aR(c2)Mk

]
|ΩA〉 = R

[
c1Φ(a)c2

]
|ΩA〉 . (4.40)

Since R is a faithful representation, its GNS operator is defined by

R(c) |ΩA〉 = WcW † |ΩA〉 (4.41)

is a partial isometry, i.e., WW † = PAC is a projection on A to AC , and W †W = PBC is a

projection on B to BC . Thus,

Wc1Φ(a)c2W
† |ΩA〉 = Wc1W

†WΦ(a)W †Wc2W
† |ΩA〉 = R(c1)R ◦ Φ(a)R(c1) |ΩA〉 (4.42)

Therefore, R ◦ Φ is a conditional expectation. In addition, it preserves ωA, i.e.,

ωA ◦ R ◦ Φ = ωA. (4.43)

The simplest example is when Φ is just an encoding ι : A → B. Suppose we want

to simulate a quantum system B using the algebra of physical operators A. We encode

B as a subalgebra of A using the isometric embedding map ι : B → A. We also have a

decoding map α : A → B such that α ◦ ι : B → B is the identity map. The composite map

ι◦α : A → ι(A) is a CP map that preserves every operator in ι(B). The set of states ωA that
2

 ↑ For the detail of a conditional expectation, see section  3.2.2 in chapter  3 
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are invariant under this map are decodable physical states. Assume that ωA is a decodable

faithful state (full-rank density matrix) and ωB = ωA ◦ ι is its restriction to B. They can be

represented as cyclic and separating vectors |ΩB〉 and |ΩA〉 in the GNS Hilbert spaces HωB

and HωA . We denote these Hilbert spaces by HB and HA, respectively. The encoding map

as a superoperator is represented by an isometry W : HB → HA:

ι(b) |ΩA〉 = Wb |ΩB〉 . (4.44)

Since we assumed that ρA is decodable, this state is preserved under the conditional ex-

pectation ι ◦ α : A → ι(B). We will see in theorem  4.4.3 that this is equivalent to the

Takesaki condition: JAW = WJB, where JA and JB are the modular conjugation operators

corresponding to ωA and ωB. This implies that our decoding map corresponds to the GNS

operator

α(a) |ΩB〉 = JBW
†JAa |ΩA〉 = W †a |ΩA〉 . (4.45)

In other words, a state is decodable if it satisfies the Takesaki condition, in which case α is

the Petz dual of ι.

In matrix algebras, there always exists a trace-preserving conditional expectation Ee :

A → AC if AC contains the identity operator. To show this, we start with the orthogonal

projection Pe in the Hilbert space He that projects down to HC that is the span of AC |e〉.

We show that the superoperator that is associated with it is a trace-preserving conditional

expectation. Since Pec |e〉 = c |e〉 the superoperator Ee satisfies Ee(c) = c for all c ∈ AC .

Furthermore, we have

〈e|Ee(a)|e〉 = 〈e|Pea|e〉 = 〈Pee|a|e〉 = 〈e|a|e〉 , (4.46)

therefore Ee is trace-preserving. We only need to prove it is CP.

To show that Ee(a+) is positive we need to show the matrix element

〈a2|Ee(a+)|a2〉 = 〈a2|Pea+a2〉 = 〈Pea2|a+a2〉 (4.47)
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is positive. It is clear that if |a〉 ∈ (Pe)⊥ this matrix element is zero, therefore we only need

to consider 〈c|E(a+)|c〉 for c ∈ AC . The inner product in the Hilbert space He has the special

property that

〈a1|a2a1〉 = tr(a†
1a2a1) = tr(a1a

†
1a2) = 〈a†

1a1|a2〉 (4.48)

where we have used the cyclicity of trace. Therefore,

〈c|Ee(a+)|c〉 = 〈c†c|Pa+〉 = 〈Pc†c|a+〉 = 〈c†c|a+〉 = 〈c|a+|c〉 ≥ 0 . (4.49)

Therefore, Ee is a positive map. Similarly, the map Ee ⊗ idn corresponds to Pe ⊗ In in the

Hilbert space He ⊗ Kn which is also positive by the same argument, therefore Ee is CP. The

superoperator Ee is the unique trace-preserving conditional expectation from A → AC . 

3
 We

can explicitly write down the ω-preserving conditional expectation in terms of the trace-

preserving one:

Eω(a) = ω
−1/2
C Ee(ω1/2aω1/2)ω−1/2

C (4.50)

where ωC is the restriction of ω to the subalgebra AC . These maps are the same as the

ω-preserving conditional expectations we constructed in section  3.2.2 .

We now prove that the Takesaki condition is the necessary and sufficient condition for

a state for the existence of a ω-preserving conditional expectation. The argument trivially

generalizes to infinite dimensions [ 74 ].

Theorem 4.4.3 (Takesaki’s condition: matrix algebras). The following statements are

equivalent:

1. There exists a ω-preserving conditional expectation Eω : A → AC.

2. For all c ∈ AC we have ω1/2cω−1/2 ∈ AC.
3

 ↑ The bi-module property follows from

tr(c1Ee(c2a)) = 〈c†
1|Pec2a〉 = 〈Pec

†
1|c2a〉 = 〈c†

2Pec
†
1|a〉 = 〈Pec

†
2c

†
1|a〉 = tr(c1c2Ee(a)) .
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3. For all c ∈ AC we have ω1/2cω−1/2 = ω
1/2
C cω

−1/2
C .

Here, ωC is the restriction of ω to AC.

Proof:

(2 → 1): Repeating the argument above for the projection Pω in the GNS Hilbert

space to the subspace HC spanned by AC |ω1/2〉 reveals why there might not exist a ω-

preserving conditional expectation for an arbitrary ω. By the same argument, the projection

Pω corresponds to a superoperator Eω : A → AC that preserves ω and satisfies Eω(c) = c.

However, in general, it will not be CP because there is no analog of the property (  4.48 ) in

the GNS Hilbert space Hω. Instead, we have

〈a1|a2a1〉ω = tr(a1ωa
†
1a2) = tr(ω(ω−1a1ω)a†

1a2) = 〈a1Dω(a†
1)|a2〉ω (4.51)

where Dω(a) = ωaω−1 is the modular superoperator we introduced in section ( 3.4 ). If

Dω(c) ∈ AC we can repeat the argument above to show

〈c|Eω(a+)c〉ω = 〈cDω(c†)|Pωa+〉ω = 〈PωcDω(c†)|a+〉ω

= 〈cDω(c†)|a+〉ω = 〈c|a+c〉ω ≥ 0 . (4.52)

Therefore, if Dω(c) ∈ AC the superoperator Eω(c) is CP and hence it is the unique ω-

preserving conditional expectation from A to AC . If D1/2
ω (c) ∈ AC so is Dω(c) ∈ AC ,

therefore the condition in (2) is sufficient for (1).

(1→ 2): Assume that Eω exists and Pω is its corresponding projection operator in Hω.

Consider the Tomita superoperator S(a) = a†. Since Eω is a positive map we have Eω(a†) =

Eω(a)† which implies Eω(S(a)) = S(Eω(a)). In the GNS Hilbert space, this implies [Pω, Sω] =

0. Since Pω is self-adjoint when Eω is ω-preserving we also have [Pω, S†
ω] = 0. Therefore, we

find [Pω,∆ω] = 0, where ∆ω = S†
ωSω is the modular operator of ω. Since both operators

are positive we have [Pω,∆1/2
ω ] = 0, and using the superoperator representation we obtain

E(D1/2
ω (a)) = D1/2

ω (E(a)). For any c ∈ AC :

Eω(D1/2
ω (c)) = D1/2

ω (Eω(c)) = D1/2
ω (c) . (4.53)
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Therefore, Dω(c) = ω1/2cω−1/2 ∈ AC .

(1→ 3): We saw that (1) implies the commutation relation [Pω,∆ω] = 0. Define the

state ωC on the subalgebra AC as the restriction tr(ωCc) = tr(ωc). 

4
 Consider its GNS Hilbert

space HC spanned by c |ω1/2
C 〉 and the linear map W : HC → HA:

Wc |ω1/2
C 〉 = c |ω1/2〉 . (4.54)

It follows from the definition of ωC that this linear map is an isometry and WACW † is an

isometric embedding of AC in A. Acting with the modular operator we find

SωWc |ω1/2
C 〉 = c† |ω1/2〉 = WSCc |ω1/2

C 〉 . (4.55)

In other words, SωW = WSC and as a result we have W †∆ωW = ∆C and Pω∆ωPω =

W∆CW
†. When [∆ω, Pω] = 0 we can take the square root of this equation to find

Pω∆1/2
ω = W∆1/2

C W † (4.56)

or equivalently 

5
 

∆1/2
ω W = W∆1/2

C . (4.57)

This together with SωW = WSC gives the form of the Takesaki condition JωW = WJC .

Then, the constraint that Dω(c) ∈ AC becomes

D1/2
ω (c) |ω1/2〉 = Pω∆1/2

ω c |ω1/2〉 = W∆1/2
C c |ω1/2

C 〉 = WD1/2
C (c) |ω1/2

C 〉 = D1/2
C (c) |ω1/2〉 .(4.58)

As a result, we have

ω1/2cω−1/2 = D1/2
ω (c) = D1/2

C (c) = ω
1/2
C cω

−1/2
C (4.59)

4
 ↑ Note that ωC = Ee(ω) because tr(cωC) = tr(cω) = tr(Ee(cω)) = tr(cEe(ω)).

5
 ↑ We act with W † on the left and take the Hermitian conjugate.
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which is the condition in Takesaki’s theorem.

(3→ 1): Consider a subalgebra AC ⊆ A and the isometric embedding map ι : AC → A.

The Petz dual ιPω : A → AC is unital and CP. It follows from the definition of the alternate

inner product that the Petz dual satisfies

〈ιPω (a)|∆1/2
C c〉ωC = 〈a|∆1/2

ω c〉ω . (4.60)

We now show that when (3) is satisfied this Petz dual map is a ω-preserving conditional

expectation. All we need to show is that ιPω (c) = c:

〈ιPω (c1)|∆1/2
C c2〉ωC = 〈c1|∆1/2

ω c2〉ω = 〈c1|D1/2
ω (c2)〉ω

= 〈c1|D1/2
C (c2)〉ω = 〈c1|∆1/2

C c2〉ωC (4.61)

where in the second line we have used (3) and c†
1D

1/2
C (c2) ∈ AC . Since the isometric em-

bedding is trivial in this case the composite map EPω = ι ◦ ιPω : A → AC is a ω-preserving

generalized conditional expectation that becomes a conditional expectation (3) is satisfied.

�

All the steps of the arguments above can be repeated for an arbitrary von Neumann

algebra with ω1/2 replaced with ∆1/2
ω . The proof did not rely on the existence of a density

matrix or a trace, and trivially generalizes to an arbitrary von Neumann algebra and its

GNS Hilbert space representation:

Theorem 4.4.4 (Takesaki’s condition: von Neumann algebras). Let AC ⊂ A be an inclusion

of von Neumann algebras. Let ωA be a faithful state of A and ωC be its restriction to AC. Let

|ω1/2
A 〉 and |ω1/2

C 〉 be the cyclic and separating vectors in HA and HC. Define the isometry

W : HC → HA as Wc |ω1/2
C 〉 = c |ω1/2

A 〉 for all c ∈ AC. The following statements are

equivalent:

1. There exists a ωA-preserving conditional expectation Eω : A → AC

2. The modular conjugations JA and JC corresponding to |ω1/2
A 〉 and |ω1/2

C 〉 satisfy JAW =

WJC.
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3. ∆1/2
A W = W∆1/2

C .

4.4.2 Sufficiency

Our next question is given a ω-preserving conditional expectation what other states are

also invariant under it? To characterize all “sufficient” states of a ω-preserving conditional

expectation Eω we show that it preserves another state ψ if and only if the sufficiency

condition

ψ1/2ψ
−1/2
C = ω1/2ω

−1/2
C (4.62)

is satisfied [  71 ], [  72 ]. If we are given a ω-preserving conditional expectation Eω the map

Eψω (a) = ψ
−1/2
C ω

1/2
C Eω

(
ω−1/2ψ1/2aψ1/2ω−1/2

)
ω

1/2
C ψ

−1/2
C (4.63)

is a ψ-preserving CP map from A → AC . If it preserves every operator in c ∈ AC it

becomes an ψ-preserving conditional expectation. It is clear that if the sufficiency condition

in (  5.35 ) holds it becomes an ψ-preserving conditional expectation Eψ = Eω. Therefore,

Eω also preserves ψ. We now prove the converse: the conditional expectation Eω preserves

ψ only if the condition (  5.34 ) holds. We basically repeat the proof of Takesaki’s theorem

for the relative Tomita operator Sψ|ωa |ω1/2〉 = a† |ψ1/2〉. The norm of this operator is

the relative modular operator ∆ψ|ω : Hω → Hω. The superoperator corresponding to it

is Dψ|ω(a) = ψaω−1. We repeat the argument for the Takesaki theorem with the relative

modular map Dψ|ω(a) = ψaω−1 to find [Pω,∆1/2
ψ|ω] = 0. This implies

Eω(D1/2
ψ|ω(c)) = D1/2

ψ|ω(Eω(c)) = D
1/2
ψ|ω(c) ∈ AC (4.64)

We define the isometries

Wωc |ω1/2
C 〉 = c |ω1/2〉

Wψc |ψ1/2
C 〉 = c |ψ1/2〉 (4.65)
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so that

Sψ|ωWω = WψSψC |ωC

W †
ω∆ψ|ωWω = ∆ψC |ωC . (4.66)

Since [Pω,∆1/2
ψ|ω] = 0 we have

Pω∆1/2
ψ|ω = Wω∆1/2

ψC |ωCW
†
ω . (4.67)

As a result,

D1/2
ψ|ω(c) |ω1/2〉 = Pω∆1/2

ψ|ωc |ω1/2〉 = Wω∆1/2
ψC |ωCc |ω1/2

C 〉

= WωD1/2
ψC |ωC (c) |ω1/2

C 〉 = D1/2
ψC |ωC (c) |ω1/2〉 . (4.68)

We obtain that

ψ1/2cω−1/2 = D1/2
ψ|ω(c) = D1/2

ψC |ωC (c) = ψ
1/2
C cω

−1/2
C . (4.69)

In other words,

ψ
−1/2
C ψ1/2cω1/2ω

−1/2
C = c = ω

−1/2
C ω1/2cω−1/2ω

1/2
C (4.70)

which holds if and only if the sufficiency condition in ( 5.34 ) is satisfied.

The sufficiency condition can be expressed as

∆1/2
ψ|ω = Wω∆1/2

ψC |ωCW
†
ω . (4.71)

Using the integral representation of Xα for α ∈ (0, 1)

Xα = sin(πα)
π

∫ ∞

0
ds sα

(1
s

− 1
s+X

)
(4.72)
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we find

∫ ∞

0
ds s1/2

(
1

s+ ∆ψ|ω
−Wω

1
s+ ∆ψC |ωC

W †
ω

)
= 0 . (4.73)

From the monotonicity of the relative modular operator [  58 ], [  75 ] we know that the operator

in the integrand above is positive, therefore it has to be zero:

1
s+ ∆ψ|ω

= Wω
1

s+ ∆ψC |ωC
W †
ω (4.74)

which implies

∆α
ψ|ω = Wω∆α

ψC |ωCW
†
ω . (4.75)

Furthermore, for any continuous function f we have

Wωf(∆C) |ω1/2
C 〉 = f(∆) |ω1/2〉 . (4.76)

In particular, choosing f(x) = xit for t ∈ R we find that ωit
Cψ

−it
C = ωitψ−it. This condition

implies that the relative entropy for any pair of sufficient states ω and ψ:

S(ψ‖ω) = S(ψC‖ωC) . (4.77)

Intuitively, this says that a coarse-graining (conditional expectation) preserves a set of

states {ωk} (sufficient states) if and only if the distinguishability (relative entropy) of any

pair of them remains the same.
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5. QUANTUM ERROR CORRECTION AND

RENORMALIZATION GROUP(RG)

We have reviewed and constructed the basic tools, such as completely positive maps, von

Neumann algebras, modular theory, and the operator algebra quantum error correction

(OAQEC). In this chapter, we study the QEC code in quantum field theory, especially,

the relevance to real-space renormalization group theory.

Holographic duality conjectures that the d+ 1-dim quantum field theory without gravity

is exactly equal to the d-dim quantum field theory without gravity. Although we have

some examples [ 76 ], [ 77 ], we still do not know why the duality holds. In this work, we

study holography through the perspective of renormalization group theory, and the theory

of quantum error correction.

From the viewpoint of renormalization group theory, the holographic duality has the

correspondence between the ultraviolet behavior of the boundary theory and the infrared

behavior of the bulk theory, and vice-versa. This is known as UV-IR connection[ 78 ]. The

key is that the radial direction is the extra degree of freedom in the bulk emerging from the

RG flow of the coupling constants of the boundary theory.

The other approach is the quantum error correction framework. As already discussed

in the introduction, holographic duality is realized as quantum error correction by either

isometrically or non-isometrically encoding the bulk theory into the boundary theory[  15 ],

[ 79 ], [  80 ].

Then, what is the relation between the RG theory and the QEC? Does the RG theory

exhibit the QEC structure? In section  5.2 and  5.1 , we show that the real-space RG theory

in free quantum field theory does exhibit the QEC structure. Previously, a similar question

was explored by [ 81 ] which shows how real-space renormalization group theory of a lattice

system, which is known as multiscale entanglement renormalization ansatz (MERA), exhibits

the QEC structure in a lattice system. In section  5.2 , we extend this work using a continuous

version of MERA (cMERA).

Although we observe that MERA and cMERA provide a good test of whether RG em-

braces the structure of the QEC code, they are not enough to explain the holographic duality.
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The things lacking in those models are large internal degrees of freedom and strong interac-

tions. For example, in AdS3/CFT2, one needs to take large N and large gap to realize the

two-dim CFT to be holographically dual to semiclassical quantum field theory in AdS3. In

the language of QEC, the difference is observed by the property called the complimentary

recovery. We see that the theories of general quantum systems without the limit of large

N and a large gap, for instance, MERA and cMERA, do not satisfy the complimentary

recovery. On the contrary, the ones with the limits satisfy the complimentary recovery.

In summary, we study the following main statements;

1. [Renormalization group as an approximate error correction]

In section  5.2 , we check the following statement in 1 + 1-d massive free boson theory.

Consider a Hilbert space at the level s, Hs, of a system, and an isometry Ws : Hs → HUV .

We define a family of code subspaces Cs at a length scale es to be

{Cs ≡ PsHUV |Ws : Hs → HUV ,W
†
sWs = Is, ∀s, −∞ ≤ s ≤ 0} (5.1)

A local UV error on any simply connected region A can be approximately corrected up

to a small error δ̃ if s � log |A| where |A| is the size of the region. That is, in the form

of the Knill-Laflamme condition, for |ψsi 〉 ∈ Hs, and OUV
A ∈ B(HUV ),

〈ψsi |W †
sO

UV
A Ws|ψsj 〉 = 〈Cs

i |OUV
A |Cs

j 〉 ∝ δij + δ̃ (5.2)

where |Cs
i 〉 = Ws |φsi 〉 ∈ Cs. We verify the above statement using 1 + 1-d free massive

boson theory on a line.

2. [Complementary recovery]

In section  5.2.4 , we show that MERA and cMERA do not have a complementary recovery

while the QEC code in the holography admits it in an approximate sense.

3. [OAQEC and Petz recovery map]  

1
 

1
 ↑ Although we have already discussed this, we included the results regarding OAQEC and Petz recovery

map for the completeness of section  5.1 
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In chapter  3 , we studied the Petz dual map of a given CP map Φ of von Neumann algebras

A to B. In section  5.1 , we state the main theorem below which identifies the recovery

map as a Petz dual map of a given unital CP map. The key to proving the theorem is

what we call Takesaki’s condition[ 66 ], [  82 ].

Theorem 5.0.1 (Petz dual). Let Φ : A → B be an unital completely positive map between

von Neumann algebras. Let ρB and ρA = ρB ◦ Φ be faithful states. Denote by |ρ1/2
A 〉 and

|ρ1/2
B 〉 the cyclic and separating vectors that represent ρA and ρB in their corresponding

Hilbert spaces HA and HB. If there exists a normal faithful representation R : B → A

that satisfies Φ ◦ R = id, it is the Petz dual of the error map

R(b) = ΦP
ρ (b) ≡ JA ◦ Φ′

ρ ◦ JB . (5.3)

where JA : A′ → A and JB : B → B′ are the modular conjugation maps corresponding to

|ρ1/2
A 〉 and |ρ1/2

B 〉, respectively.

5.1 Real-space RG, error correction and Petz map

5.1.1 Introduction

In quantum computing, we use the Hilbert space of a quantum system to encode and

process information. The interactions with the environment lead to errors and an important

challenge is to protect our information from the errors. One of the main goals of the theory

of quantum error correction (QEC) is to identify the subalgebra of correctable operators

associated with an error model and construct the recovery map that undoes the errors. 

2
 In

local many-body quantum systems, to every

Let us apply a unitary rotation in AA. We obtain a new algebra inclusion UACU
† ⊂

UAAU
† and a new error correction code; however, the unitary can obscure locality. In fact,

every algebra inclusion is an exact quantum error correction code and, if finite-dimensional,

can be trivialized by a choice of unitary on A. Intuitively, this means that there is a hidden
2

 ↑ For completeness, we have included a review of the theory of operator algebra error correction in chapter
 4 . See also [ 67 ], [ 83 ], [ 84 ].
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Figure 5.1. The local algebra of region C is a subalgebra of the algebra of
a larger region. Any error Vr that acts on the relative commutant AR do not
disturb the encoded information in AC .
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Figure 5.2. (a) If AC with trivial center is a subalgebra of a finite dimension
algebra A, then we have the tensor product factorization A = AC ⊗ AR. (b)
If AC has a non-trivial center Z(AC), we modify the diagram to represent the
center as a blue stripe. (c) The center is part of both AC and the relative
commutant.

notion of locality in the inclusion of any subalgebra AC ⊂ A. 

3
 Consider a finite-dimensional

matrix algebra with a trivial center (the observable algebra of a qudit). If the subalgebra AC

also has a trivial center there exists a unitary U in A such that UAU † = UACU † ⊗AR where

AR is the relative commutant of UACU † in UAU †. If AC is a subalgebra with a non-trivial

center Z(AC) then up to the choice of a unitary the algebra A factors as the direct sum

⊕qA(q)
C ⊗ A(q)

R and AC = ⊕qA(q)
C ⊗ I(q)

R . To visualize this structure we use the diagrams

in figure  5.2 . In this work, we argue that the inclusion of algebras that share the identity
3

 ↑ With an abuse of notation, we have denoted a general subalgebra that includes the identity operator as
AC because, in this work, the upper index C in AC will stand for “correctable subalgebra”.
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operator appears naturally in the renormalization group (RG) and holography, however, in

these cases the inclusions are not due to any obvious locality principle.

There are two parts to this work. In the first part, in section  5.1.2 , we argue that the

real-space RG can be modeled as an approximate error correction code that encodes the

long-distance operators in the algebra of the short-distance operators. In this picture, the

short-distance local perturbations are the errors and the long-distance operators (or a subset

of them) are the correctable operators. This is closely related to modeling the holographic

map as a quantum error correction code [ 15 ], [  16 ], [  85 ].

The connection between the RG and error correction can be seen even in classical sys-

tems [ 2 ]. The intuition is that exciting a long-range degree of freedom requires acting on a

macroscopically large number of short-distance degrees of freedom. The disturbance caused

by a local short-distance error cannot alter long-distance modes. Under the RG, local ul-

traviolet (UV) operators become exponentially weak in the infrared (IR). Deep in the IR,

the UV errors are negligible, and in fact, there is no need to actively correct them. Low

energy states of a gapped system, do not have excitations at distances much larger than the

correlation length. To make our connection concrete, we focus on real-space RG in systems

near critical points where the long-range modes of arbitrary wavelength are excited.

As a concrete model of real-space RG that applies to the quantum system near a critical

point, in section  5.1.2 , we consider the multi-scale renormalization ansatz (MERA) tensor

network for lattice models. MERA has found many applications in the study of quantum

field theory (QFT) and gravitational theories in AdS/CFT correspondence [  86 ], [  87 ]. To our

knowledge, the connection between MERA and error correction codes was first discussed

in [  81 ]. This connection was extended to continuous MERA (cMERA) in [  2 ]. The error

correction property of MERA is similar to the holographic map modeled as an error correction

code with the difference that in a general RG flow, we do not have complementary recovery

property. 

4
 Holography suggests that complementary recovery has to emerge in a special

class of theories with a large number of local degrees of freedom (large N) and are strongly
4

 ↑ See figure  5.4 for complementary recovery in holography. Note that, even in holography, the complementary
recovery is an approximate notion. It is known to fail in situations where the code subspace is large [  88 ],
[ 89 ].

107



<latexit sha1_base64="JUMuVlF/dF9QElKejTY8qbxct1A=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqswUUXFVceOygn3AdCiZNNOGZpIhyQhl6Ge4caGIW7/GnX9jpp2Fth4IHM65l5x7woQzbVz32ymtrW9sbpW3Kzu7e/sH1cOjjpapIrRNJJeqF2JNORO0bZjhtJcoiuOQ0244ucv97hNVmknxaKYJDWI8EixiBBsr+f0YmzHBPLudDao1t+7OgVaJV5AaFGgNql/9oSRpTIUhHGvte25iggwrwwins0o/1TTBZIJH1LdU4JjqIJtHnqEzqwxRJJV9wqC5+nsjw7HW0zi0k3lEvezl4n+en5roOsiYSFJDBVl8FKUcGYny+9GQKUoMn1qCiWI2KyJjrDAxtqWKLcFbPnmVdBp177LeeLioNW+KOspwAqdwDh5cQRPuoQVtICDhGV7hzTHOi/PufCxGS06xcwx/4Hz+AHAwkVY=</latexit>

A

<latexit sha1_base64="9JOE2YhrF4ioIosgxkqPUCGUYrs=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKVPFU8OKxgv2ANpTNdtMs3d2E3Y1QQv+CFw+KePUPefPfuGlz0NYHA4/3ZpiZFyScaeO6305pY3Nre6e8W9nbPzg8qh6fdHWcKkI7JOax6gdYU84k7RhmOO0nimIRcNoLpne533uiSrNYPppZQn2BJ5KFjGCTS8N2xEbVmlt3F0DrxCtIDQq0R9Wv4TgmqaDSEI61HnhuYvwMK8MIp/PKMNU0wWSKJ3RgqcSCaj9b3DpHF1YZozBWtqRBC/X3RIaF1jMR2E6BTaRXvVz8zxukJrzxMyaT1FBJlovClCMTo/xxNGaKEsNnlmCimL0VkQgrTIyNp2JD8FZfXifdRt1r1hsPV7XWbRFHGc7gHC7Bg2towT20oQMEIniGV3hzhPPivDsfy9aSU8ycwh84nz/im44e</latexit>

�
<latexit sha1_base64="1h+5t08zzw6EbB+rIcxJSGhKlas=">AAAB9HicbVDLSsNAFL2pr1pfVZduBovgqiRFVFxVunFZwT6gjWUynbRDJ5M4MymU0O9w40IRt36MO//GSZqFth4YOJxzL/fM8SLOlLbtb6uwtr6xuVXcLu3s7u0flA+P2iqMJaEtEvJQdj2sKGeCtjTTnHYjSXHgcdrxJo3U70ypVCwUD3oWUTfAI8F8RrA2ktsPsB4TzJPb+WNjUK7YVTsDWiVOTiqQozkof/WHIYkDKjThWKmeY0faTbDUjHA6L/VjRSNMJnhEe4YKHFDlJlnoOTozyhD5oTRPaJSpvzcSHCg1CzwzmYZUy14q/uf1Yu1fuwkTUaypIItDfsyRDlHaABoySYnmM0MwkcxkRWSMJSba9FQyJTjLX14l7VrVuazW7i8q9Zu8jiKcwCmcgwNXUIc7aEILCDzBM7zCmzW1Xqx362MxWrDynWP4A+vzB7dxkgs=</latexit>

AC

<latexit sha1_base64="ef4YG1GzHsR737QnLYDPKDrdzaw=">AAAB9HicbVDLSsNAFL2pr1pfUZduBovgqiRF1GVpNy4r2Ae0sUymk3boZBJnJoUS+h1uXCji1o9x5984abPQ1gMDh3Pu5Z45fsyZ0o7zbRU2Nre2d4q7pb39g8Mj+/ikraJEEtoiEY9k18eKciZoSzPNaTeWFIc+px1/0sj8zpRKxSLxoGcx9UI8EixgBGsjef0Q6zHBPK3PHxsDu+xUnAXQOnFzUoYczYH91R9GJAmp0IRjpXquE2svxVIzwum81E8UjTGZ4BHtGSpwSJWXLkLP0YVRhiiIpHlCo4X6eyPFoVKz0DeTWUi16mXif14v0cGtlzIRJ5oKsjwUJBzpCGUNoCGTlGg+MwQTyUxWRMZYYqJNTyVTgrv65XXSrlbc60r1/qpcq+d1FOEMzuESXLiBGtxBE1pA4Ame4RXerKn1Yr1bH8vRgpXvnMIfWJ8/u2CSFA==</latexit>

BC <latexit sha1_base64="JTux7VYdvUl0JcUXylwWrlX+vwk=">AAAB8nicbVDLSgMxFM3UV62vqks3wSK4KjNF1GWpG5cV7AOmQ8mkmTY0kwzJHaEM/Qw3LhRx69e482/MtLPQ1gOBwzn3knNPmAhuwHW/ndLG5tb2Tnm3srd/cHhUPT7pGpVqyjpUCaX7ITFMcMk6wEGwfqIZiUPBeuH0Lvd7T0wbruQjzBIWxGQsecQpASv5g5jAhBKRtebDas2tuwvgdeIVpIYKtIfVr8FI0TRmEqggxviem0CQEQ2cCjavDFLDEkKnZMx8SyWJmQmyReQ5vrDKCEdK2ycBL9TfGxmJjZnFoZ3MI5pVLxf/8/wUotsg4zJJgUm6/ChKBQaF8/vxiGtGQcwsIVRzmxXTCdGEgm2pYkvwVk9eJ91G3buuNx6uas1WUUcZnaFzdIk8dIOa6B61UQdRpNAzekVvDjgvzrvzsRwtOcXOKfoD5/MHdB2RXw==</latexit>

B<latexit sha1_base64="Wq+VZR8qcojeDNuV7UMNk5N+H50=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclZki6rJUBJcV7APaoWTSTBuaScYkUyhDv8ONC0Xc+jHu/Bsz7Sy09UDgcM693JMTxJxp47rfztr6xubWdmGnuLu3f3BYOjpuaZkoQptEcqk6AdaUM0GbhhlOO7GiOAo4bQfj28xvT6jSTIpHM42pH+GhYCEj2FjJ70XYjAjm6d2sX++Xym7FnQOtEi8nZcjR6Je+egNJkogKQzjWuuu5sfFTrAwjnM6KvUTTGJMxHtKupQJHVPvpPPQMnVtlgEKp7BMGzdXfGymOtJ5GgZ3MQuplLxP/87qJCW/8lIk4MVSQxaEw4chIlDWABkxRYvjUEkwUs1kRGWGFibE9FW0J3vKXV0mrWvGuKtWHy3KtntdRgFM4gwvw4BpqcA8NaAKBJ3iGV3hzJs6L8+58LEbXnHznBP7A+fwBv/aSFw==</latexit>

EB

<latexit sha1_base64="ZGoA5KOmUTwSph+zoCrnubdX71o=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqswUUZdFNy4r2AfMjCWTZjqhmWRIMkIp/Qw3LhRx69e4829M21lo64HA4Zxzyb0nyjjTxnW/ndLa+sbmVnm7srO7t39QPTzqaJkrQttEcql6EdaUM0HbhhlOe5miOI047Uaj25nffaJKMykezDijYYqHgsWMYGMlP2glrB+oRD62+tWaW3fnQKvEK0gNCtj8VzCQJE+pMIRjrX3PzUw4wcowwum0EuSaZpiM8JD6lgqcUh1O5itP0ZlVBiiWyj5h0Fz9PTHBqdbjNLLJFJtEL3sz8T/Pz018HU6YyHJDBVl8FOccGYlm96MBU5QYPrYEE8XsrogkWGFibEsVW4K3fPIq6TTq3mW9cX9Ra94UdZThBE7hHDy4gibcQQvaQEDCM7zCm2OcF+fd+VhES04xcwx/4Hz+ABBikR4=</latexit>

�P
⇢

Figure 5.3. We encode the algebra B in the physical algebra A. If the
correctable subalgebra BC ⊂ B is strictly smaller than B we use a conditional
expectation EB to project B down to BC . Absorbing EB in the error map Φ
we are back to the case where the whole algebra is correctable.

interacting (large gap). We discuss the role of large N and the large gap in complementary

recovery.

Motivated by the connection between the RG and error correction, in the second part of

this work in section  5.1.3 , we study the operator algebra error correction for an arbitrary von

Neumann algebra as a mathematical framework for error correction in continuum quantum

field theory (QFT). The error map is modeled by a normal unital completely positive (CP)

map Φ : A → B; see figure  5.3 . When the whole algebra B is correctable and the error

map has no kernel the recovery map is unique and given by the Petz dual of the error

map. It isometrically embeds B in A. More generally, we consider the setup where only a

subalgebra BC of the logical operators B is correctable.  

5
 Then, the recovery map restricted

to the correctable operators is still the Petz dual of the error map. Any unital CP map

that projects B down to BC (i.e. any conditional expectation EB : B → BC) can be used to

redefine the error such that its full image is correctable. Such conditional expectations exist

if the inclusion BC ⊂ B has finite index [ 90 ].

For completeness, in the appendices, we have included a self-contained review of the

mathematical and information-theoretic background needed for the second part of this work.
5

 ↑ For instance, in holography, this situation arises when the reconstructable wedge is smaller than the
entanglement wedge.
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In chapter  4 , we review some information theory concepts such as the completely positive

(CP) maps and their duals. We also discuss the GNS Hilbert space which has the following

two advantages: 1) linear maps on the algebra (superoperators) correspond to linear oper-

ators in the GNS Hilbert space. This simplifies the study of error correction. 2) The GNS

Hilbert space can be constructed for all quantum systems (von Neumann algebra), including

the local algebra of quantum field theory (QFT) that we are ultimately interested in. We

show that insisting on the dual of a CP map to remain CP leads to two natural notions of

dual maps: 1) the dual map of Accardi and Cecchini that we call the ρ-dual map and 2)

Petz dual map. Both of these maps play an important role in error correction. The Petz

dual map can be understood as the dual with respect to an alternate inner product that has

already found several applications in QFT in the discussion of Rindler positivity [  91 ], [ 92 ].

While our discussion applies to any quantum system, to help the readers less familiar with

von Neumann algebras we mostly use the more familiar notation of finite quantum systems.

In chapter  4 , we review the Heisenberg picture of quantum error correction. We say

a subalgebra BC is correctable if there exists a recovery map R : BC → A such that

Φ(R(c)) = c for all c ∈ BC . We call the constraint Φ ◦ R = id the error correction equation.

The recovery map is non-unique because any R+X satisfies the error correction equation as

long as Φ(X (c)) = 0. In other words, the recovery is non-unique when the kernel of the error

map is non-trivial. Another source of non-uniqueness comes from the fact that the error

correction equation defines the recovery map from BC to A. Any extension of the domain

of R from BC to B can be also called a recovery map. We denote the range of the recovery

map by AC ≡ R(BC). It is a subalgebra of the physical operators. The recovery map is an

isometric embedding of the correctable algebra in A.

Conditional expectations are unital CP maps that project an algebra to a subalgebra that

includes the identity. In finite dimension, there is a one-to-one correspondence between con-

ditional expectations Eσ and unnormalized states σ = ⊕qIq1 ⊗ σq2 on the relative commutant

of AC in A. 

6
 All the density matrices that are preserved under a conditional expectation Eσ

take the separable form ρ = ⊕qpqρ
q
1 ⊗ σq2. In exact error correction, R ◦ Φ is a conditional

6
 ↑ For examples and a more detailed discussion of conditional expectations see chapter  3.2.2 .
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Figure 5.4. The subsystem error correction code in holography satisfies com-
plementary recovery.

expectation and its invariant states are the correctable states. The von Neumann entropy of

a correctable state splits into two terms

S(⊕qpqρ
q
1 ⊗ σ2

q ) = H(p) +
∑
q

pq(S(ρq1) + S(σq2)) = S(ρ1) +
∑
q

pqS(σq2) . (5.4)

Note that the second term is a property of the correctable subalgebra and not the correctable

state.

In holography, the boundary algebra is our physical algebra, and the bulk is the code

algebra. An isometry W encodes the bulk Hilbert space on the boundary. In the Heisenberg

picture, the map α(a) = W †aW maps the boundary operators to the bulk respecting the

complementary recovery property: the boundary operators supported on region A go to

those in the bulk localized in B and the operator supported on the complementary region

A′ go to those in B′; see figure  5.4 . The bulk operators localized in the region B of the bulk

are protected against the erasure of A′. The error map is Φ = α ◦ trA′ and its Petz dual is

the recovery map R : B → A. The complementary recovery implies that the composite map

R ◦ Φ is a conditional expectation. 

7
 In holography, the second term on the right-hand-side

of (  5.4 ) is argued to be similar to the contribution of the area operator to the holographic

entanglement [  16 ].
7

 ↑ A similar observation was made in [  85 ].
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5.1.2 Real-space RG as an error correction code

Conventional theory of QEC

We start this section with a quick review of the conventional approach to quantum

error correction.In the Schrödinger picture of error correction, consider an encoding isometry

W : KB → HA from the code Hilbert space KB to the physical Hilbert space HA and

a decoding co-isometry W †. The projection operator PC = WW † projects to a subspace

of HA called the code subspace because it is isomorphic to KB. Throughout this work,

we use the following notation: we denote an irreducible representation of an algebra B by

KB, and a reducible representation (such as the GNS representation) of B with HB. In

finite-dimensional matrix algebras, we have HB = KB ⊗ KB′ .

A collection of error operators Vr corrupt the physical states and a collection of recovery

operators Rr correct the errors; see figure  5.5 . In the simple case where the errors Vr are

unitary operators, we can undo the error using the correction operators Rr = V †
r . Even

when the error is not unitary the correction operator is still made out of the conjugate of

the error; see chapter  4 . For general errors Vr, the necessary and sufficient condition for the

recovery to be possible is the Knill-Laflamme condition  

8
 [ 70 ]

PCV
†
r VsPC ∝ PC . (5.6)

When this condition is satisfied the recovery map is Rr ∝ PCV
†
r .

8
 ↑ The physical intuition behind the Knill-Laflamme condition can be seen by defining a set of basis states

{|Ci〉} in the code subspace PCHA. Then,

PCV
†

r VsPC =
∑

ij
|Ci〉〈Ci|V †

r Vs|Cj〉〈Cj| =
∑

ij
〈Ci|V †

r Vs|Cj〉|Ci〉〈Cj|. (5.5)

We satisfy Knill-Laflamme condition if 〈Ci|V †
r Vs|Cj〉 = λrsδij. This condition implies that the two orthogonal

code vectors |Ci〉 and |Cj〉 remain orthogonal after the action of the error operators. This ensures that the
distinguishable states remain distinguishable despite the errors.
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For example, consider the 3-qutrit code where the code Hilbert space KB is a single qutrit

spanned by |i〉 with i = 0, 1, 2 that is mapped by an isometry W to the subspace |̄i〉 = W |i〉:

|0̄〉 = 1√
3

(|000〉 + |111〉 + |222〉)

|1̄〉 = 1√
3

(|012〉 + |120〉 + |201〉)

|2̄〉 = 1√
3

(|021〉 + |102〉 + |210〉) . (5.7)

An error that occurs on the third qutrit V3 can be corrected using the R3 ∝ PCV
†

3 because

W †R3V3W |i〉 ∝ |i〉 (5.8)

where we have used ( 5.6 ). It is convenient to absorb the encoding isometryW in the definition

of the errors and the decoding co-isometry W † in the definition of the recovery operators

Ṽr = VrW, R̃r = W †Rr . (5.9)

See figure  5.5 (a) and (b). There exists a unitary U and a factorization of the Hilbert space

HA = KA ⊗ KA′ such that

U |̄i〉 = |i〉A |χ〉A′ (5.10)

for some state |χ〉A′ . The unitary trivializes the encoding such that the information is

encoded in A and the errors act on A′. The error correction is guaranteed by the locality

property [a, Vr] = 0 for all a acting on A and error Vr acting on A′.

In the Heisenberg picture of error correction, we have the algebra of code operators B

and that of the physical operators A. An error correction code is a collection of four CP

maps (ι,R,Φ, α), where ι : B → A is an isometric embedding of B in A and α : A → B
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<latexit sha1_base64="OgmmF/uTRgUZiC88x4RBtPBzJJE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWtB/QhjLZbtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epoqxJYxGrToCaCS5Z03AjWCdRDKNAsHYwvp357SemNI/lo5kkzI9wKHnIKRorPVTxvF+uuDV3DrJKvJxUIEejX/7qDWKaRkwaKlDrrucmxs9QGU4Fm5Z6qWYJ0jEOWddSiRHTfjY/dUrOrDIgYaxsSUPm6u+JDCOtJ1FgOyM0I73szcT/vG5qwms/4zJJDZN0sShMBTExmf1NBlwxasTEEqSK21sJHaFCamw6JRuCt/zyKmld1Dy35t1fVuo3eRxFOIFTqIIHV1CHO2hAEygM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gCIq41K</latexit><latexit sha1_base64="OgmmF/uTRgUZiC88x4RBtPBzJJE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWtB/QhjLZbtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epoqxJYxGrToCaCS5Z03AjWCdRDKNAsHYwvp357SemNI/lo5kkzI9wKHnIKRorPVTxvF+uuDV3DrJKvJxUIEejX/7qDWKaRkwaKlDrrucmxs9QGU4Fm5Z6qWYJ0jEOWddSiRHTfjY/dUrOrDIgYaxsSUPm6u+JDCOtJ1FgOyM0I73szcT/vG5qwms/4zJJDZN0sShMBTExmf1NBlwxasTEEqSK21sJHaFCamw6JRuCt/zyKmld1Dy35t1fVuo3eRxFOIFTqIIHV1CHO2hAEygM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gCIq41K</latexit><latexit sha1_base64="OgmmF/uTRgUZiC88x4RBtPBzJJE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWtB/QhjLZbtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epoqxJYxGrToCaCS5Z03AjWCdRDKNAsHYwvp357SemNI/lo5kkzI9wKHnIKRorPVTxvF+uuDV3DrJKvJxUIEejX/7qDWKaRkwaKlDrrucmxs9QGU4Fm5Z6qWYJ0jEOWddSiRHTfjY/dUrOrDIgYaxsSUPm6u+JDCOtJ1FgOyM0I73szcT/vG5qwms/4zJJDZN0sShMBTExmf1NBlwxasTEEqSK21sJHaFCamw6JRuCt/zyKmld1Dy35t1fVuo3eRxFOIFTqIIHV1CHO2hAEygM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gCIq41K</latexit><latexit sha1_base64="OgmmF/uTRgUZiC88x4RBtPBzJJE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWtB/QhjLZbtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epoqxJYxGrToCaCS5Z03AjWCdRDKNAsHYwvp357SemNI/lo5kkzI9wKHnIKRorPVTxvF+uuDV3DrJKvJxUIEejX/7qDWKaRkwaKlDrrucmxs9QGU4Fm5Z6qWYJ0jEOWddSiRHTfjY/dUrOrDIgYaxsSUPm6u+JDCOtJ1FgOyM0I73szcT/vG5qwms/4zJJDZN0sShMBTExmf1NBlwxasTEEqSK21sJHaFCamw6JRuCt/zyKmld1Dy35t1fVuo3eRxFOIFTqIIHV1CHO2hAEygM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gCIq41K</latexit>

(b)
<latexit sha1_base64="nvmtgWEx7qwPdQ+Ek+1IsFecZyE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWtB/QhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSQzU475crbs2dg6wSLycVyNHol796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwms/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdK6qHluzbu/rNRv8jiKcAKnUAUPrqAOd9CAJjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AGKMI1L</latexit><latexit sha1_base64="nvmtgWEx7qwPdQ+Ek+1IsFecZyE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWtB/QhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSQzU475crbs2dg6wSLycVyNHol796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwms/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdK6qHluzbu/rNRv8jiKcAKnUAUPrqAOd9CAJjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AGKMI1L</latexit><latexit sha1_base64="nvmtgWEx7qwPdQ+Ek+1IsFecZyE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWtB/QhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSQzU475crbs2dg6wSLycVyNHol796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwms/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdK6qHluzbu/rNRv8jiKcAKnUAUPrqAOd9CAJjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AGKMI1L</latexit><latexit sha1_base64="nvmtgWEx7qwPdQ+Ek+1IsFecZyE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWtB/QhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSQzU475crbs2dg6wSLycVyNHol796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwms/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdK6qHluzbu/rNRv8jiKcAKnUAUPrqAOd9CAJjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AGKMI1L</latexit>

R
<latexit sha1_base64="Q3XUr6egFAOTzVnITKKG+KVC2QM=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVRIRdFl047KKfUAbymQ6aYdOZsLMjVBCP8ONC0Xc+jXu/BsnbRbaemDgcM69zLknTAQ36HnfTmltfWNzq7xd2dnd2z+oHh61jUo1ZS2qhNLdkBgmuGQt5ChYN9GMxKFgnXBym/udJ6YNV/IRpwkLYjKSPOKUoJV6/ZjgmBKRPcwG1ZpX9+ZwV4lfkBoUaA6qX/2homnMJFJBjOn5XoJBRjRyKtis0k8NSwidkBHrWSpJzEyQzSPP3DOrDN1IafskunP190ZGYmOmcWgn84hm2cvF/7xeitF1kHGZpMgkXXwUpcJF5eb3u0OuGUUxtYRQzW1Wl46JJhRtSxVbgr988ippX9R9r+7fX9YaN0UdZTiBUzgHH66gAXfQhBZQUPAMr/DmoPPivDsfi9GSU+wcwx84nz+KI5Fo</latexit><latexit sha1_base64="Q3XUr6egFAOTzVnITKKG+KVC2QM=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVRIRdFl047KKfUAbymQ6aYdOZsLMjVBCP8ONC0Xc+jXu/BsnbRbaemDgcM69zLknTAQ36HnfTmltfWNzq7xd2dnd2z+oHh61jUo1ZS2qhNLdkBgmuGQt5ChYN9GMxKFgnXBym/udJ6YNV/IRpwkLYjKSPOKUoJV6/ZjgmBKRPcwG1ZpX9+ZwV4lfkBoUaA6qX/2homnMJFJBjOn5XoJBRjRyKtis0k8NSwidkBHrWSpJzEyQzSPP3DOrDN1IafskunP190ZGYmOmcWgn84hm2cvF/7xeitF1kHGZpMgkXXwUpcJF5eb3u0OuGUUxtYRQzW1Wl46JJhRtSxVbgr988ippX9R9r+7fX9YaN0UdZTiBUzgHH66gAXfQhBZQUPAMr/DmoPPivDsfi9GSU+wcwx84nz+KI5Fo</latexit><latexit sha1_base64="Q3XUr6egFAOTzVnITKKG+KVC2QM=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVRIRdFl047KKfUAbymQ6aYdOZsLMjVBCP8ONC0Xc+jXu/BsnbRbaemDgcM69zLknTAQ36HnfTmltfWNzq7xd2dnd2z+oHh61jUo1ZS2qhNLdkBgmuGQt5ChYN9GMxKFgnXBym/udJ6YNV/IRpwkLYjKSPOKUoJV6/ZjgmBKRPcwG1ZpX9+ZwV4lfkBoUaA6qX/2homnMJFJBjOn5XoJBRjRyKtis0k8NSwidkBHrWSpJzEyQzSPP3DOrDN1IafskunP190ZGYmOmcWgn84hm2cvF/7xeitF1kHGZpMgkXXwUpcJF5eb3u0OuGUUxtYRQzW1Wl46JJhRtSxVbgr988ippX9R9r+7fX9YaN0UdZTiBUzgHH66gAXfQhBZQUPAMr/DmoPPivDsfi9GSU+wcwx84nz+KI5Fo</latexit><latexit sha1_base64="Q3XUr6egFAOTzVnITKKG+KVC2QM=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVRIRdFl047KKfUAbymQ6aYdOZsLMjVBCP8ONC0Xc+jXu/BsnbRbaemDgcM69zLknTAQ36HnfTmltfWNzq7xd2dnd2z+oHh61jUo1ZS2qhNLdkBgmuGQt5ChYN9GMxKFgnXBym/udJ6YNV/IRpwkLYjKSPOKUoJV6/ZjgmBKRPcwG1ZpX9+ZwV4lfkBoUaA6qX/2homnMJFJBjOn5XoJBRjRyKtis0k8NSwidkBHrWSpJzEyQzSPP3DOrDN1IafskunP190ZGYmOmcWgn84hm2cvF/7xeitF1kHGZpMgkXXwUpcJF5eb3u0OuGUUxtYRQzW1Wl46JJhRtSxVbgr988ippX9R9r+7fX9YaN0UdZTiBUzgHH66gAXfQhBZQUPAMr/DmoPPivDsfi9GSU+wcwx84nz+KI5Fo</latexit>

�<latexit sha1_base64="S2XWeZLfl/DBcqkmC18adcutedA=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKthbaUDbbTbN0P8LuRiihf8GLB0W8+oe8+W/ctDlo64OBx3szzMyLUs6M9f1vr7K2vrG5Vd2u7ezu7R/UD4+6RmWa0A5RXOlehA3lTNKOZZbTXqopFhGnj9HktvAfn6g2TMkHO01pKPBYspgRbAtp0E7YsN7wm/4caJUEJWlAifaw/jUYKZIJKi3h2Jh+4Kc2zLG2jHA6qw0yQ1NMJnhM+45KLKgJ8/mtM3TmlBGKlXYlLZqrvydyLIyZish1CmwTs+wV4n9eP7PxdZgzmWaWSrJYFGccWYWKx9GIaUosnzqCiWbuVkQSrDGxLp6aCyFYfnmVdC+agd8M7i8brZsyjiqcwCmcQwBX0II7aEMHCCTwDK/w5gnvxXv3PhatFa+cOYY/8D5/AOK5jh8=</latexit><latexit sha1_base64="S2XWeZLfl/DBcqkmC18adcutedA=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKthbaUDbbTbN0P8LuRiihf8GLB0W8+oe8+W/ctDlo64OBx3szzMyLUs6M9f1vr7K2vrG5Vd2u7ezu7R/UD4+6RmWa0A5RXOlehA3lTNKOZZbTXqopFhGnj9HktvAfn6g2TMkHO01pKPBYspgRbAtp0E7YsN7wm/4caJUEJWlAifaw/jUYKZIJKi3h2Jh+4Kc2zLG2jHA6qw0yQ1NMJnhM+45KLKgJ8/mtM3TmlBGKlXYlLZqrvydyLIyZish1CmwTs+wV4n9eP7PxdZgzmWaWSrJYFGccWYWKx9GIaUosnzqCiWbuVkQSrDGxLp6aCyFYfnmVdC+agd8M7i8brZsyjiqcwCmcQwBX0II7aEMHCCTwDK/w5gnvxXv3PhatFa+cOYY/8D5/AOK5jh8=</latexit><latexit sha1_base64="S2XWeZLfl/DBcqkmC18adcutedA=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKthbaUDbbTbN0P8LuRiihf8GLB0W8+oe8+W/ctDlo64OBx3szzMyLUs6M9f1vr7K2vrG5Vd2u7ezu7R/UD4+6RmWa0A5RXOlehA3lTNKOZZbTXqopFhGnj9HktvAfn6g2TMkHO01pKPBYspgRbAtp0E7YsN7wm/4caJUEJWlAifaw/jUYKZIJKi3h2Jh+4Kc2zLG2jHA6qw0yQ1NMJnhM+45KLKgJ8/mtM3TmlBGKlXYlLZqrvydyLIyZish1CmwTs+wV4n9eP7PxdZgzmWaWSrJYFGccWYWKx9GIaUosnzqCiWbuVkQSrDGxLp6aCyFYfnmVdC+agd8M7i8brZsyjiqcwCmcQwBX0II7aEMHCCTwDK/w5gnvxXv3PhatFa+cOYY/8D5/AOK5jh8=</latexit><latexit sha1_base64="S2XWeZLfl/DBcqkmC18adcutedA=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKthbaUDbbTbN0P8LuRiihf8GLB0W8+oe8+W/ctDlo64OBx3szzMyLUs6M9f1vr7K2vrG5Vd2u7ezu7R/UD4+6RmWa0A5RXOlehA3lTNKOZZbTXqopFhGnj9HktvAfn6g2TMkHO01pKPBYspgRbAtp0E7YsN7wm/4caJUEJWlAifaw/jUYKZIJKi3h2Jh+4Kc2zLG2jHA6qw0yQ1NMJnhM+45KLKgJ8/mtM3TmlBGKlXYlLZqrvydyLIyZish1CmwTs+wV4n9eP7PxdZgzmWaWSrJYFGccWYWKx9GIaUosnzqCiWbuVkQSrDGxLp6aCyFYfnmVdC+agd8M7i8brZsyjiqcwCmcQwBX0II7aEMHCCTwDK/w5gnvxXv3PhatFa+cOYY/8D5/AOK5jh8=</latexit>

A
<latexit sha1_base64="9hS5m6ejVbZ0gZs8/GGKR8wBMkk=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVRIRdFl147KCfUAbymQ6aYdOZsLMjVBCP8ONC0Xc+jXu/BsnbRbaemDgcM69zLknTAQ36HnfTmltfWNzq7xd2dnd2z+oHh61jUo1ZS2qhNLdkBgmuGQt5ChYN9GMxKFgnXByl/udJ6YNV/IRpwkLYjKSPOKUoJV6/ZjgmBKR3cwG1ZpX9+ZwV4lfkBoUaA6qX/2homnMJFJBjOn5XoJBRjRyKtis0k8NSwidkBHrWSpJzEyQzSPP3DOrDN1IafskunP190ZGYmOmcWgn84hm2cvF/7xeitF1kHGZpMgkXXwUpcJF5eb3u0OuGUUxtYRQzW1Wl46JJhRtSxVbgr988ippX9R9r+4/XNYat0UdZTiBUzgHH66gAffQhBZQUPAMr/DmoPPivDsfi9GSU+wcwx84nz9wTpFX</latexit><latexit sha1_base64="9hS5m6ejVbZ0gZs8/GGKR8wBMkk=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVRIRdFl147KCfUAbymQ6aYdOZsLMjVBCP8ONC0Xc+jXu/BsnbRbaemDgcM69zLknTAQ36HnfTmltfWNzq7xd2dnd2z+oHh61jUo1ZS2qhNLdkBgmuGQt5ChYN9GMxKFgnXByl/udJ6YNV/IRpwkLYjKSPOKUoJV6/ZjgmBKR3cwG1ZpX9+ZwV4lfkBoUaA6qX/2homnMJFJBjOn5XoJBRjRyKtis0k8NSwidkBHrWSpJzEyQzSPP3DOrDN1IafskunP190ZGYmOmcWgn84hm2cvF/7xeitF1kHGZpMgkXXwUpcJF5eb3u0OuGUUxtYRQzW1Wl46JJhRtSxVbgr988ippX9R9r+4/XNYat0UdZTiBUzgHH66gAffQhBZQUPAMr/DmoPPivDsfi9GSU+wcwx84nz9wTpFX</latexit><latexit sha1_base64="9hS5m6ejVbZ0gZs8/GGKR8wBMkk=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVRIRdFl147KCfUAbymQ6aYdOZsLMjVBCP8ONC0Xc+jXu/BsnbRbaemDgcM69zLknTAQ36HnfTmltfWNzq7xd2dnd2z+oHh61jUo1ZS2qhNLdkBgmuGQt5ChYN9GMxKFgnXByl/udJ6YNV/IRpwkLYjKSPOKUoJV6/ZjgmBKR3cwG1ZpX9+ZwV4lfkBoUaA6qX/2homnMJFJBjOn5XoJBRjRyKtis0k8NSwidkBHrWSpJzEyQzSPP3DOrDN1IafskunP190ZGYmOmcWgn84hm2cvF/7xeitF1kHGZpMgkXXwUpcJF5eb3u0OuGUUxtYRQzW1Wl46JJhRtSxVbgr988ippX9R9r+4/XNYat0UdZTiBUzgHH66gAffQhBZQUPAMr/DmoPPivDsfi9GSU+wcwx84nz9wTpFX</latexit><latexit sha1_base64="9hS5m6ejVbZ0gZs8/GGKR8wBMkk=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVRIRdFl147KCfUAbymQ6aYdOZsLMjVBCP8ONC0Xc+jXu/BsnbRbaemDgcM69zLknTAQ36HnfTmltfWNzq7xd2dnd2z+oHh61jUo1ZS2qhNLdkBgmuGQt5ChYN9GMxKFgnXByl/udJ6YNV/IRpwkLYjKSPOKUoJV6/ZjgmBKR3cwG1ZpX9+ZwV4lfkBoUaA6qX/2homnMJFJBjOn5XoJBRjRyKtis0k8NSwidkBHrWSpJzEyQzSPP3DOrDN1IafskunP190ZGYmOmcWgn84hm2cvF/7xeitF1kHGZpMgkXXwUpcJF5eb3u0OuGUUxtYRQzW1Wl46JJhRtSxVbgr988ippX9R9r+4/XNYat0UdZTiBUzgHH66gAffQhBZQUPAMr/DmoPPivDsfi9GSU+wcwx84nz9wTpFX</latexit>

A
<latexit sha1_base64="9hS5m6ejVbZ0gZs8/GGKR8wBMkk=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVRIRdFl147KCfUAbymQ6aYdOZsLMjVBCP8ONC0Xc+jXu/BsnbRbaemDgcM69zLknTAQ36HnfTmltfWNzq7xd2dnd2z+oHh61jUo1ZS2qhNLdkBgmuGQt5ChYN9GMxKFgnXByl/udJ6YNV/IRpwkLYjKSPOKUoJV6/ZjgmBKR3cwG1ZpX9+ZwV4lfkBoUaA6qX/2homnMJFJBjOn5XoJBRjRyKtis0k8NSwidkBHrWSpJzEyQzSPP3DOrDN1IafskunP190ZGYmOmcWgn84hm2cvF/7xeitF1kHGZpMgkXXwUpcJF5eb3u0OuGUUxtYRQzW1Wl46JJhRtSxVbgr988ippX9R9r+4/XNYat0UdZTiBUzgHH66gAffQhBZQUPAMr/DmoPPivDsfi9GSU+wcwx84nz9wTpFX</latexit><latexit sha1_base64="9hS5m6ejVbZ0gZs8/GGKR8wBMkk=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVRIRdFl147KCfUAbymQ6aYdOZsLMjVBCP8ONC0Xc+jXu/BsnbRbaemDgcM69zLknTAQ36HnfTmltfWNzq7xd2dnd2z+oHh61jUo1ZS2qhNLdkBgmuGQt5ChYN9GMxKFgnXByl/udJ6YNV/IRpwkLYjKSPOKUoJV6/ZjgmBKR3cwG1ZpX9+ZwV4lfkBoUaA6qX/2homnMJFJBjOn5XoJBRjRyKtis0k8NSwidkBHrWSpJzEyQzSPP3DOrDN1IafskunP190ZGYmOmcWgn84hm2cvF/7xeitF1kHGZpMgkXXwUpcJF5eb3u0OuGUUxtYRQzW1Wl46JJhRtSxVbgr988ippX9R9r+4/XNYat0UdZTiBUzgHH66gAffQhBZQUPAMr/DmoPPivDsfi9GSU+wcwx84nz9wTpFX</latexit><latexit sha1_base64="9hS5m6ejVbZ0gZs8/GGKR8wBMkk=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVRIRdFl147KCfUAbymQ6aYdOZsLMjVBCP8ONC0Xc+jXu/BsnbRbaemDgcM69zLknTAQ36HnfTmltfWNzq7xd2dnd2z+oHh61jUo1ZS2qhNLdkBgmuGQt5ChYN9GMxKFgnXByl/udJ6YNV/IRpwkLYjKSPOKUoJV6/ZjgmBKR3cwG1ZpX9+ZwV4lfkBoUaA6qX/2homnMJFJBjOn5XoJBRjRyKtis0k8NSwidkBHrWSpJzEyQzSPP3DOrDN1IafskunP190ZGYmOmcWgn84hm2cvF/7xeitF1kHGZpMgkXXwUpcJF5eb3u0OuGUUxtYRQzW1Wl46JJhRtSxVbgr988ippX9R9r+4/XNYat0UdZTiBUzgHH66gAffQhBZQUPAMr/DmoPPivDsfi9GSU+wcwx84nz9wTpFX</latexit><latexit sha1_base64="9hS5m6ejVbZ0gZs8/GGKR8wBMkk=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVRIRdFl147KCfUAbymQ6aYdOZsLMjVBCP8ONC0Xc+jXu/BsnbRbaemDgcM69zLknTAQ36HnfTmltfWNzq7xd2dnd2z+oHh61jUo1ZS2qhNLdkBgmuGQt5ChYN9GMxKFgnXByl/udJ6YNV/IRpwkLYjKSPOKUoJV6/ZjgmBKR3cwG1ZpX9+ZwV4lfkBoUaA6qX/2homnMJFJBjOn5XoJBRjRyKtis0k8NSwidkBHrWSpJzEyQzSPP3DOrDN1IafskunP190ZGYmOmcWgn84hm2cvF/7xeitF1kHGZpMgkXXwUpcJF5eb3u0OuGUUxtYRQzW1Wl46JJhRtSxVbgr988ippX9R9r+4/XNYat0UdZTiBUzgHH66gAffQhBZQUPAMr/DmoPPivDsfi9GSU+wcwx84nz9wTpFX</latexit>

B
<latexit sha1_base64="7BVGhyqZx+UqjNoXq5pgrgMrQFc=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVRIRdFnqxmUF+4A2lMl00g6dzISZG6GEfoYbF4q49Wvc+TdO2iy09cDA4Zx7mXNPmAhu0PO+ndLG5tb2Tnm3srd/cHhUPT7pGJVqytpUCaV7ITFMcMnayFGwXqIZiUPBuuH0Lve7T0wbruQjzhIWxGQsecQpQSv1BzHBCSUia86H1ZpX9xZw14lfkBoUaA2rX4ORomnMJFJBjOn7XoJBRjRyKti8MkgNSwidkjHrWypJzEyQLSLP3QurjNxIafskugv190ZGYmNmcWgn84hm1cvF/7x+itFtkHGZpMgkXX4UpcJF5eb3uyOuGUUxs4RQzW1Wl06IJhRtSxVbgr968jrpXNV9r+4/XNcazaKOMpzBOVyCDzfQgHtoQRsoKHiGV3hz0Hlx3p2P5WjJKXZO4Q+czx9x05FY</latexit><latexit sha1_base64="7BVGhyqZx+UqjNoXq5pgrgMrQFc=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVRIRdFnqxmUF+4A2lMl00g6dzISZG6GEfoYbF4q49Wvc+TdO2iy09cDA4Zx7mXNPmAhu0PO+ndLG5tb2Tnm3srd/cHhUPT7pGJVqytpUCaV7ITFMcMnayFGwXqIZiUPBuuH0Lve7T0wbruQjzhIWxGQsecQpQSv1BzHBCSUia86H1ZpX9xZw14lfkBoUaA2rX4ORomnMJFJBjOn7XoJBRjRyKti8MkgNSwidkjHrWypJzEyQLSLP3QurjNxIafskugv190ZGYmNmcWgn84hm1cvF/7x+itFtkHGZpMgkXX4UpcJF5eb3uyOuGUUxs4RQzW1Wl06IJhRtSxVbgr968jrpXNV9r+4/XNcazaKOMpzBOVyCDzfQgHtoQRsoKHiGV3hz0Hlx3p2P5WjJKXZO4Q+czx9x05FY</latexit><latexit sha1_base64="7BVGhyqZx+UqjNoXq5pgrgMrQFc=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVRIRdFnqxmUF+4A2lMl00g6dzISZG6GEfoYbF4q49Wvc+TdO2iy09cDA4Zx7mXNPmAhu0PO+ndLG5tb2Tnm3srd/cHhUPT7pGJVqytpUCaV7ITFMcMnayFGwXqIZiUPBuuH0Lve7T0wbruQjzhIWxGQsecQpQSv1BzHBCSUia86H1ZpX9xZw14lfkBoUaA2rX4ORomnMJFJBjOn7XoJBRjRyKti8MkgNSwidkjHrWypJzEyQLSLP3QurjNxIafskugv190ZGYmNmcWgn84hm1cvF/7x+itFtkHGZpMgkXX4UpcJF5eb3uyOuGUUxs4RQzW1Wl06IJhRtSxVbgr968jrpXNV9r+4/XNcazaKOMpzBOVyCDzfQgHtoQRsoKHiGV3hz0Hlx3p2P5WjJKXZO4Q+czx9x05FY</latexit><latexit sha1_base64="7BVGhyqZx+UqjNoXq5pgrgMrQFc=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVRIRdFnqxmUF+4A2lMl00g6dzISZG6GEfoYbF4q49Wvc+TdO2iy09cDA4Zx7mXNPmAhu0PO+ndLG5tb2Tnm3srd/cHhUPT7pGJVqytpUCaV7ITFMcMnayFGwXqIZiUPBuuH0Lve7T0wbruQjzhIWxGQsecQpQSv1BzHBCSUia86H1ZpX9xZw14lfkBoUaA2rX4ORomnMJFJBjOn7XoJBRjRyKti8MkgNSwidkjHrWypJzEyQLSLP3QurjNxIafskugv190ZGYmNmcWgn84hm1cvF/7x+itFtkHGZpMgkXX4UpcJF5eb3uyOuGUUxs4RQzW1Wl06IJhRtSxVbgr968jrpXNV9r+4/XNcazaKOMpzBOVyCDzfQgHtoQRsoKHiGV3hz0Hlx3p2P5WjJKXZO4Q+czx9x05FY</latexit>

R
<latexit sha1_base64="Q3XUr6egFAOTzVnITKKG+KVC2QM=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVRIRdFl047KKfUAbymQ6aYdOZsLMjVBCP8ONC0Xc+jXu/BsnbRbaemDgcM69zLknTAQ36HnfTmltfWNzq7xd2dnd2z+oHh61jUo1ZS2qhNLdkBgmuGQt5ChYN9GMxKFgnXBym/udJ6YNV/IRpwkLYjKSPOKUoJV6/ZjgmBKRPcwG1ZpX9+ZwV4lfkBoUaA6qX/2homnMJFJBjOn5XoJBRjRyKtis0k8NSwidkBHrWSpJzEyQzSPP3DOrDN1IafskunP190ZGYmOmcWgn84hm2cvF/7xeitF1kHGZpMgkXXwUpcJF5eb3u0OuGUUxtYRQzW1Wl46JJhRtSxVbgr988ippX9R9r+7fX9YaN0UdZTiBUzgHH66gAXfQhBZQUPAMr/DmoPPivDsfi9GSU+wcwx84nz+KI5Fo</latexit><latexit sha1_base64="Q3XUr6egFAOTzVnITKKG+KVC2QM=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVRIRdFl047KKfUAbymQ6aYdOZsLMjVBCP8ONC0Xc+jXu/BsnbRbaemDgcM69zLknTAQ36HnfTmltfWNzq7xd2dnd2z+oHh61jUo1ZS2qhNLdkBgmuGQt5ChYN9GMxKFgnXBym/udJ6YNV/IRpwkLYjKSPOKUoJV6/ZjgmBKRPcwG1ZpX9+ZwV4lfkBoUaA6qX/2homnMJFJBjOn5XoJBRjRyKtis0k8NSwidkBHrWSpJzEyQzSPP3DOrDN1IafskunP190ZGYmOmcWgn84hm2cvF/7xeitF1kHGZpMgkXXwUpcJF5eb3u0OuGUUxtYRQzW1Wl46JJhRtSxVbgr988ippX9R9r+7fX9YaN0UdZTiBUzgHH66gAXfQhBZQUPAMr/DmoPPivDsfi9GSU+wcwx84nz+KI5Fo</latexit><latexit sha1_base64="Q3XUr6egFAOTzVnITKKG+KVC2QM=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVRIRdFl047KKfUAbymQ6aYdOZsLMjVBCP8ONC0Xc+jXu/BsnbRbaemDgcM69zLknTAQ36HnfTmltfWNzq7xd2dnd2z+oHh61jUo1ZS2qhNLdkBgmuGQt5ChYN9GMxKFgnXBym/udJ6YNV/IRpwkLYjKSPOKUoJV6/ZjgmBKRPcwG1ZpX9+ZwV4lfkBoUaA6qX/2homnMJFJBjOn5XoJBRjRyKtis0k8NSwidkBHrWSpJzEyQzSPP3DOrDN1IafskunP190ZGYmOmcWgn84hm2cvF/7xeitF1kHGZpMgkXXwUpcJF5eb3u0OuGUUxtYRQzW1Wl46JJhRtSxVbgr988ippX9R9r+7fX9YaN0UdZTiBUzgHH66gAXfQhBZQUPAMr/DmoPPivDsfi9GSU+wcwx84nz+KI5Fo</latexit><latexit sha1_base64="Q3XUr6egFAOTzVnITKKG+KVC2QM=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVRIRdFl047KKfUAbymQ6aYdOZsLMjVBCP8ONC0Xc+jXu/BsnbRbaemDgcM69zLknTAQ36HnfTmltfWNzq7xd2dnd2z+oHh61jUo1ZS2qhNLdkBgmuGQt5ChYN9GMxKFgnXBym/udJ6YNV/IRpwkLYjKSPOKUoJV6/ZjgmBKRPcwG1ZpX9+ZwV4lfkBoUaA6qX/2homnMJFJBjOn5XoJBRjRyKtis0k8NSwidkBHrWSpJzEyQzSPP3DOrDN1IafskunP190ZGYmOmcWgn84hm2cvF/7xeitF1kHGZpMgkXXwUpcJF5eb3u0OuGUUxtYRQzW1Wl46JJhRtSxVbgr988ippX9R9r+7fX9YaN0UdZTiBUzgHH66gAXfQhBZQUPAMr/DmoPPivDsfi9GSU+wcwx84nz+KI5Fo</latexit>

A
<latexit sha1_base64="9hS5m6ejVbZ0gZs8/GGKR8wBMkk=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVRIRdFl147KCfUAbymQ6aYdOZsLMjVBCP8ONC0Xc+jXu/BsnbRbaemDgcM69zLknTAQ36HnfTmltfWNzq7xd2dnd2z+oHh61jUo1ZS2qhNLdkBgmuGQt5ChYN9GMxKFgnXByl/udJ6YNV/IRpwkLYjKSPOKUoJV6/ZjgmBKR3cwG1ZpX9+ZwV4lfkBoUaA6qX/2homnMJFJBjOn5XoJBRjRyKtis0k8NSwidkBHrWSpJzEyQzSPP3DOrDN1IafskunP190ZGYmOmcWgn84hm2cvF/7xeitF1kHGZpMgkXXwUpcJF5eb3u0OuGUUxtYRQzW1Wl46JJhRtSxVbgr988ippX9R9r+4/XNYat0UdZTiBUzgHH66gAffQhBZQUPAMr/DmoPPivDsfi9GSU+wcwx84nz9wTpFX</latexit><latexit sha1_base64="9hS5m6ejVbZ0gZs8/GGKR8wBMkk=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVRIRdFl147KCfUAbymQ6aYdOZsLMjVBCP8ONC0Xc+jXu/BsnbRbaemDgcM69zLknTAQ36HnfTmltfWNzq7xd2dnd2z+oHh61jUo1ZS2qhNLdkBgmuGQt5ChYN9GMxKFgnXByl/udJ6YNV/IRpwkLYjKSPOKUoJV6/ZjgmBKR3cwG1ZpX9+ZwV4lfkBoUaA6qX/2homnMJFJBjOn5XoJBRjRyKtis0k8NSwidkBHrWSpJzEyQzSPP3DOrDN1IafskunP190ZGYmOmcWgn84hm2cvF/7xeitF1kHGZpMgkXXwUpcJF5eb3u0OuGUUxtYRQzW1Wl46JJhRtSxVbgr988ippX9R9r+4/XNYat0UdZTiBUzgHH66gAffQhBZQUPAMr/DmoPPivDsfi9GSU+wcwx84nz9wTpFX</latexit><latexit sha1_base64="9hS5m6ejVbZ0gZs8/GGKR8wBMkk=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVRIRdFl147KCfUAbymQ6aYdOZsLMjVBCP8ONC0Xc+jXu/BsnbRbaemDgcM69zLknTAQ36HnfTmltfWNzq7xd2dnd2z+oHh61jUo1ZS2qhNLdkBgmuGQt5ChYN9GMxKFgnXByl/udJ6YNV/IRpwkLYjKSPOKUoJV6/ZjgmBKR3cwG1ZpX9+ZwV4lfkBoUaA6qX/2homnMJFJBjOn5XoJBRjRyKtis0k8NSwidkBHrWSpJzEyQzSPP3DOrDN1IafskunP190ZGYmOmcWgn84hm2cvF/7xeitF1kHGZpMgkXXwUpcJF5eb3u0OuGUUxtYRQzW1Wl46JJhRtSxVbgr988ippX9R9r+4/XNYat0UdZTiBUzgHH66gAffQhBZQUPAMr/DmoPPivDsfi9GSU+wcwx84nz9wTpFX</latexit><latexit sha1_base64="9hS5m6ejVbZ0gZs8/GGKR8wBMkk=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVRIRdFl147KCfUAbymQ6aYdOZsLMjVBCP8ONC0Xc+jXu/BsnbRbaemDgcM69zLknTAQ36HnfTmltfWNzq7xd2dnd2z+oHh61jUo1ZS2qhNLdkBgmuGQt5ChYN9GMxKFgnXByl/udJ6YNV/IRpwkLYjKSPOKUoJV6/ZjgmBKR3cwG1ZpX9+ZwV4lfkBoUaA6qX/2homnMJFJBjOn5XoJBRjRyKtis0k8NSwidkBHrWSpJzEyQzSPP3DOrDN1IafskunP190ZGYmOmcWgn84hm2cvF/7xeitF1kHGZpMgkXXwUpcJF5eb3u0OuGUUxtYRQzW1Wl46JJhRtSxVbgr988ippX9R9r+4/XNYat0UdZTiBUzgHH66gAffQhBZQUPAMr/DmoPPivDsfi9GSU+wcwx84nz9wTpFX</latexit>

B
<latexit sha1_base64="7BVGhyqZx+UqjNoXq5pgrgMrQFc=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVRIRdFnqxmUF+4A2lMl00g6dzISZG6GEfoYbF4q49Wvc+TdO2iy09cDA4Zx7mXNPmAhu0PO+ndLG5tb2Tnm3srd/cHhUPT7pGJVqytpUCaV7ITFMcMnayFGwXqIZiUPBuuH0Lve7T0wbruQjzhIWxGQsecQpQSv1BzHBCSUia86H1ZpX9xZw14lfkBoUaA2rX4ORomnMJFJBjOn7XoJBRjRyKti8MkgNSwidkjHrWypJzEyQLSLP3QurjNxIafskugv190ZGYmNmcWgn84hm1cvF/7x+itFtkHGZpMgkXX4UpcJF5eb3uyOuGUUxs4RQzW1Wl06IJhRtSxVbgr968jrpXNV9r+4/XNcazaKOMpzBOVyCDzfQgHtoQRsoKHiGV3hz0Hlx3p2P5WjJKXZO4Q+czx9x05FY</latexit><latexit sha1_base64="7BVGhyqZx+UqjNoXq5pgrgMrQFc=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVRIRdFnqxmUF+4A2lMl00g6dzISZG6GEfoYbF4q49Wvc+TdO2iy09cDA4Zx7mXNPmAhu0PO+ndLG5tb2Tnm3srd/cHhUPT7pGJVqytpUCaV7ITFMcMnayFGwXqIZiUPBuuH0Lve7T0wbruQjzhIWxGQsecQpQSv1BzHBCSUia86H1ZpX9xZw14lfkBoUaA2rX4ORomnMJFJBjOn7XoJBRjRyKti8MkgNSwidkjHrWypJzEyQLSLP3QurjNxIafskugv190ZGYmNmcWgn84hm1cvF/7x+itFtkHGZpMgkXX4UpcJF5eb3uyOuGUUxs4RQzW1Wl06IJhRtSxVbgr968jrpXNV9r+4/XNcazaKOMpzBOVyCDzfQgHtoQRsoKHiGV3hz0Hlx3p2P5WjJKXZO4Q+czx9x05FY</latexit><latexit sha1_base64="7BVGhyqZx+UqjNoXq5pgrgMrQFc=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVRIRdFnqxmUF+4A2lMl00g6dzISZG6GEfoYbF4q49Wvc+TdO2iy09cDA4Zx7mXNPmAhu0PO+ndLG5tb2Tnm3srd/cHhUPT7pGJVqytpUCaV7ITFMcMnayFGwXqIZiUPBuuH0Lve7T0wbruQjzhIWxGQsecQpQSv1BzHBCSUia86H1ZpX9xZw14lfkBoUaA2rX4ORomnMJFJBjOn7XoJBRjRyKti8MkgNSwidkjHrWypJzEyQLSLP3QurjNxIafskugv190ZGYmNmcWgn84hm1cvF/7x+itFtkHGZpMgkXX4UpcJF5eb3uyOuGUUxs4RQzW1Wl06IJhRtSxVbgr968jrpXNV9r+4/XNcazaKOMpzBOVyCDzfQgHtoQRsoKHiGV3hz0Hlx3p2P5WjJKXZO4Q+czx9x05FY</latexit><latexit sha1_base64="7BVGhyqZx+UqjNoXq5pgrgMrQFc=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVRIRdFnqxmUF+4A2lMl00g6dzISZG6GEfoYbF4q49Wvc+TdO2iy09cDA4Zx7mXNPmAhu0PO+ndLG5tb2Tnm3srd/cHhUPT7pGJVqytpUCaV7ITFMcMnayFGwXqIZiUPBuuH0Lve7T0wbruQjzhIWxGQsecQpQSv1BzHBCSUia86H1ZpX9xZw14lfkBoUaA2rX4ORomnMJFJBjOn7XoJBRjRyKti8MkgNSwidkjHrWypJzEyQLSLP3QurjNxIafskugv190ZGYmNmcWgn84hm1cvF/7x+itFtkHGZpMgkXX4UpcJF5eb3uyOuGUUxs4RQzW1Wl06IJhRtSxVbgr968jrpXNV9r+4/XNcazaKOMpzBOVyCDzfQgHtoQRsoKHiGV3hz0Hlx3p2P5WjJKXZO4Q+czx9x05FY</latexit>

◆
<latexit sha1_base64="2Prb/Ogcomlgqg4NVTNZl9IMFPs=">AAAB+HicbVDLSgMxFM34rPXRUZdugkVwVWZE0GXRjcsK9gGdodxJM21oJhmSjFCHfokbF4q49VPc+Tdm2llo64HA4Zx7uScnSjnTxvO+nbX1jc2t7cpOdXdv/6DmHh51tMwUoW0iuVS9CDTlTNC2YYbTXqooJBGn3WhyW/jdR6o0k+LBTFMaJjASLGYEjJUGbi1IwIwJ8Dxg0sBs4Na9hjcHXiV+SeqoRGvgfgVDSbKECkM4aN33vdSEOSjDCKezapBpmgKZwIj2LRWQUB3m8+AzfGaVIY6lsk8YPFd/b+SQaD1NIjtZxNTLXiH+5/UzE1+HORNpZqggi0NxxrGRuGgBD5mixPCpJUAUs1kxGYMCYmxXVVuCv/zlVdK5aPhew7+/rDdvyjoq6ASdonPkoyvURHeohdqIoAw9o1f05jw5L86787EYXXPKnWP0B87nD0PUk3g=</latexit><latexit sha1_base64="2Prb/Ogcomlgqg4NVTNZl9IMFPs=">AAAB+HicbVDLSgMxFM34rPXRUZdugkVwVWZE0GXRjcsK9gGdodxJM21oJhmSjFCHfokbF4q49VPc+Tdm2llo64HA4Zx7uScnSjnTxvO+nbX1jc2t7cpOdXdv/6DmHh51tMwUoW0iuVS9CDTlTNC2YYbTXqooJBGn3WhyW/jdR6o0k+LBTFMaJjASLGYEjJUGbi1IwIwJ8Dxg0sBs4Na9hjcHXiV+SeqoRGvgfgVDSbKECkM4aN33vdSEOSjDCKezapBpmgKZwIj2LRWQUB3m8+AzfGaVIY6lsk8YPFd/b+SQaD1NIjtZxNTLXiH+5/UzE1+HORNpZqggi0NxxrGRuGgBD5mixPCpJUAUs1kxGYMCYmxXVVuCv/zlVdK5aPhew7+/rDdvyjoq6ASdonPkoyvURHeohdqIoAw9o1f05jw5L86787EYXXPKnWP0B87nD0PUk3g=</latexit><latexit sha1_base64="2Prb/Ogcomlgqg4NVTNZl9IMFPs=">AAAB+HicbVDLSgMxFM34rPXRUZdugkVwVWZE0GXRjcsK9gGdodxJM21oJhmSjFCHfokbF4q49VPc+Tdm2llo64HA4Zx7uScnSjnTxvO+nbX1jc2t7cpOdXdv/6DmHh51tMwUoW0iuVS9CDTlTNC2YYbTXqooJBGn3WhyW/jdR6o0k+LBTFMaJjASLGYEjJUGbi1IwIwJ8Dxg0sBs4Na9hjcHXiV+SeqoRGvgfgVDSbKECkM4aN33vdSEOSjDCKezapBpmgKZwIj2LRWQUB3m8+AzfGaVIY6lsk8YPFd/b+SQaD1NIjtZxNTLXiH+5/UzE1+HORNpZqggi0NxxrGRuGgBD5mixPCpJUAUs1kxGYMCYmxXVVuCv/zlVdK5aPhew7+/rDdvyjoq6ASdonPkoyvURHeohdqIoAw9o1f05jw5L86787EYXXPKnWP0B87nD0PUk3g=</latexit><latexit sha1_base64="2Prb/Ogcomlgqg4NVTNZl9IMFPs=">AAAB+HicbVDLSgMxFM34rPXRUZdugkVwVWZE0GXRjcsK9gGdodxJM21oJhmSjFCHfokbF4q49VPc+Tdm2llo64HA4Zx7uScnSjnTxvO+nbX1jc2t7cpOdXdv/6DmHh51tMwUoW0iuVS9CDTlTNC2YYbTXqooJBGn3WhyW/jdR6o0k+LBTFMaJjASLGYEjJUGbi1IwIwJ8Dxg0sBs4Na9hjcHXiV+SeqoRGvgfgVDSbKECkM4aN33vdSEOSjDCKezapBpmgKZwIj2LRWQUB3m8+AzfGaVIY6lsk8YPFd/b+SQaD1NIjtZxNTLXiH+5/UzE1+HORNpZqggi0NxxrGRuGgBD5mixPCpJUAUs1kxGYMCYmxXVVuCv/zlVdK5aPhew7+/rDdvyjoq6ASdonPkoyvURHeohdqIoAw9o1f05jw5L86787EYXXPKnWP0B87nD0PUk3g=</latexit>

�<latexit sha1_base64="S2XWeZLfl/DBcqkmC18adcutedA=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKthbaUDbbTbN0P8LuRiihf8GLB0W8+oe8+W/ctDlo64OBx3szzMyLUs6M9f1vr7K2vrG5Vd2u7ezu7R/UD4+6RmWa0A5RXOlehA3lTNKOZZbTXqopFhGnj9HktvAfn6g2TMkHO01pKPBYspgRbAtp0E7YsN7wm/4caJUEJWlAifaw/jUYKZIJKi3h2Jh+4Kc2zLG2jHA6qw0yQ1NMJnhM+45KLKgJ8/mtM3TmlBGKlXYlLZqrvydyLIyZish1CmwTs+wV4n9eP7PxdZgzmWaWSrJYFGccWYWKx9GIaUosnzqCiWbuVkQSrDGxLp6aCyFYfnmVdC+agd8M7i8brZsyjiqcwCmcQwBX0II7aEMHCCTwDK/w5gnvxXv3PhatFa+cOYY/8D5/AOK5jh8=</latexit><latexit sha1_base64="S2XWeZLfl/DBcqkmC18adcutedA=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKthbaUDbbTbN0P8LuRiihf8GLB0W8+oe8+W/ctDlo64OBx3szzMyLUs6M9f1vr7K2vrG5Vd2u7ezu7R/UD4+6RmWa0A5RXOlehA3lTNKOZZbTXqopFhGnj9HktvAfn6g2TMkHO01pKPBYspgRbAtp0E7YsN7wm/4caJUEJWlAifaw/jUYKZIJKi3h2Jh+4Kc2zLG2jHA6qw0yQ1NMJnhM+45KLKgJ8/mtM3TmlBGKlXYlLZqrvydyLIyZish1CmwTs+wV4n9eP7PxdZgzmWaWSrJYFGccWYWKx9GIaUosnzqCiWbuVkQSrDGxLp6aCyFYfnmVdC+agd8M7i8brZsyjiqcwCmcQwBX0II7aEMHCCTwDK/w5gnvxXv3PhatFa+cOYY/8D5/AOK5jh8=</latexit><latexit sha1_base64="S2XWeZLfl/DBcqkmC18adcutedA=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKthbaUDbbTbN0P8LuRiihf8GLB0W8+oe8+W/ctDlo64OBx3szzMyLUs6M9f1vr7K2vrG5Vd2u7ezu7R/UD4+6RmWa0A5RXOlehA3lTNKOZZbTXqopFhGnj9HktvAfn6g2TMkHO01pKPBYspgRbAtp0E7YsN7wm/4caJUEJWlAifaw/jUYKZIJKi3h2Jh+4Kc2zLG2jHA6qw0yQ1NMJnhM+45KLKgJ8/mtM3TmlBGKlXYlLZqrvydyLIyZish1CmwTs+wV4n9eP7PxdZgzmWaWSrJYFGccWYWKx9GIaUosnzqCiWbuVkQSrDGxLp6aCyFYfnmVdC+agd8M7i8brZsyjiqcwCmcQwBX0II7aEMHCCTwDK/w5gnvxXv3PhatFa+cOYY/8D5/AOK5jh8=</latexit><latexit sha1_base64="S2XWeZLfl/DBcqkmC18adcutedA=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKthbaUDbbTbN0P8LuRiihf8GLB0W8+oe8+W/ctDlo64OBx3szzMyLUs6M9f1vr7K2vrG5Vd2u7ezu7R/UD4+6RmWa0A5RXOlehA3lTNKOZZbTXqopFhGnj9HktvAfn6g2TMkHO01pKPBYspgRbAtp0E7YsN7wm/4caJUEJWlAifaw/jUYKZIJKi3h2Jh+4Kc2zLG2jHA6qw0yQ1NMJnhM+45KLKgJ8/mtM3TmlBGKlXYlLZqrvydyLIyZish1CmwTs+wV4n9eP7PxdZgzmWaWSrJYFGccWYWKx9GIaUosnzqCiWbuVkQSrDGxLp6aCyFYfnmVdC+agd8M7i8brZsyjiqcwCmcQwBX0II7aEMHCCTwDK/w5gnvxXv3PhatFa+cOYY/8D5/AOK5jh8=</latexit>

HB
<latexit sha1_base64="nF9d6xIXlT32wuWTqFb6lcg8pJI=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclRkR7LLopssK9gHtUO6kaRuayYxJplCGfocbF4q49WPc+Tdm2llo64HA4Zx7uScniAXXxnW/nY3Nre2d3cJecf/g8Oi4dHLa0lGiKGvSSESqE6BmgkvWNNwI1okVwzAQrB1M7jO/PWVK80g+mlnM/BBHkg85RWMlvxeiGVMUaX3ev+uXym7FXYCsEy8nZcjR6Je+eoOIJiGThgrUuuu5sfFTVIZTwebFXqJZjHSCI9a1VGLItJ8uQs/JpVUGZBgp+6QhC/X3Roqh1rMwsJNZSL3qZeJ/Xjcxw6qfchknhkm6PDRMBDERyRogA64YNWJmCVLFbVZCx6iQGttT0ZbgrX55nbSuK55b8R5uyrVqXkcBzuECrsCDW6hBHRrQBApP8Ayv8OZMnRfn3flYjm44+c4Z/IHz+QO/P5IJ</latexit><latexit sha1_base64="nF9d6xIXlT32wuWTqFb6lcg8pJI=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclRkR7LLopssK9gHtUO6kaRuayYxJplCGfocbF4q49WPc+Tdm2llo64HA4Zx7uScniAXXxnW/nY3Nre2d3cJecf/g8Oi4dHLa0lGiKGvSSESqE6BmgkvWNNwI1okVwzAQrB1M7jO/PWVK80g+mlnM/BBHkg85RWMlvxeiGVMUaX3ev+uXym7FXYCsEy8nZcjR6Je+eoOIJiGThgrUuuu5sfFTVIZTwebFXqJZjHSCI9a1VGLItJ8uQs/JpVUGZBgp+6QhC/X3Roqh1rMwsJNZSL3qZeJ/Xjcxw6qfchknhkm6PDRMBDERyRogA64YNWJmCVLFbVZCx6iQGttT0ZbgrX55nbSuK55b8R5uyrVqXkcBzuECrsCDW6hBHRrQBApP8Ayv8OZMnRfn3flYjm44+c4Z/IHz+QO/P5IJ</latexit><latexit sha1_base64="nF9d6xIXlT32wuWTqFb6lcg8pJI=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclRkR7LLopssK9gHtUO6kaRuayYxJplCGfocbF4q49WPc+Tdm2llo64HA4Zx7uScniAXXxnW/nY3Nre2d3cJecf/g8Oi4dHLa0lGiKGvSSESqE6BmgkvWNNwI1okVwzAQrB1M7jO/PWVK80g+mlnM/BBHkg85RWMlvxeiGVMUaX3ev+uXym7FXYCsEy8nZcjR6Je+eoOIJiGThgrUuuu5sfFTVIZTwebFXqJZjHSCI9a1VGLItJ8uQs/JpVUGZBgp+6QhC/X3Roqh1rMwsJNZSL3qZeJ/Xjcxw6qfchknhkm6PDRMBDERyRogA64YNWJmCVLFbVZCx6iQGttT0ZbgrX55nbSuK55b8R5uyrVqXkcBzuECrsCDW6hBHRrQBApP8Ayv8OZMnRfn3flYjm44+c4Z/IHz+QO/P5IJ</latexit><latexit sha1_base64="nF9d6xIXlT32wuWTqFb6lcg8pJI=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclRkR7LLopssK9gHtUO6kaRuayYxJplCGfocbF4q49WPc+Tdm2llo64HA4Zx7uScniAXXxnW/nY3Nre2d3cJecf/g8Oi4dHLa0lGiKGvSSESqE6BmgkvWNNwI1okVwzAQrB1M7jO/PWVK80g+mlnM/BBHkg85RWMlvxeiGVMUaX3ev+uXym7FXYCsEy8nZcjR6Je+eoOIJiGThgrUuuu5sfFTVIZTwebFXqJZjHSCI9a1VGLItJ8uQs/JpVUGZBgp+6QhC/X3Roqh1rMwsJNZSL3qZeJ/Xjcxw6qfchknhkm6PDRMBDERyRogA64YNWJmCVLFbVZCx6iQGttT0ZbgrX55nbSuK55b8R5uyrVqXkcBzuECrsCDW6hBHRrQBApP8Ayv8OZMnRfn3flYjm44+c4Z/IHz+QO/P5IJ</latexit>

HA
<latexit sha1_base64="MPRTSYtNJKT5XbCJXhaFgwonSEE=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclRkR7LLipssK9gHtUO6kaRuayYxJplCGfocbF4q49WPc+Tdm2llo64HA4Zx7uScniAXXxnW/nY3Nre2d3cJecf/g8Oi4dHLa0lGiKGvSSESqE6BmgkvWNNwI1okVwzAQrB1M7jO/PWVK80g+mlnM/BBHkg85RWMlvxeiGVMUaX3ev+uXym7FXYCsEy8nZcjR6Je+eoOIJiGThgrUuuu5sfFTVIZTwebFXqJZjHSCI9a1VGLItJ8uQs/JpVUGZBgp+6QhC/X3Roqh1rMwsJNZSL3qZeJ/Xjcxw6qfchknhkm6PDRMBDERyRogA64YNWJmCVLFbVZCx6iQGttT0ZbgrX55nbSuK55b8R5uyrVqXkcBzuECrsCDW6hBHRrQBApP8Ayv8OZMnRfn3flYjm44+c4Z/IHz+QO9u5II</latexit><latexit sha1_base64="MPRTSYtNJKT5XbCJXhaFgwonSEE=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclRkR7LLipssK9gHtUO6kaRuayYxJplCGfocbF4q49WPc+Tdm2llo64HA4Zx7uScniAXXxnW/nY3Nre2d3cJecf/g8Oi4dHLa0lGiKGvSSESqE6BmgkvWNNwI1okVwzAQrB1M7jO/PWVK80g+mlnM/BBHkg85RWMlvxeiGVMUaX3ev+uXym7FXYCsEy8nZcjR6Je+eoOIJiGThgrUuuu5sfFTVIZTwebFXqJZjHSCI9a1VGLItJ8uQs/JpVUGZBgp+6QhC/X3Roqh1rMwsJNZSL3qZeJ/Xjcxw6qfchknhkm6PDRMBDERyRogA64YNWJmCVLFbVZCx6iQGttT0ZbgrX55nbSuK55b8R5uyrVqXkcBzuECrsCDW6hBHRrQBApP8Ayv8OZMnRfn3flYjm44+c4Z/IHz+QO9u5II</latexit><latexit sha1_base64="MPRTSYtNJKT5XbCJXhaFgwonSEE=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclRkR7LLipssK9gHtUO6kaRuayYxJplCGfocbF4q49WPc+Tdm2llo64HA4Zx7uScniAXXxnW/nY3Nre2d3cJecf/g8Oi4dHLa0lGiKGvSSESqE6BmgkvWNNwI1okVwzAQrB1M7jO/PWVK80g+mlnM/BBHkg85RWMlvxeiGVMUaX3ev+uXym7FXYCsEy8nZcjR6Je+eoOIJiGThgrUuuu5sfFTVIZTwebFXqJZjHSCI9a1VGLItJ8uQs/JpVUGZBgp+6QhC/X3Roqh1rMwsJNZSL3qZeJ/Xjcxw6qfchknhkm6PDRMBDERyRogA64YNWJmCVLFbVZCx6iQGttT0ZbgrX55nbSuK55b8R5uyrVqXkcBzuECrsCDW6hBHRrQBApP8Ayv8OZMnRfn3flYjm44+c4Z/IHz+QO9u5II</latexit><latexit sha1_base64="MPRTSYtNJKT5XbCJXhaFgwonSEE=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclRkR7LLipssK9gHtUO6kaRuayYxJplCGfocbF4q49WPc+Tdm2llo64HA4Zx7uScniAXXxnW/nY3Nre2d3cJecf/g8Oi4dHLa0lGiKGvSSESqE6BmgkvWNNwI1okVwzAQrB1M7jO/PWVK80g+mlnM/BBHkg85RWMlvxeiGVMUaX3ev+uXym7FXYCsEy8nZcjR6Je+eoOIJiGThgrUuuu5sfFTVIZTwebFXqJZjHSCI9a1VGLItJ8uQs/JpVUGZBgp+6QhC/X3Roqh1rMwsJNZSL3qZeJ/Xjcxw6qfchknhkm6PDRMBDERyRogA64YNWJmCVLFbVZCx6iQGttT0ZbgrX55nbSuK55b8R5uyrVqXkcBzuECrsCDW6hBHRrQBApP8Ayv8OZMnRfn3flYjm44+c4Z/IHz+QO9u5II</latexit>

HA
<latexit sha1_base64="MPRTSYtNJKT5XbCJXhaFgwonSEE=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclRkR7LLipssK9gHtUO6kaRuayYxJplCGfocbF4q49WPc+Tdm2llo64HA4Zx7uScniAXXxnW/nY3Nre2d3cJecf/g8Oi4dHLa0lGiKGvSSESqE6BmgkvWNNwI1okVwzAQrB1M7jO/PWVK80g+mlnM/BBHkg85RWMlvxeiGVMUaX3ev+uXym7FXYCsEy8nZcjR6Je+eoOIJiGThgrUuuu5sfFTVIZTwebFXqJZjHSCI9a1VGLItJ8uQs/JpVUGZBgp+6QhC/X3Roqh1rMwsJNZSL3qZeJ/Xjcxw6qfchknhkm6PDRMBDERyRogA64YNWJmCVLFbVZCx6iQGttT0ZbgrX55nbSuK55b8R5uyrVqXkcBzuECrsCDW6hBHRrQBApP8Ayv8OZMnRfn3flYjm44+c4Z/IHz+QO9u5II</latexit><latexit sha1_base64="MPRTSYtNJKT5XbCJXhaFgwonSEE=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclRkR7LLipssK9gHtUO6kaRuayYxJplCGfocbF4q49WPc+Tdm2llo64HA4Zx7uScniAXXxnW/nY3Nre2d3cJecf/g8Oi4dHLa0lGiKGvSSESqE6BmgkvWNNwI1okVwzAQrB1M7jO/PWVK80g+mlnM/BBHkg85RWMlvxeiGVMUaX3ev+uXym7FXYCsEy8nZcjR6Je+eoOIJiGThgrUuuu5sfFTVIZTwebFXqJZjHSCI9a1VGLItJ8uQs/JpVUGZBgp+6QhC/X3Roqh1rMwsJNZSL3qZeJ/Xjcxw6qfchknhkm6PDRMBDERyRogA64YNWJmCVLFbVZCx6iQGttT0ZbgrX55nbSuK55b8R5uyrVqXkcBzuECrsCDW6hBHRrQBApP8Ayv8OZMnRfn3flYjm44+c4Z/IHz+QO9u5II</latexit><latexit sha1_base64="MPRTSYtNJKT5XbCJXhaFgwonSEE=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclRkR7LLipssK9gHtUO6kaRuayYxJplCGfocbF4q49WPc+Tdm2llo64HA4Zx7uScniAXXxnW/nY3Nre2d3cJecf/g8Oi4dHLa0lGiKGvSSESqE6BmgkvWNNwI1okVwzAQrB1M7jO/PWVK80g+mlnM/BBHkg85RWMlvxeiGVMUaX3ev+uXym7FXYCsEy8nZcjR6Je+eoOIJiGThgrUuuu5sfFTVIZTwebFXqJZjHSCI9a1VGLItJ8uQs/JpVUGZBgp+6QhC/X3Roqh1rMwsJNZSL3qZeJ/Xjcxw6qfchknhkm6PDRMBDERyRogA64YNWJmCVLFbVZCx6iQGttT0ZbgrX55nbSuK55b8R5uyrVqXkcBzuECrsCDW6hBHRrQBApP8Ayv8OZMnRfn3flYjm44+c4Z/IHz+QO9u5II</latexit><latexit sha1_base64="MPRTSYtNJKT5XbCJXhaFgwonSEE=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclRkR7LLipssK9gHtUO6kaRuayYxJplCGfocbF4q49WPc+Tdm2llo64HA4Zx7uScniAXXxnW/nY3Nre2d3cJecf/g8Oi4dHLa0lGiKGvSSESqE6BmgkvWNNwI1okVwzAQrB1M7jO/PWVK80g+mlnM/BBHkg85RWMlvxeiGVMUaX3ev+uXym7FXYCsEy8nZcjR6Je+eoOIJiGThgrUuuu5sfFTVIZTwebFXqJZjHSCI9a1VGLItJ8uQs/JpVUGZBgp+6QhC/X3Roqh1rMwsJNZSL3qZeJ/Xjcxw6qfchknhkm6PDRMBDERyRogA64YNWJmCVLFbVZCx6iQGttT0ZbgrX55nbSuK55b8R5uyrVqXkcBzuECrsCDW6hBHRrQBApP8Ayv8OZMnRfn3flYjm44+c4Z/IHz+QO9u5II</latexit>

Vr
<latexit sha1_base64="SvkziWSpoexCZq2XKoDOLyhsGaw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jNs1BWx8MPN6bYWZekEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2mtwu/+8S1EbF6xFnC/YiOlQgFo2ilh85QD6s1t+7mIOvEK0gNCrSG1a/BKGZpxBUySY3pe26CfkY1Cib5vDJIDU8om9Ix71uqaMSNn+WnzsmFVUYkjLUthSRXf09kNDJmFgW2M6I4MaveQvzP66cYNvxMqCRFrthyUZhKgjFZ/E1GQnOGcmYJZVrYWwmbUE0Z2nQqNgRv9eV10rmqe27du7+uNRtFHGU4g3O4BA9uoAl30II2MBjDM7zCmyOdF+fd+Vi2lpxi5hT+wPn8ATdmjbU=</latexit><latexit sha1_base64="SvkziWSpoexCZq2XKoDOLyhsGaw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jNs1BWx8MPN6bYWZekEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2mtwu/+8S1EbF6xFnC/YiOlQgFo2ilh85QD6s1t+7mIOvEK0gNCrSG1a/BKGZpxBUySY3pe26CfkY1Cib5vDJIDU8om9Ix71uqaMSNn+WnzsmFVUYkjLUthSRXf09kNDJmFgW2M6I4MaveQvzP66cYNvxMqCRFrthyUZhKgjFZ/E1GQnOGcmYJZVrYWwmbUE0Z2nQqNgRv9eV10rmqe27du7+uNRtFHGU4g3O4BA9uoAl30II2MBjDM7zCmyOdF+fd+Vi2lpxi5hT+wPn8ATdmjbU=</latexit><latexit sha1_base64="SvkziWSpoexCZq2XKoDOLyhsGaw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jNs1BWx8MPN6bYWZekEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2mtwu/+8S1EbF6xFnC/YiOlQgFo2ilh85QD6s1t+7mIOvEK0gNCrSG1a/BKGZpxBUySY3pe26CfkY1Cib5vDJIDU8om9Ix71uqaMSNn+WnzsmFVUYkjLUthSRXf09kNDJmFgW2M6I4MaveQvzP66cYNvxMqCRFrthyUZhKgjFZ/E1GQnOGcmYJZVrYWwmbUE0Z2nQqNgRv9eV10rmqe27du7+uNRtFHGU4g3O4BA9uoAl30II2MBjDM7zCmyOdF+fd+Vi2lpxi5hT+wPn8ATdmjbU=</latexit><latexit sha1_base64="SvkziWSpoexCZq2XKoDOLyhsGaw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jNs1BWx8MPN6bYWZekEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2mtwu/+8S1EbF6xFnC/YiOlQgFo2ilh85QD6s1t+7mIOvEK0gNCrSG1a/BKGZpxBUySY3pe26CfkY1Cib5vDJIDU8om9Ix71uqaMSNn+WnzsmFVUYkjLUthSRXf09kNDJmFgW2M6I4MaveQvzP66cYNvxMqCRFrthyUZhKgjFZ/E1GQnOGcmYJZVrYWwmbUE0Z2nQqNgRv9eV10rmqe27du7+uNRtFHGU4g3O4BA9uoAl30II2MBjDM7zCmyOdF+fd+Vi2lpxi5hT+wPn8ATdmjbU=</latexit>

Rr
<latexit sha1_base64="J/o/yX4w2JaRiVfYrVcHFKZCpaY=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKkBwDXjzGRx6QLGF20psMmZ1dZmaFsOQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2AkmN3O/84RK81g+mmmCfkRHkoecUWOlh/uBGpQrbtVdgKwTLycVyNEclL/6w5ilEUrDBNW657mJ8TOqDGcCZ6V+qjGhbEJH2LNU0gi1ny1OnZELqwxJGCtb0pCF+nsio5HW0yiwnRE1Y73qzcX/vF5qwrqfcZmkBiVbLgpTQUxM5n+TIVfIjJhaQpni9lbCxlRRZmw6JRuCt/ryOmlfVT236t1dVxr1PI4inME5XIIHNWjALTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3A+fwAxTo2x</latexit><latexit sha1_base64="J/o/yX4w2JaRiVfYrVcHFKZCpaY=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKkBwDXjzGRx6QLGF20psMmZ1dZmaFsOQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2AkmN3O/84RK81g+mmmCfkRHkoecUWOlh/uBGpQrbtVdgKwTLycVyNEclL/6w5ilEUrDBNW657mJ8TOqDGcCZ6V+qjGhbEJH2LNU0gi1ny1OnZELqwxJGCtb0pCF+nsio5HW0yiwnRE1Y73qzcX/vF5qwrqfcZmkBiVbLgpTQUxM5n+TIVfIjJhaQpni9lbCxlRRZmw6JRuCt/ryOmlfVT236t1dVxr1PI4inME5XIIHNWjALTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3A+fwAxTo2x</latexit><latexit sha1_base64="J/o/yX4w2JaRiVfYrVcHFKZCpaY=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKkBwDXjzGRx6QLGF20psMmZ1dZmaFsOQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2AkmN3O/84RK81g+mmmCfkRHkoecUWOlh/uBGpQrbtVdgKwTLycVyNEclL/6w5ilEUrDBNW657mJ8TOqDGcCZ6V+qjGhbEJH2LNU0gi1ny1OnZELqwxJGCtb0pCF+nsio5HW0yiwnRE1Y73qzcX/vF5qwrqfcZmkBiVbLgpTQUxM5n+TIVfIjJhaQpni9lbCxlRRZmw6JRuCt/ryOmlfVT236t1dVxr1PI4inME5XIIHNWjALTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3A+fwAxTo2x</latexit><latexit sha1_base64="J/o/yX4w2JaRiVfYrVcHFKZCpaY=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKkBwDXjzGRx6QLGF20psMmZ1dZmaFsOQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2AkmN3O/84RK81g+mmmCfkRHkoecUWOlh/uBGpQrbtVdgKwTLycVyNEclL/6w5ilEUrDBNW657mJ8TOqDGcCZ6V+qjGhbEJH2LNU0gi1ny1OnZELqwxJGCtb0pCF+nsio5HW0yiwnRE1Y73qzcX/vF5qwrqfcZmkBiVbLgpTQUxM5n+TIVfIjJhaQpni9lbCxlRRZmw6JRuCt/ryOmlfVT236t1dVxr1PI4inME5XIIHNWjALTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3A+fwAxTo2x</latexit>

W
<latexit sha1_base64="5r2I0wad77bSzyICVEspKQF+4Gk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzssV9yquwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IR1P+MySQ1KtloUpoKYmCy+JiOukBkxs4Qyxe2thE2ooszYbEo2BG/95U3Sual6btVr3VYa9TyOIlzAJVyDBzVowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AsTOM0Q==</latexit><latexit sha1_base64="5r2I0wad77bSzyICVEspKQF+4Gk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzssV9yquwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IR1P+MySQ1KtloUpoKYmCy+JiOukBkxs4Qyxe2thE2ooszYbEo2BG/95U3Sual6btVr3VYa9TyOIlzAJVyDBzVowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AsTOM0Q==</latexit><latexit sha1_base64="5r2I0wad77bSzyICVEspKQF+4Gk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzssV9yquwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IR1P+MySQ1KtloUpoKYmCy+JiOukBkxs4Qyxe2thE2ooszYbEo2BG/95U3Sual6btVr3VYa9TyOIlzAJVyDBzVowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AsTOM0Q==</latexit><latexit sha1_base64="5r2I0wad77bSzyICVEspKQF+4Gk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzssV9yquwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IR1P+MySQ1KtloUpoKYmCy+JiOukBkxs4Qyxe2thE2ooszYbEo2BG/95U3Sual6btVr3VYa9TyOIlzAJVyDBzVowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AsTOM0Q==</latexit>

W †
<latexit sha1_base64="SZGjsHVmHsdfN4NpXbO2fhZZJ+U=">AAAB8HicbVBNS8NAEJ34WetX1aOXxSJ4KokI9ljw4rGC/ZA2ls1mki7dbMLuRiihv8KLB0W8+nO8+W/cfhy09cHA470ZZuYFmeDauO63s7a+sbm1Xdop7+7tHxxWjo7bOs0VwxZLRaq6AdUouMSW4UZgN1NIk0BgJxjdTP3OEyrNU3lvxhn6CY0ljzijxkoPncd+SOMY1aBSdWvuDGSVeAtShQWag8pXP0xZnqA0TFCte56bGb+gynAmcFLu5xozykY0xp6lkiao/WJ28IScWyUkUapsSUNm6u+JgiZaj5PAdibUDPWyNxX/83q5iep+wWWWG5RsvijKBTEpmX5PQq6QGTG2hDLF7a2EDamizNiMyjYEb/nlVdK+rHluzbu7qjbqizhKcApncAEeXEMDbqEJLWCQwDO8wpujnBfn3fmYt645i5kT+APn8weox5BF</latexit><latexit sha1_base64="SZGjsHVmHsdfN4NpXbO2fhZZJ+U=">AAAB8HicbVBNS8NAEJ34WetX1aOXxSJ4KokI9ljw4rGC/ZA2ls1mki7dbMLuRiihv8KLB0W8+nO8+W/cfhy09cHA470ZZuYFmeDauO63s7a+sbm1Xdop7+7tHxxWjo7bOs0VwxZLRaq6AdUouMSW4UZgN1NIk0BgJxjdTP3OEyrNU3lvxhn6CY0ljzijxkoPncd+SOMY1aBSdWvuDGSVeAtShQWag8pXP0xZnqA0TFCte56bGb+gynAmcFLu5xozykY0xp6lkiao/WJ28IScWyUkUapsSUNm6u+JgiZaj5PAdibUDPWyNxX/83q5iep+wWWWG5RsvijKBTEpmX5PQq6QGTG2hDLF7a2EDamizNiMyjYEb/nlVdK+rHluzbu7qjbqizhKcApncAEeXEMDbqEJLWCQwDO8wpujnBfn3fmYt645i5kT+APn8weox5BF</latexit><latexit sha1_base64="SZGjsHVmHsdfN4NpXbO2fhZZJ+U=">AAAB8HicbVBNS8NAEJ34WetX1aOXxSJ4KokI9ljw4rGC/ZA2ls1mki7dbMLuRiihv8KLB0W8+nO8+W/cfhy09cHA470ZZuYFmeDauO63s7a+sbm1Xdop7+7tHxxWjo7bOs0VwxZLRaq6AdUouMSW4UZgN1NIk0BgJxjdTP3OEyrNU3lvxhn6CY0ljzijxkoPncd+SOMY1aBSdWvuDGSVeAtShQWag8pXP0xZnqA0TFCte56bGb+gynAmcFLu5xozykY0xp6lkiao/WJ28IScWyUkUapsSUNm6u+JgiZaj5PAdibUDPWyNxX/83q5iep+wWWWG5RsvijKBTEpmX5PQq6QGTG2hDLF7a2EDamizNiMyjYEb/nlVdK+rHluzbu7qjbqizhKcApncAEeXEMDbqEJLWCQwDO8wpujnBfn3fmYt645i5kT+APn8weox5BF</latexit><latexit sha1_base64="SZGjsHVmHsdfN4NpXbO2fhZZJ+U=">AAAB8HicbVBNS8NAEJ34WetX1aOXxSJ4KokI9ljw4rGC/ZA2ls1mki7dbMLuRiihv8KLB0W8+nO8+W/cfhy09cHA470ZZuYFmeDauO63s7a+sbm1Xdop7+7tHxxWjo7bOs0VwxZLRaq6AdUouMSW4UZgN1NIk0BgJxjdTP3OEyrNU3lvxhn6CY0ljzijxkoPncd+SOMY1aBSdWvuDGSVeAtShQWag8pXP0xZnqA0TFCte56bGb+gynAmcFLu5xozykY0xp6lkiao/WJ28IScWyUkUapsSUNm6u+JgiZaj5PAdibUDPWyNxX/83q5iep+wWWWG5RsvijKBTEpmX5PQq6QGTG2hDLF7a2EDamizNiMyjYEb/nlVdK+rHluzbu7qjbqizhKcApncAEeXEMDbqEJLWCQwDO8wpujnBfn3fmYt645i5kT+APn8weox5BF</latexit>

HB
<latexit sha1_base64="nF9d6xIXlT32wuWTqFb6lcg8pJI=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclRkR7LLopssK9gHtUO6kaRuayYxJplCGfocbF4q49WPc+Tdm2llo64HA4Zx7uScniAXXxnW/nY3Nre2d3cJecf/g8Oi4dHLa0lGiKGvSSESqE6BmgkvWNNwI1okVwzAQrB1M7jO/PWVK80g+mlnM/BBHkg85RWMlvxeiGVMUaX3ev+uXym7FXYCsEy8nZcjR6Je+eoOIJiGThgrUuuu5sfFTVIZTwebFXqJZjHSCI9a1VGLItJ8uQs/JpVUGZBgp+6QhC/X3Roqh1rMwsJNZSL3qZeJ/Xjcxw6qfchknhkm6PDRMBDERyRogA64YNWJmCVLFbVZCx6iQGttT0ZbgrX55nbSuK55b8R5uyrVqXkcBzuECrsCDW6hBHRrQBApP8Ayv8OZMnRfn3flYjm44+c4Z/IHz+QO/P5IJ</latexit><latexit sha1_base64="nF9d6xIXlT32wuWTqFb6lcg8pJI=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclRkR7LLopssK9gHtUO6kaRuayYxJplCGfocbF4q49WPc+Tdm2llo64HA4Zx7uScniAXXxnW/nY3Nre2d3cJecf/g8Oi4dHLa0lGiKGvSSESqE6BmgkvWNNwI1okVwzAQrB1M7jO/PWVK80g+mlnM/BBHkg85RWMlvxeiGVMUaX3ev+uXym7FXYCsEy8nZcjR6Je+eoOIJiGThgrUuuu5sfFTVIZTwebFXqJZjHSCI9a1VGLItJ8uQs/JpVUGZBgp+6QhC/X3Roqh1rMwsJNZSL3qZeJ/Xjcxw6qfchknhkm6PDRMBDERyRogA64YNWJmCVLFbVZCx6iQGttT0ZbgrX55nbSuK55b8R5uyrVqXkcBzuECrsCDW6hBHRrQBApP8Ayv8OZMnRfn3flYjm44+c4Z/IHz+QO/P5IJ</latexit><latexit sha1_base64="nF9d6xIXlT32wuWTqFb6lcg8pJI=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclRkR7LLopssK9gHtUO6kaRuayYxJplCGfocbF4q49WPc+Tdm2llo64HA4Zx7uScniAXXxnW/nY3Nre2d3cJecf/g8Oi4dHLa0lGiKGvSSESqE6BmgkvWNNwI1okVwzAQrB1M7jO/PWVK80g+mlnM/BBHkg85RWMlvxeiGVMUaX3ev+uXym7FXYCsEy8nZcjR6Je+eoOIJiGThgrUuuu5sfFTVIZTwebFXqJZjHSCI9a1VGLItJ8uQs/JpVUGZBgp+6QhC/X3Roqh1rMwsJNZSL3qZeJ/Xjcxw6qfchknhkm6PDRMBDERyRogA64YNWJmCVLFbVZCx6iQGttT0ZbgrX55nbSuK55b8R5uyrVqXkcBzuECrsCDW6hBHRrQBApP8Ayv8OZMnRfn3flYjm44+c4Z/IHz+QO/P5IJ</latexit><latexit sha1_base64="nF9d6xIXlT32wuWTqFb6lcg8pJI=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclRkR7LLopssK9gHtUO6kaRuayYxJplCGfocbF4q49WPc+Tdm2llo64HA4Zx7uScniAXXxnW/nY3Nre2d3cJecf/g8Oi4dHLa0lGiKGvSSESqE6BmgkvWNNwI1okVwzAQrB1M7jO/PWVK80g+mlnM/BBHkg85RWMlvxeiGVMUaX3ev+uXym7FXYCsEy8nZcjR6Je+eoOIJiGThgrUuuu5sfFTVIZTwebFXqJZjHSCI9a1VGLItJ8uQs/JpVUGZBgp+6QhC/X3Roqh1rMwsJNZSL3qZeJ/Xjcxw6qfchknhkm6PDRMBDERyRogA64YNWJmCVLFbVZCx6iQGttT0ZbgrX55nbSuK55b8R5uyrVqXkcBzuECrsCDW6hBHRrQBApP8Ayv8OZMnRfn3flYjm44+c4Z/IHz+QO/P5IJ</latexit>

HA
<latexit sha1_base64="MPRTSYtNJKT5XbCJXhaFgwonSEE=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclRkR7LLipssK9gHtUO6kaRuayYxJplCGfocbF4q49WPc+Tdm2llo64HA4Zx7uScniAXXxnW/nY3Nre2d3cJecf/g8Oi4dHLa0lGiKGvSSESqE6BmgkvWNNwI1okVwzAQrB1M7jO/PWVK80g+mlnM/BBHkg85RWMlvxeiGVMUaX3ev+uXym7FXYCsEy8nZcjR6Je+eoOIJiGThgrUuuu5sfFTVIZTwebFXqJZjHSCI9a1VGLItJ8uQs/JpVUGZBgp+6QhC/X3Roqh1rMwsJNZSL3qZeJ/Xjcxw6qfchknhkm6PDRMBDERyRogA64YNWJmCVLFbVZCx6iQGttT0ZbgrX55nbSuK55b8R5uyrVqXkcBzuECrsCDW6hBHRrQBApP8Ayv8OZMnRfn3flYjm44+c4Z/IHz+QO9u5II</latexit><latexit sha1_base64="MPRTSYtNJKT5XbCJXhaFgwonSEE=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclRkR7LLipssK9gHtUO6kaRuayYxJplCGfocbF4q49WPc+Tdm2llo64HA4Zx7uScniAXXxnW/nY3Nre2d3cJecf/g8Oi4dHLa0lGiKGvSSESqE6BmgkvWNNwI1okVwzAQrB1M7jO/PWVK80g+mlnM/BBHkg85RWMlvxeiGVMUaX3ev+uXym7FXYCsEy8nZcjR6Je+eoOIJiGThgrUuuu5sfFTVIZTwebFXqJZjHSCI9a1VGLItJ8uQs/JpVUGZBgp+6QhC/X3Roqh1rMwsJNZSL3qZeJ/Xjcxw6qfchknhkm6PDRMBDERyRogA64YNWJmCVLFbVZCx6iQGttT0ZbgrX55nbSuK55b8R5uyrVqXkcBzuECrsCDW6hBHRrQBApP8Ayv8OZMnRfn3flYjm44+c4Z/IHz+QO9u5II</latexit><latexit sha1_base64="MPRTSYtNJKT5XbCJXhaFgwonSEE=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclRkR7LLipssK9gHtUO6kaRuayYxJplCGfocbF4q49WPc+Tdm2llo64HA4Zx7uScniAXXxnW/nY3Nre2d3cJecf/g8Oi4dHLa0lGiKGvSSESqE6BmgkvWNNwI1okVwzAQrB1M7jO/PWVK80g+mlnM/BBHkg85RWMlvxeiGVMUaX3ev+uXym7FXYCsEy8nZcjR6Je+eoOIJiGThgrUuuu5sfFTVIZTwebFXqJZjHSCI9a1VGLItJ8uQs/JpVUGZBgp+6QhC/X3Roqh1rMwsJNZSL3qZeJ/Xjcxw6qfchknhkm6PDRMBDERyRogA64YNWJmCVLFbVZCx6iQGttT0ZbgrX55nbSuK55b8R5uyrVqXkcBzuECrsCDW6hBHRrQBApP8Ayv8OZMnRfn3flYjm44+c4Z/IHz+QO9u5II</latexit><latexit sha1_base64="MPRTSYtNJKT5XbCJXhaFgwonSEE=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclRkR7LLipssK9gHtUO6kaRuayYxJplCGfocbF4q49WPc+Tdm2llo64HA4Zx7uScniAXXxnW/nY3Nre2d3cJecf/g8Oi4dHLa0lGiKGvSSESqE6BmgkvWNNwI1okVwzAQrB1M7jO/PWVK80g+mlnM/BBHkg85RWMlvxeiGVMUaX3ev+uXym7FXYCsEy8nZcjR6Je+eoOIJiGThgrUuuu5sfFTVIZTwebFXqJZjHSCI9a1VGLItJ8uQs/JpVUGZBgp+6QhC/X3Roqh1rMwsJNZSL3qZeJ/Xjcxw6qfchknhkm6PDRMBDERyRogA64YNWJmCVLFbVZCx6iQGttT0ZbgrX55nbSuK55b8R5uyrVqXkcBzuECrsCDW6hBHRrQBApP8Ayv8OZMnRfn3flYjm44+c4Z/IHz+QO9u5II</latexit>

Ṽr<latexit sha1_base64="Qg9VR22y/znBCb+IoLcVXv6+pfw=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4KokI9ljw4rGC/YA0lM1m0y7dbMLuRCihP8OLB0W8+mu8+W/ctjlo64OBx3szzMwLMykMuu63s7G5tb2zW9mr7h8cHh3XTk67Js014x2WylT3Q2q4FIp3UKDk/UxzmoSS98LJ3dzvPXFtRKoecZrxIKEjJWLBKFrJH6CQES+6s6Ee1upuw12ArBOvJHUo0R7WvgZRyvKEK2SSGuN7boZBQTUKJvmsOsgNzyib0BH3LVU04SYoFifPyKVVIhKn2pZCslB/TxQ0MWaahLYzoTg2q95c/M/zc4ybQSFUliNXbLkoziXBlMz/J5HQnKGcWkKZFvZWwsZUU4Y2paoNwVt9eZ10rxue2/AebuqtZhlHBc7hAq7Ag1towT20oQMMUniGV3hz0Hlx3p2PZeuGU86cwR84nz+bRZFr</latexit><latexit sha1_base64="Qg9VR22y/znBCb+IoLcVXv6+pfw=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4KokI9ljw4rGC/YA0lM1m0y7dbMLuRCihP8OLB0W8+mu8+W/ctjlo64OBx3szzMwLMykMuu63s7G5tb2zW9mr7h8cHh3XTk67Js014x2WylT3Q2q4FIp3UKDk/UxzmoSS98LJ3dzvPXFtRKoecZrxIKEjJWLBKFrJH6CQES+6s6Ee1upuw12ArBOvJHUo0R7WvgZRyvKEK2SSGuN7boZBQTUKJvmsOsgNzyib0BH3LVU04SYoFifPyKVVIhKn2pZCslB/TxQ0MWaahLYzoTg2q95c/M/zc4ybQSFUliNXbLkoziXBlMz/J5HQnKGcWkKZFvZWwsZUU4Y2paoNwVt9eZ10rxue2/AebuqtZhlHBc7hAq7Ag1towT20oQMMUniGV3hz0Hlx3p2PZeuGU86cwR84nz+bRZFr</latexit><latexit sha1_base64="Qg9VR22y/znBCb+IoLcVXv6+pfw=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4KokI9ljw4rGC/YA0lM1m0y7dbMLuRCihP8OLB0W8+mu8+W/ctjlo64OBx3szzMwLMykMuu63s7G5tb2zW9mr7h8cHh3XTk67Js014x2WylT3Q2q4FIp3UKDk/UxzmoSS98LJ3dzvPXFtRKoecZrxIKEjJWLBKFrJH6CQES+6s6Ee1upuw12ArBOvJHUo0R7WvgZRyvKEK2SSGuN7boZBQTUKJvmsOsgNzyib0BH3LVU04SYoFifPyKVVIhKn2pZCslB/TxQ0MWaahLYzoTg2q95c/M/zc4ybQSFUliNXbLkoziXBlMz/J5HQnKGcWkKZFvZWwsZUU4Y2paoNwVt9eZ10rxue2/AebuqtZhlHBc7hAq7Ag1towT20oQMMUniGV3hz0Hlx3p2PZeuGU86cwR84nz+bRZFr</latexit><latexit sha1_base64="Qg9VR22y/znBCb+IoLcVXv6+pfw=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4KokI9ljw4rGC/YA0lM1m0y7dbMLuRCihP8OLB0W8+mu8+W/ctjlo64OBx3szzMwLMykMuu63s7G5tb2zW9mr7h8cHh3XTk67Js014x2WylT3Q2q4FIp3UKDk/UxzmoSS98LJ3dzvPXFtRKoecZrxIKEjJWLBKFrJH6CQES+6s6Ee1upuw12ArBOvJHUo0R7WvgZRyvKEK2SSGuN7boZBQTUKJvmsOsgNzyib0BH3LVU04SYoFifPyKVVIhKn2pZCslB/TxQ0MWaahLYzoTg2q95c/M/zc4ybQSFUliNXbLkoziXBlMz/J5HQnKGcWkKZFvZWwsZUU4Y2paoNwVt9eZ10rxue2/AebuqtZhlHBc7hAq7Ag1towT20oQMMUniGV3hz0Hlx3p2PZeuGU86cwR84nz+bRZFr</latexit>

R̃r<latexit sha1_base64="gfa/UQMeuktYFYqQe4aK/MSLpdA=">AAAB8nicbVBNS8NAEN3Ur1q/qh69BIvgqSQi2GPBi8cq9gPaUDabSbt0sxt2J0IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZemApu0PO+ndLG5tb2Tnm3srd/cHhUPT7pGJVpBm2mhNK9kBoQXEIbOQropRpoEgrohpPbud99Am24ko84TSFI6EjymDOKVuoPkIsI8ofZUA+rNa/uLeCuE78gNVKgNax+DSLFsgQkMkGN6fteikFONXImYFYZZAZSyiZ0BH1LJU3ABPni5Jl7YZXIjZW2JdFdqL8ncpoYM01C25lQHJtVby7+5/UzjBtBzmWaIUi2XBRnwkXlzv93I66BoZhaQpnm9laXjammDG1KFRuCv/ryOulc1X2v7t9f15qNIo4yOSPn5JL45IY0yR1pkTZhRJFn8kreHHRenHfnY9lacoqZU/IHzucPlSmRZw==</latexit><latexit sha1_base64="gfa/UQMeuktYFYqQe4aK/MSLpdA=">AAAB8nicbVBNS8NAEN3Ur1q/qh69BIvgqSQi2GPBi8cq9gPaUDabSbt0sxt2J0IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZemApu0PO+ndLG5tb2Tnm3srd/cHhUPT7pGJVpBm2mhNK9kBoQXEIbOQropRpoEgrohpPbud99Am24ko84TSFI6EjymDOKVuoPkIsI8ofZUA+rNa/uLeCuE78gNVKgNax+DSLFsgQkMkGN6fteikFONXImYFYZZAZSyiZ0BH1LJU3ABPni5Jl7YZXIjZW2JdFdqL8ncpoYM01C25lQHJtVby7+5/UzjBtBzmWaIUi2XBRnwkXlzv93I66BoZhaQpnm9laXjammDG1KFRuCv/ryOulc1X2v7t9f15qNIo4yOSPn5JL45IY0yR1pkTZhRJFn8kreHHRenHfnY9lacoqZU/IHzucPlSmRZw==</latexit><latexit sha1_base64="gfa/UQMeuktYFYqQe4aK/MSLpdA=">AAAB8nicbVBNS8NAEN3Ur1q/qh69BIvgqSQi2GPBi8cq9gPaUDabSbt0sxt2J0IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZemApu0PO+ndLG5tb2Tnm3srd/cHhUPT7pGJVpBm2mhNK9kBoQXEIbOQropRpoEgrohpPbud99Am24ko84TSFI6EjymDOKVuoPkIsI8ofZUA+rNa/uLeCuE78gNVKgNax+DSLFsgQkMkGN6fteikFONXImYFYZZAZSyiZ0BH1LJU3ABPni5Jl7YZXIjZW2JdFdqL8ncpoYM01C25lQHJtVby7+5/UzjBtBzmWaIUi2XBRnwkXlzv93I66BoZhaQpnm9laXjammDG1KFRuCv/ryOulc1X2v7t9f15qNIo4yOSPn5JL45IY0yR1pkTZhRJFn8kreHHRenHfnY9lacoqZU/IHzucPlSmRZw==</latexit><latexit sha1_base64="gfa/UQMeuktYFYqQe4aK/MSLpdA=">AAAB8nicbVBNS8NAEN3Ur1q/qh69BIvgqSQi2GPBi8cq9gPaUDabSbt0sxt2J0IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZemApu0PO+ndLG5tb2Tnm3srd/cHhUPT7pGJVpBm2mhNK9kBoQXEIbOQropRpoEgrohpPbud99Am24ko84TSFI6EjymDOKVuoPkIsI8ofZUA+rNa/uLeCuE78gNVKgNax+DSLFsgQkMkGN6fteikFONXImYFYZZAZSyiZ0BH1LJU3ABPni5Jl7YZXIjZW2JdFdqL8ncpoYM01C25lQHJtVby7+5/UzjBtBzmWaIUi2XBRnwkXlzv93I66BoZhaQpnm9laXjammDG1KFRuCv/ryOulc1X2v7t9f15qNIo4yOSPn5JL45IY0yR1pkTZhRJFn8kreHHRenHfnY9lacoqZU/IHzucPlSmRZw==</latexit>

(c)
<latexit sha1_base64="hzOMpy4OTOI4ssusCjryrKzZPmk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkoigj0WvHisaD+gDWWz3bRLN5uwOxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777RQ2Nre2d4q7pb39g8Oj8vFJ28SpZrzFYhnrbkANl0LxFgqUvJtoTqNA8k4wuZ37nSeujYjVI04T7kd0pEQoGEUrPVTZ5aBccWvuAmSdeDmpQI7moPzVH8YsjbhCJqkxPc9N0M+oRsEkn5X6qeEJZRM64j1LFY248bPFqTNyYZUhCWNtSyFZqL8nMhoZM40C2xlRHJtVby7+5/VSDOt+JlSSIldsuShMJcGYzP8mQ6E5Qzm1hDIt7K2EjammDG06JRuCt/ryOmlf1Ty35t1fVxr1PI4inME5VMGDG2jAHTShBQxG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwCIs41C</latexit><latexit sha1_base64="hzOMpy4OTOI4ssusCjryrKzZPmk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkoigj0WvHisaD+gDWWz3bRLN5uwOxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777RQ2Nre2d4q7pb39g8Oj8vFJ28SpZrzFYhnrbkANl0LxFgqUvJtoTqNA8k4wuZ37nSeujYjVI04T7kd0pEQoGEUrPVTZ5aBccWvuAmSdeDmpQI7moPzVH8YsjbhCJqkxPc9N0M+oRsEkn5X6qeEJZRM64j1LFY248bPFqTNyYZUhCWNtSyFZqL8nMhoZM40C2xlRHJtVby7+5/VSDOt+JlSSIldsuShMJcGYzP8mQ6E5Qzm1hDIt7K2EjammDG06JRuCt/ryOmlf1Ty35t1fVxr1PI4inME5VMGDG2jAHTShBQxG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwCIs41C</latexit><latexit sha1_base64="hzOMpy4OTOI4ssusCjryrKzZPmk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkoigj0WvHisaD+gDWWz3bRLN5uwOxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777RQ2Nre2d4q7pb39g8Oj8vFJ28SpZrzFYhnrbkANl0LxFgqUvJtoTqNA8k4wuZ37nSeujYjVI04T7kd0pEQoGEUrPVTZ5aBccWvuAmSdeDmpQI7moPzVH8YsjbhCJqkxPc9N0M+oRsEkn5X6qeEJZRM64j1LFY248bPFqTNyYZUhCWNtSyFZqL8nMhoZM40C2xlRHJtVby7+5/VSDOt+JlSSIldsuShMJcGYzP8mQ6E5Qzm1hDIt7K2EjammDG06JRuCt/ryOmlf1Ty35t1fVxr1PI4inME5VMGDG2jAHTShBQxG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwCIs41C</latexit><latexit sha1_base64="hzOMpy4OTOI4ssusCjryrKzZPmk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkoigj0WvHisaD+gDWWz3bRLN5uwOxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777RQ2Nre2d4q7pb39g8Oj8vFJ28SpZrzFYhnrbkANl0LxFgqUvJtoTqNA8k4wuZ37nSeujYjVI04T7kd0pEQoGEUrPVTZ5aBccWvuAmSdeDmpQI7moPzVH8YsjbhCJqkxPc9N0M+oRsEkn5X6qeEJZRM64j1LFY248bPFqTNyYZUhCWNtSyFZqL8nMhoZM40C2xlRHJtVby7+5/VSDOt+JlSSIldsuShMJcGYzP8mQ6E5Qzm1hDIt7K2EjammDG06JRuCt/ryOmlf1Ty35t1fVxr1PI4inME5VMGDG2jAHTShBQxG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwCIs41C</latexit>

(d)
<latexit sha1_base64="KO0cijaI5vmQd+fQu9A+W7awyLw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkoigj0WvHisaD+gDWWz2bRLN5uwOxFK6U/w4kERr/4ib/4bt20O2vpg4PHeDDPzglQKg6777RQ2Nre2d4q7pb39g8Oj8vFJ2ySZZrzFEpnobkANl0LxFgqUvJtqTuNA8k4wvp37nSeujUjUI05S7sd0qEQkGEUrPVTDy0G54tbcBcg68XJSgRzNQfmrHyYsi7lCJqkxPc9N0Z9SjYJJPiv1M8NTysZ0yHuWKhpz408Xp87IhVVCEiXalkKyUH9PTGlszCQObGdMcWRWvbn4n9fLMKr7U6HSDLliy0VRJgkmZP43CYXmDOXEEsq0sLcSNqKaMrTplGwI3urL66R9VfPcmnd/XWnU8ziKcAbnUAUPbqABd9CEFjAYwjO8wpsjnRfn3flYthacfOYU/sD5/AGKOI1D</latexit><latexit sha1_base64="KO0cijaI5vmQd+fQu9A+W7awyLw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkoigj0WvHisaD+gDWWz2bRLN5uwOxFK6U/w4kERr/4ib/4bt20O2vpg4PHeDDPzglQKg6777RQ2Nre2d4q7pb39g8Oj8vFJ2ySZZrzFEpnobkANl0LxFgqUvJtqTuNA8k4wvp37nSeujUjUI05S7sd0qEQkGEUrPVTDy0G54tbcBcg68XJSgRzNQfmrHyYsi7lCJqkxPc9N0Z9SjYJJPiv1M8NTysZ0yHuWKhpz408Xp87IhVVCEiXalkKyUH9PTGlszCQObGdMcWRWvbn4n9fLMKr7U6HSDLliy0VRJgkmZP43CYXmDOXEEsq0sLcSNqKaMrTplGwI3urL66R9VfPcmnd/XWnU8ziKcAbnUAUPbqABd9CEFjAYwjO8wpsjnRfn3flYthacfOYU/sD5/AGKOI1D</latexit><latexit sha1_base64="KO0cijaI5vmQd+fQu9A+W7awyLw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkoigj0WvHisaD+gDWWz2bRLN5uwOxFK6U/w4kERr/4ib/4bt20O2vpg4PHeDDPzglQKg6777RQ2Nre2d4q7pb39g8Oj8vFJ2ySZZrzFEpnobkANl0LxFgqUvJtqTuNA8k4wvp37nSeujUjUI05S7sd0qEQkGEUrPVTDy0G54tbcBcg68XJSgRzNQfmrHyYsi7lCJqkxPc9N0Z9SjYJJPiv1M8NTysZ0yHuWKhpz408Xp87IhVVCEiXalkKyUH9PTGlszCQObGdMcWRWvbn4n9fLMKr7U6HSDLliy0VRJgkmZP43CYXmDOXEEsq0sLcSNqKaMrTplGwI3urL66R9VfPcmnd/XWnU8ziKcAbnUAUPbqABd9CEFjAYwjO8wpsjnRfn3flYthacfOYU/sD5/AGKOI1D</latexit><latexit sha1_base64="KO0cijaI5vmQd+fQu9A+W7awyLw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkoigj0WvHisaD+gDWWz2bRLN5uwOxFK6U/w4kERr/4ib/4bt20O2vpg4PHeDDPzglQKg6777RQ2Nre2d4q7pb39g8Oj8vFJ2ySZZrzFEpnobkANl0LxFgqUvJtqTuNA8k4wvp37nSeujUjUI05S7sd0qEQkGEUrPVTDy0G54tbcBcg68XJSgRzNQfmrHyYsi7lCJqkxPc9N0Z9SjYJJPiv1M8NTysZ0yHuWKhpz408Xp87IhVVCEiXalkKyUH9PTGlszCQObGdMcWRWvbn4n9fLMKr7U6HSDLliy0VRJgkmZP43CYXmDOXEEsq0sLcSNqKaMrTplGwI3urL66R9VfPcmnd/XWnU8ziKcAbnUAUPbqABd9CEFjAYwjO8wpsjnRfn3flYthacfOYU/sD5/AGKOI1D</latexit>

𝛼

Figure 5.5. (a) Error correction in the Schrödinger picture. The isometry W is
the encoding and W † is the decoding. The errors are Vr and the correction operators
are Rr. (b) We can absorb the W and W † in the definition of the errors and the
correction operators. (c) Error correction in the Heisenberg picture. The order of
operations is reversed. Both the error map Φ and the recovery map R are unital
completely positive maps. (d) The encoding ι and decoding α can be absorbed in
the definition of the error and the recovery maps.

undoes it. The recovery map is R : A → A and the error map Φ : A → A is unital. These

maps have the Kraus representation

α(a) = W †aW, ι(b) = WbW †

Φ(a) =
∑
r

V †
r aVr, R(a) =

∑
r

R†
raRr . (5.11)

We have an error correction if for all the code operators b ∈ B we have

α ◦ Φ ◦ R ◦ ι(b) = b . (5.12)

See figure  5.5 (c). The error correction condition above implies the Knill-Laflamme condition

in (  5.6 ) as a special case, but it is more general. To simplify the notation, it is often convenient

to absorb ι in the definition of the recovery map and α in the definition of the error map.

In this way, an error correction code is a doublet (R,Φ) where Φ : A → B is the error and

R : B → A is the recovery map; see figure  5.5 (d):

Φ(a) =
∑
r

Ṽ †
r aṼr,

R(b) =
∑
r

R̃†
rbR̃r. (5.13)
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The map R ◦ Φ : A → AC projects the physical operators to the subalgebra of correctable

operators AC . These operators are invariant under the action of Φ ◦ R.

A special error channel relevant to the RG flow and holography is erasure. In finite-

dimensional matrix algebras, the erasure is the error map that acts as  

9
  

10
 

Eσ′(a⊗ a′) = (a⊗ I ′) tr(σ′a′) . (5.14)

Any operator a′ ∈ A′ is an error and the necessary and sufficient condition for recovery

similar to (  5.6 ) is

∀a′ ∈ A′ : PCa
′PC ∝ PC . (5.15)

This is equivalent to the statement that for any operator b there exists an operator R(b)

acting in subsystem A such that  

11
 

R(b)W |i〉 = Wb |i〉 , R(b†)W |i〉 = Wb† |i〉 . (5.16)

Since PC [R(b), a′]PC = 0 any error V ′
r supported on A′ satisfies

R(b)V ′
rW = V ′

rWb . (5.17)

Defining the errors Ṽ ′
r = V ′

rW we have

Φ(R(b)) =
∑
r

(Ṽ ′
r )†R(b)Ṽ ′

r = b (5.18)

which is the error correction condition in the Heisenberg picture.

To see how the Heisenberg picture error correction goes beyond the equation (  5.6 ) we

consider the subsystem error correction. This is the setup where both the physical Hilbert
9

 ↑ In the Schrödinger picture, the erasure channel acts on the density matrices according to E∗
σ′(ρAA′) =

ρA ⊗ σ′.
10

 ↑ This is the simplest example of a conditional expectation that preserves the states ρ⊗ σ′.
11

 ↑ We prove this for an error correction code in a general von Neumann algebra in section  5.1.3 . For a proof
in finite-dimensional matrix algebras see, for instance, theorem 3.1 of [ 16 ]
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(a)
<latexit sha1_base64="OgmmF/uTRgUZiC88x4RBtPBzJJE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWtB/QhjLZbtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epoqxJYxGrToCaCS5Z03AjWCdRDKNAsHYwvp357SemNI/lo5kkzI9wKHnIKRorPVTxvF+uuDV3DrJKvJxUIEejX/7qDWKaRkwaKlDrrucmxs9QGU4Fm5Z6qWYJ0jEOWddSiRHTfjY/dUrOrDIgYaxsSUPm6u+JDCOtJ1FgOyM0I73szcT/vG5qwms/4zJJDZN0sShMBTExmf1NBlwxasTEEqSK21sJHaFCamw6JRuCt/zyKmld1Dy35t1fVuo3eRxFOIFTqIIHV1CHO2hAEygM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gCIq41K</latexit><latexit sha1_base64="OgmmF/uTRgUZiC88x4RBtPBzJJE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWtB/QhjLZbtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epoqxJYxGrToCaCS5Z03AjWCdRDKNAsHYwvp357SemNI/lo5kkzI9wKHnIKRorPVTxvF+uuDV3DrJKvJxUIEejX/7qDWKaRkwaKlDrrucmxs9QGU4Fm5Z6qWYJ0jEOWddSiRHTfjY/dUrOrDIgYaxsSUPm6u+JDCOtJ1FgOyM0I73szcT/vG5qwms/4zJJDZN0sShMBTExmf1NBlwxasTEEqSK21sJHaFCamw6JRuCt/zyKmld1Dy35t1fVuo3eRxFOIFTqIIHV1CHO2hAEygM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gCIq41K</latexit><latexit sha1_base64="OgmmF/uTRgUZiC88x4RBtPBzJJE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWtB/QhjLZbtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epoqxJYxGrToCaCS5Z03AjWCdRDKNAsHYwvp357SemNI/lo5kkzI9wKHnIKRorPVTxvF+uuDV3DrJKvJxUIEejX/7qDWKaRkwaKlDrrucmxs9QGU4Fm5Z6qWYJ0jEOWddSiRHTfjY/dUrOrDIgYaxsSUPm6u+JDCOtJ1FgOyM0I73szcT/vG5qwms/4zJJDZN0sShMBTExmf1NBlwxasTEEqSK21sJHaFCamw6JRuCt/zyKmld1Dy35t1fVuo3eRxFOIFTqIIHV1CHO2hAEygM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gCIq41K</latexit><latexit sha1_base64="OgmmF/uTRgUZiC88x4RBtPBzJJE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWtB/QhjLZbtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epoqxJYxGrToCaCS5Z03AjWCdRDKNAsHYwvp357SemNI/lo5kkzI9wKHnIKRorPVTxvF+uuDV3DrJKvJxUIEejX/7qDWKaRkwaKlDrrucmxs9QGU4Fm5Z6qWYJ0jEOWddSiRHTfjY/dUrOrDIgYaxsSUPm6u+JDCOtJ1FgOyM0I73szcT/vG5qwms/4zJJDZN0sShMBTExmf1NBlwxasTEEqSK21sJHaFCamw6JRuCt/zyKmld1Dy35t1fVuo3eRxFOIFTqIIHV1CHO2hAEygM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gCIq41K</latexit>

(b)
<latexit sha1_base64="nvmtgWEx7qwPdQ+Ek+1IsFecZyE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWtB/QhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSQzU475crbs2dg6wSLycVyNHol796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwms/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdK6qHluzbu/rNRv8jiKcAKnUAUPrqAOd9CAJjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AGKMI1L</latexit><latexit sha1_base64="nvmtgWEx7qwPdQ+Ek+1IsFecZyE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWtB/QhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSQzU475crbs2dg6wSLycVyNHol796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwms/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdK6qHluzbu/rNRv8jiKcAKnUAUPrqAOd9CAJjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AGKMI1L</latexit><latexit sha1_base64="nvmtgWEx7qwPdQ+Ek+1IsFecZyE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWtB/QhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSQzU475crbs2dg6wSLycVyNHol796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwms/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdK6qHluzbu/rNRv8jiKcAKnUAUPrqAOd9CAJjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AGKMI1L</latexit><latexit sha1_base64="nvmtgWEx7qwPdQ+Ek+1IsFecZyE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWtB/QhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSQzU475crbs2dg6wSLycVyNHol796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwms/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdK6qHluzbu/rNRv8jiKcAKnUAUPrqAOd9CAJjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AGKMI1L</latexit>

R
<latexit sha1_base64="Q3XUr6egFAOTzVnITKKG+KVC2QM=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVRIRdFl047KKfUAbymQ6aYdOZsLMjVBCP8ONC0Xc+jXu/BsnbRbaemDgcM69zLknTAQ36HnfTmltfWNzq7xd2dnd2z+oHh61jUo1ZS2qhNLdkBgmuGQt5ChYN9GMxKFgnXBym/udJ6YNV/IRpwkLYjKSPOKUoJV6/ZjgmBKRPcwG1ZpX9+ZwV4lfkBoUaA6qX/2homnMJFJBjOn5XoJBRjRyKtis0k8NSwidkBHrWSpJzEyQzSPP3DOrDN1IafskunP190ZGYmOmcWgn84hm2cvF/7xeitF1kHGZpMgkXXwUpcJF5eb3u0OuGUUxtYRQzW1Wl46JJhRtSxVbgr988ippX9R9r+7fX9YaN0UdZTiBUzgHH66gAXfQhBZQUPAMr/DmoPPivDsfi9GSU+wcwx84nz+KI5Fo</latexit><latexit sha1_base64="Q3XUr6egFAOTzVnITKKG+KVC2QM=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVRIRdFl047KKfUAbymQ6aYdOZsLMjVBCP8ONC0Xc+jXu/BsnbRbaemDgcM69zLknTAQ36HnfTmltfWNzq7xd2dnd2z+oHh61jUo1ZS2qhNLdkBgmuGQt5ChYN9GMxKFgnXBym/udJ6YNV/IRpwkLYjKSPOKUoJV6/ZjgmBKRPcwG1ZpX9+ZwV4lfkBoUaA6qX/2homnMJFJBjOn5XoJBRjRyKtis0k8NSwidkBHrWSpJzEyQzSPP3DOrDN1IafskunP190ZGYmOmcWgn84hm2cvF/7xeitF1kHGZpMgkXXwUpcJF5eb3u0OuGUUxtYRQzW1Wl46JJhRtSxVbgr988ippX9R9r+7fX9YaN0UdZTiBUzgHH66gAXfQhBZQUPAMr/DmoPPivDsfi9GSU+wcwx84nz+KI5Fo</latexit><latexit sha1_base64="Q3XUr6egFAOTzVnITKKG+KVC2QM=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVRIRdFl047KKfUAbymQ6aYdOZsLMjVBCP8ONC0Xc+jXu/BsnbRbaemDgcM69zLknTAQ36HnfTmltfWNzq7xd2dnd2z+oHh61jUo1ZS2qhNLdkBgmuGQt5ChYN9GMxKFgnXBym/udJ6YNV/IRpwkLYjKSPOKUoJV6/ZjgmBKRPcwG1ZpX9+ZwV4lfkBoUaA6qX/2homnMJFJBjOn5XoJBRjRyKtis0k8NSwidkBHrWSpJzEyQzSPP3DOrDN1IafskunP190ZGYmOmcWgn84hm2cvF/7xeitF1kHGZpMgkXXwUpcJF5eb3u0OuGUUxtYRQzW1Wl46JJhRtSxVbgr988ippX9R9r+7fX9YaN0UdZTiBUzgHH66gAXfQhBZQUPAMr/DmoPPivDsfi9GSU+wcwx84nz+KI5Fo</latexit><latexit sha1_base64="Q3XUr6egFAOTzVnITKKG+KVC2QM=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVRIRdFl047KKfUAbymQ6aYdOZsLMjVBCP8ONC0Xc+jXu/BsnbRbaemDgcM69zLknTAQ36HnfTmltfWNzq7xd2dnd2z+oHh61jUo1ZS2qhNLdkBgmuGQt5ChYN9GMxKFgnXBym/udJ6YNV/IRpwkLYjKSPOKUoJV6/ZjgmBKRPcwG1ZpX9+ZwV4lfkBoUaA6qX/2homnMJFJBjOn5XoJBRjRyKtis0k8NSwidkBHrWSpJzEyQzSPP3DOrDN1IafskunP190ZGYmOmcWgn84hm2cvF/7xeitF1kHGZpMgkXXwUpcJF5eb3u0OuGUUxtYRQzW1Wl46JJhRtSxVbgr988ippX9R9r+7fX9YaN0UdZTiBUzgHH66gAXfQhBZQUPAMr/DmoPPivDsfi9GSU+wcwx84nz+KI5Fo</latexit>

�
<latexit sha1_base64="S2XWeZLfl/DBcqkmC18adcutedA=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKthbaUDbbTbN0P8LuRiihf8GLB0W8+oe8+W/ctDlo64OBx3szzMyLUs6M9f1vr7K2vrG5Vd2u7ezu7R/UD4+6RmWa0A5RXOlehA3lTNKOZZbTXqopFhGnj9HktvAfn6g2TMkHO01pKPBYspgRbAtp0E7YsN7wm/4caJUEJWlAifaw/jUYKZIJKi3h2Jh+4Kc2zLG2jHA6qw0yQ1NMJnhM+45KLKgJ8/mtM3TmlBGKlXYlLZqrvydyLIyZish1CmwTs+wV4n9eP7PxdZgzmWaWSrJYFGccWYWKx9GIaUosnzqCiWbuVkQSrDGxLp6aCyFYfnmVdC+agd8M7i8brZsyjiqcwCmcQwBX0II7aEMHCCTwDK/w5gnvxXv3PhatFa+cOYY/8D5/AOK5jh8=</latexit><latexit sha1_base64="S2XWeZLfl/DBcqkmC18adcutedA=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKthbaUDbbTbN0P8LuRiihf8GLB0W8+oe8+W/ctDlo64OBx3szzMyLUs6M9f1vr7K2vrG5Vd2u7ezu7R/UD4+6RmWa0A5RXOlehA3lTNKOZZbTXqopFhGnj9HktvAfn6g2TMkHO01pKPBYspgRbAtp0E7YsN7wm/4caJUEJWlAifaw/jUYKZIJKi3h2Jh+4Kc2zLG2jHA6qw0yQ1NMJnhM+45KLKgJ8/mtM3TmlBGKlXYlLZqrvydyLIyZish1CmwTs+wV4n9eP7PxdZgzmWaWSrJYFGccWYWKx9GIaUosnzqCiWbuVkQSrDGxLp6aCyFYfnmVdC+agd8M7i8brZsyjiqcwCmcQwBX0II7aEMHCCTwDK/w5gnvxXv3PhatFa+cOYY/8D5/AOK5jh8=</latexit><latexit sha1_base64="S2XWeZLfl/DBcqkmC18adcutedA=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKthbaUDbbTbN0P8LuRiihf8GLB0W8+oe8+W/ctDlo64OBx3szzMyLUs6M9f1vr7K2vrG5Vd2u7ezu7R/UD4+6RmWa0A5RXOlehA3lTNKOZZbTXqopFhGnj9HktvAfn6g2TMkHO01pKPBYspgRbAtp0E7YsN7wm/4caJUEJWlAifaw/jUYKZIJKi3h2Jh+4Kc2zLG2jHA6qw0yQ1NMJnhM+45KLKgJ8/mtM3TmlBGKlXYlLZqrvydyLIyZish1CmwTs+wV4n9eP7PxdZgzmWaWSrJYFGccWYWKx9GIaUosnzqCiWbuVkQSrDGxLp6aCyFYfnmVdC+agd8M7i8brZsyjiqcwCmcQwBX0II7aEMHCCTwDK/w5gnvxXv3PhatFa+cOYY/8D5/AOK5jh8=</latexit><latexit sha1_base64="S2XWeZLfl/DBcqkmC18adcutedA=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKthbaUDbbTbN0P8LuRiihf8GLB0W8+oe8+W/ctDlo64OBx3szzMyLUs6M9f1vr7K2vrG5Vd2u7ezu7R/UD4+6RmWa0A5RXOlehA3lTNKOZZbTXqopFhGnj9HktvAfn6g2TMkHO01pKPBYspgRbAtp0E7YsN7wm/4caJUEJWlAifaw/jUYKZIJKi3h2Jh+4Kc2zLG2jHA6qw0yQ1NMJnhM+45KLKgJ8/mtM3TmlBGKlXYlLZqrvydyLIyZish1CmwTs+wV4n9eP7PxdZgzmWaWSrJYFGccWYWKx9GIaUosnzqCiWbuVkQSrDGxLp6aCyFYfnmVdC+agd8M7i8brZsyjiqcwCmcQwBX0II7aEMHCCTwDK/w5gnvxXv3PhatFa+cOYY/8D5/AOK5jh8=</latexit>

◆
<latexit sha1_base64="2Prb/Ogcomlgqg4NVTNZl9IMFPs=">AAAB+HicbVDLSgMxFM34rPXRUZdugkVwVWZE0GXRjcsK9gGdodxJM21oJhmSjFCHfokbF4q49VPc+Tdm2llo64HA4Zx7uScnSjnTxvO+nbX1jc2t7cpOdXdv/6DmHh51tMwUoW0iuVS9CDTlTNC2YYbTXqooJBGn3WhyW/jdR6o0k+LBTFMaJjASLGYEjJUGbi1IwIwJ8Dxg0sBs4Na9hjcHXiV+SeqoRGvgfgVDSbKECkM4aN33vdSEOSjDCKezapBpmgKZwIj2LRWQUB3m8+AzfGaVIY6lsk8YPFd/b+SQaD1NIjtZxNTLXiH+5/UzE1+HORNpZqggi0NxxrGRuGgBD5mixPCpJUAUs1kxGYMCYmxXVVuCv/zlVdK5aPhew7+/rDdvyjoq6ASdonPkoyvURHeohdqIoAw9o1f05jw5L86787EYXXPKnWP0B87nD0PUk3g=</latexit><latexit sha1_base64="2Prb/Ogcomlgqg4NVTNZl9IMFPs=">AAAB+HicbVDLSgMxFM34rPXRUZdugkVwVWZE0GXRjcsK9gGdodxJM21oJhmSjFCHfokbF4q49VPc+Tdm2llo64HA4Zx7uScnSjnTxvO+nbX1jc2t7cpOdXdv/6DmHh51tMwUoW0iuVS9CDTlTNC2YYbTXqooJBGn3WhyW/jdR6o0k+LBTFMaJjASLGYEjJUGbi1IwIwJ8Dxg0sBs4Na9hjcHXiV+SeqoRGvgfgVDSbKECkM4aN33vdSEOSjDCKezapBpmgKZwIj2LRWQUB3m8+AzfGaVIY6lsk8YPFd/b+SQaD1NIjtZxNTLXiH+5/UzE1+HORNpZqggi0NxxrGRuGgBD5mixPCpJUAUs1kxGYMCYmxXVVuCv/zlVdK5aPhew7+/rDdvyjoq6ASdonPkoyvURHeohdqIoAw9o1f05jw5L86787EYXXPKnWP0B87nD0PUk3g=</latexit><latexit sha1_base64="2Prb/Ogcomlgqg4NVTNZl9IMFPs=">AAAB+HicbVDLSgMxFM34rPXRUZdugkVwVWZE0GXRjcsK9gGdodxJM21oJhmSjFCHfokbF4q49VPc+Tdm2llo64HA4Zx7uScnSjnTxvO+nbX1jc2t7cpOdXdv/6DmHh51tMwUoW0iuVS9CDTlTNC2YYbTXqooJBGn3WhyW/jdR6o0k+LBTFMaJjASLGYEjJUGbi1IwIwJ8Dxg0sBs4Na9hjcHXiV+SeqoRGvgfgVDSbKECkM4aN33vdSEOSjDCKezapBpmgKZwIj2LRWQUB3m8+AzfGaVIY6lsk8YPFd/b+SQaD1NIjtZxNTLXiH+5/UzE1+HORNpZqggi0NxxrGRuGgBD5mixPCpJUAUs1kxGYMCYmxXVVuCv/zlVdK5aPhew7+/rDdvyjoq6ASdonPkoyvURHeohdqIoAw9o1f05jw5L86787EYXXPKnWP0B87nD0PUk3g=</latexit><latexit sha1_base64="2Prb/Ogcomlgqg4NVTNZl9IMFPs=">AAAB+HicbVDLSgMxFM34rPXRUZdugkVwVWZE0GXRjcsK9gGdodxJM21oJhmSjFCHfokbF4q49VPc+Tdm2llo64HA4Zx7uScnSjnTxvO+nbX1jc2t7cpOdXdv/6DmHh51tMwUoW0iuVS9CDTlTNC2YYbTXqooJBGn3WhyW/jdR6o0k+LBTFMaJjASLGYEjJUGbi1IwIwJ8Dxg0sBs4Na9hjcHXiV+SeqoRGvgfgVDSbKECkM4aN33vdSEOSjDCKezapBpmgKZwIj2LRWQUB3m8+AzfGaVIY6lsk8YPFd/b+SQaD1NIjtZxNTLXiH+5/UzE1+HORNpZqggi0NxxrGRuGgBD5mixPCpJUAUs1kxGYMCYmxXVVuCv/zlVdK5aPhew7+/rDdvyjoq6ASdonPkoyvURHeohdqIoAw9o1f05jw5L86787EYXXPKnWP0B87nD0PUk3g=</latexit>Rr

<latexit sha1_base64="J/o/yX4w2JaRiVfYrVcHFKZCpaY=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKkBwDXjzGRx6QLGF20psMmZ1dZmaFsOQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2AkmN3O/84RK81g+mmmCfkRHkoecUWOlh/uBGpQrbtVdgKwTLycVyNEclL/6w5ilEUrDBNW657mJ8TOqDGcCZ6V+qjGhbEJH2LNU0gi1ny1OnZELqwxJGCtb0pCF+nsio5HW0yiwnRE1Y73qzcX/vF5qwrqfcZmkBiVbLgpTQUxM5n+TIVfIjJhaQpni9lbCxlRRZmw6JRuCt/ryOmlfVT236t1dVxr1PI4inME5XIIHNWjALTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3A+fwAxTo2x</latexit><latexit sha1_base64="J/o/yX4w2JaRiVfYrVcHFKZCpaY=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKkBwDXjzGRx6QLGF20psMmZ1dZmaFsOQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2AkmN3O/84RK81g+mmmCfkRHkoecUWOlh/uBGpQrbtVdgKwTLycVyNEclL/6w5ilEUrDBNW657mJ8TOqDGcCZ6V+qjGhbEJH2LNU0gi1ny1OnZELqwxJGCtb0pCF+nsio5HW0yiwnRE1Y73qzcX/vF5qwrqfcZmkBiVbLgpTQUxM5n+TIVfIjJhaQpni9lbCxlRRZmw6JRuCt/ryOmlfVT236t1dVxr1PI4inME5XIIHNWjALTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3A+fwAxTo2x</latexit><latexit sha1_base64="J/o/yX4w2JaRiVfYrVcHFKZCpaY=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKkBwDXjzGRx6QLGF20psMmZ1dZmaFsOQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2AkmN3O/84RK81g+mmmCfkRHkoecUWOlh/uBGpQrbtVdgKwTLycVyNEclL/6w5ilEUrDBNW657mJ8TOqDGcCZ6V+qjGhbEJH2LNU0gi1ny1OnZELqwxJGCtb0pCF+nsio5HW0yiwnRE1Y73qzcX/vF5qwrqfcZmkBiVbLgpTQUxM5n+TIVfIjJhaQpni9lbCxlRRZmw6JRuCt/ryOmlfVT236t1dVxr1PI4inME5XIIHNWjALTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3A+fwAxTo2x</latexit><latexit sha1_base64="J/o/yX4w2JaRiVfYrVcHFKZCpaY=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKkBwDXjzGRx6QLGF20psMmZ1dZmaFsOQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2AkmN3O/84RK81g+mmmCfkRHkoecUWOlh/uBGpQrbtVdgKwTLycVyNEclL/6w5ilEUrDBNW657mJ8TOqDGcCZ6V+qjGhbEJH2LNU0gi1ny1OnZELqwxJGCtb0pCF+nsio5HW0yiwnRE1Y73qzcX/vF5qwrqfcZmkBiVbLgpTQUxM5n+TIVfIjJhaQpni9lbCxlRRZmw6JRuCt/ryOmlfVT236t1dVxr1PI4inME5XIIHNWjALTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3A+fwAxTo2x</latexit>

W
<latexit sha1_base64="5r2I0wad77bSzyICVEspKQF+4Gk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzssV9yquwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IR1P+MySQ1KtloUpoKYmCy+JiOukBkxs4Qyxe2thE2ooszYbEo2BG/95U3Sual6btVr3VYa9TyOIlzAJVyDBzVowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AsTOM0Q==</latexit><latexit sha1_base64="5r2I0wad77bSzyICVEspKQF+4Gk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzssV9yquwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IR1P+MySQ1KtloUpoKYmCy+JiOukBkxs4Qyxe2thE2ooszYbEo2BG/95U3Sual6btVr3VYa9TyOIlzAJVyDBzVowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AsTOM0Q==</latexit><latexit sha1_base64="5r2I0wad77bSzyICVEspKQF+4Gk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzssV9yquwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IR1P+MySQ1KtloUpoKYmCy+JiOukBkxs4Qyxe2thE2ooszYbEo2BG/95U3Sual6btVr3VYa9TyOIlzAJVyDBzVowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AsTOM0Q==</latexit><latexit sha1_base64="5r2I0wad77bSzyICVEspKQF+4Gk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzssV9yquwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IR1P+MySQ1KtloUpoKYmCy+JiOukBkxs4Qyxe2thE2ooszYbEo2BG/95U3Sual6btVr3VYa9TyOIlzAJVyDBzVowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AsTOM0Q==</latexit>W †
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Figure 5.6. The subsystem error correction in (a) the Schrödinger picture
(b) the Heisenberg picture.

space and the code Hilbert space admit tensor product forms, respectively HA = KA ⊗ KA′

and HB = KB ⊗ KB′ . The goal is to encode the operators b supported on B in the physical

Hilbert space such that they are protected against the erasure of A′. In this case, the

necessary and sufficient condition generalizes the Knill-Laflamme conditions in (  5.6 ) to

W †a′W ∈ B′ . (5.19)

This is to be compared with the condition in ( 5.15 ) that can be written as

W †a′W = λI . (5.20)

It is a standard result in quantum error correction that (  5.19 ) is equivalent to the existence

of a map R : B → A such that

R(b)W = Wb . (5.21)

We provide proof of this for any von Neumann algebra in section  5.1.3 . Since PC [R(b), a′]PC =

0 for any error Ṽ ′
r = V ′

rW we have

R(b)Ṽ ′
r = Ṽ ′

r b (5.22)

or equivalently Φ(R(b)) = b; see figure  5.6 .
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<latexit sha1_base64="Z1UhPvvLB5VUexzI55Iil7u08qY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBi8cWTFtoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fikrZNMMfRZIhLVDalGwSX6hhuB3VQhjUOBnXByN/c7T6g0T+SDmaYYxHQkecQZNVZq+YNqza27C5B14hWkBgWag+pXf5iwLEZpmKBa9zw3NUFOleFM4KzSzzSmlE3oCHuWShqjDvLFoTNyYZUhiRJlSxqyUH9P5DTWehqHtjOmZqxXvbn4n9fLTHQb5FymmUHJlouiTBCTkPnXZMgVMiOmllCmuL2VsDFVlBmbTcWG4K2+vE7aV3XPrXut61rDLeIowxmcwyV4cAMNuIcm+MAA4Rle4c15dF6cd+dj2VpyiplT+APn8werw4zH</latexit><latexit sha1_base64="Z1UhPvvLB5VUexzI55Iil7u08qY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBi8cWTFtoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fikrZNMMfRZIhLVDalGwSX6hhuB3VQhjUOBnXByN/c7T6g0T+SDmaYYxHQkecQZNVZq+YNqza27C5B14hWkBgWag+pXf5iwLEZpmKBa9zw3NUFOleFM4KzSzzSmlE3oCHuWShqjDvLFoTNyYZUhiRJlSxqyUH9P5DTWehqHtjOmZqxXvbn4n9fLTHQb5FymmUHJlouiTBCTkPnXZMgVMiOmllCmuL2VsDFVlBmbTcWG4K2+vE7aV3XPrXut61rDLeIowxmcwyV4cAMNuIcm+MAA4Rle4c15dF6cd+dj2VpyiplT+APn8werw4zH</latexit><latexit sha1_base64="Z1UhPvvLB5VUexzI55Iil7u08qY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBi8cWTFtoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fikrZNMMfRZIhLVDalGwSX6hhuB3VQhjUOBnXByN/c7T6g0T+SDmaYYxHQkecQZNVZq+YNqza27C5B14hWkBgWag+pXf5iwLEZpmKBa9zw3NUFOleFM4KzSzzSmlE3oCHuWShqjDvLFoTNyYZUhiRJlSxqyUH9P5DTWehqHtjOmZqxXvbn4n9fLTHQb5FymmUHJlouiTBCTkPnXZMgVMiOmllCmuL2VsDFVlBmbTcWG4K2+vE7aV3XPrXut61rDLeIowxmcwyV4cAMNuIcm+MAA4Rle4c15dF6cd+dj2VpyiplT+APn8werw4zH</latexit><latexit sha1_base64="Z1UhPvvLB5VUexzI55Iil7u08qY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBi8cWTFtoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fikrZNMMfRZIhLVDalGwSX6hhuB3VQhjUOBnXByN/c7T6g0T+SDmaYYxHQkecQZNVZq+YNqza27C5B14hWkBgWag+pXf5iwLEZpmKBa9zw3NUFOleFM4KzSzzSmlE3oCHuWShqjDvLFoTNyYZUhiRJlSxqyUH9P5DTWehqHtjOmZqxXvbn4n9fLTHQb5FymmUHJlouiTBCTkPnXZMgVMiOmllCmuL2VsDFVlBmbTcWG4K2+vE7aV3XPrXut61rDLeIowxmcwyV4cAMNuIcm+MAA4Rle4c15dF6cd+dj2VpyiplT+APn8werw4zH</latexit>
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<latexit sha1_base64="Z1UhPvvLB5VUexzI55Iil7u08qY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBi8cWTFtoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fikrZNMMfRZIhLVDalGwSX6hhuB3VQhjUOBnXByN/c7T6g0T+SDmaYYxHQkecQZNVZq+YNqza27C5B14hWkBgWag+pXf5iwLEZpmKBa9zw3NUFOleFM4KzSzzSmlE3oCHuWShqjDvLFoTNyYZUhiRJlSxqyUH9P5DTWehqHtjOmZqxXvbn4n9fLTHQb5FymmUHJlouiTBCTkPnXZMgVMiOmllCmuL2VsDFVlBmbTcWG4K2+vE7aV3XPrXut61rDLeIowxmcwyV4cAMNuIcm+MAA4Rle4c15dF6cd+dj2VpyiplT+APn8werw4zH</latexit><latexit sha1_base64="Z1UhPvvLB5VUexzI55Iil7u08qY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBi8cWTFtoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fikrZNMMfRZIhLVDalGwSX6hhuB3VQhjUOBnXByN/c7T6g0T+SDmaYYxHQkecQZNVZq+YNqza27C5B14hWkBgWag+pXf5iwLEZpmKBa9zw3NUFOleFM4KzSzzSmlE3oCHuWShqjDvLFoTNyYZUhiRJlSxqyUH9P5DTWehqHtjOmZqxXvbn4n9fLTHQb5FymmUHJlouiTBCTkPnXZMgVMiOmllCmuL2VsDFVlBmbTcWG4K2+vE7aV3XPrXut61rDLeIowxmcwyV4cAMNuIcm+MAA4Rle4c15dF6cd+dj2VpyiplT+APn8werw4zH</latexit><latexit sha1_base64="Z1UhPvvLB5VUexzI55Iil7u08qY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBi8cWTFtoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fikrZNMMfRZIhLVDalGwSX6hhuB3VQhjUOBnXByN/c7T6g0T+SDmaYYxHQkecQZNVZq+YNqza27C5B14hWkBgWag+pXf5iwLEZpmKBa9zw3NUFOleFM4KzSzzSmlE3oCHuWShqjDvLFoTNyYZUhiRJlSxqyUH9P5DTWehqHtjOmZqxXvbn4n9fLTHQb5FymmUHJlouiTBCTkPnXZMgVMiOmllCmuL2VsDFVlBmbTcWG4K2+vE7aV3XPrXut61rDLeIowxmcwyV4cAMNuIcm+MAA4Rle4c15dF6cd+dj2VpyiplT+APn8werw4zH</latexit><latexit sha1_base64="Z1UhPvvLB5VUexzI55Iil7u08qY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBi8cWTFtoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fikrZNMMfRZIhLVDalGwSX6hhuB3VQhjUOBnXByN/c7T6g0T+SDmaYYxHQkecQZNVZq+YNqza27C5B14hWkBgWag+pXf5iwLEZpmKBa9zw3NUFOleFM4KzSzzSmlE3oCHuWShqjDvLFoTNyYZUhiRJlSxqyUH9P5DTWehqHtjOmZqxXvbn4n9fLTHQb5FymmUHJlouiTBCTkPnXZMgVMiOmllCmuL2VsDFVlBmbTcWG4K2+vE7aV3XPrXut61rDLeIowxmcwyV4cAMNuIcm+MAA4Rle4c15dF6cd+dj2VpyiplT+APn8werw4zH</latexit>

U
<latexit sha1_base64="Z1UhPvvLB5VUexzI55Iil7u08qY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBi8cWTFtoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fikrZNMMfRZIhLVDalGwSX6hhuB3VQhjUOBnXByN/c7T6g0T+SDmaYYxHQkecQZNVZq+YNqza27C5B14hWkBgWag+pXf5iwLEZpmKBa9zw3NUFOleFM4KzSzzSmlE3oCHuWShqjDvLFoTNyYZUhiRJlSxqyUH9P5DTWehqHtjOmZqxXvbn4n9fLTHQb5FymmUHJlouiTBCTkPnXZMgVMiOmllCmuL2VsDFVlBmbTcWG4K2+vE7aV3XPrXut61rDLeIowxmcwyV4cAMNuIcm+MAA4Rle4c15dF6cd+dj2VpyiplT+APn8werw4zH</latexit><latexit sha1_base64="Z1UhPvvLB5VUexzI55Iil7u08qY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBi8cWTFtoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fikrZNMMfRZIhLVDalGwSX6hhuB3VQhjUOBnXByN/c7T6g0T+SDmaYYxHQkecQZNVZq+YNqza27C5B14hWkBgWag+pXf5iwLEZpmKBa9zw3NUFOleFM4KzSzzSmlE3oCHuWShqjDvLFoTNyYZUhiRJlSxqyUH9P5DTWehqHtjOmZqxXvbn4n9fLTHQb5FymmUHJlouiTBCTkPnXZMgVMiOmllCmuL2VsDFVlBmbTcWG4K2+vE7aV3XPrXut61rDLeIowxmcwyV4cAMNuIcm+MAA4Rle4c15dF6cd+dj2VpyiplT+APn8werw4zH</latexit><latexit sha1_base64="Z1UhPvvLB5VUexzI55Iil7u08qY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBi8cWTFtoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fikrZNMMfRZIhLVDalGwSX6hhuB3VQhjUOBnXByN/c7T6g0T+SDmaYYxHQkecQZNVZq+YNqza27C5B14hWkBgWag+pXf5iwLEZpmKBa9zw3NUFOleFM4KzSzzSmlE3oCHuWShqjDvLFoTNyYZUhiRJlSxqyUH9P5DTWehqHtjOmZqxXvbn4n9fLTHQb5FymmUHJlouiTBCTkPnXZMgVMiOmllCmuL2VsDFVlBmbTcWG4K2+vE7aV3XPrXut61rDLeIowxmcwyV4cAMNuIcm+MAA4Rle4c15dF6cd+dj2VpyiplT+APn8werw4zH</latexit><latexit sha1_base64="Z1UhPvvLB5VUexzI55Iil7u08qY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBi8cWTFtoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fikrZNMMfRZIhLVDalGwSX6hhuB3VQhjUOBnXByN/c7T6g0T+SDmaYYxHQkecQZNVZq+YNqza27C5B14hWkBgWag+pXf5iwLEZpmKBa9zw3NUFOleFM4KzSzzSmlE3oCHuWShqjDvLFoTNyYZUhiRJlSxqyUH9P5DTWehqHtjOmZqxXvbn4n9fLTHQb5FymmUHJlouiTBCTkPnXZMgVMiOmllCmuL2VsDFVlBmbTcWG4K2+vE7aV3XPrXut61rDLeIowxmcwyV4cAMNuIcm+MAA4Rle4c15dF6cd+dj2VpyiplT+APn8werw4zH</latexit>
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<latexit sha1_base64="Z1UhPvvLB5VUexzI55Iil7u08qY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBi8cWTFtoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fikrZNMMfRZIhLVDalGwSX6hhuB3VQhjUOBnXByN/c7T6g0T+SDmaYYxHQkecQZNVZq+YNqza27C5B14hWkBgWag+pXf5iwLEZpmKBa9zw3NUFOleFM4KzSzzSmlE3oCHuWShqjDvLFoTNyYZUhiRJlSxqyUH9P5DTWehqHtjOmZqxXvbn4n9fLTHQb5FymmUHJlouiTBCTkPnXZMgVMiOmllCmuL2VsDFVlBmbTcWG4K2+vE7aV3XPrXut61rDLeIowxmcwyV4cAMNuIcm+MAA4Rle4c15dF6cd+dj2VpyiplT+APn8werw4zH</latexit><latexit sha1_base64="Z1UhPvvLB5VUexzI55Iil7u08qY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBi8cWTFtoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fikrZNMMfRZIhLVDalGwSX6hhuB3VQhjUOBnXByN/c7T6g0T+SDmaYYxHQkecQZNVZq+YNqza27C5B14hWkBgWag+pXf5iwLEZpmKBa9zw3NUFOleFM4KzSzzSmlE3oCHuWShqjDvLFoTNyYZUhiRJlSxqyUH9P5DTWehqHtjOmZqxXvbn4n9fLTHQb5FymmUHJlouiTBCTkPnXZMgVMiOmllCmuL2VsDFVlBmbTcWG4K2+vE7aV3XPrXut61rDLeIowxmcwyV4cAMNuIcm+MAA4Rle4c15dF6cd+dj2VpyiplT+APn8werw4zH</latexit><latexit sha1_base64="Z1UhPvvLB5VUexzI55Iil7u08qY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBi8cWTFtoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fikrZNMMfRZIhLVDalGwSX6hhuB3VQhjUOBnXByN/c7T6g0T+SDmaYYxHQkecQZNVZq+YNqza27C5B14hWkBgWag+pXf5iwLEZpmKBa9zw3NUFOleFM4KzSzzSmlE3oCHuWShqjDvLFoTNyYZUhiRJlSxqyUH9P5DTWehqHtjOmZqxXvbn4n9fLTHQb5FymmUHJlouiTBCTkPnXZMgVMiOmllCmuL2VsDFVlBmbTcWG4K2+vE7aV3XPrXut61rDLeIowxmcwyV4cAMNuIcm+MAA4Rle4c15dF6cd+dj2VpyiplT+APn8werw4zH</latexit><latexit sha1_base64="Z1UhPvvLB5VUexzI55Iil7u08qY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBi8cWTFtoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fikrZNMMfRZIhLVDalGwSX6hhuB3VQhjUOBnXByN/c7T6g0T+SDmaYYxHQkecQZNVZq+YNqza27C5B14hWkBgWag+pXf5iwLEZpmKBa9zw3NUFOleFM4KzSzzSmlE3oCHuWShqjDvLFoTNyYZUhiRJlSxqyUH9P5DTWehqHtjOmZqxXvbn4n9fLTHQb5FymmUHJlouiTBCTkPnXZMgVMiOmllCmuL2VsDFVlBmbTcWG4K2+vE7aV3XPrXut61rDLeIowxmcwyV4cAMNuIcm+MAA4Rle4c15dF6cd+dj2VpyiplT+APn8werw4zH</latexit>
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<latexit sha1_base64="Uyq7G4Dxh9a11nsamVKJYqVgWHE=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBZBEEoiBV0W3HRZwT6gDWEynbRDJ5MwM1FK7Ke4caGIW7/EnX/jpM1CWw8MHM65l3vmBAlnSjvOt1Xa2Nza3invVvb2Dw6P7OpxV8WpJLRDYh7LfoAV5UzQjmaa034iKY4CTnvB9Db3ew9UKhaLez1LqBfhsWAhI1gbyberwwjrCcE8a839TF26c9+uOXVnAbRO3ILUoEDbt7+Go5ikERWacKzUwHUS7WVYakY4nVeGqaIJJlM8pgNDBY6o8rJF9Dk6N8oIhbE0T2i0UH9vZDhSahYFZjIPqla9XPzPG6Q6vPEyJpJUU0GWh8KUIx2jvAc0YpISzWeGYCKZyYrIBEtMtGmrYkpwV7+8TrpXddepu3eNWrNR1FGGUziDC3DhGprQgjZ0gMAjPMMrvFlP1ov1bn0sR0tWsXMCf2B9/gAu6pPj</latexit><latexit sha1_base64="Uyq7G4Dxh9a11nsamVKJYqVgWHE=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBZBEEoiBV0W3HRZwT6gDWEynbRDJ5MwM1FK7Ke4caGIW7/EnX/jpM1CWw8MHM65l3vmBAlnSjvOt1Xa2Nza3invVvb2Dw6P7OpxV8WpJLRDYh7LfoAV5UzQjmaa034iKY4CTnvB9Db3ew9UKhaLez1LqBfhsWAhI1gbyberwwjrCcE8a839TF26c9+uOXVnAbRO3ILUoEDbt7+Go5ikERWacKzUwHUS7WVYakY4nVeGqaIJJlM8pgNDBY6o8rJF9Dk6N8oIhbE0T2i0UH9vZDhSahYFZjIPqla9XPzPG6Q6vPEyJpJUU0GWh8KUIx2jvAc0YpISzWeGYCKZyYrIBEtMtGmrYkpwV7+8TrpXddepu3eNWrNR1FGGUziDC3DhGprQgjZ0gMAjPMMrvFlP1ov1bn0sR0tWsXMCf2B9/gAu6pPj</latexit><latexit sha1_base64="Uyq7G4Dxh9a11nsamVKJYqVgWHE=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBZBEEoiBV0W3HRZwT6gDWEynbRDJ5MwM1FK7Ke4caGIW7/EnX/jpM1CWw8MHM65l3vmBAlnSjvOt1Xa2Nza3invVvb2Dw6P7OpxV8WpJLRDYh7LfoAV5UzQjmaa034iKY4CTnvB9Db3ew9UKhaLez1LqBfhsWAhI1gbyberwwjrCcE8a839TF26c9+uOXVnAbRO3ILUoEDbt7+Go5ikERWacKzUwHUS7WVYakY4nVeGqaIJJlM8pgNDBY6o8rJF9Dk6N8oIhbE0T2i0UH9vZDhSahYFZjIPqla9XPzPG6Q6vPEyJpJUU0GWh8KUIx2jvAc0YpISzWeGYCKZyYrIBEtMtGmrYkpwV7+8TrpXddepu3eNWrNR1FGGUziDC3DhGprQgjZ0gMAjPMMrvFlP1ov1bn0sR0tWsXMCf2B9/gAu6pPj</latexit><latexit sha1_base64="Uyq7G4Dxh9a11nsamVKJYqVgWHE=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBZBEEoiBV0W3HRZwT6gDWEynbRDJ5MwM1FK7Ke4caGIW7/EnX/jpM1CWw8MHM65l3vmBAlnSjvOt1Xa2Nza3invVvb2Dw6P7OpxV8WpJLRDYh7LfoAV5UzQjmaa034iKY4CTnvB9Db3ew9UKhaLez1LqBfhsWAhI1gbyberwwjrCcE8a839TF26c9+uOXVnAbRO3ILUoEDbt7+Go5ikERWacKzUwHUS7WVYakY4nVeGqaIJJlM8pgNDBY6o8rJF9Dk6N8oIhbE0T2i0UH9vZDhSahYFZjIPqla9XPzPG6Q6vPEyJpJUU0GWh8KUIx2jvAc0YpISzWeGYCKZyYrIBEtMtGmrYkpwV7+8TrpXddepu3eNWrNR1FGGUziDC3DhGprQgjZ0gMAjPMMrvFlP1ov1bn0sR0tWsXMCf2B9/gAu6pPj</latexit>
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<latexit sha1_base64="dgbdUaZp0hlSw4fjAfb+y1eEuEs=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1gEVyWRgi4LbrqsYB/QhjCZTtqhk0mYmQg15EvcuFDErZ/izr9x0mahrQcGDufcyz1zgoQzpR3n26psbe/s7lX3aweHR8d1++S0r+JUEtojMY/lMMCKciZoTzPN6TCRFEcBp4Ngflf4g0cqFYvFg14k1IvwVLCQEayN5Nv1cYT1jGCedXI/U7lvN5ymswTaJG5JGlCi69tf40lM0ogKTThWauQ6ifYyLDUjnOa1capogskcT+nIUIEjqrxsGTxHl0aZoDCW5gmNlurvjQxHSi2iwEwWMdW6V4j/eaNUh7dexkSSairI6lCYcqRjVLSAJkxSovnCEEwkM1kRmWGJiTZd1UwJ7vqXN0n/uuk6Tfe+1Wi3yjqqcA4XcAUu3EAbOtCFHhBI4Rle4c16sl6sd+tjNVqxyp0z+APr8wdNHpNz</latexit><latexit sha1_base64="dgbdUaZp0hlSw4fjAfb+y1eEuEs=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1gEVyWRgi4LbrqsYB/QhjCZTtqhk0mYmQg15EvcuFDErZ/izr9x0mahrQcGDufcyz1zgoQzpR3n26psbe/s7lX3aweHR8d1++S0r+JUEtojMY/lMMCKciZoTzPN6TCRFEcBp4Ngflf4g0cqFYvFg14k1IvwVLCQEayN5Nv1cYT1jGCedXI/U7lvN5ymswTaJG5JGlCi69tf40lM0ogKTThWauQ6ifYyLDUjnOa1capogskcT+nIUIEjqrxsGTxHl0aZoDCW5gmNlurvjQxHSi2iwEwWMdW6V4j/eaNUh7dexkSSairI6lCYcqRjVLSAJkxSovnCEEwkM1kRmWGJiTZd1UwJ7vqXN0n/uuk6Tfe+1Wi3yjqqcA4XcAUu3EAbOtCFHhBI4Rle4c16sl6sd+tjNVqxyp0z+APr8wdNHpNz</latexit><latexit sha1_base64="dgbdUaZp0hlSw4fjAfb+y1eEuEs=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1gEVyWRgi4LbrqsYB/QhjCZTtqhk0mYmQg15EvcuFDErZ/izr9x0mahrQcGDufcyz1zgoQzpR3n26psbe/s7lX3aweHR8d1++S0r+JUEtojMY/lMMCKciZoTzPN6TCRFEcBp4Ngflf4g0cqFYvFg14k1IvwVLCQEayN5Nv1cYT1jGCedXI/U7lvN5ymswTaJG5JGlCi69tf40lM0ogKTThWauQ6ifYyLDUjnOa1capogskcT+nIUIEjqrxsGTxHl0aZoDCW5gmNlurvjQxHSi2iwEwWMdW6V4j/eaNUh7dexkSSairI6lCYcqRjVLSAJkxSovnCEEwkM1kRmWGJiTZd1UwJ7vqXN0n/uuk6Tfe+1Wi3yjqqcA4XcAUu3EAbOtCFHhBI4Rle4c16sl6sd+tjNVqxyp0z+APr8wdNHpNz</latexit><latexit sha1_base64="dgbdUaZp0hlSw4fjAfb+y1eEuEs=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1gEVyWRgi4LbrqsYB/QhjCZTtqhk0mYmQg15EvcuFDErZ/izr9x0mahrQcGDufcyz1zgoQzpR3n26psbe/s7lX3aweHR8d1++S0r+JUEtojMY/lMMCKciZoTzPN6TCRFEcBp4Ngflf4g0cqFYvFg14k1IvwVLCQEayN5Nv1cYT1jGCedXI/U7lvN5ymswTaJG5JGlCi69tf40lM0ogKTThWauQ6ifYyLDUjnOa1capogskcT+nIUIEjqrxsGTxHl0aZoDCW5gmNlurvjQxHSi2iwEwWMdW6V4j/eaNUh7dexkSSairI6lCYcqRjVLSAJkxSovnCEEwkM1kRmWGJiTZd1UwJ7vqXN0n/uuk6Tfe+1Wi3yjqqcA4XcAUu3EAbOtCFHhBI4Rle4c16sl6sd+tjNVqxyp0z+APr8wdNHpNz</latexit>
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<latexit sha1_base64="uVByG7r0znAxWqYqavkzz9fXIR8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF48VTVtoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fikrZNMMfRZIhLVDalGwSX6hhuB3VQhjUOBnXByO/c7T6g0T+SjmaYYxHQkecQZNVZ66Az0oFpz6+4CZJ14BalBgdag+tUfJiyLURomqNY9z01NkFNlOBM4q/QzjSllEzrCnqWSxqiDfHHqjFxYZUiiRNmShizU3xM5jbWexqHtjKkZ61VvLv7n9TIT3QQ5l2lmULLloigTxCRk/jcZcoXMiKkllClubyVsTBVlxqZTsSF4qy+vk/ZV3XPr3n2j1mwUcZThDM7hEjy4hibcQQt8YDCCZ3iFN0c4L86787FsLTnFzCn8gfP5Azk8jbM=</latexit><latexit sha1_base64="uVByG7r0znAxWqYqavkzz9fXIR8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF48VTVtoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fikrZNMMfRZIhLVDalGwSX6hhuB3VQhjUOBnXByO/c7T6g0T+SjmaYYxHQkecQZNVZ66Az0oFpz6+4CZJ14BalBgdag+tUfJiyLURomqNY9z01NkFNlOBM4q/QzjSllEzrCnqWSxqiDfHHqjFxYZUiiRNmShizU3xM5jbWexqHtjKkZ61VvLv7n9TIT3QQ5l2lmULLloigTxCRk/jcZcoXMiKkllClubyVsTBVlxqZTsSF4qy+vk/ZV3XPr3n2j1mwUcZThDM7hEjy4hibcQQt8YDCCZ3iFN0c4L86787FsLTnFzCn8gfP5Azk8jbM=</latexit><latexit sha1_base64="uVByG7r0znAxWqYqavkzz9fXIR8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF48VTVtoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fikrZNMMfRZIhLVDalGwSX6hhuB3VQhjUOBnXByO/c7T6g0T+SjmaYYxHQkecQZNVZ66Az0oFpz6+4CZJ14BalBgdag+tUfJiyLURomqNY9z01NkFNlOBM4q/QzjSllEzrCnqWSxqiDfHHqjFxYZUiiRNmShizU3xM5jbWexqHtjKkZ61VvLv7n9TIT3QQ5l2lmULLloigTxCRk/jcZcoXMiKkllClubyVsTBVlxqZTsSF4qy+vk/ZV3XPr3n2j1mwUcZThDM7hEjy4hibcQQt8YDCCZ3iFN0c4L86787FsLTnFzCn8gfP5Azk8jbM=</latexit><latexit sha1_base64="uVByG7r0znAxWqYqavkzz9fXIR8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF48VTVtoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fikrZNMMfRZIhLVDalGwSX6hhuB3VQhjUOBnXByO/c7T6g0T+SjmaYYxHQkecQZNVZ66Az0oFpz6+4CZJ14BalBgdag+tUfJiyLURomqNY9z01NkFNlOBM4q/QzjSllEzrCnqWSxqiDfHHqjFxYZUiiRNmShizU3xM5jbWexqHtjKkZ61VvLv7n9TIT3QQ5l2lmULLloigTxCRk/jcZcoXMiKkllClubyVsTBVlxqZTsSF4qy+vk/ZV3XPr3n2j1mwUcZThDM7hEjy4hibcQQt8YDCCZ3iFN0c4L86787FsLTnFzCn8gfP5Azk8jbM=</latexit>

Figure 5.7. A layer of MERA is an isometry Ws : Hs+1 → Hs that is
comprised of two layers: the coarse-graining isometries V and the local disen-
tangling unitaries U .

Entanglement renormalization

As an explicit example of the connection between the real-space renormalization and

the quantum error correction codes, we consider a MERA tensor network. A MERA is

a sequence of increasingly coarse-grained lattices {L0,L1, · · · ,Ln} and their corresponding

Hilbert spaces {H0,H1, · · · ,Hn}. The Hilbert space Hs describes the states of the theory

at length scale ls and l0 < l1 < · · · < ln. The states of H0 are deep in the UV, and the

states of Hn are in the IR. At each site of every lattice Ls we have a local Hilbert space

that we take to be a qudit for simplicity. A sequence of isometries Ws : Hs+1 → Hs embed

Hs+1 into the Hilbert space of less coarse-grained states Hs. In the standard MERA, each

such isometry is comprised of a layer of local coarse-graining isometries V followed by a

layer of disentangling unitaries U ; see figure  5.7 . The hierarchical structure of correlations in

MERA allows for states with long-range correlations. The isometries Ws can be understood

as maps that prepare the states W1W2 · · ·Wn |Ψn〉 with long-range correlations. Below, we

summarize the argument presented in [ 81 ] for the error correction properties of MERA.

In the Heisenberg picture, MERA is a renormalization map for the operators: As → As+1

where As is the algebra of observables of the Hilbert space Hs; see figure  5.8 :

α(as) = W †
s asWs . (5.23)
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(a)
<latexit sha1_base64="ZJXqlcQKCbeRhG+p3AGzEb2B9z4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkoiBT0WvHisaD+gDWWy3bRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TRVmLxiJW3QA1E1yyluFGsG6iGEaBYJ1gcjv3O09MaR7LRzNNmB/hSPKQUzRWeqji5aBccWvuAmSdeDmpQI7moPzVH8Y0jZg0VKDWPc9NjJ+hMpwKNiv1U80SpBMcsZ6lEiOm/Wxx6oxcWGVIwljZkoYs1N8TGUZaT6PAdkZoxnrVm4v/eb3UhDd+xmWSGibpclGYCmJiMv+bDLli1IipJUgVt7cSOkaF1Nh0SjYEb/XlddK+qnluzbuvVxr1PI4inME5VMGDa2jAHTShBRRG8Ayv8OYI58V5dz6WrQUnnzmFP3A+fwCEdY08</latexit><latexit sha1_base64="ZJXqlcQKCbeRhG+p3AGzEb2B9z4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkoiBT0WvHisaD+gDWWy3bRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TRVmLxiJW3QA1E1yyluFGsG6iGEaBYJ1gcjv3O09MaR7LRzNNmB/hSPKQUzRWeqji5aBccWvuAmSdeDmpQI7moPzVH8Y0jZg0VKDWPc9NjJ+hMpwKNiv1U80SpBMcsZ6lEiOm/Wxx6oxcWGVIwljZkoYs1N8TGUZaT6PAdkZoxnrVm4v/eb3UhDd+xmWSGibpclGYCmJiMv+bDLli1IipJUgVt7cSOkaF1Nh0SjYEb/XlddK+qnluzbuvVxr1PI4inME5VMGDa2jAHTShBRRG8Ayv8OYI58V5dz6WrQUnnzmFP3A+fwCEdY08</latexit><latexit sha1_base64="ZJXqlcQKCbeRhG+p3AGzEb2B9z4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkoiBT0WvHisaD+gDWWy3bRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TRVmLxiJW3QA1E1yyluFGsG6iGEaBYJ1gcjv3O09MaR7LRzNNmB/hSPKQUzRWeqji5aBccWvuAmSdeDmpQI7moPzVH8Y0jZg0VKDWPc9NjJ+hMpwKNiv1U80SpBMcsZ6lEiOm/Wxx6oxcWGVIwljZkoYs1N8TGUZaT6PAdkZoxnrVm4v/eb3UhDd+xmWSGibpclGYCmJiMv+bDLli1IipJUgVt7cSOkaF1Nh0SjYEb/XlddK+qnluzbuvVxr1PI4inME5VMGDa2jAHTShBRRG8Ayv8OYI58V5dz6WrQUnnzmFP3A+fwCEdY08</latexit><latexit sha1_base64="ZJXqlcQKCbeRhG+p3AGzEb2B9z4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkoiBT0WvHisaD+gDWWy3bRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TRVmLxiJW3QA1E1yyluFGsG6iGEaBYJ1gcjv3O09MaR7LRzNNmB/hSPKQUzRWeqji5aBccWvuAmSdeDmpQI7moPzVH8Y0jZg0VKDWPc9NjJ+hMpwKNiv1U80SpBMcsZ6lEiOm/Wxx6oxcWGVIwljZkoYs1N8TGUZaT6PAdkZoxnrVm4v/eb3UhDd+xmWSGibpclGYCmJiMv+bDLli1IipJUgVt7cSOkaF1Nh0SjYEb/XlddK+qnluzbuvVxr1PI4inME5VMGDa2jAHTShBRRG8Ayv8OYI58V5dz6WrQUnnzmFP3A+fwCEdY08</latexit>

(b)
<latexit sha1_base64="OMH3Ai2M26jES4ma0T9AUgqUBJ4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkoiBT0WvHisaD+gDWWz3bRLN5uwOxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777RQ2Nre2d4q7pb39g8Oj8vFJ28SpZrzFYhnrbkANl0LxFgqUvJtoTqNA8k4wuZ37nSeujYjVI04T7kd0pEQoGEUrPVSDy0G54tbcBcg68XJSgRzNQfmrP4xZGnGFTFJjep6boJ9RjYJJPiv1U8MTyiZ0xHuWKhpx42eLU2fkwipDEsbalkKyUH9PZDQyZhoFtjOiODar3lz8z+ulGN74mVBJilyx5aIwlQRjMv+bDIXmDOXUEsq0sLcSNqaaMrTplGwI3urL66R9VfPcmndfrzTqeRxFOINzqIIH19CAO2hCCxiM4Ble4c2Rzovz7nwsWwtOPnMKf+B8/gCF+o09</latexit><latexit sha1_base64="OMH3Ai2M26jES4ma0T9AUgqUBJ4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkoiBT0WvHisaD+gDWWz3bRLN5uwOxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777RQ2Nre2d4q7pb39g8Oj8vFJ28SpZrzFYhnrbkANl0LxFgqUvJtoTqNA8k4wuZ37nSeujYjVI04T7kd0pEQoGEUrPVSDy0G54tbcBcg68XJSgRzNQfmrP4xZGnGFTFJjep6boJ9RjYJJPiv1U8MTyiZ0xHuWKhpx42eLU2fkwipDEsbalkKyUH9PZDQyZhoFtjOiODar3lz8z+ulGN74mVBJilyx5aIwlQRjMv+bDIXmDOXUEsq0sLcSNqaaMrTplGwI3urL66R9VfPcmndfrzTqeRxFOINzqIIH19CAO2hCCxiM4Ble4c2Rzovz7nwsWwtOPnMKf+B8/gCF+o09</latexit><latexit sha1_base64="OMH3Ai2M26jES4ma0T9AUgqUBJ4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkoiBT0WvHisaD+gDWWz3bRLN5uwOxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777RQ2Nre2d4q7pb39g8Oj8vFJ28SpZrzFYhnrbkANl0LxFgqUvJtoTqNA8k4wuZ37nSeujYjVI04T7kd0pEQoGEUrPVSDy0G54tbcBcg68XJSgRzNQfmrP4xZGnGFTFJjep6boJ9RjYJJPiv1U8MTyiZ0xHuWKhpx42eLU2fkwipDEsbalkKyUH9PZDQyZhoFtjOiODar3lz8z+ulGN74mVBJilyx5aIwlQRjMv+bDIXmDOXUEsq0sLcSNqaaMrTplGwI3urL66R9VfPcmndfrzTqeRxFOINzqIIH19CAO2hCCxiM4Ble4c2Rzovz7nwsWwtOPnMKf+B8/gCF+o09</latexit><latexit sha1_base64="OMH3Ai2M26jES4ma0T9AUgqUBJ4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkoiBT0WvHisaD+gDWWz3bRLN5uwOxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777RQ2Nre2d4q7pb39g8Oj8vFJ28SpZrzFYhnrbkANl0LxFgqUvJtoTqNA8k4wuZ37nSeujYjVI04T7kd0pEQoGEUrPVSDy0G54tbcBcg68XJSgRzNQfmrP4xZGnGFTFJjep6boJ9RjYJJPiv1U8MTyiZ0xHuWKhpx42eLU2fkwipDEsbalkKyUH9PZDQyZhoFtjOiODar3lz8z+ulGN74mVBJilyx5aIwlQRjMv+bDIXmDOXUEsq0sLcSNqaaMrTplGwI3urL66R9VfPcmndfrzTqeRxFOINzqIIH19CAO2hCCxiM4Ble4c2Rzovz7nwsWwtOPnMKf+B8/gCF+o09</latexit>

<latexit sha1_base64="Ejr1Hja6uAX/cPnalURtSpX5myU=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3BPUY8OIxonlAsoTZSW8yZHZ2mZkVQsgnePGgiFe/yJt/4yTZgyYWNBRV3XR3BYng2rjut5Pb2Nza3snvFvb2Dw6PiscnLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb+d++wmV5rF8NJME/YgOJQ85o8ZKD2V22S+W3Iq7AFknXkZKkKHRL371BjFLI5SGCap113MT40+pMpwJnBV6qcaEsjEdYtdSSSPU/nRx6oxcWGVAwljZkoYs1N8TUxppPYkC2xlRM9Kr3lz8z+umJrzxp1wmqUHJlovCVBATk/nfZMAVMiMmllCmuL2VsBFVlBmbTsGG4K2+vE5a1Yp3Vane10r1WhZHHs7gHMrgwTXU4Q4a0AQGQ3iGV3hzhPPivDsfy9ack82cwh84nz+JyY1F</latexit>

(c)

<latexit sha1_base64="2mQ/2tonE135N3Pn5iuRnOiJCxo=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Kkkp6rHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzU7AxKZbfiLkDWiZeTMuRoDEpf/WHM0gilYYJq3fPcxPgZVYYzgbNiP9WYUDahI+xZKmmE2s8Wh87IpVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNkUbgrf68jppVyvedaXarJXrtTyOApzDBVyBBzdQh3toQAsYIDzDK7w5j86L8+58LFs3nHzmDP7A+fwBskmM1A==</latexit>

W

<latexit sha1_base64="ja6YX3yfR7HHRytRBrCy3zYUEio=">AAAB8HicbVBNS8NAEJ34WetX1aOXxSJ4Kkkp6rHgxWMF+yFtLJvNJl26uwm7G6GE/govHhTx6s/x5r9x2+agrQ8GHu/NMDMvSDnTxnW/nbX1jc2t7dJOeXdv/+CwcnTc0UmmCG2ThCeqF2BNOZO0bZjhtJcqikXAaTcY38z87hNVmiXy3kxS6gscSxYxgo2VHrqPgxDHMVXDStWtuXOgVeIVpAoFWsPK1yBMSCaoNIRjrfuemxo/x8owwum0PMg0TTEZ45j2LZVYUO3n84On6NwqIYoSZUsaNFd/T+RYaD0Rge0U2Iz0sjcT//P6mYmu/ZzJNDNUksWiKOPIJGj2PQqZosTwiSWYKGZvRWSEFSbGZlS2IXjLL6+STr3mXdbqd41qs1HEUYJTOIML8OAKmnALLWgDAQHP8ApvjnJenHfnY9G65hQzJ/AHzucPqd2QSA==</latexit>

W †

<latexit sha1_base64="NahpD7ZUoXD2VARNd1l9CboJMfE=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRFVDwVvHisYD+gDWWz2bRrN7thdyKU0v/gxYMiXv0/3vw3btsctPXBwOO9GWbmhangBj3v2ymsrW9sbhW3Szu7e/sH5cOjllGZpqxJlVC6ExLDBJesiRwF66SakSQUrB2Obmd++4lpw5V8wHHKgoQMJI85JWilVo9GCk2/XPGq3hzuKvFzUoEcjX75qxcpmiVMIhXEmK7vpRhMiEZOBZuWeplhKaEjMmBdSyVJmAkm82un7plVIjdW2pZEd67+npiQxJhxEtrOhODQLHsz8T+vm2F8HUy4TDNkki4WxZlwUbmz192Ia0ZRjC0hVHN7q0uHRBOKNqCSDcFffnmVtGpV/7Jau7+o1G/yOIpwAqdwDj5cQR3uoAFNoPAIz/AKb45yXpx352PRWnDymWP4A+fzB645jy4=</latexit>· · ·

<latexit sha1_base64="NahpD7ZUoXD2VARNd1l9CboJMfE=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRFVDwVvHisYD+gDWWz2bRrN7thdyKU0v/gxYMiXv0/3vw3btsctPXBwOO9GWbmhangBj3v2ymsrW9sbhW3Szu7e/sH5cOjllGZpqxJlVC6ExLDBJesiRwF66SakSQUrB2Obmd++4lpw5V8wHHKgoQMJI85JWilVo9GCk2/XPGq3hzuKvFzUoEcjX75qxcpmiVMIhXEmK7vpRhMiEZOBZuWeplhKaEjMmBdSyVJmAkm82un7plVIjdW2pZEd67+npiQxJhxEtrOhODQLHsz8T+vm2F8HUy4TDNkki4WxZlwUbmz192Ia0ZRjC0hVHN7q0uHRBOKNqCSDcFffnmVtGpV/7Jau7+o1G/yOIpwAqdwDj5cQR3uoAFNoPAIz/AKb45yXpx352PRWnDymWP4A+fzB645jy4=</latexit>· · ·

<latexit sha1_base64="NahpD7ZUoXD2VARNd1l9CboJMfE=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRFVDwVvHisYD+gDWWz2bRrN7thdyKU0v/gxYMiXv0/3vw3btsctPXBwOO9GWbmhangBj3v2ymsrW9sbhW3Szu7e/sH5cOjllGZpqxJlVC6ExLDBJesiRwF66SakSQUrB2Obmd++4lpw5V8wHHKgoQMJI85JWilVo9GCk2/XPGq3hzuKvFzUoEcjX75qxcpmiVMIhXEmK7vpRhMiEZOBZuWeplhKaEjMmBdSyVJmAkm82un7plVIjdW2pZEd67+npiQxJhxEtrOhODQLHsz8T+vm2F8HUy4TDNkki4WxZlwUbmz192Ia0ZRjC0hVHN7q0uHRBOKNqCSDcFffnmVtGpV/7Jau7+o1G/yOIpwAqdwDj5cQR3uoAFNoPAIz/AKb45yXpx352PRWnDymWP4A+fzB645jy4=</latexit>· · ·

<latexit sha1_base64="NahpD7ZUoXD2VARNd1l9CboJMfE=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRFVDwVvHisYD+gDWWz2bRrN7thdyKU0v/gxYMiXv0/3vw3btsctPXBwOO9GWbmhangBj3v2ymsrW9sbhW3Szu7e/sH5cOjllGZpqxJlVC6ExLDBJesiRwF66SakSQUrB2Obmd++4lpw5V8wHHKgoQMJI85JWilVo9GCk2/XPGq3hzuKvFzUoEcjX75qxcpmiVMIhXEmK7vpRhMiEZOBZuWeplhKaEjMmBdSyVJmAkm82un7plVIjdW2pZEd67+npiQxJhxEtrOhODQLHsz8T+vm2F8HUy4TDNkki4WxZlwUbmz192Ia0ZRjC0hVHN7q0uHRBOKNqCSDcFffnmVtGpV/7Jau7+o1G/yOIpwAqdwDj5cQR3uoAFNoPAIz/AKb45yXpx352PRWnDymWP4A+fzB645jy4=</latexit>· · ·

Figure 5.8. (a) One step of RG for a 9-local operator as turns it into a 6-
local operator acting on Hs+1. (b) The support of operators supported on a
few sites fluctuates but remains almost constant. (c) The support of k-local
operators with k � 1 shrinks under the RG. For instance, the support of a
k-local operator shrinks to at most bk/2c + 2. In general, the expectation is
that the support of operators shrinks by the coarse-graining factor except for
some boundary effects that become important when the operator has support
on O(1) number of sites.

The most important property of MERA for us is that it shrinks the support of local operators

in the following sense: if as is supported on k adjacent sites with k � 1 on Ls and the

isometries cut down the number of sites by a factor γ > 1 then the operator α(as) is

supported on approximately k/γ sites of Ls+1 [ 87 ]; see figure  5.8 . This is not exactly true

because of the boundary effects. For instance, for the MERA in figure  5.8 , for any k-local

operator a the support of α(a) is at most bk/2c+2. For k = O(1) the support of the operator

almost remains the same. 

12
 In higher dimensions, the number of sites in a region scales like

the volume of the region, and the number of the sites at the boundary scales like the area

of the region therefore it is natural to expect that the volume term in the support a shrinks

by γ up to potential area corrections.

A UV operator a0 supported on region A0 under the RG flow is mapped to the operator as
whose support we define to be As. After s layers of RG the linear size of As is order γ−s|A0|.

When s becomes comparable to log |A0| the support of the operator reaches a few sites. At
12

 ↑ It can fluctuate up and down but it can never grow much.
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this scale, the second stage of the RG flow starts. As we flow further into the IR, the operator

remains local on a few sites, however, its norm falls exponentially fast. This is because, in

the Heisenberg picture, the RG flow map is a quantum channel and hence a contraction: its

eigenvalues have a norm smaller than one.The operators that are invariant under the RG

flow survive deep in the IR forming a subalgebra of exactly correctable operators. These

are the eigenoperators with eigenvalue one. All the other operators decay exponentially fast

with the exponent set by hmin = − log |λ| where λ is the largest eigenvalue of the RG channel

with norm less than one [  81 ]. 

13
 

We split the ultra-violet lattice L0 into a simply connected region A0 and the complement

A′
0. The RG flow respects locality in the sense that operators supported on A0 are mapped

to operators supported on As. Therefore, the UV errors a′
0 localized on A′

0 does not disturb

the IR operators as in As: [αs(a′
0), as] = 0. This is a trivial subsystem error correction code.

As we flow further into the IR the support As shrinks until it reaches a few sites. At this

point, the support of the operator no longer shrinks, instead under the RG flow the norm of

the operator drops exponentially fast. If there are s layers of coarse-graining between the IR

and the UV states a UV operator supported on a region of size A0 becomes a local operator

with a norm that is suppressed by e−(s−log |A0|); for a precise statement see lemma 3 in [  81 ].

Deep in the IR (s− log |A0| � 1) the UV perturbations are vanishingly small. They do not

disturb the IR physics; see figure  5.9 .

Real-space RG in QFT

In this section, we generalize the connection between MERA and error correction to the

RG flow of continuous Poincare invariant QFT. It was shown in [ 2 ], that in continuous MERA

(cMERA) [  93 ], the RG flow of massive free fields is an approximate quantum error correction

code. We comment on the emergence of the complementary recovery in holographic code.

The canonical quantization of a QFT that is a perturbation of massive free fields uses

the constant time field operator ϕ(x) and its momentum conjugate π(x). For simplicity,

we set the mass scale to one. As instructed by cMERA [  94 ], to model the RG flow, we
13

 ↑ In principle, there can be eigenoperators whose eigenvalues are a phase eiθ. If such operators exist, under
the RG flow they will show recurrences. We expect a generic RG flow to not have such recurrences.
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Encoded data

A0A′￼0
A′￼0

Error

(a)
|A0 |

log |A0 |

s − log |A0 |

Encoded data

(b)

Figure 5.9. (a) Any UV errors a′
0 (red star) supported on A′

0 do not disturb
the IR operators that are originally supported on A0 before the RG flow. The
black dot denoted as the encoded data represents as. (b) In the figure, there
are s layers between UV and IR where the encoded data is sitting. The size
of the support of UV operators shrinks as log |A0|, though the size drawn in
the figure is schematic.
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deform the Hamiltonian by adding the irrelevant operator e2s′iπ(x)′iπ(x) where the index i

runs over spatial directions only and the summation over i is implicit. This term acts as an

effective cut-off at the length scale es. For f±(x) real test function on the space, we define

the annihilation operators a(f) =
∫
dd−1x (f−(x) + if+(x))a(x). Under the RG flow this

operator renormalizes to as(fs) where as is the annihilation operator at scale es and the test

function fs is [  2 ]

f±
s (x) = (1 − e2s∇2)±1/4f±(x) . (5.24)

Deep in the UV (s → −∞) the functions f± are supported on region A. For smooth

enough f± as long as s � log |A| the term e2s∇2f± in (  5.24 ) is smaller than f± and the

renormalization of the field is negligible. This is analogous to stage one of the RG flow of

the operators in MERA. Here, the support does not change but the cut-off length is growing

exponentially fast. The cut-off length is analogous to a single site in MERA (the lattice

spacing), therefore the support of f in units of the cut-off length is shrinking exponentially

fast.

The support of the operator, in units of the cut-off, shrinks until es ∼ |A| at which point

the operator is supported on a region of cut-off length, and the second stage starts. In the

second stage, the second term on the right-hand side of ( 5.24 ) is no longer negligible. It

was shown in [ 2 ] that for large s the projection of the UV coherent operators to the code

subspace becomes approximately proportional to the projection to the code subspace:

PCea
†
s(fs)−as(f∗

s )PC ' PC (5.25)

which is the Knill-Laflamme condition for approximate error correction. More generally,

we can directly analyze the spectrum of the RG quantum channel. Deep in the IR, the

eigenoperators of the RG quantum channel with the largest eigenvalues are the conformal

primaries of the IR fixed point [ 95 ], [  96 ]

e−sD(ah) = e−shah (5.26)
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where we have defined the superoperator D that generates the RG flow from the unit length

scale to es. Here, h ≥ 0 is the scaling dimension of the eigen-operator. The norm of a

non-identity operator decays fast with scale. This implies that any local perturbation in the

UV becomes exponentially weak in the IR. The only UV operators that survive the RG flow

to the low energies are supported on a macroscopically large number of degrees of freedom.  

14
 

The parameter hmin(s− log |A|) where hmin is the dimension of the lightest primary controls

how well this error correction code works.

Quantum error correction makes a surprising appearance in quantum gravity and the

AdS/CFT duality [ 15 ]. The discovery of the Ryu-Takayanagi (RT) formula in holography

led to an understanding of the duality at the level of subregion density matrices [ 97 ], [  98 ]. It

revealed that the map that encodes the bulk operators in the Hilbert space of the boundary

theory defines an error correction code. These error correction properties have been used

to develop toy models of holography using finite-dimensional quantum systems [  99 ]. It was

recently shown that the Petz map gives a reconstruction of the bulk operators in terms of

the boundary observables [ 23 ]. See [  100 ] for a recent discussion of the Petz map in the

reconstruction of operators behind the horizon of a black hole.

At first look, it appears that the approximate error correction in RG is not related to the

exact error correction realized in holography because making the error correction above exact

requires the conformal dimension of the lightest primary to go to infinity. The holographic

QEC code has the complementary recovery property which means that the operators sup-

ported on A0 are mapped to those in As and the operators on the complementary region A′
s

are encoded in those in the complementary region A′
0. 

15
 In general, the approximate QEC

in RG does not have complementary recovery. This property has to emerge in holographic

theories.

The connection with holography becomes clearer when we consider an RG with two

groups of primaries: light primaries with conformal dimensions hL � ∆ and heavy primaries
14

 ↑ In principle, it is plausible that the RG map has invariant local eigenoperators. Such operators would
have vanishing conformal dimensions.
15

 ↑ We will use Latin letters A and A′ to refer a region and its complement and AA and AA′ to refer to their
corresponding algebra of operators. Note that in the presence of conserved charges AA′ 6= A′

A. This happens
because the local algebras have non-trivial centers. We assume periodic boundary conditions so that both
A′ and its complement A can be chosen to be simply connected.
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with hH ≥ ∆ for some large parameter ∆. If we choose our code subspace to be the

theory at length scale esl with s = log |A| + ε and l some fixed length scale then any noise

OH(A) caused by integrals of heavy operators supported on A can be corrected as long as

ε∆ � 1. As the gap ∆ goes to infinity, the error correction becomes exact and we obtain

complementary recovery. Note that there is no need for a recovery map as the errors simply

do not perturb the code subspace. The commutator between the heavy UV operators on A

and any local IR operators aIR(x) vanishes simply because their correlation function vanishes

〈OH(A, l)aIR(esl)〉 ' e−∆(s−log |A|).

In holography, we can correct for the erasure of region A. The error operators include the

light operators supported on A in addition to the heavy operators. As opposed to the heavy

operators, the light operators on A have non-vanishing correlations with the IR operators.

To argue that their effect is correctable in the IR we need a new mechanism specific to

holographic theories. Such a mechanism is provided in theories with N ×N matrix degrees

of freedom at large N . The light primaries are k trace operators of the form tr(X1) · · · tr(Xk)

with dimension O(N0). The heavy operators have large dimension O(N2) that is the size of

the gap ∆ in holography. It follows from the large N factorization that the commutator of

light operators is 1/N suppressed. 

16
 A small commutator is sufficient for the effect of light

operators in A to be correctable in the IR.

5.1.3 Error correction in arbitrary von Neumann algebra

The local algebra of quantum field theory is different from the matrix algebras in two

important ways: 1) It has no irreducible representations. 2) It does not admit a trace. We

need to generalize our discussion of error correction to the GNS Hilbert space to include the

local algebra of QFT.  

17
 In part two of this work, we generalize the formalism of operator

algebra error correction to arbitrary von Neumann algebras.
16

 ↑ We thank Venkatesa Chandrasekaran for insightful conversations about the role of large N in error
correction.
17

 ↑ See chapter  3 for a review of the GNS Hilbert space.
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To define the code and the physical GNS Hilbert spaces we need a state ρB of B  

18
 . After

the action of the error map this state becomes ρA = Φ∗(ρB). 

19
 We will choose ρB to be full

rank (a faithful state). If the error map has a kernel the state ρA is no longer faithful. This

means that the errors have erased some information permanently and there will not exist

any state that is fully correctable. One way to deal with this is to define a projection to the

kernel of the error map and use it explicitly in the recovery map. The recovery map will no

longer be unital. Another approach is to enlarge the algebra B by including the degrees of

freedom until the extended error map has a trivial kernel. Physically, an error occurs because

of the interaction with some environmental degrees of freedom. If there is a kernel for the

error map Φ : A → B it is because the information has left B and entered the environment.

If we add to B the degrees of freedom of the environment that contain the information that

has left B the extended error map will have a trivial kernel. 

20
 In the real-space RG in QFT,

and in holography, the kernel of the error map is empty. This is because the state ρA (the

vacuum state of short-distance theory in QFT or the boundary state in holography restricted

to a region A) is faithful. In this section, in generalizing our discussion of error correction to

an arbitrary von Neumann algebra, we will focus on the case where the kernel of the error

map is empty.

To get oriented, let us start with matrix algebras. In finite-dimensional systems, the GNS

Hilbert space of a full rank density matrix ρA is a double copy Hilbert spaces HρA ≡ KA⊗KA′

with a distinguished vector |ρ1/2
A 〉 ∈ HρA whose density matrix on both A and A′ is equal to

ρA.Such a vector is called cyclic and separating. Given a state ρB an arbitrary error map

Φ : A → B is represented in the GNS Hilbert space as a contraction F : HρA → HρB  

21
 .

We assume that the state ρA is also full rank therefore the purification of ρA is cyclic and

separating. There is a one-to-one correspondence between the linear operators in the GNS

Hilbert space and the linear superoperators on the algebra; see chapter  4 . The operator F †

corresponds to the super-operator Φ′
ρ : B′ → A′ that we call the ρ-dual map and the operator

18
 ↑ A state is a normal positive functional of the algebra. When the algebra has a trace it is a density matrix.

19
 ↑ In the Schrödinger picture, the error map corresponds to a quantum channel Φ∗ that sends the states of

B to those of A.
20

 ↑ In the extreme case where we include the whole environment in B the error map is a simple unitary
rotation, and completely correctable.
21

 ↑ A contraction is an operator with ‖F‖∞ ≤ 1.
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JAF
†JB corresponds to the Petz dual map ΦP

ρ : B → A (see section  3.6.1 ). Here, JA and JB
are the modular conjugation operators corresponding to |ρ1/2

A 〉 and |ρ1/2
B 〉, respectively.

In the special case, F is a co-isometry we call the problem of solving for the recovery map

a reconstruction problem. Both real-space RG and holography are reconstruction problems.

In theorem  5.1.2 , we show that any error correction problem where the whole image of the

error map is correctable is a reconstruction problem. In reconstruction, the operator F is a

co-isometry. In von Neumann algebras, the analog of the Knill-Laflamme condition for exact

error correction is the condition F †JB = JAF
† that we refer to as the Takesaki condition. 

22
 

5.1.4 Recovery map in von Neumann algebras

Consider an unital normal CP error map Φ : A → B between two von Neumann algebras.

The Kraus representation Φ(a) = ∑
r V

†
r aVr of a CP map generalizes to infinite dimensions  

23
 

. A recovery map is the isometric embedding of the correctable von Neumann subalgebra 

24
 .

The CP map Φ corresponds to a contraction F : HA → HB: 

25
 

Φ(a) |ρ1/2
B 〉 = Fa |ρ1/2

A 〉 (5.27)

and if the whole algebra B is correctable a recovery map corresponds to an isometry W :

HB → HA. Below, we collect all the theorems we need to generalize our discussion of error

correction to arbitrary von Neumann algebra.

We start with the definition of the ρ-dual of Φ and its properties.

Theorem 5.1.1 (ρ-dual map: proposition 3.1 [  101 ]). Let Φ : A → B be a positive map

between von Neumann algebras. Let ρB and ρA = ρB ◦ Φ be faithful states of B and A.
22

 ↑ In the remainder of this work, we often denote isometries like F † with letter W .
23

 ↑ In matrix algebras, the Kraus operators were maps from KA → KB where KA and KB were the irreducible
representations of the algebras A and B. A general von Neumann algebra does not admit an irreducible
representation. As we discuss in chap  3 the generalization of the Kraus representation to an arbitrary von
Neumann algebra is in terms of the Kraus operators Vr : HρB

→ HρA
.

24
 ↑ A recovery map satisfies R(c)Vr = Vrc,∀c ∈ BC . Therefore, R(c1)R(c2)Vr |ρ1/2

A 〉 = R(c1c2) |ρ1/2
A 〉. Since

we assumed that the kernel of Φ is empty so the union of the range of all Vr cover the whole Hilbert space
and we find that a recovery map is multiplicative: R(c1c2) = R(c1)R(c2). Since it is CP it becomes an
isometric embedding.
25

 ↑ We simplify our notation from HρA
to HA.
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Figure 5.10. The figure shows ρ-dual map of Φ determined by the cyclic and
separating vectors |ρ1/2

A 〉 and |ρ1/2
B 〉 as in theorem  5.1.1 . The sequences of JB,

JA, and Φ′
ρ appears to be a Petz dual map constructed in theorem  5.1.2 .

Denote by |ρ1/2
A 〉 and |ρ1/2

B 〉 the cyclic and separating vectors that represent ρA and ρB in

their corresponding Hilbert spaces HA and HB. There exists a unique normal positive linear

map between the commutants Φ′
ρ : B′ → A′ defined by

〈Φ′
ρ(b′)ρ1/2

A |aρ1/2
A 〉 = 〈b′ρ

1/2
B |Φ(a)ρ1/2

B 〉 , ∀a ∈ A, b′ ∈ B′ . (5.28)

If Φ is CP so is Φ′
ρ, and if Φ is unital Φ′

ρ is unital and faithful.

First, consider the case where the whole algebra B is correctable. This means that there

exists a recovery map R : B → A that isometrically embeds B in A

R(b) |ρ1/2
A 〉 = Wb |ρ1/2

B 〉 (5.29)

with W : HB → HA an isometry. The map Φ ◦ R = id and R ◦ Φ : A → R(BC) ≡ AC ⊂ A

is a conditional expectation that preserves the faithful state ρA.

Theorem  4.4.4 tells us that the necessary and sufficient condition for the existence of

such a conditional expectation is JAW = WJB that we call the Takesaki condition. We use
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this property in the next theorem to establish that the recovery map is the Petz dual of the

error map, see figure  5.10 :

Theorem 5.1.2 (Petz dual). Let Φ : A → B be an unital completely positive map between

von Neumann algebras. Let ρB and ρA = ρB ◦ Φ be faithful states. Denote by |ρ1/2
A 〉 and

|ρ1/2
B 〉 the cyclic and separating vectors that represent ρA and ρB in their corresponding Hilbert

spaces HA and HB. If there exists a normal faithful representation R : B → A that satisfies

Φ ◦ R = id, it is the Petz dual of the error map

R(b) = ΦP
ρ (b) ≡ JA ◦ Φ′

ρ ◦ JB . (5.30)

where JA : A′ → A and JB : B → B′ are the modular conjugation maps corresponding to

|ρ1/2
A 〉 and |ρ1/2

B 〉, respectively.

Proof: The superoperator Φ is unital and CP, therefore it corresponds to a contraction

F : HA → HB. First, we prove that if the whole algebra B is correctable F is a co-isometry.

The image of the recovery map AC ≡ R(B) is a subalgebra of A. The composite map

E = R ◦ Φ : A → AC is unital, CP and preserves every operator in AC , hence it is a

conditional expectation. The operator corresponding to this conditional expectation is a

projection to the range of W : WW †. Therefore,

R ◦ Φ(a) |ρ1/2
A 〉 = WFa |ρ1/2

A 〉 = WW †a |ρ1/2
A 〉 . (5.31)

Since |ρ1/2
A 〉 is cyclic and separating we have WF = WW † or equivalently F = W † is a

co-isometry. Since this conditional expectation preserves ρA we have the Takesaki condition

JAW = WJB.

Now, consider the Petz dual map ΦP
ρ (b). We check that it satisfies the recovery equation

Φ ◦ ΦP
ρ (b) |ρ1/2

B 〉 = W †JAWJBb |ρ1/2
B 〉 = b |ρ1/2

B 〉 (5.32)
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where we have used the Takesaki condition for ρA. Since |ρ1/2
B 〉 is cyclic and separating this

implies that Φ ◦ ΦP
ρ (b) = b for all b ∈ B. In the absence of a kernel for the error map this is

the unique recovery map from B → AC . �

Next, consider the reconstruction problem where only a proper subalgebra BC ⊂ B is

correctable. The Hilbert space HB is a representation of BC but the vector |ρ1/2
B 〉 is no

longer a cyclic and separating vector for BC . We can use the theorem below to show that

the recovery map is dual to Φ(a′) = W †a′W ∈ (BC)′:

Theorem 5.1.3 (Reconstruction maps: theorem 1 of [ 85 ]). Let W : HB → HA be an isom-

etry in between Hilbert spaces that represent von Neumann algebras B and A, respectively.

The following two statements are equivalent:

1. For all a ∈ A we have α(a) = W †aW ∈ B.

2. There exists a normal isometric embedding (injective ∗-homomorphism) α′ : B′ → A′

such that α′(b′)W = Wb′ for all b′ ∈ B′.

When there exists a vector W |ρ1/2
B 〉 that is cyclic and separating for A, α is faithful and the

map α′ is the unique ρ-dual and is unital.

The recovery map satisfies the statement (2) therefore it is dual to the map W †a′W ∈

(BC)′ that we call Φ with an abuse of notation. The map Φ acts as Φ : A → B and

Φ : A′ → (BC)′. Since BC is smaller than B we do not have complementary recovery. We

cannot combine Φ : A → B and R : BC → A to get a conditional expectation. A simple

solution is to look for conditional expectations that project from B to BC . As we review in

chapter  4 , in finite dimensions, there is a one-to-one correspondence between the conditional

expectations from B to BC and the states on the relative commutant of BC in B. With any

conditional expectation EB : B → BC we can redefine the error map to Φ → EB ◦ Φ. We are

back to the case where the whole image of the error map is correctable, and the recovery

map is the Petz dual of the new error map.

If the inclusion of BC ⊂ B has finite index there always exists a conditional expectation

from B → BC . Any von Neumann subalgebra BC is a direct integral of factors: BC =
∫⊕
q Cq. 

26
 

26
 ↑ A factor is a von Neumann algebra with trivial center.
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<latexit sha1_base64="OMH3Ai2M26jES4ma0T9AUgqUBJ4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkoiBT0WvHisaD+gDWWz3bRLN5uwOxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777RQ2Nre2d4q7pb39g8Oj8vFJ28SpZrzFYhnrbkANl0LxFgqUvJtoTqNA8k4wuZ37nSeujYjVI04T7kd0pEQoGEUrPVSDy0G54tbcBcg68XJSgRzNQfmrP4xZGnGFTFJjep6boJ9RjYJJPiv1U8MTyiZ0xHuWKhpx42eLU2fkwipDEsbalkKyUH9PZDQyZhoFtjOiODar3lz8z+ulGN74mVBJilyx5aIwlQRjMv+bDIXmDOXUEsq0sLcSNqaaMrTplGwI3urL66R9VfPcmndfrzTqeRxFOINzqIIH19CAO2hCCxiM4Ble4c2Rzovz7nwsWwtOPnMKf+B8/gCF+o09</latexit><latexit sha1_base64="OMH3Ai2M26jES4ma0T9AUgqUBJ4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkoiBT0WvHisaD+gDWWz3bRLN5uwOxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777RQ2Nre2d4q7pb39g8Oj8vFJ28SpZrzFYhnrbkANl0LxFgqUvJtoTqNA8k4wuZ37nSeujYjVI04T7kd0pEQoGEUrPVSDy0G54tbcBcg68XJSgRzNQfmrP4xZGnGFTFJjep6boJ9RjYJJPiv1U8MTyiZ0xHuWKhpx42eLU2fkwipDEsbalkKyUH9PZDQyZhoFtjOiODar3lz8z+ulGN74mVBJilyx5aIwlQRjMv+bDIXmDOXUEsq0sLcSNqaaMrTplGwI3urL66R9VfPcmndfrzTqeRxFOINzqIIH19CAO2hCCxiM4Ble4c2Rzovz7nwsWwtOPnMKf+B8/gCF+o09</latexit><latexit sha1_base64="OMH3Ai2M26jES4ma0T9AUgqUBJ4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkoiBT0WvHisaD+gDWWz3bRLN5uwOxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777RQ2Nre2d4q7pb39g8Oj8vFJ28SpZrzFYhnrbkANl0LxFgqUvJtoTqNA8k4wuZ37nSeujYjVI04T7kd0pEQoGEUrPVSDy0G54tbcBcg68XJSgRzNQfmrP4xZGnGFTFJjep6boJ9RjYJJPiv1U8MTyiZ0xHuWKhpx42eLU2fkwipDEsbalkKyUH9PZDQyZhoFtjOiODar3lz8z+ulGN74mVBJilyx5aIwlQRjMv+bDIXmDOXUEsq0sLcSNqaaMrTplGwI3urL66R9VfPcmndfrzTqeRxFOINzqIIH19CAO2hCCxiM4Ble4c2Rzovz7nwsWwtOPnMKf+B8/gCF+o09</latexit><latexit sha1_base64="OMH3Ai2M26jES4ma0T9AUgqUBJ4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkoiBT0WvHisaD+gDWWz3bRLN5uwOxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777RQ2Nre2d4q7pb39g8Oj8vFJ28SpZrzFYhnrbkANl0LxFgqUvJtoTqNA8k4wuZ37nSeujYjVI04T7kd0pEQoGEUrPVSDy0G54tbcBcg68XJSgRzNQfmrP4xZGnGFTFJjep6boJ9RjYJJPiv1U8MTyiZ0xHuWKhpx42eLU2fkwipDEsbalkKyUH9PZDQyZhoFtjOiODar3lz8z+ulGN74mVBJilyx5aIwlQRjMv+bDIXmDOXUEsq0sLcSNqaaMrTplGwI3urL66R9VfPcmndfrzTqeRxFOINzqIIH19CAO2hCCxiM4Ble4c2Rzovz7nwsWwtOPnMKf+B8/gCF+o09</latexit>

<latexit sha1_base64="nVE+09Dnxu4vKXm0dZk8mWB/gKI=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3BPUY8OIxonlAsoTZSW8yZHZ2mZkVQsgnePGgiFe/yJt/4yTZgyYWNBRV3XR3BYng2rjut5Pb2Nza3snvFvb2Dw6PiscnLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb+d++wmV5rF8NJME/YgOJQ85o8ZKD2V62S+W3Iq7AFknXkZKkKHRL371BjFLI5SGCap113MT40+pMpwJnBV6qcaEsjEdYtdSSSPU/nRx6oxcWGVAwljZkoYs1N8TUxppPYkC2xlRM9Kr3lz8z+umJrzxp1wmqUHJlovCVBATk/nfZMAVMiMmllCmuL2VsBFVlBmbTsGG4K2+vE5a1Yp3Vane10r1WhZHHs7gHMrgwTXU4Q4a0AQGQ3iGV3hzhPPivDsfy9ack82cwh84nz+Gv41D</latexit>

(a)

<latexit sha1_base64="JUMuVlF/dF9QElKejTY8qbxct1A=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqswUUXFVceOygn3AdCiZNNOGZpIhyQhl6Ge4caGIW7/GnX9jpp2Fth4IHM65l5x7woQzbVz32ymtrW9sbpW3Kzu7e/sH1cOjjpapIrRNJJeqF2JNORO0bZjhtJcoiuOQ0244ucv97hNVmknxaKYJDWI8EixiBBsr+f0YmzHBPLudDao1t+7OgVaJV5AaFGgNql/9oSRpTIUhHGvte25iggwrwwins0o/1TTBZIJH1LdU4JjqIJtHnqEzqwxRJJV9wqC5+nsjw7HW0zi0k3lEvezl4n+en5roOsiYSFJDBVl8FKUcGYny+9GQKUoMn1qCiWI2KyJjrDAxtqWKLcFbPnmVdBp177LeeLioNW+KOspwAqdwDh5cQRPuoQVtICDhGV7hzTHOi/PufCxGS06xcwx/4Hz+AHAwkVY=</latexit>

A
<latexit sha1_base64="rnylANJ8JV8PbnuOs5hMdiIWWRs=">AAAB83icbVDLSgMxFL3js9ZX1aWbYBFdlZkiKq4qblxWsA/oDCWTZtrQJDMkGaEM/Q03LhRx68+482/MtLPQ1gOBwzn3ck9OmHCmjet+Oyura+sbm6Wt8vbO7t5+5eCwreNUEdoiMY9VN8SaciZpyzDDaTdRFIuQ0044vsv9zhNVmsXy0UwSGgg8lCxiBBsr+b7AZkQwz26nZ/1K1a25M6Bl4hWkCgWa/cqXP4hJKqg0hGOte56bmCDDyjDC6bTsp5ommIzxkPYslVhQHWSzzFN0apUBimJlnzRopv7eyLDQeiJCO5ln1IteLv7n9VITXQcZk0lqqCTzQ1HKkYlRXgAaMEWJ4RNLMFHMZkVkhBUmxtZUtiV4i19eJu16zbus1R8uqo2boo4SHMMJnIMHV9CAe2hCCwgk8Ayv8Oakzovz7nzMR1ecYucI/sD5/AHUs5GH</latexit>

A0 <latexit sha1_base64="JUMuVlF/dF9QElKejTY8qbxct1A=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqswUUXFVceOygn3AdCiZNNOGZpIhyQhl6Ge4caGIW7/GnX9jpp2Fth4IHM65l5x7woQzbVz32ymtrW9sbpW3Kzu7e/sH1cOjjpapIrRNJJeqF2JNORO0bZjhtJcoiuOQ0244ucv97hNVmknxaKYJDWI8EixiBBsr+f0YmzHBPLudDao1t+7OgVaJV5AaFGgNql/9oSRpTIUhHGvte25iggwrwwins0o/1TTBZIJH1LdU4JjqIJtHnqEzqwxRJJV9wqC5+nsjw7HW0zi0k3lEvezl4n+en5roOsiYSFJDBVl8FKUcGYny+9GQKUoMn1qCiWI2KyJjrDAxtqWKLcFbPnmVdBp177LeeLioNW+KOspwAqdwDh5cQRPuoQVtICDhGV7hzTHOi/PufCxGS06xcwx/4Hz+AHAwkVY=</latexit>

A

<latexit sha1_base64="JTux7VYdvUl0JcUXylwWrlX+vwk=">AAAB8nicbVDLSgMxFM3UV62vqks3wSK4KjNF1GWpG5cV7AOmQ8mkmTY0kwzJHaEM/Qw3LhRx69e482/MtLPQ1gOBwzn3knNPmAhuwHW/ndLG5tb2Tnm3srd/cHhUPT7pGpVqyjpUCaX7ITFMcMk6wEGwfqIZiUPBeuH0Lvd7T0wbruQjzBIWxGQsecQpASv5g5jAhBKRtebDas2tuwvgdeIVpIYKtIfVr8FI0TRmEqggxviem0CQEQ2cCjavDFLDEkKnZMx8SyWJmQmyReQ5vrDKCEdK2ycBL9TfGxmJjZnFoZ3MI5pVLxf/8/wUotsg4zJJgUm6/ChKBQaF8/vxiGtGQcwsIVRzmxXTCdGEgm2pYkvwVk9eJ91G3buuNx6uas1WUUcZnaFzdIk8dIOa6B61UQdRpNAzekVvDjgvzrvzsRwtOcXOKfoD5/MHdB2RXw==</latexit>

B
<latexit sha1_base64="JTux7VYdvUl0JcUXylwWrlX+vwk=">AAAB8nicbVDLSgMxFM3UV62vqks3wSK4KjNF1GWpG5cV7AOmQ8mkmTY0kwzJHaEM/Qw3LhRx69e482/MtLPQ1gOBwzn3knNPmAhuwHW/ndLG5tb2Tnm3srd/cHhUPT7pGpVqyjpUCaX7ITFMcMk6wEGwfqIZiUPBeuH0Lvd7T0wbruQjzBIWxGQsecQpASv5g5jAhBKRtebDas2tuwvgdeIVpIYKtIfVr8FI0TRmEqggxviem0CQEQ2cCjavDFLDEkKnZMx8SyWJmQmyReQ5vrDKCEdK2ycBL9TfGxmJjZnFoZ3MI5pVLxf/8/wUotsg4zJJgUm6/ChKBQaF8/vxiGtGQcwsIVRzmxXTCdGEgm2pYkvwVk9eJ91G3buuNx6uas1WUUcZnaFzdIk8dIOa6B61UQdRpNAzekVvDjgvzrvzsRwtOcXOKfoD5/MHdB2RXw==</latexit>

B
<latexit sha1_base64="CaH4c9q6NkPcvrKLWwW3eHdPOd8=">AAAB83icbVDLSgMxFL3js9ZX1aWbYBFdlZki6rLUjcsK9gGdoWTSTBuaZIYkI5Shv+HGhSJu/Rl3/o2ZdhbaeiBwOOde7skJE860cd1vZ219Y3Nru7RT3t3bPzisHB13dJwqQtsk5rHqhVhTziRtG2Y47SWKYhFy2g0nd7nffaJKs1g+mmlCA4FHkkWMYGMl3xfYjAnmWXN2MahU3Zo7B1olXkGqUKA1qHz5w5ikgkpDONa677mJCTKsDCOczsp+qmmCyQSPaN9SiQXVQTbPPEPnVhmiKFb2SYPm6u+NDAutpyK0k3lGvezl4n9ePzXRbZAxmaSGSrI4FKUcmRjlBaAhU5QYPrUEE8VsVkTGWGFibE1lW4K3/OVV0qnXvOta/eGq2mgWdZTgFM7gEjy4gQbcQwvaQCCBZ3iFNyd1Xpx352MxuuYUOyfwB87nD9ihkZA=</latexit>

B0

<latexit sha1_base64="nV111XcO5wjP9t0+nvxlT/ZbMg4=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ6KkkR9Vj04rGC/cAmlM120yzd7IbdjVBC/4UXD4p49d9489+4bXPQ1gcDj/dmmJkXppxp47rfzsrq2vrGZmmrvL2zu7dfOThsa5kpQltEcqm6IdaUM0FbhhlOu6miOAk57YSj26nfeaJKMykezDilQYKHgkWMYGOlR78Zs7O+r2LZr1TdmjsDWiZeQapQoNmvfPkDSbKECkM41rrnuakJcqwMI5xOyn6maYrJCA9pz1KBE6qDfHbxBJ1aZYAiqWwJg2bq74kcJ1qPk9B2JtjEetGbiv95vcxE10HORJoZKsh8UZRxZCSavo8GTFFi+NgSTBSztyISY4WJsSGVbQje4svLpF2veZe1+v1FtXFTxFGCYziBc/DgChpwB01oAQEBz/AKb452Xpx352PeuuIUM0fwB87nDxmhkI0=</latexit>

�0
⇢

<latexit sha1_base64="1lZyV7Qc63RnhkTwrEpdqp3r7/Q=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclZki6rLqRlxVsA9oh5JJM21oJhmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck9OEHOmjet+Oyura+sbm4Wt4vbO7t5+6eCwqWWiCG0QyaVqB1hTzgRtGGY4bceK4ijgtBWMbjO/NaZKMykezSSmfoQHgoWMYGMlvxthMySYp/fT3nWvVHYr7gxomXg5KUOOeq/01e1LkkRUGMKx1h3PjY2fYmUY4XRa7CaaxpiM8IB2LBU4otpPZ6Gn6NQqfRRKZZ8waKb+3khxpPUkCuxkFlIvepn4n9dJTHjlp0zEiaGCzA+FCUdGoqwB1GeKEsMnlmCimM2KyBArTIztqWhL8Ba/vEya1Yp3Uak+nJdrN3kdBTiGEzgDDy6hBndQhwYQeIJneIU3Z+y8OO/Ox3x0xcl3juAPnM8fxhWSGw==</latexit>JA

<latexit sha1_base64="zjq1gdezSSK0wTA81dFfRzwHGwA=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclZki6rLUjbiqYB/QDiWTZtrQTDImmUIZ+h1uXCji1o9x59+YaWehrQcCh3Pu5Z6cIOZMG9f9dtbWNza3tgs7xd29/YPD0tFxS8tEEdokkkvVCbCmnAnaNMxw2okVxVHAaTsY32Z+e0KVZlI8mmlM/QgPBQsZwcZKfi/CZkQwT+9n/Xq/VHYr7hxolXg5KUOORr/01RtIkkRUGMKx1l3PjY2fYmUY4XRW7CWaxpiM8ZB2LRU4otpP56Fn6NwqAxRKZZ8waK7+3khxpPU0CuxkFlIve5n4n9dNTHjjp0zEiaGCLA6FCUdGoqwBNGCKEsOnlmCimM2KyAgrTIztqWhL8Ja/vEpa1Yp3Vak+XJZr9byOApzCGVyAB9dQgztoQBMIPMEzvMKbM3FenHfnYzG65uQ7J/AHzucPx5mSHA==</latexit>JB

<latexit sha1_base64="9JOE2YhrF4ioIosgxkqPUCGUYrs=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKVPFU8OKxgv2ANpTNdtMs3d2E3Y1QQv+CFw+KePUPefPfuGlz0NYHA4/3ZpiZFyScaeO6305pY3Nre6e8W9nbPzg8qh6fdHWcKkI7JOax6gdYU84k7RhmOO0nimIRcNoLpne533uiSrNYPppZQn2BJ5KFjGCTS8N2xEbVmlt3F0DrxCtIDQq0R9Wv4TgmqaDSEI61HnhuYvwMK8MIp/PKMNU0wWSKJ3RgqcSCaj9b3DpHF1YZozBWtqRBC/X3RIaF1jMR2E6BTaRXvVz8zxukJrzxMyaT1FBJlovClCMTo/xxNGaKEsNnlmCimL0VkQgrTIyNp2JD8FZfXifdRt1r1hsPV7XWbRFHGc7gHC7Bg2towT20oQMEIniGV3hzhPPivDsfy9aSU8ycwh84nz/im44e</latexit>

�

<latexit sha1_base64="Wq+VZR8qcojeDNuV7UMNk5N+H50=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclZki6rJUBJcV7APaoWTSTBuaScYkUyhDv8ONC0Xc+jHu/Bsz7Sy09UDgcM693JMTxJxp47rfztr6xubWdmGnuLu3f3BYOjpuaZkoQptEcqk6AdaUM0GbhhlOO7GiOAo4bQfj28xvT6jSTIpHM42pH+GhYCEj2FjJ70XYjAjm6d2sX++Xym7FnQOtEi8nZcjR6Je+egNJkogKQzjWuuu5sfFTrAwjnM6KvUTTGJMxHtKupQJHVPvpPPQMnVtlgEKp7BMGzdXfGymOtJ5GgZ3MQuplLxP/87qJCW/8lIk4MVSQxaEw4chIlDWABkxRYvjUEkwUs1kRGWGFibE9FW0J3vKXV0mrWvGuKtWHy3KtntdRgFM4gwvw4BpqcA8NaAKBJ3iGV3hzJs6L8+58LEbXnHznBP7A+fwBv/aSFw==</latexit>

EB
<latexit sha1_base64="ZGoA5KOmUTwSph+zoCrnubdX71o=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqswUUZdFNy4r2AfMjCWTZjqhmWRIMkIp/Qw3LhRx69e4829M21lo64HA4Zxzyb0nyjjTxnW/ndLa+sbmVnm7srO7t39QPTzqaJkrQttEcql6EdaUM0HbhhlOe5miOI047Uaj25nffaJKMykezDijYYqHgsWMYGMlP2glrB+oRD62+tWaW3fnQKvEK0gNCtj8VzCQJE+pMIRjrX3PzUw4wcowwum0EuSaZpiM8JD6lgqcUh1O5itP0ZlVBiiWyj5h0Fz9PTHBqdbjNLLJFJtEL3sz8T/Pz018HU6YyHJDBVl8FOccGYlm96MBU5QYPrYEE8XsrogkWGFibEsVW4K3fPIq6TTq3mW9cX9Ra94UdZThBE7hHDy4gibcQQvaQEDCM7zCm2OcF+fd+VhES04xcwx/4Hz+ABBikR4=</latexit>

�P
⇢

<latexit sha1_base64="r8BiFh2cidBB9hhrLWsMR2puDjk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz00OqrfrniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa1a1bus1u4vKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gA8so3G</latexit>

Vr

<latexit sha1_base64="Mj6fxrdcFVHS8InNuA2RFcPKeVU=">AAAB9HicbVDLSsNAFL2pr1pfVZduBovgqiRF1GXVje4q2Ae0sUymk3boZBJnJoUS8h1uXCji1o9x5984abPQ1gMDh3Pu5Z45XsSZ0rb9bRVWVtfWN4qbpa3tnd298v5BS4WxJLRJQh7KjocV5UzQpmaa004kKQ48Ttve+Cbz2xMqFQvFg55G1A3wUDCfEayN5PYCrEcE8+Qqfbzrlyt21Z4BLRMnJxXI0eiXv3qDkMQBFZpwrFTXsSPtJlhqRjhNS71Y0QiTMR7SrqECB1S5ySx0ik6MMkB+KM0TGs3U3xsJDpSaBp6ZzEKqRS8T//O6sfYv3YSJKNZUkPkhP+ZIhyhrAA2YpETzqSGYSGayIjLCEhNteiqZEpzFLy+TVq3qnFdr92eV+nVeRxGO4BhOwYELqMMtNKAJBJ7gGV7hzZpYL9a79TEfLVj5ziH8gfX5A8Lxkhk=</latexit>

AI

<latexit sha1_base64="/xusqtoExFn7C1yr8GC84qnMMJs=">AAAB9HicbVDLSsNAFL2pr1pfUZduBovgqiRF1GWpG91VsA9oY5lMJ+3QySTOTAol9DvcuFDErR/jzr9x0mahrQcGDufcyz1z/JgzpR3n2yqsrW9sbhW3Szu7e/sH9uFRS0WJJLRJIh7Jjo8V5UzQpmaa004sKQ59Ttv++Cbz2xMqFYvEg57G1AvxULCAEayN5PVCrEcE87Q+e7zr22Wn4syBVombkzLkaPTtr94gIklIhSYcK9V1nVh7KZaaEU5npV6iaIzJGA9p11CBQ6q8dB56hs6MMkBBJM0TGs3V3xspDpWahr6ZzEKqZS8T//O6iQ6uvZSJONFUkMWhIOFIRyhrAA2YpETzqSGYSGayIjLCEhNteiqZEtzlL6+SVrXiXlaq9xflWj2vowgncArn4MIV1OAWGtAEAk/wDK/wZk2sF+vd+liMFqx85xj+wPr8AcR4kho=</latexit>

BI

<latexit sha1_base64="9JOE2YhrF4ioIosgxkqPUCGUYrs=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKVPFU8OKxgv2ANpTNdtMs3d2E3Y1QQv+CFw+KePUPefPfuGlz0NYHA4/3ZpiZFyScaeO6305pY3Nre6e8W9nbPzg8qh6fdHWcKkI7JOax6gdYU84k7RhmOO0nimIRcNoLpne533uiSrNYPppZQn2BJ5KFjGCTS8N2xEbVmlt3F0DrxCtIDQq0R9Wv4TgmqaDSEI61HnhuYvwMK8MIp/PKMNU0wWSKJ3RgqcSCaj9b3DpHF1YZozBWtqRBC/X3RIaF1jMR2E6BTaRXvVz8zxukJrzxMyaT1FBJlovClCMTo/xxNGaKEsNnlmCimL0VkQgrTIyNp2JD8FZfXifdRt1r1hsPV7XWbRFHGc7gHC7Bg2towT20oQMEIniGV3hzhPPivDsfy9aSU8ycwh84nz/im44e</latexit>

�

<latexit sha1_base64="/xusqtoExFn7C1yr8GC84qnMMJs=">AAAB9HicbVDLSsNAFL2pr1pfUZduBovgqiRF1GWpG91VsA9oY5lMJ+3QySTOTAol9DvcuFDErR/jzr9x0mahrQcGDufcyz1z/JgzpR3n2yqsrW9sbhW3Szu7e/sH9uFRS0WJJLRJIh7Jjo8V5UzQpmaa004sKQ59Ttv++Cbz2xMqFYvEg57G1AvxULCAEayN5PVCrEcE87Q+e7zr22Wn4syBVombkzLkaPTtr94gIklIhSYcK9V1nVh7KZaaEU5npV6iaIzJGA9p11CBQ6q8dB56hs6MMkBBJM0TGs3V3xspDpWahr6ZzEKqZS8T//O6iQ6uvZSJONFUkMWhIOFIRyhrAA2YpETzqSGYSGayIjLCEhNteiqZEtzlL6+SVrXiXlaq9xflWj2vowgncArn4MIV1OAWGtAEAk/wDK/wZk2sF+vd+liMFqx85xj+wPr8AcR4kho=</latexit>

BI

Figure 5.11. (a) Given a correctable state ρA we can construct the conditional
expectation that projects B to the invariant subalgebra BI of Φ ◦ ΦP

ρ . (b) The
Petz map ΦP

ρ plays the role of the recovery map sending the operators in BI

to the subalgebra AI that commutes with all errors. This is the von Neumann
algebra generalization of the condition [c, V †

r Vs] = 0 for the operators in the
correctable subalgebra.

Roughly speaking, the index of a subfactor [Cq : B] is a measure of how many times the

algebra Cq fits inside B, and when there exists no conditional expectations from B to Cq this

index is defined to be infinite. When the index is finite there are conditional expectations

Eq : B → Cq [ 102 ]. If all the inclusion of all Cq in B have finite indices the direct integral of

Eq is a conditional expectation E : B → BC .

The correctable subalgebra is the subalgebra of operators that commute with V †
r Vs. 

27
 We

would like to generalize this to arbitrary von Neumann algebras. If there exists no correctable

states the correctable subalgebra is empty. Therefore, we consider the case where we have

an error map Φ : A → B and a state ρA that is correctable. We follow a strategy similar to

the passive error correction in chapter  4 . The map Φ ◦ ΦP
ρ : B → B is unital and CP. We

27
 ↑ See chapter  4 .
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consider the conditional expectation that projects to its invariant subalgebra that we denote

by BI :

EB = lim
N→∞

1
N

N∑
n=1

(Φ ◦ ΦP
ρ )n . (5.33)

This is an error correction code for the correctable algebra BI with the recovery map ΦP
ρ

because for all c ∈ BI we have Φ ◦ ΦP
ρ (c) = c. The range of the recovery map is a subalgebra

in A that we denote by AI = ΦP
ρ (BI). The map EA = ΦP

ρ ◦EB ◦Φ is a conditional expectation

from A down to AI ; see figure  5.11 . We can redefine the error map to EB ◦ Φ : A → BI . We

are back to the standard case above, and the recovery map is once again the Petz dual of

the error map.

5.1.5 Sufficiency conditions

To characterize all “sufficient” states of a ρ-preserving conditional expectation Eρ we show

that it preserves another state ω if and only if the sufficiency condition

ω1/2ω
−1/2
C = ρ1/2ρ

−1/2
C (5.34)

is satisfied [  71 ], [  72 ]. If we are given a ρ-preserving conditional expectation Eρ the map

Eωρ (a) = ω
−1/2
C ρ

1/2
C Eρ

(
ρ−1/2ω1/2aω1/2ρ−1/2

)
ρ

1/2
C ω

−1/2
C (5.35)

is a ω-preserving CP map from A → AC . If it preserves every operator in c ∈ AC it

becomes an ω-preserving conditional expectation. It is clear that if the sufficiency condition

in (  5.35 ) holds it becomes an ω-preserving conditional expectation Eω = Eρ. Therefore, Eρ
also preserves ω. We now prove the converse: the conditional expectation Eρ preserves ω

only if the condition ( 5.34 ) holds. We basically repeat the proof of Takesaki’s theorem for the

relative Tomita operator Sω|ρa |ρ1/2〉 = a† |ω1/2〉. The norm of this operator is the relative

modular operator ∆ω|ρ : Hρ → Hρ. The superoperator corresponding to it is Dω|ρ(a) =
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ωaρ−1. We repeat the argument for the Takesaki theorem with the relative modular map

Dω|ρ(a) = ωaρ−1 to find [Pρ,∆1/2
ω|ρ] = 0. This implies

Eρ(D1/2
ω|ρ(c)) = D1/2

ω|ρ(Eρ(c)) = D
1/2
ω|ρ(c) ∈ AC (5.36)

We define the isometries

Wρc |ρ1/2
C 〉 = c |ρ1/2〉

Wωc |ω1/2
C 〉 = c |ω1/2〉 (5.37)

so that

Sω|ρWρ = WωSωC |ρC

W †
ρ∆ω|ρWρ = ∆ωC |ρC . (5.38)

Since [Pρ,∆1/2
ω|ρ] = 0 we have

Pρ∆1/2
ω|ρ = Wρ∆1/2

ωC |ρCW
†
ρ . (5.39)

As a result,

D1/2
ω|ρ(c) |ρ1/2〉 = Pρ∆1/2

ω|ρc |ρ1/2〉 = Wρ∆1/2
ωC |ρCc |ρ1/2

C 〉

= WρD1/2
ωC |ρC (c) |ρ1/2

C 〉 = D1/2
ωC |ρC (c) |ρ1/2〉 . (5.40)

We obtain that

ω1/2cρ−1/2 = D1/2
ω|ρ(c) = D1/2

ωC |ρC (c) = ω
1/2
C cρ

−1/2
C . (5.41)

In other words,

ω
−1/2
C ω1/2cρ1/2ρ

−1/2
C = c = ρ

−1/2
C ρ1/2cρ−1/2ρ

1/2
C (5.42)
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which holds if and only if the sufficiency condition in ( 5.34 ) is satisfied.

The sufficiency condition can be expressed as

∆1/2
ω|ρ = Wρ∆1/2

ωC |ρCW
†
ρ . (5.43)

Using the integral representation of Xα for α ∈ (0, 1)

Xα = sin(πα)
π

∫ ∞

0
ds sα

(1
s

− 1
s+X

)
(5.44)

we find

∫ ∞

0
ds s1/2

(
1

s+ ∆ω|ρ
−Wρ

1
s+ ∆ωC |ρC

W †
ρ

)
= 0 . (5.45)

From the monotonicity of the relative modular operator [  58 ], [  75 ] we know that the operator

in the integrand above is positive, therefore it has to be zero:

1
s+ ∆ω|ρ

= Wρ
1

s+ ∆ωC |ρC
W †
ρ (5.46)

which implies

∆α
ω|ρ = Wρ∆α

ωC |ρCW
†
ρ . (5.47)

Furthermore, for any continuous function f we have

Wρf(∆C) |ρ1/2
C 〉 = f(∆) |ρ1/2〉 . (5.48)

In particular, choosing f(x) = xit for t ∈ R we find that ρit
Cω

−it
C = ρitω−it. This condition

implies that the relative entropy for any pair of sufficient states ρ and ω:

S(ω‖ρ) = S(ωC‖ρC) . (5.49)
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Intuitively, this says that a coarse-graining (conditional expectation) preserves a set of

states {ρk} (sufficient states) if and only if the distinguishability (relative entropy) of any

pair of them remains the same.

5.1.6 Discussion

In summary, we argued that the renormalization group is an approximate error correction

code. This is similar to modeling the holographic map as a subsystem error correction code,

with the difference that we do not have complementary recovery. We discussed how the

complementary recovery emerges in a theory with large N and a large gap.

We studied the operator algebra quantum error correction for an arbitrary von Neumann

algebra. If the error map has a kernel some information is irreversibly lost. In real-space RG,

the vacuum vector of a QFT is cyclic and separating which implies that the kernel of the

RG map is trivial. In von Neumann algebras, the analog of the Knill-Laflamme condition

for exact error correction is the Takesaki condition. When recovery is possible, the recovery

map is the Petz dual of the error map.

If the kernel of the error map is not empty (we do not have a cyclic and separating vector)

the composition of the recovery map and the error R ◦ Φ : A → AC is still a CP map that

preserves every operator in AC , but it is no longer unital. In the language of von Neumann

algebras, such a map is an operator valued weight: an unbounded unnormalized positive map

with dense domain in A+ (the positive operators of A) that satisfies the bi-module property

 

28
 . There exists a bijection in between the set of operator value weights from A → AC and

those from (AC)′ to A′ [ 103 ]. The study of operator valued weights could shed light on the

problem of reconstruction in the absence of a faithful state.

Consider the AdSd+1/CFTd correspondence in d > 1 and a simply connected region A.

In time-reversal symmetric geometries, the Rangamani-Takayanagi (RT) surface is the co-

dimension two surface in the bulk that is anchored on the boundary of A, is homologous

to A and has minimal area; see figure  5.12 . Denote by B the region in the bulk that is in

between the RT surface and A. Consider the map R that encodes the algebra B of the bulk
28

 ↑ See chapter  4 for a discussion of the bi-module property.

132



A0
<latexit sha1_base64="QQdbQZlnH2OeMeIXFhFhrPRa18E=">AAAB83icbVDLSsNAFL3xWeur6tLNYBFdlUQEu6y4cVnBPqAJZTKdtkMnkzBzI5TQ33DjQhG3/ow7/8ZJm4W2Hhg4nHMv98wJEykMuu63s7a+sbm1Xdop7+7tHxxWjo7bJk414y0Wy1h3Q2q4FIq3UKDk3URzGoWSd8LJXe53nrg2IlaPOE14ENGREkPBKFrJ9yOKY0Zldju76Feqbs2dg6wSryBVKNDsV778QczSiCtkkhrT89wEg4xqFEzyWdlPDU8om9AR71mqaMRNkM0zz8i5VQZkGGv7FJK5+nsjo5Ex0yi0k3lGs+zl4n9eL8VhPciESlLkii0ODVNJMCZ5AWQgNGcop5ZQpoXNStiYasrQ1lS2JXjLX14l7aua59a8h+tqo17UUYJTOINL8OAGGnAPTWgBgwSe4RXenNR5cd6dj8XomlPsnMAfOJ8/0c+Rfg==</latexit><latexit sha1_base64="QQdbQZlnH2OeMeIXFhFhrPRa18E=">AAAB83icbVDLSsNAFL3xWeur6tLNYBFdlUQEu6y4cVnBPqAJZTKdtkMnkzBzI5TQ33DjQhG3/ow7/8ZJm4W2Hhg4nHMv98wJEykMuu63s7a+sbm1Xdop7+7tHxxWjo7bJk414y0Wy1h3Q2q4FIq3UKDk3URzGoWSd8LJXe53nrg2IlaPOE14ENGREkPBKFrJ9yOKY0Zldju76Feqbs2dg6wSryBVKNDsV778QczSiCtkkhrT89wEg4xqFEzyWdlPDU8om9AR71mqaMRNkM0zz8i5VQZkGGv7FJK5+nsjo5Ex0yi0k3lGs+zl4n9eL8VhPciESlLkii0ODVNJMCZ5AWQgNGcop5ZQpoXNStiYasrQ1lS2JXjLX14l7aua59a8h+tqo17UUYJTOINL8OAGGnAPTWgBgwSe4RXenNR5cd6dj8XomlPsnMAfOJ8/0c+Rfg==</latexit><latexit sha1_base64="QQdbQZlnH2OeMeIXFhFhrPRa18E=">AAAB83icbVDLSsNAFL3xWeur6tLNYBFdlUQEu6y4cVnBPqAJZTKdtkMnkzBzI5TQ33DjQhG3/ow7/8ZJm4W2Hhg4nHMv98wJEykMuu63s7a+sbm1Xdop7+7tHxxWjo7bJk414y0Wy1h3Q2q4FIq3UKDk3URzGoWSd8LJXe53nrg2IlaPOE14ENGREkPBKFrJ9yOKY0Zldju76Feqbs2dg6wSryBVKNDsV778QczSiCtkkhrT89wEg4xqFEzyWdlPDU8om9AR71mqaMRNkM0zz8i5VQZkGGv7FJK5+nsjo5Ex0yi0k3lGs+zl4n9eL8VhPciESlLkii0ODVNJMCZ5AWQgNGcop5ZQpoXNStiYasrQ1lS2JXjLX14l7aua59a8h+tqo17UUYJTOINL8OAGGnAPTWgBgwSe4RXenNR5cd6dj8XomlPsnMAfOJ8/0c+Rfg==</latexit><latexit sha1_base64="QQdbQZlnH2OeMeIXFhFhrPRa18E=">AAAB83icbVDLSsNAFL3xWeur6tLNYBFdlUQEu6y4cVnBPqAJZTKdtkMnkzBzI5TQ33DjQhG3/ow7/8ZJm4W2Hhg4nHMv98wJEykMuu63s7a+sbm1Xdop7+7tHxxWjo7bJk414y0Wy1h3Q2q4FIq3UKDk3URzGoWSd8LJXe53nrg2IlaPOE14ENGREkPBKFrJ9yOKY0Zldju76Feqbs2dg6wSryBVKNDsV778QczSiCtkkhrT89wEg4xqFEzyWdlPDU8om9AR71mqaMRNkM0zz8i5VQZkGGv7FJK5+nsjo5Ex0yi0k3lGs+zl4n9eL8VhPciESlLkii0ODVNJMCZ5AWQgNGcop5ZQpoXNStiYasrQ1lS2JXjLX14l7aua59a8h+tqo17UUYJTOINL8OAGGnAPTWgBgwSe4RXenNR5cd6dj8XomlPsnMAfOJ8/0c+Rfg==</latexit>

B0
<latexit sha1_base64="/UcsiM3MghQlT+uVwd7G6QAgOrE=">AAAB83icbVDLSsNAFL3xWeur6tLNYBFdlUQEuyy6cVnBPqAJZTKdtkMnkzBzI5TQ33DjQhG3/ow7/8ZJm4W2Hhg4nHMv98wJEykMuu63s7a+sbm1Xdop7+7tHxxWjo7bJk414y0Wy1h3Q2q4FIq3UKDk3URzGoWSd8LJXe53nrg2IlaPOE14ENGREkPBKFrJ9yOKY0Zldju76Feqbs2dg6wSryBVKNDsV778QczSiCtkkhrT89wEg4xqFEzyWdlPDU8om9AR71mqaMRNkM0zz8i5VQZkGGv7FJK5+nsjo5Ex0yi0k3lGs+zl4n9eL8VhPciESlLkii0ODVNJMCZ5AWQgNGcop5ZQpoXNStiYasrQ1lS2JXjLX14l7aua59a8h+tqo17UUYJTOINL8OAGGnAPTWgBgwSe4RXenNR5cd6dj8XomlPsnMAfOJ8/01WRfw==</latexit><latexit sha1_base64="/UcsiM3MghQlT+uVwd7G6QAgOrE=">AAAB83icbVDLSsNAFL3xWeur6tLNYBFdlUQEuyy6cVnBPqAJZTKdtkMnkzBzI5TQ33DjQhG3/ow7/8ZJm4W2Hhg4nHMv98wJEykMuu63s7a+sbm1Xdop7+7tHxxWjo7bJk414y0Wy1h3Q2q4FIq3UKDk3URzGoWSd8LJXe53nrg2IlaPOE14ENGREkPBKFrJ9yOKY0Zldju76Feqbs2dg6wSryBVKNDsV778QczSiCtkkhrT89wEg4xqFEzyWdlPDU8om9AR71mqaMRNkM0zz8i5VQZkGGv7FJK5+nsjo5Ex0yi0k3lGs+zl4n9eL8VhPciESlLkii0ODVNJMCZ5AWQgNGcop5ZQpoXNStiYasrQ1lS2JXjLX14l7aua59a8h+tqo17UUYJTOINL8OAGGnAPTWgBgwSe4RXenNR5cd6dj8XomlPsnMAfOJ8/01WRfw==</latexit><latexit sha1_base64="/UcsiM3MghQlT+uVwd7G6QAgOrE=">AAAB83icbVDLSsNAFL3xWeur6tLNYBFdlUQEuyy6cVnBPqAJZTKdtkMnkzBzI5TQ33DjQhG3/ow7/8ZJm4W2Hhg4nHMv98wJEykMuu63s7a+sbm1Xdop7+7tHxxWjo7bJk414y0Wy1h3Q2q4FIq3UKDk3URzGoWSd8LJXe53nrg2IlaPOE14ENGREkPBKFrJ9yOKY0Zldju76Feqbs2dg6wSryBVKNDsV778QczSiCtkkhrT89wEg4xqFEzyWdlPDU8om9AR71mqaMRNkM0zz8i5VQZkGGv7FJK5+nsjo5Ex0yi0k3lGs+zl4n9eL8VhPciESlLkii0ODVNJMCZ5AWQgNGcop5ZQpoXNStiYasrQ1lS2JXjLX14l7aua59a8h+tqo17UUYJTOINL8OAGGnAPTWgBgwSe4RXenNR5cd6dj8XomlPsnMAfOJ8/01WRfw==</latexit><latexit sha1_base64="/UcsiM3MghQlT+uVwd7G6QAgOrE=">AAAB83icbVDLSsNAFL3xWeur6tLNYBFdlUQEuyy6cVnBPqAJZTKdtkMnkzBzI5TQ33DjQhG3/ow7/8ZJm4W2Hhg4nHMv98wJEykMuu63s7a+sbm1Xdop7+7tHxxWjo7bJk414y0Wy1h3Q2q4FIq3UKDk3URzGoWSd8LJXe53nrg2IlaPOE14ENGREkPBKFrJ9yOKY0Zldju76Feqbs2dg6wSryBVKNDsV778QczSiCtkkhrT89wEg4xqFEzyWdlPDU8om9AR71mqaMRNkM0zz8i5VQZkGGv7FJK5+nsjo5Ex0yi0k3lGs+zl4n9eL8VhPciESlLkii0ODVNJMCZ5AWQgNGcop5ZQpoXNStiYasrQ1lS2JXjLX14l7aua59a8h+tqo17UUYJTOINL8OAGGnAPTWgBgwSe4RXenNR5cd6dj8XomlPsnMAfOJ8/01WRfw==</latexit>B

<latexit sha1_base64="TUFyD45ZNVtElPfEtlq435k9PAI=">AAAB8nicbVDLSsNAFL2pr1pfVZduBovgqiQi2GXRjcsK9gFtKJPppB06mYSZG6GEfoYbF4q49Wvc+TdO2iy09cDA4Zx7mXNPkEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2md7nffeLaiFg94izhfkTHSoSCUbRSfxBRnDAqs9v5sFpz6+4CZJ14BalBgdaw+jUYxSyNuEImqTF9z03Qz6hGwSSfVwap4QllUzrmfUsVjbjxs0XkObmwyoiEsbZPIVmovzcyGhkziwI7mUc0q14u/uf1UwwbfiZUkiJXbPlRmEqCMcnvJyOhOUM5s4QyLWxWwiZUU4a2pYotwVs9eZ10ruqeW/cermvNRlFHGc7gHC7Bgxtowj20oA0MYniGV3hz0Hlx3p2P5WjJKXZO4Q+czx9u0ZFO</latexit><latexit sha1_base64="TUFyD45ZNVtElPfEtlq435k9PAI=">AAAB8nicbVDLSsNAFL2pr1pfVZduBovgqiQi2GXRjcsK9gFtKJPppB06mYSZG6GEfoYbF4q49Wvc+TdO2iy09cDA4Zx7mXNPkEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2md7nffeLaiFg94izhfkTHSoSCUbRSfxBRnDAqs9v5sFpz6+4CZJ14BalBgdaw+jUYxSyNuEImqTF9z03Qz6hGwSSfVwap4QllUzrmfUsVjbjxs0XkObmwyoiEsbZPIVmovzcyGhkziwI7mUc0q14u/uf1UwwbfiZUkiJXbPlRmEqCMcnvJyOhOUM5s4QyLWxWwiZUU4a2pYotwVs9eZ10ruqeW/cermvNRlFHGc7gHC7Bgxtowj20oA0MYniGV3hz0Hlx3p2P5WjJKXZO4Q+czx9u0ZFO</latexit><latexit sha1_base64="TUFyD45ZNVtElPfEtlq435k9PAI=">AAAB8nicbVDLSsNAFL2pr1pfVZduBovgqiQi2GXRjcsK9gFtKJPppB06mYSZG6GEfoYbF4q49Wvc+TdO2iy09cDA4Zx7mXNPkEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2md7nffeLaiFg94izhfkTHSoSCUbRSfxBRnDAqs9v5sFpz6+4CZJ14BalBgdaw+jUYxSyNuEImqTF9z03Qz6hGwSSfVwap4QllUzrmfUsVjbjxs0XkObmwyoiEsbZPIVmovzcyGhkziwI7mUc0q14u/uf1UwwbfiZUkiJXbPlRmEqCMcnvJyOhOUM5s4QyLWxWwiZUU4a2pYotwVs9eZ10ruqeW/cermvNRlFHGc7gHC7Bgxtowj20oA0MYniGV3hz0Hlx3p2P5WjJKXZO4Q+czx9u0ZFO</latexit><latexit sha1_base64="TUFyD45ZNVtElPfEtlq435k9PAI=">AAAB8nicbVDLSsNAFL2pr1pfVZduBovgqiQi2GXRjcsK9gFtKJPppB06mYSZG6GEfoYbF4q49Wvc+TdO2iy09cDA4Zx7mXNPkEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2md7nffeLaiFg94izhfkTHSoSCUbRSfxBRnDAqs9v5sFpz6+4CZJ14BalBgdaw+jUYxSyNuEImqTF9z03Qz6hGwSSfVwap4QllUzrmfUsVjbjxs0XkObmwyoiEsbZPIVmovzcyGhkziwI7mUc0q14u/uf1UwwbfiZUkiJXbPlRmEqCMcnvJyOhOUM5s4QyLWxWwiZUU4a2pYotwVs9eZ10ruqeW/cermvNRlFHGc7gHC7Bgxtowj20oA0MYniGV3hz0Hlx3p2P5WjJKXZO4Q+czx9u0ZFO</latexit>

A
<latexit sha1_base64="Kr+Azdr4ru8TF438+5b3ZwcWZ98=">AAAB8nicbVDLSsNAFL2pr1pfVZduBovgqiQi2GXFjcsK9gFtKJPppB06mYSZG6GEfoYbF4q49Wvc+TdO2iy09cDA4Zx7mXNPkEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2md7nffeLaiFg94izhfkTHSoSCUbRSfxBRnDAqs9v5sFpz6+4CZJ14BalBgdaw+jUYxSyNuEImqTF9z03Qz6hGwSSfVwap4QllUzrmfUsVjbjxs0XkObmwyoiEsbZPIVmovzcyGhkziwI7mUc0q14u/uf1UwwbfiZUkiJXbPlRmEqCMcnvJyOhOUM5s4QyLWxWwiZUU4a2pYotwVs9eZ10ruqeW/cermvNRlFHGc7gHC7Bgxtowj20oA0MYniGV3hz0Hlx3p2P5WjJKXZO4Q+czx9tTJFN</latexit><latexit sha1_base64="Kr+Azdr4ru8TF438+5b3ZwcWZ98=">AAAB8nicbVDLSsNAFL2pr1pfVZduBovgqiQi2GXFjcsK9gFtKJPppB06mYSZG6GEfoYbF4q49Wvc+TdO2iy09cDA4Zx7mXNPkEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2md7nffeLaiFg94izhfkTHSoSCUbRSfxBRnDAqs9v5sFpz6+4CZJ14BalBgdaw+jUYxSyNuEImqTF9z03Qz6hGwSSfVwap4QllUzrmfUsVjbjxs0XkObmwyoiEsbZPIVmovzcyGhkziwI7mUc0q14u/uf1UwwbfiZUkiJXbPlRmEqCMcnvJyOhOUM5s4QyLWxWwiZUU4a2pYotwVs9eZ10ruqeW/cermvNRlFHGc7gHC7Bgxtowj20oA0MYniGV3hz0Hlx3p2P5WjJKXZO4Q+czx9tTJFN</latexit><latexit sha1_base64="Kr+Azdr4ru8TF438+5b3ZwcWZ98=">AAAB8nicbVDLSsNAFL2pr1pfVZduBovgqiQi2GXFjcsK9gFtKJPppB06mYSZG6GEfoYbF4q49Wvc+TdO2iy09cDA4Zx7mXNPkEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2md7nffeLaiFg94izhfkTHSoSCUbRSfxBRnDAqs9v5sFpz6+4CZJ14BalBgdaw+jUYxSyNuEImqTF9z03Qz6hGwSSfVwap4QllUzrmfUsVjbjxs0XkObmwyoiEsbZPIVmovzcyGhkziwI7mUc0q14u/uf1UwwbfiZUkiJXbPlRmEqCMcnvJyOhOUM5s4QyLWxWwiZUU4a2pYotwVs9eZ10ruqeW/cermvNRlFHGc7gHC7Bgxtowj20oA0MYniGV3hz0Hlx3p2P5WjJKXZO4Q+czx9tTJFN</latexit><latexit sha1_base64="Kr+Azdr4ru8TF438+5b3ZwcWZ98=">AAAB8nicbVDLSsNAFL2pr1pfVZduBovgqiQi2GXFjcsK9gFtKJPppB06mYSZG6GEfoYbF4q49Wvc+TdO2iy09cDA4Zx7mXNPkEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2md7nffeLaiFg94izhfkTHSoSCUbRSfxBRnDAqs9v5sFpz6+4CZJ14BalBgdaw+jUYxSyNuEImqTF9z03Qz6hGwSSfVwap4QllUzrmfUsVjbjxs0XkObmwyoiEsbZPIVmovzcyGhkziwI7mUc0q14u/uf1UwwbfiZUkiJXbPlRmEqCMcnvJyOhOUM5s4QyLWxWwiZUU4a2pYotwVs9eZ10ruqeW/cermvNRlFHGc7gHC7Bgxtowj20oA0MYniGV3hz0Hlx3p2P5WjJKXZO4Q+czx9tTJFN</latexit>

Figure 5.12. A time slice of anti-de Sitter space with A the algebra of a
region A on the boundary and B the algebra of the bulk region that is in
between A and the Ryu-Takayanagi surface of A. The CP map Φ maps the
boundary local algebra to the bulk, whereas R reconstructs the bulk operators
on the boundary.

on the boundary (bulk reconstruction map). We choose the error map to be Φ = α ◦ trA′

where α(·) = W †(·)W and W : Hbulk → Hboundary is the encoding isometry. All the bulk

operators b ∈ B satisfy the error correction condition Φ(R(b)) = b and the recovery map

R is an isometric embedding. The holographic map from the boundary algebra to the

bulk algebra has no kernel because both of the bulk and boundary vectors are cyclic and

separating with respect to their corresponding algebras. We have complementary recovery

and the whole bulk algebra B is reconstructable. The reconstruction map R is the Petz

dual of the holographic map Φ. A similar observation was discussed in a recent paper [  85 ].

Given a ρ-preserving conditional expectation we can define a measure of the information lost

under the conditional expectation [  3 ]. This leads to entropic uncertainty relations that play

an important role in the derivation of the Ryu-Takayanagi formula in holography [  16 ], [  85 ].

It has been argued that complementary recovery fails in some situations in holography [  89 ].

That brings the holography reconstruction problem closer to the real-space RG.

Finally, we make the following observation: In AdS2/CFT1 the bulk reconstruction map

cannot be a conditional expectation, because there exists no conditional expectations from a

type I algebra (the boundary theory is 0+1 dimensional) to a type III von Neumann algebra

(the bulk theory is 1 + 1 dimensional QFT). We believe that the resolution of this seeming

133



paradox is that the bulk and boundary relative entropies match only up to 1/N corrections.

The error correction properties of the holographic map are only approximate. A related

observation is that we can define CP maps in between ∗-closed subspaces of observables

(operator systems). This generalization can be helpful in moving away from the exact error

correction in holography.

5.2 Renormalization group and approximate error correction

5.2.1 Introduction

Renormalization group (RG) flow is a pillar of the twentieth century physics that has

allowed us to study the universal dynamics of the emergent long-range effective degrees of

freedom. Quantum error correction (QEC) teaches us how to encode quantum information

non-locally to protect it against local noise and decoherence. They both involve the physics

of states with long-range correlations. In this work, we show that the states deep in the

infra-red of an RG flow form an approximate error correction code.

Analogously, we can view the RG as an isometric embedding W of the infrared (IR)

states (logical states) into the ultra-violet (UV) states (physical states): W : HIR → HUV  

29
 .

Irrelevant local perturbations are the noise that the encoding protects against: POirrelP ∼ P .

In this work, we explore this connection in three examples: 1) the RG flow of classical Ising

model, 2) the real-space RG flow of free massive quantum fields realized as continuous Multi-

scale Renormalization Ansatz (cMERA), 3) holographic RG flows as examples of strongly-

coupled QFTs.

There are many ways to coarsegrain the observables of a quantum system, and not all of

them correspond to isometric embeddings of the IR observables in the RG algebra. However,

it is worth mentioning that two commonly used approaches to RG, namely the tensor network

renormalization of many-body quantum systems, and exact RG in continuum field theories

both lead to isometric flows [  104 ], [  105 ]. In this work, we focus on isometric RG flows.

The idea of a connection between the RG and the QEC is not new. It is known that there

is an exact error correction code at the IR end point of an RG flow if there are degenerate
29

 ↑ In general, it suffices to take W to be an approximate isometry. In relativistic theories W can be unitary.
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ground states that are gapped. Such vacuum subspaces can form either due to spontaneous

symmetry breaking or topological order; see [  106 ], [ 107 ] and  

30
 . The vacuum subspace is the

code subspace and the noise are local operators.

The spontaneous breaking of a discrete or continuous symmetry group leads to classical

error correction codes. For instance, the two-dimensional Ising model at low temperature

breaks the Z2 symmetry spontaneously by forming long-range ordered ferromagnetic states

|00 · · · 0〉 and |1 · · · 1〉. This is a classical repetition code that corrects for local bit flips (σX
Pauli matrix). However, this is not a quantum error correction code because the errors

caused by the σz Pauli matrix cannot be corrected. In fact, σz is precisely the local order

parameter that distinguishes different code states.

To obtain a QEC code, we need the local density matrices of topologically trivial regions

to be the same in all the degenerate vacuum (code states). This implies that no local

observable can distinguish the encoded states. In other words, the system has topological

order. For example, the four-fold degenerate vacuum subspace of Z2 Toric code on a torus

encodes two logical qubits that are protected against any error localized on a shrinkable

subregion. In fact, one can correct for errors localized on disjoint subsystems, e.g. A and C,

as long as the combined region, e.g. AC, does not contain non-contractible loops.

In this work, we extend this connection and show that even in the case of a unique

ground state the low energy states are approximately protected against the errors on small

enough subregions. Moreover, we show that the error correcting code is a local quantum

error correction (LQEC) code [ 108 ] because the code can correct the errors localized in

disjoint subregions A and C which are separated by a region B as shown in Fig. (  5.13a )  

31
 .

By definition, a QEC is called local if the recovery map that corrects the errors on A can

be chosen to be a local map from B to AB [ 108 ], see Fig. ( 5.13b ) for a two-dimensional

example.

In section  5.2.2 , as our first example, we consider the one-dimensional classical Ising

model. To perform RG, we use Kadanoff’s spin blocking. The block-spin renormalization of
30

 ↑ Entanglement, wormholes and quantum error correction talk by Brian Swingle, 4th inter. conf. on QEC,
qec2017.gatech.edu.
31

 ↑ A QEC is called local if its stabilizers or gauge generators are supported on a small bounded region of
the space.
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Figure 5.13. (a) A one-dimensional system on a line is partitioned into
regions A and C which are separated by a small region B. In cMERA, we find
that the low energy coherent states are protected against the UV coherent
operators localized in subregions A and C.(b) The two-dimensional spatial
region is partitioned by ABC. The local erasure trA acts on the red-colored
region A. The blue-colored region is the spatial domain of a local recovery
map.
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a classical system leads to approximate classical error correction codes. The quantum analog

of spin blocking is the so-called tensor network renormalization [ 95 ], [  109 ]. Applied to the

Euclidean time evolution operator [  109 ] it yields an isometric RG flow called the Multi-scale

Entanglement Ansatz (MERA) [ 104 ]. MERA tensor networks are well-suited for describing

real-space RG flow [  81 ], [ 95 ], topological codes [ 110 ], [ 111 ], and the low energy states of

scale-invariant theories. It was shown in [ 81 ] that the MERA states form an approximate

QEC. That is to say that the IR information is approximately protected against the erasure

of small local regions in the UV lattice  

32
 . We briefly review this example in section  5.2.3 .

In section  5.2.4 , we argue that these QEC properties generalize to the RG flow of contin-

uum Poincare-invariant QFTs. In [ 1 ], exact QEC in the Heisenberg picture was generalized

to arbitrary von Neumann algebras, including the local algebra of QFT. We consider contin-

uous MERA (cMERA) for free massive quantum fields in 1 + 1-dimensions. We use the field

coherent states to encode quantum information locally and study the RG flow of these code

states. We consider the geometry in figure  6.1 (a), and show that the encoded low energy

states form a local QEC (LQEC) code that is approximately protected against the action of

the UV coherent operators in region AC.

To explore the error correction properties of RG in the strongly coupled QFTs, we consider

holographic RG flows. In holography, the emergent radial direction of the bulk can be

interpreted as the renormalization group scale of the boundary theory. The operators in

the IR are deeper in the bulk. They are protected against UV errors that are supported on

small regions. In section  5.2.5 , we study a 3-dimensional geometry that corresponds to a

holographic RG flow from a UV 2-dimensional CFT to an IR one. We observe that not all the

encoded logical information is exactly protected. This becomes manifest by considering the

so-called holographic Singleton bound that puts an upper bound on the maximum amount

of logical information that can be encoded in a bulk subregion [  112 ]. We find that a naive

application of the holographic Singleton bound in such a geometry suggests that there are

finite volume regions in the bulk where no information can be encoded. We further propose a
32

 ↑ The authors of [ 81 ] showed that MERA as an approximate QEC code satisfies the trade-off bound
kdα ≤ cn where α is a constant fixed in terms of the size ratio |AB|/|A|.
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modification to the holographic Singleton bound which resolves the aforementioned paradox.

We conclude with a summary and discussion in section  5.2.6 .

5.2.2 Classical spin-blocking

In classical physics, the standard real-space RG scheme of a spin system involves split-

ting the lattice into blocks and coarse-graining the degrees of freedom localized inside each

block. The coarse-graining replaces the collection of spins inside the block {si} with a col-

lective degree of freedom s′ [ 113 ], [ 114 ]. For example, consider the translation-invariant one

dimensional classical Ising model with 3N sites, a local Hamiltonian

H({s}) = −J
3N−1∑

i=1
sisi+1 + h

3N−1∑
i
si (5.50)

and periodic boundary conditions; see figure  6.2 . The configuration space is the set of all

sequences {s} = {s1s2 · · · s3N} and the thermal state is the probability distribution

p({s}) = e−βH({s})/Z (5.51)

on this configuration space. A simple coarse-graining scheme is the majority vote scheme

s′ =


+1 if s1 + s2 + s3 ≥ 0

−1 otherwise .
(5.52)

It is convenient to represent states as vectors |s1s2s3〉 and think of the coarse-graining map

as a matrix T describing a classical information channel acting on probability vectors  

33
 .

We think of the normalized transpose map T ∗ ≡ T T/4 as an encoding isometry, the s′

variable as the logical state and the {s} variables as the physical states. The code subspace

is spanned by the two states |T ∗(±1)〉  

34
 . A simple model of local noise is a one-site bit

flip error ±1 → ∓1 with probability p. For instance, its action on the first bit is given by
33

 ↑ The matrix elements are 〈s′|T |s1s2s3〉. In our example, the map T is T =
(

1 1 1 0 1 0 0 0
0 0 0 1 0 1 1 1

)
.

34
 ↑ The encoded states are |T ∗(±1)〉 = 1

4 (|±1,±1,±1〉 + |±1,±1,∓1〉 + |±1,∓1,±1〉 + |∓1,±1,±1〉).
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the symmetric binary channel G1 =
(

1−p p
p 1−p

)
. In the physical space |s1s2s3〉 this error is

represented by G1 ⊗ I23. It propagates to the logical bits |s′〉 and acts as the matrix

T (G1 ⊗ I23)T ∗ =

1 − p
2

p
2

p
2 1 − p

2

 . (5.53)

By translation invariance of the code states, the other two local errors G2 and G3 also lead

to the same logical error matrix above. The key observation is that the error after coarse-

graining (equation  5.53 ) is the same as the original error but weaker, because the probability

of bit-flip is cut in half. It can be viewed as an eigen-operator of the coarse-graining map

Φ(·) = T (·)T ∗ with eigenvalue 1/2. In real-space RG, we repeat the coarse-graining map n

(large number) times to flow from the short-distances to long-distances. In the case of the

above model with 3N sites, if we start with the local error map Gi on some site si, after the

first step the error is

Φ(Gi) = T (Gi ⊗ I\i)T ∗ (5.54)

where (Gi ⊗ I\i) is the local error in the UV, and T = T⊗N . After n steps of coarse-graining

the errors are exponentially weaker

Φn(Gi) =

1 − 2−np 2−np

2−np 1 − 2−np

 . (5.55)

As we flow from the very short distances (UV) to very long distances (IR) the local errors

are expected to decay exponentially fast limn→∞ Φn(Gi) = I.

Next, consider the non-local error G1 ⊗G2 · · · · ⊗Gk that corrupts k adjacent sites. After

one level of coarse-graining it corrupts b(k − 2)/3c + 2 sites. After each step of coarse-

graining the support of non-local errors shrinks almost by a factor of three, until it becomes

local at which point the above analysis applies. This logic extends to arbitrary k-site error

model. There are two stages to the renormalization of any error of finite support in the UV

Hilbert space. In the first stage, the support of the operator shrinks monotonically. In the
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s1

T T⊗ T⊗ T⊗T⊗

T*⊗ ⊗ ⊗⊗T* T* T* T*

s3Ns2 s3

Figure 5.14. This is a single step coarse-graining on a classical Ising model
in one dimension with 3N sites. Since T coarse-grains three spins into a single
spin, T = T⊗N coarse-grains 3N sites into N sites.

second stage, the error becomes exponentially weaker [  81 ]. Deep in the IR the RG flow is an

approximate classical error correction code in the trivial sense that k-local errors are highly

unlikely to corrupt the encoded data.

The RG flow map Φ(·) = T (·)T ∗ is a classical channel and all its eigenvalues have norm

less than one  

35
 . More generally, we could have considered the asymmetric binary channel

G = p1
(

1−p1 p1
p2 1−p2

)
= I + p1G+ + p2G−

where both G+ and G− are eigenoperators of the RG map with eigenvalue 1/2 and the

identity map is invariant. There are no one-site errors that are left invariant under the RG

map. The only fixed point of the RG map corresponds to acting with the noise at every single

site. The support of such an operator never shrinks to one-site. The ground states of the

one-dimensional nearest neighbor Ising model form an exact repetition code. A simultaneous

Z2 flip on all sites is a logical operation which takes us from one code state to another in the

repetition code. In the absence of fixed points, the states after a large but finite number of

RG steps are our code-words, the encoding is (T ∗)n and the largest eigenvalue of the RG map

controls how well this approximate error correction code protects the classical information.
35

 ↑ A classical channel is a stochastic matrix, or equivalently a conditional probability distribution.

140



5.2.3 Quantum spin blocking (MERA)

The intuitive discussion above generalizes to the renormalization group flow of quantum

systems with local Hamiltonians. In a gapped system, the RG flow becomes trivial at scales

above the correlation length. Since we are interested in repeating the RG map many times,

we focus on the real-space RG in critical systems. We start with a lattice theory in the IR.

The RG map can be viewed as an encoding isometry W : HIR → HUV . In MERA, this

isometry corresponds to two layers, first a layer of local isometries V ⊗ · · · ⊗ V , and second

a layer of local unitaries U ⊗ · · · ⊗ U called the disentanglers. The layer of local isometries

is the quantum analog of T ∗ map in the example of classical Ising model. In quantum

real-space RG, the disentanglers are essential to correctly remove the UV entanglement.

By the same logic as in the classical case, we view the RG flow as a quantum channel

Φ(OUV ) = W †OUVW acting on UV operators OUV . Repeating the channel many times

corresponds to flowing deeper towards the IR. For concreteness consider a MERA where

every RG step cuts the number of sites in half.

As discussed in [ 81 ], the RG evolution of non-local operators OUV (A) originally sup-

ported on a compact region A follows two stages: first the support of the operator shrinks

exponentially fast until after approximately log |A| steps, and it becomes a single site oper-

ator Õ. We decompose the local operator Õ as Õ = tr(Õ)I/D +∑
i aiXi with {Xi} form an

orthonormal basis of local traceless operators. For instance, in the case where every site is a

qubit Xi corresponds to Pauli matrices.

Then, as we flow further towards the IR, the second stage starts. The RG superoperator

leaves the identity operator invariant: Φs(I) = I, but the norm of all Xi operators falls off

exponentially fast in s. The reason is simply that Φ is a quantum channel and its eigenvalues

have norm less than one. That is, all the eigenoperators Oi satisfy

Φ(Oi) = λiOi, |λi| ≤ 1 . (5.56)
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Denote by λ1 the second largest eigenvalue of the RG superoperator Φ  

36
 [ 81 ]. We refer to

ν = − log(Reλ1) > 0 as the gap in the scaling spectrum  

37
 . After s steps of RG the norm

of any traceless operator falls off at least as fast as 2−ν . After a total of s RG steps, a noise

operator OUV (A) originally supported on region A has evolved to Φs(OUV (A)) to

|Φs(OUV (A)) − tr(Õ)I/d| ≤ 2−ν(s−log |A|)|Õ|. (5.57)

The Knill-Laflamme error correction condition [ 115 ] requires that for {|Ψr〉} a basis of

the IR states and OUV (A) an arbitrary UV noise support on compact region A

〈Ψr|Φs(OUV (A))|Ψr′〉 = crr′δrr′ + Y (5.58)

with |Y | � 1. After s RG steps the equation above is satisfied with

|Y | ≤ 2−ν(s−log |A|)|Õ| (5.59)

which becomes arbitrarily small deep in the IR.

Given a code subspace the distance of a code d is defined to be the minimum support of

errors that cannot be corrected. One might guess that the distance of the code we defined

above is |A|. However, this is incorrect because in MERA there are smaller multi-component

regions that contain the information content of the encoded qubit; see figure  5.15 . This is

because we can erase Ā and smaller regions A1, A2 and A3 inside A and and still recovery our

information; see (Fig. (  5.15 Right). The authors of [  112 ] called this property uberholography.

In the continuum limit, the RG map of MERA Φ becomes the scaling superoperator,

its local eigen-operators are conformal primaries and the eigenvalues are their corresponding
36

 ↑ The largest eigenvalue is one.
37

 ↑ We are assuming that there is a gap in the spectrum of the quantum channel; i.e. there exists a smallest
a second largest eigenvalue. In finite quantum system, this is obvious, however, for infinite-dimensional local
systems it is an assumption that corresponds to ruling out a continuous spectrum of scaling operators above
the identity operator.
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|A |

log |A |

s − log |A |

Encoded data

Encoded data

A1 A3A2Ā Ā

Figure 5.15. (Top) The RG flow of operators localized in A in MERA. The
operator shrinks to a point after s ∼ log |A|. Deeper in the IR, its norm
drops exponentially fast. (Bottom) The encoded data is protected against the
erasure of multiple regions: Ā, A1, A2, etc.
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conformal dimensions. If each step of MERA cuts the number of sites down by a factor of γ

then

Φ(Oh) = γ−hOh (5.60)

where h is the conformal dimension of the primary operator Oh. We group the conformal

primaries into light L = {h : h ≤ h0} and heavy ones H = {h : h ≥ h0 + ∆} and call ∆ the

gap. Expanding an arbitrary local operator Õ in terms of local primaries, and one can split

it into the light and heavy pieces assuming that all scaling dimensions are positive

Õ = ÕL + ÕH ,

ÕL =
∑
h∈L

ahOh, ÕH =
∑
h∈H

ahOh . (5.61)

Then, after s � 1 steps of RG flow an arbitrary local operator can be truncated to its light

part, i.e. ÕL:

|Φs(Õ) − ÕL| ≤ e−s∆|Õ| (5.62)

which can be turned into an approximate QEC statement using the Knill-Laflamme condition

in equation  5.58 . To see this more explicitly we consider the following example of continuous

MERA for a massive free boson in 1 + 1-dimensions.

5.2.4 continuous MERA

Consider MERA that goes from deep in the UV to the most IR layer with n local sites

and a coarse-graining scheme that, at each step, cuts the number of sites in half. We label

the layer deepest in the IR with s = 0, and choose the state at s = 0 to have zero correlation

length and no spatial entanglement ⊗x |Ω(x)〉. At each step of coarse-graining as we flow

towards the IR s goes up by one, and the network disentangles modes. Deep in the UV s is

a large negative number and we have 2−sn sites. In the thermodynamic limit n → ∞ the
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MERA network can go on forever and the range of s becomes (−∞, 0). At each scale we

have a ground state wave-function |Ω(s)〉.

A generalization of MERA to continuum theories (cMERA) was proposed in [  93 ]. Similar

to the discrete case, cMERA is an isometric map that takes the states of a theory with zero

correlation length deep in the IR and prepares the low energy states of a QFT (or CFT) in

the UV. The IR ground state is taken to be a state |Ω(0)〉 with no real-space entanglement.

It is more convenient to think of MERA as the isometry from the IR to the UV. The state

at energy scale Λe−s is given by

|Ω(s)〉 = Pei
∫ s

0 du(K(u)+L(u)) |Ω(0)〉 (5.63)

where L(s) is the non-relativistic scaling transformation  

38
 , and K(s) is the continuous analog

of the layer of entanglers:

K(s) =
∫
ddk Γ(|k|/Λ)g(s, k)Ok . (5.64)

Here, Λ is the cut-off scale and the cut-off function Γ(|k|/Λ) can be chosen to be sharp or

smooth. The operator Ok is an operator of energy scale k that should be suitably chosen

as the generator of the entangling layer. Finally, the function g(s, k) decides the strength of

the entangling procedure [  116 ]. 

39
 

For concreteness, consider free massive boson field φ(x) and its momentum conjugate

π(x) in one spatial dimension. Following [  94 ] we choose an entangler independent of scale

K = Λ
4

∫
dxdy e−Λ|x−y| ×

(a(x; Λ)a(y; Λ) − a(x; Λ)†a(y; Λ)†)
38

 ↑ It sends xi → λxi keeping time untouched.
39

 ↑ In discrete MERA the effective cut-off changes as a function of scale, whereas in cMERA we have kept
the cut-off Λ fixed. To compare the two, we consider the rescaled state |Ω̃(u)〉 = eiuL |Ω(u)〉.
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where

a(x; Λ) =
√

Λ
2 φ(x) + i√

2Λ
π(x) (5.65)

is the annihilation operator that defines the unentangled state via a(x; Λ) |Ω(0)〉 = 0. The

cMERA state at scale e−sΛ is

|Ω(s)〉 = eis(L+K) |Ω(0)〉 . (5.66)

This state is the ground state of a massive free boson deformed by a non-relativistic irrelevant

term [  94 ] 

40
 :

H(s)(Λ) =
∫ dx

2

(
′xφ(x)2 + π(x)2

+Λ2e2sφ(x)2 + 1
Λ2 (′xπ(x))2

)
(5.67)

We define the annihilation operator that kills |Ω(s)〉:

as(k; Λ) =
√
αs(k; Λ)

2 φ(k) + i√
2αs(k; Λ)

π(k)

αs(k; Λ) = Λ
√
k2 + Λ2e2s

k2 + Λ2 . (5.68)

The mass term m(s) = Λes runs with scale vanishing in the UV (s → −∞) and growing in

the IR. Since we are interested in the RG flow of a massive theory we fix the mass m and
40

 ↑ Note that our convention differs from [  94 ] in the sign of s.
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vary the cut-off Λ = me−s. To further simplify our discussion we measure all dimensionfull

quantities in units of m (we set m = 1)  

41
 :

as(k) =
√
αs(k)

2 φ(k) + i√
2αs(k)

π(k)

αs(k) =
√

k2 + 1
k2e2s + 1 . (5.71)

They satisfy the standard commutation relations

[a†
s(k), as(k′)] = δkk′ , (5.72)

and the Hamiltonian is

H(s) =
∫
dk Es(k)a†

s(k)as(k) + 1/2

Es(k) =
√
k2 + 1

√
1 + k2e2s . (5.73)

The renormalized creation/annihilation operators are related to those of the UV theory

a†
s(k) ± as(k) = βs(k)∓1(a†(k) − a(k))

βs(k) =
(
1 + k2e2s

)1/4
. (5.74)

Then, the vacuum state |Ω(s)〉 is annihilated by the annihilation modes at scale e−s.
41

 ↑ If instead of setting m = 1 we take the massless limit in (  5.68 ) we find

ω(k; Λ) = Λ√
k2 + Λ2

|k| . (5.69)

Deep in the IR we have a CFT and the renormalized field operators φΛ(0), πΛ(0) and Vp(0) = eipφ(0) are
conformal primaries satisfying

−i[L+K,OΛ
α(0)] = ∆αOΛ

α(0) (5.70)

with conformal dimensions ∆φ = 0, ∆π = 1 and ∆Vp = p2/2. The field φ(x) is not really physical. Its
vanishing conformal dimension is a symptom of the infra-red divergences in the two-point function of φ.
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Coherent operators of the free real scalar fields in 1+1dimensions

Consider the canonical quantization of a free real scalar QFT in finite volume. The

vacuum is the tensor product of the vacua corresponding to the annihilation operators

a(k) =
√
ω(k)

2 φ(k) + iπ(k)√
2ω(k)

a†(−k) =
√
ω(k)

2 φ(k) − iπ(k)√
2ω(k)

(5.75)

where we have used the fact that for a real scalar field φ†(k) = φ(−k), and π†(k) = π(−k).

The commutation relation is [a(k), a†(k)] = 2π. Consider the unitary field coherent operator

D(f) = ea†(f)−a(f∗), a(f) =
∫
dx f(x)a(x) .

We have

a†(f) − a(f ∗) =
∫
dk
(
f(k)a†(k) − (f ∗)(−k)a(k)

)
=
∫
dk
(
f(k)a†(k) − f(k)∗a(k)

)
=
∫
dk

φ(k)
√

2ω(k)f−(−k) − i π(k)√
2ω(k)

f+(−k)


=
∫
dk (iφ(k)fφ(−k) − iπ(k)fπ(−k)))

= iφ(fφ) + iπ(fπ), (5.76)

where we used the Fourier transform of complex conjugate (f ∗)(k) = (f(−k))∗ and

f±(k) = f(k) ± f(−k)∗

2 (5.77)

fφ(k) = −i
√

2ω(k)f−(k), fπ(k) = −
√

2
ω(k)f+(k) .
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Note that it follows from ( 5.77 ) and ω(k) = ω(−k) that the functions fφ(x) and fπ(x)

are real. Using (  5.76 ) we can write coherent operator as a multi-mode momentum unitary

displacement operator

D(f) =
∏
k

ef(k)a†(k)−f(k)∗a(k)

=
∏
k

ef(k)a†(k)e−f(k)∗a(k)e− 1
2f(k)f(k)∗ (5.78)

where we have used the Baker-Hausdorff-Campbell for [X,Y ] ∼ I: eX+Y = eXeY e− 1
2 [X,Y ].

This form of the coherent operator allows us to compute the vacuum expectation value

〈D(f)〉 =
∏
k

〈e− 1
2f(−k)f(k)∗〉 = e− 1

2 (f |f)

(f |g) =
∫
dx f(x)∗g(x) . (5.79)

The single-mode displacement operators

D(α) = eαa†−α∗a

satisfy the Weyl algebra

D(α)D(β) = e 1
2 (αβ∗−α∗β)D(α + β) . (5.80)

Therefore, the unitary field coherent operators satisfy

D(f)D(g) = e 1
2 ((g|f)−(f |g))D(f + g)

= ei((g−|f+)−(g+|f−))D(f + g) (5.81)

= e2iIm(g|f)D(f + g)

where we have separated the real and imaginary part of f and g: f(x) = f−(x) + if+(x) and

g(x) = g−(x) + ig+(x).
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The quadratic Hamiltonian is

H =
∫
dk E(k)a†(k)a(k) + 1/2 (5.82)

then the energy of the field coherent state is

〈f |H|f〉 =
∫
dk E(k)|f(k)|2 + 1/2 . (5.83)

which implies that the coherent states with bounded energy have suppressed |f(k)| at large

k.

Encoding a qudit at a point:

We use a coherent operator D(ipf0) with a real function f0 that is an approximation of

a delta function at point x0 with width ε, and p running from 0 to q − 1, i.e.

|p, x0〉 := D(ipf0) |Ω〉 , (5.84)

to encode a q-level quantum system at x = x0.

As a concrete example, consider the Gaussian wave-packet

f0(x) = 1√
2πε

e− (x−x0)2

2ε2 (5.85)

that is a regularization of the Dirac delta function  

42
 :

lim
ε→0

(g|f0) = g(x = x0), (f0|f0) = 1
2
√

πε
. (5.86)

These states (  5.84 ) have large energy at small ε:

〈p, x0|H|p, x0〉 = p2

2ε4√π
U(−1

2 , 0, ε
2) ' p2

2πε4 (5.87)

42
 ↑ In the momentum space we have f0(k) = eikx0− ε2k2

2√
2π

.
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where U(a, b, z) is the confluent hypergeometric function. The set of states |p, x0〉 are almost

orthonormal in the limit of small ε because

〈p′, x0|p, x0〉 = 〈D(i(p− p′)f0)〉

= e− 1
2 (p−p′)2(f0|f0) ' δpp′ .

One can construct an algebra of the q-level quantum system encoded at point x = x0

on a code subspace constructed above by considering two types of operators, D(iqf0) and

D(g−) for a smooth real function g−. The operator D(iqf0) takes us in between code states

〈p′, x0|D(iqf0)|p, x0〉 = δp′,p+q (5.88)

and the operator D(g−) is diagonal in the basis |p, x0〉:

〈p′, x0|D(g−)|p, x0〉 = δpp′ 〈D(g−)〉 e−i(p+p′)(g−|f0) .

where (g−|f0) ' g−(x = x0) in the ε → 0 limit. If P0 is the projection to the code subspace

spanned by |p, x0〉 then the operators P0, P0D(iqf0)P0 and P0D(g−)P0 and their Hermitian

conjugates generate the algebra of the q-level system encoded at point x = x0.

Moving a distance ε away from x = x0 we can encode a new q-level system because

〈p′, x0|p, x1〉 = 〈D(ipf1 − ip′f0)〉

= exp
(

−1
2(f0|f0)

(
p2 + (p′)2 − 2pp′e

−(x0−x1)2

4ε2

))

which is vanishing small at small ε and |x0 − x1| > ε.

The RG flow of coherent operator

The vacuum state of the massive QFT with the cut-off length scale es satisfies

as(k) |Ω(s)〉 = 0 (5.89)
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for the annihilation operators at scale es defined in (  5.71 ). The coherent state corresponding

to this annihilation operator is

|f ; s〉 = D(s)(f) |Ω(s)〉

D(s)(f) = ea
†
s(f)−as(f∗) (5.90)

It satisfies the Weyl algebra

D(s)(f)D(s)(g) = e2iIm(f |g)D(s)(f + g) . (5.91)

similar to the set of coherent operators D(f) in the UV. Since the theory is Gaussian the

renormalization of the coherent operator can be absorbed in the choice of smooth function

D(f) = D(s)(f s) (see section III of the main text):

f s±(k) = βs(k)±1f±(k),

f s±(x) = B±1/4f±(x),

B := (1 − e2s′2) . (5.92)

The matrix element of D(g) in the code states correspond to a three-point function of

coherent operators that can be computed using the multiplication rule of the algebra in

( 5.91 ):

eA(p′,p;s) := 〈p′f, s|D(g)|pf, s〉

= 〈Ω(s)|D(s)(−p′f)D(s)(gs)D(s)(pf)|Ω(s)〉

= e2iIm(−(gs|p′f)+(pf |gs−p′f)) ×

〈Ω(s)|D(gs + (p− p′)f)|Ω(s)〉 . (5.93)
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In the case where f = if0 and g = g− + ig+:

A(p′, p; s) = −i(p+ p′)(gs−|f0)

−1
2(gs + (p− p′)f0|gs + (p− p′)f0) .

We would like to understand the renormalization of the coherent operators as they flow

from the UV to the IR. As an example, consider the test function f0(x) in (  5.85 ) and the

coherent operator D(f0 + if0). Under the RG flow it goes to D(s)(f s0,− + if s0,+) with f s0,± real.

It follows from (  5.92 ) that

f s0,±(x) = (1 − e2s′2x)±1/4 e− (x−x0)2

2ε2

√
2πε

. (5.94)

Deep in the UV the term e2s′2x is small and the renormalization of f0 is perturbative. The

renormalization becomes non-perturbative at the cut-off length scale es when e2s|′2xf0| be-

comes comparable to |f0|. For the test function f0 we have

e2s|′2xf0|
|f0|

= e2s

ε2

(
(x− x0)2

ε2 − 1
)
. (5.95)

There are two stages to the RG flow of this coherent operator. In the first stage, the

cut-off length es is much smaller than ε, the term e2s′2x in (  5.94 ) can be neglected and the

renormalization of f s0 is perturbatively small. The second stage starts when es ∼ ε. As we

flow deeper in the IR es � ε the term e2s′2x in ( 5.94 ) dominates. In stage two, we are in the

regime ε � es and for points away from |x− x0| = ε we can use the approximation

f s0,±(x) ' e±s/2(′2x)±1/4f0(x) . (5.96)

The function f s0,+ (f s0,−) grows (decays) exponentially fast as e(s−log ε)/2 (e(−s−log ε)/2) in the

IR, respectively; see (Fig.  5.16 ). Note that s increases as we flow towards the IR.

We can generalize these lessons to the renormalization of any function g(x) that is local-

ized around x = x0 with linear width ε � |A| � 1. Note that, in our units, the unit length
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Figure 5.16. The renormalization of the functions f s0,±(x) is insignificant
until the cut-off length scale becomes comparable to ε (width of f0(x)). As we
flow further towards the IR (Top) the function f s0,+(x) becomes highly peaked
(Bottom) the function f s0,−(x) flattens out. (Blue: s = −∞, Yellow: s = 1,
Green: s = 2, Red: s = 3.)

corresponds to the inverse mass at the IR scale, i.e. m−1 = 1. Intuitively, one expects that

near the peak

|′2xg(x)|
|g(x)|

∣∣∣∣
x'x0

= O(|A|−2) (5.97)

or more generally the right-hand-side is some function that is inversely proportional to |A|.

There are two stages to the RG flow. In the first stage es � |A|, the cut-off grows but the

function is frozen. In comparison to MERA, the cut-off can be interpreted as a unit qudit

and the operator is supported on |A|/ε number of sites. Therefore, in this stage the support

of the UV operator shrinks exponentially fast. Similar to MERA, the second stage starts

when the RG scale reaches the size of the unit block es ' |A|. Beyond this point, we find

that inside A the function gs+ grows exponentially as e(s−log |A|)/2 and gs− decays exponentially

as e(−s−log |A|)/2. This is reminiscent of the second of the RG flow of operator in MERA. For

a general function g(x) the right-hand-side of (  5.97 ) is some more complicated function. The

transition scale happens at some es ∼ h(|A|) for some increasing positive function of |A| and

the exponent that controls the exponential growth or decay is (s− log h(|A|)).

Note that the larger |A| is, the later the second stage starts. Because of the above

behaviour, for a coherent operator D(f) as an error operator with a function f supported
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on a large |A|, one needs to flow much deeper in the IR to achieve the error correction code

with the same errors.

Error correction condition:

The Knill-Laflamme condition for approximate quantum error operator [  117 ] tells us that

we can approximately correct for error caused by the operator O if and only if this operator

is proportional to the projection to the code subspace up to small corrections δ:

〈Ψr|O|Ψr′〉 = cδrr′ + δ . (5.98)

We choose the coherent state with cut-off length scale es as the states of the code subspace

and choose as errors the UV logical operator D(D(h−)) and D(ih+) for smooth real functions

h− and h+ which could be supported on either A, C, or both. One can choose, for instance,

h− = g− and h+ = qf0 that we introduced in section (  102 ). To show error correction we

need to establish that

〈p′, x0; s|D(h−)|p, x0; s〉 = c(h−, s)δpp′ + δ1

〈p′, x0; s|D(ih+)|p, x0; s〉 = c(h+, s)δp,p′ + δ2 (5.99)

for small δ1 and δ2. As opposed to the MERA where we were protected against the erasure of

a region, in cMERA we have the weaker statement that given a set of local coherent operator

we are protected from them if we go deep enough in the IR.

We use the algebra of the free fields to compute these matrix elements:

〈p′, x0; s|D(h−)|p, x0; s〉 ' c(h−, s)δpp′e−i(p−p′)(hs−|f0)

〈p′, x0; s|D(ih+)|p, x0; s〉 = e− 1
2 (hs++(p−p′)f0|hs++(p−p′)f0)

c(h±, s) = 〈Ωs|D(h±)|Ωs〉 . (5.100)
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Figure 5.17. Under the RG f s0,+ (f s0,−) localizes (flattens). (Left) Their
overlap with gC supported on C is suppressed if l is large enough. (Right) The
overlap of f s0,+ (f s0,−) with gA supported on A grows (decays), respectively.

We first consider the case where hC = h−,C + ih+,C with h±,C real functions supported

on a region C that is at least lε away from x = x0; see (Fig.  5.17 Left). We have

(hs±|f0) = (h±|f s0,±) . (5.101)

Since f s0,−(x) decays exponentially fast with distance away from x = x0 we have

(hs±,C |f0) = O(e−l2/2) . (5.102)

Since all the points in C satisfy |x − x0| � ε it follows that the functions f0,±(x) grow at

most like es/2/
√
ε. For any fixed large s and a large enough l we find that the error caused

by any D(hC) can be corrected because

〈p′, x0; s|D(h−,C)|p, x0; s〉 ' c(h−,C , s)δpp′

〈p′, x0; s|D(ih+,C)|p, x0; s〉 ' c(h+,C , s)δpp′ . (5.103)

Next, we consider the case where hA is supported on region A that includes the point

x = x0; see (Fig.  5.17 ). As we argued, under the RG flow, the function hsA is unchanged until
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es ∼ |A|. After that the second stage of RG starts. Since es � |A|, for all (x − x0) � |A|,

we can use the approximation in (  5.96 ). Therefore, in the second stage we have

(h±,A|f s0,±) ' e±1/2(s−log |A|)(h±,A|(′2x)±1/4f0) . (5.104)

This combined with (  5.101 ) and (  5.100 ) implies that for es � |A| we have

〈p′, x0; s|D(h−,A)|p, x0; s〉

' c(h−,A, s)δpp′e−i(p−p′)O(e−s/2)

' c(h−,A, s)δpp′ . (5.105)

For the operator D(ih+,A) as we saw in equation ( 5.88 ) we can distinguish different code

states if we tune h+,A = −(p − p′)f0 so that the exponent in the second line of (  5.100 )

vanishes. However, this cancellation does not survive under the RG flow because

hs+,A + (p− p′)f0 = (p− p′)(f0 − f s0,+)

= (p− p′)(1 − (e2s′2x)1/4)f0 ' (p′ − p)(e2s′2x)1/4f0

where in the last line we use the fact that we are in a regime where (e2s′2x)1/4 dominates

over the first term. It is clear from the second line of (  5.100 ) that the norm of the function

above controls the size of the matrix element of this coherent operator. This norm can be

computed explicitly:

(p− p′)2es(′1/2
x f0|′1/2

x f0) = (p− p′)2 es
2πε4 (5.106)

Since es � |A| and |A| � 1 the expression above grows to infinity. Plugging this back into

( 5.100 ) we find that deep in the IR

〈p′, x0; s|D(i(p− p′)f0)|p, x0; s〉 = e− (p−p′)2
2 O(es) (5.107)

which goes to zero.
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In summary, we find that approximate error correction conditions above are satisfied for

any fixed set of UV logical operators D(h) with h supported on A, C or both (see figure  6.1 )

if we go deep enough in the IR. The operators supported on A are correctable when es � |A|

and those on C are correctable when C is far enough from x = x0. In fact, we can consider

the operators that are supported on AC and the same argument above implies that deep in

the IR the UV operators of AC can be corrected. This is reminiscent of uber-holography and

local error correction in [  81 ], [  112 ]. The energy produced by a coherent noise operator D(h)

grows as
∫
E(k)|h(k)|2. If we put a bound M on the energy carried by noise operator, deep in

the IR, i.e. esM � 1, we are protected from all such errors. However, we are not protected

against erasures because for any fixed IR scale es there always exist D(h) supported on A

or C with large enough energy that can distinguish the code states.

5.2.5 Holographic RG and error correction

The cMERA discussion was restricted to free fields. To study the QEC structure in the

RG flow in strongly coupled QFTs we consider holography. Holography can be viewed as

a QEC where the logical algebra of bulk regions are non-locally encoded on the boundary

regions such that they are protected against local boundary erasures [  118 ]. Moreover, the

logical subalgebra corresponding to some bulk subregion E(B) can be reconstructed from the

subalgebra of the boundary subregion B. The bulk region E(B) is the domain of dependence

of a bulk codimension-1 spacelike surface between B and a bulk codimension-2 stationary

area surface anchored on B [ 119 ]. In case there are more than one possible stationary area

surface anchored onB, the surface with the smallest area will determine the bulk region E(B).

The bulk region E(B) is called the entanglement wedge of B [ 120 ] whereas the minimal area

stationary area surface is called Hubeny-Rangamani-Takayanagi surface (HRT) surface [  121 ],

[ 122 ].

Various properties of the holographic QECC were studied in [  112 ] and the authors defined

the concept of the distance and the price for a logical algebra of operators in a bulk region.

Here, we review some important definitions and theorems from [  112 ].
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We start by considering a logical algebra of a single bulk point x. The distance of a

logical operator is the size of the smallest boundary region B such that the logical operator

cannot be reconstructed from the complement of the boundary region B, which we denote

by Bc. This means that the distance dx of a logical algebra of a point x is the volume of the

smallest boundary region B such that x is not in the the entanglement wedge of Bc. That

is,

dx = min
B:x/∈E(Bc)

|B| , (5.108)

where |B| is the volume of the region B. For a logical subalgebra associated to a finite bulk

region X, the distance is given by

dX = min
x∈X

dx . (5.109)

The price pX of a logical subalgebra corresponding to bulk region X is the volume of

the smallest boundary region on which any operator φ ∈ A(X) can be represented. The

subregion-subregion duality implies that the price is the volume of the smallest boundary

region such that the region X is in the entanglement wedge.

pX = min
B:X∈E(B)

|B| . (5.110)

By comparing these definitions, one can deduce that pX ≥ dX . This statement is called no

free lunch in [  112 ].

It is worthwhile to mention that the inequality of the no free lunch can be saturated for

a bulk point x if one assumes the notion of geometric complementarity [ 112 ]. The geometric

complementarity states that a bulk point is either in the entanglement wedge of a boundary

regionB or in the entanglement wedge of the complementary regionBc. That is, if x /∈ E(Bc),

then x ∈ E(B).

A stronger version of the no free lunch is the holographic strong Singleton bound. It

states that the difference of price pX and distance dX of the logical algebra associated to a
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bulk region X can not be less than the number of logical degrees of freedom kX in that bulk

region [ 112 ]. That is,

kX ≤ pX − dX . (5.111)

In the following subsection, we consider a simple example of a holographic RG flow in

which we find that there exists a finite bulk region for which the price and the distance

of the corresponding logical algebra are the same. The holographic Singleton bound then

implies that there should not be any logical degrees of freedom in that subregion. We then

discuss in Sec. ( 105 ) how to modify the definitions of the distance and the price to resolve

this problem.

Holographic RG flow

Consider the vacuum AdS3 with the metric

ds2 = e2r/L
(
−dt2 + dx2

)
+ dr2 , (5.112)

where L is the AdS length scale, and r is the bulk radial coordinate. The boundary is located

at r = ∞ and r = −∞ is the Poincare horizon. This geometry is dual to the vacuum state

of a (1 + 1)-dimensional CFT on a flat spacetime. The AdS length scale and the central

charge of the CFT are famously related according to [  123 ]

c = 3L/2GN . (5.113)

Now suppose we set off an RG flow on the CFT by deforming with a relevant operator.

The geometry that is dual to the RG flow on the boundary is given by [  124 ]–[ 126 ]

ds2 = e2A(r)
(
−dt2 + dx2

)
+ dr2 , (5.114)

where A(r) is such that A(r) ∼ r/LUV near r = ∞ whereas A(r) ∼ r/LIR near r = −∞.

LUV is related to the central charge of the UV theory according to Eq. (  5.113 ), whereas
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LIR is related to the central charge of the IR theory to which the UV theory flows  

43
 . The

function A(r) captures the flow of the boundary theory from UV to IR [  127 ], [  128 ].

In this work, we consider a simple example where A(r) is given by a

A(r) =


r/LUV r ≥ 0

r/LIR r ≤ 0
. (5.115)

This simple model of holographic RG flows has been studied in [ 129 ], [  130 ] where the minimal

area surfaces corresponding to boundary regions are studied. Here, we review the results

from [  129 ].

Consider a single interval on a boundary of size `. For small enough regions, the bulk

stationary area surfaces remain near the boundary and do not penetrate to r < 0 region

(i.e. the IR region.) In particular, this type of stationary area surfaces only exist for

` ≤ `2 ≡ 2LUV . For regions of length ` ≥ `2 , the stationary area surfaces must penetrate

to the IR region.

However, it was observed in [ 129 ] that even for ` < `2 , there can exist stationary area

surfaces that go to r < 0 region. In fact, such surfaces exist for ` ≥ `1 , where

`1 = 2LUV

√√√√1 −
(

1 − LIR
LUV

)2
. (5.116)

Based on the above discussion, the HRT surfaces for ` < `1 completely stay in the UV

region whereas the HRT surfaces for ` > `2 penetrate to the IR region. For intermediate

size regions, both types of stationary area surfaces exist but the HRT surface is the one with

a smaller area. It was observed in [ 129 ] that there exists a critical size of the interval, `t,

below which the surfaces that stay in the UV region has a smaller area and above which the

surfaces that reaches the IR region has a smaller area. In Appendix ( 5.2.7 ), we numerically

calculate the critical size of the interval by comparing the area of the surfaces involved.
43

 ↑ The holographic c-theorems say that the null energy condition in the bulk implies LIR < LUV [ 127 ],
[ 128 ].
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Figure 5.18. Pictorial representation of the phase transition in the HRT
surfaces at ` = `t for LIR = 0.3 and LUV = 1.0. The critical length scale is
in the range `1 < `t < `2. The HRT surface for ` just bigger/smaller than `t
is shown in blue/red color. The yellow shaded region is an example of a finite
size region X for which the distance and price are equal.

The result of this analysis is shown as a plot of `t versus LIR/LUV in Fig. (  5.19 Left) in

Appendix (  5.2.7 ).

Due to the ‘phase transition’ in the HRT surface at ` = `t, there is a jump in the bulk

entanglement wedge as well. When the size of the boundary interval is just smaller than

`t, the minimum radial point that is reached by the HRT surface is rUV > 0. On the other

hand, when the size of the boundary interval is just greater than `t, the minimum radial

point reached by the HRT surface is rIR < 0. The jump in the entanglement wedge at ` = `t

can be measured in terms of the proper distance between these minimum radial points. We

numerically calculate this proper distance in the Appendix (  5.2.7 ) and find that we can

make this proper distance bigger by making the difference between LIR and LUV bigger; see

(Fig.  5.19 Right) in Appendix ( 5.2.7 ).

The transition in the entanglement wedge at ` = `t has interesting implications for

holographic QECC. Consider a bulk region X which is the intersection of the region r <

rUV and the entanglement wedge of a boundary interval of size slightly greater than `t.

The condition r < rUV implies that the region X is not in the entanglement wedge of

162



any boundary interval of size less than `t. Hence, according to Eqs. (  5.108 )-( 5.109 ), the

distance of the logical algebra associated to region X is given by `t. Moreover, according to

Eq. ( 5.110 ), the price of the region X is also given by `t  

44
 . This means that we have found a

logical subalgebra associated to a finite size bulk region for which the price and the distance

are the same. Comparing this with the holographic strong Singleton bound in Eq. (  5.111 ),

we deduce that the number of logical degrees of freedoms in that finite size subregion should

be zero or else we get a violation of the holographic strong Singleton bound.

We discuss in the next subsection how to modify the definition of the distance and the

price to resolve this apparent paradox.

Price, distance, and the reconstruction wedge

We observed in the previous subsections that a phase transition in the entanglement

wedge led us to a violation of the holographic strong Singleton bound. In this subsection,

we discuss this violation can be resolved.

The definition of the entanglement wedge in terms of the minimal area surface is only

valid at the leading order in O(1/GN). At subleading order in GN , we have to take the

entanglement entropy of the bulk quantum fields into consideration [  131 ], [  132 ]. More pre-

cisely, the entanglement wedge of a boundary region B is the domain of dependence of a

bulk region between B and a codimension-2 surface of stationary generalized entropy. The

generalized entropy of a region is equal to the area of the boundary of that region (in Planck’s

units) plus the entropy of the quantum fields in the region. This subleading correction, as

is recently emphasized [  133 ]–[ 135 ], can be significant when there is a phase transition in the

minimal surfaces.

Now suppose there is a state ρX of the quantum fields in region X which we introduced

in the previous subsection. If this state is pure, then the discussion of the entanglement

wedge is unchanged and we end up with a phase transition at ` = `t. However, when the

state ρX is mixed, then there is no phase transition and the entanglement wedge at ` = `t is
44

 ↑ The distance and the price are actually equal to (`t)α where α = log(2)/ log(
√

2+1) [ 112 ]. This is the size
of the fractal like disconnected intervals such that the entanglement wedge of the disconnected region has
the same minimum radial point as the entanglement wedge of a single interval of size `t. This construnction
is called uberholography in [ 112 ].
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region between the boundary interval and the red surface shown in (Fig.  5.18 ). Hence, the

entanglement wedge depend on the state ρX .

The dependence of state on entanglement wedge has been recently discussed in [  133 ]–

[ 136 ]. In particular, it was argued in [  134 ] that the bulk region that can be reconstructed

given a boundary region B is not the entanglement wedge of B. In fact, this region can

be macroscopically smaller than the entanglement wedge, E(B). The reconstruction wedge,

R(B), corresponding to the boundary region B is defined to be the intersection of all the

entanglement wedges of B for every state in the code space [ 134 ].

In the example that we discussed above, the reconstruction wedge of boundary interval

of size ` = `t is the entanglement wedge when the state ρX is mixed. Hence, there is no

phase transition in the reconstruction wedge at ` = `t.

With the fact that the reconstruction wedge is smaller than the entanglement wedge, we

restate one of the main statements in the main text. To solve the violation of holographic

Singleton bound, we propose that the definition of the price for a logical algebra associated

to a bulk region X should be modified from Eq. ( 5.110 ) to

pX = min
B:X∈R(B)

|B| . (5.117)

Similarly, we propose that the distance of a subregion X is

dX = min
x∈X

dx ; dx = min
B:x/∈R(Bc)

|B| . (5.118)

With the new definition, although the distance is still determined by the ` = `t, the

price is determined by ` = `2 which is the largest length for which the surface in Eq. ( 5.119 )

exists 

45
 .

45
 ↑ Again, the distance and the price are given by (`t)α and (`2)α respectively where α = log(2)/ log(

√
2 + 1)

as determined by the uberholography construnction.
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5.2.6 Discussions

In summary, we studied the connection between RG and approximate error correction

codes in three examples: 1) the RG flow of classical Ising model as a classical code 2)

continuous MERA for massive free fields as a quantum code. 3) holographic RG flow of a

2-dimensional boundary theory.

In this work, we advertised the picture that the Hilbert space of an effective field theory

with the cut-off scale Λ should be viewed as a code subspace of all states that are approx-

imately protected against the short-distance errors localized on a region of linear size A

much smaller than the cutoff, |A| . 1/Λ. To argue for this point, we used cMERA as a

concrete realization of the real-space RG flow of massive free fields. However, there are other

approaches to the RG flow. Examples include the continuous Tensor Network Renormal-

ization (cTNR) in [  137 ], the generalization of cMERA using Euclidean path-integrals [  116 ],

[ 138 ], the RG flow for free O(N) model using Polchinski’s exact RG [  105 ]. In some of these

approaches the map from the IR physics to the UV is no longer an exact isometry. It is

an interesting question to investigate the approximate QECC code appears in these other

approaches to the RG flow.

5.2.7 Appendix: Holographic RG flows and phase transition

In this appendix, we present the details of the phase transition in the entanglement wedge

that we discussed in section (  5.2.5 ).

Consider a single interval on a boundary of size `. One possible stationary area surface

anchored on this interval is the one that does not penetrate to r < 0 region (i.e. the IR

region). This surface is given by  

46
 

x = LUV

√
e−2rm/LUV − e−2r/LUV , (5.119)

46
 ↑ This equation is only for the half of the surface. The center of the interval is chosen to be at x = 0 and

the surface is symmetric around x = 0.
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where rm is the minimum radial point that is reached by the minimal surface and is related

to the size of the interval according to ` = 2LUV e−rm/LUV . Note that this type of stationary

area surface for which rm > 0 can only exist for ` ≤ `2 , where `2 = 2LUV .

For intervals of size ` > `2, the stationary area surfaces discussed above would penetrate

to the IR region. However, it was observed in [  129 ] that even for ` ≤ `2 , there can exist

stationary area surfaces that go to r < 0 region. In fact, there can be two such surfaces for

a given ` and they can be written as x = x±(r) where

x±(r) =
LIR

√
K2

± − e−2r/LIR , rm,± ≤ r ≤ 0

LUV

(√
K2

± − e−2r/LUV −K±

)
+ `

2 r ≥ 0 .
.

The minimum radial point rm,± is related to K± according to K± = e−rm,±/LIR . The

continuity of x±(r) at r = 0 implies

` = 2LUVK± − 2 (LUV − LIR)
√
K2

± − 1 , (5.120)

which can be inverted to get

K± =
LUV `± (LUV − LIR)

√
`2 + 4LIR (LIR − 2LUV )

2L2
UV − 2 (LUV − LIR)2 .

(5.121)

These surfaces can only exist when K± are real-valued which requires ` ≥ `1 , where

`1 = 2LUV

√√√√1 −
(

1 − LIR
LUV

)2
. (5.122)

Therefore, there are three possible stationary area surfaces corresponding to a boundary

interval of size `1 ≤ ` ≤ `2. The HRT surface, however, is the one with the smallest area
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among these three surfaces. Let us denote the area of the surface in Eq. (  5.119 ) by A0 and

the area of surfaces x±(r) in Eq. (  5.120 ) by A±. Then A0 is given by [  121 ]

A0 = 2LUV log
(

`

δUV

)
, (5.123)

whereas A± are given by [  129 ]

A± = 2LUV log
(2LUVK±

δUV

)

− (LUV − LIR) log
K± +

√
K2

± − 1

K± −
√
K2

± − 1

 , (5.124)

where δUV is a UV cutoff of the boundary theory. It was observed in [  129 ] that the area A−

is always greater than A+ and that there exists a critical size of the interval, `t, below which

A0 < A+ and above which A+ < A0  

47
 . This means that for some critical lt, when ` < `t the

surface in Eq. (  5.119 ) is the RT surface, whereas when ` > `t the surface x+ in Eq. ( 5.120 )

is the RT surface. We can calculate the critical size of the interval by numerically solving

A0 −A+ = 0. The result of this analysis is shown as a plot of `t versus LIR/LUV in Fig. ( 5.19 

Left). As we can see from the figure, `t increases with LIR/LUV and it approaches `2 when

LIR approaches LUV .

As we discussed in Sec. (  5.2.5 ), there is a jump in the entanglement wedge due to the

phase transition in the HRT surfaces. The jump in the entanglement wedge at ` = `t can be

measured in terms of the proper distance between the minimum points reached by the two

candidate HRT surfaces. This proper distance is given by

∆rm = rUV − rIR . (5.125)

where rUV = −LUV log (`t/(2LUV )), and rIR = −LIR logK+(`t), and K+(`t) can be deter-

mined using Eq. (  5.121 ). We plot ∆rm as a function of LIR/LUV in Fig. (  5.19 Right). As we
47

 ↑ Even though the areas A1, A+, and A− depend on the UV cutoff, the difference of any two areas is
independent of the cutoff. This makes the comparison of the areas meaningful.

167



can see from the figure, the jump in the HRT surfaces, and hence in entanglement wedges,

is more significant when the difference between LIR and LUV is large.

Figure 5.19. Numerical calculation of the (Top) critical length, `t, and (Bot-
tom) the jump in the entanglement wedge at the phase transition, ∆rm, as a
function of LIR/LUV .
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6. GENERALIZED INFORMATION MEASURES

In [  139 ], Shannon provided the definition of “information” and Shannon entorpy as an av-

erage of surprisal as discussed in chapter  2 . As a generalization of Shannon entropy, von

Neumann entropy has been proposed. The von Neumann entropy of a subregion captures the

total correlations of a bi-partite pure state in a quantum many-body system. It is also called

the entanglement entropy. The locality of correlations in quantum many-body systems de-

termines the scaling of entanglement entropy. Consider a quantum many-body system with

a finite correlation length. The leading contribution of the entanglement entropy of a sub-

region scales with the boundary area of the subregion[ 140 ], [  141 ]. This is called the area

law. It is known that the entropy of black holes follows the area law[ 142 ], [ 143 ]. The leading

contribution of the entanglement entropy of holographic conformal field theory is also known

to follow the law. In particular, its gravity dual quantity has been proposed and known as

Ryu-Takayagi surface[ 144 ]. Unfortunately, the von Neumann entropy suffers from ultraviolet

divergences. On the contrary, the quantum relative entropy is a UV-finite measure. The

quantum relative entropy is known as a distinguishability measure that compares two states.

In [ 64 ], Araki used the modular theory to define the relative entropy of vN algebra of a

general quantum system, for instance, quantum field theory(QFT).

In this chapter, we focus on the family of information measures, called the correlation

measures. Correlation measures are the information measures that satisfy the monotonicity,

or data-processing inequality, under a local completely positive map. In the QEC, the

relative entropy is used to compare the state associated with a physical algebra B and the

ones associated with the correctable algebras BC , which forms the inclusion of von Neumann

algebras BC ⊂ B. In section  6.1 , the inclusion is characterized by a group. That is, we

consider an inclusion A ⊂ F where A is the von Neumann subalgebra that is invariant

under a group G. Our study proposes the generalized entanglement entropy of a quantum

system in the presence of charges due to the symmetry defined by the group G. We show

that this can be written by Jaynes entropy[ 145 ].

von Neumann entropy and relative entropy are generalized into a one-parameter family

of information measures. They are known as Rényi entropies and Rényi relative entropies.
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There are two major Rényi relative entropies. One is known as Petz Rényi divergences

and the other is sandwiched Rényi divergences. In order to interpolate them, the two-

parameter family known as α-z Rényi relative entropy has been proposed[ 146 ]. For any

family of information measures to be correlation measures, it should satisfy the monotonicity

under a CP map. Hence, one of the main interests of quantum information theorists and

mathematicians is to specify in which range of parameters the monotonicity holds. These

objects actually have physical importance beyond just mathematical generalization. Rényi

families were used in quantum thermodynamics of small quantum systems to prove new

second laws[ 147 ]. In QFT, the sandwiched Rényi divergences were shown to be related

to multi-point correlation function[  148 ], and their data-processing inequality was used to

prove the novel constraints of unitary and locality[ 149 ], [ 150 ]. They have also been used to

constrain the renormalization group flows of QFTs[ 151 ]. In holography, Renyi divergences

have gravitational duals in terms of the on-shell action of replicated geometries [ 152 ], and

their monotonicity has led to new laws of black hole thermodynamics [ 153 ].

In section  6.2 , we generalize the Rényi families of relative entropy to multistate and

multiparameter f -divergences based on the construction of Lpω space[ 154 ] and Kubo-Ando

operator means[  155 ]. Most importantly, we show that it satisfies the monotonicity under a

single unital completely positive map. Although we do not have clear physical interpretations

of our multistate f -divergence, we make speculation on how it could play a role in quantum

state discrimination.

In summary, we show that the following;

1. [Relative entropy of subalgebras and subspaces of an algebra]

Consider a subspace P and a subalgebra A of an algebra F . Suppose E : F → A is a

conditional expectation preserving a trace, i.e., tr(E(f)) = tr(f) for f ∈ F . We propose

the relative entropy between A and F as, for a state ρ on F ,

S(ρ‖E∗(ρ)) = S(σmax) − S(ρ) (6.1)

170



where σmax satisfies the Jaynes maximum principle. That is, for a state ρ on F , consider

the set {σ} of all states σ that have the same expectation values as ρ for all operators

a in A, i.e., tr((ρ − σ)a) = 0. Then, the Jaynes maximum principle states that the

Jaynes entropy SJ of a state ρ with respect to a subalgebra A is the supremum of the

von Neumann entropy SvN(σ) over the set {σ};

SJ(ρ,A) = sup
σ∈{σ}

{SvN(σ)| tr((σ − ρ)a) = 0, ∀a ∈ A}. (6.2)

σmax provides the supremum. The relative entropy ( 6.1 ) between a subspace P and an

algebra F is defined similarly to the above just by replacing A to P .

2. [A generalized entanglement entropy of a quantum system in the presence of charges in

a general quantum system]

Consider two von Neumann algebras F1 and F2 associated with the local disconnected

region A1 and region A2 on spacetime, and a global symmetry group G  

1
 . Let us denote

the algebras invariant under the group as A1 ⊂ F1 and A2 ⊂ F2. Physically, A1 and A2

correspond to the set of charge-neutral operators. Note that F12 = F1 ∨ F2 ∼= F1 ∨ F2

while A12 ⊃ A1 ∨ A2 ∼= A1 ⊗ A2. A1 ∨ A2 is missing the bi-local intertwiners which

are operators in A12 that correspond to the creation of a pair of charged particles of

opposite charge, one in region A1 and the other in region A2. There are two conditional

expectations, i) E : F12 → A12, ii) Eτ : F12 → A1 ∨ A2 ∼= A1 ⊗ A2, where their action

on each individual local algebra Fi is identical, i.e., E , Eτ : Fi → Ai for (i = 1, 2). E

is realized as a Haar average over the group G. Eτ washes the local charges away from

the local algebras. Then, the generalized entanglement entropy of the disconnected local

region of a general quantum system in the presence of charges due to the global symmetry

G is defined by

SA12(ρ12‖E∗
τ (ρ1) ⊗ ρ2) = SA1⊗A2(ρ12‖E∗

τ (ρ1) ⊗ ρ2) + SA12(ρ12‖E∗
τ (ρ12)) (6.3)

1
 ↑ The transformation under a group of global symmetry does not depend on a background spacetime coor-

dinates as oppose to gauge symmetry which provides the local transformations depending on the spacetime
coordinates.
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The first term is the relative entropy with respect to the charge-neutral operators of A1

and A2, and the second term measures the contribution from bi-local intertwiners in A12.

We also provide the explicit upper bound;

SA12(ρ12‖E∗
τ (ρ1) ⊗ ρ2) ≤ log |G| (6.4)

where |G| is the cardinality of the group G.

3. [Multi-state quantum f -divergences]

For a von Neumann algebra A and a state ω on A, consider its GNS representation on

the GNS Hilbert space Hω equipped with a Hilbert-Schmidt norm, or L2-norm ‖ |a〉Ω ‖ =

‖a |Ω〉 ‖ where |Ω〉 be a GNS vacuum. We define a Lpω-space equipped with the Lpω-norm

defined as

‖ |a〉Ω ‖p,Ω = sup
|Ψ1/2〉∈Hω

‖∆
1
2 − 1

p

Ψ|Ω |a〉Ω ‖ ∀p ∈ [2,∞]

‖ |a〉Ω ‖p,Ω = inf
|Ψ1/2〉∈Hω

‖∆
1
2 − 1

p

Ψ|Ω |a〉Ω ‖ ∀p ∈ [1, 2) (6.5)

where ψ is another state on A and ∆Ψ|Ω is a relative modular operator of |Ψ〉 and |Ω〉.

Suppose we pick n states ψ1, · · · , ψn on A, and construct the relative modular operator

∆Ψi|Ω for i = 1, · · · , n. Note that Ψi are the GNS vectors corresponding to ψi. With the

vector notations ~Ψ = (Ψ1, · · · ,Ψn), ~θ = (θ1, · · · , θn) and ~f = (f1, · · · , fn−1), we define

the operator

∆~f
~Ψ|Ω(~θ) ≡ ∆θ1

Ψ1|Ω]f1 · · · ]fn−1∆θn
Ψn|Ω . (6.6)

Here, we apply the Kubo-Ando operator means defined below to the relative modular

operators.
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Definition 6.0.1 (Kubo-Ando mean). For any operator monotone function f with f(1) =

1 and positive operators X and Y the Kubo-Ando mean ]f is defined to be [ 155 ], [ 156 ]

X]fY = X1/2f(X−1/2Y X−1/2)X1/2 (6.7)

where we are assuming that X is invertible. Note that X]fX = X.

Then, we define the multi-state f -divergence to be

S
~f
~θ;r(

~ψ‖ω) = −2r∏n
i=1(1 − θi)

log
∥∥∥∥∥
(

∆~f
~Ψ|Ω(~θ)

)1/2
|Ω〉

∥∥∥∥∥
2r,Ω

. (6.8)

4. [Monotonicity of multi-state quantum f -divergences under an unital completely positive

map]

For von Neumann algebras A and B, consider an unital CP map Φ : B → A such that

ωA ◦ Φ = ωB for states ωA on A and ωB on B. We show the monotonicity of (  6.8 ) under

an unital CP map Φ : B → A, i.e., for a set of states ~ψA = (ψ1, · · · , ψn) on A and a set

of states ~ψB = (ψ1, · · · , ψn) on B,

S
~f
~θ,r

( ~ψB‖ωB) ≤ S
~f
~θ,r

( ~ψA‖ωA) . (6.9)

for r ≥ 1.

6.1 Generalized entanglement entropy, charges, and intertwiners

6.1.1 Introduction

The study of entanglement in many-body quantum systems has opened new windows to

understanding strongly coupled phenomena. Entanglement measures in lattice models have

helped identify phases of matter and universal dynamical processes. In Poincare-invariant

quantum field theory (QFT), entanglement measures have taught us about universal long-

range correlation patterns, and renormalization monotones [  157 ]–[ 159 ]. In holographic QFT,

entanglement measures play an important role in the emergence of geometry out of quan-
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tum states [  97 ]. In this work, we study the entanglement theory in quantum systems with

conserved charges.

In the conventional quantum information theory, the Hilbert space of a bipartite system

A12 ≡ A1 ∪ A2 with A1 and A2 non-overlapping is the tensor product of the Hilbert spaces

of each: H12 = H1 ⊗ H2. There are local algebras of operators on A1 and A2 that we denote

by F1 and F2, respectively. For instance, the algebra of operators of a d-level quantum

system (qudit) is the algebra of d× d complex matrices. The global algebra of the bipartite

system A12 is F12 = F1 ⊗ F2. The local algebra F1 is a subalgebra of F12, and the reduced

state on this subalgebra is given by a partial trace on F2. The entanglement measure we

are interested in captures the amount of information erased by partial trace. Entanglement

is a resource that can be distilled in the form of Einstein-Podolosky-Rosen (EPR) pairs and

can be used to teleport quantum states. For instance, for a bipartite qudit density matrix

ρ1 ⊗ ρ2 the amount of information erased by partial trace on A2 is log d − SvN(ρ2), where

SvN(ρ) = −tr(ρ log ρ) is the von Neumann entropy. The state ρ1 ⊗ I2/d is unique in that it

loses no information under partial trace. The distinguishability of an arbitrary state ρ12 with

respect to the invariant state of partial trace ρ1 ⊗ I2/d can be used to quantify the amount of

information lost in partial trace of A2. In quantum information theory, the distinguishability

of a state ρ from σ is measured by the relative entropy

S(ρ‖σ) = tr(ρ log ρ) − tr(ρ log σ) (6.10)

which is non-negative and vanishes if and only if ρ = σ. We choose the relative entropy

S(ρ12‖ρ1 ⊗ I2/d) = log d − SvN(ρ12) + SvN(ρ1) as our measure of the information lost in

partial trace. 

2
 

In systems with symmetries and conserved charges, the degrees of freedom in A1 and A2

are not completely independent. Charge conservation requires that any physical process that

creates a charge particle in A1 also creates the opposite charge in A2. If we superpose states

of different charge, there is no information in their relative phase because they cannot be

detected in any physical process made out of charge conserving operations. The naive relative
2

 ↑ It has an operational interpretation in the language of the state merging protocol [ 160 ].
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entropy for a charged system cannot be used as a resource to distill entangled pairs [  161 ],

[ 162 ]. In this work, we argue that the measure of entanglement with the correct operational

interpretation is the sum of two relative entropies. One term captures the entanglement due

to the charge-neutral degrees of freedom. These operators are invariant under the symmetry

transformation. The second term captures the contribution of charged operators, and is

a measure of the asymmetry of states in the resource theory of symmetry [ 161 ], [ 162 ]. In

section  6.1.2 , we motivate a generalized entanglement entropy beyond the case of tensor

products, and connect it to the coarse-grained entropy defined by the Jaynes maximum

entropy principle [ 145 ]. For other definitions of generalized entanglement see [ 163 ], [  164 ].

The charge-neutral operators in F form a sub-algebra that we denote by A; figure  6.1 .

In the bipartite setup, the algebra of charge-neutral operators localized in A1 is a subalgebra

of all charge-neutral operators of A12: A1 ⊂ A12. However, it is not true that A1 and A2

generate all the charge-neutral operators of A12. The operators that spontaneously create a

pair of charge particle in A1 and its anti-charge in A2 belong to A12, but not to A1 ⊗ A2.

In section  6.1.5 , we call such operators bi-local intertwiners due to the role they play in the

representation theory of the symmetry group; see figure  6.2 . Our goal is to quantify the

contribution of the local intertwiners to the entanglement. The key idea is to associate to

any state ρ an invariant state E∗(ρ). The expectation value of all charge-neutral operators A

in E∗(ρ) and ρ match, however the probability for the spontaneous creation of a charge/anti-

charge pair in the invariant state is zero. The relative entropy S(ρ‖E∗(ρ)) measures the

distinguishability of the two states. It is a measure of the asymmetry of ρ and captures

the information contained in the bi-local intertwiners. In section  6.1.2 , we argue that this

relative entropy added to the mutual information between region A1 and A2 due to the

charge-neutral algebra A1 ⊗ A2 captures the total amount of entanglement between A1 and

A2. This quantity is also discussed in previous work of [ 165 ], [  166 ] and some of the ideas

here parallel those of [ 166 ].

In section  6.1.5 , we review the representation theory of symmetry groups and the su-

perselection sectors. A special role is played by the charge creation/annihilation operators

that take charge neutral operators from a superselection sector to another. They are called

intertwiners and together with the charge neutral sub-algebra they generate the algebra of
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Figure 6.1. a) A charge neutral operator in region A: a ∈ AA. b) A charged
operator in region A: b ∈ FA.
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Figure 6.2. (a) Charge neutral operators in region A1 ∪ A2: a ∈ A1 ⊗ A2. (b)
A bi-local intertwiner in A1 ∪ A2: I12 ∈ A12. (c) Local intertwiners, or charged
operators in A1 ∪A2 that belongs to the global algebra F1 ⊗ F2.

all charged particles. In section  6.1.5 we provide simple physical examples from qubits to

QFT to demonstrate the formalism. A reader who is already familiar with the formalism

can skip this section. In section  6.1.13 , we make the distinction between global algebras

and local algebras. In the global case, we consider the algebra of charge neutral operators

as a sub-algebra of all charged operators A ⊂ F . In the local case, we consider the tensor

product of charge neutral operators in non-overlapping regions A1 and A2 as a sub-algebra

of charge-neutral operators of A1 ∪ A2: A1 ⊗ A2 ⊂ A12.

The study of entanglement in QFT is subtle due to absence of a tensor product HA ⊗

HA′ that reflects itself as ultra-violet divergence in the entanglement entropy [  58 ], [  165 ],

[ 167 ]. Modular theory is a mathematical framework that is well-suited for the study of

entanglement in any quantum system from qubits to QFT. In modular theory, instead of

tensor products and local density matrices, the algebra of operators localized in a region and

locality constraints among them are used to define entanglement measures. In section  6.1.17 ,
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we use modular theory to define both the relative entropies that measure the entanglement

between non-touching regions A1 and A2 in a QFT with conserved charges. We highlight

the difference in the analysis of entanglement between QFTs and lattice models. Finally, we

discuss an extension of the QFT algebra that factors out charged excitations and brings the

QFT algebra closer to lattice models.

In this work, we focus on global symmetries, however, the formalism can be generalized

to many gauge theories [ 168 ], [  169 ]. We postpone this to future work.

6.1.2 Generalizations of entanglement

6.1.3 Conditional expectation as generalization of partial trace

Consider the algebra of operators of two qudits F12 = F1 ⊗ F2 and the subalgebra of

operators localized on the first system F1 ⊗ I2. The reduced density matrix on F1 is given

by the partial trace over F2: ρ1 = tr2(ρ12). In the classical case, ρ12 = ∑
kk′ pkk′ |kk′〉 〈kk′|

the reduced density matrix on the first qudit is ρ1 = ∑
k qk |k〉 〈k| where qk = ∑

k′ pkk′ are

the classical conditional expectations to obtain result k in a measurement on first qudit:

qk = tr(|k〉 〈k| ⊗ I)ρ12. In a mathematical analogy, one can think of density matrices as non-

commutative probabilities and partial trace as non-commutative conditional expectation

[ 170 ].

To compute how much information was erased during partial trace we have to pull ρ1

back to the bipartite Hilbert space by a linear map that we denote by α∗(ρ1) = φ12 with the

following properties:

1. It is consistent with ρ1: tr2(φ12) = ρ1.

2. The state φ12 is invariant under partial trace and α∗: α∗(φ1) = φ12 so that α∗ does not

add any information.

We call such α∗ maps recovery maps or state extensions [  170 ], [  171 ]. In the partial trace

case, the recovery map with the properties above is α∗(ρ1) = ρ1 ⊗ I2/d. 

3
 It is convenient to

think of partial trace and recovery together as one linear map that sends density matrices
3

 ↑ An example of a map that satisfies the first property but not the second is α∗(ρ1) = ρ1 ⊗ ω2 for some ω2.
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on F12 to the density matrices on the subalgebra F1 ⊗ I2: E∗(ρ12) = ρ1 ⊗ I2/d. The dual of

the E∗ is a projection from F12 down to the subalgebra F1 ⊗ I2:

E(b1 ⊗ b2) = b1 ⊗ I2 tr
(
b2

d

)
. (6.11)

Here, by duality we mean going from the Schrödinger to the Heisenberg picture 

4
 

tr(E∗(ρ12)(b1 ⊗ b2)) = tr(ρ12E(b1 ⊗ b2)) = tr(ρ1b1) tr
(
b2

d

)
. (6.12)

The map E has the property that it squares to itself, i.e. E2 = E, so that E∗(ρ12) is invariant

state of E :

tr(E∗(ρ12)E(b1 ⊗ b2)) = tr (E∗(ρ12)(b1 ⊗ b2)) . (6.13)

The relative entropy of ρ12 with respect to the invariant state E∗(ρ12) = ρ1 ⊗ I2/d mea-

sures the asymmetry of the state or the amount of information erased in partial trace:

S(ρ12‖E∗(ρ12)) ≥ 0; see figure  6.3 .

A simple way to generalize partial trace is to consider a more general dual map E : F12 →

F1 ⊗ I2:

E(b1 ⊗ b2) = b1 ⊗ D(b2)

D(b) =
∑
k

bkk |k〉 〈k| (6.14)

where {|k〉} is some distinguished basis of the second qudit. In the Schrödinger picture, the

state transforms according to

E∗(ρ12) =
∑
k

pkρ
(k)
1 ⊗ |k〉2 〈k|2

pkρ
(k)
1 = 〈k|2 ρ12 |k〉2 , pk = tr(ρ12(I ⊗ |k〉2 〈k|2)) (6.15)

4
 ↑ An alternative notation used in [ 166 ] is to denote E∗(ρ) by ρ ◦ E.
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that dephases the density matrix and erases the information in the off-diagonal operators

|k〉 〈k′|. Similar to the E of partial trace we have the property that E(I) = I so that E∗(ρ)

is properly normalized. Furthermore, E squares to itself which implies that E∗(ρ12) is an

invariant state of E .Figure 3

ρ12 E*(ρ12) = ρ1 ⊗ I2/d

ρ1

E*

tr2 α*

S(ρ12 | |E*(ρ12))

ρ D(ρ) = ∑
k

|k⟩⟨k |ρkk
E* S(ρ | |E*(ρ))

(a)

Figure 3

ρ12 E*(ρ12) = ρ1 ⊗ I2/d

ρ1

E*

tr2 α*

S(ρ12 | |E*(ρ12))

ρ D(ρ) = ∑
k

|k⟩⟨k |ρkk
E* S(ρ | |E*(ρ))

(b)

Figure 6.3. Our entanglement measure is the relative entropy of the state ρ with
respect to its corresponding invariant state E∗(ρ): S(ρ‖E∗(ρ)). (a) The example
where the map E∗ is a composition of partial trace of system 2 and the recovery
map α∗ which results in an invariant state E∗(ρ12). (b) The example where the map
E∗ decoheres the density matrix ρ in a particular basis {|k〉}.

In systems with conserved charges, the subalgebra of charge-neutral operators corre-

sponds to matrices that are block-diagonal in some basis labelled by charge. For instance,

take a qubit and the symmetry transformation σz. The Abelian subalgebra D ⊂ F of 2 × 2

complex matrices diagonal in σz basis is the charge neutral algebra. The dephasing map

E(b) = D(b) projects operators from F to D. For a general quantum system with symmetry

we need to define a linear map E : F → A with A ⊂ F the subalgebra of charge-neutral

operators as a generalization of partial trace. An example of one such map is the Haar

average over the group G:

E(b) = 1
|G|

∫
dgU †

gbUg . (6.16)

The operator E(b) is charge-neutral for any charged operator b. In analogy to partial trace,

we require this map preserves the identity operator, and it leaves the charge-neutral operators

unchanged so that the state E∗(ρ) defined by (E∗(ρ))(b) = ρ(E(b)) for all b ∈ F is invariant

under the map E : E(E∗(ρ)) = E∗(ρ). The generalization of partial trace is called the non-
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commutative conditional expectation (or in short conditional expectation) that is a linear

map from F to an arbitrary subalgebra A such that E(I) = I and E(ab) = aE(b) for all

a ∈ A and b ∈ F [ 170 ], [  172 ]. 

5
 Since E(a) = a all invariant operators are in A and every

operator in A is invariant. As a result, E∗(ρ) ∈ A.

6.1.4 Generalized entanglement entropy and coarse-grained entropy

In conventional quantum information theory, the amount of entanglement between A1

and A2 is measured by the distinguishability of the ρ12 with respect to the unentangled state

ρ1 ⊗ ρ2:

S(ρ12‖ρ1 ⊗ ρ2) = −SvN(ρ12) + SvN(ρ1) + SvN(ρ2) (6.17)

which is called the mutual information. Consider a multi-partite global state |Ω〉AA′ and its

reduced states ρA and ρA′ on region A and the complementary region A′, respectively. The

distinguishability of |Ω〉 from the tensor product state ρA ⊗ ρA′ is measured by the relative

entropy

S(|Ω〉 〈Ω| ‖ρA ⊗ ρA′) = 2SvN(ρA) . (6.18)

The tensor product state ρA⊗ρA′ has the same expectation values as |Ω〉 for all operators in

FA ⊗ I and I⊗ FA′ , however, all correlations between A and A′ are erased. The expectation

of all operators b⊗ b′ with b ∈ FA and b′ ∈ FA′ factors in the tensor product state ρA ⊗ ρA′ .

To generalize the notion of entanglement to a general subalgebra A ⊂ F we invoke the

Jaynes maximum entropy principle. Consider the set of all density matrices σ that have the

same expectation values as ρ for operators in A: tr((σ − ρ)a) = 0 for all a ∈ A. According

to Jaynes the entropy of a state ρ with respect to a subalgebra A is the supremum of the

von Neumann entropy SvN(σ) over the set of all consistent states σ [ 145 ]:

SJ(ρ,A) = SvN(σmax) (6.19)
5

 ↑ In this paper, the operator b is chosen to belong to the algebra of charged operators, whereas a denotes a
charge-neutral operator.
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where σmax is consistent with ρ and has the maximum entropy. Hereafter, we suppress the

vN index of the von Neumann entropy.

The Jaynes maximum entropy consistent state is precisely the invariant state E∗(ρ).

Given a general conditional expectation E and a state σ consistent with ρ on A we have

tr((E∗(σ) − E∗(ρ))b) = tr((σ − ρ)E(b)) = 0, (6.20)

therefore E∗(σ) = E∗(ρ). At the end of section  6.1.3 we showed that the invariant state is in

A, therefore the logarithm of an invariant state is also in A:

tr(σ log E∗(ρ)) = tr(σE(log E∗(ρ))) = tr(E∗(σ) log E∗(ρ))

= tr(E∗(ρ) log E∗(ρ)) = −S(E∗(ρ)) . (6.21)

In the above, we have assumed that the conditional expectation preserves the trace: tr(E(b)−

b) = 0 [ 166 ]. 

6
 From the definition ( 6.10 ) it follows that the relative entropy of any consistent

state σ consistent with ρ on A with respect to the invariant state E∗(ρ) is

S(σ‖E∗(ρ)) = −S(σ) + S(E∗(ρ)) ≥ 0 . (6.22)

From the positivity of relative entropy we conclude that the invariant state of a conditional

expectation E is the maximum entropy state appearing in the Jaynes formula:

E∗(ρ) = σmax (6.23)

and the non-degeneracy of relative entropy tells us that this state is unique.  

7
 Therefore, our

proposed measure of the information lost in E is the entanglement deficit from the maximum

value:

S(ρ‖E∗(ρ)) = S(σmax) − S(ρ) . (6.24)
6

 ↑ We thank Horacio Casini for pointing this out to us.
7

 ↑ If σmax and σ′
max are both maximum entropy then S(σmax‖σ′

max) = 0, therefore σmax = σ′
max.
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As an example, consider the subalgebra of matrices A = F1 ⊗D2 and the set of all σ that

are consistent with ρ on A and maximize the entropy among them. The consistent states

are all σ12 that satisfy tr((σ12 − ρ12)(a1 ⊗ |k〉 〈k|)) = 0 for all basis vectors |k〉. The relative

entropy of σ12 with respect to the invariant state in (  6.15 ) is

S(σ12‖
∑
k

pkρ
(k)
1 ⊗ |k〉 〈k|) = −S(σ12) +H(p) +

∑
k

pkS(ρ(k)
1 ) ≥ 0 (6.25)

where H(p) = −∑
k pk log(pk) is the Shannon entropy of pk [ 173 ]. The maximum entropy

state is the invariant state, and the Jaynes entropy is

SJ(ρ12,F1 ⊗ D2) = S(E∗(ρ12)) = H(p) +
∑
k

pkS(ρ(k)
1 ) . (6.26)

The reduced state on system A1 is ρ1 = ∑
k pkρ

(k)
1 . The von Neumann entropy of ρ1 is less

than the Jaynes entropy because of the inequality [  173 ]

S(
∑
k

pkρ
(k)
1 ) ≤ H(p) +

∑
k

pkS(ρ(k)
1 ) . (6.27)

The definition of Jaynes entropy can be generalized beyond subalgebras to any subspace

of observables P :

SJ(ρ, P ) = sup
σ∈F∗

{SvN(σ)|tr((σ − ρ)a) = 0,∀a ∈ P} (6.28)

where F∗ denotes the set of all states of the global algebra F . This measure is often called

the coarse-grained entropy. For instance, consider the subspace of observables built out of

linear sums of a1 ⊗ I and I ⊗ a2 and a bipartite density matrix ρ12. The relative entropy

S(ρ12‖ρ1 ⊗ ρ2) = S(ρ1) + S(ρ2) − S(ρ12) = I(1 : 2) ≥ 0, where I(1 : 2) is the mutual

information between site one and two. Therefore, the maximum entropy state in the Jaynes

formula that reduces to both ρ1 and ρ2 is ρ1 ⊗ ρ2 and as a result SJ(ρ12, P ) = S(ρ1 ⊗ ρ2) =

S(ρ1) + S(ρ2) [ 171 ]. Our relative entropy measure

S(ρ12‖σmax) = S(ρ12‖ρ1 ⊗ ρ2) = I(1 : 2) (6.29)
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equals the mutual information that well captures the amount of correlations between A1 and

A2. In the absence of a subalgebra and a conditional expectation σmax replaces E∗(ρ) and we

propose S(ρ‖σmax) as a measure of the information lost under restriction to the subspace of

observables P [ 171 ]. To find the maximum entropy state consider the Lagrange multipliers

λi and the function

−tr(σ log σ) +
∑

i
λitr((ρ− σ)Oi) (6.30)

where Oi is a basis for the subspace of observables P . Setting the variation of the expression

above with respect to σ and λi establishes that the maximum entropy state log σmax =∑
i µiOi ∈ P for some constants µi. Similar to the case of conditional expectation the

maximum entropy state belongs to the subspace P , i.e. σmax ∈ P , and the expectation value

of every operator that is not in P is zero. As a result

S(ρ‖σmax) = −S(ρ) − tr(ρ log σmax) = S(σmax) − S(ρ) . (6.31)

In QFT the von Neumann entropy of a region is divergent 

8
 and we can only compute the

relative entropy of states. This motivates us to replace Jayne’s maximum entropy principle

with the supremum of S(ρ‖σ) over all σ consistent with ρ on P :

IP (ρ) = sup
σ∈F∗

{S(ρ‖σ)|tr((σ − ρ)a) = 0,∀a ∈ P} (6.32)

that is the measure of information entropy produced under the restriction to a subspace

of observables P and has the advantage of being well-defined in QFT like in systems with

density matrices. We postpone further discussion of the generalized entanglement to future

work and in the remainder of this work focus on the case of charge-neutral subalgebras.

In a system with an internal symmetry group G, the symmetry transformation acts on

the local algebra of region A as a unitary transformation: bi → U †
gbiUg for all bi ∈ Fi and Ug

8
 ↑ It is a property of the algebra and not the states.
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some unitary representation of G. The operators in Fi that are invariant under the action

of the symmetry form a subalgebra of uncharged operators that we denote by Ai:

U †
gaiUg = ai,∀ai ∈ Ai . (6.33)

On a lattice, there is a unitary operator localized in Fi that acts the same way as Ug on Fi:

τgbiτ
†
g = UgbiU

†
g , ∀bi ∈ Fi (6.34)

we call this operator the twist and it generates another representation of the group that we

call the twist group Gτ : τgτh = τgh. The commutator of the twist with the group action is

UgτhU
†
g = τghg−1 . (6.35)

For instance, in a bipartite system with symmetry transformation Ug = eig(Q1+Q2) where

Q1 + Q2 is the total charge of A12 the twist is τg = eigQ1 ; see figure  6.2 . It belongs to F1

and acts the same way as Ug on F1. We postpone the subtleties in defining τg in QFT

to section  6.1.17 . The algebra A12 of charge-neutral operators in A12 is larger than the

algebra generated by locally charge-neutral operators of A1 and A2, namely A1 ⊗ A2. This

is because there are operators that correspond to the creation of a pair of charged particles

of opposite charge one in region A1 and the other in A2. We call these operators the bi-local

intertwiners I12. We will see in section  6.1.13 that there exists a conditional expectation

constructed from the twist group Eτ : A12 → A1 ⊗ A2 that washes out the information

content of the bi-local intertwiners: Eτ (I12) = 0. 

9
 The amplitude for the invariant state

E∗
τ (ρ12) to spontaneously create an entangled pair of charge/anti-charge particles is zero.

The relative entropy S(ρ12‖E∗
τ (ρ12)) measures the amount of correlations due to the bi-local

intertwiners. Note that the reduced state on A1 ⊗ A2 still contains lots of correlations in

between region one and two. It is only the correlations due to intertwiners that are washed

out. In the presence of charges, the naive mutual information SF12(ρ12‖ρ1 ⊗ ρ2) contains

unphysical correlations that cannot be accessed in any charge-conserving process. We would
9

 ↑ The map Eτ is from F12 to A1 ⊗ A2. However, we will be mostly concerned with its action on A12.
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Figure 5

 : E* ρ   E*(ρ)

 : E* E*(ω)   E*(ω)

Figure 6.4. A pictorial description of the relative entropy property in equation
( 6.37 ) written in terms of states of F . The relative entropy of blue states S(ρ||E∗(ω))
is the relative entropy the red ellipse S(ρ‖E∗(ρ)) plus the relative entropy of the green
ellipse S(E∗(ρ)‖E∗(ω)). Note that since both E∗(ρ) and E∗(ω) are invariant under
E , the green relative entropy is the same as SA(ρ‖E∗(ω)).

like to discard all operators that create charge on A12. First, we restrict the relative entropy

to the invariant algebra A12. In general, the relative entropy SA(ρ‖ω) is a measure of

distinguishability of the two states using only the operators in A. Alternatively, one can

think of this relative entropy as

SA12(ρ‖ω) = SF12(E∗(ρ)‖E∗(ω)) (6.36)

where E : F12 → A12. The expression above implies that the distinguishability of invariant

states of E does not change under the restriction to the invariant subalgebra A12 [ 170 ].

Second, we replace ρ1 with E∗
τ (ρ1) to make sure that E∗

τ (ρ1) ⊗ρ2 has no bi-local intertwiners.

Therefore, we consider the measure SA12(ρ12‖E∗
τ (ρ1 ⊗ ρ2)).

A useful property of relative entropy is that it satisfies the following equality (Theorem

9.3 of [  170 ]); see figure  6.4 :

SF(ρ‖E∗(ω)) = SA(ρ‖E∗(ω)) + SF(ρ‖E∗(ρ)) (6.37)
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where E : F → A. Applying the identity above to the twist conditional expectation Eτ
implies that our measure splits into two terms  

10
 

SA12(ρ12‖E∗
τ (ρ1) ⊗ ρ2) = SA1⊗A2(ρ12‖E∗

τ (ρ1) ⊗ ρ2) + SA12(ρ12‖E∗
τ (ρ12)) . (6.38)

The first term is the relative entropy with respect to the charge-neutral operators of A1 and

A2, and the second term is the contribution due to the bi-local intertwiners. We can use

the conditional expectation E : F12 → A12 to rewrite both terms in terms of the charged

algebras:

SF12(E∗(ρ12)‖E∗(E∗
τ (ρ12))) + SF12(E∗(E∗

τ (ρ12))‖E∗(E∗
τ (ρ1) ⊗ ρ2)) . (6.39)

In section  6.1.5 , we will see that the conditional expectations E and Eτ are Haar averages

over the group and the twist group, respectively. If ρ12 is invariant under Ug we get the

following simplification

SF12(ρ12‖E∗
τ (ρ12)) + SF12(E∗

τ (ρ12)‖E∗
τ (ρ1) ⊗ ρ2) . (6.40)

From the conditional expectation in (  6.16 ) it is clear that our relative entropies have the

general form S(∑k pkρk‖
∑
k qkωk). Relative entropy satisfies the inequality

S(
∑
k

pkρk‖
∑
k

qkωk) ≤ H(p‖q) +
∑
k

pkS(ρk‖ωk) (6.41)

where H(p‖q) is the classical KullbackLeibler divergence of the probability distributions pk
and qk. To see this, consider the block-diagonal density matrices ρ = ⊕kpkρk and ω = ⊕kqkωk

the relative entropy

S(ρ‖ω) = H(p‖q) +
∑
k

pkS(ρk‖ωk) . (6.42)

10
 ↑ This identity was also used in [  174 ] to compute relative entropies in QFT.
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With respect to the subalgebra of operators I⊗ a the density matrix is ∑k pkρk and ∑k qkωk

and since relative entropy is monotonic under restriction to the subalgebra we find that

relative entropy satisfies ( 6.41 ). In section  6.1.17 , we generalize this inequality to QFT and

use it to bound the relative entropies in (  6.40 ) from above and below.

6.1.5 Symmetry and intertwiners

6.1.6 Superselection sectors and intertwiners

We start by reviewing some definitions and set the notations for our discussion of quantum

systems with symmetries. Consider a quantum system and its Hilbert space H. The set of

all bounded linear operators acting on this Hilbert space forms an algebra, B(H), that acts

irreducibly on H. We call this algebra the field algebra and denote it by F . All proper

subalgebras of F act reducibly on H. A symmetry is a linear transformation of operators in

the algebra b → αg(b) ∈ F that respects operator multiplication: αg(b1b2) = αg(b1)αg(b2) and

is invertible. 

11
 The set of all symmetry transformations of the algebra forms the symmetry

group G. By Wigner’s theorem, any symmetry is represented by either a unitary or anti-

unitary transformation of the Hilbert space, i.e. |Ψ〉 → Ug |Ψ〉, and acts on the algebra as

αg(b) = U †
gbUg. The set of operators a that commute with Ug form a subalgebra A ⊂ F that

we refer to either as the invariant subalgebra, or the subalgebra of charge-neutral operators.

On a lattice if the group G is Abelian Ug is itself charge neutral and belongs to A. 

12
 

If there exist vectors in the Hilbert space such that

〈Φ|Ug|Ψ〉 = 0 (6.43)

for all Ug ∈ G we say that |Φ〉 and |Ψ〉 belong to different selection sectors. 

13
 The Hilbert

space splits into a direct sum of selection sectors H = ⊕rKr ⊗Hr where Kr is the irreducible

representation r of G and Hr is the Hilbert space corresponding to the charge neutral degrees
11

 ↑ In mathematical language, such a transformation is called an automorphism of the algebra. If we relax
the invertibility assumption we have an endomorphism of the algebra.
12

 ↑ When Ug is not in A we say the symmetry transformation is an outer automorphism of the algebra A.
13

 ↑ If there exists no selection sectors; that is to say the only subspace of H invariant under the symmetry
transformation is the whole H we say the action of the symmetry is ergodic. For instance, the action of
modular flow on local algebras of QFT is ergodic.
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of freedom. The basis of the Hilbert space is |r, i〉 ⊗ |α〉 where i = 1, · · · , dr with dr the

dimension of the irreducible representation r. The group acts as U = ⊕rU
(r)
g ⊗ 1r, and by

Schur’s lemma the invariant operators of each irreducible representation are Ir ⊗ a, where

Ir = ∑dr
i=1 |r, i〉 〈r, i| is the identity operator in the Hilbert space Kr of representation r. The

subalgebra of invariant operators is ⊕rIr ⊗ a which has the non-trivial center ⊕rλrIr ⊗ 1r.

If the group G is Abelian all its irreducible representations are one-dimensional and we can

label them by charge q: H = ⊕q |q〉 〈q| ⊗ Hq or simply H = ⊕qHq.

Consider the Abelian group Zd and its irreducible representations labelled by charge q:

U q
g = e2πigq/d with g = 0, · · · , d− 1 and q = 0, · · · , d− 1. The regular representation of G is

the vector space K of a qudit:

Ug =
∑
h

|(g + h) mod d〉 〈h| (6.44)

where g+h is the group multiplication and the identity element is zero charge. The irreducible

representations are all one-dimensional and correspond to basis where all Ug are diagonal

Ug =
∑
q

E2πigq/d |q〉 〈q|

|q〉 =
∑
g

e−2πigq/d |g〉 . (6.45)

The dual group Ĝ is the Fourier space generated by

Ûq =
∑
g

e−2πigq/d |g〉 〈g| =
∑
k

|(q + k) mod d〉 〈k| . (6.46)

The elements of the dual group take us in between irreducible representations and commute

with the action of the invariant subalgebra

Ûq |k〉 〈k| = |k + q〉 〈k + q| Ûq . (6.47)

The operators that satisfy the equation above are called the intertwiners, and physically

they are charge creation/annihilation operators. Take the infinite Abelian group G = U(1)
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of rotations around a circle. The irreducible representations are constant momentum modes

and the intertwiners are the operators that add momentum Ûq = ∑
q |q + k〉 〈k| and generate

the dual group Ĝ = Z with the multiplication operation that adds charges k + q.

Consider a finite non-Abelian group G represented in its regular representation by a qudit

of dimension |G|:

Ug =
∑
h

|gh〉 〈h| (6.48)

where gh is the group multiplication. The Hilbert space splits into K = ⊕r,iKr,i where the

irreducible representation r with the index i running from zero to the dimension dr. The

irreducible representation r appears dr times in the decomposition of the regular represen-

tation, therefore ∑r d
2
r = |G|. An operator in Kr can be written as ∑ij bij |r, i〉 〈r, j| but by

Schur’s lemma the invariant operators are proportional to Ir. The intertwiners are linear

maps that take us in between different irreducible representations and commute with the

action of the invariant operators in the algebra:

Vr,iIr = |0〉 〈0|Vr,i . (6.49)

The partial isometry Vr,i = 1√
dr

|0〉 〈r, i| satisfies this equation, and is the non-Abelian analog

of |0〉 〈q|. The map ρr maps operators from the charged sectors to the vacuum sector:

ρr(Ira) =
∑

i
Vr,iIraV †

r,i (6.50)

where a ∈ C is a complex number here. In the Abelian case, we constructed a unitary Ûk by

adding |q + k〉 〈q| that generates the dual group Ĝ. For an arbitrary charge-neutral operator

ã = ∑
q aq |q〉 〈q| we have

ρk(ã) = Û †
k ãÛk

Ûk =
∑
q

|q + k〉 〈q| (6.51)
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which is a generalization of (  6.46 ) to an arbitrary Abelian group. However, in the non-

Abelian case, adding a charge r to another charge r′ corresponds to the tensor multiplication

of two irreducible representations that is not irreducible. The dual Ĝ to a non-Abelian

group G is not a group. The elements of the dual to a non-Abelian group are different

representations (not necessarily irreducible), and their multiplication is tensor multiplication

but there is no inverse operation. As we will see in the next section, when the representation

is infinite dimensional the operators Vr,i can be thought of as isometries that take us between

the irreducible representations.

If the symmetry group G is compact there is a normalizable Haar measure dg and we

can integrate over the group to project to the zero charge sector P0 = |0〉 〈0| ⊗ 1:

1
|G|

∫
g∈G

dg Ug |Ψ〉 = P0 |Ψ〉 (6.52)

where |G| is the volume of the group. The resulting subspace is called the vacuum sector

which is spanned by all the invariant states ofG. For an Abelian groupG the other irreducible

representations are found using a Fourier transform with q ∈ Ĝ with the group multiplication

being the addition of charges:

1
|G|

∫
g∈G

dg e
2πigq
|G| Ug |Ψ〉 = Pq |Ψ〉 . (6.53)

The non-Abelian analog of this projector is

Pr = dr
|G|

∫
g∈G

dg χ∗
r(g) Ug (6.54)

where χr(g) is the character of the irreducible representation r.

We say two vectors |Ψ〉 and |Φ〉 belong to different superselection sectors of algebra A if

〈Ψ|aΦ〉 = 0 for all a ∈ A. For instance, states |Ψq〉 and |Φq′〉 that were in different selection

sectors of F , belong to different superselection sectors of the neutral subalgebra A. Given

an algebra F and a compact symmetry group G the linear map E : F → A that computes
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the group average of an operator b ∈ F is a conditional expectation to the charge-neutral

subalgebra

E(b) = 1
|G|

∫
g∈G

dg U †
gbUg . (6.55)

because it satisfies E(ab) = aE(b) for all a ∈ A and b ∈ F . This is the conditional expectation

that we advocated in section  6.1.2 .

We can reconstruct the field algebra F from the charge-neutral subalgebra algebra Aq

by adding the intertwiners back. In the Abelian case, the intertwiners Ûq = ∑
q |q ± 1〉 〈q|

are unitaries of the dual group. They create or annihilate charges. Enlarging the algebra of

charge-neutral operators by added to it Ûq and taking the closure generates the full algebra

of charged operators. In the non-Abelian case, Ĝ the dual group is mathematically not a

group. However, we can still enlarge the charge-neutral algebra by adding the intertwiners

to obtain the full algebra F . In representation theory language, enlarging the algebra A by

including intertwiners corresponds to the crossed product of A by the dual group Ĝ: Ao Ĝ,

see appendix  6.1.23 for the definition of the dual group and crossed product.

In the remainder of this section, we provide several examples of quantum systems with

symmetry and highlight the role of the intertwiners. The first four examples have an Abelian

symmetry group and the last two have a non-Abelian symmetry. We postpone the discussion

of intertwiners for local algebras until the next section.

6.1.7 Example 1: Qudit

Consider the Hilbert space of a qubit H2 and the algebra of 2 × 2 complex matrices.

Take the symmetry transformation to be the group Z2 generated by the transformations:

α1(a) = a and αg(a) = σzaσz. 

14
 Here, Ug = σz = (−1)Q where Q = 1

2(1 − σz) is the charge

operator. The algebra of charge neutral operators D2 is the algebra of matrices diagonal in

the σz basis. The Hilbert space splits into two sectors H0 ⊕ H1 with Pq = |q〉 〈q| projecting

to the sector of charge q. The intertwiner V = |0〉 〈1| solves the equation (  6.47 ) and relates

the two charged sectors. The dual group is the Z2 that is generated by σx = V + V †. If we
14

 ↑ We use the notation Zn = Z/nZ.
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add the intertwiner (or the generator of the dual group σx) to the invariant algebra D2 we

obtain the full algebra of the qubit.

For a qudit the Hilbert space is spanned by |k〉 with k = 1, · · · d, and we take the

symmetry group to be Zd generated by the diagonal matrices∑k e2πigk/d |k〉 〈k|. The invariant

sub-algebras are one-dimensional Ak = a |k〉 〈k| and the projections to the superselection

sectors are Pk = |k〉 〈k|. Each |k′〉 〈k| is a unitary intertwiner from Hk to Hk′ . The dual

group is the Fourier transform Zd generated by the unitary ∑k |(k + 1) mod d〉 〈k|.

The generalization to infinite dimension is immediate. Take the Hilbert space of a free

particle on a circle and the rotation group around the circle: G = U(1). The Hilbert space

splits into one dimensional irreducible representations of the rotation group H = ⊕k∈Z |k〉 〈k|

where |k〉 is a momentum eigenstate. The invariant algebras are Ak = a |k〉 〈k|, and the inter-

twiners are |k′〉 〈k|. The dual group is Z generated by the momentum addition/subtraction

operator ∑k |k ± 1〉 〈k|. Adding the intertwiners to the invariant algebra gives all operators

in the Hilbert space of free quantum particle on a circle.

6.1.8 Example 2: Non-relativistic quantum fields

Consider a non-relativistic bosonic or fermionic field on a circle and assume that the total

number of particles is conserved. The particle number operator is N =
∫
dx a†(x)a(x) and

the symmetry transformations are E iαN . The Fock space is a direct sum of sectors with fixed

particle number n: H = ⊕n∈NHn with vectors in each Hn represented by totally symmetric

(anti-symmetric) wave-functions of n-variable: ψ(n)
± (x1, · · ·xn). The intertwiners that take

us in between sectors are the creation/annihilation operators a†
±(f)/a±(f) that map Hn to

Hn+1 and back according to

(a†
±(f)ψ(n))(x1, · · · , xn+1) = 1√

n+ 1

n+1∑
k=1

(±1)k−1f(xk)ψ(n)(x1, · · · , xk−1, xk+1, · · · , xn+1)

(a±(f)ψ(n+1))(x1, · · · , xn) =
√
n+ 1

∫
dyf(y)ψ(n+1)(y, x1, · · · , xn) (6.56)

and f is a bounded complex function on the circle [  59 ]. There are many intertwiners cor-

responding to different functions f , however adding one of them to the invariant algebra
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suffices to generate the full algebra. We choose
∫
dx|f(x)|2 = 1 so that the intertwiner is

an isometry: (a(f)a†(f)ψ(n)) = (a†(f)a(f)ψ(n)) = ψ(n). The full algebra F is generated by

operators a±(f) and a†
±(f) satisfying

[a±(f), a±(g)]± = 0, [a±(f), a†
±(g)]± = 〈f, g〉 I

[a, b]− ≡ ab+ ba, [a, b]+ = ab− ba, 〈f, g〉 =
∫
dxf(x)g(x) . (6.57)

The dual group is generated by the field operator Φ(f) = a(f) + a†(f).

6.1.9 Example 3: Free relativistic fermions

In a general relativistic theory particle number is not conserved. However, in the case

of free fermions the transformation (−1)Q with Q =
∫

j0(x) remains a symmetry, where

j0(x) =: Ψ†(x)Ψ(x) : is the charge density operator. The full algebra F is generated by

Ψ(f) =
∫
d2xf(x) Ψ(x) where f is a function of spacetime that solves the classical equations

of motion [  165 ]. The Hilbert space splits into two sectors H = H+ ⊕ H− that correspond

to the even and odd number of fermions. The invariant algebra A is generated by all the

operators with an even number of fermions, e.g. X = Ψ(y)Ψ(z) or Y = Ψ(y)Ψ(z)†. 

15
 

The operator Ψ(f) adds a unit of charge and intertwines the two sectors. The unitary

Û(f) = Ψ(f) + Ψ†(f) with
∫
dx |f(x)|2 = 1 generates the Z2 dual group: (1, Û(f)). It has

the following properties:

Û(f)X = XÛ(f) − f(z)Ψ(y) + f(y)Ψ(z)

Û(f)Y = Y Û(f) − f(z)Ψ(y) + f(y)Ψ†(z) . (6.58)

Each choice of f leads to a particular choice of Z2. If we add any Û(f) to the algebra

of invariant operators all other charged operators Û(g) are created by closing the algebra,

because Û(f)†Û(g) is charge-neutral. Representations with different values of f are unitarily

equivalent by the inner automorphism Û(f)†Û(g).
15

 ↑ The commutators are [Q,X] = −2X and [Q,Y ] = 0.
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The maps ρf (a) ≡ Û(f)aÛ(f)† are outer automorphisms of the invariant algebra a ∈ A:

ρf (a) ∈ A

ρf (a1a2) = ρf (a1)ρf (a2) . (6.59)

For instance, for the total charge we have

ρf (Q) = Q+ Ψ(f)Ψ†(f) − Ψ†(f)Ψ(f) . (6.60)

The operator Û(f) has charge one:

ρf ((−1)Q) = −(−1)Q (6.61)

which implies that an average over the dual group kills the symmetry transformation

(−1)Q + ρf ((−1)Q) = 0 . (6.62)

6.1.10 Example 4: U(1) current algebra

As the next example, consider the algebra of a free compact relativistic boson in two

dimensions on a circle. The shift of the scalar field φ → φ + a is a U(1) global symmetry.

In the radial quantization frame, we consider the algebra of W (u) = eiJ(u) with J(u) =∫ dz
2πiJ(z)u(z) with u(z) a smooth function on the circle. It is generated by the U(1)-invariant

current J(z) = (∂φ)(z) = ∑
n∈Z z

−n−1jn. The scalar field expanded in terms of jn modes is

φ(z, z̄) = φ0 − i(j0 ln z + j̄0 ln z̄) + i
∑

06=n∈Z

1
n

(
jnz−n + j̄nz̄−n

)
. (6.63)

The operator φ0 and j0 are canonical conjugates of each other: [φ0, j0] = i. The U(1)

symmetry group is generated by Ua = eiaj0 . The vertex operator Vk(z, z̄) =: eikφ(z,z̄) :

acting on the vacuum creates eigenstates of the conjugate momenta j0 |k〉 = k |k〉 with
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|k〉 = Vk(0) |Ω〉 and 〈k|k′〉 = δkk′ . In fact, the vertex operator satisfies [j0, Vk] = kVk which

implies that it is a unitary intertwiner.

We can consider α(z) functions on the circle and the unitary vertex operator V (α) =:

eiφ(α) : with φ(α) =
∫
dzα(z)φ(z). Under the transformation φ → φ+ 2π the vertex operator

should be invariant therefore the charge qα =
∫
dzα(z) is quantized. When qα = 0 the vertex

operator V (α) is charge-neutral but when qα =
∫
dz α(z) 6= 0 it is an intertwiner of charge q.

The dual group is Z and is generated by charged vertex operators V (kα) for k ∈ Z. As in the

case of fermions, adding one intertwiner of unit charge adds all of them because V (α)V †(β)

with qα = qβ is a charge-neutral operator. The action of the dual group on the invariant

algebra at point is

ρα(J(z)) ≡ V (α)J(z)V †(α) = J(z) + α(z) (6.64)

which does not leave the neutral operators invariant. Instead it shifts it by an element of

the center of the algebra [  175 ]. The action of the dual group on the symmetry generator is

ρα(Ua) = V (α)UaV †(α) = eiaqαUa . (6.65)

The dual group is not compact, but we can formally define an average over the charged

sector as a distribution

∞∑
k=−∞

ρkα(Ua) = 2π

|qα|
δ(a) . (6.66)

6.1.11 Example 5: Permutation group

The simplest example of a non-Abelian group is the permutation group S3. Consider

three qubits and the symmetry group S3 that swaps the qubits. The elements of the group

are the identity, the two-cycles and the three cycles. The two-cycles are represented by

U(12) = S12, U(13) = S13 and U(23) = S23 where Sij is the swap operator of site i and j: S(12) =∑
ab |ab〉 〈ba|. The three-cycles are U(123) = ∑

abc |abc〉 〈bca| and U(132) = ∑
abc |abc〉 〈cab|.

The invariant algebra A is the set of 4 × 4 dimensional matrices |αi〉 〈αj| where |αi〉 are
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invariant vectors of S3: |α0〉 = |000〉, |α1〉 = |111〉, |α2〉 = 1
3(|001〉 + |010〉 + |100〉) and

|α3〉 = 1
3(|011〉 + |101〉 + |110〉).

The Hilbert space has two sectors H = (K1⊗H1)⊕(K2⊗H2). The vacuum representation

K1 is the trivial one-dimensional representation, and H1 = A |000〉 is the Hilbert space

of states invariant under S3 that is four dimensional and spanned by |αi〉. The Hilbert

space K2 is the two-dimensional irreducible representation of S3 corresponding to the Young

tableaux . The vectors |v0〉 = |100〉 − |001〉, and |v1〉 = 2 |010〉 − (|100〉 + |001〉)

provide a basis for this representation. It is straightforward to see that the action of S3

leaves the two-dimensional subspace spanned by these vectors invariant. Acting with the

invariant algebra, in particular |α3〉 〈α2| on these vectors generates two perpendicular vectors

|v2〉 = |011〉−|110〉 and |v3〉 = 2 |101〉−(|011〉+|110〉), and the new two-dimensional subspace

is also preserved under the action of S3. The sector K2 ⊗H2 is the four dimensional subspace

A |v1〉. There is no totally anti-symmetric representation for qubits.

6.1.12 Example 6: The O(N) model

Consider a real vector field Φ(f) with N components of form ϕ(j)(fj) and f a collection of

functions f1, · · · , fN . The algebra F is generated by the Weyl operators W (f) = ei
∑

j ϕ
(j)(fj).

The symmetry group O(N) acts on the vector fields which is equivalent to rotating fi:

UgW (f)U †
g = W (g.f) and (g.f)i = ∑

j gijfj. The invariant algebra A is the algebra of O(N)

singlets generated by operators like Φ(f) · Φ(f) = ∑
i ϕ

(i)(fi)ϕ(i)(fi). The vacuum sector is

A |Ω〉. The other sectors correspond to other irreducible representations of O(N). Take the

operator Φ(T ) = ∑N
i1,··· ,ik=1 T

i1,··· ,ikϕ(i1)(f1) · · ·ϕ(ik)(fk) where the tensor T has symmetries

under the permutation of indices that is characterized by a young tableaux λ = (λ1, · · · , λs)

with the total number of boxes k = ∑s
j=1 λi. Such operators acting on the vacuum sector

take us to the charged sector with the irreducible representation characterized by the Young

tableaux λ and dimension dim(λ). One can find an orthonormal basis of such operators

Φ(Tj) with j = 1, · · · , dim(λ) [ 175 ].
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6.1.13 Bi-local intertwiners

Consider a multi-partite quantum system on a lattice with a symmetry Ug = eigQ and

local algebras FA associated with each region A (collection of sites on a lattice or a region of

space). 

16
 We say a symmetry of the global algebra F = FAA′ is internal if it preserves local

algebras:

UgaU
†
g ∈ FA ∀a ∈ FA . (6.67)

There is a unitary group τg = eigQA localized in A that generates the group action in ( 6.67 )

for operators in FA; see figure  6.5 . In section  6.1.2 we called the operator τg the twist and

its corresponding group the twist group Gτ . When the group is Abelian τg is charge-neutral

UhτgU
†
h = Ug and provides a center for the algebra of neutral operators. When the group G

is non-Abelian the operator Pr in (  6.54 ) is in the center of the algebra: Z = ⊕rλrPr.

Locality implies that FA commutes with the algebra of the complementary region FA′ .

Define the commutant of algebra FA to be F ′
A: the set of all operators in the global algebra

FAA′ that commute with FA. From locality it follows that FA′ ⊂ F ′
A. We say the region A

has the duality property if F ′
A = FA′ . The full algebra of all charged operators satisfy the

duality property, however the algebra of charge-neutral operators A violate it. For instance,

on a lattice the total charge is Q = QA + QA′ and HAA′ = HA ⊗ HA′ the action of the

symmetry transformation on AA is captured by the twist operator τg = eigQA . The local

algebra AA has a non-trivial center ZA = ⊕rλrIr with r irreducible representations of τg and

λr complex numbers. The duality relation for charge-neutral algebras is: A′
A = ZA ⊗ AA′ .

Note that here the commutant A′
A is defined to be the algebra of operators in AAA′ that

commute with AA. On a lattice, the failure of duality is due to a non-trivial center for the

algebra of charge-neutral operators. However, in QFT the duality property can fail even

though the local charge-neutral algebra has a trivial center. The reason is that the operator

Pr defined in ( 6.54 ) is not part of the local algebra of region A because it acts singularly on

the boundary of A.
16

 ↑ For the sake of the argument we have assumed G is a Lie group. However, the discussion applies to any
group G.
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Figure 6.5. Consider the operator E ig
∫
x∈B c(x)j(x) where j(x) is the charge density

and the region B is the blue region. (a) On a lattice we pick c(x) = 1 that is the
twist operator τg = eigQ1 . It generates the action of the symmetry group on the
local algebra of A1. Averaging over τg is a conditional expectation that projects F1
to A1. (b) The action of the symmetry on the region A12 is given by E ig(Q1+Q2).
Averaging over this unitary projects from F12 to A12 c) In a QFT choosing c(x) = 1
in A1 and c(x) = 0 outside of A1 leads to an operator that has a violent behavior
at the boundary of A1 due to the discontinuity in c(x). If there is a gap between
A1 and A2 we can choose a c(x) = 1 inside A1 and make it smoothly fall out to
zero without entering region A2. This is the analog of the twist operator in a QFT.
Averaging over this twist projects from A12 down to A1 ⊗ A2.

More generally, consider the region A12 = A1 ∪ A2 with two disconnected pieces A1 and

A2. On a lattice the algebra of all charged particles is additive that is to say F12 = F1 ⊗ F2.

In QFT, the additivity property holds when A1 and A2 are not touching. 

17
 Both on a lattice

or in QFT when we restrict to the subalgebra of locally charge-neutral operators additivity

fails: A1 ⊗ A2 6= A12. Of course, A1 ⊗ A2 is a subalgebra of A12 but there exist operators

in A12, namely the bi-local intertwiners, that are not generated in A1 ⊗ A2. The bi-local

intertwiner adds a charge q to region A1 and the opposite charge −q to the region A2 so

that the total charge Q1 + Q2 is conserved. The action of the symmetry group on F1 can

be captured by a local transformation E igQ1 on a lattice. In QFT, the operator E igQ1 has a

singular behavior at the boundary of A1. However, as long as there is a gap between region

A1 and A2 there is a unitary transformation τg that matches E igQ1 on A1 and has a smooth
17

 ↑ We have assumed that QFT has the split property [ 169 ].
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tail that leaks outside of A1 but does not enter A2; see figure  6.5 . In analogy with the lattice

systems, we call this operator the twist and the symmetry it generates the twist group:

b1 → eigQb1e−igQ = τ †
g b1τg ∀b1 ∈ F1

[τg, a2] = 0, ∀a2 ∈ A2 . (6.68)

In QFT, the local neutral-algebra has a trivial center. When G is compact one has the

conditional expectation Eτ : A12 → A1 ⊗ A2 that is an average over the twist group:

Eτ (b) = 1
|G|

∫
g∈G

dg τ †
g bτg . (6.69)

By construction, the conditional expectation above sets any operators charged under Q1

including bi-local intertwiners to zero. The conditional expectation projects down to the

invariant algebra. To go in the opposite direction, we need to enlarge the algebra A1 ⊗A2 by

adding the bi-local intertwiners to obtain A12. Enlarging an algebra A by the intertwiners

of symmetry G is mathematically described by the crossed-product of the algebra with its

dual group, A12 = (A1 ⊗ A2) o Ĝ; see appendix  6.1.23 for details.

In QFT, there is no local Hilbert space H1, and we only have the global Hilbert space

H and local algebras A1. In a QFT with charges, analogously, we have the global Hilbert

space of type ⊕rKr ⊗ Hr. The intertwiner |r, i〉 〈0| ⊗ 1 takes us from the global vacuum to

the global charged sector |r, i〉 but it might not be localized in region A. We come back to

this issue in section  6.1.20 . Similar to the Abelian case where we added |q〉 〈q + 1| to get the

unitary Û1, we would like to extend the domain of |r, i〉 〈0| to an operator that adds charge r

to any state. The tensor product of two irreducible representations r and r′ is a direct sum

of irreducible representations with Clebsch-Gordan coefficients. A charged operator that is

localized in A commutes with all a′ ∈ A′ and removes a charge r [ 176 ]–[ 178 ]:

Vr,i(|r, i〉 ⊗ a |Ω〉) = a |Ω〉

Vr,ia |Ω〉 = |r∗, i〉 ⊗ a |Ω〉 , (6.70)
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where r∗ is the conjugate representation of r. The action of Vr,i on a vector |r′, j〉 ⊗ |Ω〉 is

decided by the Clebsch-Gordan coefficients in the tensor product of representations r and

r′. The dual transformation maps the algebra of charge-neutral operators Ir ⊗ a back to the

vacuum sector

ρr(a) =
∑

i
Vr,iaV

†
r,i . (6.71)

The map ρr(a) maps the charge-neutral operators A to itself and since it is the representation

of the local algebra it respects the multiplication rule  

18
 

ρr(a1a2) = ρr(a1)ρr(a2) . (6.72)

The condition above together with ( 6.71 ) imply that Vr,i should satisfy the algebra

V †
r,iVr,j = δij∑
i
Vr,iV

†
r,i = 1 . (6.73)

The algebra above is called the Cuntz algebra [  179 ]. The Cuntz algebra has no finite dimen-

sional representations; however, it is easy to build representations of the Cuntz algebra in

infinite dimensions. For instance, take the Hilbert space of a particle on a circle and split it

into two sectors defined by projections to the even and odd momenta P+ = ∑
k |2k〉 〈2k| and

P− = ∑
k |2k + 1〉 〈2k + 1|. The isometries V1 = ∑

k |2k + 1〉 〈k| and V2 = ∑
k |2k〉 〈k| satisfy

the Cuntz algebra with i = 1, 2.

The particle number is not conserved in relativistic QFT. Acting with V †
r,i creates one

charged particle but applying it again we can have several charged particles. There is a

subalgebra of the Cuntz algebra that corresponds to a sector with one charged particle∑
r,i aijVr,iV

†
r,j, where aij are invariant operators. These operators can be represented by a

dr × dr matrix algebra.
18

 ↑ Such a map is called an endormophism of the algebra.
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The operators Vr,i satisfies the non-Abelian intertwiner equation

Vr,ia = ρr(a)Vr,i,∀a ∈ A (6.74)

and V †
r,i acting on the vacuum sector creates charged states in representation r: |r, i〉 =

√
drV

†
r,i |Ω〉. The factor

√
dr is needed to make sure 〈r, i|r, i〉 = 1. There are also the

states in the conjugate representation that are created by |r∗, i〉 = Vr,i |Ω〉. 

19
 The conjugate

representation is

ρr∗(a) = 1
dr

∑
i
V †
r,iaVr,i . (6.75)

In a charged sector the expectation value of a charge neutral operator satisfies

∑
i

〈r, i|a|r, i〉 = 〈Ω|ρr(a)|Ω〉 . (6.76)

If ρr(a) = a, one cannot distinguish charged sectors. However, if ρr(a) 6= a, this is no longer

true. An example of this is the compact boson example:

ρα(J(z)) = J(z) + α(z) . (6.77)

The group transformation Ug = ⊕rU
r
g acts on the intertwiner according to the equation

U †
gVr,i = Dr(g)ijVr,jU

†
g (6.78)

where Dr(g)ij are the matrix elements of the representation matrix Dr(g) with the orthogo-

nality relations 

20
 

dr
|G|

∑
g

Dr(g)ikDr′(g)∗
jl = δrr′δijδkl . (6.79)

19
 ↑ Note that in this case there is no need for a factor

√
dr to normalize the state.

20
 ↑ In the case of an Abelian group this is U†

gVq = e− 2πigq
|G| VqUg.
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In QFT, in analogy with lattice systems, it is tempting to take the local algebra of A to

be all charged operators |r, i〉 〈r′, i′|⊗a, however as we discussed above, in QFT |r, i〉 〈0|⊗1 is

not localized in A, and the charge neutral algebra has no non-trivial center. Local charges on

A are created by the intertwiners V †
r,i, instead of |r, i〉 〈0| ⊗ 1. Therefore, we define the local

algebra of charge operators to be the algebra generated by charge neutral operators a and the

isometries V †
r,i. Consider charged operators ∑i aiVr,i. Bi-local intertwiners create/annihilate

a charge in A1 and create/annihilate the opposite charge in A2 so that the net charge is

preserved:

I(r)
12 =

∑
i

(V (1)
r,i )†V

(2)
r,i (6.80)

with V
(1)
r,i and V

(2)
r,i supported on A1 and A2, respectively. This is a unitary map in the

global algebra that is charge-neural. However, from the point of view of algebra A1 it is an

intertwiner.

In the remainder of this section, we provide several examples of bi-local intertwiners in

finite quantum systems and QFTs.

6.1.14 Example 1: Qubits

Consider two qubits in H1 ⊗ H2 and the symmetry group Z2 corresponding to the action

of (−1)Q = σz ⊗ σz where the total charge Q = Q1 ⊗ I + I ⊗ Q2 and Qi = 1
2(I − σz) counts

the number of excitations “|1〉”. The action of the symmetry group on the local algebra F1

is captured by the twist group τ1 = (−1)Q1 that is localized in A1. The algebra of global

charge-neutral operators A12 is the set of all operators that commute with Q. The charge

neutral sub-algebras A1 ⊗ I2 and I1 ⊗ A2 commute with Q, however, A12 includes more

operators. In particular, the operator that creates a charge on site one and annihilates it on

site two commutes with Q:

[Q, σ± ⊗ σ∓] = 0, σ± = 1
2(σ(x) ∓ iσy) . (6.81)
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The algebra A12 also includes operators that increase Q by two units, |00〉 〈11| ∈ A12 and

its †. The subspace H′
1 = A12 |00〉 that is spanned by |00〉 and |11〉 is the zero charge sector

and the charged sector is H′
2 = A12 |01〉 which is spanned by |01〉 and |10〉.

The subalgebra of A12 invariant under the twist group (−1)Q1 is A1 ⊗ A2. Each sector

H′
1 and H′

2 further splits into two sectors depending on the eigenvalue of σ(1)
z . The operator

|11〉 〈00| is an internal intertwiner for the twist group that is a unitary in H′
1, and σ− ⊗σ+ =

|10〉 〈01| is an internal intertwiner for the twist group in H′
2. Local intertwiners create a

pair of charge/anti-charge excitations. The group average over the twist is a conditional

expectation Eτ : A12 → A1 ⊗ A2 that washes out local intertwiners:

Eτ (b) = 1
2
(
b+ σ(1)

z bσ(1)
z

)
. (6.82)

This can be easily extended to n qubits with the global symmetry Z2 that is measured

by the total charge (−1)Q = ⊗n
i=1σ

(i)
z and the local charge associated with the region A

that is the first m qubits τ = (−1)Q′ = ⊗m
i=1σ

(i)
z . The global Hilbert space splits into two

sectors H = H+ ⊕ H− where H± is spanned by all |s1, · · · sn〉 with s1s2 · · · sn = ±1. The

twist symmetry τ = (−1)Q′ further splits each sector into two: s1s2 · · · sm = ±1. The

operator |s1 · · · sm, tm+1 · · · tn〉 〈s′
1 · · · s′

m, t
′
m+1 · · · t′n| with s1 · · · sm = −1 = −s′

1 · · · s′
m and

tm+1 · · · tn = ±1 = ∓(t′m+1 · · · t′n) is an example of a local intertwiner.

As an example of a region with two non-overlapping pieces consider the local algebras

A12 and A1 ⊗A2 where there are a total of three qubits. We first check the duality property.

Once we include the centers of local algebra the duality property holds: A′
12 = Z12 ⊗ A3

and A′
3 = Z3 ⊗ A12. Note that the operator τ13 = (−1)Q1+Q3 = σ(1)

z ⊗ σ(3)
z is in A′

3 but

not in A12. In fact, if we only add τ13 to A12 we generate the full Z3 ⊗ A12. The operator

τ13 is a twist operator similar to the ones in QFT because it acts on A1 like (−1)Q1 , it is

supported outside of A1 but its support does not enter A2. We learn that another way to

express the duality relation for charge-neutral algebras is by enlarging A12 with the twist

τ13. In mathematical language, we write the crossed product A′
3 = A12 o G13 where G13 is

the symmetry group generated by τ13. We could replace τ13 with τ23 or τ3 and the result
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remains the same. However, for the opposite region we have to enlarge A3 by τ12 to obtain

A′
12: A′

12 = A3 oG12. If we have four qubits, then the equations become more symmetric:

A′
12 = A34 oG12

A′
34 = A12 oG34 . (6.83)

A much simpler way to write the duality equation for charge-neutral algebras is A′
A = AA′oG

where G = (−1)Q is the generator of the symmetry in the global algebra.

The interplay between duality and additivity of local algebras plays an important role in

the study of quantum systems with symmetries [  166 ]. The action of a symmetry on a local

region Ai is captured by the twist group Gik generated by τik with Ak some region outside of

Ai. On a lattice, one can take the twist to be τi. Denote the local intertwiner that creates a

charge on Ai and annihilates it in Aj by Iij. It generates a group dual to the twist group Gi;

or Gik for k 6= j in QFT. When the algebra is Abelian this duality transformation is a Fourier

transform and indeed we find [Iij, τi] 6= 0. In the qubit example, we have [Iij, τi] = 2Iij.

6.1.15 Example 2: Free relativistic fermions

Consider free fermions in (1 + 1)-dimensions. As we discussed in section  6.1.9 the sym-

metry of the global algebra is (−1)N where N is the total number of fermions, and the

invariant global algebra is all operators with an even number of fermions. The local algebra

of a region is generated by Ψ(fA) with fA any bounded complex function supported only a

region A. 

21
 The symmetry acts on the local algebra as τ = (−1)NA where NA is the total

number of fermions in a region A. This operator is discontinuous at the boundary of A and

we can smooth it outside of A. The Hilbert space splits into four sectors corresponding to

two charges (N mod 2) = 0, 1 and (NA mod 2) = 0, 1. The operator Ψ(fA′)Ψ†(gA) creates

a pair of charge/anti-charge particles in A and A′. It is a bi-local intertwiner for AA.

If we take two regions of space A1 and A2 that are non-overlapping and non-touching

the complementary region also has two disconnected pieces. This is analogous to the case
21

 ↑ We thank Edward Witten for pointing this out to us.
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of four qubits we discussed above. 

22
 In addition to A1 ⊗ A2 the algebra of A12 includes the

intertwiners from region A1 to A2 that are Ψ†(f1)Ψ(f2) with fi supported in Ai. The twist

operator τ = (−1)Q1 needs to be smoothed out outside of A1 without leaking inside A2. We

call the smooth twist operator τ13 because it is supported on A13 and acts like (−1)N1 on

A1. The group average over τ13 is a conditional expectation Eτ : A12 → A1 ⊗ A2:

Eτ (b) = 1
2
(
b+ τ−1

13 bτ13
)
. (6.84)

It kills the local intertwiners: E(Ψ(f1)Ψ†(f2)) = 0. In QFT, there are no local density

matrices, instead the local state is a restriction of the global pure state to the local algebra:

ω(a1 ⊗ a2) = 〈Ω|a1 ⊗ a2|Ω〉 . (6.85)

The invariant state is

(E∗
τ (ω))(a1 ⊗ a2) = 1

2
(
ω(a1 ⊗ a2) + ω(τ−1

13 (a1 ⊗ a2)τ13)
)

(6.86)

which can be thought of as the restriction of the global density matrix

1
2
(
|Ω〉 〈Ω| + τ13 |Ω〉 〈Ω| τ−1

13

)
(6.87)

to the local algebra A12.

6.1.16 Example 3: U(1) current algebra

In the free (1 + 1)-dimensional compact boson model, the symmetry group is E iaj0 and

the Hilbert space has many sectors |α〉 with the vertex operators V (α) =: eiΦ(α) : with α

some function on the circle intertwining them. If we consider the local algebra generated

by E iJ(fA) with fA some smooth function supported only on A then the total charge on A

is j0(A) = 1
2π

∮
A J(z) where A is some angle on the unit circle in radial quantization. The

22
 ↑ In higher than (1 + 1)-dimensions the complement of A12 is connected and the three qubit example is a

better analogy.
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A1

A2q
-q

-qA1

A2q
-q

q

(a)

Figure6

A1

A2q
-q

-qA1

A2q
-q

q

(b)

Figure 6.6. (a) The bi-local intertwiners in A1 ∪ A2 conserve the total charge,∫
A1∪A2

dz α(z) = q = 0. (b) The subalgebra N1 ⊂ A1 does not have any operators
that create and annihilate charges inside A1 (the red excitations). Such an algebra
is generated by J(f) with functions localized in A1.

bi-local intertwiners between two non-touching, non overlapping regions A1 and A2 are V (α)

with
∫
A1
dz α(z) = qA and

∫
A1∪A2

dz α(z) = q = 0 so that they do not change the global

sector; see figure  6.6 .

6.1.17 Intertwiners and Modular Theory

In a Poincare-invariant QFT in (d+ 1)-dimensions, the global algebra of spacetime F is

generated by the bounded functions of the field operator Φ(f) with Φ(f) =
∫
dd+1xf(x)Φ(x)

and f(x) a solution to the classical equations of motion that respects the boundary conditions

at infinity 

23
 [ 165 ], [  169 ], [  178 ]. This algebra is represented irreducibly on a global Hilbert

space H. The local algebra FA ⊂ F is the subalgebra generated by Φ(f) where f is only

supported in A. The local algebra of QFT does not have an irreducible representation and

there is no local Hilbert space [ 58 ]. The local algebra FA and that of the complementary

region FA′ both act on the global Hilbert space. The local states are the restriction of the

global state to the local algebra:

ωA(b) = 〈Ω|bΩ〉 , ∀b ∈ FA . (6.88)

Since there are no local Hilbert spaces there are no density matrices either. Modular theory

is a mathematical formulation that allows us to define information theoretic quantities using
23

 ↑ Assumptions about the smoothness of the function f are implicit in what is meant by a solution to the
classical equations of motion.
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only global states and local algebras, with no need for the existence of local density matrices;

see [ 165 ]. It applies to any quantum system from qubits to QFT. In QFT the algebras

FA and FA′ are isomorphic and the global vectors of QFT are analogous to the canonical

purification of ρA a density matrix of A in terms of |Ω〉 a pure state of a double copy Hilbert

space HA ⊗ HA′ :

ω =
∑
k

pk |k〉 〈k|

|Ω〉 =
∑
k

√
pk |k〉A ⊗ |k〉A′ . (6.89)

If A1 and A2 are two non-overlapping and non-touching regions of space, and F1 and F2

are their corresponding local algebras in QFT, the additive algebra of the union A12 is the

algebraic tensor product of local algebras F12 = F1 ⊗F2. 

24
 . There is no tensor product when

the regions A1 and A2 touch. The algebra of invariant local operators A has a trivial center

because the twist operator E igQ1 does not belong to A1, however, when A1 and A2 are not

touching the smoothed out twist commutes with both A1 and A2; see figure  6.5 .

In section  6.1.2 , we argued that the correct entanglement measure in the presence of

charges is the relative entropy in ( 6.39 ):

SF12(E∗(ω12)‖E∗(E∗
τ (ω12))) + SF12(E∗(E∗

τ (ω12))‖E∗(E∗
τ (ω1) ⊗ ω2)) (6.90)

with the conditional expectations

E∗(ω12) = 1
|G|

∑
g∈G

Ugω12U
†
g

E∗
τ (ω12) = 1

|G|
∑
g∈G

τgω12τ
†
g (6.91)

24
 ↑ In infinite dimensions, one has to be careful when tensoring von Neumann algebras since the weak closure

of operators depends on the Hilbert space on which it is acting [ 58 ]. This is the so-called split property of
QFT that we have assumed to hold in any reasonable model.
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where Ug = eigQ and τg is the smoothed out E igQ1 . By a unitary rotation of local states we

mean

(UωU †)(b) = ω(U †bU) . (6.92)

We have structured this section in the following way: In section  6.1.18 , we start by

a discussion of the local charged states and a lower and an upper bound on (  6.90 ). In

section  6.1.19 , we review the Tomita-Takesaki modular theory (see [ 180 ] for a more detailed

review) and compute the modular operators for charged states |r, i〉, and comment on the

mirror operators in the presence of charges. Section  6.1.20 discusses the relation between

the cocycle operator in modular theory and local charges. Finally, in section  6.1.21 we

introduce a canonical enlarging of the algebra of QFT that decouples charged modes across

the entangling surface.

6.1.18 Charged states

Consider the global invariant vector |Ω〉 and its local state ω on region A. Since |Ω〉 =

Ug |Ω〉, the expectation value of all charged operators of the form b− E(b) vanishes in ω:

ω(b) = 1
|G|

∑
g∈G

〈Ω|U †
gbUgΩ〉 = 〈Ω|E(b)Ω〉 . (6.93)

All the charged states |r, i〉 are perpendicular to the vacuum since they belong to different

superselection sectors. We denote by |r, i, A〉 =
√
dr(V (A)

r,i )† |Ω〉 a state with a charge localized

in region A. A vector |Φ〉 = 1√
2(|Ω〉 + |r, i, A〉) that superposes the vacuum with a charged

state appears mixed to the local charge-neutral subalgebra of A:

〈Φ|aΦ〉 = 1
2(ω(a) + ωr,i(a)) (6.94)
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where ωr,i(a) = 〈r, i|a|r, i〉 is the local charged state, which turns out to be independent of

i; see (  6.98 ). The same holds for the local state of the vector |χ〉 = 1√
2(|r, i, A1〉 + |r, j, A2〉).

With respect to any charge neutral operator a ∈ A12 the state seems mixed

〈χ|aχ〉 = 1
2(ωr,i(a) + ωr,j(a)) . (6.95)

This is because

〈r, i, A1|a|r, j, A2〉 = dr 〈Ω|V (1)
r,i a(V (2)

r,j )†|Ω〉 = dr
|G|

∑
g

〈Ω|U †
gV

(1)
r,i a(V (2)

r,j )†Ug|Ω〉 . (6.96)

Using the transformation rule of the intertwiner in ( 6.78 ) we find

〈r, i, A1|a|r, j, A2〉 = dr
|G|

∑
glk

Dr(g)ikDr(g)∗
jl 〈Ω|V (1)

r,k a(V (2)
r,l )†Ω〉

= δij
∑
k

〈Ω|V (1)
r,k a(V (2)

r,k )†|Ω〉 = δij

dr

∑
k

〈r, k, A1|a|r, k, A2〉 (6.97)

where we have used ( 6.79 ). We learn that 〈r, i, A1|r, j, A2〉 ∼ δij and when i = j the expecta-

tion value of a is independent of j:

ωr,j(a) = 〈r, j, A|a|r, j, A〉 =
∑
k

〈Ω|Vr,kaV †
r,k|Ω〉 = ω(ρr(a)) . (6.98)

Therefore, ωr(a) ≡ ω(ρr(a)) = ωr,j(a) which implies that one cannot distinguish |r, i〉 and

|r, j〉 using charge-neutral operators. For a general vector |Ψ〉 = ∑
r,i cr,i |r, i, A〉 we have

(E∗(ψ))(a) =
∑
r,i

|cr,i|2 〈r, i, A|a|r, i, A〉 =
∑
r

ωr(a)ζr = ψ(a), (6.99)

where ζr = ∑
i |cr,i|2.

Now, consider non-touching regions A1 and A2 and a global invariant state Ug |Ω〉 = |Ω〉.

The local states ω12 and ω1 ⊗ω2 both have zero total charge Q1 +Q2 = 0 and we only need to

consider the charge neutral subalgebra A1 ⊗ A2 and the bi-local unitary intertwiners I12,r =∑
i(V

(1)
r,i )†V

(2)
r,i . The bi-local intertwiner is a unitary operator that creates an entangled pair of
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charge/anti-charge particles I12,r |Ω〉 = |I12,r〉. These states are orthonormal: 〈Ir|Ir′〉 = δrr′

and 〈Ir′|Is|Ir〉 = δr′s 〈Ω|Ir〉. They have an overlap with the vacuum state

〈Ω|I12,r〉 =
∑

i
〈Ω|(V (1)

r,i )†V
(2)
r,i |Ω〉 = 1

dr

∑
i

〈r, i, A2|r, i, A1〉 . (6.100)

The vacuum state has a non-zero amplitude to fluctuate to a state with multiple entangled

pairs 〈Ω|I12,r1 · · · I12,rn〉 6= 0. If the symmetry group is Abelian I12,r1 · · · I12,rn = I12,r1+···rn .

The average E∗
τ projects the algebra A12 to A1 ⊗A2 by discarding the bi-local intertwiner

I12. The averaged state E∗
τ (ω12) has zero amplitude for the creation of an entangled pair of

charged particles between region A1 and A2. Adding any bi-local intertwiner I12 to A1 ⊗ A2

immediately enlarges it to A12. If we want to isolate the contribution of any particular

I12 = V †(x)V (y) with x ∈ A1 and y ∈ A2 to the relative entropy we need to find a subalgebra

of A12 that only includes this particular bi-local intertwiner, and none of the others.

There is a subalgebra of global charged neutral operators that has no bi-local intertwiners

in it; that is to say we have discarded I12 for any non-touching A1 and A2. This is the algebra

of QFT with no charge creation or annihilation operators. For instance, in the example of

the U(1) current model, the algebra generated by J(z) without any vertex operators is such

a subalgebra. We denote such a subalgebra by N . The restriction of N to a region A1 gives a

subalgebra N1 ⊂ A1 and a conditional expectation that washes out any bi-local intertwiners

within A1. The subalgebra N1 ⊗ N2 ⊂ A12 has no bi-local intertwiners within A1, A2 or

in between A1 and A2. Enlarging N1 ⊗ N2 by adding any I12 gives a subalgebra of A12,

rather than immediately generating the whole A12. For instance, in regions A1 and A2 we

can choose to add a bi-local intertwiner V †(x)V (y) with x ∈ A1 and y ∈ A2; see figure  6.6 .

The relative entropy

S(N1⊗N2)oI12(ω12‖E∗
τ (ω12)) ≤ SA12(ω12‖E∗

τ (ω12)) (6.101)

measures the contribution of this particular bi-local intertwiner, and we have used the mono-

tonicity of relative entropy to get a lower bound on our entanglement measure due to bi-local

intertwiners. The authors of [  166 ] argued that the bi-local intertwiners with the minimal
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distance |x− y| in between A1 and A2 give the tightest lower bound for the relative entropy

S(ω12‖E∗
τ (ω12)). In the literature, such bi-local intertwiners are also known as the edge

modes.

To find an upper bound on this entanglement measure we use the definition of E∗
τ and

the inequality in (  6.41 ):

SF12(ω12‖E∗
τ (ω12)) ≤ log |G| (6.102)

In section  6.1.19 , we demonstrate a generalization of the inequality ( 6.41 ) that applies to

QFT.

6.1.19 Modular theory in the presence of charges

Consider two global vectors of a QFT, |Ω〉 and |Ψ〉 and a local algebra FA. The relative

Tomita operator is defined using the equation

SFA
Ψ|Ωb |Ω〉 = b† |Ψ〉 , ∀b ∈ FA . (6.103)

This operator is labelled by the choice of two vectors and an algebra. To simplify the

notation, when it is clear from the context we suppress the algebra label. The equation

above defines the action of SFA
Ψ|Ω and its † everywhere in H if the action of operators in FA

and FA′ on |Ω〉 is dense in the Hilbert space: FA |Ω〉 = H [ 58 ]. Such a vector |Ω〉 is called a

Reeh-Schlieder vector (cyclic and separating). In a Reeh-Schlieder state, the action of local

algebra FA on |Ω〉 can approximate any excitation in the global Hilbert space, even those

supported outside of A. 

25
 The vector |Ω〉 is called Reeh-Schlieder if and only if it is cyclic

with respect to both FA and FA′ . The squared norm of the relative Tomita operator is

called the relative modular operator ∆Ψ|Ω = S†
Ψ|ΩSΨ|Ω and we define the anti-linear operator

JΨ|Ω = SΨ|Ω∆−1/2
Ψ|Ω . When both vectors are the same we call SΩ ≡ SΩ|Ω the Tomita operator

25
 ↑ In finite quantum systems, the canonical purification of a density matrix ρ is a Reeh-Schlieder vector if

and only if all the eigenvectors of ρ are non-zero. That is to say ρA is entirely entangled with A′.
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and ∆Ω ≡ ∆Ω|Ω the modular operator. The anti-linear operator JΩ = ∆1/2
Ω SΩ is called the

modular conjugation of |Ω〉 and has the property that

bJ ≡ JbJ ∈ FA′ ∀b ∈ FA, (6.104)

where we have suppressed the Ω index of J . If |Ω〉 is Reeh-Schlieder the modular conjugation

is an anti-unitary J = J−1 = J† [ 59 ]. An important result of the modular theory is that

the (relative) modular operator generates a flow called the (relative) modular flow that is an

outer automorphism of the algebra FA. This flow is independent of the second vector (for a

proof see [  60 ], [  181 ]); see figure  6.7 :

(∆FA
Ω|Ψ)itb(∆FA

Ω|Ψ)−it = (∆FA
Ω )itb(∆FA

Ω )−it ∈ FA ∀b ∈ FA and ∀t ∈ R

(∆FA
Ω|Ψ)itb′(∆FA

Ω|Ψ)−it = (∆FA
Ψ )itb′(∆FA

Ψ )−it ∈ FA ∀b′ ∈ FA′ and ∀t ∈ R(6.105)Figure7

AA′ 

Δit
Ω

Δit
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Ω
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Figure 6.7. If the region A is the Rindler wedge and the state is a QFT in
the vacuum, the modular flow is the boost that evolves operators geometrically
according to the arrows in (a) [  58 ]. The modular conjugation map JΩ is the CRT
(charge conjugation/reflection/time reversal) that sends operators from A to A′ and
vice versa. (b) The relative modular flow generated by ∆it

Ω|Ψ acts as the modular
flow of Ω on the operators in A and the modular flow of state Ψ on the operators
in A′.
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The above relations imply that the operator ∆it
Ω|Ψ∆−it

Ω commutes with all operators in

FA. This operator is called the cocycle. Similarly for the modular conjugation we have

J†
Ψ|ΩbJΨ|Ω = JΩbJΩ (6.106)

which implies that JΨ|ΩJΨ commutes with all FA. The correlation functions of the operators

b, c ∈ FA in the state |Ω〉 have the KMS property which can be interpreted as an analytic

continuation of the modular flow to complex values of t: 〈Ω|b∆Ωc|Ω〉 = 〈Ω|cb|Ω〉. 

26
 The set

of operators h ∈ FA with the property that 〈Ω|[h, b]|Ω〉 = 0 for all b ∈ FA forms a subalgebra

of FA that we call the centralizer of ω and denote it by Fω
A [ 182 ], [ 183 ]. The KMS property

implies that

〈Ω|b(∆ − 1)h|Ω〉 = 0 ∀h ∈ Fω
A . (6.107)

Since b |Ω〉 is dense in the Hilbert space the vector h |Ω〉 is an invariant state of the mod-

ular operator. The operators in the centralizer have the important property that h and ∆

commute [ 182 ]

∆zh∆−z = h ∀z ∈ C . (6.108)

In fact, an operator h ∈ FA that is in the centralizer of Ω commutes with ∆Ω|Ψ for any

Ψ. 

27
 Since h ∈ Fω

A are invariant under the modular flow, we sometimes refer to them as the

modular zero modes. The modular zero mode satisfies the equation

(h† − hJ) |Ω〉 = 0 . (6.109)
26

 ↑ To show this we note that 〈Ω|b∆c|Ω〉 = 〈Ω|bS†Sc|Ω〉 = 〈ScΩ|Sb†Ω〉 = 〈Ω|cb|Ω〉, where we have used the
anti-linearity of S.
27

 ↑ To see this, we first rewrite b as limγ→∞ bγ in (  6.130 ) that is entire meaning that bγ(z) defined in ( 6.131 )
is in F1 for all complex z. Then, from ( 6.105 ) it follows that for all h in the centralizer of Ω we have
∆z

Ωh∆−z
Ω = ∆z

Ω|Ψb∆
−z
Ω|Ψ = h.
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Note that hJ ∈ FA′ is also in the centralizer of Ω. If the algebra has a center Z, the center

is inside the centralizer of all states. The operators in the center z ∈ Z satisfy z† = zJ [ 184 ]:

z†b |Ω〉 = bz† |Ω〉 = S(zb†) |Ω〉 = J∆1/2zb† |Ω〉 = zJJ∆1/2b† |Ω〉 = zJb |Ω〉 . (6.110)

The relative Tomita operator for an excited state h |Ω〉 and h an invertible element of

the centralizer is

SΩ|hΩ = ‖h |Ω〉 ‖SΩ(hJ)−1

∆Ω|hΩ = ‖h |Ω〉 ‖2∆Ω|hJ |−2 (6.111)

where we have used ( 6.109 ). The relative entropy of two vectors with respect to an algebra

FA is given by [  185 ]

SFA(Ψ‖Ω) = − 〈Ψ| log ∆FA
Ω|ΨΨ〉 . (6.112)

When |Ω〉 and |Ψ〉 are the canonical purifications of density matrices σ and ρ in (  6.89 ) the

formula above matches the definition:

S(ρ‖σ) = tr(ρ log ρ) − tr(ρ log σ) . (6.113)

The elements of the centralizer are the operators that commute with the density matrix.

The local state associated with the excited state h |Ω〉 with h in the centralizer is ρh =

hρh†/tr(ρ|h|2) that commutes with ρ the local state of |Ω〉. The relative entropy of these

states with respect to the vacuum defined by ( 6.112 ) is

S(hΩ‖Ω) = −2 log ‖h |Ω〉 ‖ + 2 〈hΩ| log |hJ ||hΩ〉 (6.114)
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where |hΩ〉 is the normalized state h |Ω〉. If v is an isometry in the centralizer of Ω then

v† |Ω〉 has the same local state as |Ω〉:

〈Ω|vbv†|Ω〉 = 〈Ω|v†vb|Ω〉 = 〈Ω|b|Ω〉 . (6.115)

That is why the equation (  6.114 ) implies S(v†Ω‖Ω) = 0 for v in the centralizer. Since ρ

and ρh are simultaneously block diagonalizable their relative entropy can be understood as

a classical relative entropy. For instance, take ρ = ∑
k qk |k〉 〈k| and h = ∑

k

√
pk
qk

|k〉 〈k| with

pk a probability distribution that is in the centralizer of ρ. The state ρh = ∑
k pk |k〉 〈k| is

simultaneously diagonalized with ρ. The relative entropy above is

S(
∑
k

pk |k〉 〈k| ‖
∑
k

qk |k〉 〈k|) =
∑
k

pk(log pk − log qk) = H(p‖q) (6.116)

which is a special case of ( 6.42 ). More generally, for an operator h that in the centralizer of

|Ω〉 we have

SΨ|hΩ = ‖h |Ω〉 ‖SΨ|Ω(hJΩ)−1

∆Ψ|Ω = ‖h |Ω〉 ‖2∆Ψ|Ω|hJΩ |−2 (6.117)

where we have used the fact that [∆Ψ|Ω, hJΩ ] = 0 because hJΩ ∈ FA′ and in the centralizer

of Ω. Then, the relative entropy is

S(hΩ‖Ψ) = −2 log ‖h |Ω〉 ‖ + 2 〈hΩ| log |hJ ||hΩ〉 − 〈hΩ| log ∆Ψ|Ω|hΩ〉 . (6.118)

This is a QFT generalization of the equation (  6.42 ). To see this, plug in the equation above

the block diagonal density matrices ρ = ⊕kqkρk, ψ = ⊕kpkσk and the operator h = ⊕k

√
pk
qk
Ik

that is the centralizer of both states:

S⊕kFk(ρ‖σ) = H(p‖q) +
∑
k

pkS(ρk‖σk) . (6.119)
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In the presence of an internal symmetry UgbU
†
g ∈ FA for all b ∈ FA. From ( 6.103 ) we

can solve for the modular operator of Ug |Ψ〉:

SAUgΨ = UgS
A
ΨU

†
g

∆A
UgΨ = Ug∆A

ΨU
†
g . (6.120)

If |Ω〉 is the invariant vacuum, i.e. Ug |Ω〉 = |Ω〉, the modular operator and Ug commute:

∆ΩUg = Ug∆Ω. As a result, the modular flow ∆Ω of charge-neutral operators remains charge-

neutral if |Ω〉 is an invariant vector, and the charge of an operator Vr,i does not change under

the modular flow by ∆it
Ω. Now, consider the twist unitary τg. On a lattice, the twist operator

is in the center of the local charge-neutral algebra. In QFT the twist operator is not in the

center of the local algebra, but we still have

SA1⊗A2
Ψ|τgΩ = SA1⊗A2

Ψ|Ω τ †
g

SA1⊗A2(τgΩ‖Ψ) = SA1⊗A2(Ω‖Ψ) . (6.121)

This is expected because τg |Ω〉 has the same local state as |Ω〉 with respect to the algebra

A1 ⊗ A2.

The relative Tomita operator of the charged states |r, i〉 =
√
drV

†
r,i |Ω〉 is

S(r′i′)|(ri)b |r, i, A〉 = b† |r′, i′, A〉 ,∀b ∈ FA (6.122)

which can be solved by setting S(r′i′)|(ri) =
√

dr′
dr
V †
r,iSΩVr′,i′ in the equation above. Below,

we suppress the algebra label in the relative modular operator and relative entropies if the

algebra is FA. Note that SΩ is the Tomita operator for all charged operators, and we have

used V †
riVrj = δij. The relative Tomita operator kills the vectors b |s, j, A〉 for s 6= r, and on

its domain it satisfies

S(r′i′)|(ri) =
√
dr′

dr
V †
r,iSΩVr′,i′

∆(r′i′)|(ri) = dr′

dr
V †
r′,i′S

†
ΩVr,iV

†
r,iSΩVr′,i′ . (6.123)
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In particular, we find that ∑i ∆(r′i′)|(ri) = 1
dr

∆(r′i′)|Ω. For an Abelian symmetry, the inter-

twiner Vq is a unitary operator and

∆q|q′ = V †
q ∆ΩVq . (6.124)

Therefore, the relative entropy states of sectors of charge q and q′ is

SFA(q′‖q) = − 〈q′|V †
q log ∆ΩVq|q′〉 = − 〈q′ − q| log ∆Ω|q′ − q〉 . (6.125)

For bi-local intertwiners I12,r and the algebra F12 we have

SF12
Ω|Ir = IrSF12

Ω

SF12
Ir|Ω = SF12

Ω I†
r

SF12(Ir‖Ω) = − 〈Ir| log ∆Ω|Ir〉

SF12(Ω‖Ir) = − 〈I†
r | log ∆Ω|I†

r〉 . (6.126)

where for F1

SF1
Ω|Ir = 1

dr

∑
j

(V (1)
r,j )†SF1

Ω (V (2)
r,j )†,

SF1
Ir|Ω =

∑
j

(V (2)
r,j )SF1

Ω (V (1)
r,j ) . (6.127)

The relative Tomita equation defines the relative modular operator unambiguously if the

vector |Ω〉 is Reeh-Schlieder. The Poincare-invariant vacuum of QFT is a Reeh-Schlieder

vector for local algebras FA. In a Reeh-Schlieder vector the excitations inside the region A

can approximate an arbitrary excitations outside. We are interested in studying the relative

modular operator with respect to the local charge-neutral subalgebras AA, and below we

show that the vacuum vector is Reeh-Schlieder with respect to AA. That is to say in QFT

an arbitrary uncharged operator in A can be approximated using local uncharged operators

AA: AA |Ω〉 = A |Ω〉.
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First, let us take a look at the Reeh-Schlieder property for the full algebra F of QFT. In a

Reeh-Schlieder state an arbitrary excitation in F1 ⊗F1′ can be approximated using operators

in F1. We want to find bm ∈ F1 such that for some b′ ∈ F1′ we have b′ |Ω〉 ' bm |Ω〉. We call

such an operator bm the mirror operator of b′. To construct the mirror operator, we use the

following strategy

b′ |Ω〉 = S ′
Ω(b′)† |Ω〉 = (∆′)−1/2J(b′)† |Ω〉 = ∆1/2(b′)†

J∆−1/2 |Ω〉 (6.128)

with (b′)†
J ≡ J(b′)†J ∈ F1 where we have suppressed the Ω index of ∆Ω and JΩ. For a Reeh-

Schlieder vector in finite quantum systems, it is straightforward to check that the operator

(ω1/2bTω−1/2 ⊗ 1) is the mirror of (1 ⊗ b) where T is the transpose in the basis picked by the

density matrix ω:

∑
k

√
pk(ω1/2bTω−1/2 ⊗ 1) |kk〉 =

∑
kl

√
plbkl |lk〉 =

∑
l

√
pl(1 ⊗ b) |ll〉 . (6.129)

where we have used the canonical purification of ω in (  6.89 ). Note that in the example

above, the modular conjugation operator J is the anti-linear swap operator in the Schmidt

basis of the state: Jc |kl〉 = c∗ |lk〉 where c is a complex number. In a Reeh-Schlieder

state since all pk > 0, ω−1/2 is well-defined. Furthermore, the operator ∆1/2(bT ⊗ 1)∆−1/2 =

ω1/2bTω−1/2 ⊗1 ∈ F1 ⊗1. In a QFT, for a general b ∈ F1, the modular flow b(t) ≡ ∆itb∆−it is

inside the algebra F1 for all t ∈ R, but the operator ∆1/2b∆−1/2 need not be in F1. Luckily, as

we demonstrate below, in QFT there are always operators in F1 that approximate ∆1/2b∆−1/2

arbitrarily well.

Consider the operator

bγ =
√
γ

π

∫ ∞

−∞
dt e−γt2∆itb∆−it ∈ F1 (6.130)
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In the limit γ → ∞ this operator approximates b, 

28
 and for any γ the modular flow of this

operator can be analytically continued to the whole complex plane [ 182 ]

bγ(z) ≡ ∆zbγ∆−z =
√
γ

π

∫ ∞

−∞
dt e−γ(t+iz)2∆itb∆−it ∈ F1 . (6.131)

Therefore, we find that mirror operator of b′ in the algebra F1 that satisfies

b′ |Ω〉 ' bm |Ω〉

bm = lim
γ→∞

((b′)†
J)γ(1/2) . (6.132)

If the operator b′ is an isometry, the equation

〈Ω|b′b†
mΩ〉 = 1 (6.133)

implies that the probability for the spontaneous creation of the excitation b′b†
m |Ω〉 is almost

one. In general, if b′ is localized in a small region of A1′ its mirror is highly delocalized in

A1. If [b′,∆] = 0 from the mirror equation ( 6.132 ) we find that bm = (b′)†
J ; see figure  6.8 .

Consider the symmetry group G acting on the global algebra F . If a′ ∈ A1′ is a charge-

neutral operator from (  6.131 ) it is evident that the mirror operator am is also charge-neutral,

and is therefore in A1. This implies that we can generate A1′ |Ω〉 using A1 |Ω〉. The only other

operators in A are the bi-local intertwiners between A and A′: Ir = ∑
i V

†
r,iV

′
r,i. Denote the

mirror of V ′
r,i by (Vr,i)m. It has the same charge as V ′

r,i. Therefore, the operator ∑i V
†
r,i(Vr,i)m

is charge-neutral with respect to the local algebra and therefore belongs to AA. Moreover,

the mirror of all operators in A1′ also belong to A1, therefore in QFT A1 |Ω〉 = A |Ω〉.

Since A1 |Ω〉 = A12 |Ω〉, it follows that for non-overlapping and non-touching A1 and

A2 we have A1 ⊗ A2 |Ω〉 = A12 |Ω〉 = A |Ω〉. All intertwiners between region A1 and the

complement A′
1 can be prepared locally by acting with A1 which includes the intertwiners

28
 ↑ Note that in the limit γ → 0 the operator b0 is the modular zero mode, and for finite values of γ this

operator sends off-diagonal elements |k〉 〈k′| → e−
(log pk−log p

k′ )2

4γ |k〉 〈k′|. It suppresses the off-diagonal terms
exponentially with parameter 1

γ . The modular zero mode has the property that its modular flow is trivial:
(b0)γ = b0 for all γ.
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Figure8

A′ 

AA′ 

b′ b′ J
†

A

(a)

Figure7

A′ 

AA′ 

b′ b′ J

A

(b)

Figure 6.8. Consider the case where region A is the Rindler wedge and we have
the vacuum of QFT (a) If b′ is localized in the small red circle inside A′ the operator
(b′
J)† is also localized in the red circle in A, however the the mirror operator in ( 6.131 )

requires boosting that spreads its support in the blue region (b) The operators in
A′ that are approximately-invariant under modular flow (boost) are localized in a
small proper distance from the entangling surface. Their mirror operators are also
localized near the entangling surface in A.

between regions A1 and A2. As a result, the algebra (A1 ⊗ A2) |Ω〉 = A |Ω〉, and the Tomita

operator for the algebra A1 ⊗ A2 is densely defined.

6.1.20 Cocycle and intertwiners

In this section, we show that the intertwiner Vr,i can be understood as an analytic con-

tinuation of the unitary cocycle. Consider two vectors |Ω〉 and |Ψ〉 in different superselection

sectors of a QFT and the isometry defined by

T (a |Ψ〉) = a∆1/2
Ψ|Ω |Ω〉 (6.134)

that maps vectors from the |Ω〉 to the |Ψ〉 sector. This is an intertwiner that takes us

from one charged sector to another and commutes with the action of FA [ 58 ]. When the

superselection sectors are due to symmetries, the intertwiner need not be localized in A. We

say the intertwiner is localized in A if Tb′ |Ω〉 = b′T |Ω〉 for all b′ charged operators in A′. We
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would like to understand when the intertwiner T is localized in A. In the last subsection,

we saw that the cocycle operator

uΨ|Ω(t) = ∆it
Ψ|Ω∆−it

Ω (6.135)

belongs to the algebra. In fact, if both Ω and Ψ are Reeh-Schlieder it is a unitary operator.

For real values of t the cocycle is an operator in A and commutes with b′ [ 183 ], [ 186 ]. The

isometry in ( 6.134 ) can be created by an analytic continuation of the cocycle to imaginary

values Im(t) = −i/2:

Tb′ |Ψ〉 = b′∆1/2
Ψ|Ω∆−1/2

Ω |Ω〉 = b′uΨ|Ω(−i/2) |Ω〉 . (6.136)

The isometry in (  6.134 ) commutes with all b′ ∈ FA′ if the analytic continuation of the cocycle

uΨ|Ω(−i/2) exists and belongs to FA.

On a lattice the cocycle is uΨ|Ω(t) = ψitω−it ⊗ 1′ with ψ and ω the reduced density

matrices on A of |Ψ〉 and |Ω〉, respectively. The analytic continuation of the cocycle to

Im(t) = −i/2 corresponds to ψ1/2ω−1/2 ⊗ 1 which is well-defined if all the density matrix ω

has no zero eigenvalues. In fact, it suffices to assume that every zero eigenvalue of ω is also

a zero eigenvalue of ψ, because if ω |ξ〉 = ψ |ξ〉 = 0 we can define ψ1/2ω−1/2 |ξ〉 = 0. In other

words, the cocycle has an analytic continuation if there exists a λ > 0 such that ω − λψ is

a non-negative operator. This is the necessary condition for the relative entropy S(ψ‖ω) to

be finite. Similarly, in modular theory, the cocycle uΨ|Ω(t) can be analytically continued to

the 0 ≥ Im(t) ≥ −1/2 if ω − λψ ≥ 0. That is to say there exists a λ > 0 such that for all

b ∈ FA:

ω(b†b) − λψ(b†b) ≥ 0 . (6.137)

If |Ψ〉 and |Ω〉 are vectors corresponding to states ψ and ω with ω ≥ λψ for some positive

λ, the cocycle uψ|ω has an analytic continuation to the strip 0 ≥ Im(t) ≥ −1/2 that remains
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inside the algebra [ 64 ]. This implies that there is a map u(t) analytic in the strip and strongly

continuous in t with the property that

u(t) = uψ|ω(t)

u(t)b′ |Ω〉 = b′∆it
Ψ|Ω |Ω〉 . (6.138)

In particular at u(−i/2) we have the map

u(−i/2)b′ |Ψ〉 = b′u(−i/2) |Ψ〉 , (6.139)

which is the local intertwiners Vr,i we discussed in the case of charges in section  6.1.13 . In

our examples of QFT with charges we have E∗
τ (ω12) > 1

|G|ω12, therefore the cocycle uω12|E∗
τ (ω12)

takes us from the sector |Ω〉 to the sector corresponding to E∗
τ (ω).

6.1.21 Enlarging the QFT algebra

In section  6.1.13 , we saw that one main difference between QFT and systems on a lattice

is that in QFT the twist operator τg = eigQA is not part of the local algebra, and as a result

the local invariant algebra has no non-trivial center. It is natural to ask whether one can

enlarge the QFT algebra by including τg to make QFT more similar to the lattice models.

The local algebra of charged operators in QFT has charge neutral operators Ir ⊗a ∈ AA and

charged operators V (A)
r,i supported on A that belong to the dual group Ĝ: FA = AAoρ Ĝ. If

we further enlarge the QFT algebra by adding τg that belongs to G to it, we obtain FAoG.

If the group G is Abelian this is (AAoĜ)oG = AA⊗B(L2(Ĝ)). Physically, this corresponds

to adding a qudit of dimension |G| to the local algebra of QFT exactly as we do on a lattice

[ 182 ]. There will be an analogous degree of freedom on the complementary region A′ and

the global Hilbert space factors as H = ⊕q(KA
q ⊗ KA′

q ) ⊗ Hq. The enlarged local algebra

is the tensor product of the algebra of charge neutral operators with a qudit of dimension

|G| that carries the charge: AA ⊗GL(|G|,C) where GL(|G|,C) is the algebra of a qudit. In

this enlarged algebra, the charge neutral operators have a non-trivial center: ⊕qλq |q〉 〈q| ⊗ 1
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similar to systems on a lattice. When the group is non-commutative, it is still convenient to

consider the algebra represented on the Hilbert space ⊕r(KA
r ⊗ KA′

r ) ⊗ Hr.

It is desirable to construct a conditional expectation that maps the enlarged algebra

FA o G back down to the QFT algebra FA. In the Abelian case, this is simply an average

over the dual group

Ẽ(|q′〉 〈q′′| ⊗ a) = 1
|Ĝ|

∑
q

Û †
q (|q′〉 〈q′′| ⊗ a)Ûq . (6.140)

The QFT local algebra FA is generated by |0〉 〈0| ⊗ a and Ûq which transform under this

map to

Ẽ(|0〉 〈0| ⊗ a) = 1
|Ĝ|

∑
q

ρq(a)

Ẽ(Ûq) = Ûq (6.141)

where in the second line we have used the fact that the group is Abelian. Under Ẽ any new

non-identity elements of the twist group τg = ∑
q eigq |q, A〉 〈q, A| are washed out

Ẽ(τg) = δg0I . (6.142)

In the example of the free boson in section  6.1.10 , the dual group is Z that is not compact

but we can still write

ρα(J(u)) = J(u) +
∮ dz

2πiu(z)α(z) (6.143)

and the sum over charges in the range (−q, q) vanishes

1
2q + 1

q∑
k=−q

ρkα(J(u)) = J(u) . (6.144)

as one expects from a conditional expectation.

Our enlarged algebra has a representation in a Hilbert space that factors the charge

modes ⊕q(KA
q ⊗ KA′

q ) ⊗ Hq. We would like to find the vectors in this Hilbert space that
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correspond to the states of the QFT algebra. We can extend our QFT states using the

conditional expectation Ẽ so that the relative entropy of states evaluated in the enlarged

algebra remains the same as that of the QFT algebra. For instance, the purification of the

state E∗(ψ) in (  6.99 ) in this enlarged Hilbert space is

|Θψ〉 =
∑
r

√
ζr |Er〉 ⊗ |Ψr〉

|Er〉 = 1√
dr

∑
i

|r, i〉 ⊗ |r∗, i〉 (6.145)

where r∗ is the dual representation of r. The expectation values in this vector are

∑
r

〈Θψ|(1r ⊗ a)|Θψ〉 =
∑
r

ζrω(ρr(a))

〈Θψ|Vr,i|Θψ〉 = 0 (6.146)

and

〈Θψ|U r
g ⊗ 1|Θψ〉 = 1

dr
tr(U r

g ) = δ(g) (6.147)

as expected from an invariant state of Ẽ. This vector is also Reeh-Schlieder with respect

to the QFT algebra because the action of Vr,i and Ir ⊗ a take us everywhere in the Hilbert

space.

For simplicity, we assume that the symmetry group is Abelian for the remainder of this

section. The relative Tomita equation for the vectors |Θω〉 = |00〉⊗|Ω〉 and |Θψ〉 = |00〉⊗|Ψ〉

is

SF
Θψ |Θω(|q〉 〈q′| ⊗ a) |Θω〉 = (|q′〉 〈q| ⊗ a†) |Θψ〉

SA
Θψ |Θω(I ⊗ a) |Θω〉 = (I ⊗ a†) |Θψ〉 . (6.148)

The domain of SF is |q0〉⊗H0, however, this operator is zero except for the subspace |00〉⊗H0

that is the domain of SA. On the common domain the two relative modular operators agree.

Since the zero vector is not in the domain of (SF)† the relative modular operators ∆F and
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∆A are the same map from |00〉 ⊗ H0 → |00〉 ⊗ H0. In fact, the purification of any state that

is invariant under the conditional expectation E has this property. The distinguishability of

invariant states does not change as the restriction map E . Consider two invariant states:

ω =
∑
q

pq |q〉 〈q| ⊗ ωq

ψ =
∑
q

p′
q |q〉 〈q| ⊗ ψq (6.149)

and their corresponding purifications

|Θω〉 =
∑
q

√
pq |q,−q〉 ⊗ |Ωq〉

|Θψ〉 =
∑
q

√
p′
q |q,−q〉 ⊗ |Ψq〉 (6.150)

Their relative modular operator is

∆F
Θψ |Θω = ∆A

Θψ |Θω =
∑
l,m

p′
l

pm
|l,−m〉 〈l,−m| ⊗ ∆Ψl|Ωm (6.151)

and their relative entropy is

S(Θω‖Θψ) = − 〈Θω| log ∆Θψ |ΘωΘω〉 = H(p‖p′) +
∑
l

plS(Ψl‖Ωl) (6.152)

as expected from the equation (  6.41 ).

The algebra of QFT does not admit a tensor factorization when the regions A1 and

A2 touch, however, as we saw in the presence of a symmetry the extended algebra factors

the charged excitations. The local algebra of any quantum field has a symmetry group R

associated with the modular flow. The modular flow is an outer automorphism similar to the

twist group. Similar to the case of twist that was not part of the algebra due to the infinities

near the entangling surface, the modular Hamiltonian, i.e. log ∆Ω restricted to A is not part

of the algebra because of its discontinuous action at the entangling surface. For instance,

in the vacuum QFT and for the Rindler region |x1| > |t| the modular Hamiltonian is the

boost operator
∫∞

−∞ du uTuu where Tuu is the null-null component of the stress tensor. The
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half-sided modular Hamiltonian
∫∞

0 du uTuu is ill-defined because of its singular behavior at

u = 0. If we enlarge the local algebra of QFT by the modular group by adding the half-sided

modular Hamiltonian to the algebra, every mode that is charged under modular flow factors.

The Hilbert space splits into sectors Hq with projections Pq that project to the subspace with

modular frequency q.

The modular group is R so its dual group is also R which is non-compact. In the case

of vacuum QFT in Rindler space, the centralizer is trivial since there are no local operators

that are invariant under boost. This implies that every mode is charged under the modular

flow [ 187 ]. Enlarging the algebra of QFT by the modular group factors the local algebra of

QFT completely: H = ⊕qKA
q ⊗ KA′

q where q is the modular frequency. The enlarged algebra

is type II∞ and has a trace [ 188 ]. Entanglement entropy in the extended Hilbert space is

divergent, however the factorization of the Hilbert space resembles the structure of boundary

quantum field theory, and the insertion of a resolution of identity that is the center ⊕q |q〉 〈q|

in the algebra.  

29
 

6.1.22 Conclusions

In this work, we generalized the definition of entanglement entropy to the cases with no

tensor product structure, and used the new definition to define an entanglement measure that

captures the contribution of charges to entanglement in quantum systems with symmetries

in equation (  6.39 ). The proposed measure is comprised of two relative entropies. One is the

relative entropy with respect to the charge neutral operators and the other is the relative

entropy due to the charge creation operators. We used representation theory to introduce

the charge creation operators called intertwiners and bi-local intertwiners, and wrote down

relative entropy that capture their contributions to entanglement. We set up the formalism to

compute these measures in QFT using the Tomita-Takesaki modular theory. We highlighted

the differences between QFT and lattice models, and discuss an extension of the algebra of

QFT that leads to a factorization of the charged modes.
29

 ↑ We thanks James Sully for pointing out this connection to us.
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6.1.23 Appendix: Group and algebra extensions

Group extension: semi-direct product

Given two groups N and H consider the trivial extension that is the Cartesian product

group N ×H where elements of group are (n, h) and the multiplication is (n1, h1).(n2, h2) =

(n1n2, h1h2). IfH acts onN by an outer automorphism φh : n → hnh−1 with the composition

rule (φh1 ◦ φh2)(n) = φh1h2(n) we can consider a subgroup of G = N oφ H ⊂ N × H called

the semi-direct product and has the multiplication rule (n1, h1).(n2, h2) = (n1φh1(n2), h1h2).

The inverse of (n, h) is (φh−1(n−1), h−1). All we need for the construction of the semi-direct

product is the homomorphism φ : H → Aut(N).

In the semi-direct product extension G, N is a normal subgroup and H = G/N is the

quotient group. An important example is the Poincare group that is the semi-direct product

of translations and the Lorentz group: R1,d−1 o O(1, d − 1). If N is the center of G the

semi-direct product is called a central extension. A trivial example of central extension is

the direct product group N ×H where N is Abelian. Non-trivial examples comes from the

study of the projective representations of a group. Consider a group H, the Abelian group

of complex numbers C and the map φh(α) = αc(α, h) with c(α, h) a complex number. If

c(α, h)c(β, h) = c(αβ, h) and c(α∗, h) = c(α, h)∗, this map is an outer automorphism of C,

and we can construct CoφH with the multiplication rule (α, h1).(β, h2) = (αβc(β, h1), h1h2).

We need to further check that φh1(α)φh2(α) = φh1h2(α) which imposes c(α, h1)c(α, h2) =

c(α, h1h2).

Lie algebra extension: semi-direct sum

Consider the groups H and N are Lie groups and their corresponding Lie algebras h

and n. The map φ : H → Aut(N) induces a map ψ : h → Aut(n) defined by the Lie

correspondence

ψĥ(n̂) = d

dt

(
φetĥ(e

tn̂)
)
t=0

(6.153)
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where n̂ and ĥ are elements of the Lie algebra n and h, respectively. We obtain the notion

of a semi-direct sum of Lie algebras with the Lie bracket defined using the equation

[
(n̂1, ĥ1), (n̂2, ĥ2)

]
= ([n̂1, n̂2] + ψĥ1

(n̂2) − ψĥ2
(n̂1), [ĥ1, ĥ2]) . (6.154)

There is another method to centrally extend Lie algebras. Every linear map χ : h×h → C

that is anti-symmetric, i.e. χ(ĥ1, ĥ2) = −χ(ĥ2, ĥ1), and satisfies the Jacobi identity leads to

an extension defined by the Lie bracket

[
(α, ĥ1), (β, ĥ2)

]
= (χ(ĥ1, ĥ2), [ĥ1, ĥ2]) . (6.155)

A finite-dimensional simple Lie algebra has no non-trivial central extensions. To find ex-

amples of non-trivial central extension we have to consider infinite-dimensional Lie algebras.

As an example, we work out the central extension of the polynomial loop algebra: Kac-

Moody algebra. The loop group is defined to be the algebra of smooth G-valued functions

on a circle with group multiplication rule. These are loops C on the group G, C : S1 → G

with (C1C2)(θ) = (C1)(θ)(C2)(θ). A loop Lie algebra is the vector space of smooth functions

from S1 to g of G.

Consider the tensor product space g ⊗ C∞(S1), where g is a finite dimensional simple

Lie algebra and C∞(S1) is the algebra of smooth functions on S1. This vector space is a Lie

algebra with the bracket defined by

[ĝ1 ⊗ f1, ĝ2 ⊗ f2] = [ĝ1, ĝ2] ⊗ f1f2 , (ĝ1, ĝ2 ∈ g). (6.156)

Importantly, this space is not a direct product of the two spaces g and C∞(S1) due to the

smoothness condition of functions. Instead, it should be thought of as the Lie algebra of

smooth g-valued functions of S1. The Fourier transform on S1 gives the basis ĝ⊗einθ where θ

is the angle on S1 and n ∈ Z. The Lie algebra generated by such generators is the polynomial

loop algebra. Another way to think about this algebra is in terms of the algebra of Laurent

polynomials ∑n∈Z fnz
n with only finitely many non-zero fn and the standard multiplication
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and addition. Then, the algebra of G-valued functions on S1 is the Lie algebra of formal

sums ∑n∈Z z
n ⊗ ĝn with the Lie bracket

[zn ⊗ ĝ1, z
m ⊗ ĝ2] = zn+m ⊗ [ĝ1, ĝ2] . (6.157)

The generators of the Lie algebra Ja satisfy

[zn ⊗ Ĵa, z
m ⊗ Ĵb] =

∑
c

Cc
abz

n+m ⊗ Ĵc . (6.158)

where Cc
ab denotes the structure constants of the Lie algebra g. The central extension of this

algebra is g ⊗ C∞(S1) ⊕ C

[(α, zn ⊗ Ĵa), (β, zm ⊗ Ĵb)] = (k nK(Ĵa, Ĵb)δn+m,0,
∑
k

Cc
abz

n+m ⊗ Ĵc) . (6.159)

where K(Ja, Jb) is the Killing form on g and k is the central charge. This is an affine Lie

algebra.

von Neumann algebra extension: Crossed product

Groups can act on von Neumann algebras and one can extend an algebra A by a group G

that acts on it as outer automorphisms to obtain a larger algebra called the crossed product

A oφ G [ 61 ], [ 189 ]. If the action of the G on A is φg(a) = ag = ugau
−1
g with uguh = ugh

we add ug to the set of operators in our algebra and consider the algebra of formal sums∑
g∈G agug with ag ∈ A. If A acts on the Hilbert space H and L2(G) is the Hilbert space

of square-integrable functions of the group the crossed product algebra acts on H ⊗ L2(G);

that is the space of square-integrable H-valued functions of G. Vectors of this Hilbert space

are |Ψ〉 = ∑
g∈G cg |Ψ; g〉 and the inner product is

〈Ψ|Φ〉 =
∑
g∈G

c∗
gbg 〈Ψ; g|Φ; g〉 . (6.160)

The multiplication rules are uh |Ψ; g〉 = |Ψ;hg〉 and ag |Ψ; g〉 = |aΨ; g〉.
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Dual group and non-Abelian Fourier transform

Consider a locally compact Abelian group G. The characters of G are linear maps from G

to complex numbers. For instance, for the group U(1) of rotations on a circle the characters

are χ(Uθ) = eiθχ with θ ∈ [0, 2π). The point-wise multiplication (χ1χ2)(Uθ) = χ1(Uθ)χ2(Uθ)

gives the characters the structure of a group called the dual group of G that we denote by

Ĝ. The dual group allows us to define a Fourier transform for functions on the group G:

f̂(χ) =
∑
g∈G

χ−1(g)f(g) . (6.161)

If the group is finite the dual Fourier transform is

f(g) = 1
|G|

∑
χ∈Ĝ

χ(g)f̂(χ) . (6.162)

To generalize Fourier transform to non-Abelian finite groups G we replace the character of

group with its irreducible representations ρr(g):

f̂(ρr) =
∑
g∈G

ρr(g)f(g) . (6.163)

If ρr(g) is represented by a dr × dr matrix then f̂(g) is also a matrix of same dimensions.

The inverse Fourier transform is

f(g) = 1
|G|

∑
r

drtr
(
f̂(ρr)ρr(g−1)

)
(6.164)

where the sum is over irreducible representations ρr of group G and we have used the fact

that 1
|G|
∑
r drtr (ρr(g)) = δgI [ 190 ]. The analog of the multiplication of characters in the

non-commutative case is the tensor product of irreducible representations which does not

form a group, because the tensor product of irreducible representations is not in general

irreducible.
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6.2 Monotonic multi-state quantum f-divergences

6.2.1 Introduction

Motivation: In classical physics, the state of a system is a probability distribution

p(x) over the configuration space X. To distinguish different states one needs to compare

probability distributions. The Kullback-Leibler divergence

DKL({q}‖{p}) =
∑
x∈X

q(x) log(q(x)/p(x)) (6.165)

is a distinguishability measure that plays a central role in information theory and has an

interpretation in terms of the thermodynamic free energy difference of the state {q} from the

equilibrium distribution {p} [ 191 ]. It is non-negative, non-degenerate  

30
 and monotonically

non-increasing under the action of a classical channel. 

31
 The thermodynamic interpretation

of relative entropy explains why this measure of distinguishability is not symmetric under the

exchange of {q} and {p}. The monotonicity under classical channels is an essential property

that any reasonable distinguishability measure should satisfy. 

32
 We say a quantity satisfies

the data processing inequality if it is monotonic under the action of a channel. One can

consider symmetric distinguishability measures such as the log-fidelity

D1/2({q}, {p}) = −2 log
∑
x∈X

√
q(x)

√
p(x) (6.166)

or, in general, a one-parameter family θ ∈ (0, 1) of non-negative, non-degenerate measures

Dθ({q}‖{p}) = 1
(θ − 1) log

∑
x∈X

q(x)θp(x)1−θ (6.167)

30
 ↑ It is zero if and only if the probability measures are the same.

31
 ↑ A classical channel a stochastic map T : X → Y with

∑
y∈Y T (y|x) = 1. In other words, a classical

channel is a conditional probability distribution.
32

 ↑ Intuitively, this is because either the channel is noiseless in which case the distinguishability remains the
same, or it is noisy and the distinguishability decreases.

231



that interpolate between DKL({q}‖{p}) at θ = 1 and log-fidelity at θ = 1/2 and satisfy the

data processing inequality. It is tempting to generalize to a multi-state measure

Dθ1,··· ,θn({p1}, · · · , {pn}) = −1
(1 − θ1) · · · (1 − θn) log

(∑
x∈X

p1(x)θ1 · · · pn(x)θn
)

θ1 + · · · + θn = 1 (6.168)

as a functional that interpolates betweenDKL({pi}‖{pj}) and their corresponding log-fidelities

for different i and j. Note that the parameters (θ1, · · · , θn) can be thought of as a proba-

bility distribution. We are not aware of any arguments in the literature that proves that

the measure above satisfies the data processing inequality. In this work, we write down a

quantum generalization of the above measure and prove that it satisfies the data processing

inequality.

In quantum mechanics, the state of a system is a completely positive (CP) map from

the algebra of observables to complex numbers ω : A → C with ω(1) = 1. If the observable

algebra is the algebra of d×d complex matrices a state is a density matrix (positive operator

with unit trace): ω > 0 with tr(ω) = 1. The quantum relative entropy

S(ψ‖ω) = tr(ψ logψ) − tr(ψ logω) (6.169)

is a measure of distinguishability of the density matrix ψ from ω. It is non-negative, non-

degenerate and has an operational interpretation in asymptotic asymmetric hypothesis test-

ing [  192 ]. One can define a symmetric distinguishability measure called log-fidelity:

D1/2(ψ‖ω) = −2 log tr
√
ω1/2ψω1/2 . (6.170)

Since in quantum mechanics the density matrices need not commute there can be many

non-commutative versions of the Rényi divergences in (  6.167 ) that interpolate between the
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relative entropy S(ψ‖ω) and log-fidelity. Two important families of measures of this kind

are the Petz Rényi divergences and the sandwiched Rényi divergences, respectively

Dθ(ψ‖ω) = 1
θ − 1 log tr

(
ψθω1−θ

)
Sθ(ψ‖ω) = 1

θ − 1 log tr
((
ω

1−θ
2θ ψω

1−θ
2θ
)θ)

. (6.171)

These two families are distinguished because they satisfy the data processing inequality.

They have operational interpretations in hypothesis testing [  193 ]. A larger two-parameter

family of Rényi divergences called (α, z)-Rényi relative entropy interpolates between the two

families [  146 ]. In our notation, we call them the (θ, r)-Rényi divergences

Sθ,r(ψ‖ω) = 1
θ − 1 log tr

[(
ω

1−θ
2r ψ

θ
rω

1−θ
2r
)r]

. (6.172)

In fact, they were introduced earlier by [ 194 ] as entropic measures in out-of-equilibrium

statistical mechanics. They satisfy the data processing inequality in the range of (θ, r)

specified by [  195 ].

The generalization of hypothesis testing to a multi-state setup is often called quantum

state discrimination. In the asymmetric case, we are given some state and the task is to

identify whether the state is ω or any of the alternative hypotheses ψ1, · · · , ψk by performing

measurements on infinite number of copies of ω. The distinguishability measure with a

natural operational interpretation in this case is [ 196 ]

min
ψ∈K

S(ψ‖ω) K = {ψ1, · · · , ψk} . (6.173)

Motivated by quantum state discrimination, in this work, we introduce a large family of

multi-state quantum Rényi divergences that interpolate between various S(ψi‖ω) and sat-

isfy the data processing inequality. We generalize our measures to multi-state quantum

f -divergences.

Method: We employ three main tools to construct the multi-state Rényi divergences

and prove their monotonicity. The first tool is the Araki-Masuda non-commutative Lpω
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spaces [  154 ] that we review in section  6.2.2 and  6.2.3 . In particular, we use the Riesz-Thorin

theorem to prove that a contraction operator F does not increase the Lpω norm of the vectors.

The second tool is the monotonicity of the relative modular operator in the Tomita-Takesaki

modular theory. A quantum channel Φ∗ corresponds to a contraction F in the GNS Hilbert

space. The relative modular operator satisfies the inequality

F †∆ψ|ωF ≤ ∆Φ∗(ψ)|Φ∗(ω) . (6.174)

The third tool is the Kubo-Ando operator mean for positive operators X and Y :

X]fY = X1/2f(X−1/2Y X−1/2)X1/2 (6.175)

and an operator monotone function f with f(1) = 1. The Kubo-Ando mean has the property

that if X1 ≤ Y1 and X2 ≤ Y2 then

X1]fX2 ≤ Y1]fY2 . (6.176)

This allows us to construct multi-state operator monotonicity inequalities of the type

F †(∆ψ1|ω]f∆ψ2|ω)F ≤ (∆Φ∗(ψ1)|Φ∗(ω)]f∆Φ∗(ψ2)|Φ∗(ω)) . (6.177)

The Lpω-norm of the vector
(
∆ψ1|ω]f∆ψ2|ω

)1/2
|ω1/2〉 is the building block of the class of

multi-state Rényi divergences we construct in this work.

Summary of results: In the case of two states in (  6.253 ), we write the (θ, r)-Rényi

divergences as the (r, ω)-norm of a vector in the Lpω spaces. 

33
 We generalize them to two-state

divergences in (  6.259 ). In theorem  6.2.1 we use the monotonicity of the relative modular

operator and the Riesz-Thorin theorem (see appendix  6.2.13 ) from the complex interpolation

theory to prove that these two-state measures satisfy the data processing inequality in the

range r ≥ 1.  

34
 

33
 ↑ A similar expression appears in [  194 ].

34
 ↑ The monotonicity of (θ, r)-Rényi divergences was shown using different methods by [ 197 ].
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Section  6.2.6 generalizes the discussion to multiple states. First, in section  6.2.7 , we use

the complex interpolation theory to prove a generalization of the Hölder inequality to von

Neumann algebras (see theorem  6.2.2 ). This section follows the arguments by [ 154 ], and

can be skipped by the readers who are only interested in the multi-state Rényi measures.

Then, in section  6.2.8 , we use the Kubo-Ando geometric mean to introduce the three-state

f -divergence in ( 6.303 ) and prove that they are monotonically non-increasing under quantum

channels in theorem  6.2.3 . This measure depends on an arbitrary operator monotone function

f with f(1) = 1, the parameters θ1, θ2 with 0 ≤ θ1 + θ2 ≤ 1, r ≥ 1/2 and three states ψ1, ψ2

and ω. Specializing to the case f(x) = xα with α ∈ [0, 1], in matrix algebras we obtain the

three-state Rényi divergences in ( 6.307 ). 

35
 In a special case, this measure reduces to the

Rényi measures in [  198 ], [  199 ]:

S̄θ(ψ‖ω) = 1
θ − 1 log tr

(
ω1/2

(
ω−1/2ψω−1/2

)θ
ω1/2

)
. (6.178)

We write down an n-state f -divergences in equation (  6.317 ), multi-state Rényi divergences

in ( 6.325 ) and prove that they satisfy the data processing inequality. In matrix algebras,

this multi-density matrix measure is ( 6.326 ).

In section  6.2.10 , we discuss our construction in arbitrary von Neumann algebras, focusing

on the case where a trace does not exist. This is important for the applications of this

work to infinite dimensional quantum systems such as the algebra of local observables in

Poincare-invariant quantum field theory. In section  6.2.11 , we conjecture that similar to the

Petz divergences and the sandwiched Rényi divergences, the multi-state Rényi divergences

in section  6.2.6 have operational interpretations in terms of the optimal error probabilities

in various quantum state discrimination setups.

For the marginals of multi-partite systems, one can introduce the so-called swiveled Rényi

measures. Wilde_2015, [  200 ], [  201 ] In the case all aS in swiveled measures are non-negative

they can be understood as a special case of the multi-state measures introduced in this work.
35

 ↑ We prove the monotonicity only in the range r ≥ 1.

235



6.2.2 Operator Lp spaces

This section reviews the construction of the operator Lp spaces in finite dimensional

matrix algebras. The observable algebra of a d-level quantum system is the algebra A of

d× d complex matrices. The linear map

A 3 a → |a〉 = (a⊗ I) |e〉

|e〉 =
∑
k

|k, k〉 (6.179)

represents the algebra on a Hilbert space He with the inner product

〈a1|a2〉 = tr(a†
1a2) . (6.180)

We use the simplified notation

a |e〉 ≡ (a⊗ I) |e〉

a′ |e〉 ≡ (I ⊗ a′) |e〉 (6.181)

and refer to the algebra of operators a′ ≡ (I ⊗ a′) as A′, the commutant of A. The Hilbert

space norm of a vector is

‖ |a〉 ‖ ≡ ‖a‖2 = tr(a†a)1/2 (6.182)

and its ∞-norm (operator norm) is

‖ |a〉 ‖∞ ≡ ‖a‖∞ = sup
‖|χ〉‖=‖|Ψ〉‖=1

〈χ|aΨ〉 . (6.183)

The advantage of the Hilbert space representation He is that one can think of superop-

erators Φ : A → A as linear operators F : He → He:

F |a〉 = Φ(a) |e〉 . (6.184)
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Linear maps Φ that are completely positive (CP) and unital are specially important in

physics. In the Hilbert space, they are represented by operators that are contractions, i.e.

‖F‖∞ ≤ 1. 

36
 It is clear that F can never increase the 2-norm of vectors

‖F |a〉 ‖ ≤ ‖ |a〉 ‖ . (6.186)

It cannot increase the operator norm either because

‖F |a〉 ‖∞ = sup
‖|Ψ〉‖=‖|χ〉‖=1

| 〈Ψ|F (a⊗ 1)|χ〉 |

≤ ‖F‖∞‖(a⊗ 1)‖∞ ≤ ‖a‖∞ . (6.187)

The 2-norm and the ∞-norm are special cases of the p-norms (Schatten norms) defined by

∀p ∈ [1,∞] : ‖a‖p = tr(ap+)1/p (6.188)

where a = a+u is the left polar decomposition of a in terms of the positive semi-definite

operator a+ and unitary u. For p ∈ (0, 1), they are quasi-norms because they no longer

satisfy the triangle inequality ‖a1 + a2‖p � ‖a1‖p + ‖a2‖p. The Hilbert space norm and the

operator norm correspond to p = 2 and p = ∞, respectively. The map between the operators

a and the vectors |a〉 in matrix algebras is one-to-one.

Definition 6.2.1. We define the p-norm of a vector in the Hilbert space to be the p-norm

of the operator that creates it:

‖ |a〉 ‖p ≡ ‖a‖p . (6.189)
36

 ↑ Consider an unital CP map Φ : A → B. Using the Stinespring dilation theorem, the map decomposes as
Φ(a) = W †aW where W is an isometry since Φ is unital. The action of the map on the GNS Hilbert space
is given by

Φ(a) |ΩB〉 = W †a |ΩA〉 (6.185)

where W satisfies W |ΩB〉 = |ΩA〉. The GNS operator F corresponding to Φ is defined by Φ(a) |ΩB〉 =
Fa |ΩA〉. Since A |ΩA〉 is dense in HA, the corresponding GNS operator is a co-isometry F = W † and a
contraction.
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Note that since ‖a‖p = ‖uav‖p for any unitary u, v the p-norm of a vector satisfies

‖uu′ |a〉 ‖p = ‖ |a〉 ‖p (6.190)

where u ∈ A and u′ ∈ A′ are unitaries.

Definition 6.2.2. We define the superoperator norms as 

37
 

‖Φ‖(p0→p1) ≡ sup
a∈A

‖Φ(a)‖p1

‖a‖p0

(6.191)

and the norm for their corresponding operators as

F |a〉 = |Φ(a)〉

‖F‖(p0→p1) ≡ ‖Φ‖(p0→p1) . (6.192)

A complete normed vector space is called a Banach space. Since the Hilbert space norm

is complete with respect to the 2-norm

〈a1|a2〉 = tr(a†
1a2)

〈a|a〉 = ‖a‖2
2, (6.193)

we sometimes refer to the Hilbert space He as the L2 Banach space, or the L2 space in

short. By analogy, we call the algebra A with the operator norm the L∞ space. 

38
 The

representation a → |a〉 is then a linear map from L∞ → L2. We could also define the linear

map a → ea = |a〉 〈e| that sends the algebra to a linear space of operators in B(He) that we

denote by A∗ and call the predual of A. The subspace of operators |a+〉 〈e| is in one-to-one

correspondence with the subspace of unnormalized pure density matrices |a1/2
+ 〉 〈a1/2

+ | of the

algebra A ⊗ A′. The predual A∗ equipped with the 1-norm tr((ea)+) is called the L1 space.

Since the maps a → |a〉 and a → ea are bijections in matrix algebras we can think of the

L1, L2 and L∞ spaces as the same space with different norms. As the dimension of algebra
37

 ↑ Note that, by definition, ‖T‖∞ = ‖T‖(2→2).
38

 ↑ Note that the algebra itself is a linear vector space.
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goes to infinity an operator with finite 2-norm has finite ∞-norm but not necessarily a finite

1-norm. So we have the hierarchy L1 ⊆ L2 ⊆ L∞.

Our Hilbert space inner product is a map from L2 × L2 → C that is anti-linear in the

first variable. It could alternatively be interpreted as a map from L1 × L∞ → C:

〈a|b〉 = tr(a†eb) (6.194)

where Eb ∈ L1. An important property of an inner product is the Cauchy-Schwarz inequality:

| 〈a|b〉 |2 ≤ 〈a|a〉 〈b|b〉 . (6.195)

The Cauchy-Schwarz inequality is saturated when |a〉 and |b〉 are parallel. This allows us to

write

‖ |b〉 ‖ = sup
‖|a〉‖=1

| 〈a|b〉 | . (6.196)

Similarly, we can use (  6.194 ) to write the operator norm ‖b‖∞ as

‖b‖∞ = sup
tr((ea)+)=1

| tr(eab)| . (6.197)

We say the space L∞ is dual to L1.

The generalization of the Cauchy-Schwarz inequality to the Lp spaces is called the oper-

ator Hölder inequality

∀p ∈ [1,∞] : ‖a†b‖1 ≤ ‖a‖q‖b‖p (6.198)

and 1/p + 1/q = 1. More generally, if 1/p0 + 1/p1 = 1/r with r > 1 the operator Hölder

inequality says

‖a†b‖r ≤ ‖a‖p0‖b‖p1 . (6.199)
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In the range p0 ∈ (0, 1), the parameter p1 is negative and we have a reverse Hölder inequality

∀p0 ∈ (0, 1) : ‖a‖p0‖b‖p1 ≤ ‖a†b‖r . (6.200)

The reverse Hölder inequality follows from the Hölder inequality and the property ‖a−1‖−p =

‖a‖−1
p [ 202 ]. We will prove the generalization of the operator Hölder inequality in an arbitrary

von Neumann algebra in section  6.2.7 .

We can realize the p-norm of the vector |a〉 ∈ He as an inner product between |a〉 and a

vector |x0〉 in the Hilbert space He:

‖ |a〉 ‖p = tr(ap+)
1
p = tr(ap+)

1
p

−1 〈ap−1
+ |a+〉 = 〈ap−1

+ |a+〉
‖ |ap−1

+ 〉 ‖q
= 〈x0|a+〉 . (6.201)

The vector |x0〉 ∼ |ap−1
+ 〉 is normalized to have ‖ |x0〉 ‖q = 1. It follows from the Hölder

inequality that

| 〈b|a+〉 | ≤ ‖b†a+‖1 ≤ ‖a‖p‖b‖q . (6.202)

We can absorb the unitaries in the polar decomposition of a in b to write

| 〈b|a〉 | ≤ ‖a‖p‖b‖q . (6.203)

The p-norm is the maximum overlap between |a〉 and the vectors in the Hilbert space that

are normalized to have unit q-norm:

∀p ∈ [1,∞] ‖a‖p = sup
‖x‖q=1

| 〈x|a〉 | . (6.204)

Similarly, from the reverse Hölder inequality in ( 6.200 ) we have

∀p ∈ (0, 1) ‖a‖p = inf
‖x‖q=1

| 〈x|a〉 | . (6.205)
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The equations above generalize ( 6.196 ) and (  6.197 ) to arbitrary p. The duality between L1

and L∞ is a special case of the duality between Lp and Lq. That is why the parameter q is

called the Hölder dual of p.

The vector |a〉 is a purification of the unnormalized density matrix aa† = a2
+ of the

algebra:

〈a|b|a〉 = tr(baa†) . (6.206)

All vectors |a+u〉 purify the same state a2
+. To make the purification unique, we define an

anti-linear swap map Je in the basis of |k〉 in the definition of the vector |e〉:

Je |k, k′〉 = |k′, k〉 . (6.207)

The map Je(a) = JeaJe is an anti-unitary from A to the commutant algebra A′ that acts as

Je(a⊗ I)Je = (I ⊗ (a†)T ) (6.208)

and the transpose matrix aT defined in the {|k〉} basis satisfies the equation

(a⊗ I) |e〉 = (I ⊗ aT ) |e〉 . (6.209)

The only purification of the unnormalized density matrix aa† that is invariant under Je is

|a+〉 = (a1/2
+ ⊗ (a1/2

+ )T ) |e〉 . (6.210)

The set of such vectors is called the natural cone in He that we denote by P \
e . Vectors in

the natural cone are in one-to-one correspondence with the unnormalized density matrices

aa† = a2
+.
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To understand the Lp spaces better we define the relative modular operators correspond-

ing to algebra A:

∆ψ|ω ≡ ψ ⊗ ω−1 . (6.211)

The vector |e〉 reduced to the algebras A and A′ gives the identity operator as an unnormal-

ized state. We use the notation ∆ω|e = ω ⊗ I. The superoperator on A that correspond to

the relative modular operator is

Dψ|ω(a) = ψaω−1 ∈ A . (6.212)

To every density matrix ω we can associate an operator |ω〉 〈e| ∈ L1 with unit 1-norm and a

vector in Lp

|ω1/p〉 = ∆1/p
ω|e |e〉 = ∆1/p−1/2

ω|e |ω1/2〉 . (6.213)

with unit p-norm. We can think of the Lp space as the space of vector u |ω1/p〉 for arbitrary

ω and unitary u.

We use the Hölder inequality to write the p-norm of a vector as

‖ |a〉 ‖2
2p = ‖aa†‖p = sup

‖|ψ1/2〉‖q=1
| 〈ψ1/2|aa†〉 | = sup

‖|ω1/2〉‖=1
| 〈e|∆1/q

ω|e |aa†〉 |

= sup
‖|ω1/2〉‖=1

| 〈a|∆1/q
ω|e |a〉 | = sup

‖|ω1/2〉‖=1
‖∆

1
2 − 1

2p
ω|e |a〉 ‖2 . (6.214)

Above we have used the fact that any vector in the natural cone |ψ1/2〉 ∈ Lq can be written

as ∆1/q
ω|e |e〉. 

39
 After a change of variables from 2p → p we have

‖ |a〉 ‖p = sup
‖|ω1/2〉‖=1

‖∆
1
2 − 1

p

ω|e |a〉 ‖ ∀p ∈ [2,∞] . (6.215)

39
 ↑ Since |aa†〉 is in the natural cone it follows from (  6.201 ) that the vector that saturates the Holder inequality

is also in the natural cone. Therefore, in the definition of the q-norm in (  6.204 ) for |aa†〉 we can restrict the
supremum to the vectors |ψ1/2〉 in the natural cone.
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We remind the reader that the norm of the vectors in the Hilbert space on the right-hand-side

of the equations above is the L2 norm. Similarly, repeating (  6.215 ) for the range p ∈ (0, 1)

using (  6.205 ) we obtain

‖ |a〉 ‖p = inf
‖|ω1/2〉‖=1

‖∆
1
2 − 1

p

ω|e |a〉 ‖ ∀p ∈ [1, 2) . (6.216)

The Rényi entropy of a normalized density matrix ω on A can be written in terms of the

2p-norm of the vector |ω1/2〉 ∈ He:

Sp(ω) ≡ 2p
1 − p

log ‖ |ω1/2〉 ‖2p = p

1 − p
log ‖ω‖p = 1

1 − p
log tr(ωp) . (6.217)

Since p-norms of the vector u′ |ω1/2〉 is independent of the unitary u′ the definition above

defines the Rényi entropy for the reduced state ω on A for any vector |Ω〉 ∈ He

Sp(ω) = 2p
1 − p

log ‖ |Ω〉 ‖2p . (6.218)

The normalized vector d−1/2 |e〉 corresponds to the maximally mixed density matrix and

maximizes the Rényi entropy. In the limit p → 1, we obtain the von Neumann entropy:

S(ω) = −2 lim
p→1

′p‖ |ω1/2〉 ‖2p . (6.219)

6.2.3 Operator Lpω spaces

The construction of the Lp spaces in the last section used the unnormalized vector |e〉. In

an infinite dimensional algebra, this vector is not normalizable. The first step in generalizing

the discussion of the last section to infinite dimensions is to replace the maximally mixed

state with an arbitrary density matrix ω:

ω =
∑
k

pk |k〉 〈k| (6.220)

that for simplicity we will assume to be full rank. Not every infinite-dimensional algebra

admits density matrices, however as we discuss in section  6.2.10 , the construction presented
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in this section generalizes to the algebras with no density matrices. We remind the reader

that in our notation ω and ψ are the reduced density matrices on A corresponding to the

vectors |Ω〉 and |Ψ〉 in the Hilbert space He = HA ⊗ HA′ .

Definition 6.2.3. We generalize the definition of p-norm in (  6.188 ) to define a (p, ω)-norm:

‖a‖p,ω ≡ ‖a |ω1/p〉 ‖p = ‖aω1/p‖p . (6.221)

Note that the (p, ω)-norm is no longer invariant under a → a†. 

40
 Consider the ∗-

representation π(a) = a ⊗ 1R with some auxiliary system R. The (p, ω)-norm satisfies

the equality

‖(a⊗ 1R)‖p,ωAR = ‖a‖p,ω (6.225)

if ωAR = ωA ⊗ σR.

We consider the representation map

a → |a〉ω ≡ a |ω1/2〉

|ω1/2〉 =
∑
k

√
pk |k, k〉 . (6.226)

Since ω is full rank this representation is faithful. We call Hω the GNS Hilbert space and

sometimes refer to it as the L2
ω Banach space because the L2

ω norm is the Hilbert space norm:

‖a |ω1/2〉 ‖2,ω = ‖a |ω1/2〉 ‖ . (6.227)
40

 ↑ We can define an alternate (p, ω, ∗)-norm to be

‖a‖p,ω,∗ ≡ ‖a†‖p,ω = ‖ω1/pa‖p = ‖∆1/p
ω|e |a〉 ‖p . (6.222)

As opposed to the p-norm the (p, ω)-norm is not invariant under a → uav with u and v unitaries. Instead,
we have

‖ua‖p,ω = ‖a‖p,ω, ‖au‖p,ω,∗ = ‖a‖p,ω,∗ . (6.223)

In other words, for unitaries u ∈ A and u′ ∈ A′ we have

‖u |Ψ〉 ‖p,ω = ‖ |Ψ〉 ‖p,ω, ‖u′ |Ψ〉 ‖p,ω,∗ = ‖ |Ψ〉 ‖p,ω,∗ . (6.224)

More generally, one can define the Kosaki (p, σ, ω)-norms ‖a‖p,σ,ω = ‖σ1−1/paω1/p‖p [ 203 ].
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Since the (∞, ω)-norm is the same as the ∞-norm the algebra itself is the L∞
ω space. The L1

ω

space is the space of operators ωa = a |ω〉 〈e| with the L1 norm. Note that as opposed to the

p-norm, for the (p, ω)-norms we have the hierarchy L∞
ω ⊆ L2

ω ⊆ L1
ω when ω is a normalized

density matrix because of the inequalities

‖a‖1 ≥ ‖a‖2 ≥ ‖a‖∞

‖a‖1,ω ≤ ‖a‖2,ω ≤ ‖a‖∞,ω . (6.228)

The vector |a〉ω in the Hilbert space Hω corresponds to the state (density martix of A)

ωa = aωa†. However, given a density matrix there are many vectors in Hω that purify it. In

the last section, we used the modular conjugation operator Je to fix a canonical vector for

each density matrix. To fix a canonical vector we start with the map

ψ → |ψ1/2〉 = (ψ1/2ω−1/2) |ω1/2〉 ∈ Hω . (6.229)

Any state of the form

(ψ1/2uω−1/2) |ω1/2〉 (6.230)

for unitary u has the same density matrix ψ. To make the correspondence between the

density matrices and their purification one-to-one we introduce the modular conjugation

operator Jω that acts as (  6.208 ) in the eigenbasis of ω. From the argument in ( 6.210 ) it

is clear that the vector |ψ1/2〉 is the only Jω invariant vector representative of the density

matrix ψ. Therefore, there is a one-to-one correspondence between the density matrices ψ

and the vectors

|ψ1/2〉 = ∆1/2
ψ|ω |ω1/2〉 (6.231)

that are invariant under Jω. These vectors form the so-called natural cone P \
ω.
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We define the (p, ω)-norm of the vectors in the GNS Hilbert space Hω to be

‖a |ω1/2〉 ‖p,ω ≡ ‖a‖p,ω (6.232)

so that the (2, ω)-norm is the Hilbert space norm of a |ω1/2〉. Note that |ω1/2〉 has unit

(p, ω)-norm for all p. 

41
 

To every density matrix ψ we can canonically associate a unique operator |ψω−1/2〉 〈ω1/2| ∈

L1
ω with unit 1-norm and a unique vector in Lpω with unit (p, ω)-norm:

ψ → |ψ1/pω1/2−1/p〉 = ∆1/p
ψ|ω |ω1/2〉 = ∆1/p−1/2

ψ|ω |ψ1/2〉 . (6.235)

As we vary from p = 2 to p = ∞ the vector above interpolates between |ψ1/2〉 with unit

(2, ω)-norm and |ω1/2〉 with unit (∞, ψ)-norm. Note that if ψ is not normalized we have

‖∆1/p
ψ|ω |ω1/2〉 ‖p,ω = ‖ψ‖1/p

1 (6.236)

which is independent of ω. Since ω is invertible and Lrω ⊆ Lpω for any p ≤ r the vector

∆θ/p
ψ|ω |ω1/2〉 ∈ Lpω (6.237)

for any θ ∈ [0, 1]. 

42
 In fact, we can extend θ to the complex plane z = θ + it because

∆it
ψ|ω |ω1/2〉 = (Dψ : Dω)t |ω1/2〉

(Dψ : Dω)t ≡ ∆it
ψ|ω∆−it

ω (6.238)
41

 ↑ We can also define the alternate (p, ω, ∗)-norm of a vector

‖a |ω1/2〉 ‖p,ω,∗ ≡ ‖a‖p,ω,∗ ≡ ‖a† |ω1/2〉 ‖p,ω . (6.233)

The (2, ω, ∗) is the Hilbert space norm of a† |ω1/2〉. The (p, ω, ∗)-norm of a vector has the advantage that it
is independent of unitary rotations u′ ∈ A′:

‖u′a |ω1/2〉 ‖p,ω,∗ ≡ ‖u′a‖p,ω,∗ = ‖a |ω1/2〉 ‖p,ω,∗ . (6.234)

Therefore, it only depends on the reduced state on A that is aa†, and not a particular purification choice
u′ |a〉.
42

 ↑ Note that in finite dimensions we can take θ > 1 as well. However, in this work, we restrict to the range
because it generalizes to infinite dimensions.

246



and the cocycle (Dψ : Dω)t is a partial isometry in the algebra for all real values of t. When

ψ is full rank the cocycle is a unitary operator.

As we saw in the last section, the Hölder inequality helps bound the p-norm in terms

of simpler norms such as the 2-norm and ∞-norm. In section (  6.2.7 ), we will prove the

following Hölder inequality for the (p, ω)-norms

‖∆1/p0
ψ0|ω∆1/p1

ψ1|ω |ω1/2〉 ‖r,ω ≤ ‖ψ0‖1/p0
1 ‖ψ1‖1/p1

1

1
p0

+ 1
p1

= 1
r
. (6.239)

Similarly, it is often helpful to relate the (p, ω) → (p, ω) norms of superoperators in

( 6.191 ), or equivalently those of their corresponding operators in the GNS Hilbert space in

( 6.192 ). This is achieved using an inequality established by the Riesz-Thorin interpolation

theorem that we prove in appendix  6.2.13 . The theorem says that for 2 ≤ p0, p1 and θ ∈ [0, 1]

and any operator T : HA → HB we have

‖T‖(pθ,A)→(pθ,B) ≤ ‖T‖1−θ
(p0,A)→(p0,B)‖T‖θ(p1,A)→(p1,B)

1
pθ

= 1 − θ

p0
+ θ

p1
. (6.240)

Lemma 6.2.0.1. Consider a contraction F : HA → HB  

43
 where HA ≡ HωA and HB ≡ HωB

are the GNS Hilbert spaces of states ωA and ωB, respectively. Then it cannot increase the

(p, ω)-norm of a vector for p ≥ 2, i.e.

‖F‖(p,A)→(p,B) ≤ 1 . (6.241)

Proof. Since (2, A)-norm is the Hilbert space norm and (∞, A) norm is the ∞-norm, by the

same argument as in ( 6.187 ), we have

‖F |a〉ωA ‖2,B ≤ ‖ |a〉ωA ‖2,A

‖F |a〉ωA ‖∞,B ≤ ‖ |a〉ωA ‖∞,A . (6.242)
43

 ↑ We remind the reader that a contraction is defined with respect to the infinity norm, and not any other
norms we discuss in this work.

247



<latexit sha1_base64="gaKTeqIG2tuLrgo6EQa8adKUIBQ=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1ItQ9OKxiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsrq2vlHcLG1t7+zulfcPmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3U791hMqzWP5aMYJ+hEdSB5yRo2VHq5LvXLFrbozkGXi5aQCOeq98le3H7M0QmmYoFp3PDcxfkaV4UzgpNRNNSaUjegAO5ZKGqH2s9mlE3JilT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeOVnXCapQcnmi8JUEBOT6dukzxUyI8aWUKa4vZWwIVWUGRvONARv8eVl0jyrehfV8/vzSu0mj6MIR3AMp+DBJdTgDurQAAYhPMMrvDkj58V5dz7mrQUnnzmEP3A+fwDEBIze</latexit> =

<latexit sha1_base64="aKZHgjt+BC+G53pehw/LMI4W4gw=">AAACDHicbVDNSgMxGMzWv1r/qh69BIvQgpTdUtRjrRePFfoH3WXJptk2NLtZkqxQtn0AL76KFw+KePUBvPk2pu2C2joQmMzMR/KNFzEqlWl+GZm19Y3Nrex2bmd3b/8gf3jUljwWmLQwZ1x0PSQJoyFpKaoY6UaCoMBjpOONbmZ+554ISXnYVOOIOAEahNSnGCktufmCPWnaEzcpVs5tHpABcuslW/Gf63VpqlNm2ZwDrhIrJQWQouHmP+0+x3FAQoUZkrJnmZFyEiQUxYxMc3YsSYTwCA1IT9MQBUQ6yXyZKTzTSh/6XOgTKjhXf08kKJByHHg6GSA1lMveTPzP68XKv3ISGkaxIiFePOTHDCoOZ83APhUEKzbWBGFB9V8hHiKBsNL95XQJ1vLKq6RdKVsX5epdtVCrp3VkwQk4BUVggUtQA7egAVoAgwfwBF7Aq/FoPBtvxvsimjHSmWPwB8bHN53NmhU=</latexit>

kTk(2,!B)!(2,!A)

<latexit sha1_base64="uJ1snkON2irkS/mKkgNxRRI2Hpk=">AAACFnicbVDLSsNAFJ34rPUVdekmWIQKWhIp6rLWjcsKfUFTwmQ6qYOTmTBzI5S0X+HGX3HjQhG34s6/cfpYaPXAhcM593LvPWHCmQbX/bIWFpeWV1Zza/n1jc2tbXtnt6llqghtEMmlaodYU84EbQADTtuJojgOOW2Fd1djv3VPlWZS1GGQ0G6M+4JFjGAwUmCf+MO6Pwyyos9EBINjX8a0j4PqkQ9yTrs8GgV2wS25Ezh/iTcjBTRDLbA//Z4kaUwFEI617nhuAt0MK2CE01HeTzVNMLnDfdoxVOCY6m42eWvkHBql50RSmRLgTNSfExmOtR7EoemMMdzqeW8s/ud1UoguuhkTSQpUkOmiKOUOSGeckdNjihLgA0MwUczc6pBbrDABk2TehODNv/yXNE9L3lmpfFMuVKqzOHJoHx2gIvLQOaqga1RDDUTQA3pCL+jVerSerTfrfdq6YM1m9tAvWB/fxtCfIQ==</latexit>

kTk(1,!B)!(1,!A)

<latexit sha1_base64="G7JMbRFN2GtGNhEaMtVvfLp+bRA=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Ae0oWy2k3bpZhN3N0Ip/QtePCji1T/kzX/jps1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4NvPbT6g0j+WDmSToR3QoecgZNZnUG+Jjv1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02MP6XKcCZwVuqlGhPKxnSIXUsljVD70/mtM3JmlQEJY2VLGjJXf09MaaT1JApsZ0TNSC97mfif101NeO1PuUxSg5ItFoWpICYm2eNkwBUyIyaWUKa4vZWwEVWUGRtPyYbgLb+8SloXVe+yWruvVeo3eRxFOIFTOAcPrqAOd9CAJjAYwTO8wpsTOS/Ou/OxaC04+cwx/IHz+QMQUY5E</latexit>

�

<latexit sha1_base64="nbgzrQUOddkLkXbsdgmtUDbO9YY="></latexit>

kTk1 � kTk2 � kTkq � kTk1 = kTk1,!B � kTkq,!B � kTk2,!B � kTk1,!B

<latexit sha1_base64="gaKTeqIG2tuLrgo6EQa8adKUIBQ=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1ItQ9OKxiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsrq2vlHcLG1t7+zulfcPmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3U791hMqzWP5aMYJ+hEdSB5yRo2VHq5LvXLFrbozkGXi5aQCOeq98le3H7M0QmmYoFp3PDcxfkaV4UzgpNRNNSaUjegAO5ZKGqH2s9mlE3JilT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeOVnXCapQcnmi8JUEBOT6dukzxUyI8aWUKa4vZWwIVWUGRvONARv8eVl0jyrehfV8/vzSu0mj6MIR3AMp+DBJdTgDurQAAYhPMMrvDkj58V5dz7mrQUnnzmEP3A+fwDEBIze</latexit> =

<latexit sha1_base64="j4mbSbzf83YOynNKuoFCq3TH7ho=">AAACKnicbZDLSsNAFIYnXmu9RV26GSyCq5KUoi6rblxW6A2aUCbTSTt0MklnJkJI+zxufBU3XSjFrQ/ipI2grQcGfr7/HM6c34sYlcqy5sbG5tb2zm5hr7h/cHh0bJ6ctmQYC0yaOGSh6HhIEkY5aSqqGOlEgqDAY6TtjR4yv/1MhKQhb6gkIm6ABpz6FCOlUc+8cyYNZ9JLK44KYWUKnQEZw5yNMzbO2Q90KPdVkjlLNe2ZJatsLQquCzsXJZBXvWfOnH6I44BwhRmSsmtbkXJTJBTFjEyLTixJhPAIDUhXS44CIt10ceoUXmrSh34o9OMKLujviRQFUiaBpzsDpIZy1cvgf143Vv6tm1IexYpwvFzkxwzqQ7PcYJ8KghVLtEBYUP1XiIdIIKx0ukUdgr168rpoVcr2dbn6VC3V7vM4CuAcXIArYIMbUAOPoA6aAIMX8AbewYfxasyMufG5bN0w8pkz8KeMr2/P+6eQ</latexit>

kTk2!2 � kTkq!q � kTk1!1

<latexit sha1_base64="cJcOob6adEriBoV0Za2zo7GugIQ=">AAACC3icbVC7TsMwFHXKq5RXgJHFaoXEVCVVBYwVLIxF6ktqqshxndaq46S2g1Sl2Vn4FRYGEGLlB9j4G5w2A7QcydLROffq+hwvYlQqy/o2ChubW9s7xd3S3v7B4ZF5fNKRYSwwaeOQhaLnIUkY5aStqGKkFwmCAo+Rrje5zfzuAxGShrylZhEZBGjEqU8xUlpyzbIzbzlzN6k5KoS1FDojMoW5Ns20aeqaFatqLQDXiZ2TCsjRdM0vZxjiOCBcYYak7NtWpAYJEopiRtKSE0sSITxBI9LXlKOAyEGyyJLCc60MoR8K/biCC/X3RoICKWeBpycDpMZy1cvE/7x+rPzrQUJ5FCvC8fKQHzOoM2bFwCEVBCs20wRhQfVfIR4jgbDS9ZV0CfZq5HXSqVXty2r9vl5p3OR1FMEZKIMLYIMr0AB3oAnaAINH8AxewZvxZLwY78bHcrRg5Dun4A+Mzx9PT5qb</latexit>

kTk2!2 � kTkq!q

Figure 6.9. The figure shows the hierarchy of norms for a linear operator T :
HB → HA with 2 ≤ q ≤ ∞. The inequality between ‖T‖2→2 and ‖T‖(2,ωB)→(2,ωA)
saturates when the size of HB and HA are the same. See appendix  6.2.17 for a
comparison of ‖ · ‖2→2 and ‖ · ‖q→q norm.

Then, using the Riesz-Thorin inequality in (  6.240 ) completes the proof. This lemma plays

a central role in our proof of the data processing inequality. See figure  6.9 for the relation

between different norms.

In ( 6.215 ) we used the Hölder inequality to rewrite the p-norm of the vectors as a vari-

ational expression in the Hilbert space. In constructing the GNS Hilbert space we replaced

|e〉 with the state |ω1/2〉 and defined the vectors |a〉ω = a |ω1/2〉. The definition of the Lpω
norms in (  6.215 ) generalizes to the GNS Hilbert space:

‖ |a〉ω ‖2
2p,ω = ‖aω

1
2p‖2

2p = ‖aω1/pa†‖p = sup
‖|ψ1/2〉‖=1

‖∆
1
2 − 1

2p
ψ|e |aω1/(2p)〉 ‖2

= sup
‖|ψ1/2〉‖=1

‖∆
1
2 − 1

2p
ψ|ω |a〉ω ‖2 . (6.243)

After a change of variables from 2p → p we find

‖ |a〉ω ‖p,ω = sup
|ψ1/2〉∈Hω

‖∆
1
2 − 1

p

ψ|ω |a〉ω ‖ ∀p ∈ [2,∞]

‖ |a〉ω ‖p,ω = inf
|ψ1/2〉∈Hω

‖∆
1
2 − 1

p

ψ|ω |a〉ω ‖ ∀p ∈ [1, 2) . (6.244)

where |ψ1/2〉 has unit norm. It was observed by [ 154 ] that the definition of the (p, ω)-norm

above generalize to any von Neumann algebra, even to those that do not admit a trace such

as the local algebra of QFT. We will come back to this in section  6.2.10 .
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6.2.4 Two-state Rényi divergences

Now, we are ready to define the distinguishability measures using the Lpω norm of the

vectors in the GNS Hilbert space.

Definition 6.2.4. We define the Petz divergences in terms of the Hilbert space norm of the

interpolating vector

D1/p(ψ‖ω) = 2p
1 − p

log ‖∆1/(2p)
ψ|ω |ω1/2〉 ‖2,ω (6.245)

and the sandwiched Rényi divergences using the (p, ω)-norm of the vector |ψ1/2〉 [ 204 ], [  205 ]

Sp(ψ‖ω) ≡ 2p
p− 1 log ‖ |ψ1/2〉 ‖2p,ω = p

p− 1 log ‖ω− 1
2qψω− 1

2q ‖p (6.246)

for p ∈ [1/2,∞]. 

44
 

These divergences are the generalizations of the Rényi entropy in (  6.217 ) to the GNS

Hilbert space. Their asymmetry has to do with the fact that the reference state ω is used

to construct the GNS Hilbert space. These two-state Rényi divergences satisfy the data

processing inequality [  149 ], [  202 ], [  206 ]. The p → 1 limit of both quantities gives the relative

entropy [  207 ]

S(ψ‖ω) = −2 lim
p→1

′p‖ |ψ1/2〉 ‖2p,ω . (6.247)

Since we will be always working in the GNS Hilbert space Hω we simplify our notation by

introducing |Ω〉 ≡ |ω1/2〉. The vector |ψ1/2〉 is a purification of ψ which is symmetric under

JΩ. It can be written as

|ψ1/2〉 = ∆1/2
ψ|ω |Ω〉 . (6.248)

44
 ↑ Cases p = 1 and p = ∞ are defined as limits p → 1 and p → ∞.
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The definitions in (  6.245 ) and (  6.246 ) are independent of the purification of ψ. To see this,

we first define the relative modular operator for an arbitrary vector |Ψ〉

∆Ψ|Ω ≡ ψA ⊗ ω−1
A′ (6.249)

so that it remains unchanged for other purifications of ψ:

∆u′Ψ|Ω = ∆Ψ|Ω . (6.250)

For an arbitrary vector |Ψ〉 ∈ Hω we can write the divergences in (  6.171 ) as

D1/p(ψA‖ωA) ≡ 2p
1 − p

log ‖∆1/(2p)
Ψ|Ω |Ω〉 ‖2,Ω

Sp(ψA‖ωA) ≡ 2p
p− 1 log ‖∆1/2

Ψ|Ω |Ω〉 ‖2p,Ω . (6.251)

We also define the (p,Ω)-norm in the GNS Hilbert space HΩ using

‖ |Ψ〉 ‖p,Ω = sup
‖|χ〉‖=1

‖∆1/2−1/p
χ|Ω |Ψ〉 ‖ p ∈ [2,∞]

‖ |Ψ〉 ‖p,Ω = inf
‖|χ〉‖=1

‖∆1/2−1/p
χ|Ω |Ψ〉 ‖, p ∈ [1, 2) . (6.252)

Definition 6.2.5. To interpolate between the two divergences following [  146 ] we define the

(θ, r)-Rényi divergences

Sθ,r(ψA‖ωA) = −2r
1 − θ

log ‖∆θ/(2r)
Ψ|Ω |Ω〉 ‖2r,Ω (6.253)

for the range r ∈ [1/2,∞] and θ ∈ [0, 1]. Even though in matrix algebras one can extend

beyond this range we limit our discussion to this limited range because outside of this range,

in infinite dimensions, the (θ, r)-Rényi divergences might not be finite. We postpone a study

of the extended range to future work.
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In matrix algebras, the expression in ( 6.253 ) becomes

Sθ,r(ψA‖ωA) = 2r
θ − 1 log ‖ψθ/(2r)

A ω
(1−θ)/(2r)
A ‖2r

= 1
θ − 1 log tr

[(
ω

1−θ
2r
A ψ

θ
r
Aω

1−θ
2r
A

)r]
(6.254)

where in the first equality we have used

(1 ⊗ ωA′) |Ω〉 = (ωA ⊗ 1) |Ω〉 . (6.255)

It follows from the definition in (  6.253 ) that the (θ, θ)-Rényi divergences is the θ-sandwiched

Rényi divergence and the (θ, 1)-Rényi divergences is the θ-Petz divergence. In the remainder

of this work, we suppress the subscript A unless there is potential for confusion. Note that

the matrix algebra expression enjoys the symmetry

(1 − θ)Sθ,r(ψ‖ω) = θS1−θ,r(ω‖ψ) . (6.256)

In the limit r → ∞ we can use the Lie-Trotter formula

lim
r→∞

(
ea1/rea2/r

)r
= ea1+a2 (6.257)

for self-adjoint operators a1, a2 to write

lim
r→∞

Sθ,r(ψ‖ω) = 1
1 − θ

log tr
(
eθ logψ+(1−θ) logω

)
. (6.258)

A larger class of two-state f -divergences one can consider if

Sfr (ψ‖ω) = −2r log ‖f(∆1/r
Ψ|Ω)1/2 |Ω〉 ‖2r,Ω (6.259)

where f is an operator monotone function.  

45
 In the next subsection, we show that these

measures satisfy the data processing inequality. They are related to the f -divergences and the
45

 ↑ A function f : (0,∞) → R is called operator monotone if for positive operators X and Y the inequality
X ≤ Y implies f(X) ≤ f(Y ).
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Petz quasi-entropies. [ 149 ], [ 207 ]–[ 209 ] A few examples of the operator monotone functions

are

1. f(x) = xα with α ∈ (0, 1).

2. f(x) = −x−α with α ∈ (0, 1).

3. f(x) = x log x

4. f(x) = log x

For concreteness and the fact that at times we need f(1) = 1, we will be mostly concerned

with the first case: f(x) = xα. However, we prove the data processing inequality for a

general operator monotone function f .

6.2.5 Data processing inequality for (θ, r)-Rényi divergences

Consider a quantum channel Φ∗ that sends the density matrices ψA and ωA to ψB =

Φ∗(ψA) and ωB = Φ∗(ωA), respectively. We consider the GNS Hilbert spaces corresponding

to ωA and ωB and call them HA and HB. We have

〈ΩB|b|ΩB〉 = 〈ΩA|Φ(b)|ΩA〉 . (6.260)

In this subsection, we prove the data processing inequality for the (θ, r)-Rényi divergences

in (  6.253 ) and the divergences in (  6.259 ) for r ≥ 1:

Sfr (Φ∗(ψA)‖Φ∗(ωA)) ≤ Sfr (ψA‖ωA)

Sθ,r(Φ∗(ψA)‖Φ∗(ωA)) ≤ Sθ,r(ψA‖ωA) . (6.261)

In the range we are interested, the monotonicity of the (θ, r)-Rényi divergences was first

proved by [ 197 ]. 

46
 In the Heisenberg picture, the quantum channel Φ∗ is described by an

unital CP map Φ : B → B(HA) that acts on the algebra. Note that the range of a CP map
46

 ↑ See theorem 2.1 of [ 195 ] for a proof of the data processing inequality in extended range of (θ, r) for matrix
algebras.
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need not be the full algebra B(HA). For simplicity, sometimes we use the notation A for the

operators in B(HA). 

47
 

Theorem 6.2.1. Let Φ : B → A be an unital CP map. Let ψA, ωA be states on A and

ψB = Φ∗(ψA), ωB = Φ∗(ωA) be states on B. For r ≥ 1, the two-state f -divergences Sfr (ψ‖ω)

satisfy the data processing inequality

Sfr (ψB‖ωB) ≤ Sfr (ψA‖ωA) . (6.262)

Proof. Let |ΩA〉 and |ΩB〉 be the vectors corresponding to ωA and ωB in their corresponding

GNS Hilbert spaces HA and HB. Let F be the contraction operator corresponding to Φ in

the GNS Hilbert space such that

Φ(b) |ΩA〉 = Fb |ΩB〉 . (6.263)

The monotonicity of the relative modular operator is the operator inequality 

48
 :

F †∆ΨA|ΩAF ≤ ∆ΨB |ΩB . (6.264)

Choosing the function f(x) = −(t + x)−1 that is operator monotone and operator convex 

49
 

we obtain [  210 ]

F † 1
t+ ∆ΨA|ΩA

F ≥ 1
t+ ∆ΨB |ΩB

. (6.265)

Any operator monotone function f can be expanded as [  211 ], [  212 ]

f(X) = a+ bX +
∫ ∞

0
dµ(t)

(
t

t2 + 1 − 1
t+X

)
(6.266)

47
 ↑ In general, the range of a CP map is a ∗-closed subspace of observables inside B(HA), otherwise known

as an operator system.
48

 ↑ See [ 210 ], and [  58 ] for a review of its proof using the Tomita-Takesaki modular theory
49

 ↑ A function is called operator convex if f(θX + (1 − θ)Y ) ≤ θf(X) + (1 − θ)f(Y ).
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for a ∈ R, b ≥ 0 and µ(t) a positive measure that satisfies  

50
 

∫ ∞

0

1
t2 + 1dµ(t) < ∞ . (6.268)

Therefore, we have the inequality

F †f(∆ΨA|ΩA)F ≤ f(∆ΨB |ΩB) . (6.269)

This implies

f(∆ΨB |ΩB)−1/2F †f(∆ΨA|ΩA)Ff(∆ΨB |ΩB)−1/2 ≤ 1 . (6.270)

Define the operator

Ff ≡ f(∆ΨA|ΩA)1/2Ff(∆ΨB |ΩB)−1/2 . (6.271)

In appendix  6.2.16 , we show that (  6.270 ) implies that Ff is a contraction and satisfies

‖Ff‖(p,ΩB)→(p,ΩA) ≤ 1 . (6.272)

In the case of function f(x) = xθ the integral representation in (  6.266 ) is

Xθ = sin(πθ)
π

∫ ∞

0
dt tθ

(1
t

− 1
t+X

)
. (6.273)

which is equivalent to saying that Fθ satisfies:

‖Fθ‖(p,ΩB)→(p,ΩA) ≤ 1

Fθ ≡ ∆θ/2
ΨA|ΩAF∆−θ/2

ΨB |ΩB . (6.274)

50
 ↑ When f(0) := limt→0 f(t) > −∞, we can write f as

f(X) = f(0) + bX +
∫ ∞

0
dµ(t)

(
1
t

− 1
t+X

)
(6.267)

where µ(t) satisfies
∫∞

0
1

t+t2 dµ(t) < ∞.
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This is similar to the argument by [ 213 ].

To prove the monotonicity under a contraction we use a proof similar to the one presented

by [ 202 ]:

‖f(∆ΨA|ΩA)1/2 |ΩA〉 ‖2r,ΩA = ‖Fff(∆ΨB |ΩB)1/2 |ΩB〉 ‖2r,ΩA

≤ ‖Ff‖(2r,ΩB)→(2r,ΩA)‖f(∆ΨB |ΩB)1/2 |ΩB〉 ‖2r,ΩB

≤ ‖f(∆ΨB |ΩB)1/2 |ΩB〉 ‖2r,ΩB (6.275)

where we have used the definition of the (2r,ΩB) → (2r,ΩA) norm for the contraction Ff

and the fact that it is less than one. This proves the data processing inequality in the range

r ≥ 1. 

51
 

Corollary 6.2.1.1. Let Φ : B → A be an unital CP map. Let ψA, ωA be states on A and

ψB = Φ∗(ψA), ωB = Φ∗(ωA) be states on B. The (θ, r)-Rényi divergences satisfy the data

processing inequality

Sθ,r(ψB‖ωB) ≤ Sθ,r(ψA‖ωA) (6.276)

for r ≥ 1 and θ ∈ [0, 1].

In appendix  6.2.14 , we show that if ω ≤ cψ for some constant c the vector

∆−θ
Ψ|Ω |Ω〉 ∈ L2r

ω (6.277)

in the extended range θ ∈ [ − 1, 1] and r ≥ 1. To prove the data processing inequality in

( 6.275 ) we used the contraction in (  6.274 ):

Fθ = ∆θ/2
ΨA|ΩAF∆−θ/2

ΨB |ΩB . (6.278)

51
 ↑ We restrict to r ≥ 1 as we proved the Riesz-Thorin theorem for this range in appendix  6.2.13 .
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The † of this operator is also a contraction

F †
θ = ∆−θ/2

ΨB |ΩBF
†∆θ/2

ΨA|ΩA . (6.279)

Therefore, we have

‖∆−θ/2
Ψ|Ω;B |ΩB〉 ‖2r,ΩB = ‖F †

θ∆−θ/2
Ψ|Ω;A |ΩA〉 ‖2r,ΩB ≤ ‖∆−θ/2

Ψ|Ω;A |ΩA〉 ‖2r,ΩA (6.280)

which says that the measure

Sθ,r(ψ‖ω) = −2r sign(θ)
1 − θ

log ‖∆θ/(2r)
Ψ|Ω |Ω〉 ‖2r,Ω (6.281)

satisfies the data processing inequality in the extended range θ ∈ (−1, 1). Another way to

define a measure with an extended range of monotonicity θ ∈ (−1, 1) is

Ŝθ,r(ψ‖ω) ≡ −2r
θ(1 − θ) log ‖∆θ/(2r)

Ψ|Ω |Ω〉 ‖2r,Ω . (6.282)

Note that this measure no longer vanishes at θ → 0. For instance, when r = 1 it corresponds

to a modification of the Petz divergence

−2
θ(1 − θ) log ‖ψθω1−θ‖ (6.283)

that interpolates between the relative entropy S(ω‖ψ) at θ → 0 and S(ψ‖ω) at θ → 1.

The measures defined above satisfy the data processing inequality and vanishes for identical

states, hence they are non-negative. 

52
 

In general, when θ > 1 we are not guaranteed that ∆θ/(2r)
Ψ|Ω belongs to L2r

ω . It is known

that the (θ, r)-Rényi divergences continue to satisfy the data processing inequality in the

regime r ∈ [1/2, 1) and r ≥ max(θ, 1 − θ) [ 146 ]. In this range of parameters, the (θ, r)-Rényi

divergences are finite for arbitrary states of infinite systems. However, we will not attempt

to prove the data processing inequality in this case. In matrix algebras, one can extend the
52

 ↑ Consider the CP map that sends all states to the same ωB . After the channel the measure is zero. Since
it has not increased, it was non-negative before applying the channel.
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range of the parameters to θ ∈ R/{1} and r > 0. The full range of parameters for which the

(θ, r)-Rényi divergence satisfies the data processing inequality was characterized by [ 195 ].

6.2.6 Multi-state measures

We are now ready to generalize the construction of the two-state Rényi divergences to

several states. For completeness, we have included a discussion of the Hölder inequality in

the first subsection. The reader only interested in the multi-state Rényi divergences can skip

this subsection.

6.2.7 Generalized Hölder inequality

Consider the multi-state vector

|Ω~ψ(~θ, ~p)〉 = ∆θ1/p1
Ψ1|Ω · · · ∆θn/pn

Ψn|Ω |Ω〉 (6.284)

with 0 ≤ θ1 + · · · + θn ≤ 1. We have introduced the compact notation ~θ = (θ1, · · · , θn),

~p = (p1, · · · , pn) and ~ψ = (ψ1, · · · , ψn). Note that by the relation (  6.250 ) the vector above

only depends on the states ω1 to ωn and not their purifications. We define the parameters

rn and p~θ

1
rn

≡ 1
p1

+ · · · 1
pn

1
p~θ

≡ θ1

p1
+ · · · + θn

pn
. (6.285)

We analytically continue the vector in (  6.284 ) to complex variables zi = θi +it. Since p~θ ≥ rn

the rn-norm analytically continued to the complex strip is finite

f~ψ|ω(~z, ~p) = ‖ |Ω~ψ(~z, ~p)〉 ‖rn,Ω . (6.286)

In matrix algebras, the function above is

f~ψ|ω(~θ, ~p) = ‖ψθ1/p1
1 · · ·ψθn/pnn ω

1
rn

− 1
p~θ ‖rn . (6.287)
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Lemma 6.2.1.1 (Hadamard three lines). Let f(z) be a general function that is bounded and

holomorphic in the complex strip θ ∈ [0, 1] and continuous on its boundaries. Then we have

|f(θ)| ≤ |f(0)|1−θ |f(1)|θ . (6.288)

Proof. Define the function g(z) = f(z)f(0)z−1f(1)−z which is also holomorphic and bounded

in the strip and continuous on the boundaries of the strip. The function g(z) has value less

than or equal to one on the boundaries, therefore by the Phragmén-Lindelöf principle (the

maximum modulus principle applied for the holomorphic functions bounded in the strip) it

takes its maximum on the boundary. As a result, |g(z)| ≤ 1 everywhere in the strip. On the

real line z = θ we obtain the inequality

|f(θ)| ≤ |f(0)|1−θ |f(1)|θ .

This result is sometimes called the Hadamard three-lines theorem.

Theorem 6.2.2 (Generalized Hölder inequality). The function in (  6.286 ) is bounded and

analytic on the complex domain of ~z with 0 ≤ θ1 + · · · + θn ≤ 1. It satisfies the generalized

Hölder inequality for the (p, ω)-norms: 

53
 

‖∆1/p1
Ψ1|Ω · · · ∆1/pn

Ψn|Ω |Ω〉 ‖rn,Ω ≤
n∏

i=1
‖∆1/pi

Ψi|Ω |Ω〉 ‖pi,Ω =
n∏

i=1
‖ψi‖1/pi

1 . (6.289)

Note that the measure above is independent of the state ω. If the states ψi are all normalized

the right-hand-side is equal to one. In matrix algebras, this is

‖ψ1/p1
1 · · ·ψ1/pn

n ‖rn ≤
n∏

i=1
‖ψ1/pi

i ‖pi . (6.290)

Defining the operators ai ≡ ψ
1/pi
i gives the matrix form of the generalized Hölder inequality

‖a1 · · · an‖rn ≤ ‖a1‖p1 · · · ‖an‖pn . (6.291)
53

 ↑ This was shown in theorem 5 of [ 154 ].
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Proof. To prove (  6.289 ) we start by showing

‖∆1/p1
Ψ1|Ω · · · ∆1/pn−1

Ψn−1|Ω∆1/pn
Ψn|Ω |Ω〉 ‖rn,Ω

≤ ‖∆1/p1
Ψ1|Ω · · · ∆1/pn−1

Ψn−1|Ω |Ω〉 ‖rn−1,Ω‖∆1/pn
Ψn|Ω |Ω〉 ‖pn,Ω

for arbitrary n. Define

1
rn,θ

≡ θ

rn−1
+ 1 − θ

pn
(6.292)

and the function

f~ψ|ω(~θ, ~p) ≡ ‖∆θ/p1
Ψ1|Ω · · · ∆θ/pn−1

Ψn−1|Ω∆(1−θ)/pn
Ψn|Ω |Ω〉 ‖rn,θ,Ω . (6.293)

It can be analytically continued to complex z = θ + it.

Using lemma  6.2.1.1 , the function in (  6.293 ) satisfies the inequality

f~ψ|Ω(~θ, ~p) ≤ ‖∆1/p1
Ψ1|Ω · · · ∆1/pn−1

Ψn−1|Ω |Ω〉 ‖θrn−1,Ω‖∆1/pn
Ψn|Ω |Ω〉 ‖1−θ

pn,Ω . (6.294)

Choosing θ = 1/2 and sending pi → 2pi gives

‖∆1/p1
Ψ1|Ω · · · ∆1/pn

Ψn|Ω |Ω〉 ‖rn,Ω

≤ ‖∆2/p1
Ψ1|Ω · · · ∆2/pn−1

Ψn−1|Ω |Ω〉 ‖1/2
rn−1/2,Ω‖∆2/pn

Ψn|Ω |Ω〉 ‖1/2
pn/2,Ω

= ‖∆2/p1
Ψ1|Ω · · · ∆2/pn−1

Ψn−1|Ω |Ω〉 ‖1/2
rn−1/2,Ω‖ψn‖1/pn

1 . (6.295)

Repeating this argument and using

‖∆1/p
Ψ|Ω |Ω〉 ‖p,Ω = ‖ψ‖1/p

1 (6.296)

we obtain the generalized Hölder inequality in (  6.289 ).
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6.2.8 Three-state Rényi divergences

In this subsection, we introduce the three-state Rényi divergences and use the monotonic-

ity of the relative modular operator show that they satisfy the data processing inequality.

Definition 6.2.6 (Kubo-Ando mean). For any operator monotone function f with f(1) = 1

and positive operators X and Y the Kubo-Ando mean ]f is defined to be [ 155 ], [ 156 ]

X]fY = X1/2f(X−1/2Y X−1/2)X1/2 (6.297)

where we are assuming that X is invertible. Note that X]fX = X.

The most important properties of the Kubo-Ando mean for us are the monotonicity

relation and the transformer inequality:

1. If XA ≤ XB and YA ≤ YB then XA]fYA ≤ XB]fYB

2. For any T we have

T (X]fY )T † ≤ (TXT †)]f (TY T †) (6.298)

with equality when T is invertible.

To simplify our equations we introduce the following notation:  

54
 

∆Ψ|Ω;A ≡ ∆ΨA|ΩA

∆f
Ψ1,Ψ2|Ω(θ1, θ2) ≡ ∆θ1

Ψ1|Ω]f∆
θ2
Ψ2|Ω . (6.300)

54
 ↑ In what follows, we could have chosen a more general case

∆f
Ψ1,Ψ2|Ω(g1, g2) ≡ g1(∆Ψ1|Ω)]fg2(∆Ψ2|Ω) (6.299)

where g1 and g2 are arbitrary operator monotone functions such that such gi(x) ≥ 0 for x ≥ 0, however, to
keep the presentation clean we restrict to the operator monotone functions g1(x) = xθ1 and g2(x) = xθ2 as
we did in ( 6.301 ). The definition of the multi-state Rényi divergences generalizes in the straightforward way.
Our proof of the data processing inequality will apply to this most general case.
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Choosing |Ω〉 as the reference vector, |Ψ1〉 and |Ψ2〉 and θ ∈ (0, 1) we have two monotonicity

equations for the relative modular operators. Combining these two inequalities using the

Kubo-Ando mean and applying its property in (  6.298 ) we obtain

F †∆f
Ψ1,Ψ2|Ω;A(θ1, θ2)F ≤ (F †∆θ1

Ψ1|Ω;AF )]f (F †∆θ2
Ψ2|Ω;AF )

≤ ∆f
Ψ1,Ψ2|Ω;B(θ1, θ2) . (6.301)

The first inequality becomes an equality when F is invertible. As before, we can define the

contraction

F f
θ1,θ2 ≡

(
∆f

Ψ1,Ψ2|Ω;A(θ1, θ2)
)1/2

F
(
∆f

Ψ1,Ψ2|Ω;B(θ1, θ2)
)−1/2

. (6.302)

Definition 6.2.7. For 0 ≤ θ1, θ2 ≤ 1, r ∈ [1/2,∞] and f any operator monotone function

with f(1) = 1, we define the three-state f -divergence as

Sfθ1,θ2(ψ1, ψ2‖ω) ≡ −2r log
∥∥∥∥(∆f

Ψ1,Ψ2|Ω(θ1/r, θ2/r)
)1/2

|Ω〉
∥∥∥∥

2r,Ω

= −2r log
∥∥∥∥(∆θ1/r

Ψ1|Ω]f∆
θ2/r
Ψ2|Ω

)1/2
|Ω〉

∥∥∥∥
2r,Ω

. (6.303)

It is clear from (  6.250 ) that the measure is independent of the purifications of ψ1 and ψ2.

Theorem 6.2.3. Let Φ : B → A be an unital CP map such that for a state ω on A,

the corresponding state on B is Φ∗(ω). Let ΩA and ΩB denote the states as vectors in the

corresponding GNS Hilbert spaces HA and HB and let F : HB → HA be the contraction

operator corresponding to the map Φ in the GNS Hilbert space. Given two states ψ1 and ψ2

on A, for r ≥ 1 the three-state f -divergence satisfies the data processing inequality

Sfθ1,θ2;r(ψ1, ψ2‖ω;B) ≤ Sfθ1,θ2;r(ψ1, ψ2‖ω;A) . (6.304)
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Proof. To prove the data processing inequality for this three-state measure, we use the

contraction in (  6.302 ) to write

∥∥∥∥(∆f
Ψ1,Ψ2|Ω;A (θ1, θ2)

)1/2
|ΩA〉

∥∥∥∥
2r,ΩA

=
∥∥∥∥F f

θ1,θ2

(
∆f

Ψ1,Ψ2|Ω;B(θ1, θ2)
)1/2

|ΩB〉
∥∥∥∥

2r,ΩA

≤
∥∥∥∥F f

θ1,θ2

∥∥∥∥
(2r,ΩB)→(2r,ΩA)

∥∥∥∥ (∆f
Ψ1,Ψ2|Ω;B(θ1, θ2)

)1/2
|ΩB〉

∥∥∥∥
2r,ΩB

≤
∥∥∥∥ (∆f

Ψ1,Ψ2|Ω;B(θ1, θ2)
)1/2

|ΩB〉
∥∥∥∥

2r,ΩB
. (6.305)

This proves the data processing inequality for r ≥ 1.

As a particular example, we choose f(x) = xα with α ∈ (0, 1) as the operator monotone

function. The Kubo-Ando geometric mean is

X]αY ≡ X1/2
(
X−1/2Y X−1/2

)α
X1/2 (6.306)

which satisfies the properties

1. (X1 ⊗X2)]α(Y1 ⊗ Y2) = (X1]αY1) ⊗ (X2]αY2)

2. If [X,Y ] = 0 then Xθ1]αY
θ2 = X(1−α)θ1Y αθ2 .

Definition 6.2.8. We define the three-state Rényi divergences as the special case of three-

state f -divergences when f(x) = xα with α ∈ (0, 1)

Sαθ1,θ2(ψ1, ψ2‖ω) ≡ −2r
(1 − θ1)(1 − θ2)

log
∥∥∥∥(∆α

Ψ1,Ψ2|Ω(θ1, θ2; r)
)1/2

|Ω〉
∥∥∥∥

2r,Ω

∆α
Ψ1,Ψ2|Ω(θ1, θ2; r) ≡ ∆

θ1
(1−α)r
Ψ1|Ω ]α∆

θ2
αr

Ψ2|Ω . (6.307)
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Note that α in ∆α
Ψ1,Ψ2|Ω is simply an index and not a power. The powers of the relative

modular operator are chosen such that when the relative modular operators commute the

measure is independent of α. In matrix algebras, this measure is

Sαθ1,θ2(ψ1, ψ2‖ω) ≡ −2r
(1 − θ1)(1 − θ2)

log

∥∥∥∥∥∥
(
ψ

θ1
(1−α)r
1 ]αψ

θ2
αr
2

)1/2

ω
θ0
2r

∥∥∥∥∥∥
2r

(6.308)

where θ0 + θ1 + θ2 = 1.

Special cases: In the θ0 → 0, the expression above is independent of ω and we obtain

Sα1−θ,θ;r(ψ1, ψ2‖ω) = r

θ(θ − 1) log
∥∥∥∥∥ψ

(1−θ)
(1−α)r
1 ]αψ

θ
rα
2

∥∥∥∥∥
r

. (6.309)

If we further set α = θ, up to an overall coefficient, it reduces to a generalization of the

geometric divergence defined by [  198 ], [  199 ]:

Sθ1−θ,θ;r(ψ1, ψ2‖ω) = r

θ(θ − 1) log
∥∥∥∥ψ 1

r
1 ]θψ

1
r
2

∥∥∥∥
r
. (6.310)

In the special cases θ1 → 0 (or θ2 → 0), the three-state measure in ( 6.308 ) reduces to the

(θ, r)-Rényi divergence

Sα0,θ;r(ψ1, ψ2‖ω) = Sθ,r(ψ2‖ω)

Sαθ,0;r(ψ1, ψ2‖ω) = Sθ,r(ψ1‖ω) . (6.311)

Another special case where we recover the (θ, r)-Rényi divergence is ψ1 = ψ2:

Sθ1,θ2;r(ψ, ψ‖ω) = −2r
(θ1 − 1)(θ2 − 1) log ‖ψ(θ1+θ2)/(2r)ωθ0/(2r)‖2r

= θ0

(θ1 − 1)(θ2 − 1)Sθ1+θ2,r(ψ‖ω) . (6.312)

When α = 1/2 it is convenient to introduce the notation

X]Y = X1/2
(
X−1/2Y X−1/2

)1/2
X1/2 . (6.313)
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to write

S
1/2
θ1,θ2;r(ψ1, ψ2‖ω) = −2r

(1 − θ1)(1 − θ2)
log

∥∥∥∥(ψθ1/r
1 ]ψ

θ2/r
2

)1/2
ωθ0/(2r)

∥∥∥∥
2r
. (6.314)

6.2.9 Multi-state Rényi divergences

The generalization to arbitrary number of states is straightforward. We use the vector

notation ~Ψ = (Ψ1, · · · ,Ψn), ~θ = (θ1, · · · , θn) and ~f = (f1, · · · , fn−1) to define the operator

∆~f
~Ψ|Ω(~θ) ≡ ∆θ1

Ψ1|Ω]f1 · · · ]fn−1∆θn
Ψn|Ω . (6.315)

We are using the simplified notation 

55
 

X1]f1X2]f2X3 ≡ X1]f1(X2]f2X3) . (6.316)

Definition 6.2.9. We define the multi-state f -divergence to be

S
~f
~θ;r(

~ψ‖ω) = −2r∏n
i=1(1 − θi)

log
∥∥∥∥∥
(

∆~f
~Ψ|Ω(~θ)

)1/2
|Ω〉

∥∥∥∥∥
2r,Ω

. (6.317)

This is a special case of the more general measure

S
~f,~g
r (~ψ‖ω) = −1

N(~g) log
∥∥∥∥∥
(

∆~f
~Ψ|Ω(~g)

)1/2
|Ω〉

∥∥∥∥∥
2r,Ω

∆~f
~Ψ|Ω(~g) ≡ g1(∆Ψ1|Ω)]f1 · · · ]fn−1gn(∆Ψn|Ω) (6.318)

for operator monotone functions f1, · · · , fn−1 with fi(1) = 1 and g1, · · · , gn with gi satisfying

gi(x) ≥ 0 for all x ≥ 0 and −1
N(~g) is a normalization.

In the remainder of this work, we focus on the measure in ( 6.317 ). We will see that when

θ1 + · · · + θn = 1 this measure is independent of |Ω〉.

Theorem 6.2.4. Let Φ : B → A be an unital CP map such that for a state ωA on A, the

corresponding state on B is ωB = Φ∗(ωA). Let ΩA and ΩB denote the states as vectors in
55

 ↑ Multi-variate operator geometric means were discussed by [  214 ].
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the corresponding GNS Hilbert spaces HA and HB and let F : HB → HA be the contrac-

tion operator corresponding to the map Φ in the GNS Hilbert space. Given a set of states
~ψA = (ψ1, · · · , ψn) on A, for r ≥ 1 the multi-state f -divergence satisfies the data processing

inequality

S
~f
~θ,r

( ~ψB‖ωB) ≤ S
~f
~θ,r

( ~ψA‖ωA) . (6.319)

Proof. To prove the data processing inequality, as before, we first construct the inequality

F †∆~f
~Ψ|Ω;A(~θ)F ≤ ∆~f

~Ψ|Ω;B(~θ) (6.320)

by repeatedly using ( 6.301 ), from which we get the contraction

F
~f
~θ

≡
(

∆~f
~Ψ|Ω;A(~θ)

)1/2
F
(

∆~f
~Ψ|Ω;B(~θ)

)−1/2
. (6.321)

We have

∥∥∥∥∥
(

∆~f
~Ψ|Ω;A(~θ)

)1/2
|ΩA〉

∥∥∥∥∥
2r,ΩA

=
∥∥∥∥∥F ~f

~θ

(
∆~f
~Ψ|Ω;B(~θ)

)1/2
|ΩB〉

∥∥∥∥∥
2r,ΩA

≤ ‖F ~f
~θ

‖(2r,ΩB)→(2r,ΩA)

∥∥∥∥∥
(

∆~f
~Ψ|Ω;B(~θ)

)1/2
|ΩB〉

∥∥∥∥∥
2r,ΩB

≤
∥∥∥∥∥
(

∆~f
~Ψ|Ω;B(~θ)

)1/2
|ΩB〉

∥∥∥∥∥
2r,ΩB

. (6.322)

This implies that the multi-state f -divergences satisfy the data processing inequality for

r ≥ 1 for any quantum channel Φ∗.

To be more concrete, we restrict to the geometric mean ]α in ( 6.306 ). Consider n operators

X1 to Xn that pairwise commute. Define αn = α0 = 0 so that

Xθ1
1 ]α1 · · · ]αn−1X

θn
n = Xγ1θ1

1 · · ·Xγnθn
n

γi = (1 − αi)(α1 · · ·αi−1) . (6.323)
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Note that γi are all positive and add up to one, hence, they are a probability distribution.

We define the operator

∆~α
~Ψ|Ω(~θ; r) ≡ ∆

θ1
rγ1
Ψ1|Ω]α1 · · · ]αn−1∆

θn
rγn

Ψn|Ω . (6.324)

The advantage of this definition is that it is independent of ~α when the relative modular

operators commute. Then, the multi-state Rényi divergence is

S~α~θ;r(~ψ‖ω) = −2r∏n
i=1(1 − θi)

log
∥∥∥∥(∆~α

~Ψ|Ω(~θ; r)
)1/2

|Ω〉
∥∥∥∥

2r,Ω
. (6.325)

In matrix algebras, this measure becomes

S~α~θ,r(~ψ‖ω) = −2r∏n
i=1(1 − θi)

log

∥∥∥∥∥∥
(
ψ

θ1
rγ1
1 ]α1 · · · ]αn−1ψ

θn
rγn
n

)1/2

ω
θ0
2r

∥∥∥∥∥∥
2r

(6.326)

where θ0 + θ1 + · · · + θn = 1. We can think of θi as a probability distribution associated with

states ψi. As before, when θ0 = 0 the measure above is independent of ω.

Similar to (  6.282 ) we can divide our multi-state Rényi measure by (1 − θ0) to make it

more symmetric among θ0 and the rest of θi:

Ŝ~α~θ,r(~ψ‖ω) ≡ 1
1 − θ0

S~α~θ,r(~ψ‖ω) . (6.327)

Special cases: In the limit r → ∞, we have the multi-variate Lie-Trotter formula for

self-adjoint operators a1, · · · , an [ 212 ], [  215 ]

lim
r→∞

(
ea1/r · · · ean/r

)r
= ea1+···+an . (6.328)

In lemma 3.3 of [  216 ] it was shown that for α ∈ [0, 1] and a1 and a2 self-adjoint

lim
r→∞

(
ea1/r]αea2/r

)r
= e(1−α)a1+αa2 . (6.329)
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This was further generalized by [ 217 ] to multi-variate geometric means

lim
r→∞

(
ea1/r]α1 · · · ]αn−1ean−1/r

)r
= e

∑
i γiai (6.330)

with γi given in (  6.323 ). Notice that the right-hand-side of the equation above is invariant

under the permutations of ai. Applied to our measure, we find

lim
r→∞

S~α~θ,r(~ψ‖ω) = −1
(1 − θ1) · · · (1 − θn) log tr

(
e
∑

i θi logψi+θ0 logω
)

(6.331)

which is independent of αi. Now, except for an overall 1/(1 − θ0) factor, the reference state

ω is no longer distinguished from the rest. We include ω inside ~ψ as ψ0. We define the

vector ~θε that is θj = 1 − ε for a particular j, and θi = εβi for i 6= j including θ0 = εβ0. Since
~θε is a probability distribution the weights βi sum up to one; hence βi is also a probability

distribution. In the limit ε → 0, all θi → 0 except for θj that goes to one and we find 

56
 

lim
ε→0

S~θε,∞(~ψ) =
n∑

i=0
βi tr (ψj(logψj − logψi)) =

n∑
i=0

βiS(ψi‖ψj) (6.332)

which is the weighted average of the relative entropies of ψi with respect to ψj.

The same analysis can be repeated at finite r if all the states commute. In this case, we

have n probability distributions and our multi-state measure is independent of both r and

the vector ~α:

D~θ({p1}, · · · , {pn}) = −1
(1 − θ1) · · · (1 − θn) log

(∑
x∈X

p1(x)θ1 · · · pn(x)θn
)
. (6.333)

This is the generating functional in (  6.168 ). Taking the same ε → 0 limit of ~θε gives a

weighted average of the relative entropies:

lim
ε→0

D~θε
(~p) =

n∑
i=1

βiDKL(pi‖pj) . (6.334)

56
 ↑ Since the measure does not depend on ~α we suppress it in the notation.
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Consider the the multi-state measure in  6.327 . In appendix  6.2.15 , we show that in case

where we set θi = εβi and θ0 = 1 − ε, at finite r, we obtain the same weighted average of

relative entropies:

lim
ε→0

Ŝ~α~θε;r(
~ψ‖ω) =

n∑
i=1

βiS(ψi‖ω) . (6.335)

6.2.10 Infinite dimensions

In this section, we generalize our discussion of Lpω spaces and the multi-state Rényi

divergences to an arbitrary von Neumann algebra. . This includes the local algebra of

quantum field theory (QFT) that is a type III algebra, meaning that it does not admit a

trace. 

57
 We closely follow the reference by [  154 ].

Any normal CP map ω : A → C that satisfies ω(1) = 1 is called a state. In infinite

dimensions, the vector |e〉 or a trace might not exist. However, we can use any normal state

ω to define an inner product for the map a → a |Ω〉:

〈a1Ω|a2Ω〉 = ω(a†
1a2) . (6.336)

The closure of the set a |Ω〉 is the GNS Hilbert space Hω. For simplicity, we have restricted

to the case of faithful normal states.

The Tomita operator SΩ : Hω → Hω is the anti-linear operator defined by

SΩa |Ω〉 = a† |Ω〉 . (6.337)

The closure of SΩ has a polar decomposition

SΩ = JΩ∆1/2
Ω (6.338)

where JΩ and ∆Ω = ∆Ω|Ω are the generalizations of the modular conjugation and the modular

operator to arbitrary von Neumann algebras. The natural cone is the set of vectors that are
57

 ↑ Formally, a trace is a normal completely positive (CP) map from the algebra to the complex numbers
tr : A → C that satisfies ∀a1, a2 ∈ A : tr(a1a2) = tr(a2a1).
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invariant under JΩ. The vectors in the natural cone are in one-to-one correspondence with

the normal states on A. The relative Tomita operator is defined by the equation

SΨ|Ωa |Ω〉 = a† |Ψ〉 (6.339)

with polar decomposition (after closure)

SΨ|Ω = JΨ|Ω∆1/2
Ψ|Ω, (6.340)

where ∆Ψ|Ω is the generalization of the relative modular operator, and JΨ|Ω is an anti-

unitary operator if both ω and ψ are faithful. When |Ψ〉 belongs to the natural cone we have

JΩ|Ψ = JΩ, otherwise JΩ|ΨJΩ is a partial isometry in A′; refer to [ 169 ].

Motivated by the expression (  6.244 ) we define the (p,Ω)-norm of a vector |Ψ〉 ∈ Hω as

‖ |Ψ〉 ‖p,Ω = sup
|χ〉∈Hω

‖∆1/2−1/p
χ|Ω |Ψ〉 ‖, ∀p ∈ [2,∞]

‖ |Ψ〉 ‖p,Ω = inf
|χ〉∈Hω

‖∆1/2−1/p
χ|Ω |Ψ〉 ‖, ∀p ∈ [1, 2) . (6.341)

For p ≥ 2 the (p,Ω)-norm is finite if |Ψ〉 is in the intersection of the domains of ∆1/2−1/p
χ|Ψ for

all |χ〉 ∈ Hω. When |Ψ〉 is outside of this intersection set we say ‖ |Ψ〉 ‖p,Ω = ∞. The closure

of the set of all |Ψ〉 with finite (p,Ω)-norm is called the Lpω space [  154 ]. For p ∈ [1, 2) the

Lpω space is defined to be the completion of the Hilbert space Hω with the (p,Ω)-norm. In

general, we have Lpω ⊆ Lrω for r ≤ p and L∞
ω is the algebra itself with its operator norm ‖a‖∞.

The L2
ω is the GNS Hilbert space Hω and the L1

ω is the space of normal linear functionals of

A. We can embed the vectors |Ψ〉 ∈ Hω in L1
ω using the map

ψ(·) = 〈Ψ| · Ω〉 . (6.342)

However, since L1
ω is larger than Hω not all states ψ can be expressed this way.
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The Lpω space is dual to the Lqω space when q is the Hölder dual of p:

‖ |Ψ〉 ‖p,ω = sup
‖|χ〉‖q,ω=1

| 〈χ|Ψ〉 | . (6.343)

Given a normal state ψ ∈ L1
ω the vector

∆1/p
Ψ|Ω |Ω〉 ∈ Lpω (6.344)

for p ∈ [2,∞). For every vector |χ〉 ∈ Lpω there exists a unique ψ ∈ L1
ω such that

|χ〉 = u∆1/p
Ψ|Ω |Ω〉 (6.345)

with some partial isometry u ∈ A. The vector

|Ω(θ)〉 = ∆θ/2
Ψ|Ω |Ω〉 (6.346)

is analytic in the complex strip z = θ + it with θ ∈ [0, 1]. The reason is that we can write

∆θ+it
Ψ|Ω |Ω〉 = ∆θ

Ψ|Ω(DΨ : DΩ)t |Ω〉 (6.347)

where

(DΨ : DΩ)t ≡ ∆it
Ψ|Ω∆−it

Ω ∈ A (6.348)

is the Connes cocycle which is a partial isometry in the algebra for all real values of t.[ 186 ]

All the multi-state measures discussed in the previous section and the inequalities they

satisfy generalize to arbitrary von Neumann algebras except for (  6.258 ). 

58
 

58
 ↑ We do not know how to prove a generalization of (  6.256 ) to arbitrary von Neumann algebras.
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6.2.11 Quantum state discrimination

In asymmetric quantum state discrimination, we are given a state ω that we do not

know a priori. The task is to perform measurements on this state to decide whether it is

ω or any of the alternate hypotheses K = {ψ0, · · ·ψk}. We would like to know what is the

optimal measurement to perform on the state to make the decision and what is the minimum

probability of misidentifying the state.

First, consider the case with only one alternate hypothesis ψ. Assume we are given

n identical copies of the state prepared in the form ω⊗n and we are allowed to use any

measurement in the n-copy Hilbert space to identify the state. Denote by βn the probability

that we misidentify the state as ψ with the optimal measurement. Any other measurement

strategy to distinguish the two states fails with probability larger than βn. According to

quantum Stein’s lemma βn behaves asymptotically as [  192 ]

lim
n→∞

− 1
n

log βn = S(ψ‖ω) . (6.349)

This provides an operational interpretation for relative entropy. The asymmetry of the

relative entropy is related to the fact that we assumed that in reality the state was ω.

Of course, if we were given the state ψ instead the asymptotic error rates are controlled by

S(ω‖ψ). In general, in hypothesis testing we have two types of errors and their corresponding

optimal probabilities

1. αn: the state was ψ and we misidentified it as ω.

2. βn: the state was ω and we misidentified it as ψ.

There is a trade-off between these two types of errors. Since we do not know whether the

state is ω or ψ we should try to adopt a strategy that minimizes a combination of both

errors. One might expect that these strategies would fail with minimal probabilities that

interpolate between S(ψ‖ω) and S(ω‖ψ) as we go from minimizing the type 2 to type 1 errors.

This intuition is confirmed in symmetric hypothesis testing when we choose to minimize the
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average of the two error probability types. According to the quantum Chernoff bound, the

optimal error probability in the symmetric case in the n → ∞ limit is [  218 ]

Ee,n ≤ e−nC(ψ,ω)

C(ψ, ω) = − log inf
θ∈(0,1)

tr
(
ψθω1−θ

)
. (6.350)

Note that the quantity C(ψ, ω) is related to a minimization over the Petz divergences in

( 6.245 ). The in-between strategies succeed with probabilities that depend on the Petz diver-

gences. For instance, let us restrict to the measurements that leads to type 2 errors smaller

than some constant E−nr, i.e. βn ≤ e−nr, and denote by αn,r the optimal probability of the

type 1 errors among these measurements. In the limit n → ∞ we have [ 193 ]

αn,r ≤ e−nHr(ψ‖ω)

Hr(ψ‖ω) = sup
θ∈(0,1)

θ − 1
θ

(r −Dθ(ψ‖ω)) . (6.351)

The quantity Hr(ψ‖ω) is called the Hoeffding divergence. The inequality above provides an

operational interpretation for the Petz divergences Dθ(ψ‖ω). It follows from (  6.349 ) that if

r > S(ψ‖ω) the error αn,r tends to one exponentially fast for large n. It was shown by [ 193 ]

that as n → ∞

1 − αn,r ≤ e−nH∗
r (ψ‖ω)

H∗
r (ψ‖ω) = sup

θ>1

θ − 1
θ

(r − Sθ(ψ‖ω)) . (6.352)

The function H∗
r (ψ‖ω) is often called the converse Hoeffding divergence. It provides an

operational interpretation for the sandwiched Rényi divergences.

Now, let us consider the completely asymmetric case where we are given ω but we have

several alternate hypotheses K = {ψ1, · · · , ψk}. The generalization of the quantum Stein’s
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lemma in ( 6.349 ) to the multi-state setting is called the quantum Sanov’s lemma. [  219 ], [  220 ]

It says that given ω the optimal probability βn of mistaking it for other states at large n is

βn ≤ e−nS(K‖ω)

S(K‖ω) = min
ψi∈K

S(ψi‖ω) . (6.353)

In the symmetric case, given a set of hypothesis K, the multi-state Chernoff bound says that

the minimal errors are controlled by the multi-state Chernoff distance [  221 ]

Ee,n ≤ e−nξ

ξ = min
i 6=j

C(ψi, ψj) . (6.354)

However, away from the asymmetric case when we have to minimize various types of er-

rors that generalize the type 1 and type 2 errors to multi-state setting, one expects that the

multi-state measures that control the optimal probabilities to interpolate between the relative

entropies S(ψi‖ω) and C(ψi, ψj). The optimal error probabilities satisfy a data processing

inequality because all distinguishability measures are non-increasing as we restrict the set of

allowed measurements. Our multi-state measures interpolate in between these measures as

we vary the probability measure (θ0, θ1, · · · , θm) and satisfy the data processing inequality.

We take this as an evidence to conjecture that the multi-state Rényi divergences in (  6.326 )

have operational interpretations in asymmetric multi-state discrimination where we are given

the state ω and the hypotheses are the states ψ1, · · · , ψm. One attempt to make this con-

jecture more precise is as follows: 

59
 In the multi-state setting with m alternative hypotheses

{ψ1, · · · , ψm} there are m probability errors βi,n associated with misidentifying ω with ψi.

Choose a specific j and restrict to the measurements with error probabilities βi,n ≤ e−nri

for i 6= j at large number of measurements n. One might expect that the optimal error

probability for j is given by an infimum over θi of some function of ri minus our multi-state

measures. However, we do not know what function of ri is relevant or how to fix the value

of the αi parameters. In the classical limit, the αi parameters go away making it easier to
59

 ↑ We thank Milan Mosonyi for the suggestion.

273



find the appropriate function of ri, however we will not attempt that here. For more recent

developments in quantum state discrimination refer to [  222 ], [  223 ].

6.2.12 Discussion

In this work, we constructed multi-state Rényi divergences and proved that they satisfy

the data processing inequality in the range r ≥ 1 and θi ∈ [0, 1]. Both the Petz and the

sandwiched Rényi divergences are monotonic in p; however, we did not explore potential

monotonicity of our multi-state Rényi divergences in any of the parameters r or θ. We

postpone this question to future work.

Recently, Fawzi and Fawzi used the Kubo-Ando geometric to define new quantum Rényi

divergences in terms of a convex optimization program and proved that they satisfy the

data processing inequality [  224 ]. It would be interesting to use the non-commutative Lpω
spaces to rewrite their expressions as (p, ω)-norms and explore their potential multi-state

generalizations.

In section  6.2.7 we analytically continued the vector (  6.284 ) to complex θi. Consider the

vectors |Ωi〉 = ui |Ω〉 where ui ∈ A are unitary operators. In that case, the relative modular

operator can be written in terms of the modular operator of ω:

∆uΩ|Ω = u∆Ωu
† (6.355)

where ∆Ω is the modular operator of Ω. Then, our analytically continued vector is

|Ωu1,···un(~z)〉 = u1∆z1
Ω (u†

1u2)∆z2
Ω (u†

2u3) · · · ∆zn
Ω u

†
n |Ω〉 . (6.356)

If we take all zi to be imaginary we end up with modular evolved operators

‖ |Ωu1,··· ,un(i~t)〉 ‖ = ‖(u†
1u2)t1(u†

2u3)t1+t2 · · ·un |Ω〉 ‖

at ≡ ∆it
Ωa∆−it

Ω . (6.357)
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For general values of ti we obtain a 2n-point modular correlation function that is not modular

time-ordered. In fact, since a ∈ A belong to L∞
ω we can generalize our vector in (  6.284 ) by

introducing operators ai ∈ A (not necessarily unitaries)

∆z1
Ψ1|Ωa1 · · · ∆zn

Ψn|Ωan |Ω〉 . (6.358)

setting |Ωi〉 = |Ω〉 and all zi = iti imaginary we obtain the out-of-time-ordered modular

multi-point correlators. It would be interesting to search for potential connections between

these out-of-time-ordered correlators and the notions of modular chaos previously introduced

in the literature.[  225 ], [  226 ]

It is important to note that in our definition of the multi-state Rényi divergences in

( 6.326 ) we restricted to the range 0 ≤ θ1 + · · · θn ≤ 1 to make sure that the resulting vector

is in L2r
ω . In principle, we can extend beyond this range, for instance, by making some θi

negative. While the resulting multi-state measure would not always be finite, in an infinite

dimensional system that is hyperfinite (approximated by matrix algebras arbitrarily well)

one expects that this measure is finite for a large class of states ψ1, · · · , ψn. It would be

interesting to explore the data processing inequality in this extended range.  

60
 

Finally, the analysis with non-commutative Lpω spaces suggests that one might be able to

prove an improved data processing inequality using Hirschman’s lemma, refer to [  213 ], [ 227 ],

[ 228 ]. We postpone this to future work.

6.2.13 Appendix: Riesz-Thorin theorem

In this appendix, we prove the Riesz-Thorin theorem for the Araki-Masuda (p, ω)-norms

[ 229 ].
60

 ↑ Note that our proof only works when all θi are positive.
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Definition 6.2.10. Consider the algebras A and B, faithful states ωA and ωB and their

corresponding GNS Hilbert space HA and HB, respectively. For a bounded linear map T :

HA → HB and p, q ≥ 2 as in ( 6.191 ) and ( 6.192 ) we define the (p,A) → (q, B) norm to be

‖T‖(p,A)→(q,B) = sup
|χ〉∈HA

‖T |χ〉 ‖(q,ΩB)

‖ |χ〉 ‖(p,ΩA)
. (6.359)

Theorem 6.2.5 (Riesz-Thorin). Consider the algebras A and B, faithful states ωA and ωB
and their corresponding GNS Hilbert space HA and HB, respectively. For a bounded linear

map T : HA → HB and pθ, qθ ≥ 2, θ ∈ [0, 1] such that

1
pθ

= 1 − θ

p0
+ θ

p1
1
qθ

= 1 − θ

q0
+ θ

q1
, (6.360)

we have the inequality

‖T‖(pθ,A)→(qθ,B) ≤ ‖T‖1−θ
(p0,A)→(q0,B)‖T‖θ(p1,A)→(q1,B) . (6.361)

Proof. To prove this inequality, we first use the fact that any ‖ |χ〉 ‖pθ,A = 1 can be written

as u∆1/pθ
χ|Ω;A |ωA〉 to write the left-hand-side as

‖T‖(pθ,A)→(qθ,B) = sup
|χ〉∈HA,u∈A

‖Tu∆1/pθ
χ|Ω;A |ΩA〉 ‖qθ,ΩB . (6.362)

We can use the definition of the (qθ,ΩB) norm in (  6.252 ) to write the expression above as

‖T‖(pθ,A)→(qθ,B) = sup
u∈A,|χ〉∈HA,|Φ〉∈HB

‖∆
1
2 − 1

qθ

Φ|Ω;BTu∆
1
pθ

χ|Ω;A |ΩA〉 ‖ . (6.363)

We define the function

f(θ) = ‖∆
1
2 − 1

qθ

Φ|Ω;BTu∆
1
pθ

χ|Ω;A |ΩA〉 ‖ (6.364)

276



and then analytically continue θ → z = θ + it to the complex strip θ ∈ [0, 1]. This function

is bounded, holomorphic everywhere inside the strip and is continuous on the boundaries of

the strip at θ = 1 and θ = 0. Therefore, by the Phragmén-Lindelöf principle, it takes its

maximum value on the boundaries of the strip. Using lemma  6.2.1.1 , we find

‖∆
1
2 − 1

qθ

Φ|Ω;BTu∆
1
pθ

χ|Ω;A |ΩA〉 ‖ ≤ ‖∆
1
2 − 1

q0
Φ|Ω;BTu∆

1
p0
χ|Ω;A |ΩA〉 ‖(1−θ)‖∆

1
2 − 1

q1
Φ|Ω;BTu∆

1
p1
χ|Ω;A |ΩA〉 ‖θ .

Taking the supremum of both sides and using sup(fg) ≤ sup(f) sup(g) completes the proof.

6.2.14 Appendix: Extended range of θ

Consider the (θ, r)-Rényi divergence. If we choose θ ∈ (−1, 0] the measure need not be

finite. However, for a dense set of states it is finite. To see this, first assume that there exists

a positive constant c such that for all a+ ∈ A we have

ω(a+) ≤ cψ(a+) . (6.365)

In the density matrix setting, it means that the following operator is positive semi-definite

cψ − ω ≥ 0 . (6.366)

Since the map Φ∗ is CP we also have

cΦ∗(ψ) − Φ∗(ω) ≥ 0 . (6.367)

For such states we have

〈aΩ|∆Ψ|ΩaΩ〉 = 〈a†Ψ|a†Ψ〉 ≥ c−1 〈a†Ω|a†Ω〉 = c−1 〈aΩ|∆ΩaΩ〉 (6.368)
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which implies the inequality c∆Ψ|Ω ≥ ∆Ω. For θ ∈ [0, 1] we obtain  

61
 

cθ ≥ ∆θ/2
Ω ∆−θ

Ψ|Ω∆θ/2
Ω . (6.369)

This implies

cθ ≥ ‖∆−θ/2
Ψ|Ω ∆θ/2

Ω ‖∞,Ω . (6.370)

Therefore, the condition in ( 6.365 ) says that the vector

∆θ/2
Ψ|Ω |Ω〉 ∈ HΩ (6.371)

for θ ∈ [ − 1, 1]. For r ≥ 1 this vector is in L2r
ω , therefore

Sθ,r(ψ‖ω) = −2r
1 − θ

log ‖∆θ/2r
Ψ|Ω |Ω〉 ‖2r,Ω (6.372)

is finite. The (θ, r)-Rényi divergences are defined for r ∈ [1/2,∞] and θ ∈ [0, 1] but for r ≥ 1

we can extend the range of θ to [ − 1, 1].

6.2.15 Appendix: The relative entropy limit

This appendix uses arguments similar to those by [  213 ]. Consider the family of vectors

|χε〉 ∈ L2r
ω such that |χε〉 = |Ω〉 + ε |χ1〉 + O(ε2). If we normalize the vector |χε〉 to |χ̄ε〉 =

|χε〉 /‖ |χε〉 ‖2,Ω we obtain

lim
ε→0

1
2ε‖ |χ̄ε〉 − |Ω〉 ‖2 = lim

ε→0

1
ε

(1 − Re 〈χ̄ε|Ω〉) = 0 . (6.373)

Next, we note that for r ≥ 1 we have

Re 〈χ̄ε|Ω〉 ≤ | 〈χ̄ε|Ω〉 | ≤ ‖ |χ̄ε〉 ‖2r,Ω‖ |Ω〉 ‖s,Ω = ‖ |χ̄ε〉 ‖2r,Ω ≤ ‖ |χ̄ε〉 ‖1/r
2,Ω = 1 (6.374)

61
 ↑ See also Lemma 5 of [  213 ].
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where in the second inequality we have used the Hölder inequality and the fact that the

(s,Ω)-norm of |Ω〉 is always one. In the last inequality, we have used the fact that for r ≥ p

‖ |Ψ〉 ‖rr,Ω ≤ ‖ |Ψ〉 ‖pp,Ω . (6.375)

This follows from a simple application of the Hadamard three-line theorem to the function

‖ |Ψ〉 ‖rr,Ω; see lemma 8 and corollary 5 by [  229 ] for more details.

Divide (  6.374 ) by ε and take the limit ε → 0. Using (  6.373 ) we obtain

lim
ε→0

1
ε

(1 − ‖ |χ̄ε〉 ‖2r,Ω) = 0 . (6.376)

As a result,

lim
ε→0

1
ε

log ‖ |χ̄ε〉 ‖2r,Ω = ∂ε (‖ |χ̄ε〉 ‖2r,Ω)ε→0 = 0 . (6.377)

We are interested in the function

lim
ε→0

1
ε

log ‖ |χε〉 ‖2r,Ω . (6.378)

The (p,Ω)-norms are homogeneous therefore

log ‖ |χε〉 ‖2r,Ω = log ‖ |χ̄ε〉 ‖2r,Ω + log ‖ |χε〉 ‖2,Ω (6.379)

and

lim
ε→0

1
ε

log ‖ |χε〉 ‖2r,Ω = lim
ε→0

1
ε

log ‖ |χε〉 ‖2,Ω . (6.380)

Therefore, we only need to study the (2,Ω)-norm of the vector |χε〉.

In the three-state Rényi measures our vector of interest is

|χε〉 =
(

∆
εβ

(1−α)r
Ψ1|Ω ]α∆

ε(1−β)
αr

Ψ2|Ω

)1/2

|Ω〉 . (6.381)
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We have

lim
ε→0

1
ε

log ‖ |χε〉 ‖2r,Ω = 1
2 〈Ω|∂ε

(
∆

εβ
(1−α)r
Ψ1|Ω ]α∆

ε(1−β)
αr

Ψ2|Ω

)
ε→0

|Ω〉 . (6.382)

We only need to compute the derivative:

∂ε (Xε]αY
ε)ε→0 = logX + ∂ε

(
X−ε/2Y εX−ε/2

)α ∣∣∣∣
ε=0

= (1 − α) logX + α log Y . (6.383)

Applied to our case in (  6.382 ) we find

lim
ε→0

1
ε

log ‖ |χε〉 ‖2r,Ω = −1
2r (βS(ψ1‖ω) + (1 − β)S(ψ2‖ω)) . (6.384)

As a result, from eq (  6.327 ) we get

lim
ε→0

Ŝα(εβ,ε(1−β)),r(ψ1, ψ2‖ω) = βS(ψ1‖ω) + (1 − β)S(ψ2‖ω) . (6.385)

To generalize to n states we need to compute

∂ε
(
Xε

1]α1 · · · ]αn−1X
ε
n

)
ε→0

= (1 − α1) logX1 + α1∂ε
(
Xε

2]α2 · · · ]αn−1X
ε
n

)
ε→0

= γ1 logX1 + γ2 logX2 + · · · + γn logXn . (6.386)

Consider the vector

|χε〉 =
(

∆
εβ1
γ1r
Ψ1|Ω]α1 · · · ]αn−1∆

εβn
γnr

Ψn|Ω

)1/2

|Ω〉 . (6.387)

Then,

lim
ε→0

Ŝ~α~θε,r(
~ψ‖ω) =

n∑
i=1

βiS(ψi‖ω) . (6.388)
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6.2.16 Appendix: The (p → q)-norm of contractions

Lemma 6.2.5.1. Consider a linear operator Ff : HB → HA that satisfies ‖F †
fFf‖∞ ≤ 1;

see equation ( 6.270 ). For ∀p ∈ [2,∞]

‖Ff‖(p,ΩB)→(p,ΩA) ≤ 1 . (6.389)

Proof. First, note that ‖F †
fFf‖∞ ≤ 1 implies that Ff is a contraction, i.e. ‖Ff‖∞ ≤ 1,

because ‖T †T‖p = ‖T‖2
2p for any linear operator T : HB → HA and ∀p ∈ [1,∞]. The proof

has two steps: First, we show that for a contraction Ff we have ‖Ff‖(p,ΩB)→(p,ΩA) ≤ ‖Ff‖∞

for p = 2,∞. Then, we use the Riesz-Thorin interpolation theorem to establish (  6.389 ).

For the first step, consider an isometry V : HB ↪→ HA and a cyclic and separating vector

|ΩB〉 = V † |ΩA〉. For p = 2 we have

‖Ff‖(2,ΩB)→(2,ΩA) :=sup
b∈B

‖Ffb |ΩB〉 ‖2,ΩA
‖b |ΩB〉 ‖2,ΩB

=sup
b∈B

‖FfV †V bV † |ΩA〉 ‖2,ΩA
‖b |ΩB〉 ‖2,ΩB

≤‖FfV †‖∞ sup
b∈B

‖V bV † |ΩA〉 ‖2

‖b |ΩB〉 ‖2

≤‖FfV †‖∞

≤‖Ff‖∞ .

(6.390)

In the third line, we have used Hölder’s inequality and (  6.227 ). By a similar argument, for

p = ∞, we obtain

‖Ff‖(∞,ΩB)→(∞,ΩA) :=sup
b∈B

‖Ffb |ΩB〉 ‖∞,ΩA
‖b |ΩB〉 ‖∞,ΩB

=sup
b∈B

‖FfV †V bV † |ΩA〉 ‖∞,ΩA
‖b |ΩB〉 ‖∞,ΩB

≤‖FfV †‖∞ sup
b∈B

‖V bV †‖∞

‖b‖∞

≤‖FfV †‖∞

≤‖Ff‖∞

(6.391)
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where we have used ‖a |ΩA〉 ‖∞,ΩA = ‖a‖∞ which follows from equations (  6.232 ) and (  6.221 ).

Since ‖Ff‖∞ ≤ 1, the above inequalities imply that for p = 2 or p = ∞

‖Ff‖(p,ΩB)→(p,ΩA) ≤ 1 (6.392)

In the second step, we use the Riesz-Thorin interpolation theorem,

‖Ff‖(pθ,ΩB)→(pθ,ΩA) ≤ ‖Ff‖1−θ
(∞,ΩB)→∞,ΩA)‖Ff‖

θ
(2,ΩB)→2,ΩA) (6.393)

for 1
pθ

= 1−θ
p0

+ θ
p1

with θ ∈ [0, 1] where we set p0 = ∞ and p1 = 2. From equation ( 6.392 ),

‖Ff‖(pθ,ΩB)→pθ,ΩA) ≤ 1 (6.394)

for ∀pθ ∈ [2,∞]. Just by relabeling pθ to p, we obtain the statement in (  6.389 ).

6.2.17 Appendix: Comparison of norms

Lemma 6.2.5.2. For q ∈ [2,∞] we have ‖T‖q→q ≤ ‖T‖2→2, see figure  6.9 .

Proof.

‖T‖q→q = sup
a

‖T (a⊗ I)‖q
‖(a⊗ I)q

≤ sup
a

‖T‖∞‖(a⊗ I)‖q
‖(a⊗ I)‖q

= ‖T‖∞ = ‖T‖2→2 (6.395)

where we have used the Hölder inequality and the last equality follows from the definition

of the ‖ · ‖2→2 norm.
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7. SUMMARY

In this thesis, we studied the operator algebra quantum error correction(OAQEC) and the

generalizations of information measures in a general quantum system (von Neumann alge-

bras).

We formulated the known QEC conditions, such as the Knill-Laflamme condition and

the sufficiency condition in the Schrödinger picture in the language of OAQEC for a general

von Neumann algebra. Most importantly, we constructed a unique unital recovery map from

the Petz dual map of a given error map (unital CP) with a trivial kernel.

We observed that the real-space renormalization theory exhibits the approximate QEC

structure. We studied it by applying the continuous multiscale entanglement renormalization

ansatz (cMERA) to the 1 + 1-dimensional massive free boson fields.

We constructed the generalized entanglement entropy that captures the entanglement due

to the presence of charges in a general quantum system using quantum relative entropy. It

captures the contributions from the bi-local intertwiners. They are charge-neutral operators

in the algebra of two local regions in spacetime, but charge operators in each local algebras.

We worked out examples in finite-dimensional systems and quantum field theories.

We achieved the generalization of quantum relative entropy into the multistate f -divergence.

We showed that the multistate f -divergence satisfies the monotonicity under a single unital

completely positive map. Although we do not have its physical interpretation, we speculated

its potential application to quantum state discrimination.
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