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PREFACE

. Chapter 2 briefly reviews the basic ideas of classical and quantum information theory.
. Chapter 3 reviews completely positive maps and their duals in von Neumann algebras.

. Chapter 4 reviews the basics of quantum error correction (QEC). In particular, op-
erator algebra QEC is introduced. The sections about the passive QEC and active
QEC are based on the appendices from my paper [1].

. Chapter 5 is based on my two papers [1] and [2]. We studied the QEC structure in

real-space renormalization group theory.

. Chapter 6 is based on my two papers [3] and [4]. We studied the information mea-
sures in the presence of charges and proposed generalized measures which capture the
entanglement due to the pairs of charges. Moreover, we proposed the multiparameter,

multistate generalization of quantum relative entropy.
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ABSTRACT

Holographic duality as a rigorous approach to quantum gravity claims that a quantum
gravitational system is exactly equal to a quantum theory without gravity in lower space-
time dimensions living on the boundary of the quantum gravitational system. The duality
maps key questions about the emergence of spacetime to questions on the non-gravitational
boundary system that are accessible to us theoretically and experimentally. Recently, vari-
ous aspects of quantum information theory on the boundary theory have been found to be
dual to the geometric aspects of the bulk theory.

In this thesis, we study the exact and approximate quantum error corrections (QEC)
in a general quantum system (von Neumann algebras) focused on QFT and gravity [1].
Moreover, we study entanglement theory in the presence of conserved charges in QFT [3]

and the multiparameter multistate generalization of quantum relative entropy [4].
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1. INTRODUCTION

In 1997, Maldacena conjectured that quantum gravity in the Anti-de Sitter space is equivalent
to a conformal field theory. This conjecture is known as the AdS/CFT correspondence! [5].
The statement of AdS/CFT is that any theory of quantum gravity in asymptotically d + 1
dimensional anti-de Sitter space 2 is equivalent to a conformal field theory in d-dimension
without gravity. There are two requirements for this duality to hold; i) A sparse spectrum
of low-dimension operators, ii) A large number of local degrees of freedom. In other words, a
strongly coupled CF'T with a large number of degrees of freedom is dual to a weakly coupled
gravitational theory. In this sense, AdS/CFT can be understood as a weak/strong duality.

In this thesis, our discussion of AdS/CFT is primarily concerned with the bulk/boundary
dictionary. According to the extrapolate dictionary, to every local field ¢ in the bulk there
corresponds an operator O in the boundary theory [6],

limr®o(t,r,z) = O(t, z) (1.1)

=00

where A is a conformal weight, and ¢(t,r, z) is the local bulk operator at (r, x) on a Cauchy
slice at time t. Here, r is the radial coordinate of the spacetime. O(t, ) is the corresponding
CFT primary operator. We want to know how to reconstruct the local operators deep in
the bulk in a general asymptotically AdS geometry. This type of problem is called the
bulk reconstruction. In the strict N — oo limit, we can construct a smearing function

K(t',2'|t,r,z) such that
olt,r,2) = [ K(¢ 2|t r, )0, o) (1.2)

It is, in a sense, the inverse of the bulk to boundary propagator[7]-[9].
In the N — oo limit, there are two ways to reconstruct the operators deep in the bulk:
1) the global reconstruction and 2) the causal wedge reconstruction. One of the procedures,

the so-called global reconstruction, represents the bulk operator ¢(t,r,x) as a non-local

14We use holography and AdS/CFT interchangeably.
242 AdS(Anti-de Sitter) space is the maximally symmetric solution of Einstein equation with a negative cos-
mological constant.
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¢(t7 rvx) O

(a) (b)

Figure 1.1. The cylinder is a Penrose diagram of AdS3. The position of the
bulk operator is denoted as a black dot. (a) The red-dotted horizontal circle
denotes the boundary Cauchy slice. The boundary support is colored pink.
(b)The boundary subregion on the constant time slice is denoted as a red line.
The domain of dependence of A is within the green lines. The causal wedge is
the bulk domain of dependence whose boundary is the blue and red line.

CF'T operator supported on a full Cauchy slice of the boundary, fig.1.1a[10]. This procedure
has the non-local CFT operators supported on the boundary region that is space-like to
the position of the bulk operator. On the contrary, in the causal wedge reconstruction,
we reconstruct a bulk operator with the CFT operators supported only on the boundary
subregion, fig.1.1b[10].

The reconstruction maps above obscure the bulk locality. Consider the bulk operator
¢(x) deep in the bulk, and a boundary operator O(x’), where we have absorbed all the
coordinates into the single variable. ¢(x) and any boundary operators O(x’) are space-like
separated. Then, bulk locality requires them to commute. Hence, the boundary repre-
sentation ¢(x) — Oy x) should commute with all the boundary operators. This seems to
contradict the following axiom of the boundary quantum field theory [11]: there exist no
non-trivial bounded operators which commute with all local operators. In other words, the

commutator cannot hold as an operator statement, i.e., [Ogx), O(x')] # 0. Quantum error
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correction (QEC) offers a resolution to this seeming paradox by stating that the bulk locality
only requires the operators to commute projected into a “code” subspace.

Quantum error correction (QEC) is one of the essential frameworks and the pillar of quan-
tum information theory. For example, in quantum communication, signals traveling through
a fiber are disturbed by the interactions between the fiber and the environment. This results
in the deterioration of the signal. In quantum computations, avoiding or correcting errors
is essential for fast and high-precision simulations. To model a quantum error correction
code, we need 1) an encoding map 2) an error map, 3) a recovery map, and 4) a decoding
map. In the Heisenberg picture, the procedure above is often referred to as the operator
algebra quantum error correction (OAQEC)[12]-[14]. Consider a set of quantum states that
one wants to simulate and a set of errors. These states are called logical states which span a
logical space. The encoding map encodes the logical states into a code subspace which is a
vector subspace where all the states are correctable. In OAQEC, one starts with the logical
operators that act on the logical space. These operators are encoded into a code/correctable
subalgebra. Note that in a general QEC, the set of correctable operators need not generate
an algebra. In chapter 4 and 5, we work on the case where the set of correctable operators
form an algebra.

In AdS/CFT [15]-[17], the error map is, for instance, the erasure of a boundary subre-
gion. The bulk-to-boundary dictionary is the encoding map. The logical operators are bulk
operators. Hence, the logical space is the bulk Hilbert space. The logical operators encoded
in the boundary theory turn out to be the boundary operators acting on the code subspace
in the boundary Hilbert space. Any states in the code subspace or operators acting on the
code subspace are correctable against the erasures, fig.1.2a.

As an example, consider the AdS3 spacetime and partition it into three regions as depicted
in fig.1.2b. Consider the error that is the erasure of region A;. Since the correctability only
holds in the code subspace, the radial locality is the statement within the code subspace[15]—
[17];

Prode[Opx)s O1] Peode = Prode[O23, O1] Peoge = 0 (1.3)
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Figure 1.2. (a)A schematic picture of quantum error correction in holography
in the Schrédinger picture. In the case of the Heisenberg picture, the order
of “Errors" and “Recovery" switches. (b) A;, A, and Az are the boundary
subregions. The causal wedge of each boundary subregion lives between the
blue curve and its boundary. The operator ¢(x) lies near the center of the
bulk.

where O3 is the boundary operators supported on A, and As, whereas O; is supported only
on Ay. P, is the projection on the code subspace.

Up to here, we have used the causal wedge reconstruction map to map the bulk oper-
ators to the boundary ones. However, there is a more general reconstruction the so-called
entanglement wedge reconstruction[18] was discovered. It reconstructs bulk regions deeper
than the causal wedge.

The entanglement wedge is the bulk domain of dependence of the region between a
given boundary subregion and a codimension two bulk surfaces homologous to the boundary
region. The codimension two bulk surfaces are called the Ryu-Takayanagi (RT) surface.
They are determined by extremizing the boundary entanglement entropy, RT formula [19].

HRT formula|20] is its covariant generalization to the time-dependent case;

B Area[x 4]

Sa 4Gy
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where Gy is a gravitational constant. Area|-] is an area functional of codimension two bulk
surfaces x 4. Since the entanglement wedge always contains the causal wedge [21], [22], we
can recover the bulk operators in the entanglement wedge, but not in the causal wedge.

Next, we want to understand the recovery map in the holographic QEC code. As briefly
mentioned above, there are four maps in quantum error correction; 1) an encoding map 2) an
error map, 3) a recovery map, and 4) a decoding map. In AdS/CFT, encoding or decoding
is considered as a map from bulk to boundary, or vice versa. In general, an error map
on a set of density matrices {p} is correctable if there exists a recovery map satisfying the
equation R* o ®*(p) = p for all the density matrices. When the recovery is approximate, i.e.
Ri 0 ®*(p) =~ p, the best recovery map R}, constructed is called the universal recovery map.
Constructions and discussions of the universal recovery map on the entanglement wedge are
discussed in [23], [24].

As seen above, the applications of quantum error corrections to AdS/CFT are inevitable.
However, the conventional theory of quantum error correction is mostly constructed for
algebra types that are not the same as the algebras of quantum field theory associated with
local regions of spacetime. In general, the local algebras of quantum fields in spacetime
are known to be a type-III von Neumann algebra which differs from a finite-dimensional
von Neumann algebra. For instance, type-1II algebras do not admit a trace, or any density
matrices [11], [25]. One needs to reformulate a theory of QEC and recovery map without
assuming the existence of trace or density matrices. This motivates us to study quantum

error correction in an arbitrary von Neumann algebra (a general quantum system).
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2. “INFORMATION IS PHYSICAL”

“Information is physical” [26] is the title of a paper published by Landauer in 1961. The paper
claims that “Information” is always encoded in a physical system and there are fundamental
energy costs to processing information. For example, the erasure of information encoded
in a system surrounded by a heat bath at temperature T" always requires an energy cost of
kT In 2! per single unit of “information”, which is known as Landauer’s principle®.

In general, a quantity is said to be physical if we can measure and manipulate it in a lab.
Hence, any operation (e.g. transfer, processing, or computation) on “information” encoded in
a physical system should be constrained by the physical laws of nature. Landauer’s principle
is the manifestation that information is physical. This led to solving Maxwell’s demon
problem[28], [29], and the generalization of the second law of thermodynamics including the
physical effect due to the information erasure[30].

So far, we have naively used the word “information”. If information is physical, we need
to define it sharply. In 1948, Shannon quantified the amount of “information” and formu-
lated the theory of information processing, and communication, in the presence of noise[31].
At the time, in physics, there was already a well-founded theory of quantum mechanics,
made mathematically rigorous by John von Neumann in the 1920s. However, Shannon was
only concerned with information in classical systems. Hence, we call Shannon’s theory the
classical information theory. It took a few more decades until the essence of information
theory was generalized to the quantum realm. In 1984, the first quantum cryptographic
protocol, BB8/, was developed by Charles Bennet and Gilles Brassard [32]. The proposal of
a quantum teleportation protocol by Jozsa, William K. Wootters, Charles H. Bennett, Gilles
Brassard, Claude Crépeau, and Asher Peres in 1993[33] was another seminal work that laid
the foundation of the quantum information theory.

In this section, we briefly review the definition of classical and quantum entropy, dis-
tinguishability measures, and channels. For classical information, two measures that play
key roles in classical information theory are the Shannon entropy and the Kullback-Leibler

divergence. Their quantum analogs are called the entanglement entropy and the quantum

kp is the Boltzmann constant.
21For the beautiful and concise discussions, see [27].
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relative entropy. We also discuss a one-parameter family of entropic measures that generalize
entropy, Rényi measures. Information processing is described by “channels”. However, we

postpone its detailed properties and discussions to chapter 3.

2.1 Classical information: Shannon entropy and classical channels

We start this section with the definition of Shannon entropy, as the average “information”
or “surprise” associated with a random variable. Intuitively, one can think of the entropy of
a random variable as the amount of information we need to know the value of the random
variable. Equivalently, it is the amount of surprise one gets after learning the value of
the random variable. Consider a probability p(z) of an event x. Then, the amount of

“information” or the surprisal is defined as

10g<p(1$)> — log(p(x)). (2.1)

The base of the logarithm defines the unit of information content. In binary systems, it is
customary to use base two logarithms and call the unit of information a bit. When p(z) is
close to 1, the surprisal is close to 0, and there is almost no information in learning the value
of the random variable. That is, there is no surprise. On the other hand, if the probability
p(z) is close to zero, the surprisal becomes very large. In other words, one has a huge surprise
after observing an event that is expected to happen rarely.

Consider, for example, a coin. It has two events {head, tail}, and the associated probabil-
ity distribution is {pneaa = 1/2, pran = 1/2}. The information of each event is equally log2, or
1 bit. On the contrary, if the associated probability is uneven, i.e. {pheaqa = 1/4, pran = 3/4},
the surprisal of the event “head” is larger than that of the event “tail”. It means that one
gets surprised more after observing the head.

Shannon entropy is an expectation value of the surprisal.
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Definition 2.1.1 (Shannon entropy). Given a set of discrete n events {x;}"_,* and a discrete

probability distribution* {p} = {p(x;)},, Shannon entropy is given by

n

H({zi})) = Byl — logp({zi}is,)] = = > pla;) log p(x;) (2.2)

i=1
where Eyy is an expectation value associated with the probability distribution.

Next, to make the notion of information processing sharp, we define channels. Consider
two probability distributions of two random variables {p(x;)}™, {p(v;)}=;. The information
of each probability distribution is measured by Shannon’s entropy. Information processing is
the transition from one probability distribution {p(x;)}, to the other {p(y;)},. Hence, the
channel in information theory is modeled by the map between the probability distributions.
In classical information theory, conditional probabilities provide us with the definition of a
classical channel. For the probability distributions, {p(x;)},, {p(v:)}!~,, the conditional

probability is defined by
p (yj y L i)

p(x;) (23)

p(yjlz:) =

where p(y;, ;) is a joint probability. A family of conditional probabilities {p(y;|zi)}; of
the initial events {x;}; and the final events {y;}", is called a conditional probability distri-
bution. We define a classical channel between {p(z;)}™, and {p(y;)}",° by the conditional
probability distribution {p(y;|z:) .

Definition 2.1.2 (Classical channel). Given two classical probability distributions {p(x;)},
and {p(y;)}iy. The classical channel is the conditional probability distribution {p(y;|x;)}i,
where {p(y;) }y is obtained by

n

p(y) = Y p(y;lz:)p(as) (2.4)

i=1

31To be precise, = is a random variable on a sample space with n events. z; are the realizations of the
random variable . We are using the events and the realizations of the random variable interchangeably.
41In this definition, we have a discrete probability distribution. However, one can, of course, have a version
of the continuous probability distribution.

5fNote that one can have a continuous version of the above. In stochastic theory, the multiple steps for
some time intervals are considered. In this case, the conditional probability is often called propagator which
is familiar from classical field theories.
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X1 > N

Figure 2.1. The probability distribution {p(z;)}, is mapped to {p(yi)}~; by the
binary symmetric channel {p(yo|zo) =1 —q, p(y1|zo) = ¢, p(yolz1) = ¢, p(y1|z1) =
1—q}.

forallj=1,--- n.

For example, let us consider a binary symmetric channel of a single bit, fig.2.1. Suppose
the initial probability distribution is given by {p(zg) = p,p(z1) = 1 — p} where 0 < p <1
is the probability of the bit in the state of 0. Suppose the classical channel is {p(yo|zo) =
1 —q, p(yi|lzo) = q, p(yolz1) = q, p(y1]z1) = 1 — ¢}. Under the classical channel, the final
probability distribution as the output is

{p(yo) = 1= qp+a(1=p), p(y1) =gp+ (1 —q)(1 —p) }. (2.5)
2.2 Quantum information: von Neumann entropy and quantum channels

In quantum mechanics, the non-commutative analog of a probability distribution is a

density matrix p on a Hilbert space K defined by
o= ml) i (26)

where |i) (i| are projections on K. In analogy to the classical case, the projections |i) (i

correspond to the events where {p;} is its probability distribution. A density matrix is
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6. Moreover, for the

a positive operator because its eigenvalues are positive real numbers
eigenbasis {[i)} € K,

tr(p) = >_ (il pli) < oo. (2.7)

i
Such an operator is called a trace-class operator’. Roughly speaking, it is normalizable with
a trace. p is called a pure state if it cannot be written by a convex composition of any other
states. Since the pure states are a one-dimensional projection, they satisfy p?> = p. This
is sometimes called a purity of the density matrix. Otherwise, a density matrix is a mized
state, and p? < p.

In quantum information theory, the notion of subsystem plays a significant role in un-
derstanding the correlation structures in quantum systems. To define the subsystem, we use
partial trace. Consider a density matrix pap of a quantum system AB. We partition the sys-
tem into A and B. The density matrices of subsystem A and B are defined by pa = trg(pas)
and pp = tra(pap). Conversely, one can compose systems by a tensor product. For example,
consider two density matrices p4 and pg. One can compose them, and get, for instance,
pPAB = pA X pPB.

One can calculate the quantum information of density matrices similar to Shannon en-
tropy in the classical case. In the quantum case, von Neumann entropy generalizes Shannon

entropy.

Definition 2.2.1 (von Neumann entropy). Given a density matriz p, von Neumann entropy

is defined as
S(p) = —tr(plog p). (2.8)

It satisfies the following properties;

1. Additivity:
S(p@o)==5(p)+5(0); (2.9)

2. Subadditivity (SA):

S(pa) +S(ps) = S(pas) (2.10)

64 A operator is positive if (¥|p|¥) > 0 for V |¥) € K.
711t is also called L' bounded operator since L'-norm is the trace norm. Note that trace norm does not
depend on the basis.
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3. Concavity: For a set of positive numbers p; such that > ;p; = 1,

S(Zpipi) > Zpis(pi)- (2.11)

In addition, its upper-bound is provided by
SQ_pip) <D mS(p) = D _pilogp =3 miS(ps) + H({p}). (2.12)

In the quantum case, the basic idea of a “channel” is a map between non-commutative
probability distributions. A quantum channel is a map between density matrices. Quantum
channel represents quantum information processing. To define quantum channels, we need
to introduce two concepts, i) completely positive maps, and ii) trace-preserving maps. We
briefly discuss them here since we will study them in detail in chapter 3.

First, a density matrix is a positive operator. A linear map that sends a positive operator
to another one is called a positive map. Thus, quantum channels should be at least positive
maps. Consider a density matrix pgg of a system S and a dr-dimensional reference system

R. A positive map ®,.,® on the system is a completely positive map when

(Psch @ Ir)(psr) (2.13)

is positive for all dg. The transpose map is an example of a positive map, but not a completely
positive map.

Second, a quantum channel ®g,, is trace-preserving if

tr(Puen(p)) = tr(p). (2.14)

This is a physical requirement that total probability is preserved under the quantum channel.

We summarize the above discussion into the following definition.

841In this section, a quantum channel on a density matrix is denoted as ®,.;, where the subscript indicates
the Schrodinger picture. Similarly, we denote a quantum channel on an observable by ® g which is in the
Heisenberg picture.
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Definition 2.2.2 (Quantum channel). Consider {pa} the set of density matrices of system
A and {pg} the set of density matrices of system B, then a quantum channel @y is a

completely positive and trace-preserving map from pa — ppg.

The simplest quantum channel is a unitary transformation UpU' for a density matrix p.
For instance, the time evolution of a closed quantum system is a unitary flow generated by
the Hamiltonian. A general quantum channel models non-unitary and irreversible dynamics
as well. Hence, it is suitable to describe the interactions between a system and, for instance,
an external system.

To make this statement explicit, let us introduce and construct so-called Kraus represen-
tation® in a simple example below. For a quantum channel and a density matrix, in general,

the Kraus representation is defined by
Dn(p) = MypMy. (2.15)
k

M. are non-unitary operators called Kraus operators and satisfy >, M, ,I M, =1

Consider a system S and, for instance, a reservoir R. Given a total Hamiltonian H;,; =
Hs @ 1+ 1® Hgr + Hsg where Hg and Hgi are the Hamiltonian of the system and the
reservoir. Hgg is the interaction Hamiltonian. Let pg(0) be the initial density matrix of
the system, and |rg) (ro| is a projection consisting of the lowest eigenvalue of Hgr. Then, the
density matrix of the system after time ¢ under the time evolution defined by the unitary

Usor = e'tftet is obtained by

ps(t) = trr (Uiups(0) & Iro) (rol Ul

- ; (r&| Usot [r0) ps(0) (rol U s (2.16)

=" Mips(0) M
k

where we put My = (ri| Usor |70)-

91For its full definition and discussion, see theorem 3.2.2.
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For the simplest case, let |¥) (¥| be an initial pure density matrix of a single qubit system
where |¥) = p|0) + (1 — p)|1) for 0 < p < 1. Consider a CNOT gate as a dynamics on a

two-qubit system, i.e.,
Usot = 100) g5 {00] + [01) g (10[ 4 [10) g (11| + [11) gz (10] (2.17)

where |ij) ¢ = [i)s ® |j) g (i,j = 0,1) are the sigma. basis of the system qubits and resevoir

qubits. The Kraus operators in a basis {|0),,[1)} are
My = (0|U|0) =0) (0], My = (1| U |1). (2.18)

Thus, we get
E};Mk ) (W] M{ = p[0) (0] + (1 = p) 1) (1]. (2.19)

The non-unitary process decoheres the system and is irreversible.

2.3 Classical and quantum correlations

Quantum information can be encoded into, for instance, a set of two-level quantum
systems. This is often called a qubit system. When one encodes the information to a set
of d-level quantum systems, we call it a qudit system. The correlation structures of these
systems are governed by how they interact. In quantum information processing, we actively
manipulate the correlation structures to achieve communication or computation protocols.
This is how quantum information technologies are built on quantum systems.

In a bipartite system, there are four types of correlation structures that are important to
us; 1) product states (no correlations), ii) separable states (classical correlations), iii) entan-
gled states (quantum correlations), and iv) classical-quantum states. When the subsystems

do not have any correlation or are decorrelated, the density matrix of AB is a product state,

PAB = PA® pB. (2.20)
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The density matrix is a separable state if it is written by
PAB = ZpipAi ® pPBi (2.21)

for a probability distribution {p;}. If density matrices cannot be written by any of the two
forms, they are called entangled states. When the system has both classical and quantum

correlations, the density matrices are written by
PAB = Y DiPABi (2.22)
i

for a probability distribution {p;}.

To gain intuition as why each form of the density matrices has the corresponding cor-
relations, we now discuss the measures of correlation. One might think that von Neumann
entropy is enough. However, as we will see, it is a measure of correlations only for pure
bipartite systems.

Consider psp to be a pure state. In general, von Neumann entropy of ps measures total
correlations between subsystem A and B. It can capture all the correlations between A and
B with neither over-counting nor miss-counting, fig.2.2, because we have S(pa) = S(pp)
from the subadditivity (2.10). However, when psp is a mixed state, it cannot capture the
correlations properly. For example, even if one has a product state pap = pa ® pp, the von
Neumann entropy S(p4) is not equal to zero despite the fact that there is no correlation
between A and B. Hence, von Neumann entropy is not a good measure of correlations of
mixed states.

Instead, we define mutual information by
I(A: B) == S(pa) + S(pp) — S(pan)- (2.23)

It is a measure of correlations of both pure and mixed states. For the product states, it always
vanishes. Thus, there is no correlation. For the separable states, it equals Shannon entropy.

Thus, only the classical correlations exist. For the entangled states, it is calculated by the
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Figure 2.2. A system is partitioned into subsystem A and B. The dots represent,
for instance, local lattice sites. The black lines represent the quantum correlations
between the lattice sites. Intuitively, what contributes to the von Neumann entropy
is the number of free legs.

combination of von Neumann entropy following its definition. In the next section, we will
see that there is a much more fundamental information measure than mutual information,

which is called relative entropy.

2.3.1 Relative entropy

Among the measures, an information measure that is central to the thesis is relative
entropy. This is a distinguishability measure. It compares two probability distributions
and quantifies how distinguishable they are. It generates other information measures, for
instance, mutual information. Moreover, it provides operational interpretation for various
information and correlation measures'®.

In [35], the relative entropy for the classical probability distributions was proposed by
Kullback and Leibler. It was originally proposed for the continuous probability distribution.

Here, we give the definition with the discrete probability distributions.

104+For the summary of the role of relative entropy in information theory and physics, see [34].
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Definition 2.3.1 (Classical relative entropy/Kullback-Leibler (KL) divergence). For two
probability distributions, {p(x;)},, {q(x;)},, the Kullback-Leibler (KL) divergence is de-
fined by

n

Dreu()r)) = 3 a(aog (425 2.2

i=1 p xi)

which satisfies the following properties

1. If p(xz) =0, q(x) =0, then
log(q(x)/p(x)) = 0 (2.25)

2. If p(x) #0, q(x) =0, then
log(q(x)/p(x)) = o0 (2.26)

In the quantum case, the relative entropy is defined between two density matrices.

Definition 2.3.2 (Quantum relative entropy). For two density matrices, p, o, on a Hilbert
space IC,

tr (p(log p — log o)) if supp(p) < supp(o)

S(pllo) = (2.27)

+00 otherwise
Let us mention the properties of the quantum relative entropy and its relevance to other
information measures. First, the relative entropy is a function from density matrices to the
positive real number R,. That is, S(p[lc) > 0. Note that S(p||c) = 0 if and only if p = 0.
The remarkable property is the monotonicity under a quantum channel. Consider a quantum

channel ® acting on two density matrices, p, 0. Then,
S(pllo) = S(@(p)[|®(a)). (2.28)

This implies that the density matrices become less distinguishable after the dynamics mod-
eled by the quantum channel.

It is a quantum generalization of the second law in thermodynamics. Consider o to be
a density matrix that follows the Gibbs distribution and p to be a density matrix out of

equilibrium. The relative entropy S(p||o) measures how far is p from equilibrium. Suppose
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a quantum channel is modeled to be a thermalization process. Then, the monotonicity
provides the second law!!.

An information measure that satisfies the monotonicity under a local quantum chan-
nel is sometimes called a correlation measure. A notable correlation measure is a mutual
information I(A : B) as discussed above.

Under a local quantum channel ® on pg4, the correlation between subsystem A and B

only decreases. This can be seen from the monotonicity of relative entropy, i.e.,

I(A: B) = S(pasllpa @ pp) = S((® @ id)(pap)||®(pa) ® pp) = lo(A : B) (2.29)

where Is(A : B) is the mutual information of the density matrix (¢ ® id)(pap)-

There are two important inequalities obtained from the relative entropy,

1. Subadditivity (SA):
S(pa) + S(ps) = S(pan) (2.30)

2. Strong subadditivity (SSA):

S(pascllpa ® pe) > S(pasllpa ® pp) (2.31)

Subadditivity is obtained from the positivity of relative entropy or mutual information be-
tween pap and ps®pp, i.e., [(A: B) = S(papllpa®pp) = S(pa)+S(ps) —S(pas) > 0. The
SSA follows simply from the monotonicity under the partial trace trc on C' as a quantum
channel.

The strong subadditivity is saturated on a special class of quantum states called Markov
state. A tripartite density matrix papc is a Markov state if it saturates the strong sub-
additivity. This is a special example of quantum error correction where the error erases
subsystem C. Consider a partial trace on C, tre, as a quantum channel. Then, the SSA

holds from the monotonicity of relative entropy (2.28). When the SSA saturates, it is known

H4For the simplest example, take o = I/d to be a maximally mixed state. Then, the relative entropy is
S(p|le) =logd — S(p). Under the thermalization process, von Neumann entropy increases. Thus, S(p||o) >

S(@(p)]|(0)) = logd = S(®(p))
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that there always exists a map from B to BC that can reverse the erasure of C[36]. In
other words, one can construct the recovery map that recovers the initial state. In this case,
the recovery map recovers papc from pap and ps4 ® ppe from ps ® pp. In general, density
matrices that saturate the SSA are always correctable under the erasure error of A or C.

Such density matrices are Markov states, and they always admit an expansion of the form,
pasc = ®pipi "t @ pC© (2.32)

where p; € Ry, >ip; = 1 and B1By = B. papc is the density matrix on the Hilbert
space K apc which saturate the SSA. In this case, the Hilbert space splits into two K pc =

By

Bilan,i ® Kp,ci, and piA and piB 2¢ are supported on K4p,; and Kp,¢j, respectively.

Its physical intuition can easily be grasped by considering another information measure

called conditional mutual information(CMI) defined by

I(A:C|B):=1(A:BC)—1(A:B)
(paBcllpa ® ppe) — S(pasllpa @ pB) (2.33)
(AB) + S(BC) — S(B) + S(ABC).

S
S

It measures the correlation between subsystem A and C' conditioned on B. The saturation of
the SSA implies that I(A : C'|B) = 0. Physically, this implies that all correlations between
A and C go through B. By staring at (2.32), one can notice that there is no quantum
correlation between A and C' but the classical correlation provided by the classical mixtures
{pi}. One should note that this is a special class of density matrices in the class of separable

states > pip; ® 0.

2.3.2 Rényi measures

We have studied two main quantum information measures, von Neumann entropy, and
quantum relative entropy. However, there are various other kinds of information measures,

such as max-entropy[37], min-entropy, and collision entropy[38]. Each of them has its own
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interpretation. Do they satisfy any relations? Is there a way to interpolate among these
information measures? The answer is provided by the construction of Rényi entropy [39].
In [39], Rényi entropy was constructed for a classical probability theory. For a classical

probability distribution {p} = {p(z;)}!~,, and a parameter 6 € (0,1) U (1, c0),

Ho({p}) = 9 log, (Zp ; ) (2.34)

This can be generalized to the quantum case. For a density matrix p, and a parameter

6 e (0,1)U(1,00),

So(p) = Intr(p?). (2.35)

1—0
In the limit & — 1, the classical Rényi entropy reduces to Shannon entropy, and the quantum
Rényi entropy reduces to von Neuamnn entropy. The beauty of quantum Rényi entropy is
once we know tr(p?) for any 6, we get the whole spectrum of p.

Again, in our work, the relative entropy is the central information measure. There are
two one-parameter generalized measures of quantum relative entropy. One is called the Petz
divergencel40], and the other is called the sandwiched Rényi divergence[41]. For density

matrices, p, and o, and a parameter 6 € (0,1) U (1, c0),

010)

Petz divergence : Dy(pl|lo) = - 9 log tr(p

(2.36)

Sandwiched Rényi divergence : Sy(pl|lo) = 0 log tr ((01279 po 1299)0>.

The Petz divergence satisfies the monotonicity for 6 € (0,1) U (1,2) while the sandwiched
Rényi divergence satisfies it for 6 € (1/2,1) U (1, 00), fig.2.3a .
0-r-Rényi divergence was proposed to interpolate the above two one-parameter diver-

gences[42],

-1 B Conr
Sor(pllo) = = elogtr[(alwepfalwe) } (2.37)
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Figure 2.3. (a) Monotonicity of Rényi divergences holds inside the colored regions
of the (0, r) parameter space. The red line represents the Petz divergence. The green
line represents the sandwiched Rényi divergence. The black line represents the so-
called reverse sandwiched Rényi divergence[42]. The pink dot is where quantum
relative entropy is placed at. (b) It shows the relations among (6, r)-Rény divergence,
sandwiched Rényi divergence, Petz Rényi divergence, and quantum relative entropy.

When 6 = r, it reduces to sandwiched Rényi entropy. When r» = 1, it reduces to Petz
divergence, fig.2.3a. When, r = 1 — 6, one gets reverse Sandwiched Rényi divergence defined
by

So(pllo) =

. 0 N\ 1-6
o log tr (p2(1—9> 0,02(1—9>> . (2.38)

It has the following symmetry relation;
(60 = D)Ss(pllo) = (=0)Sa,(pllo). (2.39)

In chapter 6, we further generalized it to multiparameter multistate Rényi relative entropy.
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3. COMPLETELY POSITIVE MAPS AND THEIR DUALS IN
VON NEUMANN ALGEBRAS

Our discussion on the information theory in the previous chapter was based on the Schrodinger
picture where classical probability distributions and density matrices are dynamical. In this
thesis, instead, we work in the Heisenberg picture where operators are dynamical, and the
probability distributions and density matrices are stationary. We model the dynamics of
observables in the Heisenberg picture by linear maps on C*-algebras and von Neumann al-
gebras. Thus, the main purpose of this chapter is to provide a brief review of these linear
maps and their “dual” linear maps which will be defined later. We first answer the following
questions: i) what are those operators? ii) do they form an algebra? iii) if so, what are the
types and properties of the algebra?

The outcome of a measurement is an event with a particular probability associated with
it. In other words, we measure expectation values and the fluctuations of observables. We
model observables by Hermitian, or self-adjoint operators a on a Hilbert space K'. Consider

the spectral decomposition of a Hermitian operator a on I, i.e.,

a= ZAi i) i (3.1)

where i) € K and A; € R are eigenvalues of a. The expectation value of the projection |i) i

in a state |n)

(nl () D) = [ (i) [ =2 py (3:2)

gives the probability of the physical state to be [i) (i|*>. Then, the expectation value of a is
given by

(nlaln) = Zpi/\i- (3.3)

11Self-adjoint is defined for both bounded and unbounded operators. Hermitian operators are bounded
self-adjoint operators.
21This is sometimes called Born rule.
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One can construct a x-algebra A including a set of the Hermitian operators to algebraically
model physics®. However, in the infinite-dimensional case, the *-algebra is not enough for
the purpose. For any sequence {a,} in the %-algebra, we should include in the algebra
an operator a that satisfies the limit with respect to the so-called weak operator topology
(WOT),

dim (n1fan|nz) = (mlalne) (3.4)

for V|m1), |n2) € K. Intuitively, it implies that every matrix element of a,, should converge
to that of a in large n. If the closure* of the *-subalgebra A of B(K) contains an identity

operator I, A is called a von Neumann algebra.

3.1 von Neumann algebras

In this section, we will provide the definition of C*-algebras and vN algebras. von Neu-

mann (vN) algebras are a special class of C*-algebras.
Definition 3.1.1 (C*-algebra). A C*-algebra on K is a x-subalgebra A of B(K) such that

1. it is closed under morm topology, i.e., for any sequence of a, € A, there exists a limit
a€ A,
lim [la, —all = 0; (3.5)

2. C*-property: fora € A
etz = [l«*][|l«] = fl=]? (3.6)

If C*-algebra contains an identity I, it is called a unital C*-algebra. In this thesis, we

always assume C*-algebra to be unital.

Definition 3.1.2 (von Neumann algebras(vN algebras)). A von Neumann algebra on K is

a x-subalgebra A of B(KC) such that

31Since mathematicians denote the dagger action by *, it is called *-algebra. As a physicist, should we call
it t-algebra?

44Including all the limits with respect to convergence is called closure. One can choose how operators
converge. As we see below, operators in C*-algebras converge in so-called the norm topology.
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1. it is closed under weak operator topology, i.e., for any sequence of a,, € A, there exists a
limit a € A,

dim (m1[an|nz) = (mlaln) (3.7)
for ¥ |m),In2) € K.
2.1eA

There is a powerful theorem that characterizes *-algebras of B(K) that are von Neumann
algebras. It is called the double commutant theorem [43]. For a x-algebra, the commutant A

is the set of all operators in B(K) that commute with all the operators in A, i.e.,

A ={d € B(K)|[a,d'] =0,Va € A}. (3.8)

The double commutant A” is the commutant of A’. In general, A C A”. We do not state

the theorem here. Instead, we adopt it as the definition of vN algebras.

Definition 3.1.3 (von Neumann algebras(vN algebras)). A x-subalgebra A of B(K) is a vN

algebra if
A=A". (3.9)

The center Z(A) of a vN algebra is defined by

Z(A) = ANA. (3.10)

If the center of vN algebra A contains only a scalar multiple of an identity operator, i.e.,

Z(A) = {CI}, A is called a factor.

3.2 Positive maps, n-positive maps, and completely positive maps

Before we go into the details of representations of vN algebras and Tomita-Takesaki
theory, we discuss positive linear maps, n-positive maps, and completely positive maps. In

addition, we study the representations of completely positive linear maps.
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3.2.1 Definitions and properties

Consider a d x d matrix algebra A on a Hilbert space K. We study linear maps that map
from an algebra A to i) complex numbers C, ii) a vector space, and iii) another algebra B or
itself A. Especially, for iii), we sometimes call such a linear map as a superoperator. A trace
is an example of a linear map from an operator to a complex number, tr: a € A — o € C.
The linear maps from an algebra A to a vector space K can represent operators as vectors,
a — |a). The linear maps from one algebra to another algebra or to itself make the story
“dynamical”. For example, complex conjugation on the operators a — a*® for a € A is a
linear map. The dagger operation is also a linear map a — af. For a unitary U, a unitary
transformation UfaU is also a very basic linear map. Among various kinds of linear maps,
we study positive linear maps, n-positive maps, and completely positive maps.

The positivity of a linear map is characterized by a positive operator in an algebra because

positive linear maps map a positive operator to another one or itself.

Definition 3.2.1 (Positive operators). An operator a on a Hilbert space K is positive® if

(T|a|T) > 0 (3.11)

for all V) € K.

An example of a positive operator is a density matrix p. When an operator is positive,
we denote it by a > 0. Or, we will write it by a,, and a set of all positive operators of A
by A.. In operator algebras, a linear map from an algebra to complex numbers C is often
called a linear functional. With the notion of positive operators, positive linear functionals

are defined by as follows.

Definition 3.2.2 (Positive linear functional). Let A be a C*-algebra’. A linear functional

w: A — C is said to be positive linear functional if w(ay) >0 foray, € A,.

51We denote the complex conjugate on operators as a* for a € A, and that on complex numbers ¢ € C as a
bar €.

61«Positive” in this thesis means the semi-definite positive.

"tor a vN algebra
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For a self-adjoint operator a = a', w(a) is a real number. In addition, it preserves the t

action, w(a') = w(a). If a positive functional satisfies the normalization condition, i.e.,

|lwl|= sup |w(a)| =1, (3.12)
a€A |al|<1
we call it a state which is used to evaluate an expectation value w(a) of an operator a € A.
We will return to the state in section 3.3.2. For the simplest example, consider an algebra
of d x d complex matrices M;(C). We can easily see that the normalized trace, tr((-)I/d),
is a state on the algebra M;(C). The positivity of the trace can be directly checked. For
a = >3 oy |i) (j| where [i) (j| are operator basis in M;(C) and oy € C,

tr((aa"l/d) = Z ;| > 0. (3.13)

Thus, the trace, tr(I/d(-)), is a state. In a qudit, the normalized trace is understood as
a maximally mixed state. As one can easily check, tr(p(-)) for a density matrix p is also
a state. The notion of a state as a positive functional is the key ingredient to study the
representations of vN algebras and C*-algebras.

As a generalization of positive linear functionals, we define a positive linear map from

one algebra to another one.

Definition 3.2.3 (Positive linear map). Let A and B be C*-algebras®. A linear map & :
A — B is said to be positive if m(ay) > 0 forVa, € Ay.

Let us discuss three important examples of positive linear operators, i)*-homomorphisms,
ii)conjugating operators, iii)transpose. Let A and B are C*-algebras®.

x-homomorphisms

A x-homomorphism © : A — B is a structure-preserving map. It is used to describe
representations of C*-algebras and vN algebras in section 3.3, and defined in subsection

3.3.1. It is a positive map because

81or vN algebras
9tor vN algebras
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n(aa’) = n(a)n(a') = n(a)n(a)’ > 0. (3.14)

A x-homomorphism and its variants, such as *-isomorphism, and x-automorphism, will fre-
quently appear in this thesis. For example, for a representation of an algebra, x-isomorphism
represents every single operator. The central theorem3.5.1 of Tomita-Takesaki theory claims
that, given a von Neumann algebra with a choice of a state, there always exists a canonical
x-automorphism group called the modular automorphism group*®.

Conjugations

The second example is a conjugation ©(b) = a'ba, a,b € A. This is also a positive linear
map because

n(b'b) = a'b'ba = (ba)'ba > 0. (3.15)

Transpose

The last example is the transpose, i.e., T(a) = a’.

n(a'a) = (a'a)” = o’ (a")" =’ (™) > 0. (3.16)

Transpose as a positive map in quantum information theory provides numerous tools to
study entanglement theory, such as entanglement witness '*.

It is important to see that a direct sum of positive maps is again another positive map.
Let A; and B; be C* algebras'?, and m; : A; — B; for (i = 1,2) be positive maps. The direct

sum of the positive maps defined by
(TCl ©® th)(al D (12) = nl(al) D TCQ((IQ) (317)
is a positive map because the direct sum of positive operators is positive, i.e.,

(T & M) (a1 @ a2)t (a1 @ az)) = i (alay) ® mo(abas) >0 (3.18)

10+see section 3.5 for the details
H4Unfortunately, we do not discuss entanglement witness in this thesis. For interested readers, see [44].
290r vN algebras
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Now, is the tensor product of positive maps positive again? The answer is no. For example,
consider a tensor product T; ® T, of an identity map, ©; = id, and a transpose, Ty(+) = (-)7,

on the following positive matrix,

10 0 1
o 0 0 0 1 0 1 0 0 1 0 1
= ® + ®
o 0 0 0 0 0 0 0 0 0 0 0
(3.19)
10 0 1
0 0 0 0 0 0 0 0
+ ® + ®
1 0 1 0 0 1 0 1
Then,
1 0 0 1 10 0 O
o 0 0 0 0O 0 1 0
(T ® Tp) = (3.20)
o 0 0 0 0o 1 0 0
1 0 0 1 o 0 0 1

The resultant matrix is not positive anymore. Hence, the tensor product of positive maps is
not necessarily positive. There is a special class of positive maps called completely positive
maps where the tensor-product of two completely positive maps is again completely positive.
This is an essential mathematical object to describe the dynamical evolution in physics.

To define a completely positive map, we provide the notion of amplification. Given a
C*-algebra 13, an amplification of the algebra by M,(C) is the set of n x n matrix M, (A)

whose entries are the operators in the algebra A, i.e.,

11 s A1n

an1 e Qpp

The idea of amplification corresponds to the extension of a physical system. Suppose one

has an algebra of a single qubit system, which is just a collection of 2 x 2 complex matrices,

B1or a vN algebra
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M,(C). One can extend the algebra to the 14+ k-qubit system by tensor-producing the algebra
of another k-qubit system, Moyr(C) ® M(C). The notion of complete positivity guarantees
that the local action of a linear map ® on the operators of an extended system is positive,

i.e., suppose ¢ : My(C) — M5(C) be a completely positive

My (C) @ My(C) — Ipp @ ®(Mor(C) @ My(C)) >0 (3.22)

for all k. Now, we define the completely positive maps.

Definition 3.2.4 (n-positive map, completely positive map). Let A and B be C*-algebras*,
and ® : A — B a linear map. Consider the matriz M, (A) and M, (B), the amplification of
A and B, and )y : M, (A) = M,(B) be a linear map which acts on each matriz elements
a; € A(A,j=1,...,n) of M,(A), i.e.,

ail te A1n ‘I)(an) ce (I)(aln)
Dy | - = : g : . (3.23)
an1 T Ann (I)(anl) e (b(ann)

A linear map ® is a n-positive map if @, is a positive map on M,(A). It is a completely

positive map if ®,, is a n-positive map for all n.

Let us work with some examples of a completely positive map.

x~-homomorphisms

First, one can easily see that x-homomorphism is a completely positive map. Let A and

B be C*-algebras', and © : A — B is *-homomorphism. Then, w,) : M,(A) — M,(B) is

M4or vN algebras
5or vN algebras
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again a *-homomorphism because, for a positive matrix in M, (A), 7, is positive for all n

as follows;
T
aii ce Q1n a11 te Q1n
T(n)
an1 trt Apn an1 e Apn
.1.

T(a1) T T(ain) n(a)
T(an1) oo T(ann) T(an1)

Thus, *-homomorphisms are completely positive maps.

Conjugations

Next, we see that the conjugation,

®(a) = 2lax

(3.24)
T(an)

(@)

(3.25)

for a,z € A, is a completely positive map. The action of ®(,y on M,(.A) can be achieved by

the conjugation of the diagonal matrix whose diagonal entries are x. That is,

a1 s Q1 ZL’TCLH.T s I’T(Ilnﬂf
Pn) =
a1 gy wlapz 0 2lagr
2t 0 - 0 €T
an s A1n
0 il 0
0
an1 Ann
0 0 Tl 0
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For a positive matrix in M,,(A), there should exists a matrix [f;;] such that

T

a1 A1n Ju Jin Ju Jin
= SR (3.27)
an1 Ann fnl fnn fnl fnn
Then,
a1 Q1n
anl Apn
T 0 0 T 0
fll fln . . t fll fln
. ‘ ) 0 x " : ) ‘ ) 0 x
fnl fnn fnl fnn
0 0 x 0 0
(3.28)

Thus, the conjugation is also a completely positive map. Similarly, consider a conjugation
by a linear operator V' that maps from a Hilbert space ‘H to another Hilbert space K. Then,
the map ®(a) = ViaV from B(K) 3 a to B(H) is completely positive. We will frequently
use it for representations of completely positive maps below.

Positive linear functionals

At last, we observe that positive linear functionals are completely positive maps as well.
This is the key property in the studies of representations of C*-algebras and von Neumann

algebras. By definition, if [a;] € M, (.A) is a positive operator, then

(nllaz]n) =0 (3.29)
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for all |n) € C™. For |n) = >;m; |i) where [i) are basis of C" and n; € C, the above condition

can be equivalently written as'®

25 705 7 0 T 0
0 0
0 - 0
(3.30)
m T
a1 T Q1n T 0 0
0 - 0
— >0
0 . 0

This implies that >=; nina; > 0. Let w be a positive linear functional on A, and w,) as a
linear map from M, (A) to M, (C). Then, it is easy to see that > n'n;a; > 0 is replaced by
> mimw(ay) > 0. Since w is linear, w(32;; 7 n3a55) > 0. Therefore, a positive linear functional
w is completely positive.

We can check that the composition of CP maps gives another completely positive map.
Given a composition ®3 o ®; of two CP maps ®; : A} — Ay, 3 : Ay — B. Let &y, :
M, (A1) = My(Asz), oy : My (Az) = M, (B), and (P 0 @1)(n) : Mp( A1) — M,(B). By
definition, (®3 0 ®1)@) = Pam) © Pi(n). Since the composition of positive maps is positive,
and @y, and ®y(,) are positive on each domain for all n, the composition ®; o ®; of the CP
maps is completely positive.

The above definition of completely positive maps is cumbersome to work with because
one needs to check the positivity of ®(,) for all n. There is a powerful yet simple theorem

to characterize completely positive maps, known as Choi’s theorem.

Theorem 3.2.1 (Choi’s theorem on completely positive maps[45]). Let @ : M,,(C) — M, (C)

be a linear map, and |i) (j| be an operator basis of M, (C). The followings are equivalent:

1. Completely positive: ® is completely positive,

101Since [ayj] = [f;]T[f] for [fj] € Mu(A), ([n][fi])T[m][fij] > 0. Here, we denoted the matrix with 7; in its
first column as [r;].
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2. n-positive: O, =id, ® ® : M,,(C) @ M,(C) = M,(C) ® M,(C) is a positive map,

3. Positivity of Choi’s matriz: Choi’s matriz,
oo = Pn(le) (el) = idn @ P(3_ 1) (j ® i) Z\ (il @ @(}1) () (3.31)
ij

where |e) = Y; i) ® |i), is positive.

Proof. 1 — 2: 1 implies 2 by the definition.
2 — 3: One can check that

Z! (l® ) (3.32)

is a positive operator because |e) (e| = 1/n(|e) (e|)T |e) (e| where n = dim(C") > 0. Since ®
is n-positive, or id,, ® ® is positive, Choi’s matrix og is positive.

3 — 1: First, from (3.31),

o([3) () = (il @ Doe(]j) @ I). (3.33)
Since og is positive, there is a eigenvalue decomposition

op = Z)\k |Pr) (Pl
(3.34)
|pr) = Z%a )@ |a) e C" @ C"

where, for all k, Ay > 0 are the eigenvalues, and |¢y) are the eigenvectors of C" @ C". Define

a linear map My : C* — C" to be

=l o) (i (3.35)

so that
lop) = 1@ M |e). (3.36)
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Then, Choi’s matrix becomes

0p = Y Ml ® M) fe) (] (1® My). (3.37)
k
From (3.33),
o) (i) = SO M ) Gl O My). (3.38)

As discussed in (3.25), each term ()\,1/2M;€)T i) (j| ()\llc/ZMk) is completely positive. Moreover,
the convex compositions of completely positive maps are completely positive. Therefore, ®

is completely positive. O

Choi’s theorem says that there is a canonical choice of an operator, whose positivity
implies that the map ® is CP. The equivalence (1 <+ 3) between a completely positive map
and a positive operator is known as Choi-Jamiotkowski isomorphism.

Since |i) (j| is an operator basis of M, (C), (3.38) can be written as

d(a) = > MjaM, (3.39)
&
for a € A where we absorbed A, into My, i.e. )\,i,/sz — My, This is the Kraus representation
and is proved as a result of Choi’s theorem.

Theorem 3.2.2 (Kraus representation). Let A be a Cx-algebra on a Hilbert space K. A
map ® : A — B(K) is a completely positive and 0 < tr(®(by)) < 1 for any normalized
positive operator, i.e., tr(by) =1 for b, € A, if and only if

®(a) = > MjaM,
F (3.40)
> MM, < Ty,
k

for all a € A. For an unital CP map, i.e., ®(I) =1, >, M,IMk =1
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The Kraus representation of a CP map is non-unique. Let us introduce an auxiliary

Hilbert space Kr with an orthonormal basis {|k)}. A CP map can be written as

®(a) =S MiaM, = Vi(zr®a)V
k

(3.41)
V=>"1|k) ® M.
k
Let us define V =Y, Ug |k) ® M. We can see that
O(a) =VIIg@a)V=VIzoa)V. (3.42)
Since M, = ((k| @ I)V, for V, we get another Kraus operator
My = (k| @)V =" Uppr M. (3.43)

In physical applications, an unital CP map represents dynamics in an open quantum
system. For example, consider a CP map on a matrix algebra M, (C)g of a system. The
CP map can be expressed with Kraus operators defined by a unitary U on the algebra of a

system and a reservoir system, M, (C)gr ® M,(C)g, as follows.

d(a) = trg(UN(Ig @ a)U) = Y Uk a (k|U|l) = S~ Nf,aNy. (3.44)
kl kl
where Ny = (k|U|I)!'". Again, non-uniqueness comes from the freedom of local unitary

dynamics in the reservoir. That is, for a unitary Ug on a reservoir,

Ny = (k|(Ur @ Is)U|l) = >~ (k|(Ug ® Ls) [m) (m| U[l) = U g Nyt (3.45)

m

Physically, the non-uniqueness of the Kraus representation describes that different physical

global processes on a system and a reservoir can provide the same process on the system?!®.

174 We can put the indices k, [ together as s = {k, [} without loss of generality so that ®(a) = > NJaNj.
18+For the simple example, see chapter 8 in [46].
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Because CP maps describe open quantum dynamics, they can model errors in the quantum
error correction conditions.
The representations of CP maps and the above discussions are summarized and general-

ized into so-called Stinespring representation.

Theorem 3.2.3 (Stinespring representation). Let A be a C*-algebra'® and ® : A — B(K)
a completely positive map. Then, there exists a Hilbert space 7:[, an unital *-representation

n: A— B(H) and a linear map V : K — H such that
®(a) = Vin(a)V (3.46)

for every a € A. In particular, ||¢]| = |V|?* = |VIV| = &(I).
If @ is unital, i.e., ®(1a) = Ip), then V is an isometry and VVT = P is a projection
onto PH C #.

We provide the proof for an unital CP map. We consider representations of A ® B(K).

Choose two vectors |¢) and |1) in K. Given a CP map, we can define a new inner product?:

(a1, dlas, )y = (P(abar)y) = (¢|®(alas)|¥) . (3.48)

If there are a € A such that ®(afa) = 0 then the resulting vector |a,¢) has zero norm.
We quotient by such zero norm vectors to obtain the Hilbert space 7. When ® is faithful
H = M, ®K and the representation () = a ® Lyx. The isometry V : K — H, ® K acts as

Vi) = le, )
n(a1) |az, ¢) = |araz, ¢) (3.49)

O1or a vN algebra
20+The standard inner product is the special case when the CP map is ®(a) = tr(a). It leads to the Hilbert
space Hyq ® K:

(a1, dlaz, ¥) = tr(alaz) (d|v) = (ar]az) (S . (3.47)
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From the inner product in (3.48) it follows that VT acts as

Vila,¢) = ®(a) |9). (3.50)
As a result, the CP map factors as

®(a) = Vin(a)V . (3.51)
Note that the projection P = VVT satisfies

Pla,¢) = (2(a) ® 1)1, 9)
Pla®@I)P = ®(a) ® |e) (e] . (3.52)

Note that Stinespring representation admits freedom in the choice of 7. When {n(a)V K}
is dense in H, the Stinespring representation is called the minimal Stinespring representa-
tion. Among different minimal Stinespring representations, for instance, (m, Vi, H;) and

(T, Vo, Ha), there always exists a unitary that relates them, i.e.,
U:Hi — Hy, UV, = Vo, UmU' = 71y, (3.53)

For non minimal Stinespring representations (7, V, 1), m(a)V K are only dense in a subspace
H of H = HHH" where H= is the orthogonal subspace of #. In this thesis, we only consider
minimal Stinespring representations.

Completely positive maps @ : A — B satisfy so-called the Schwartz inequality,
(I)(a,l)@(ag) S @(alag) (354)

for a;,ay € A.
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For a given CP map @ : A — A of a C*-algebra®!, we study two subalgebras; i) invariant
algebra A;, and ii) multiplicative domain A,;. In general, A; C Ay C A, and they are
defined by

Ar = {c|®(c) = ¢, Ve € A} (3.55)
An = {m|®(mymb) = ®(my)®(my)T, ®(mlms) = &(mq)®(ms), Ymy,my € A} |

The action of ® restricted to the invariant algebra A; and the multiplicative domain A,
saturates the Schwartz inequality by its definition. The invariant subalgebra A; satisfies the

so-called bimodule property, i.e., for ¢i,co € A7, and a € A
O(crace) = c1P(a)cy. (3.56)

The multiplicative domain of ® also satisfies the bimodule property: for all m € AM and

all a € A we have:

d(m'a) = &(m")d(a)

®(a'm) = (a")®(m) . (3.57)

To prove this, we use the fact that ) = d®id, is also a CP map that satisfies the Schwartz

inequality. Consider the operator X € A® My (Ms is the algebra of complex 2 x 2 matrices)

b
X = (3.58)

for some a € A and ¢ € AM. The Schwarz inequality gives

O (mm) d(mla)

= d(XTX) > @XM (X) (3.59)
d(atm) ®(mm' + ala)

2Ltor a vN algebra
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This implies that

>0 (3.60)

( 0 ®(mta) — <p<mf)q>(a))
d(atm) — ®(a")®(m) P(a'a) — P(a’)®(a)

which is possible if and only if its off-diagonal terms are exactly zero which proves (3.57).

3.2.2 Conditional expectations

In this section, we focus on a special class of unital CP maps, conditional expectations.

Definition 3.2.5 (Conditional expectation). Let A; be x-subalgebra of another x-subalgebra
A D A on B(K). A completely positive map € : A — A is said to be a conditional

expectation when
1. Unital: E(I) =1,
2. Bimodule property: E(ciacy) = c1€(a)ey for c1,c0 € Ap and a € A.

Consider a d x d complex matrix algebra A = My(C) @ My(C) and its subalgebra A; =
M4(C) ® I. A simple example of a conditional expectation £ : A — A; is

E(x1 @xy) =21 QT tr(zy/d) (3.61)

for 1 ® x5 € A and 27 ® 1 € A; where x1, x5 € My(C). It is obviously unital. We can check

its bimodule property;

5(((1}1 & H)(ZL’Q X 113)(1’4 X H)) = T129T4 K Htr(l‘g/d) = (5(71 X H)g(l‘g (24 ZL’3)<J]4 & ]I) (362)

A conditional expectation is called w-preserving conditional expectation &, : A — A;j if

it preserves the density matrix w or a state tr(w(-)), i.e., for all a € A,

tr(wéy(a)) = tr(wa). (3.63)
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The conditional expectation in (3.61) preserves the maximally mixed density matrix I/d.
Below, we discuss w-preserving conditional expectation &, in matrix algebras.

We start with a CP map ¢, : A; — A; ® As given by

tw(a) =a®w, (3.64)
where w is a positive operator with eigenvectors {|k)} and eigenvalues A\. The Stinespring

dilation of this map factorizes as a representation on K; ®/C3 and the isometry W : K1 QKs —
K:l X IC31

o(a) = Wia @ I3)W
W = Z)\k(]h ® [k)3 (Kkly)

Ty = 52 1K)y Kl (3.65)

The Kraus operators are Vi, = A\, (I; ® (k|,). The dual map ¢, : A} ® Ay — A; is

(a1 @ ag) = Z Vie(a; ® ag)VkT = ay tr(way), (3.66)
k

with the Stinespring dilation

L:’;(al (24 CLQ) == WT(al X a9 (24 Hg)W

W =3 M(ly ® |kk)ys) (3.67)

The map ¢, is unital when w = I,. In this case, it is an embedding of A; in A; ® As:

t1(araz) = v1(ay)e(as) . (3.68)
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The dual ¢} is a quantum channel (trace-preserving CP map) A4; ® Ay — A; that is partial

trace over As:

tr(p1z t1(a)) = tr(ei(pr2)a)
1(p12) = (I @ (elyg)pr2(lh @ [e)ys) = p1 (3.69)

The map ¢, is a quantum channel (CP and trace-preserving) when w is a density matrix:
tr(w) = 1. This channel prepares a density matrix w on Ky. The composition of two CP
maps is also a CP map. For instance, the composite map ¢, o ¢,(a;) = ay tr(w) multiplies
operators by a positive constant, whereas ¢, 0 tf (a1 ® as) = (a; ® w) tr(way). An important

composite map for us is

ngblob{):IAl@Ag—)Al@Hg

Eu(ar ® az) = (a1 ® Iy) tr(was) . (3.70)

It has the property that when w is a density matrix it leaves the subalgebra A; ® I invariant

Sw(al (%9 ]IQ) =a; ® ]IQ . (371)

It is the simplest example of a w-preserving conditional expectation [3].
The conditional expectations in (3.70) are labeled by density matrices w on As. In fact,
these are the only conditional expectations from A; ® Ay to A; ®I,. To see this, we use the

bimodule property:

8(&1 ® Gg) = (Cll X ]I)g(]l &® ag) = g((]I &® ag)(al (%9 H)) = S(H &® ag)(al X ]I) . (372)

Therefore, £(I ® az) commutes with all a; ® I and has to take the form

E(a1 ®az) = (a1 1) e(az), (3.73)
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where €(as) is an unital CP map from A — C which is in one-to-one correspondence with

density matrices on Ajy:?2
Eu(ar ® as) = (a1 ® 1) tr(was) . (3.74)

The conditional expectation &, preserves all states of the form ¢ ® w. Moreover, given
a product state 1) ® w the conditional expectation &, that preserves it is unique. However,
for a generic wyy there does not exist a conditional expectation that preserves it.

To gain more intuition about conditional expectations £ : A — A; in finite-dimensional
matrix algebras consider their Kraus representation &(a) = ¥, V,'aV,. The Hilbert space K
decomposes as K = @&,K{ ® K such that

=@, A1 Ve e A;

V,=alioVl V. (3.75)

A conditional expectation £ projects every operator in A to its invariant subalgebra Aj;.
Denote the projection to the subspace K{ ® K4 by P?. Since P? € A® from the bi-module

property (3.2.5) we have [47]

E(a)=E& (Z Pq/an) = ZPQE(a)Pq = ZSq(a)

£(a) = & (P'aPY) (3.76)

where we have used P?cP? = §,,c? for all ¢ € A;. As a result, every conditional expectation
& : A — A; decomposes as a sum of conditional expectations £7 : B(K{®K9) — B(K{)® 1.
However, we already showed that the conditional expectations £9 are labelled by density

matrices wi:

£4(af ® a3) = try (If ® wi)(af ® a3)) . (3.77)

221¢(ag) is a continuous linear functional on Ay which by Riesz representation theorem can be associated
with a unique vector |e) € Ky such that €(az) = (€e|ag).
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As a result, the conditional expectations from A — A; are in one-to-one correspondence

with unnormalized states w = @,I{ ® wq on the commutant (A;)":
Eu(a) = tra(wa) @ Ih = @, try (If @ W) PlaP?) @ I3 . (3.78)
This conditional expectation preserves every state of the form ¢ = @,p, ] ® ws:
tr(éu(a)) =Y tr(¥EL(a)) = D p,tr (V] @ wi)a) = tr(va) . (3.79)
q q

If a state does not have the form we postulated for ¢ there exists no conditional expectation

that preserves it. The restriction of the state v to the subalgebra A; is

Yo = Bgp i ® 13 . (3.80)

The discussion above was restricted to finite-dimensional matrix algebras. In theorem 4.4.3,
we show that the necessary and sufficient condition for the existence of a ¢-preserving con-

ditional expectation is
PR = gy Peyg 2 (3.81)
This condition holds trivially for w and wy in the example above.

3.3 States and representations of von Neumann algebras

In this section, we discuss how to represent a von Neumann algebra on a Hilbert space.
For a representation of a von Neumann algebra A, we input a pair (A, w) of a von Neumann
algebra A and a state w (3.12), and obtain three objects; i) a linear map m,, : A — 7w, (A), ii)
a representation space H,, and iii) “vacuum” state |{1,,). For any x-algebra, GNS construc-
tion is a canonical way to construct the representation of A. Before we discuss the GNS

construction, let us briefly study the linear map 7., and the representation space H,,2*.

234Gince the discussion is generally true for any choice of states, we omit the subscript of the linear map and
the representation space in the next section. It will revive when we study the GNS construction.
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3.3.1 Basics of representations

To represent C*-algebras and vN algebras A, we want to at least preserve its algebraic
structure in w(.A). Hence, the linear map m should satisfy the following properties. For a

linear map @ : a € A m(a) € n(A),

1. TC(Oélal + Oégag) = O[ln((ll) + OéQTC(CLQ)

where ai,as € A and a1, a9 € C. Such a map is a *-homomorphism in which we found a
completely positive map in (3.2).

In addition to the above, we introduce the kernel

kerm := {a|n(a) =0, a € A}. (3.82)

If x-homomorphism 7 has a non-trivial kernel, all the operators in the kernel of © are elim-
inated. We want the representation to be one-to-one. This holds if and only if kerm = {0}.
In such a case, © is known as a faithful representation.

Cyclic representation is another one that is defined by the linear map =, the Hilbert space
H, and, in addition, a cyclic vector |Q2). A vector |§2) is cyclic for m(.A) if {n(A) |Q2)} is dense
in #**. Roughly speaking, it means that one can find a vector from the set {n(.A) |Q)} that

can arbitrarily well approximate any vector in the Hilbert space H %°.

Definition 3.3.1 (Cyclic representation). A cyclic representation of a C*-algebra®® is defined
by the triple (wm, H, |2)) where (H, =) is a representation of A and |Q2) is a vector in H which
is cyclic for m(A).

A {n(A)|Q)} is dense in H if the closure of {n(A)|Q)} with respect to the L?>-norm of H is equivalent to H.
254In the context of quantum field theory, the cyclic vector provides a crucial property in the application to
local QFT known as Reeh-Schlieder theorem.

261or a vN algebra

29



3.3.2 Gelfand-Naimark-Segal(GNS) construction

We first give the definition of a state.

Definition 3.3.2 (State). A statew on a C* algebra® A is an unital positive linear functional

on A, i.e.,

1. Linear: for aj,as € A, and oy, a9 € C,

w(aia; + agas) = cqw(ay) + asw(as) (3.83)
2. positivity: for a € A,
w(a'a) >0 (3.84)
3. mormalization:
|w[[= sup |w(a)] =1 (3.85)
a€A,|la|<1

or, equivalently, for I € A,
w(I) = 1. (3.86)

Theorem 3.3.1 (GNS representation). For any state w on a C*-algebra®® A, there exists
a Hilbert space M, a representation m, of A on H,, and a unit vector state |Q,), i.e.,

(Q,]Q0) = 1, that satisfy the following conditions;

1. for any a € A,
w(a) = (|, (a),) ; (3.87)

2. |,) is a cyclic vector for m,(a) € B(Hy), i.e.,
T, (A) Q) = {1, (a) Q)| a € A} (3.88)

is dense in a Hilbert space H,,.

2Ttor a vN algebra
281or a vN algebra
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Any triple (Mo, T, |Q)) is unique up to unitary. That is, consider another triple (Hy,, T, |Q))

that satisfies the above two conditions. Then, there exists a unitary U such that, for a € A,

Un,,(a) = T, (a)U, U|Q,) = Q). (3.89)

We will not give the full proof of theorem 3.3.1 because the GNS representation is the
special case of minimal Stinspring representation (3.46). Recall that the state is a CP map.
Hence, by applying theorem 3.2.3, for a € A and w : A — C, there exists V : C — H,,* and
n, : A — B(H,) such that

wla) = Vin,(a)V = (Q |1, (a)) (3.90)

where V' = |€,,). Cyclicity of the vector |€,) comes from the fact that the GNS representa-
tion is the minimal Stinespring representation. That is, {n,(A)V} = {n,(A) |Q,)} is dense
in H,,.

If the kernel of the state is trivial, it is called a faithful state.

Definition 3.3.3 (faithful state). A state w on a C*-algebra or vN algebra A is faithful if

w(ay) > 0 for all nonzero a, € A,.

In GNS representation, w is faithful if and only if the vector [€),) is separating for A.
Thus, if we construct the GNS representation with a faithful state, the GNS vacuum is cyclic
and separating.

In vN algebras, there is a special class of states called normal states.

Theorem 3.3.2 (normal state). Let w be a state on a von Neumann algebra acting on a

Hilbert space H. The following conditions are equivalent:
1. w is normal;

2. w s o-weakly continuous,

299Below theorem 3.2.3 in section 3.2, the domain of V' was denoted as K. In GNS representation, obviously,
K=C.
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3. there exists a density matriz w, i.e., a positive trace-class operator w on H with tr(p,) = 1,
such that
w(a) = tr(pya) (3.91)

As we will see in section 3.5, the GNS representation of a von Neumann algebra with
respect to a faithful normal state provides us deep and beautiful theory known as Tomita-

Takesaki theory or modular theory.

3.3.3 Examples: finite dimensional von Neumann algebras

In this section, we observe the GNS representation of a d x d matrix algebra over complex
number C on a Hilbert space K. We denote A as the s-subalgebra of d x d complex matrix
algebra B(K) on Hilbert space K. Physically, A corresponds to the algebra of a d-level
quantum system.

Maximally mixed state

For the representation of A, consider a maximally mixed state tr(I/d(-)). Then, the

operators a € A are represented by the vectors |a) € H,
ala) =ny(a)le) =ax1|e) (3.92)

where |e) = Y; % |ii). Similarly, operators in the commutant o’ € A" are represented by the

vectors |a'),. € Hi,

arld) =m(d)]e) =T®d |e). (3.93)
One can easily check that

1 1 1 -
gtr(a) =~ (ela @ I|e) = 7 Z (ilali) . (3.94)

1

Moreover, it is simple to see that Hy, is equipped with the inner product

(alb), = clz (e|ab @ Tje) = ;tr(aTb). (3.95)
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Density matrix

For the representation of A, consider a state tr(w(-)) with a density matrix w*°. Then,

the operators a € A are represented by the vectors |a)w € H,
a v |a) = m,(a) Q) = a @I |w!/?) (3.96)

where |Q,) = |w'/?) = w2 @ I|e)*". Similarly, operators in the commutant o’ € A’ are

represented by the vectors |a) € Hy,
ars ld) =m,(d) Q) =1®d |w/?). (3.97)
One can easily check that
tr(wa) = (W"%a @ I|w'/?). (3.98)
Then, it is simple to see that H,, is equipped with the inner product
(alb), = (W'*|a’d @ T|w!/?) = tr(wa'd). (3.99)

3.4 Representing superoperators as the operators on a GNS Hilbert space

Consisder von Neumann algebras A and B with faithful normal states w, on A and wg
on B. Let Hqa = H,, and Hp = H,, are the GNS Hilbert spaces. Suppose ® : A — B is a
CP map. In this section, we construct the GNS operator F : Ho — Hp by the Stinespring
representation of ®. This provides the map from a superoperator to an operator on the GNS
Hilbert space, i.e.,

d: A= B F:Ha— Hp. (3.100)

This is similar to (3.92) and (3.96) where operators are represented as vectors in the GNS

Hilbert space.

304From now to below, we represent both a state w and its corresponding density matrix by w.
311, can be considered as a purified state of the density matrix w. Suppose the density matrix is written

in its eigenbasis w = > A; |i) (i|. With the Schmidt basis, we have |Q,) = >, A2 |ii)

i
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By the GNS representations, one has

wa(a) = (Qalra(a)a)
wp(b) = (Qp[np(0)2s)

(3.101)

forae A, be B, |Q4) =|Q,) € Ha and |Qp) = |Q,,) € Hp are the cyclic and separating
vectors, and T4 and T are the representations of each algebra. We use the Stinespring

representation to represent g o @ : A — np(B) by
ng o ®(a) = Fra(a)F! (3.102)

where F': H 4 — Hp. In the following discussion, we use the following notation interchange-
ably;
la) 4 = a|Qa) =T4(a)|Qa) . (3.103)

First, we show that F' is a contraction, i.e., |[F'|| < 1 with respect to the operator norm. In

this notation, we have FTF < T4 from the Schwartz inequality in (3.54). Then,

|®(a) [2) || = [ FaF |[Qp) ||
| (FaF'Qp|FaF'Qp) |?

{(Qp|Fa' FTFaFTQp) |2 (3.104)

S | <QB’F6LTCLFTQB> ‘2

= |laF"|Qp) ||

for all a € A. Thus, by the definition of the operator norm??,

|F|| = supl| FaF" [Qp) || < supllaF" |Qp) || < 1. (3.105)
acA acA

329The operator norm makes sense only when {aFT|Qg)} is dense in H 4. Here, {aFT|Qp)} is always dense
in H 4 since we are assuming the minimal Stinespring representation.
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When a CP map is unital, i.e., ®(I4) = I, then, FFT and FTF act trivially on the cyclic

and separating states [Q24) and |Qg), i.e.,

FFV|Q,) = |Qu), FIF|Qg) = |Q5).

When a CP map satisfies

wa=wpo®,

we define its GNS operator by
®(a) Q) = E,aF) |Qg).
We can simply show that

®(a) Q) = Foa|Qa),
Fj |QB> = |QA> .

From wq = wp o ® (3.107),
(FIQplaF]Qp) = (Qalala)

for Va € A. This implies that
F}|Qp) = Q)

resulting in

®(a) |Qp) = F,aF}|Qp) = F,a|Q4).

If a CP map ®,, is unital in addition to the condition (3.107),

F,|Q4) =|Q5).
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Table 3.1. : Linear maps of the operator algebra (superoperators) correspond to operators
in the GNS Hilbert space. Above is a list of some important superoperators and their
corresponding operators. In matrix algebras, this correspondence is one-to-one.

Superoperator GNS Operator
(anti-)linear T (anti-)linear T
unital ¢ (FFT—1)|Q,) =0
w-preserving P F,: (FT—-1)]Q,)=0
unital w-preserving ® F,1Q,) =1Q,) and FT[Q,) = [Q,)
. conditional expectation £ projection E? = F
linear CP isometric embedding ¢ isometry W
(faithful representation) Wiw =1
p-dual @/ co-isometry FT
Petz dual ®F JpF1 T,
linear non-CP | relative modular operator Dy, Ayl =9 ® wt
anti-linear Tomita map S, Tomita operator .S,
non-CP modular conjugation 7, modular conjugation J,

Consider the special case where the vN algebras A C B are represented on the same
GNS Hilbert space H,, with respect to a faithful normal state w. We say that &, is a

state-preserving or w-preserving if

wod =w. (3.114)

Similar to the above, we have

®(a) |0) = Foa|) (3.115)
Fl ’Qw> = |Qw> : |

3.4.1 Examples

In this section, we study the GNS operators of an isometric embedding and a conditional
expectation. In table 3.1, we list the various GNS operators including the ones appearing in
the later sections. We will refer to the table in the later sections whenever needed.

Isometric embedding
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An isometric embedding of vN algebras from A to B is a one-to-one linear map, but not

necessarily onto. Consider its GNS operator W defined by
(a)|Qp) = Wrala)WT|Qp). (3.116)

where [Qp) € Hp is a cyclic and separating vector in Hp associated to a state wg. We
assume Ty : A — B(K4) is a x-isomorphism from A to B(K4) without loss of generality.
Then, W : K4 — Hp is an isometry, i.e., WIW =1, € B(K4) and WWT is a projection on
Hp.

w-preserving Conditional expectations

Consider a w-preserving conditional expectation &, : B — A from vN algebra B to vN

algebra A such that wo &, = w. Let E, be its GNS operator on H,, defined by
Eu(D) 1) = ELb[SL,) (3.117)

where we have used E] [Q,,) = |[€,). From the bimodule property in definition 3.2.5, for any
ay,az € A7
(1| Euaz),, = (Qulaiu(az) Q) = (Qul€(alu(as))0) (3.118)
= <Qw‘5w(abgw(a2>ﬂw> = <a1’Elea2>w'
Hence, E,, = El E,. Together with E? = E,,, we get E,, = E]. Therefore, E, is a projection
on H,.

3.5 Tomita-Takesaki theory/Modular theory

Tomita-Takesaki theory or modular theory was initiated by Tomita in unpublished notes
in 1967. It was reformulated by Takesaki in [48] in 1970. The main theme of the modular
theory is the algebraic relation between a vN algebra and its commutant. The relation is

manifested by the antilinear S known as the Tomita operator. It was proved that S is an
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unbounded, but closable, and invertible operator®®. This led to the polar decomposition
S = JA'Y? where the anitunitary .J is called the modular conjugation and the positive
definite operator A is called the modular operator. A similar mathematical structure was
found by Haag, Hugenholtz, and Winnik in the algebraic formulation of a thermal equilibrium
system[49]. Their work formulated Kubo-Martin-Schwinger condition using a vN algebra.
This work showed the deep and close relation between vIN algebras and quantum statistical
theory.

In an algebraic formulation of quantum field theory, the relation between a vN algebra
associated with a local region of spacetime and its commutant was found to be geometric
for a certain setup, which is known as Haag’s duality. 1t is proven for a free scalar field on
causal diamonds by Araki in [50], a free field in Rindler wedges by Bisognano and Wichmann
[37], [51], and conformal field theory by Brunetti, Guido, and Longo in [52]. In the work by
Bisognano and Wichmann, they proved the action of the unitary flow defined by the modular
operator called modular flow A*(-)A™ for Vs € R corresponds to the boost transformation
of the Rindler wedges in flat spacetime. Moreover, the geometric action of the modular
conjugation was found to be charge-reflection-time (CRT) conjugation. Recently, the devel-
opment of vN algebras associated with a local region of spacetime in the presence of a black
hole and a local region of de Sitter spacetime is attracting the great attention[53]-[57].

In the next sections, we provide a minimal review of modular theory** with the following

setup: For a von Neumann algebra A with a faithful normal state w, we have the GNS

representation (T, H,, |)),

Mo(a) | Q) € Mo, Va € A, (3.119)

where m, is a faithful representation on the GNS Hilbert space H,, and [€,) is a cyclic

separating state. We use the notations below interchangeably;

(@) |0) = a | = |a) (3.120)

w

339 We will describe what it means in the following section.
341For the details, see [43], [68]-[61].
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Especially, for a finite-dimensional case, we write the GNS vacuum by |Q,,) = |w!/2).

3.5.1 Tomita operator, modular conjugation, modular operator

We start with defining the anti-linear operator called the Tomita operator S, associated
with the GNS representation of a vN algebra A with respect to a faithful normal state w. It
is defined by

Soa Q) = a' Q) (3.121)

for a € A. One should note that S,, depends on the state w.

The Tomita operator is an unbounded operator®® . Fortunately, it is a closable operator®
From (3.121),
S?2 =1 (3.122)

w

where I € A. Moreover,

S |2) =) (3.123)

since I is self-adjoint.
One can define the Tomita operator S/, of the commutant A’ in the same way. One can
show that
S, =8I (3.124)

where S is the adjoint of S,*". For a € A and o' € A"*,

(S'd'|a), = (a't|a), = (al|d), = (S,ald’), = (a|SLa’), = (Sid'|a),, . (3.126)

35¢+Unbounded operators are not bounded operators. A momentum operator in quantum mechanics is an
example of an unbounded operator.

364+An operator is closable if, for any sequence {|a,) } in a domain of S,,, D(S,) = {a|L),a € A}, there
exists a vector |a),, € D(S,) and S, |a),, in the sense of norm convergence. Intuitively, there is a vector on
which the action of an unbounded operator is well-defined.

37181 is well-defined. This is because D(S,,) is dense in H,,. It is so since |Q) is a cyclic state for A.
381 We used the definition of the adjoint of an antilinear operator in the fourth inequality, i.e., for vectors
[t ,|#), and an antilinear linear operator T,

(Y|Te) = (T1|¢). (3.125)
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It implies S/, = S] because |(2) is cyclic and separating.

From (3.122), the Tomita operator is invertible. It has a unique polar decomposition
S, = J,A? (3.127)

where J,, is antiunitary, and A, is self-adjoint and positive definite. They are called modular
conjugation and modular operator, respectively. Here, we summarize the properties of three

central operators in modular theory,

1. Tomita operator: S, = J, A2, S =S = J,AZY? = Al/2 ],
2. modular operator: A, = SIS, Al =Al=5,51

3. modular conjugation: J, = J. = JI J:=1 A;'= J,A.J,

In addition,

A |0) = [Q0). (3.128)

For any function f,

F(A) [Q) = f(1) |€0) - (3.129)

We will frequently see the function f(A,) = Al for Vs € R.

Now, we state the principal result of Tomita-Takesaki theory.

Theorem 3.5.1 (Tomita’s fundamental theorem). Let A be a von Neumann algebra with a
cyclic and separating vector |€,), and let A, be the associated modular operator and J, the

associated modular conjugation. It follows that
JAT, = A (3.130)

and

ASAANTES = A (3.131)

for Vs € R.
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Here, we briefly mention the superoperator corresponding to the Tomita operator, mod-
ular conjugation, and modular operator using finite-dimensional algebra. In the GNS repre-

sentation (3.96), one has

So(a®@1) |w’?) =af @T|w/?), (3.132)

The superoperator S, is a antilinear map, i.e., S,,(a) = a'. For the modular conjugation .J,,
Jo(a@D)J,=T®ad", (3.133)
the superoperator 7, is an antiunitary map, i.e.,
Jola)=a" € A (3.134)
where a” is the transpose of the operator a. For the modular operator,
Ay(a@ DA = waw™ @ k. (3.135)
Motivated by the above, the superopertor D,, of the modular operator A, is
D, (a) = waw™ . (3.136)
Similarly, (3.131) can be written as
D(a) = waw™™ (3.137)

for s € R. The action of J, and A, to the center Z(A) of the algebra A is trivial to

understand.

Proposition 3.5.1. Ifa € Z(A) = AN A, then
Di(x) = Abal* = a, Joad, = al € Z(A) (3.138)

for all s € R.
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Because A, > 0 is a positive definite operator, D, (-) = A¥(-)A* defines a unitary flow
in physics. It forms a one-parameter group called the modular automorphism group, which

is our next topic.

3.5.2 Modular automorphism group and Kubo-Martin-Schwinger (KMS) bound-
ary condition

Definition 3.5.1 (Modular automorphism group). Let A be a von Neumann algebra, w a
faithful normal state on A, (Hw, |Qw)) the pair of the corresponding GNS Hilbert space and
the cyclic and separating vector, A,, the modular operator associated with the pair (H,, |Qw)).

Then, x-automorphisms of A, i.e.

ASAAE = A, (3.139)
forms the one-parameter group s — D(-) = A¥(-)AZ. The group is called the modular
automorphism group of the pair (H,, |)).

The state w is invariant under D by definition 3.5.1, i.e.,
W(sz(a)) = <Qw|AijaA;iSQw> = <Qw|Qw> = (U(CL) (3140)

for a € A. We define the subalgebra Ap, that is invariant under the modular automorphism
group by
Ap, = {a] D¥(a) = a, Ya € A,Vs € R}. (3.141)

One can find that it matches with so-called centralizer, A,,.

Definition 3.5.2 (Centralizer of a faithful normal state). For a faithful normal state w of
a von Neumann algebra A, a centralizer A, is a subalgebra of A which is a set of operators
c € A such that

w(ac) = w(ca) (3.142)

for¥a € A. That is,
A, = {c| w(ac) = w(ca),Va € A} C A (3.143)
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We introduce the Kubo-Martin-Schwinger (KMS) condition.

Theorem 3.5.2 (KMS condition/Modular condition). Consider a von Neumann algebra
A and a state w. Let {D¥} for Vs € R be a modular automorphism group of A and w.
Then, the state w is said to satisfy the Kubo-Martin-Schwinger(KMS) condition with respect
to {Ds} if for any ay,ay € A there exists a complex function F,, .,(z) which is analytic
on the strip S = {z € C| =1 < Imz < 0} and continuous on the closure of this strip
S={z€C|—-1<Imz <0} such that

Foy0o(s) = w(@DS(az)) = (QarASas) , Fuy o, (s — 1) = w(DE (az)ar) = (Qlas AL a,Q)
(3.144)
for Vs € R. FEspecially, when s = —i,

w(ar D, (ay)) = wlagay). (3.145)

The restriction of w to the centralizer A, leads w to behave as a tracial state. The
modular operator A,, captures the non-tracial character of a faithful normal state w. A state

w Is tracial when

w(aiay) = w(azay) (3.146)

holds for all a;,as € A. For a von Neumann algebra A, suppose w is a tracial state. Then,

consider

w(agaialaz) = <a1a2|a1a2)w (3147)

where ay,as € A. One can show that
(a1a98),|a1a29,) = <a2Awa£]&J{a1>w. (3.148)
Since w is tracial, one also has

(aras]aras), = (azablalay), . (3.149)
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Because [(2) is cyclic and separating, one obtains A, = I for a tracial state w. Together with
the properties above, it implies S, = S/, = J,. Therefore, the modular operator captures
the non-tracial character of a state w.

It becomes clearer in a finite-dimensional case®®. Suppose A C B(K) is an algebra of
d x d complex matrices. A state w(-) can be written using the density matrix w*°, tr(w(-)).

From (3.96), the algebra A is represented by
arsla) =a@lc|w’?) eH, =K K (3.150)
where |w!'/?) = w2 ®1|e), and |e) = ¥, [ii). The modular operator A,, can be expressed by
A, =wew (3.151)

If the state is tracial, w = [ /d. Equivalently, the state is literally a normalized trace, i.e.,
w(-) = tr(Ix/d(-)). Then, A, x Ix ® [ = Iy. This applies to the modular automorphism
group as well. If the state is tracial, then, the modular automorphism group is trivial,
D¢ = id. In this case, the centralizer matches with the whole algebra, i.e., A, = A.

Before we move on to define the positive cones associated with vN algebras, we provide
the important statements about automorphism groups of a given von Neumann algebra, and

the uniqueness among the modular automorphism groups of a state without the proofs.

Theorem 3.5.3. Considerw is a faithful normal state of a von Neumann algebra A. Suppose
there is an one-parameter group {a;} of x-automorphisms of A. If it satisfies the KMS
condition relative to w, then it is the modular automorphism group relative to the state w.

That 1is,
{as} ={D} (3.152)

Moreover, the modular automorphism group of a state is unique.

Theorem 3.5.4. To each faithful normal state of von Neumann algebra A, there exists a

unique modular automorphism group.

394We will not provide the proof of the following finite dimensional expression. For the proof, see [58]
401w represents both a state and its corresponding density matrix.
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In short, if one has a one-parameter automorphism group on a given von Neumann
algebra, which satisfies KMS and modular condition with respect to a faithful normal state,

it is a unique modular automorphism group.

3.5.3 Positive cones associated with a von Neumann algebra

In this section, we study a particular set of vectors in Hilbert space H,. It is called
positive cones or convex cones defined as follows. For a vIN algebra A and a faithful normal

state w, let A, be a set of positive operators. A positive cone or convex cone C is a subspace

of the GNS Hilbert space H,, defined by the set of vectors*!
P ={lay), = at |W), Vay € As} (3.153)

where |€,,) € H,, is a cyclic separating vector. For the positive cone P, the dual positive
cone is defined by
PL =Aln), € Hol (atln), =0, V]ay), € P}. (3.154)

It P? =P, P, is called self-dual cone.
In the theory of vN algebras and modular theory, there is a one-parameter generalization
of the positive cones. We start with a unique self-dual positive cone called the natural positive

cone.

Definition 3.5.3 (Natural positive cone). The natural positive cone P8 associated with a
von Neumann algebra A on H, with a cyclic and separating vector |Q,) is defined as the
closure of the set

Pl = {aJ,a|) |a € A (3.155)

The elements of the natural positive cone can be written as

Pl = {AY%aat Q) la € A} (3.156)

411To be more precise, the positive cone is a closure of {a |Q,), Vay € A, }.
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It is invariant under A¥ and J,, i.e., A¥P? = P and J, P = P*. In [62], [63], one-parameter

family of positive cones is constructed; for g € [0, 1/2]
P2 = {APPa|Q), 0< B <1, aec A} (3.157)
Its dual positive cone is similarly defined by
PL2=02 — (A2012010) 0 < B <1, a € A} (3.158)

3.5.4 Relative modular operator

We studied a von Neumann algebra with a single faithful normal state and its associated
GNS representation and modular theory. If one has two faithful normal states for a von
Neumann algebra, we get two GNS representations and modular theories. In this section,
we review the relations between GNS representations and modular theories with two different
states.

Consider a von Neumann algebra 4 and two faithful normal states 1) and w. For a pair
(A, 1), one has a cyclic separating vector |(2) , and the GNS Hilbert space H,. Similarly,
for a pair (A,w), one has a cyclic separating vector |€),) and the GNS Hilbert space H,,.
For each GNS Hilbert space, one can define the Tomita operator as discussed above, i.e.,
Sy = JyA)/? and S, = J,AL2.

In [64], [65], Araki defined the relative Tomita operator and the relative modular operator.

The relative Tomita operator Sy, is defined by
Splwa Q) = a' [Qy) . (3.159)
Then, the relative modular operator Ay, is defined by

Ay = S5, S (3.160)
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In finite-dimensional case, the relative modular operator can be written using density

matrices as

Ay =9 @w™. (3.161)

Thus, its superoperator is

Dypo(-) = ¢(Jw ™. (3.162)
This defines the relative modular flow
() =P (Jw (3.163)
for Vs € R.

3.6 Duality and positivity

A simple dual linear map of a given CP map is the adjoint map with respect to the inner
product of a Hilbert space. Consider the GNS representations of von Neumann algebras A

and B with a maximally mixed state tr(I/d(-)),
|a)y, = a®Tle), |b), =b&Ile) (3.164)

forae Aand b € B. Let ® : A — B be a linear map. Then, the trace-dual map @}, of ® is

defined with respect to the trace-inner product, i.e.,
(Bl (a)),, = 1/d - r(b/B(a)) = 1/d - tr(@(0)a) = (@, ()]}, (3.165)

The trace dual is familiar to physicists as the Heisenberg-Schrodinger duality. Consider a

unitary time-evolution U on a density matrix p. Then,
(UpUT|a>tr = <p|UTaU>tr. (3.166)

Since UpUT defines the forward time-evolution of the density matrix p, its trace dual UTalU

on an operator defines the backward time-evolution. For open quantum dynamics, the
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dynamics are described by a completely positive trace-preserving map ®s., on a set of density
matrices in the Schrodinger picture. With its Kraus representation ®gu,(p) = > MppM, ,Z,
the dynamics @y in the Heisenberg picture is described by

(Dsen(p)la), = tr(d- MypMla) = tr(p Y~ MlaMy) = (p|®u(a)),, - (3.167)

A trace daul map can be a recovery map that reverses an error map*2. Consider a unitary
time-evolution UT(-)U as an error map. Obviously, U(-)UT is a recovery map that reverses

the unitary time-evolution, i.e.,
(UTa,UUagU),, = (UUTa,UUag),, = (a1]as),, - (3.168)
If the error map is an isometry, we have
(Vi V|ViayV),, = (Pa; Play),, - (3.169)

The information in the subspace orthogonal to the support of P is erased and cannot be
recovered.

In general, a dual map of a given CP map ® with respect to a non-tracial state is not
necessarily CP. In [66], Accardi and Cecchini provided a way to construct the dual CP maps
which we call them the state-dual and the Petz dual map. In the next section, we review

them.

3.6.1 State-dual, Petz dual and their positivity

Consider von Neumann algebras A and B with faithful normal states wy on A and wp
on B. Let ® : A — B be a linear map. Then, its dual linear map with respect to the inner

product of the Hilbert space H4 and Hp is

(b|@(a)),, = (®(b)la),, (3.170)

421One should note that this way of using dual is distinct from Heisenberg-Schrédinger duality because the
Heisenberg-Schrodinger duality relates the state space and algebras. ® : A — B. ®*: S(B) — S(A).
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Unfortunately, the dual operator ® is not completely positive. This is due to the non-
tracialness of a state w. To see this, first, let us start with the trace dual. The trace dual

map of ® is defined by
(b|®(a)),,, =1/d- tr(b'®(a)) = 1/d - tr(®;,(b")a) (3.171)

for b € B, a € A. One can see that the trace-dual map @7 is completely positive**. For

faithful normal non-tracial states wg on B and wy4 on A, since
(blo(a)),, = (@5(b)|a),, = tr(wa®] (b)) (3.172)

for all a € A, we get
O (b1 = wi'®7 (wpb'). (3.173)

Apparently, ®7 is not necessarily a completely positive map.
In [66], Accardi and Cecchini proved and provided the procedure to construct the dual

linear map of a completely positive map which is completely positive.

Proposition 3.6.1 (State-dual map, Proposition 3.1 in [66]).

Let A and wa, and B and wg are von Neumann algebras and states. Consider their GNS
Hilbert space Ha and Hp with the corresponding cyclic and separating vectors [Q24) and |Q2g)
where wa(a) = (Qa]aQy) for a € A and wg(b) = (QAp|bQAE) for b € B. For a completely
positive map ® : A — B such that

wpo®=w,, (3.174)

there exists a state dual map, or w-dual map, which is a unique completely positive map
o B — A, defined by
(t'|2(a)),, = (PL(D)]a),, - (3.175)

If ® is unital, i.e., (1) = L4, then @/ (I4) = Ip and P/, is faithful. Here, 14 € A and
I € B are the identity of the algebras.

B1Let ®(a) = > M, ,iaMk be the Kraus representation of ®. The trace dual map has the Kraus represen-
tation, ®.(b) = 3°, MybM,.
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In short, for a completely positive map ® : A — B, we obtain the dual CP map &/, :

B — A’ from the above theorem. Is there a way to construct a dual CP map that maps

from B to A? The answer to the question is yes. Such a question naturally arises in the

QEC picture. Let a CP map ® : A — B be an error map. A recovery map should be a map

from B — A where the range of the recovery map does not have to be the whole algebra A.

Consider a completely map &' = Jgo®oJ, : A — B’ where A’ and B’ are the commutant

of A and B, and J4 and Jp are the modular conjugations associated with w4 and wg. By

theorem 3.6.1, we obtain the dual CP map, which we call the Petz dual map, ®F : B — A
of @' defined by

12 (@), = (@E0)]a),,,. (3.176)

The left-hand side of (3.176) becomes
B (@), = (T 0 ® 0 Ta(@)),,, = (ToOF@)),, = (Ta 0¥, 0 Ts®)la),, . (3177)

Hence, from (3.176),
OF = Ty 0d o Tp. (3.178)

Therefore, we conclude that, for a given completely positive map ® : A — B, we can

construct a dual CP map ®F : B — A, see fig.3.1.

3.6.2 GNS operator of the Petz dual map

In the GNS Hilbert space, we define the GNS operators of CP map ® : A — B and the
Petz dual map ® : B — A by

®(a) |QB) = FaF' |Qg), ®F () |Q4) = FPaFFT |Qp) (3.179)

for a € A. Here, we study the properties of the GNS operator FI'. We assume ® is unital

and CP, and satisfies the condition

wyg =wpo . (3.180)
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Figure 3.1. The state-dual map of a CP map ® : A — Bis @, : B/ — A’. The
maps ® and @/, are represented by the red arrows above. The state-dual map of a
CP map @' : A" — B is ®L : B — A. The maps ® and ®. are represented by the
blue arrows above. ®% is a Petz dual map of ®. From the above figure, the Petz
dual map can be obtained from the state-dual map &/, i.e. ®L = 740 ®’ o Jp.

Thus, we have

Fl|1Qp) = |Qu), |Q5) = F,|Qa) (3.181)

From theorem 3.6.1, ®F is again unital and faithful. This implies FFFT|Q) = |Q).
From (3.176) and (3.179),

(JaFJpbJpF,Jald’), = (FSVF ), . (3.182)
for b € B and o’ € A. Since |Q24) and |Q2p) are cyclic and separating,
EPOFEPY = J4FlJgbJpF,Jy (3.183)

for b € B. ®F satisfies wy o ® = wp because
wa 0 ®F(b) = (| FYOFYIQL) = (JpFJaQa|bJpFJaQ4) = (Q5|0Q05) = ws(b)  (3.184)
for Vb € B. Since ®! is unital and satisfies the condition w4 o ®F = wp, we have

FI1Qp) = 9Q4), 1Q5) = FJTQ4). (3.185)
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Then, (3.182) reduces to
(Qp|JpFJad' Q) = (02| FETd' Q) (3.186)
for Va' € A" and Vb € B. Then,
FPV = JgE,Ja, FY = JuFlJg or JgFY' =F,J4 (3.187)
because [Q24) and |Q2p) are cyclic and separating. Moreover, for Va € A,
SpFalQ4) = Sp®(a) [Qp) = ®(a') [2p) = FSaa|Qa) . (3.188)

This implies that
SpF = FSy,. (3.189)

From (3.187) and (3.188),
AYPF = FPAY? (3.190)

One should note that we do not have JgF' = F'J4 and A}B/ZF =F A114/ ?. These are the
stronger conditions which we call Takesaki’s condition. We will study them in section 4.4.1.

Below, we summarize the properties of the GNS operator F¥' of the Petz dual map.

Corollary 3.6.0.1 (GNS operator of Petz dual map). For von Neumann algebras A, B, and

the faithful normal states wa and wg, consider an unital CP map ® satisfying
wa=wpo® (3.191)
for b € B. Let its GNS operator F': Hy — Hp is defined by, for a € A,

®(a)|Qp) = F,aF! |Qp) (3.192)
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where |Qg) is a cyclic and separating vector. It satisfies
Fl Q) = [Q4), 1Q8) = F, [Qa4)

where |Q4) is also a cyclic and separating vector.

The Petz dual map is an unital CP map satisfying
w4 O @5 = wpg.
The GNS operator FY : Hp — H 4 of the Petz dual map is defined by
O (b) |Qa) = FTaFT[Qp)

and satisfies

ENQ5) = [Q4), |Q5) = FIT|Q4).

Furthermore, the GNS operator FY : Hp — Ha satisfies
JgFMY = F,Ja, SpF, = F,S4.

As a result,

AYPF, = FPIAY?,
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4. OPERATOR ALGEBRA QUANTUM ERROR
CORRECTION (OAQEC)

The main purpose of this section is to study the QEC conditions in the language of von
Neumann algebras and modular theory. In section 4.1, we review QEC in the Schrodinger
picture. Our first step to the construction of QEC in a general quantum system (vN algebra)
is the transition from the Schrodinger picture to the Heisenberg picture. For this purpose,
in section 4.2, we discuss the relation between the Schrodinger and the Heisenberg picture
of QEC. QEC described by operator algebras is called the operator algebra quantum error
correction (OAQEC). At the end of this section, we provide the definition of OAQEC and
its exact QEC conditions. In QEC, there are two types; i) passive QEC, and ii) active QEC.
One has the passive QEC if there is no need for a recovery process even after an error occurs.
This is possible only when there is a clever way to encode a logical information so that the
information can be unaffected by the error in an encoded system. In the active QEC, one
needs to provide a recovery process to undo an error. In section 4.3 and 4.4, we study passive

and active QEC in OAQEC, respectively.

4.1 Quantum error correction in the Schréodinger picture

Definition 4.1.1 (Exact quantum error correction in Schrédinger picture).

Consider a set S(Kjog) of density matrices piog on Hilbert space Kyog of a logical system.

*

log @S a completely positive and trace-preserving (CPTP) map on

Given an error map ®
Plog € S(Kiog). Consider an isometry V : Koy — K, i.e., VV1 = Pg is a projection, as a
choice of encoding from the logical system to a physical system. This code can correct an

error map ®* on S(K) if there exists a recovery map R, such that
R} 0 @ (pc) = po (4.1)
forVpc € S(K¢) where
S(Ke) ={pclPepcPe = po,Vpe € S(Ke)} € S(K). (4.2)
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Equivalently, for ®},,(-) = *(V(-)V1) and R},,(-) = VIR}(-)V,

R?og © (I)fog(ﬂlOg) = Plog (43)

for ¥piog € S(Kiog)-

If an error map ® is correctable, K¢ is called a code subspace. If the recovery map R,
can correct an error map ¢ on all the density matrices in S(K), i.e. S(K) = S(K¢), then,
one can exercise the error correction without the need for encoding, i.e. Po = 1.

Passive QFEC has a trivial recovery map. This is possible when an encoding map embeds
logical information into a physical system so that the information is untouched. One example
is called the subsystem QEC code [67]-[69]. In chapter 5, we observe that the QEC code
constructed through the real-space renormalization group theory, in particular, continuous
multiscale entanglement renormalization ansatz (cMERA), is passive. On the contrary, active
QFEC requires the construction of a non-trivial recovery map. We will come back to the
construction of passive QEC code in section 4.3 and active QEC code in section 4.4, but in
the Heisenberg picture or OAQEC.

Now, we will provide two of the well-known error-correcting conditions below. These
statements are equivalent to the condition of the existence of a recovery map stated in the

definition 4.1.1.

Theorem 4.1.1 (Exact QEC conditions in the Schrodinger picture).

Following the notation and setup in definition 4.1.1, the error map ®* is correctable

1. [Knill-Laflamme condition] [70] if there exists Ay € C such that
Po MM, Pe = \yPe (4.4)

where My, are Kraus operators of the error map ®*, i.e. ®*(-) = Yp My(-)M, such that
S MM, =1
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2. [Saturation of monotonicity of relative entropy| [71], [72] if

S(pclloc) = S(®y(pc)l| Py (o)) (4.5)
for density matrices pc,oc € S(K¢).

4.2 Operator algebra QEC: from the Schrodinger picture to the Heisenberg
picture

The transition from the Schrodinger picture to the Heisenberg picture is done by the
trace dual as discussed in section 3.6. Consider an algebra A C B(K) of d x d complex
matrices on a Hilbert space I, and a set of density matrices py € S(A) on K. In the
Schrédinger picture, a unitary U can represent a time evolution of density matrices UpUT.

The Heisenberg picture is obtained by
tr(aUpaU') = tr(UTalUp,) (4.6)

for a € A. The trace dual ® : A — A of a quantum channel (CPTP) ®* : S(A) — S(A)is
defined by

tr(a®*(pa)) = tr(®(a)pa) (4.7)

for a € A and p € S(A). For an error map (CPTP) ®*: S(A) — S(A) and a recovery map
(CPTP) Ry = S(A) — S(A) with a choice of encoding V', the transition of QEC from the

Schrodinger picture to the Heisenberg picture is achieved by
tr(aRy, o *(pa)) = tr(P o Ry (a)pa). (4.8)

for a € A and py € S(A). Here, the trace dual error map ¢ : A — A and the trace dual
recovery map R : A — A are unital CP maps on A. They are unital because, for any CPTP
map P,

tr(p) = tr(®*(p)) = tr(®()p) (4.9)

for all p in S(K).
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In general, we define an error map on algebras, ® : A — B. Then, the recovery map
should be constructed as Ry : B — A. To make our story simpler, we mainly work on a
physical system rather than starting from a logical system unless we explicitly need them.
Then, the definition of OAQEC for the general quantum system (vN algebra) is given by
the following.

Definition 4.2.1 (OAQEC). Given von Neumann algebras A and B and an unital CP map

®: A — B as an error map. The error ® is correctable if there exists R such that
®oRlc =ide (4.10)

restricted to the subalgebra Bc C B where R : B — A. id¢ is an identity map on Bo C B,

i.e., ido(c) = ¢ for Ye € Bo. Be is a code/correctable subalgebra of B.

We first derive the so-called recovery equation which is the equivalent statement to (4.10).
Consider a faithful normal state wp and its associated GNS vacuum |Q25) in the GNS Hilbert
space Hp. Let ¢1,co € Be be the operators of the correctable algebra that satisfies (4.10).
Let us denote the code subspace as H¢ that is spanned {|c)z = ¢|Q2p), Ve € Be}. Here,
|25) is the GNS vacuum associated with the state wg on B. From (4.10),

P oR(c1)|co)p =cile2)p- (4.11)
Suppose the Kraus representation of ¢ is written as
#() = X MOV (412)
where M}, are the Kraus operators. Then, by (4.11) and (4.12),

ZMIIR(CI)Mk |C2>B = Z Ml::[Mkcl |C2>B
F F (4.13)
=> ZM]I(R(Cl)Mk — Mkcl) ‘02>B =0
k
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for all ¢, co € Be. This implies that

for all k and ¢ € Bo'. We call (4.14) the recovery equation. This is equivalent to (4.10) in
the definition. We will use this equation frequently to prove the first QEC condition listed

below. It is also useful to identify the nature of error and recovery maps, see section 4.4.

Theorem 4.2.1 (Exact OAQEC conditions). Following the notation and setup in definition

4.2.1, the unital completely positive map P is correctable

1. [commutator]

if and only if
[e, MiM;] =0 (4.15)

for allk,1 and for ¢ € Be C B. M, are the Kraus operators of ®, i.e. ®(-) = ¥ M, () M.

2. [Saturation of monotonicity of relative entropy|

S(pclloc) = S(@*(pc)||®*(oc)) (4.16)

In section 4.3 and 4.4, we study condition 1. This approach is the summary of the known

results on the exact OAQEC[73]. condition 2 will be discussed in chapter 5.

4.3 Passive QEC

One of the easiest ways to protect against errors is to find an encoding of the algebra
Biog into the algebra that is immune to errors so that we do not need to correct it at all. We
achieve this if we choose the encoding ¢ : Bj,g — By from Bj,, to the subalgebra B; that is
invariant under the action of the error map, i.e., ®(b) = b for all b € B;. We call such an
algebra the noiseless algebra. The noiseless algebra can be characterized by the commutation

relation between Kraus operators of a given CP map.

11Obviously, this holds only within the code subspace Hc
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Theorem 4.3.1 (Noiseless algebra). Every operator ¢ € By C B in a noiseless algebra By of
an unital CP map ® : B — B with the Kraus representation, ®(-) =Y, M,Z()Mk, satisfies

b, My] = [b, M]] = 0 (4.17)

for all k and for all c € B;.

Proof. For by, by € By, we have
D(b1) [b2) g = b1 |b2) g (4.18)

where |b;) 5 = b; |Qp) (1 = 1,2) are the states in the GNS Hilbert state Hp. Using the Kraus
representation of ®(-) = ¥, M, (-) M,

S7 Mbi My |by) 5 = M Myby [bs) 5 - (4.19)
k
Then,
S M (by My — Myby) [ba) 5 = 0 (4.20)
k
for all by, by € B;. Hence,
b My, = Myby (4.21)

for all b; € By. The commutator between By and M ,I follows from the same logic.

]

In the passive QEC, the invariant subalgebra B; is the code subalgebra of a given CP
map . In this case, we can construct the conditional expectation from ®. For an unital CP

map ® that preserves some faithful state w, i.e., w = w o w,

EL(b) = Lim ~(b+ B(b) + D2(B) + -+ + O™ (b)) (4.92)

n—oon,
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is a conditional expectation that projects B down to the invariant subalgebra B; of ®. To
see this, consider the Stinespring representation ®(b) = Fr(b)FT. Since ® is unital, F is

coisometry. Because T and F' are norm non-increasing resulting in ||[®(d)|| < ||6]|, we have

[8(E.(6)) — E00)] = || fim ~(@"(8) - )]

n—>0<in 5 (4.23)
< fim (2] + [b]) < Jim > a] = 0.

We find that the range of &, is B;. This map is evidently CP and leaves every operator in

By invariant. Therefore, it is a w-preserving conditional expectation.

4.4 Active QEC

As opposed to the passive QEC, the active QEC requires one to construct a non-trivial
recovery map to undo a given error map. In this section, first, we characterize the correctable
algebra by condition 1. in theorem 4.2.1. Its proof is basically similar to that of theorem
4.3.1. Second, we explore the nature of an error map and recovery. Third, in section 4.4.1,
we discuss Takesaki’s condition which allows us to construct a unique recovery map. At the

end of this section, we study condition 2. known as the sufficiency condition.

Theorem 4.4.1 (Correctable algebra). Fvery operator ¢ € Bo C B in a correctable algebra
Be of a pair (®,R) satisfies

[e, MM =0 (4.24)
for all k,1 and for all c € Be.
Proof. For ¢y, co € Be, from
@OR(Cl) |6L2>B = C1 |CQ>B, (425)
we have the recovery equation
R(Cl)Mk = Mkcl (426)

as discussed in (4.14). Multiply the equation from both sides by MIT, we have

M R(c1) My, = M Myc. (4.27)
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Repeat the above with c} and take T,
MIR(¢y) = ey M. (4.28)
Again, multiply the equation from both sides by My,
MIR(c) My, = ¢y M M, (4.29)
Therefore, by (4.27) and (4.29), we have
M Myey = 1 M, M. (4.30)

]

Now, let us discuss the nature of a given error map and the corresponding recovery map.

We observe the following three things;

1. A recovery map R is unique and unital if the kernel of a given error map is trivial.
2. The range of a recovery map, Ac = R(B¢), is the multiplicative domain of ®.

3. The unique unital recovery map R is a faithful representation on Be.

First, for example, if a given unital CP map ® : A — B has a non-trivial kernel, there
are two recovery maps R : B — A and R = R + x : B — A where the range of y is in the
kernel of @, i.e., ®(x(c)) = 0 for ¢ € Be. In the QEC, any operators in the kernel is deleted
and never be able to recover. Hence, we can remove the kernel from our story. Let P be
the projection on A such that it removes the kernel. We redefine the error map using the
projection; ®p : PAP — B. This allows us to write the following two recovery equation; for

c1,¢2 € Be,

R(Cl)PMk |CQ>B = PMkcl ’02>B (4 31)

R(Cl)PMk |CQ>B = PMk;Cl |CQ>B.
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This implies that the recovery map is unique within the code subspace He = {PMj |c) 5, Vk, Ve €
Bc}, i.e.,

for all k, and all ¢; € B¢.

For the unital CP map ® with a trivial kernel, ® acts faithfully on A. Hence, the operator
acted by ® resulting in the identity operator should uniquely be the identity operator.
Because ® o R|c = ide by the definition of correctability, R should be unital.

Now, let us explicitly consider the range of the recovery map, i.e., Ac = R(B¢). We

show that A¢ is the multiplicative domain of an unital CP map ® with a trivial kernel, i.e.,
®(R(c1)R(c2)) = ®(R(c1))P(R(c2)) (4.33)
for ¢1,co € Be, and hence R(c1), R(ce) € Ac. For the left hand side, for all ¢1, o, c3 € Be,

®(R(c1)R(c2)) les) g = ; MIR(c1)R(cs) My |es)

=" M{R(c)Myes |es)
. (4.34)

= ®(R(c1)) > M Mies|cs)

= B(R(c1))®(R(c2)) les)

where R is another recovery map. In the second and fourth equality, we used the recovery
equation (4.14). Since we are assuming that the unital CP map ® has a trivial kernel, the
recovery map is unique. Hence, R = R. Therefore, Ac = R(Bc¢) is the multiplicative
domain of .

We have seen that the recovery map R of the error map (unital CP) with the trivial
kernel is unique and unital. To show that R is the faithful representation of B¢ into A¢, we

need to show that it is injective, or one-to-one, i.e. R(cica) = R(c1)R(cq) for ¢1,¢0 € Be.
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First, one should notice that B¢ is the multiplicative domain of ® o R. Together with the

fact that Ac is the multiplicative domain of ®, one can show that

P o R(c1c2) [e3) g = P(R(c1)R(c2)) |es) (4.35)

for all ¢; € Bo (i=1,2,3). Thus, we get

R(Clcg)Mk == R(Cl)R(Cg)Mk (436)

for all k£ and all ¢1,co € Be. Therefore, R : Bo — Ac is the faithful representation on the
Hilbert space spanned by {Mj |c) 5, Vk, Vc € Be}. We summarize the discussion into the

following theorem.

Theorem 4.4.2. Consider an unital CP map ® : A — B with the trivial kernel. If there
exists a recovery map R satisfying (4.10) with Bo being the correctable algebra, it is a unique

faithful representation R : Be — Ac = R(Be).

4.4.1 Takesaki’s condition

Takesaki’s condition will be used to prove that the Petz dual map of a given error
map is the unique recovery map if there exists one in the next section. The condition
claims a necessary and sufficient condition of the existence of a state-preserving conditional
expectation. In particular, for an unital CP map ® : A — B between vN algebras and
faithful states wp and wy = wp o ®, we show that R o & is the conditional expectation
that preserves wy. Then, we discuss how it is related to Takesaki’s condition. We provide
Takesaki’s condition in the case of matrix algebras and an arbitrary vN algebra.

First, we show that Ro® is a conditional expectation. For the unital CP map ® : A — B

with a trivial kernel, the recovery map R : B — A is a faithful representation that satisfies

O oR(c) Q) = c|Qp) (4.37)

93



for all ¢ € Be. By definition, for Ac = R(Bc¢),
R o ®(R(c)) [Q4) = R(c) |2) (4.38)

for all R(c) € Ae. Since both ® and R are unital and CP, R o ® is an unital and CP map.
To show that it is a conditional expectation from A — Aq, we need to check its bimodule
property?, i.e.,

R o ®(R(c1)aR(ca)) = R(c1)R o P(a)R(c2) (4.39)

for R(c1), R(c2) € Ac and a € A. Using the recovery equation (4.14),
R o ®(R(c)aR(cs)) [ Q) = R[Xk: M,ZR(cl)aR(CQ)Mk] 0 = R{cﬁb(a)@} 04). (4.40)
Since R is a faithful representation, its GNS operator is defined by
R(c) |Q4) = WeWT Q) (4.41)

is a partial isometry, i.e., WWT = P, is a projection on A to Ac, and WIW = Pg_ is a
projection on B to Be. Thus,

Wer®(a)e W |Q4) = We,WIWE(a)WIW e, W [Q4) = R(e)R o ®(a)R(cr) |4)  (4.42)
Therefore, R o @ is a conditional expectation. In addition, it preserves wy, i.e.,
CUAORO(I):WA. (443)

The simplest example is when ® is just an encoding ¢ : A — B. Suppose we want
to simulate a quantum system B using the algebra of physical operators A. We encode
B as a subalgebra of A using the isometric embedding map ¢ : B — A. We also have a
decoding map « : A — B such that ot : B — B is the identity map. The composite map
toa: A — 1(A) is a CP map that preserves every operator in ¢(B). The set of states w4 that

21For the detail of a conditional expectation, see section 3.2.2 in chapter 3
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are invariant under this map are decodable physical states. Assume that w4 is a decodable
faithful state (full-rank density matrix) and wp = w4 o ¢ is its restriction to B. They can be
represented as cyclic and separating vectors |Q25) and |24) in the GNS Hilbert spaces H,,,
and H,,. We denote these Hilbert spaces by Hp and H 4, respectively. The encoding map

as a superoperator is represented by an isometry W : Hg — H4:
L(b) |24y = Wb|Qp) . (4.44)

Since we assumed that p,4 is decodable, this state is preserved under the conditional ex-
pectation toa : A — «(B). We will see in theorem 4.4.3 that this is equivalent to the
Takesaki condition: J4W = W Jg, where J4 and Jg are the modular conjugation operators
corresponding to wy and wg. This implies that our decoding map corresponds to the GNS

operator
ala) Q) = JpWTJaa |Q4) = Wia|Qy) . (4.45)

In other words, a state is decodable if it satisfies the Takesaki condition, in which case « is
the Petz dual of ¢.

In matrix algebras, there always exists a trace-preserving conditional expectation &, :
A — A% if AY contains the identity operator. To show this, we start with the orthogonal
projection P, in the Hilbert space H, that projects down to H¢ that is the span of A |e).
We show that the superoperator that is associated with it is a trace-preserving conditional
expectation. Since P.cle) = cle) the superoperator &, satisfies E(c) = ¢ for all ¢ € A°.

Furthermore, we have
(e|Ee(a)le) = (e[ Peale) = (Feelale) = (elale) , (4.46)

therefore &, is trace-preserving. We only need to prove it is CP.

To show that &.(ay) is positive we need to show the matrix element

(az]Ee(ay)]az) = (ag|Peayaz) = (Peaslayas) (4.47)
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is positive. It is clear that if |a) € (P,), this matrix element is zero, therefore we only need
to consider {c|€(ay)|c) for ¢ € A°. The inner product in the Hilbert space H, has the special
property that

(a1]agay) = tr(aiagal) = tr(alaJ{ag) = <a{a1|a2> (4.48)

where we have used the cyclicity of trace. Therefore,
(el€u(ar)le) = (clelPay) = (Pelclas) = (clelay) = (clagle) 20 (4.49)

Therefore, &, is a positive map. Similarly, the map &, ® id,, corresponds to P, ® Z,, in the
Hilbert space H, ® K,, which is also positive by the same argument, therefore &, is CP. The
superoperator & is the unique trace-preserving conditional expectation from A — A%.2 We
can explicitly write down the w-preserving conditional expectation in terms of the trace-

preserving one:
Eula) = w51/256(w1/2aw1/2)w51/2 (4.50)

where we is the restriction of w to the subalgebra A¢. These maps are the same as the
w-preserving conditional expectations we constructed in section 3.2.2.

We now prove that the Takesaki condition is the necessary and sufficient condition for
a state for the existence of a w-preserving conditional expectation. The argument trivially

generalizes to infinite dimensions [74].

Theorem 4.4.3 (Takesaki’s condition: matrix algebras). The following statements are

equivalent:
1. There exists a w-preserving conditional expectation &, : A — A°.

2. For all ¢ € A we have w*?cw=? € A°.

34The bi-module property follows from

tr(c1&(c2a)) = (c]|Pucaa) = (Pacl|caa) = (chPocl]a) = (Poclel|a) = tr(cicaée(a))
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3. For all ¢ € AC we have w'/2cw=2 = w cwg?.
Here, we is the restriction of w to A°.

Proof:

(2 — 1): Repeating the argument above for the projection P, in the GNS Hilbert
space to the subspace H¢ spanned by A |w!'/?) reveals why there might not exist a w-
preserving conditional expectation for an arbitrary w. By the same argument, the projection
P, corresponds to a superoperator &, : A — AY that preserves w and satisfies £,(c) = c.
However, in general, it will not be CP because there is no analog of the property (4.48) in

the GNS Hilbert space H,,. Instead, we have

(ai|asay), = tr(awalas) = tr(w(w aw)alas) = (alDw(aMaQ)w (4.51)

1

where D, (a) = waw™" is the modular superoperator we introduced in section (3.4). If

D, (c) € A® we can repeat the argument above to show

(cleulas)e), = (Du(c)|Poas), = (PucDu(clay),

= <C'DW(CT)‘(Z+>W = (clayc), > 0. (4.52)

Therefore, if D,(c) € A° the superoperator &,(c) is CP and hence it is the unique w-
preserving conditional expectation from A to A®. If DY%(c) € A% so is D,(c) € A,
therefore the condition in (2) is sufficient for (1).

(1— 2): Assume that &, exists and P, is its corresponding projection operator in H,,.
Consider the Tomita superoperator S(a) = al. Since &, is a positive map we have &, (a') =
&.(a)" which implies £,(S(a)) = S(€,(a)). In the GNS Hilbert space, this implies [P, S,,] =

0. Since P, is self-adjoint when &, is w-preserving we also have [P, S]] = 0. Therefore, we

find [P,,A,] = 0, where A, = SIS, is the modular operator of w. Since both operators
are positive we have [P,, AY/?] = 0, and using the superoperator representation we obtain

E(DY?(a)) = DY?*(E(a)). For any c € A®:

Eu(D?(c)) = Df*(Eu(c) = Dif*(c) - (4.53)
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Therefore, D, (c) = w'/?cw™/2 € AC.
(1— 3): We saw that (1) implies the commutation relation [P,, A,] = 0. Define the
state we on the subalgebra A® as the restriction tr(wee) = tr(we).* Consider its GNS Hilbert

space H¢ spanned by ¢ \wlc/ *y and the linear map W : He — Ha:
We ]wé/z) = c|w'/?) . (4.54)

It follows from the definition of we that this linear map is an isometry and W AW is an

isometric embedding of A% in A. Acting with the modular operator we find
S Welwd?) = W) = WSee|wd?) (4.55)

In other words, S,WW = WSc and as a result we have WIA,W = Aq and P, AP, =
WAcWT. When [A,, P,] = 0 we can take the square root of this equation to find

P,AY? = WAYW! (4.56)
or equivalently®
AW = WAY? (4.57)

This together with S,W = WS¢ gives the form of the Takesaki condition J W = W Je.
Then, the constraint that D,(c) € A® becomes

DY?(c) |w'?) = P,AY e |0y = WAL clwd?) = WD (e) lwd®) = DY (e) [w'/?) (4.58)
As a result, we have

w1 = DY (¢) = DgQ(c) = wé/zcwglﬂ (4.59)

41Note that we = E(w) because tr(cwe) = tr(cw) = tr(E(cw)) = tr(c€e(w)).
51We act with W on the left and take the Hermitian conjugate.
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which is the condition in Takesaki’s theorem.
(3— 1): Consider a subalgebra A° C A and the isometric embedding map ¢ : A — A.
The Petz dual /[ : A — A® is unital and CP. It follows from the definition of the alternate

inner product that the Petz dual satisfies
Lla)|AHPe) = (a|AY%e) . 4.60
w C we w w

We now show that when (3) is satisfied this Petz dual map is a w-preserving conditional

expectation. All we need to show is that (L (c) = c:

(D(en|Ad?e),, = (alAY?e), = (@|DY(e)),
= (a|Dd¥(e)), = (alAd?e),, (4.61)

where in the second line we have used (3) and cJ{D}J/ *(¢) € AC. Since the isometric em-
bedding is trivial in this case the composite map €5 = 10.f : A — A is a w-preserving
generalized conditional expectation that becomes a conditional expectation (3) is satisfied.
O

All the steps of the arguments above can be repeated for an arbitrary von Neumann
algebra with w'/? replaced with Al/2. The proof did not rely on the existence of a density
matrix or a trace, and trivially generalizes to an arbitrary von Neumann algebra and its

GNS Hilbert space representation:

Theorem 4.4.4 (Takesaki’s condition: von Neumann algebras). Let AY C A be an inclusion
of von Neumann algebras. Let wa be a faithful state of A and we be its restriction to A°. Let
|wi‘/2> and |wé/2> be the cyclic and separating vectors in Ha and Hc. Define the isometry
W He — Ha as We |wé/2> = c|w114/2> for all ¢ € A®. The following statements are

equivalent:
1. There exists a w4-preserving conditional expectation &, : A — A¢

2. The modular conjugations J4 and Jo corresponding to |w2/2> and |wé/2> satisfy JAW =

Wlc.
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3. AW =way?.

4.4.2 Sufficiency

Our next question is given a w-preserving conditional expectation what other states are
also invariant under it? To characterize all “sufficient” states of a w-preserving conditional
expectation &, we show that it preserves another state v if and only if the sufficiency

condition
is satisfied [71], [72]. If we are given a w-preserving conditional expectation &, the map

EX(a) = ¥o"Pwil 6, (w2 2ay 2w ) wil Pt (4.63)

w

is a 1p-preserving CP map from A — AC. If it preserves every operator in ¢ € A® it
becomes an -preserving conditional expectation. It is clear that if the sufficiency condition
in (5.35) holds it becomes an i-preserving conditional expectation &, = &,. Therefore,
&, also preserves ¢v. We now prove the converse: the conditional expectation &, preserves
¥ only if the condition (5.34) holds. We basically repeat the proof of Takesaki’s theorem
for the relative Tomita operator Syj,a|w/?) = al|1)'/?). The norm of this operator is
the relative modular operator Ay, : H, — H,. The superoperator corresponding to it
is Dyjw(a) = aw™'. We repeat the argument for the Takesaki theorem with the relative

modular map Dy, (a) = Yaw™" to find [P, A%Z] = 0. This implies

(DY (c) = Dyf2(Eu(c)) = Dyj2(c) € A° (4.64)

We define the isometries

Waelwd?) = clw'?)

Wac [bd?) = c[p'/?) (4.65)
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so that

SylwWe = WySyclwe

WlAWwWW = ch\wc .

Since [P,, Azl/‘i] = 0 we have

PAY? —

As a result,

D) [w'?)

=W, D, (c)

Yolwe

We obtain that

_ 1/2 1/2 1200512
2w V? = D¢/| (c) = Dz/clwc(c) - C/ ch/ '
In other words,
¢51/2¢)1/20w1/2w81/2 e w51/2w1/2cw—1/2wé/2

W, A2

wt .

Ylw T Yolwe " w

:PwAl/Q ’w1/2>

PlwC

W A1/2

Yolwe €

1/2 1/2
wl?) = Dy% (o) [w?)

Wl/2
e

which holds if and only if the sufficiency condition in (5.34) is satisfied.

The sufficiency condition can be expressed as

1/2
A =

W,AY2 Wi

Yolwe T w

Using the integral representation of X¢ for a € (0,1)

SlIl

A S
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(4.67)
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(4.70)
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we find

1
d —-W,—— Wil =0. 4.73
/ s <8 + Ayl 5+ Aycluc w) (4.73)

From the monotonicity of the relative modular operator [58], [75] we know that the operator

in the integrand above is positive, therefore it has to be zero:

1 1
=W,

— =W,———W 4.74
s+ A1!1|w s+ A1ZJc|wc N ( )
which implies
U = Wl W (4.75)
Furthermore, for any continuous function f we have
Wof(Ac) lwd”) = f(B) ') . (4.76)

In particular, choosing f(x) = z™ for ¢t € R we find that wiy;" = wiy~™. This condition

implies that the relative entropy for any pair of sufficient states w and :

S(llw) = S(ellwe) - (4.77)

Intuitively, this says that a coarse-graining (conditional expectation) preserves a set of
states {wy} (sufficient states) if and only if the distinguishability (relative entropy) of any

pair of them remains the same.
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5. QUANTUM ERROR CORRECTION AND
RENORMALIZATION GROUP(RG)

We have reviewed and constructed the basic tools, such as completely positive maps, von
Neumann algebras, modular theory, and the operator algebra quantum error correction
(OAQEC). In this chapter, we study the QEC code in quantum field theory, especially,
the relevance to real-space renormalization group theory.

Holographic duality conjectures that the d 4+ 1-dim quantum field theory without gravity
is exactly equal to the d-dim quantum field theory without gravity. Although we have
some examples [76], [77], we still do not know why the duality holds. In this work, we
study holography through the perspective of renormalization group theory, and the theory
of quantum error correction.

From the viewpoint of renormalization group theory, the holographic duality has the
correspondence between the ultraviolet behavior of the boundary theory and the infrared
behavior of the bulk theory, and vice-versa. This is known as UV-IR connection|[78]. The
key is that the radial direction is the extra degree of freedom in the bulk emerging from the
RG flow of the coupling constants of the boundary theory.

The other approach is the quantum error correction framework. As already discussed
in the introduction, holographic duality is realized as quantum error correction by either
isometrically or non-isometrically encoding the bulk theory into the boundary theory[15],
[79], [80].

Then, what is the relation between the RG theory and the QEC? Does the RG theory
exhibit the QEC structure? In section 5.2 and 5.1, we show that the real-space RG theory
in free quantum field theory does exhibit the QEC structure. Previously, a similar question
was explored by [81] which shows how real-space renormalization group theory of a lattice
system, which is known as multiscale entanglement renormalization ansatz (MERA), exhibits
the QEC structure in a lattice system. In section 5.2, we extend this work using a continuous
version of MERA (¢cMERA).

Although we observe that MERA and cMERA provide a good test of whether RG em-
braces the structure of the QEC code, they are not enough to explain the holographic duality.
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The things lacking in those models are large internal degrees of freedom and strong interac-
tions. For example, in AdS3/CFT,, one needs to take large N and large gap to realize the
two-dim CFT to be holographically dual to semiclassical quantum field theory in AdSs. In
the language of QEC, the difference is observed by the property called the complimentary
recovery. We see that the theories of general quantum systems without the limit of large
N and a large gap, for instance, MERA and ¢cMERA, do not satisfy the complimentary
recovery. On the contrary, the ones with the limits satisfy the complimentary recovery.

In summary, we study the following main statements;
1. [Renormalization group as an approximate error correction]

In section 5.2, we check the following statement in 1 4+ 1-d massive free boson theory.

Consider a Hilbert space at the level s, H,, of a system, and an isometry Wy : Hy — Hyv.

We define a family of code subspaces C, at a length scale e® to be
{Cy = P Huv|W, : Hy — Huy, WIW, =15, Vs, —o0 < 5 < 0} (5.1)

A local UV error on any simply connected region A can be approximately corrected up
to a small error § if s >> log|A| where |A| is the size of the region. That is, in the form

of the Knill-Laflamme condition, for |[¢¢) € H,, and OYY € B(Hyv),
(W IWIOT Wilug) = (CFIOFYCF) ox b + 0 (52)
where |CF) = Wi |¢7) € Cs. We verify the above statement using 1 + 1-d free massive

boson theory on a line.

2. [Complementary recovery]

In section 5.2.4, we show that MERA and cMERA do not have a complementary recovery

while the QEC code in the holography admits it in an approximate sense.

3. [OAQEC and Petz recovery map] !

11 Although we have already discussed this, we included the results regarding OAQEC and Petz recovery
map for the completeness of section 5.1
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In chapter 3, we studied the Petz dual map of a given CP map ® of von Neumann algebras
A to B. In section 5.1, we state the main theorem below which identifies the recovery
map as a Petz dual map of a given unital CP map. The key to proving the theorem is

what we call Takesaki’s condition[66], [82].

Theorem 5.0.1 (Petz dual). Let ® : A — B be an unital completely positive map between
von Neumann algebras. Let pg and ps = pp o ® be faithful states. Denote by |pi{2> and
|p2/2> the cyclic and separating vectors that represent pa and pg in their corresponding
Hilbert spaces Ha and Hp. If there exists a normal faithful representation R : B — A
that satisfies ® o R = id, it is the Petz dual of the error map

R(b) =P/ (b) = Tao P, 0T5 . (5.3)

where Ty : A" — A and Jg : B — B’ are the modular conjugation maps corresponding to

|p114/2> and |pg2>, respectively.

5.1 Real-space RG, error correction and Petz map

5.1.1 Introduction

In quantum computing, we use the Hilbert space of a quantum system to encode and
process information. The interactions with the environment lead to errors and an important
challenge is to protect our information from the errors. One of the main goals of the theory
of quantum error correction (QEC) is to identify the subalgebra of correctable operators
associated with an error model and construct the recovery map that undoes the errors.2 In
local many-body quantum systems, to every

Let us apply a unitary rotation in A4. We obtain a new algebra inclusion UA-UT C
UALUT and a new error correction code; however, the unitary can obscure locality. In fact,
every algebra inclusion is an exact quantum error correction code and, if finite-dimensional,

can be trivialized by a choice of unitary on A. Intuitively, this means that there is a hidden

21For completeness, we have included a review of the theory of operator algebra error correction in chapter
4. See also [67], [83], [84].
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Figure 5.1. The local algebra of region C' is a subalgebra of the algebra of
a larger region. Any error V, that acts on the relative commutant Az do not
disturb the encoded information in Ac.

Z(A%) AN (ACY
A A A

(a) (b) ()

Figure 5.2. (a) If A® with trivial center is a subalgebra of a finite dimension
algebra A, then we have the tensor product factorization A = A° @ A%, (b)
If A® has a non-trivial center Z(A%), we modify the diagram to represent the
center as a blue stripe. (c) The center is part of both A and the relative
commutant.

notion of locality in the inclusion of any subalgebra A C A.* Consider a finite-dimensional
matrix algebra with a trivial center (the observable algebra of a qudit). If the subalgebra A¢
also has a trivial center there exists a unitary U in A such that UAUT = UAUT @ A" where
AF is the relative commutant of UACUT in UAUT. If A is a subalgebra with a non-trivial
center Z(A®) then up to the choice of a unitary the algebra A factors as the direct sum
EBqA(CQ) ® Ag) and A° = @QA(Cq) ® Ig). To visualize this structure we use the diagrams

in figure 5.2. In this work, we argue that the inclusion of algebras that share the identity

31With an abuse of notation, we have denoted a general subalgebra that includes the identity operator as
A€ because, in this work, the upper index C in A% will stand for “correctable subalgebra”.
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operator appears naturally in the renormalization group (RG) and holography, however, in
these cases the inclusions are not due to any obvious locality principle.

There are two parts to this work. In the first part, in section 5.1.2, we argue that the
real-space RG can be modeled as an approximate error correction code that encodes the
long-distance operators in the algebra of the short-distance operators. In this picture, the
short-distance local perturbations are the errors and the long-distance operators (or a subset
of them) are the correctable operators. This is closely related to modeling the holographic
map as a quantum error correction code [15], [16], [85].

The connection between the RG and error correction can be seen even in classical sys-
tems [2]. The intuition is that exciting a long-range degree of freedom requires acting on a
macroscopically large number of short-distance degrees of freedom. The disturbance caused
by a local short-distance error cannot alter long-distance modes. Under the RG, local ul-
traviolet (UV) operators become exponentially weak in the infrared (IR). Deep in the IR,
the UV errors are negligible, and in fact, there is no need to actively correct them. Low
energy states of a gapped system, do not have excitations at distances much larger than the
correlation length. To make our connection concrete, we focus on real-space RG in systems
near critical points where the long-range modes of arbitrary wavelength are excited.

As a concrete model of real-space RG that applies to the quantum system near a critical
point, in section 5.1.2, we consider the multi-scale renormalization ansatz (MERA) tensor
network for lattice models. MERA has found many applications in the study of quantum
field theory (QFT) and gravitational theories in AdS/CFT correspondence [86], [87]. To our
knowledge, the connection between MERA and error correction codes was first discussed
in [81]. This connection was extended to continuous MERA (cMERA) in [2]. The error
correction property of MERA is similar to the holographic map modeled as an error correction
code with the difference that in a general RG flow, we do not have complementary recovery
property.* Holography suggests that complementary recovery has to emerge in a special

class of theories with a large number of local degrees of freedom (large N) and are strongly

41See figure 5.4 for complementary recovery in holography. Note that, even in holography, the complementary
recovery is an approximate notion. It is known to fail in situations where the code subspace is large [8§],
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Figure 5.3. We encode the algebra B in the physical algebra A. If the
correctable subalgebra B¢ C B is strictly smaller than B we use a conditional
expectation £z to project B down to BY. Absorbing £z in the error map @
we are back to the case where the whole algebra is correctable.

interacting (large gap). We discuss the role of large N and the large gap in complementary
recovery.

Motivated by the connection between the RG and error correction, in the second part of
this work in section 5.1.3, we study the operator algebra error correction for an arbitrary von
Neumann algebra as a mathematical framework for error correction in continuum quantum
field theory (QFT). The error map is modeled by a normal unital completely positive (CP)
map ¢ : A — B; see figure 5.3. When the whole algebra B is correctable and the error
map has no kernel the recovery map is unique and given by the Petz dual of the error
map. It isometrically embeds B in A. More generally, we consider the setup where only a
subalgebra B¢ of the logical operators B is correctable.® Then, the recovery map restricted
to the correctable operators is still the Petz dual of the error map. Any unital CP map
that projects B down to B¢ (i.e. any conditional expectation £z : B — BY) can be used to
redefine the error such that its full image is correctable. Such conditional expectations exist
if the inclusion B¢ C B has finite index [90].

For completeness, in the appendices, we have included a self-contained review of the

mathematical and information-theoretic background needed for the second part of this work.

51For instance, in holography, this situation arises when the reconstructable wedge is smaller than the
entanglement wedge.
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In chapter 4, we review some information theory concepts such as the completely positive
(CP) maps and their duals. We also discuss the GNS Hilbert space which has the following
two advantages: 1) linear maps on the algebra (superoperators) correspond to linear oper-
ators in the GNS Hilbert space. This simplifies the study of error correction. 2) The GNS
Hilbert space can be constructed for all quantum systems (von Neumann algebra), including
the local algebra of quantum field theory (QFT) that we are ultimately interested in. We
show that insisting on the dual of a CP map to remain CP leads to two natural notions of
dual maps: 1) the dual map of Accardi and Cecchini that we call the p-dual map and 2)
Petz dual map. Both of these maps play an important role in error correction. The Petz
dual map can be understood as the dual with respect to an alternate inner product that has
already found several applications in QFT in the discussion of Rindler positivity [91], [92].
While our discussion applies to any quantum system, to help the readers less familiar with
von Neumann algebras we mostly use the more familiar notation of finite quantum systems.

In chapter 4, we review the Heisenberg picture of quantum error correction. We say
a subalgebra B¢ is correctable if there exists a recovery map R : BY — A such that
®(R(c)) = c for all ¢ € BC. We call the constraint ® o R = id the error correction equation.
The recovery map is non-unique because any R + X satisfies the error correction equation as
long as (X (c¢)) = 0. In other words, the recovery is non-unique when the kernel of the error
map is non-trivial. Another source of non-uniqueness comes from the fact that the error
correction equation defines the recovery map from B¢ to A. Any extension of the domain
of R from B¢ to B can be also called a recovery map. We denote the range of the recovery
map by A° = R(BY). It is a subalgebra of the physical operators. The recovery map is an
isometric embedding of the correctable algebra in A.

Conditional expectations are unital CP maps that project an algebra to a subalgebra that
includes the identity. In finite dimension, there is a one-to-one correspondence between con-
ditional expectations &, and unnormalized states 0 = ®,Z{ ® o9 on the relative commutant
of A% in A.% All the density matrices that are preserved under a conditional expectation &,

take the separable form p = ®,p,pi ® 03. In exact error correction, R o ® is a conditional

64For examples and a more detailed discussion of conditional expectations see chapter 3.2.2.
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Figure 5.4. The subsystem error correction code in holography satisfies com-
plementary recovery.

expectation and its invariant states are the correctable states. The von Neumann entropy of

a correctable state splits into two terms
S(@epepi ® o) = H(p) + D _py(S(pf) +S(05)) = S(p1) + >_pyS(03) - (5.4)
q q

Note that the second term is a property of the correctable subalgebra and not the correctable
state.

In holography, the boundary algebra is our physical algebra, and the bulk is the code
algebra. An isometry W encodes the bulk Hilbert space on the boundary. In the Heisenberg
picture, the map a(a) = WTaW maps the boundary operators to the bulk respecting the
complementary recovery property: the boundary operators supported on region A go to
those in the bulk localized in B and the operator supported on the complementary region
A’ go to those in B’; see figure 5.4. The bulk operators localized in the region B of the bulk
are protected against the erasure of A’. The error map is ® = « o try, and its Petz dual is
the recovery map R : B — A. The complementary recovery implies that the composite map
R o ® is a conditional expectation.” In holography, the second term on the right-hand-side
of (5.4) is argued to be similar to the contribution of the area operator to the holographic

entanglement [16].

1A similar observation was made in [85].

110



5.1.2 Real-space RG as an error correction code

Conventional theory of QEC

We start this section with a quick review of the conventional approach to quantum
error correction.In the Schrodinger picture of error correction, consider an encoding isometry
W : Kp — Ha from the code Hilbert space Kp to the physical Hilbert space H4 and
a decoding co-isometry WT. The projection operator Po = WWT projects to a subspace
of H4 called the code subspace because it is isomorphic to Kg. Throughout this work,
we use the following notation: we denote an irreducible representation of an algebra B by
Kp, and a reducible representation (such as the GNS representation) of B with Hp. In
finite-dimensional matrix algebras, we have Hg = Ky @ Kp/.

A collection of error operators V,. corrupt the physical states and a collection of recovery
operators R, correct the errors; see figure 5.5. In the simple case where the errors V, are
unitary operators, we can undo the error using the correction operators R, = V. Even
when the error is not unitary the correction operator is still made out of the conjugate of
the error; see chapter 4. For general errors V., the necessary and sufficient condition for the

recovery to be possible is the Knill-Laflamme condition ® [70]
PoVIV,Po o Pg . (5.6)

When this condition is satisfied the recovery map is R, o< PoVI.

81The physical intuition behind the Knill-Laflamme condition can be seen by defining a set of basis states
{|Ci)} in the code subspace PcH 4. Then,

PoVViPe =Y |G)GIVIVAICG)(G| = Y (GIVIVAICHIC) (G- (5:5)
ij ij

We satisfy Knill-Laflamme condition if (C;|V,]V5|Cj) = A,s6i;. This condition implies that the two orthogonal
code vectors |Cj) and |Cj) remain orthogonal after the action of the error operators. This ensures that the
distinguishable states remain distinguishable despite the errors.
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For example, consider the 3-qutrit code where the code Hilbert space Kp is a single qutrit

spanned by |i) with i = 0,1, 2 that is mapped by an isometry W to the subspace |i) = W [i):

0) = {3uooo>-+|111>-+|222>>

&

1

1) = 3(\012) + 120) + |201))

- 1
2y = —
2=

B

(1021) 4 |102) + [210)) . (5.7)

S

An error that occurs on the third qutrit V3 can be corrected using the Rz o PCV})T because
WTRsVsW i) o |i) (5.8)

where we have used (5.6). It is convenient to absorb the encoding isometry W in the definition

of the errors and the decoding co-isometry W1 in the definition of the recovery operators
V.=V.W, R,=WIR,. (5.9)

See figure 5.5 (a) and (b). There exists a unitary U and a factorization of the Hilbert space
Has=K4s® K such that

Uiy = i) 4 ) ar (5.10)

for some state |x),. The unitary trivializes the encoding such that the information is
encoded in A and the errors act on A’. The error correction is guaranteed by the locality
property [a, V] = 0 for all a acting on A and error V, acting on A’.

In the Heisenberg picture of error correction, we have the algebra of code operators B
and that of the physical operators A. An error correction code is a collection of four CP

maps (¢, R, ®,a), where ¢ : B — A is an isometric embedding of Bin A and o : A — B
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Figure 5.5. (a) Error correction in the Schrodinger picture. The isometry W is
the encoding and W is the decoding. The errors are V. and the correction operators
are R,. (b) We can absorb the W and WT in the definition of the errors and the
correction operators. (c) Error correction in the Heisenberg picture. The order of
operations is reversed. Both the error map ® and the recovery map R are unital
completely positive maps. (d) The encoding ¢ and decoding « can be absorbed in
the definition of the error and the recovery maps.

undoes it. The recovery map is R : A — A and the error map ® : A — A is unital. These

maps have the Kraus representation

ala) = WialV, 1(b) = WoWT
®(a) =Y ViaV,,  R(a) =3 RlaR, . (5.11)

We have an error correction if for all the code operators b € B we have
aoPoRoub)=b. (5.12)

See figure 5.5 (¢). The error correction condition above implies the Knill-Laflamme condition
in (5.6) as a special case, but it is more general. To simplify the notation, it is often convenient
to absorb ¢ in the definition of the recovery map and « in the definition of the error map.
In this way, an error correction code is a doublet (R, ®) where ® : A — B is the error and

R : B — A is the recovery map; see figure 5.5 (d):

d(a) =Y ViaV,

R() =>_ RIbR,. (5.13)
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The map Ro ® : A — A® projects the physical operators to the subalgebra of correctable
operators A®. These operators are invariant under the action of ® o R.

A special error channel relevant to the RG flow and holography is erasure. In finite-

dimensional matrix algebras, the erasure is the error map that acts as?

Er(a®d)=(a®Z)tr(c'd) . (5.14)

Any operator @' € A’ is an error and the necessary and sufficient condition for recovery

similar to (5.6) is
Va' € A" Pc(l,PC x Peo . (515)

This is equivalent to the statement that for any operator b there exists an operator R(b)

acting in subsystem A such that !

R(L)W |i) = Wbi), ROHW [i) = W' i) . (5.16)
Since Po[R(b),a'|Po = 0 any error V. supported on A’ satisfies
ROVIW =VIWb . (5.17)
Defining the errors V/ = V/W we have

O(R(b)) = (V) ROV, = b (5.18)

T

which is the error correction condition in the Heisenberg picture.
To see how the Heisenberg picture error correction goes beyond the equation (5.6) we

consider the subsystem error correction. This is the setup where both the physical Hilbert

94In the Schrédinger picture, the erasure channel acts on the density matrices according to €% (paar) =
pARa.

10+This is the simplest example of a conditional expectation that preserves the states p ® o’.

H4We prove this for an error correction code in a general von Neumann algebra, in section 5.1.3. For a proof
in finite-dimensional matrix algebras see, for instance, theorem 3.1 of [16]
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Figure 5.6. The subsystem error correction in (a) the Schrodinger picture
(b) the Heisenberg picture.

space and the code Hilbert space admit tensor product forms, respectively Ha = K4 ® K/
and Hp = K ® Kp. The goal is to encode the operators b supported on B in the physical
Hilbert space such that they are protected against the erasure of A’. In this case, the

necessary and sufficient condition generalizes the Knill-Laflamme conditions in (5.6) to
WidW e B . (5.19)
This is to be compared with the condition in (5.15) that can be written as
WidW = )\T . (5.20)

It is a standard result in quantum error correction that (5.19) is equivalent to the existence

of a map R : B — A such that
R(bO)W =Wh . (5.21)

We provide proof of this for any von Neumann algebra in section 5.1.3. Since Po[R(b),d'|Pc =

0 for any error V! = VW we have
ROV, =V'b (5.22)

or equivalently ®(R(b)) = b; see figure 5.6.
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Figure 5.7. A layer of MERA is an isometry W, : H,1 — H, that is
comprised of two layers: the coarse-graining isometries V' and the local disen-
tangling unitaries U.

Entanglement renormalization

As an explicit example of the connection between the real-space renormalization and
the quantum error correction codes, we consider a MERA tensor network. A MERA is
a sequence of increasingly coarse-grained lattices {Lg, L1, -+, L,} and their corresponding
Hilbert spaces {Ho, H1, -, Hn}. The Hilbert space H, describes the states of the theory
at length scale I and [y < I; < --- < [,. The states of Hy are deep in the UV, and the
states of H,, are in the IR. At each site of every lattice £, we have a local Hilbert space
that we take to be a qudit for simplicity. A sequence of isometries W : Hs11 — Hs embed
H,.1 into the Hilbert space of less coarse-grained states H. In the standard MERA, each
such isometry is comprised of a layer of local coarse-graining isometries V' followed by a
layer of disentangling unitaries U; see figure 5.7. The hierarchical structure of correlations in
MERA allows for states with long-range correlations. The isometries W can be understood
as maps that prepare the states W1Ws--- W, |W, ) with long-range correlations. Below, we
summarize the argument presented in [81] for the error correction properties of MERA.

In the Heisenberg picture, MERA is a renormalization map for the operators: Ay — A 1

where A, is the algebra of observables of the Hilbert space H; see figure 5.8:

alas) = Wla Wy . (5.23)
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Figure 5.8. (a) One step of RG for a 9-local operator ag turns it into a 6-
local operator acting on Hsy1. (b) The support of operators supported on a
few sites fluctuates but remains almost constant. (c¢) The support of k-local
operators with k£ > 1 shrinks under the RG. For instance, the support of a
k-local operator shrinks to at most |k/2] + 2. In general, the expectation is
that the support of operators shrinks by the coarse-graining factor except for
some boundary effects that become important when the operator has support
on O(1) number of sites.

The most important property of MERA for us is that it shrinks the support of local operators
in the following sense: if as is supported on k adjacent sites with £ > 1 on L, and the
isometries cut down the number of sites by a factor v > 1 then the operator a(as) is
supported on approximately k/v sites of L1 [87]; see figure 5.8. This is not exactly true
because of the boundary effects. For instance, for the MERA in figure 5.8, for any k-local
operator a the support of a(a) is at most |k/2]+2. For k = O(1) the support of the operator
almost remains the same.'? In higher dimensions, the number of sites in a region scales like
the volume of the region, and the number of the sites at the boundary scales like the area
of the region therefore it is natural to expect that the volume term in the support a shrinks
by v up to potential area corrections.

A UV operator ag supported on region Ay under the RG flow is mapped to the operator a
whose support we define to be A,. After s layers of RG the linear size of A is order 75| Ag|.

When s becomes comparable to log |Ag| the support of the operator reaches a few sites. At

1291t can fluctuate up and down but it can never grow much.
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this scale, the second stage of the RG flow starts. As we flow further into the IR, the operator
remains local on a few sites, however, its norm falls exponentially fast. This is because, in
the Heisenberg picture, the RG flow map is a quantum channel and hence a contraction: its
eigenvalues have a norm smaller than one.The operators that are invariant under the RG
flow survive deep in the IR forming a subalgebra of exactly correctable operators. These
are the eigenoperators with eigenvalue one. All the other operators decay exponentially fast
with the exponent set by A, = — log |A| where A is the largest eigenvalue of the RG channel
with norm less than one [81].1

We split the ultra-violet lattice £y into a simply connected region Ay and the complement
Aj. The RG flow respects locality in the sense that operators supported on Ay are mapped
to operators supported on A,. Therefore, the UV errors ay localized on Af, does not disturb
the IR operators a, in Ag: [a®(af), as] = 0. This is a trivial subsystem error correction code.
As we flow further into the IR the support A, shrinks until it reaches a few sites. At this
point, the support of the operator no longer shrinks, instead under the RG flow the norm of
the operator drops exponentially fast. If there are s layers of coarse-graining between the IR
and the UV states a UV operator supported on a region of size Ay becomes a local operator
with a norm that is suppressed by e~(*~19¢140: for a precise statement see lemma 3 in [81].
Deep in the IR (s —log|Ag| > 1) the UV perturbations are vanishingly small. They do not
disturb the IR physics; see figure 5.9.

Real-space RG in QFT

In this section, we generalize the connection between MERA and error correction to the
RG flow of continuous Poincare invariant QFT. It was shown in [2], that in continuous MERA
(cMERA) [93], the RG flow of massive free fields is an approximate quantum error correction
code. We comment on the emergence of the complementary recovery in holographic code.

The canonical quantization of a QFT that is a perturbation of massive free fields uses
the constant time field operator ¢(x) and its momentum conjugate m(x). For simplicity,

we set the mass scale to one. As instructed by cMERA [94], to model the RG flow, we

134Tn principle, there can be eigenoperators whose eigenvalues are a phase e?. If such operators exist, under
the RG flow they will show recurrences. We expect a generic RG flow to not have such recurrences.
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Encoded data

Encoded data

Ay Ag |4
(a) (b)

Figure 5.9. (a) Any UV errors af (red star) supported on Aj do not disturb
the IR operators that are originally supported on Ay before the RG flow. The
black dot denoted as the encoded data represents a,. (b) In the figure, there
are s layers between UV and IR where the encoded data is sitting. The size
of the support of UV operators shrinks as log |Ap|, though the size drawn in
the figure is schematic.
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deform the Hamiltonian by adding the irrelevant operator e*/;w(z);m(z) where the index i
runs over spatial directions only and the summation over i is implicit. This term acts as an
effective cut-off at the length scale e®. For f*(z) real test function on the space, we define
the annihilation operators a(f) = [d®'x (f~(z) +if"(z))a(z). Under the RG flow this
operator renormalizes to as(fs) where a, is the annihilation operator at scale e® and the test

function f; is [2]
fo(@) = (1= VAR5 () . (5.24)

Deep in the UV (s — —oo) the functions f* are supported on region A. For smooth
enough f* as long as s < log|A| the term e*V2f* in (5.24) is smaller than f* and the
renormalization of the field is negligible. This is analogous to stage one of the RG flow of
the operators in MERA. Here, the support does not change but the cut-off length is growing
exponentially fast. The cut-off length is analogous to a single site in MERA (the lattice
spacing), therefore the support of f in units of the cut-off length is shrinking exponentially
fast.

The support of the operator, in units of the cut-off, shrinks until e* ~ |A| at which point
the operator is supported on a region of cut-off length, and the second stage starts. In the
second stage, the second term on the right-hand side of (5.24) is no longer negligible. It
was shown in [2] that for large s the projection of the UV coherent operators to the code

subspace becomes approximately proportional to the projection to the code subspace:
PeetU)=0sUN P ~ Py (5.25)

which is the Knill-Laflamme condition for approximate error correction. More generally,
we can directly analyze the spectrum of the RG quantum channel. Deep in the IR, the
eigenoperators of the RG quantum channel with the largest eigenvalues are the conformal
primaries of the IR fixed point [95], [96]

e *Play) = e ay, (5.26)
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where we have defined the superoperator D that generates the RG flow from the unit length
scale to e°. Here, h > 0 is the scaling dimension of the eigen-operator. The norm of a
non-identity operator decays fast with scale. This implies that any local perturbation in the
UV becomes exponentially weak in the IR. The only UV operators that survive the RG flow
to the low energies are supported on a macroscopically large number of degrees of freedom.!*
The parameter A, (s —log |A|) where h,y,;, is the dimension of the lightest primary controls
how well this error correction code works.

Quantum error correction makes a surprising appearance in quantum gravity and the
AdS/CFT duality [15]. The discovery of the Ryu-Takayanagi (RT) formula in holography
led to an understanding of the duality at the level of subregion density matrices [97], [98]. It
revealed that the map that encodes the bulk operators in the Hilbert space of the boundary
theory defines an error correction code. These error correction properties have been used
to develop toy models of holography using finite-dimensional quantum systems [99]. Tt was
recently shown that the Petz map gives a reconstruction of the bulk operators in terms of
the boundary observables [23]. See [100] for a recent discussion of the Petz map in the
reconstruction of operators behind the horizon of a black hole.

At first look, it appears that the approximate error correction in RG is not related to the
exact error correction realized in holography because making the error correction above exact
requires the conformal dimension of the lightest primary to go to infinity. The holographic
QEC code has the complementary recovery property which means that the operators sup-
ported on Ay are mapped to those in Ay and the operators on the complementary region A’
are encoded in those in the complementary region Aj.'> In general, the approximate QEC
in RG does not have complementary recovery. This property has to emerge in holographic
theories.

The connection with holography becomes clearer when we consider an RG with two

groups of primaries: light primaries with conformal dimensions h;, < A and heavy primaries

144In principle, it is plausible that the RG map has invariant local eigenoperators. Such operators would
have vanishing conformal dimensions.

154 We will use Latin letters A and A’ to refer a region and its complement and A4 and A4 to refer to their
corresponding algebra of operators. Note that in the presence of conserved charges A4/ # A’;. This happens
because the local algebras have non-trivial centers. We assume periodic boundary conditions so that both
A’ and its complement A can be chosen to be simply connected.
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with hy > A for some large parameter A. If we choose our code subspace to be the
theory at length scale e®l with s = log|A| 4 € and [ some fixed length scale then any noise
Opu(A) caused by integrals of heavy operators supported on A can be corrected as long as
eA > 1. As the gap A goes to infinity, the error correction becomes exact and we obtain
complementary recovery. Note that there is no need for a recovery map as the errors simply
do not perturb the code subspace. The commutator between the heavy UV operators on A
and any local IR operators arr(x) vanishes simply because their correlation function vanishes
(O (A, Darg(e’l)) ~ e=Als—loglAl),

In holography, we can correct for the erasure of region A. The error operators include the
light operators supported on A in addition to the heavy operators. As opposed to the heavy
operators, the light operators on A have non-vanishing correlations with the IR operators.
To argue that their effect is correctable in the IR we need a new mechanism specific to
holographic theories. Such a mechanism is provided in theories with N x N matrix degrees
of freedom at large N. The light primaries are k trace operators of the form tr(X;) - - - tr(Xg)
with dimension O(N?). The heavy operators have large dimension O(N?) that is the size of
the gap A in holography. It follows from the large N factorization that the commutator of
light operators is 1/N suppressed.!® A small commutator is sufficient for the effect of light

operators in A to be correctable in the IR.

5.1.3 Error correction in arbitrary von Neumann algebra

The local algebra of quantum field theory is different from the matrix algebras in two
important ways: 1) It has no irreducible representations. 2) It does not admit a trace. We
need to generalize our discussion of error correction to the GNS Hilbert space to include the
local algebra of QFT.'" In part two of this work, we generalize the formalism of operator

algebra error correction to arbitrary von Neumann algebras.

164We thank Venkatesa Chandrasekaran for insightful conversations about the role of large N in error
correction.
171See chapter 3 for a review of the GNS Hilbert space.
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To define the code and the physical GNS Hilbert spaces we need a state pg of B 8. After
the action of the error map this state becomes py = ®*(pp).'° We will choose pp to be full
rank (a faithful state). If the error map has a kernel the state p4 is no longer faithful. This
means that the errors have erased some information permanently and there will not exist
any state that is fully correctable. One way to deal with this is to define a projection to the
kernel of the error map and use it explicitly in the recovery map. The recovery map will no
longer be unital. Another approach is to enlarge the algebra B by including the degrees of
freedom until the extended error map has a trivial kernel. Physically, an error occurs because
of the interaction with some environmental degrees of freedom. If there is a kernel for the
error map ® : A — B it is because the information has left B and entered the environment.
If we add to B the degrees of freedom of the environment that contain the information that
has left B the extended error map will have a trivial kernel.? In the real-space RG in QFT,
and in holography, the kernel of the error map is empty. This is because the state ps (the
vacuum state of short-distance theory in QFT or the boundary state in holography restricted
to a region A) is faithful. In this section, in generalizing our discussion of error correction to
an arbitrary von Neumann algebra, we will focus on the case where the kernel of the error
map is empty.

To get oriented, let us start with matrix algebras. In finite-dimensional systems, the GNS
Hilbert space of a full rank density matrix p, is a double copy Hilbert spaces H,, = KAa&@ K4/
with a distinguished vector | pi‘/ 2) € H,, whose density matrix on both A and A’ is equal to
pa-Such a vector is called cyclic and separating. Given a state pg an arbitrary error map
® : A — B is represented in the GNS Hilbert space as a contraction F : H,, — H,,".
We assume that the state p4 is also full rank therefore the purification of p4 is cyclic and
separating. There is a one-to-one correspondence between the linear operators in the GNS
Hilbert space and the linear superoperators on the algebra; see chapter 4. The operator F'f

corresponds to the super-operator @, : B" — A’ that we call the p-dual map and the operator

18+ A state is a normal positive functional of the algebra. When the algebra has a trace it is a density matrix.
1949In the Schrédinger picture, the error map corresponds to a quantum channel ®* that sends the states of
B to those of A.

20+In the extreme case where we include the whole environment in B the error map is a simple unitary
rotation, and completely correctable.

21+A contraction is an operator with || F||s < 1.
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J4FTJpg corresponds to the Petz dual map <I>§ : B — A (see section 3.6.1). Here, J4 and Jp
are the modular conjugation operators corresponding to | pz/ 2} and | ,0113/2>, respectively.

In the special case, F' is a co-isometry we call the problem of solving for the recovery map
a reconstruction problem. Both real-space RG and holography are reconstruction problems.
In theorem 5.1.2, we show that any error correction problem where the whole image of the
error map is correctable is a reconstruction problem. In reconstruction, the operator F'is a
co-isometry. In von Neumann algebras, the analog of the Knill-Laflamme condition for exact

error correction is the condition FTJz = J4F' that we refer to as the Takesaki condition.*

5.1.4 Recovery map in von Neumann algebras

Consider an unital normal CP error map ® : A — B between two von Neumann algebras.
The Kraus representation ®(a) = 3, V.faV, of a CP map generalizes to infinite dimensions®
. A recovery map is the isometric embedding of the correctable von Neumann subalgebra??.

The CP map ® corresponds to a contraction F': H, — Hp:?®
1/2 1/2
() |oy”) = Falpi®) (5.27)

and if the whole algebra B is correctable a recovery map corresponds to an isometry W :
Hpr — Ha. Below, we collect all the theorems we need to generalize our discussion of error
correction to arbitrary von Neumann algebra.

We start with the definition of the p-dual of ® and its properties.

Theorem 5.1.1 (p-dual map: proposition 3.1 [101]). Let & : A — B be a positive map
between von Neumann algebras. Let pg and pa = pp o ® be faithful states of B and A.

224In the remainder of this work, we often denote isometries like FT with letter W.

239In matrix algebras, the Kraus operators were maps from K4 — Kp where K4 and K were the irreducible
representations of the algebras A and B. A general von Neumann algebra does not admit an irreducible
representation. As we discuss in chap 3 the generalization of the Kraus representation to an arbitrary von
Neumann algebra is in terms of the Kraus operators V. : H,, — H,,.

241 A recovery map satisfies R(c)V;,. = V,.c,Ve € BC. Therefore, R(c1)R(c2)V; |p114/2> = R(c1¢2) |p114/2>. Since
we assumed that the kernel of ® is empty so the union of the range of all V,. cover the whole Hilbert space
and we find that a recovery map is multiplicative: R(c1c2) = R(c1)R(e2). Since it is CP it becomes an
isometric embedding.

25t We simplify our notation from H,, to Ha.
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1/2

1/2
PA/

Figure 5.10. The figure shows p-dual map of ® determined by the cyclic and
separating vectors | pz/ *) and | pgﬂ) as in theorem 5.1.1. The sequences of Jg,
Ja, and CI>;, appears to be a Petz dual map constructed in theorem 5.1.2.

Denote by |pi/2> and |,0119/2> the cyclic and separating vectors that represent ps and pp in
their corresponding Hilbert spaces Ha and Hp. There exists a unique normal positive linear

map between the commutants @), : B — A’ defined by
(@ (0o ap{®y = W pd?|®(a)py®), Vac AV eB . (5.28)

If ® is CP so is @), and if ® is unital ¥, is unital and faithful.

First, consider the case where the whole algebra B is correctable. This means that there

exists a recovery map R : B — A that isometrically embeds B in A
R(b) [p4*) = Wb |og?) (5.20)

with W : Hp — H 4 an isometry. The map ®PoR =id and Ro®: A — R(BY) = A° C A
is a conditional expectation that preserves the faithful state p4.
Theorem 4.4.4 tells us that the necessary and sufficient condition for the existence of

such a conditional expectation is JuW = W .Jg that we call the Takesaki condition. We use
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this property in the next theorem to establish that the recovery map is the Petz dual of the

error map, see figure 5.10:

Theorem 5.1.2 (Petz dual). Let ® : A — B be an unital completely positive map between
von Neumann algebras. Let pg and pa = pg o ® be faithful states. Denote by |,02/2> and
|pj19/2> the cyclic and separating vectors that represent pa and pp in their corresponding Hilbert
spaces Ha and Hp. If there exists a normal faithful representation R : B — A that satisfies
® o R = id, it is the Petz dual of the error map

R(b) = ) (b) = Jao ®,0 s . (5.30)

where Ja : A" — A and Jp : B — B’ are the modular conjugation maps corresponding to

|pi1/2> and |p115?/2), respectively.

Proof: The superoperator ® is unital and CP, therefore it corresponds to a contraction
F:Hjs — Hp. First, we prove that if the whole algebra B is correctable F' is a co-isometry.
The image of the recovery map A¢ = R(B) is a subalgebra of A. The composite map
E=Rod: A — A% is unital, CP and preserves every operator in AY, hence it is a
conditional expectation. The operator corresponding to this conditional expectation is a

projection to the range of W: WWT. Therefore,
Ro®(a)|py*) = WFa|p{®) = WWia|p}{®) . (5.31)

Since |p114/ 2) is cyclic and separating we have WF = WWT or equivalently F = W is a
co-isometry. Since this conditional expectation preserves ps we have the Takesaki condition
JAW =W Jg.

Now, consider the Petz dual map @5 (b). We check that it satisfies the recovery equation

® o ®F(b) [py?) = WITaW Jsb|py?) = bloy®) (5.32)
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where we have used the Takesaki condition for p4. Since | ,0,19/2> is cyclic and separating this
implies that ® o ®7'(b) = b for all b € B. In the absence of a kernel for the error map this is
the unique recovery map from B — A¢. O

Next, consider the reconstruction problem where only a proper subalgebra B¢ C B is
correctable. The Hilbert space Hp is a representation of BY but the vector ]pjlf} is no
longer a cyclic and separating vector for BY. We can use the theorem below to show that

the recovery map is dual to ®(a’') = Wia'W € (B°)":

Theorem 5.1.3 (Reconstruction maps: theorem 1 of [85]). Let W : Hp — H be an isom-
etry in between Hilbert spaces that represent von Neumann algebras B and A, respectively.

The following two statements are equivalent:
1. For all a € A we have a(a) = WiaW € B.

2. There ezists a normal isometric embedding (injective x-homomorphism) o/ : B — A’

such that o/ (0" YW = WVH for all b € B'.

When there exists a vector W ]p,lg/2> that is cyclic and separating for A, a is faithful and the

map o is the unique p-dual and is unital.

The recovery map satisfies the statement (2) therefore it is dual to the map Wia'W €
(BY) that we call ® with an abuse of notation. The map ® acts as ® : A — B and
d: A" — (BY). Since B is smaller than B we do not have complementary recovery. We
cannot combine ® : 4 — B and R : B® — A to get a conditional expectation. A simple
solution is to look for conditional expectations that project from B to B¢. As we review in
chapter 4, in finite dimensions, there is a one-to-one correspondence between the conditional
expectations from B to B and the states on the relative commutant of B¢ in B. With any
conditional expectation £g : B — BY we can redefine the error map to ® — £ o ®. We are
back to the case where the whole image of the error map is correctable, and the recovery
map is the Petz dual of the new error map.

If the inclusion of B¢ C B has finite index there always exists a conditional expectation

from B — B¢. Any von Neumann subalgebra B¢ is a direct integral of factors: B¢ = | q@ Cca.%

261A factor is a von Neumann algebra with trivial center.
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Figure 5.11. (a) Given a correctable state p4 we can construct the conditional
expectation that projects B to the invariant subalgebra B! of ® o CIfo . (b) The
Petz map @5 plays the role of the recovery map sending the operators in B’
to the subalgebra A! that commutes with all errors. This is the von Neumann

algebra generalization of the condition [c, V,[V,] = 0 for the operators in the
correctable subalgebra.

Roughly speaking, the index of a subfactor [C? : B] is a measure of how many times the
algebra C? fits inside B, and when there exists no conditional expectations from B to C? this
index is defined to be infinite. When the index is finite there are conditional expectations
E1: B — C?[102]. If all the inclusion of all C? in B have finite indices the direct integral of
£9 is a conditional expectation £ : B — BC.

The correctable subalgebra is the subalgebra of operators that commute with V,1V;.2” We
would like to generalize this to arbitrary von Neumann algebras. If there exists no correctable
states the correctable subalgebra is empty. Therefore, we consider the case where we have
an error map ® : A — B and a state ps that is correctable. We follow a strategy similar to

the passive error correction in chapter 4. The map ® o (IDII; : B — B is unital and CP. We

271See chapter 4.
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consider the conditional expectation that projects to its invariant subalgebra that we denote

by B!:

1 N
€p = Jim — Y (Podl)". (5.33)

N=oo N 031
This is an error correction code for the correctable algebra B! with the recovery map (135
because for all ¢ € B! we have ® o @f (¢) = ¢. The range of the recovery map is a subalgebra
in A that we denote by A" = ®7(B"). The map £4 = &) 0€po® is a conditional expectation
from A down to A’; see figure 5.11. We can redefine the error map to Ego ® : A — BI. We
are back to the standard case above, and the recovery map is once again the Petz dual of

the error map.

5.1.5 Sufficiency conditions

To characterize all “sufficient” states of a p-preserving conditional expectation £, we show

that it preserves another state w if and only if the sufficiency condition
w1/2w51/2 — P1/2P61/2 (5.34)
is satisfied [71], [72]. If we are given a p-preserving conditional expectation £, the map
£2(a) = we P pd%E, (P71 2w Pawt?p 1) pilPw (5.35)

is a w-preserving CP map from A — AY. If it preserves every operator in ¢ € A® it
becomes an w-preserving conditional expectation. It is clear that if the sufficiency condition
in (5.35) holds it becomes an w-preserving conditional expectation &, = &,. Therefore, &,
also preserves w. We now prove the converse: the conditional expectation £, preserves w
only if the condition (5.34) holds. We basically repeat the proof of Takesaki’s theorem for the
relative Tomita operator S, ,a|p'/?) = af|w'/?). The norm of this operator is the relative

modular operator A, : H, — H,. The superoperator corresponding to it is D,,(a) =
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wap~t. We repeat the argument for the Takesaki theorem with the relative modular map

D,,(a) = wap™ to find [P, A1/2] = 0. This implies

wlp

E,(DY2(0) = DY (Ex(0)) = DY (c) € A

wlp wlp wlp
We define the isometries

Welpd?y = ¢|p'/?)

Waclwd?) = c|w'/?)
so that

Sw\pr = Wwaclpc
WIA,W, = A

welpc

Since [P, A1/2] = 0 we have

wlp

P A1/2 W A1/2

wlp ™ welpc

T
W) .
As a result,

D) 10%) = BAffelpt?) = WoALZ, e lod?)

WIp wlp® welpc©

=W,D.%,.(0) Ipd?) = D2, () 1p1?) .

welpc welpe

We obtain that

w'2ep=t/? Dl/Q(c) — /2 (c) = wlc/Qcpgl/z .

wlp welpe
In other words,

w51/2w1/20p1/2p51/2 = 081/2P1/QCP 1/2p1/2
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which holds if and only if the sufficiency condition in (5.34) is satisfied.

The sufficiency condition can be expressed as

A2 =w,A2 wi (5.43)

wlp welpc

Using the integral representation of X for « € (0,1)

xo - S /d (S S+X> (5.44)

we find

o0 1 1
ds s'/? -W wt)l=0. 5.45
/0 o <S+Aw|p s+ Duclpe * (555

From the monotonicity of the relative modular operator [58], [75] we know that the operator

in the integrand above is positive, therefore it has to be zero:

1 1

STAL pmwg (5.46)
which implies
8o = WoAS W, (5.47)
Furthermore, for any continuous function f we have
Wof (Ac)pd?) = F(A) [p'7?) . (5.48)

In particular, choosing f(x) = 2% for t € R we find that pitw;" = pw™™. This condition

implies that the relative entropy for any pair of sufficient states p and w:

Swllp) = Swellpe) - (5.49)
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Intuitively, this says that a coarse-graining (conditional expectation) preserves a set of
states {pr} (sufficient states) if and only if the distinguishability (relative entropy) of any

pair of them remains the same.

5.1.6 Discussion

In summary, we argued that the renormalization group is an approximate error correction
code. This is similar to modeling the holographic map as a subsystem error correction code,
with the difference that we do not have complementary recovery. We discussed how the
complementary recovery emerges in a theory with large N and a large gap.

We studied the operator algebra quantum error correction for an arbitrary von Neumann
algebra. If the error map has a kernel some information is irreversibly lost. In real-space RG,
the vacuum vector of a QFT is cyclic and separating which implies that the kernel of the
RG map is trivial. In von Neumann algebras, the analog of the Knill-Lalamme condition
for exact error correction is the Takesaki condition. When recovery is possible, the recovery
map is the Petz dual of the error map.

If the kernel of the error map is not empty (we do not have a cyclic and separating vector)
the composition of the recovery map and the error R o ® : A — A is still a CP map that
preserves every operator in A%, but it is no longer unital. In the language of von Neumann
algebras, such a map is an operator valued weight: an unbounded unnormalized positive map
with dense domain in A, (the positive operators of A) that satisfies the bi-module property
28 There exists a bijection in between the set of operator value weights from A — A and
those from (A®)’ to A’ [103]. The study of operator valued weights could shed light on the
problem of reconstruction in the absence of a faithful state.

Consider the AdS,,1/CFTy correspondence in d > 1 and a simply connected region A.
In time-reversal symmetric geometries, the Rangamani-Takayanagi (RT) surface is the co-
dimension two surface in the bulk that is anchored on the boundary of A, is homologous
to A and has minimal area; see figure 5.12. Denote by B the region in the bulk that is in
between the RT surface and A. Consider the map R that encodes the algebra B of the bulk

281See chapter 4 for a discussion of the bi-module property.
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Figure 5.12. A time slice of anti-de Sitter space with A the algebra of a
region A on the boundary and B the algebra of the bulk region that is in
between A and the Ryu-Takayanagi surface of A. The CP map ® maps the
boundary local algebra to the bulk, whereas R reconstructs the bulk operators
on the boundary.

on the boundary (bulk reconstruction map). We choose the error map to be ® = o tra
where a(-) = W)W and W : Hypur — Hpoundary i the encoding isometry. All the bulk
operators b € B satisfy the error correction condition ®(R(b)) = b and the recovery map
R is an isometric embedding. The holographic map from the boundary algebra to the
bulk algebra has no kernel because both of the bulk and boundary vectors are cyclic and
separating with respect to their corresponding algebras. We have complementary recovery
and the whole bulk algebra B is reconstructable. The reconstruction map R is the Petz
dual of the holographic map ®. A similar observation was discussed in a recent paper [85].
Given a p-preserving conditional expectation we can define a measure of the information lost
under the conditional expectation [3]. This leads to entropic uncertainty relations that play
an important role in the derivation of the Ryu-Takayanagi formula in holography [16], [85].
It has been argued that complementary recovery fails in some situations in holography [89].
That brings the holography reconstruction problem closer to the real-space RG.

Finally, we make the following observation: In AdS,/CFT; the bulk reconstruction map
cannot be a conditional expectation, because there exists no conditional expectations from a
type I algebra (the boundary theory is 0+ 1 dimensional) to a type III von Neumann algebra
(the bulk theory is 1 + 1 dimensional QFT). We believe that the resolution of this seeming
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paradox is that the bulk and boundary relative entropies match only up to 1/N corrections.
The error correction properties of the holographic map are only approximate. A related
observation is that we can define CP maps in between *-closed subspaces of observables
(operator systems). This generalization can be helpful in moving away from the exact error

correction in holography.

5.2 Renormalization group and approximate error correction

5.2.1 Introduction

Renormalization group (RG) flow is a pillar of the twentieth century physics that has
allowed us to study the universal dynamics of the emergent long-range effective degrees of
freedom. Quantum error correction (QEC) teaches us how to encode quantum information
non-locally to protect it against local noise and decoherence. They both involve the physics
of states with long-range correlations. In this work, we show that the states deep in the
infra-red of an RG flow form an approximate error correction code.

Analogously, we can view the RG as an isometric embedding W of the infrared (IR)
states (logical states) into the ultra-violet (UV) states (physical states): W : H;r — Hyv 2.
Irrelevant local perturbations are the noise that the encoding protects against: POy P ~ P.
In this work, we explore this connection in three examples: 1) the RG flow of classical Ising
model, 2) the real-space RG flow of free massive quantum fields realized as continuous Multi-
scale Renormalization Ansatz (¢cMERA), 3) holographic RG flows as examples of strongly-
coupled QFTs.

There are many ways to coarsegrain the observables of a quantum system, and not all of
them correspond to isometric embeddings of the IR observables in the RG algebra. However,
it is worth mentioning that two commonly used approaches to RG, namely the tensor network
renormalization of many-body quantum systems, and exact RG in continuum field theories
both lead to isometric flows [104], [105]. In this work, we focus on isometric RG flows.

The idea of a connection between the RG and the QEC is not new. It is known that there

is an exact error correction code at the IR end point of an RG flow if there are degenerate

294In general, it suffices to take W to be an approximate isometry. In relativistic theories W can be unitary.
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ground states that are gapped. Such vacuum subspaces can form either due to spontaneous
symmetry breaking or topological order; see [106], [107] and 3°. The vacuum subspace is the
code subspace and the noise are local operators.

The spontaneous breaking of a discrete or continuous symmetry group leads to classical
error correction codes. For instance, the two-dimensional Ising model at low temperature
breaks the Zs symmetry spontaneously by forming long-range ordered ferromagnetic states
|00---0) and |1---1). This is a classical repetition code that corrects for local bit flips (ox
Pauli matrix). However, this is not a quantum error correction code because the errors
caused by the o, Pauli matrix cannot be corrected. In fact, o, is precisely the local order
parameter that distinguishes different code states.

To obtain a QEC code, we need the local density matrices of topologically trivial regions
to be the same in all the degenerate vacuum (code states). This implies that no local
observable can distinguish the encoded states. In other words, the system has topological
order. For example, the four-fold degenerate vacuum subspace of Z, Toric code on a torus
encodes two logical qubits that are protected against any error localized on a shrinkable
subregion. In fact, one can correct for errors localized on disjoint subsystems, e.g. A and C,
as long as the combined region, e.g. AC, does not contain non-contractible loops.

In this work, we extend this connection and show that even in the case of a unique
ground state the low energy states are approximately protected against the errors on small
enough subregions. Moreover, we show that the error correcting code is a local quantum
error correction (LQEC) code [108] because the code can correct the errors localized in
disjoint subregions A and C' which are separated by a region B as shown in Fig. (5.13a) *!.
By definition, a QEC is called local if the recovery map that corrects the errors on A can
be chosen to be a local map from B to AB [108], see Fig. (5.13b) for a two-dimensional
example.

In section 5.2.2, as our first example, we consider the one-dimensional classical Ising

model. To perform RG, we use Kadanoft’s spin blocking. The block-spin renormalization of

30+ Entanglement, wormholes and quantum error correction talk by Brian Swingle, 4th inter. conf. on QEC,
qec2017.gatech.edu.

314A QEC is called local if its stabilizers or gauge generators are supported on a small bounded region of
the space.
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(a) (b)

Figure 5.13. (a) A one-dimensional system on a line is partitioned into
regions A and C' which are separated by a small region B. In cMERA, we find
that the low energy coherent states are protected against the UV coherent
operators localized in subregions A and C.(b) The two-dimensional spatial
region is partitioned by ABC. The local erasure tr, acts on the red-colored
region A. The blue-colored region is the spatial domain of a local recovery
map.
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a classical system leads to approximate classical error correction codes. The quantum analog
of spin blocking is the so-called tensor network renormalization [95], [109]. Applied to the
Euclidean time evolution operator [109] it yields an isometric RG flow called the Multi-scale
Entanglement Ansatz (MERA) [104]. MERA tensor networks are well-suited for describing
real-space RG flow [81], [95], topological codes [110], [111], and the low energy states of
scale-invariant theories. It was shown in [81] that the MERA states form an approximate
QEC. That is to say that the IR information is approximately protected against the erasure
of small local regions in the UV lattice 2. We briefly review this example in section 5.2.3.

In section 5.2.4, we argue that these QEC properties generalize to the RG flow of contin-
uum Poincare-invariant QFTs. In [1], exact QEC in the Heisenberg picture was generalized
to arbitrary von Neumann algebras, including the local algebra of QFT. We consider contin-
uous MERA (¢cMERA) for free massive quantum fields in 1+ 1-dimensions. We use the field
coherent states to encode quantum information locally and study the RG flow of these code
states. We consider the geometry in figure 6.1(a), and show that the encoded low energy
states form a local QEC (LQEC) code that is approximately protected against the action of
the UV coherent operators in region AC.

To explore the error correction properties of RG in the strongly coupled QFTs, we consider
holographic RG flows. In holography, the emergent radial direction of the bulk can be
interpreted as the renormalization group scale of the boundary theory. The operators in
the IR are deeper in the bulk. They are protected against UV errors that are supported on
small regions. In section 5.2.5, we study a 3-dimensional geometry that corresponds to a
holographic RG flow from a UV 2-dimensional CFT to an IR one. We observe that not all the
encoded logical information is exactly protected. This becomes manifest by considering the
so-called holographic Singleton bound that puts an upper bound on the maximum amount
of logical information that can be encoded in a bulk subregion [112]. We find that a naive
application of the holographic Singleton bound in such a geometry suggests that there are

finite volume regions in the bulk where no information can be encoded. We further propose a

329The authors of [81] showed that MERA as an approximate QEC code satisfies the trade-off bound
kd® < cn where « is a constant fixed in terms of the size ratio |AB|/|A|.
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modification to the holographic Singleton bound which resolves the aforementioned paradox.

We conclude with a summary and discussion in section 5.2.6.

5.2.2 Classical spin-blocking

In classical physics, the standard real-space RG scheme of a spin system involves split-
ting the lattice into blocks and coarse-graining the degrees of freedom localized inside each
block. The coarse-graining replaces the collection of spins inside the block {s;} with a col-
lective degree of freedom s’ [113], [114]. For example, consider the translation-invariant one

dimensional classical Ising model with 3N sites, a local Hamiltonian

3N—-1 3N—-1

H({s})=—-J 2 SiSit1 + h Z Si (5.50)

and periodic boundary conditions; see figure 6.2. The configuration space is the set of all

sequences {s} = {s182 - s3y} and the thermal state is the probability distribution
p({s}) = eV /7 (5.51)
on this configuration space. A simple coarse-graining scheme is the majority vote scheme

+1 its; +s9453>0
s = (5.52)

-1 otherwise .

It is convenient to represent states as vectors |sysess) and think of the coarse-graining map
as a matrix T describing a classical information channel acting on probability vectors 3.
We think of the normalized transpose map 7% = T7/4 as an encoding isometry, the s’
variable as the logical state and the {s} variables as the physical states. The code subspace
is spanned by the two states |T*(41)) **. A simple model of local noise is a one-site bit

flip error +1 — F1 with probability p. For instance, its action on the first bit is given by

339 The matrix elements are (s'|T|s1s253). In our example, the map T is T'= (§ §49§999).
341 The encoded states are [T*(+1)) = §(|£1,+1,£1) + [£1,£1, F1) + |[£1, F1, £1) + |F1, £1, +1)).
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1-p p

) 17},). In the physical space |s;$283) this error is

the symmetric binary channel G| = (

represented by G ® Zos. It propagates to the logical bits |s') and acts as the matrix

T(G ® Ip3)T* = 22 . (5.53)
1—

N3
NS

By translation invariance of the code states, the other two local errors GG, and G3 also lead
to the same logical error matrix above. The key observation is that the error after coarse-
graining (equation 5.53) is the same as the original error but weaker, because the probability
of bit-flip is cut in half. It can be viewed as an eigen-operator of the coarse-graining map
®(-) = T(-)T* with eigenvalue 1/2. In real-space RG, we repeat the coarse-graining map n
(large number) times to flow from the short-distances to long-distances. In the case of the
above model with 3V sites, if we start with the local error map G; on some site s;, after the

first step the error is
P(G)=T(GRL,)T" (5.54)

where (G; ®Zy;) is the local error in the UV, and T = T®N. After n steps of coarse-graining
the errors are exponentially weaker
o= | T (5.55)
27"p 1-27"p
As we flow from the very short distances (UV) to very long distances (IR) the local errors
are expected to decay exponentially fast lim,,_,., ®"(G;) = Z.

Next, consider the non-local error Gy ® G - - - - @G, that corrupts k£ adjacent sites. After
one level of coarse-graining it corrupts [(k — 2)/3] + 2 sites. After each step of coarse-
graining the support of non-local errors shrinks almost by a factor of three, until it becomes
local at which point the above analysis applies. This logic extends to arbitrary k-site error
model. There are two stages to the renormalization of any error of finite support in the UV

Hilbert space. In the first stage, the support of the operator shrinks monotonically. In the
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Figure 5.14. This is a single step coarse-graining on a classical Ising model
in one dimension with 3/V sites. Since T coarse-grains three spins into a single
spin, T = T®" coarse-grains 3N sites into N sites.

second stage, the error becomes exponentially weaker [81]. Deep in the IR the RG flow is an
approximate classical error correction code in the trivial sense that k-local errors are highly
unlikely to corrupt the encoded data.

The RG flow map ®(-) = 7(-)7T* is a classical channel and all its eigenvalues have norm
less than one **. More generally, we could have considered the asymmetric binary channel

G:pl<1_p1 n ) =T +piGy +paG

p2 l—p2

where both G, and G_ are eigenoperators of the RG map with eigenvalue 1/2 and the
identity map is invariant. There are no one-site errors that are left invariant under the RG
map. The only fixed point of the RG map corresponds to acting with the noise at every single
site. The support of such an operator never shrinks to one-site. The ground states of the
one-dimensional nearest neighbor Ising model form an exact repetition code. A simultaneous
Zo flip on all sites is a logical operation which takes us from one code state to another in the
repetition code. In the absence of fixed points, the states after a large but finite number of
RG steps are our code-words, the encoding is (7*)" and the largest eigenvalue of the RG map

controls how well this approximate error correction code protects the classical information.

351A classical channel is a stochastic matrix, or equivalently a conditional probability distribution.
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5.2.3 Quantum spin blocking (MERA)

The intuitive discussion above generalizes to the renormalization group flow of quantum
systems with local Hamiltonians. In a gapped system, the RG flow becomes trivial at scales
above the correlation length. Since we are interested in repeating the RG map many times,
we focus on the real-space RG in critical systems. We start with a lattice theory in the IR.
The RG map can be viewed as an encoding isometry W : H;rg — Hyy. In MERA, this
isometry corresponds to two layers, first a layer of local isometries V ® --- ® V', and second
a layer of local unitaries U ® --- ® U called the disentanglers. The layer of local isometries
is the quantum analog of 7* map in the example of classical Ising model. In quantum
real-space RG, the disentanglers are essential to correctly remove the UV entanglement.
By the same logic as in the classical case, we view the RG flow as a quantum channel
D(Opy) = WOy W acting on UV operators Opy. Repeating the channel many times
corresponds to flowing deeper towards the IR. For concreteness consider a MERA where
every RG step cuts the number of sites in half.

As discussed in [81], the RG evolution of non-local operators Oy (A) originally sup-
ported on a compact region A follows two stages: first the support of the operator shrinks
exponentially fast until after approximately log |A| steps, and it becomes a single site oper-
ator O. We decompose the local operator O as O = tr(O)I/D + ¥, a;: X; with {X;} form an
orthonormal basis of local traceless operators. For instance, in the case where every site is a
qubit X corresponds to Pauli matrices.

Then, as we flow further towards the IR, the second stage starts. The RG superoperator
leaves the identity operator invariant: ®*(I) = I, but the norm of all X; operators falls off
exponentially fast in s. The reason is simply that ® is a quantum channel and its eigenvalues

have norm less than one. That is, all the eigenoperators O; satisty

O(0;) = N0, Al < 1. (5.56)

141



Denote by A; the second largest eigenvalue of the RG superoperator ® *[81]. We refer to
v = —log(Re);) > 0 as the gap in the scaling spectrum *7. After s steps of RG the norm
of any traceless operator falls off at least as fast as 277. After a total of s RG steps, a noise

operator Opy (A) originally supported on region A has evolved to ®*(Opy(A)) to
D% (Opy (A)) — tr(O)I/d| < 27 lesl4D| ). (5.57)

The Knill-Laflamme error correction condition [115] requires that for {|¥,)} a basis of

the IR states and Opy (A) an arbitrary UV noise support on compact region A
(W, |@*(Opv (A) V) = cprby +Y (5.58)
with |Y| < 1. After s RG steps the equation above is satisfied with
V| < 27veleel D0 (5.59)

which becomes arbitrarily small deep in the IR.

Given a code subspace the distance of a code d is defined to be the minimum support of
errors that cannot be corrected. One might guess that the distance of the code we defined
above is |A|. However, this is incorrect because in MERA there are smaller multi-component
regions that contain the information content of the encoded qubit; see figure 5.15. This is
because we can erase A and smaller regions A;, A, and A inside A and and still recovery our
information; see (Fig. (5.15 Right). The authors of [112] called this property uberholography.

In the continuum limit, the RG map of MERA ® becomes the scaling superoperator,

its local eigen-operators are conformal primaries and the eigenvalues are their corresponding

361 The largest eigenvalue is one.

374We are assuming that there is a gap in the spectrum of the quantum channel; i.e. there exists a smallest
a second largest eigenvalue. In finite quantum system, this is obvious, however, for infinite-dimensional local
systems it is an assumption that corresponds to ruling out a continuous spectrum of scaling operators above
the identity operator.
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Encoded data

A PN
s—log|A|

L]
Encoded data

Figure 5.15. (Top) The RG flow of operators localized in A in MERA. The
operator shrinks to a point after s ~ log|A|. Deeper in the IR, its norm
drops exponentially fast. (Bottom) The encoded data is protected against the
erasure of multiple regions: A, A;, As, etc.

143



conformal dimensions. If each step of MERA cuts the number of sites down by a factor of

then
O(04) =7 "On (5.60)

where h is the conformal dimension of the primary operator O,. We group the conformal
primaries into light L = {h : h < hy} and heavy ones H = {h : h > hy + A} and call A the
gap. Expanding an arbitrary local operator O in terms of local primaries, and one can split

it into the light and heavy pieces assuming that all scaling dimensions are positive

O =0+ Op,
OL = Z CLhOh, OH = Z ah(’)h . (561)
heL heH

Then, after s > 1 steps of RG flow an arbitrary local operator can be truncated to its light
part, i.e. Oyp:

|®°(0) — O] < e 2|0 (5.62)

which can be turned into an approximate QEC statement using the Knill-Laflamme condition
in equation 5.58. To see this more explicitly we consider the following example of continuous

MERA for a massive free boson in 1 + 1-dimensions.

5.2.4 continuous MERA

Consider MERA that goes from deep in the UV to the most IR layer with n local sites
and a coarse-graining scheme that, at each step, cuts the number of sites in half. We label
the layer deepest in the IR with s = 0, and choose the state at s = 0 to have zero correlation
length and no spatial entanglement ®, [2(z)). At each step of coarse-graining as we flow
towards the IR s goes up by one, and the network disentangles modes. Deep in the UV s is

a large negative number and we have 27°n sites. In the thermodynamic limit n — oo the

144



MERA network can go on forever and the range of s becomes (—o0,0). At each scale we
have a ground state wave-function |Q()).

A generalization of MERA to continuum theories (¢cMERA) was proposed in [93]. Similar
to the discrete case, cMERA is an isometric map that takes the states of a theory with zero
correlation length deep in the IR and prepares the low energy states of a QFT (or CFT) in
the UV. The IR ground state is taken to be a state |Q2(®)) with no real-space entanglement.
It is more convenient to think of MERA as the isometry from the IR to the UV. The state

at energy scale Ae™* is given by
Q) = Pel Jo WK @+L@) | (0)y (5.63)

where L(s) is the non-relativistic scaling transformation **, and K (s) is the continuous analog

of the layer of entanglers:
K(s) = / dk D(1k| /A)g(s, k) Oy . (5.64)

Here, A is the cut-off scale and the cut-off function T'(|k|/A) can be chosen to be sharp or
smooth. The operator O is an operator of energy scale k that should be suitably chosen
as the generator of the entangling layer. Finally, the function g(s, k) decides the strength of
the entangling procedure [116].3°

For concreteness, consider free massive boson field ¢(x) and its momentum conjugate

n(z) in one spatial dimension. Following [94] we choose an entangler independent of scale

K = j/dxdy e Me=vl
(a(a; Na(y; A) — a(a; A)a(y; A)T)

38141t sends ' — Ax' keeping time untouched.
394In discrete MERA the effective cut-off changes as a function of scale, whereas in cMERA we have kept
the cut-off A fixed. To compare the two, we consider the rescaled state |Q(u)) = eL |Q(u)).

145



where

a(z: ) = \/§¢($) + \/iQ_An(x) (5.65)

is the annihilation operator that defines the unentangled state via a(z;A)|Q®) = 0. The
cMERA state at scale e A is

100 = i (LK) |QO)y (5.66)

This state is the ground state of a massive free boson deformed by a non-relativistic irrelevant

term [94]:

(5.67)

We define the annihilation operator that kills [Q(*)):

as(k; A) i
o o)+l

| 2 +A2€2s

The mass term m(s) = Ae® runs with scale vanishing in the UV (s — —o0) and growing in

as(k; A) =

the IR. Since we are interested in the RG flow of a massive theory we fix the mass m and

40tNote that our convention differs from [94] in the sign of s.
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S

vary the cut-off A = me™*. To further simplify our discussion we measure all dimensionfull

quantities in units of m (we set m = 1) 4!

| k2+1

They satisfy the standard commutation relations
[al(k), as (k)] = dur, (5.72)
and the Hamiltonian is

HE = /dkE k)al (k)as(k) +1/2
Ey(k) = VE2 + 1V1 + k22 | (5.73)

The renormalized creation/annihilation operators are related to those of the UV theory

al(k) £ a,(k) = B,(k)T (a' (k) — a(k))
Bulk) = (14 K2) " (5.74)

Then, the vacuum state |Q2®*)) is annihilated by the annihilation modes at scale e,

4111f instead of setting m = 1 we take the massless limit in (5.68) we find

w(k; A) = k| . (5.69)

m

Deep in the IR we have a CFT and the renormalized field operators ¢*(0), ©*(0) and V,(0) = ¢?*(*) are
conformal primaries satisfying

—i[L + K, 0%(0)] = A,0%(0) (5.70)

with conformal dimensions Ay = 0, Az = 1 and Ay, = p?/2. The field ¢(z) is not really physical. Its
vanishing conformal dimension is a symptom of the infra-red divergences in the two-point function of ¢.
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Coherent operators of the free real scalar fields in 1+1dimensions

Consider the canonical quantization of a free real scalar QFT in finite volume. The

vacuum is the tensor product of the vacua corresponding to the annihilation operators

_Jw(k) in(k)
a(k) =/ —5o(k) + 2olh)
gy Je®) o im(k)
(=k) =/ —5 oK) o) (5.75)

where we have used the fact that for a real scalar field ¢'(k) = ¢(—k), and 7l (k) = n(—k).

The commutation relation is [a(k), a'(k)] = 2. Consider the unitary field coherent operator

D7) =D a(f) = [ de f(aala)

We have

() = a(f) = [ dk (f(R)al (K) = (/*)(~R)a(k))
= [ drk (F(R)a' (k) — £(k)"a(k))

- [ (cb(k)mf—(—k) _ W) f+(—k))

2w (k)
_ / dk (ig(k) fo(—k) — in(k) fa(—F)))
= 1¢(fs) + in(fz), (5.76)

where we used the Fourier transform of complex conjugate (f*)(k) = (f(—k))* and

f(k) £ f(=F)

fi(k) =

2
folk) = —i\2w(B) (k). falk) = —w/j@f+<’f> |

(5.77)
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Note that it follows from (5.77) and w(k) = w(—k) that the functions f,(z) and fr(z)
are real. Using (5.76) we can write coherent operator as a multi-mode momentum unitary

displacement operator

al (k)— *a
D(f) = [ e/ ®e')-7a0
k

) CCECRCRORS HORC, (5.78)
k

where we have used the Baker-Hausdorfl-Campbell for [X,Y] ~ [: ¥t = eXeVealXY],

This form of the coherent operator allows us to compute the vacuum expectation value

(D(f)) = [ (e~ 2/ HI®") = g=3U1D)

(f19) = [ do f()g(a) (5.79)
The single-mode displacement operators
D(a) = e~
satisfy the Weyl algebra
D(a)D(B) = ez~ D (o + B) . (5.80)
Therefore, the unitary field coherent operators satisfy

D(f)D(g) = e2@N-U) p(f 1 g)
_ a-1F0-@HE) D(f 1 ) (5.81)

_ 2N D(f 4 g)

where we have separated the real and imaginary part of f and ¢: f(z) = f_(x)+1if}(z) and

9(x) = g-(2) +ig+(2).
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The quadratic Hamiltonian is
H= / dk E(k)a' (k)a(k) + 1/2 (5.82)
then the energy of the field coherent state is

IHI) = [ ak E@LFW0IE +1/2. (5.83)

which implies that the coherent states with bounded energy have suppressed |f(k)| at large
k.

Encoding a qudit at a point:

We use a coherent operator D(ipfy) with a real function fy that is an approximation of

a delta function at point xy with width ¢, and p running from 0 to ¢ — 1, i.e.

p, zo) := D(ipfo) |2), (5.84)
to encode a ¢-level quantum system at x = x.

As a concrete example, consider the Gaussian wave-packet

fo(w) = —a—e™ 2" (5.85)
Tr) = —e 2e .
0 27

that is a regularization of the Dirac delta function #2:

1
li = = = —. .86
ling(glfo) = 9(z = o), (folfo) = 5 (5.86)
These states (5.84) have large energy at small e:

2 2

p Loy P
H = —~=U(—=,0 ~ 5.87
<p> ':CO‘ ‘pa x0> 264ﬁ ( 9’ ) € ) Il ( )

424In the momentum space we have fo(k) = eikwf/;f;;
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where U (a, b, z) is the confluent hypergeometric function. The set of states |p, zo) are almost

orthonormal in the limit of small € because

(0, wolp,xo) = (D(i(p—p')fo))

— o 3(0=P)?(folfo) ~ Opp! -

One can construct an algebra of the g-level quantum system encoded at point = = xg
on a code subspace constructed above by considering two types of operators, D(igfy) and

D(g-) for a smooth real function g_. The operator D(iqfy) takes us in between code states

<p/7370|D(1Qf0)‘p7 .T0> = Op’ p+q (588)

and the operator D(g_) is diagonal in the basis |p, zo):

(0, 20| D(g-)|p, x0) = Sy (D(g-)) e PH#a-1fo)

where (g_|fo) ~ g—(z = x¢) in the € — 0 limit. If P is the projection to the code subspace
spanned by |p, zo) then the operators Py, PyD(iqfo) Py and PyD(g—)P, and their Hermitian
conjugates generate the algebra of the g-level system encoded at point z = x.

Moving a distance € away from = = zy we can encode a new ¢-level system because

Wl ) = D~ 1)
= exp <_;(f0|f0) <p2 + (p/)2 . 2pp,e*(m(i:211) ))

which is vanishing small at small € and |zg — z1| > €.

The RG flow of coherent operator

The vacuum state of the massive QFT with the cut-off length scale e® satisfies

as(k) Q) =0 (5.89)
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for the annihilation operators at scale e® defined in (5.71). The coherent state corresponding

to this annihilation operator is

|f55) = DO(f) |0
DO (f) = erl(h=as(F) (5.90)

It satisfies the Weyl algebra
DU()D(g) = HImIDDOf +) (5:91)

similar to the set of coherent operators D(f) in the UV. Since the theory is Gaussian the
renormalization of the coherent operator can be absorbed in the choice of smooth function

D(f) = D®(f*) (see section III of the main text):

fi(k) = Bo(k)™ fr(k),
fi(z) = BV fi(x),
B:=(1—¢e*r). (5.92)

The matrix element of D(g) in the code states correspond to a three-point function of
coherent operators that can be computed using the multiplication rule of the algebra in

(5.91):

AW pis) . (0'f,s|D(g)lpf, s)
= (QO)| DO (—p/ /YD) (¢°) DO (pf)| Q)

— p2Im(=(g*IP' N+ (fla*=p'f)) «

(QD(g* + (0 — ) .N)IQY) . (5.93)
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In the case where f =ify and g = g_ +igy:

Al pis) = —ilp+p) (9| fo)
—;(gs + (=) folg® + (0 =) fo) -

We would like to understand the renormalization of the coherent operators as they flow
from the UV to the IR. As an example, consider the test function fy(z) in (5.85) and the
coherent operator D(fy +ify). Under the RG flow it goes to D)( fo_+ifs,) with f§ . real.
It follows from (5.92) that

_ (z—z)?
2¢2

fou(@) = (1= e2p2)*1/48

D (5.94)

Deep in the UV the term e?*/2 is small and the renormalization of fy is perturbative. The
renormalization becomes non-perturbative at the cut-off length scale e® when e?*|/2 fo| be-

comes comparable to | fy|. For the test function f; we have

| fol _ e* ((I —20)* _ )
T 1] . (5.95)

There are two stages to the RG flow of this coherent operator. In the first stage, the
cut-off length e® is much smaller than €, the term e?*/2 in (5.94) can be neglected and the
renormalization of f§ is perturbatively small. The second stage starts when e ~ e. As we
flow deeper in the IR e® >> € the term e*/2 in (5.94) dominates. In stage two, we are in the

regime € < e® and for points away from |z — x¢| = € we can use the approximation

fo(w) o= =2 (72) = fo () . (5.96)

The function f5, (f;_) grows (decays) exponentially fast as el*71°89/2 (el=7129)/2) in the
IR, respectively; see (Fig. 5.16). Note that s increases as we flow towards the IR.
We can generalize these lessons to the renormalization of any function g(z) that is local-

ized around x = zo with linear width ¢ < |A| < 1. Note that, in our units, the unit length
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Figure 5.16. The renormalization of the functions f5,(v) is insignificant
until the cut-off length scale becomes comparable to € (width of fy(z)). As we
flow further towards the IR (Top) the function fg, (x) becomes highly peaked
(Bottom) the function f5_(z) flattens out. (Blue: s = —oo, Yellow: s = 1,
Green: s =2, Red: s =3.)

corresponds to the inverse mass at the IR scale, i.e. m~! = 1. Intuitively, one expects that

near the peak

29(@)]

9] Loy ~ 1A (5.97)

or more generally the right-hand-side is some function that is inversely proportional to |A|.
There are two stages to the RG flow. In the first stage e® < |A|, the cut-off grows but the
function is frozen. In comparison to MERA, the cut-off can be interpreted as a unit qudit
and the operator is supported on |A|/e number of sites. Therefore, in this stage the support
of the UV operator shrinks exponentially fast. Similar to MERA, the second stage starts
when the RG scale reaches the size of the unit block e® ~ |A|. Beyond this point, we find

that inside A the function g3 grows exponentially as els—log|A])/2

and ¢° decays exponentially
as e(75710814)/2 " This is reminiscent of the second of the RG flow of operator in MERA. For
a general function g(x) the right-hand-side of (5.97) is some more complicated function. The
transition scale happens at some e® ~ h(|A]) for some increasing positive function of |A| and
the exponent that controls the exponential growth or decay is (s — log h(|A])).

Note that the larger |A| is, the later the second stage starts. Because of the above

behaviour, for a coherent operator D(f) as an error operator with a function f supported
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on a large |A[, one needs to flow much deeper in the IR to achieve the error correction code

with the same errors.

Error correction condition:

The Knill-Laflamme condition for approximate quantum error operator [117] tells us that
we can approximately correct for error caused by the operator O if and only if this operator

is proportional to the projection to the code subspace up to small corrections 9:
<\IJT‘O|\I/T/> =COpp +0 . (598)

We choose the coherent state with cut-off length scale e® as the states of the code subspace
and choose as errors the UV logical operator D(D(h_)) and D(ih,) for smooth real functions
h_ and h, which could be supported on either A, C', or both. One can choose, for instance,
h_ = g_ and hy = qfy that we introduced in section (102). To show error correction we

need to establish that

<p/7 Zo; S’D(h*)|p7 To; 8> = C(h*7 S)(SPP/ + 51

(0, xo; s|D(ihy)|p, xo; 8) = c(hy, $)0py + 2 (5.99)

for small §; and d5. As opposed to the MERA where we were protected against the erasure of
a region, in cMERA we have the weaker statement that given a set of local coherent operator
we are protected from them if we go deep enough in the IR.

We use the algebra of the free fields to compute these matrix elements:

(0, 203 8| D(h_)|p, w0; 8) = c(h_, 5),e PP 1)
(W, 205 8| D(ihy) |p, mo; s) = e~ 3+ E=DflhE+(=p)fo)

c(ha,s) = (Q°|D(hi)|Q°) . (5.100)
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Figure 5.17. Under the RG f5, (f;_) localizes (flattens). (Left) Their
overlap with go supported on C'is suppressed if [ is large enough. (Right) The
overlap of f5, (f5_) with g4 supported on A grows (decays), respectively.

We first consider the case where h¢ = h_ ¢ +ihy ¢ with hy ¢ real functions supported

on a region C' that is at least le away from = = x¢; see (Fig. 5.17 Left). We have
(il fo) = (h+lf5 <) - (5.101)

Since f; () decays exponentially fast with distance away from x = z¢ we have
(hyclfo) = O@™/?) . (5.102)

Since all the points in C satisfy |x — x| > € it follows that the functions fo 4 (z) grow at
most like e¥/2/,/e. For any fixed large s and a large enough [ we find that the error caused

by any D(h¢) can be corrected because

<p/a Lo; S|D(h—,C)|pa Zo; 8> = C(h—,CW S)épp’
(P, xo; s|D(ihy o) |p, o; 8) = c(hy ¢y 8)0py (5.103)

Next, we consider the case where h, is supported on region A that includes the point

x = xo; see (Fig. 5.17). As we argued, under the RG flow, the function A% is unchanged until
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e® ~ |A|. After that the second stage of RG starts. Since e® > |A|, for all (x — z¢) < |A],

we can use the approximation in (5.96). Therefore, in the second stage we have
(P al f0) == 2010840 (R | (2) 514 o) (5.104)
This combined with (5.101) and (5.100) implies that for e* > |A| we have

(0, zo; 8| D(h__4)|p, wo; 5)
~ c(h_a, S)(Spp,e*i(pfp’)O(e—s/z)

~ C(h,’A, S)(Spp/ . (5105)

For the operator D(ihi 4) as we saw in equation (5.88) we can distinguish different code
states if we tune hya = —(p — p')fo so that the exponent in the second line of (5.100)

vanishes. However, this cancellation does not survive under the RG flow because

Woat+@—0)fo=w—0)fo—f51)

= (p =)L = (X)) fo = (1 — p)(e>r2)"* [y

where in the last line we use the fact that we are in a regime where (e2*/2)!/4 dominates
over the first term. It is clear from the second line of (5.100) that the norm of the function
above controls the size of the matrix element of this coherent operator. This norm can be

computed explicitly:
eS

V265 (P22 Y = (1 — )2
(0= PP (M2 ol fo) = (0= 1) sy

(5.106)

Since e® > |A| and |A| > 1 the expression above grows to infinity. Plugging this back into
(5.100) we find that deep in the IR

. _@=22 (s
(0,20 8|D(i(p = P') fo)lp, wo; s) = = 2O (5.107)
which goes to zero.
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In summary, we find that approximate error correction conditions above are satisfied for
any fixed set of UV logical operators D(h) with h supported on A, C or both (see figure 6.1)
if we go deep enough in the IR. The operators supported on A are correctable when e® > | A]
and those on C' are correctable when C' is far enough from = = x(. In fact, we can consider
the operators that are supported on AC and the same argument above implies that deep in
the IR the UV operators of AC' can be corrected. This is reminiscent of uber-holography and
local error correction in [81], [112]. The energy produced by a coherent noise operator D(h)
grows as [ E(k)|h(k)|?. If we put a bound M on the energy carried by noise operator, deep in
the IR, i.e. €M < 1, we are protected from all such errors. However, we are not protected
against erasures because for any fixed IR scale e® there always exist D(h) supported on A

or C' with large enough energy that can distinguish the code states.

5.2.5 Holographic RG and error correction

The cMERA discussion was restricted to free fields. To study the QEC structure in the
RG flow in strongly coupled QFTs we consider holography. Holography can be viewed as
a QEC where the logical algebra of bulk regions are non-locally encoded on the boundary
regions such that they are protected against local boundary erasures [118]. Moreover, the
logical subalgebra corresponding to some bulk subregion £(B) can be reconstructed from the
subalgebra of the boundary subregion B. The bulk region £(B) is the domain of dependence
of a bulk codimension-1 spacelike surface between B and a bulk codimension-2 stationary
area surface anchored on B [119]. In case there are more than one possible stationary area
surface anchored on B, the surface with the smallest area will determine the bulk region £(B).
The bulk region £(B) is called the entanglement wedge of B [120] whereas the minimal area
stationary area surface is called Hubeny-Rangamani-Takayanagi surface (HRT) surface [121],
[122].

Various properties of the holographic QECC were studied in [112] and the authors defined
the concept of the distance and the price for a logical algebra of operators in a bulk region.

Here, we review some important definitions and theorems from [112].
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We start by considering a logical algebra of a single bulk point x. The distance of a
logical operator is the size of the smallest boundary region B such that the logical operator
cannot be reconstructed from the complement of the boundary region B, which we denote
by B¢. This means that the distance d, of a logical algebra of a point x is the volume of the
smallest boundary region B such that z is not in the the entanglement wedge of B¢. That
is,

d, = min |B], (5.108)
B:x¢&(B¢)

where |B| is the volume of the region B. For a logical subalgebra associated to a finite bulk

region X, the distance is given by
dx = min d, . (5.109)

The price px of a logical subalgebra corresponding to bulk region X is the volume of
the smallest boundary region on which any operator ¢ € A(X) can be represented. The
subregion-subregion duality implies that the price is the volume of the smallest boundary
region such that the region X is in the entanglement wedge.

— in |B|. 5.110
Px B:?él&B)" ( )

By comparing these definitions, one can deduce that px > dx. This statement is called no
free lunch in [112].

It is worthwhile to mention that the inequality of the no free lunch can be saturated for
a bulk point z if one assumes the notion of geometric complementarity [112]. The geometric
complementarity states that a bulk point is either in the entanglement wedge of a boundary
region B or in the entanglement wedge of the complementary region B¢. That is, if v ¢ £(B°),
then z € £(B).

A stronger version of the no free lunch is the holographic strong Singleton bound. It

states that the difference of price px and distance dx of the logical algebra associated to a
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bulk region X can not be less than the number of logical degrees of freedom kx in that bulk

region [112]. That is,

In the following subsection, we consider a simple example of a holographic RG flow in
which we find that there exists a finite bulk region for which the price and the distance
of the corresponding logical algebra are the same. The holographic Singleton bound then
implies that there should not be any logical degrees of freedom in that subregion. We then
discuss in Sec. (105) how to modify the definitions of the distance and the price to resolve

this problem.
Holographic RG flow
Consider the vacuum AdSs; with the metric
ds* = /" (—dt?* + da?) + dr?, (5.112)

where L is the AdS length scale, and r is the bulk radial coordinate. The boundary is located
at r = oo and r = —oo is the Poincare horizon. This geometry is dual to the vacuum state
of a (1 + 1)-dimensional CFT on a flat spacetime. The AdS length scale and the central
charge of the CFT are famously related according to [123]

¢ = 3L/2Gy . (5.113)

Now suppose we set off an RG flow on the CFT by deforming with a relevant operator.

The geometry that is dual to the RG flow on the boundary is given by [124]-[126]
ds? = 0 (—dt? + da?) + dr?, (5.114)

where A(r) is such that A(r) ~ r/Lyy near r = oo whereas A(r) ~ r/Lig near r = —c0.

Lyy is related to the central charge of the UV theory according to Eq. (5.113), whereas
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L;g is related to the central charge of the IR theory to which the UV theory flows **. The
function A(r) captures the flow of the boundary theory from UV to IR [127], [128].

In this work, we consider a simple example where A(r) is given by a

T/LUV T Z 0
A(r) = . (5.115)

T’/L[R TSO

This simple model of holographic RG flows has been studied in [129], [130] where the minimal
area surfaces corresponding to boundary regions are studied. Here, we review the results
from [129].

Consider a single interval on a boundary of size . For small enough regions, the bulk
stationary area surfaces remain near the boundary and do not penetrate to r < 0 region
(i.e. the IR region.) In particular, this type of stationary area surfaces only exist for
¢ < 0y = 2Lyy . For regions of length ¢ > /5, the stationary area surfaces must penetrate
to the IR region.

However, it was observed in [129] that even for £ < {5, there can exist stationary area

surfaces that go to r < 0 region. In fact, such surfaces exist for ¢ > ¢; , where

Lip\?
00 = 2Lpy |1 - (1 - ) . (5.116)
Lyv

Based on the above discussion, the HRT surfaces for ¢ < ¢; completely stay in the UV
region whereas the HRT surfaces for ¢ > /¢y penetrate to the IR region. For intermediate
size regions, both types of stationary area surfaces exist but the HRT surface is the one with
a smaller area. It was observed in [129] that there exists a critical size of the interval, ¢,
below which the surfaces that stay in the UV region has a smaller area and above which the
surfaces that reaches the IR region has a smaller area. In Appendix (5.2.7), we numerically

calculate the critical size of the interval by comparing the area of the surfaces involved.

431The holographic c-theorems say that the null energy condition in the bulk implies L;r < Lyy [127],
[128].
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Figure 5.18. Pictorial representation of the phase transition in the HRT
surfaces at £ = ¢; for L;gp = 0.3 and Lyy = 1.0. The critical length scale is
in the range ¢; < {; < ¢5. The HRT surface for ¢ just bigger/smaller than ¢,
is shown in blue/red color. The yellow shaded region is an example of a finite
size region X for which the distance and price are equal.

The result of this analysis is shown as a plot of ¢, versus L;gr/Lyy in Fig. (5.19 Left) in
Appendix (5.2.7).

Due to the ‘phase transition’ in the HRT surface at ¢ = ¢;, there is a jump in the bulk
entanglement wedge as well. When the size of the boundary interval is just smaller than
{;, the minimum radial point that is reached by the HRT surface is ryy > 0. On the other
hand, when the size of the boundary interval is just greater than ¢;, the minimum radial
point reached by the HRT surface is 7z < 0. The jump in the entanglement wedge at ¢ = /¢,
can be measured in terms of the proper distance between these minimum radial points. We
numerically calculate this proper distance in the Appendix (5.2.7) and find that we can
make this proper distance bigger by making the difference between L;r and Ly bigger; see
(Fig. 5.19 Right) in Appendix (5.2.7).

The transition in the entanglement wedge at ¢ = ¢, has interesting implications for
holographic QECC. Consider a bulk region X which is the intersection of the region r <
ryy and the entanglement wedge of a boundary interval of size slightly greater than /.

The condition » < ryy implies that the region X is not in the entanglement wedge of
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any boundary interval of size less than ¢;,. Hence, according to Egs. (5.108)-(5.109), the
distance of the logical algebra associated to region X is given by ¢;. Moreover, according to
Eq. (5.110), the price of the region X is also given by £;**. This means that we have found a
logical subalgebra associated to a finite size bulk region for which the price and the distance
are the same. Comparing this with the holographic strong Singleton bound in Eq. (5.111),
we deduce that the number of logical degrees of freedoms in that finite size subregion should
be zero or else we get a violation of the holographic strong Singleton bound.

We discuss in the next subsection how to modify the definition of the distance and the

price to resolve this apparent paradox.

Price, distance, and the reconstruction wedge

We observed in the previous subsections that a phase transition in the entanglement
wedge led us to a violation of the holographic strong Singleton bound. In this subsection,
we discuss this violation can be resolved.

The definition of the entanglement wedge in terms of the minimal area surface is only
valid at the leading order in O(1/Gy). At subleading order in Gy, we have to take the
entanglement entropy of the bulk quantum fields into consideration [131], [132]. More pre-
cisely, the entanglement wedge of a boundary region B is the domain of dependence of a
bulk region between B and a codimension-2 surface of stationary generalized entropy. The
generalized entropy of a region is equal to the area of the boundary of that region (in Planck’s
units) plus the entropy of the quantum fields in the region. This subleading correction, as
is recently emphasized [133]-[135], can be significant when there is a phase transition in the
minimal surfaces.

Now suppose there is a state px of the quantum fields in region X which we introduced
in the previous subsection. If this state is pure, then the discussion of the entanglement
wedge is unchanged and we end up with a phase transition at ¢ = ¢,. However, when the

state px is mixed, then there is no phase transition and the entanglement wedge at ¢ = ¢, is

449The distance and the price are actually equal to (¢;)® where a = log(2)/log(v/2+1) [112]. This is the size
of the fractal like disconnected intervals such that the entanglement wedge of the disconnected region has
the same minimum radial point as the entanglement wedge of a single interval of size ¢;. This construnction
is called wberholography in [112].
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region between the boundary interval and the red surface shown in (Fig. 5.18). Hence, the
entanglement wedge depend on the state px.

The dependence of state on entanglement wedge has been recently discussed in [133]-
[136]. In particular, it was argued in [134] that the bulk region that can be reconstructed
given a boundary region B is not the entanglement wedge of B. In fact, this region can
be macroscopically smaller than the entanglement wedge, £(B). The reconstruction wedge,
R(B), corresponding to the boundary region B is defined to be the intersection of all the
entanglement wedges of B for every state in the code space [134].

In the example that we discussed above, the reconstruction wedge of boundary interval
of size ¢ = /¢, is the entanglement wedge when the state px is mixed. Hence, there is no
phase transition in the reconstruction wedge at ¢ = /.

With the fact that the reconstruction wedge is smaller than the entanglement wedge, we
restate one of the main statements in the main text. To solve the violation of holographic
Singleton bound, we propose that the definition of the price for a logical algebra associated
to a bulk region X should be modified from Eq. (5.110) to

px = min |B]. (5.117)

B:X€R(B)

Similarly, we propose that the distance of a subregion X is

dx = min d,; d, = min |B|. (5.118)

rzeX B:x¢R(B¢)

With the new definition, although the distance is still determined by the ¢ = /;, the
price is determined by ¢ = {5 which is the largest length for which the surface in Eq. (5.119)

exists®®.

45t Again, the distance and the price are given by (£;)® and (f2)® respectively where a = log(2)/log(v/2+1)
as determined by the uberholography construnction.
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5.2.6 Discussions

In summary, we studied the connection between RG and approximate error correction
codes in three examples: 1) the RG flow of classical Ising model as a classical code 2)
continuous MERA for massive free fields as a quantum code. 3) holographic RG flow of a
2-dimensional boundary theory.

In this work, we advertised the picture that the Hilbert space of an effective field theory
with the cut-off scale A should be viewed as a code subspace of all states that are approx-
imately protected against the short-distance errors localized on a region of linear size A
much smaller than the cutoff, |A] < 1/A. To argue for this point, we used cMERA as a
concrete realization of the real-space RG flow of massive free fields. However, there are other
approaches to the RG flow. Examples include the continuous Tensor Network Renormal-
ization (¢TNR) in [137], the generalization of cMERA using Euclidean path-integrals [116],
[138], the RG flow for free O(N) model using Polchinski’s exact RG [105]. In some of these
approaches the map from the IR physics to the UV is no longer an exact isometry. It is
an interesting question to investigate the approximate QECC code appears in these other

approaches to the RG flow.

5.2.7 Appendix: Holographic RG flows and phase transition

In this appendix, we present the details of the phase transition in the entanglement wedge
that we discussed in section (5.2.5).

Consider a single interval on a boundary of size £. One possible stationary area surface
anchored on this interval is the one that does not penetrate to r < 0 region (i.e. the IR

region). This surface is given by

v = Lyy e—2rm/Llov — ¢=2r/Luv (5.119)

464 This equation is only for the half of the surface. The center of the interval is chosen to be at x = 0 and
the surface is symmetric around = = 0.
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where 7, is the minimum radial point that is reached by the minimal surface and is related
to the size of the interval according to £ = 2Lyyve "m/Lvv  Note that this type of stationary
area surface for which r,, > 0 can only exist for ¢ < /5, where {5 = 2Lyy.

For intervals of size ¢ > (5, the stationary area surfaces discussed above would penetrate
to the IR region. However, it was observed in [129] that even for ¢ < /5, there can exist
stationary area surfaces that go to r < 0 region. In fact, there can be two such surfaces for

a given ¢ and they can be written as z = x4 (r) where

xy(r) =

Liny/ K} — e 2/Lin, Fme <70

Lyv (\/Ki—e_2T/LUV —Ki> —f—g r>0.

The minimum radial point 7, + is related to Ky according to Ky = e "=/l The

continuity of x4 (r) at r = 0 implies

(= 2LUVK:t - Q(LUV - L[R) \/Ki - 1, (5120)
which can be inverted to get

K=
Lyvtl £ (Lyy — Lig) \/52 +4Lir (Lir — 2Lyv)
212, — 2 (Lyy — Lig)’

(5.121)

These surfaces can only exist when K are real-valued which requires ¢ > ¢; , where

Lip\?
0 = 2Ly 1—(1—). (5.122)
Lyv

Therefore, there are three possible stationary area surfaces corresponding to a boundary

interval of size ¢; < ¢ < {3. The HRT surface, however, is the one with the smallest area
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among these three surfaces. Let us denote the area of the surface in Eq. (5.119) by Ay and
the area of surfaces x4 (r) in Eq. (5.120) by AL. Then Ay is given by [121]

AO = 2LUV IOg ((ﬁ/) s (5123)

whereas Ay are given by [129]

2L K
Ay = 2Ly log (V)

duv
2
Ret YRz 11 (5.124)
Ky — K21

where 6y is a UV cutoff of the boundary theory. It was observed in [129] that the area A_

— (Lyy — Lig) log

is always greater than A, and that there exists a critical size of the interval, ¢;, below which
Ay < Ay and above which A, < Ag*". This means that for some critical /;, when ¢ < ¢, the
surface in Eq. (5.119) is the RT surface, whereas when ¢ > /¢, the surface z in Eq. (5.120)
is the RT surface. We can calculate the critical size of the interval by numerically solving
Ap— A, = 0. The result of this analysis is shown as a plot of ¢; versus L;r/Lyy in Fig. (5.19
Left). As we can see from the figure, ¢, increases with L;r/Lyy and it approaches ¢ when
Lir approaches Ly .

As we discussed in Sec. (5.2.5), there is a jump in the entanglement wedge due to the
phase transition in the HRT surfaces. The jump in the entanglement wedge at ¢ = ¢; can be
measured in terms of the proper distance between the minimum points reached by the two

candidate HRT surfaces. This proper distance is given by

AT’m =Tyv —TIR - (5125)

where ryy = —Lyylog (6:/(2Lyy)), and g = —Liglog K, (¢;), and K, (¢;) can be deter-
mined using Eq. (5.121). We plot Ar,, as a function of L;r/Lyy in Fig. (5.19 Right). As we

471Even though the areas A;, A,, and A_ depend on the UV cutoff, the difference of any two areas is
independent of the cutoff. This makes the comparison of the areas meaningful.
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can see from the figure, the jump in the HRT surfaces, and hence in entanglement wedges,

is more significant when the difference between L;r and Ly is large.
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Figure 5.19. Numerical calculation of the (Top) critical length, ¢;, and (Bot-
tom) the jump in the entanglement wedge at the phase transition, Ar,,, as a
function of LIR/LUV-
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6. GENERALIZED INFORMATION MEASURES

In [139], Shannon provided the definition of “information” and Shannon entorpy as an av-
erage of surprisal as discussed in chapter 2. As a generalization of Shannon entropy, von
Neumann entropy has been proposed. The von Neumann entropy of a subregion captures the
total correlations of a bi-partite pure state in a quantum many-body system. It is also called
the entanglement entropy. The locality of correlations in quantum many-body systems de-
termines the scaling of entanglement entropy. Consider a quantum many-body system with
a finite correlation length. The leading contribution of the entanglement entropy of a sub-
region scales with the boundary area of the subregion[140], [141]. This is called the area
law. It is known that the entropy of black holes follows the area law([142], [143]. The leading
contribution of the entanglement entropy of holographic conformal field theory is also known
to follow the law. In particular, its gravity dual quantity has been proposed and known as
Ryu-Takayagi surface[144]. Unfortunately, the von Neumann entropy suffers from ultraviolet
divergences. On the contrary, the quantum relative entropy is a UV-finite measure. The
quantum relative entropy is known as a distinguishability measure that compares two states.
In [64], Araki used the modular theory to define the relative entropy of vN algebra of a
general quantum system, for instance, quantum field theory(QFT).

In this chapter, we focus on the family of information measures, called the correlation
measures. Correlation measures are the information measures that satisfy the monotonicity;,
or data-processing inequality, under a local completely positive map. In the QEC, the
relative entropy is used to compare the state associated with a physical algebra B and the
ones associated with the correctable algebras B¢, which forms the inclusion of von Neumann
algebras Bo C B. In section 6.1, the inclusion is characterized by a group. That is, we
consider an inclusion A C F where A is the von Neumann subalgebra that is invariant
under a group G. Our study proposes the generalized entanglement entropy of a quantum
system in the presence of charges due to the symmetry defined by the group G. We show
that this can be written by Jaynes entropy|[145].

von Neumann entropy and relative entropy are generalized into a one-parameter family

of information measures. They are known as Rényi entropies and Rényi relative entropies.
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There are two major Rényi relative entropies. One is known as Petz Rényi divergences
and the other is sandwiched Rényi divergences. In order to interpolate them, the two-
parameter family known as a-z Rényi relative entropy has been proposed[146]. For any
family of information measures to be correlation measures, it should satisfy the monotonicity
under a CP map. Hence, one of the main interests of quantum information theorists and
mathematicians is to specify in which range of parameters the monotonicity holds. These
objects actually have physical importance beyond just mathematical generalization. Rényi
families were used in quantum thermodynamics of small quantum systems to prove new
second laws[147]. In QFT, the sandwiched Rényi divergences were shown to be related
to multi-point correlation function[148], and their data-processing inequality was used to
prove the novel constraints of unitary and locality[149], [150]. They have also been used to
constrain the renormalization group flows of QFTs[151]. In holography, Renyi divergences
have gravitational duals in terms of the on-shell action of replicated geometries [152], and
their monotonicity has led to new laws of black hole thermodynamics [153].

In section 6.2, we generalize the Rényi families of relative entropy to multistate and
multiparameter f-divergences based on the construction of LP space[154] and Kubo-Ando
operator means|155]. Most importantly, we show that it satisfies the monotonicity under a
single unital completely positive map. Although we do not have clear physical interpretations
of our multistate f-divergence, we make speculation on how it could play a role in quantum
state discrimination.

In summary, we show that the following;

1. [Relative entropy of subalgebras and subspaces of an algebral

Consider a subspace P and a subalgebra A of an algebra F. Suppose € : F — Ais a
conditional expectation preserving a trace, i.e., tr(E(f)) = tr(f) for f € F. We propose

the relative entropy between A and F as, for a state p on F,

S(pllE™(p)) = 5(Tmaz) = S(p) (6.1)
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where 0,,,, satisfies the Jaynes maximum principle. That is, for a state p on JF, consider
the set {o} of all states o that have the same expectation values as p for all operators
ain A, ie., tr((p — o)a) = 0. Then, the Jaynes maximum principle states that the
Jaynes entropy S; of a state p with respect to a subalgebra A is the supremum of the

von Neumann entropy S,n(c) over the set {o};

Sy(p, A) = sup {Syn(0)|tr((c — p)a) =0, Ya € A}. (6.2)

cef{o}

Omaz Provides the supremum. The relative entropy (6.1) between a subspace P and an

algebra F is defined similarly to the above just by replacing A to P.

2. [A generalized entanglement entropy of a quantum system in the presence of charges in

a general quantum system|

Consider two von Neumann algebras F; and JF» associated with the local disconnected
region A; and region A, on spacetime, and a global symmetry group G !. Let us denote
the algebras invariant under the group as A; C F; and Ay C Fs. Physically, A; and A,
correspond to the set of charge-neutral operators. Note that Fio = F1 V Fo = F1 V Foy
while A1 D A1 VA 2 A ® Ay, Ay V A; is missing the bi-local intertwiners which
are operators in A;o that correspond to the creation of a pair of charged particles of
opposite charge, one in region A; and the other in region A,. There are two conditional
expectations, i) € : Fio — Ao, ii) & : Fi2 — A1V Ay = A ® Ay, where their action
on each individual local algebra F; is identical, i.e., £,& + F; — A; for (i = 1,2). &
is realized as a Haar average over the group G. &, washes the local charges away from
the local algebras. Then, the generalized entanglement entropy of the disconnected local
region of a general quantum system in the presence of charges due to the global symmetry

G is defined by

SA2(p1o||EX(p1) @ pa) = SAMEA (pro||EX(p1) @ pa) + 52 (pr2||Ex(p12)) (6.3)

4The transformation under a group of global symmetry does not depend on a background spacetime coor-
dinates as oppose to gauge symmetry which provides the local transformations depending on the spacetime
coordinates.
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The first term is the relative entropy with respect to the charge-neutral operators of A;

and A,, and the second term measures the contribution from bi-local intertwiners in A;s.

We also provide the explicit upper bound;
S42 (p12]|€7 (p1) @ pa) < log |G| (6.4)

where |G| is the cardinality of the group G.

. [Multi-state quantum f-divergences]

For a von Neumann algebra A and a state w on A, consider its GNS representation on
the GNS Hilbert space H,, equipped with a Hilbert-Schmidt norm, or L?-norm || |a) || =
lla |2) || where |©2) be a GNS vacuum. We define a LP-space equipped with the LP-norm
defined as

la)o llpo = sup ||A K | ol Vp€[2,00]
|w1/2yeH,,
I a)q Hp,n—llpl/gnf HA oo | ol Vpe[l,2) (6.5)

where 1) is another state on A and Ayq is a relative modular operator of |¥) and |€2).

Suppose we pick n states ¥y, --- ,1, on A, and construct the relative modular operator
Ay, fori=1,---,n. Note that ¥; are the GNS vectors corresponding to ;. With the
vector notations ¥ = (U, -+, 0,), 0 = (01,---,0,) and f: (fi,+, fa1), we define

the operator

—

Af\fllﬂ( ) = Az}lmﬂﬁ T SPAN an\Q (6.6)

Here, we apply the Kubo-Ando operator means defined below to the relative modular

operators.
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Definition 6.0.1 (Kubo-Ando mean). For any operator monotone function f with f(1) =
1 and positive operators X and Y the Kubo-Ando mean f¢ is defined to be [155], [156]

Xty = X1V2f(X 12y X -1V x1/2 (6.7)
where we are assuming that X is invertible. Note that X1;X = X.

Then, we define the multi-state f-divergence to be

—2r

) —
S@r(?ﬂ”“’) - ?:1<1 _ ‘91> (68>

(34,)"" o

27,82

. [Monotonicity of multi-state quantum f-divergences under an unital completely positive

map]

For von Neumann algebras A and B, consider an unital CP map ® : B — A such that
wa o ® = wp for states wq on A and wp on B. We show the monotonicity of (6.8) under

an unital CP map ® : B — A, i.e., for a set of states JA = (Y1, ,1¢,) on A and a set
of states JB = (¢17 e a¢n) on B)

8L (Usllws) < 8L (allwa) (6.9)

for r > 1.

6.1 Generalized entanglement entropy, charges, and intertwiners

6.1.1 Introduction

The study of entanglement in many-body quantum systems has opened new windows to

understanding strongly coupled phenomena. Entanglement measures in lattice models have

helped identify phases of matter and universal dynamical processes. In Poincare-invariant

quantum field theory (QFT), entanglement measures have taught us about universal long-

range correlation patterns, and renormalization monotones [157]-[159]. In holographic QFT,

entanglement measures play an important role in the emergence of geometry out of quan-
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tum states [97]. In this work, we study the entanglement theory in quantum systems with
conserved charges.

In the conventional quantum information theory, the Hilbert space of a bipartite system
A = A1 U Ay with A; and A, non-overlapping is the tensor product of the Hilbert spaces
of each: His = H; ® Ho. There are local algebras of operators on A; and A, that we denote
by F1 and Fy, respectively. For instance, the algebra of operators of a d-level quantum
system (qudit) is the algebra of d x d complex matrices. The global algebra of the bipartite
system Aig is F1o = F; @ Fo. The local algebra F; is a subalgebra of Fj,, and the reduced
state on this subalgebra is given by a partial trace on F3. The entanglement measure we
are interested in captures the amount of information erased by partial trace. Entanglement
is a resource that can be distilled in the form of Einstein-Podolosky-Rosen (EPR) pairs and
can be used to teleport quantum states. For instance, for a bipartite qudit density matrix
p1 ® py the amount of information erased by partial trace on As is logd — S,y (p2), where
Sun(p) = —tr(plog p) is the von Neumann entropy. The state p; ® I5/d is unique in that it
loses no information under partial trace. The distinguishability of an arbitrary state p;s with
respect to the invariant state of partial trace p; ® I /d can be used to quantify the amount of
information lost in partial trace of A,. In quantum information theory, the distinguishability

of a state p from o is measured by the relative entropy

S(pllo) = tr(plog p) — tr(plog o) (6.10)

which is non-negative and vanishes if and only if p = 0. We choose the relative entropy
S(p12llp1 ® Is/d) = logd — Syn(p12) + Sun(p1) as our measure of the information lost in
partial trace.?

In systems with symmetries and conserved charges, the degrees of freedom in A; and A,
are not completely independent. Charge conservation requires that any physical process that
creates a charge particle in A; also creates the opposite charge in Ay. If we superpose states

of different charge, there is no information in their relative phase because they cannot be

detected in any physical process made out of charge conserving operations. The naive relative

21Tt has an operational interpretation in the language of the state merging protocol [160)].
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entropy for a charged system cannot be used as a resource to distill entangled pairs [161],
[162]. In this work, we argue that the measure of entanglement with the correct operational
interpretation is the sum of two relative entropies. One term captures the entanglement due
to the charge-neutral degrees of freedom. These operators are invariant under the symmetry
transformation. The second term captures the contribution of charged operators, and is
a measure of the asymmetry of states in the resource theory of symmetry [161], [162]. In
section 6.1.2, we motivate a generalized entanglement entropy beyond the case of tensor
products, and connect it to the coarse-grained entropy defined by the Jaynes maximum
entropy principle [145]. For other definitions of generalized entanglement see [163], [164].

The charge-neutral operators in F form a sub-algebra that we denote by A; figure 6.1.
In the bipartite setup, the algebra of charge-neutral operators localized in A; is a subalgebra
of all charge-neutral operators of Ajs: A; C Aj3. However, it is not true that A; and A,
generate all the charge-neutral operators of A;5. The operators that spontaneously create a
pair of charge particle in A; and its anti-charge in A, belong to A;,, but not to A; ® As.
In section 6.1.5, we call such operators bi-local intertwiners due to the role they play in the
representation theory of the symmetry group; see figure 6.2. Our goal is to quantify the
contribution of the local intertwiners to the entanglement. The key idea is to associate to
any state p an invariant state £*(p). The expectation value of all charge-neutral operators A
in £*(p) and p match, however the probability for the spontaneous creation of a charge/anti-
charge pair in the invariant state is zero. The relative entropy S(p||€*(p)) measures the
distinguishability of the two states. It is a measure of the asymmetry of p and captures
the information contained in the bi-local intertwiners. In section 6.1.2, we argue that this
relative entropy added to the mutual information between region A; and A, due to the
charge-neutral algebra A; ® A, captures the total amount of entanglement between A; and
Ay. This quantity is also discussed in previous work of [165], [166] and some of the ideas
here parallel those of [166].

In section 6.1.5, we review the representation theory of symmetry groups and the su-
perselection sectors. A special role is played by the charge creation/annihilation operators
that take charge neutral operators from a superselection sector to another. They are called

intertwiners and together with the charge neutral sub-algebra they generate the algebra of
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A A

(a) (b)
Figure 6.1. a) A charge neutral operator in region A: a € Ay. b) A charged
operator in region A: b € Fy.

A, A, A, A, A Ay
® ® ©)
G @
(a) (b) (c)

Figure 6.2. (a) Charge neutral operators in region A; U As: a € A3 @ As. (b)
A bi-local intertwiner in Ay U As: Zj9 € Aje. (c) Local intertwiners, or charged
operators in A; U As that belongs to the global algebra F; ® Fa.

all charged particles. In section 6.1.5 we provide simple physical examples from qubits to
QFT to demonstrate the formalism. A reader who is already familiar with the formalism
can skip this section. In section 6.1.13, we make the distinction between global algebras
and local algebras. In the global case, we consider the algebra of charge neutral operators
as a sub-algebra of all charged operators A C F. In the local case, we consider the tensor
product of charge neutral operators in non-overlapping regions A; and A, as a sub-algebra
of charge-neutral operators of A; U As: A1 ® Ay C Ay

The study of entanglement in QFT is subtle due to absence of a tensor product H4 ®
Ha that reflects itself as ultra-violet divergence in the entanglement entropy [58], [165],
[167]. Modular theory is a mathematical framework that is well-suited for the study of
entanglement in any quantum system from qubits to QFT. In modular theory, instead of
tensor products and local density matrices, the algebra of operators localized in a region and

locality constraints among them are used to define entanglement measures. In section 6.1.17,
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we use modular theory to define both the relative entropies that measure the entanglement
between non-touching regions A; and Ay in a QFT with conserved charges. We highlight
the difference in the analysis of entanglement between QFTs and lattice models. Finally, we
discuss an extension of the QFT algebra that factors out charged excitations and brings the
QFT algebra closer to lattice models.

In this work, we focus on global symmetries, however, the formalism can be generalized

to many gauge theories [168], [169]. We postpone this to future work.

6.1.2 Generalizations of entanglement

6.1.3 Conditional expectation as generalization of partial trace

Consider the algebra of operators of two qudits Fi2 = F1 ® Fo and the subalgebra of
operators localized on the first system F; ® [5. The reduced density matrix on F; is given
by the partial trace over Fy: p; = tra(p12). In the classical case, p1o = > Prar |kK') (kK|
the reduced density matrix on the first qudit is p1 = > i qx |k) (k| where g = Y4 prrr are
the classical conditional expectations to obtain result k£ in a measurement on first qudit:
qr = tr(|k) (k] ® I)p12. In a mathematical analogy, one can think of density matrices as non-
commutative probabilities and partial trace as non-commutative conditional expectation
[170].

To compute how much information was erased during partial trace we have to pull p;
back to the bipartite Hilbert space by a linear map that we denote by a*(p;) = ¢12 with the

following properties:
1. It is consistent with py: tra(¢12) = p1.

2. The state ¢;o is invariant under partial trace and a*: a*(¢1) = ¢12 so that o* does not

add any information.

We call such o maps recovery maps or state extensions [170], [171]. In the partial trace
case, the recovery map with the properties above is o*(p;) = p1 ® I/d.* Tt is convenient to

think of partial trace and recovery together as one linear map that sends density matrices

31 An example of a map that satisfies the first property but not the second is a*(p1) = p; ® wo for some ws.

177



on Fis to the density matrices on the subalgebra F; @ Ip: £%(p12) = p1 ® Iz/d. The dual of
the £* is a projection from Fi5 down to the subalgebra F; ® Is:

b

Here, by duality we mean going from the Schrodinger to the Heisenberg picture?

tl"(g*(plg)(bl X bg)) = tI‘(me(bl X bg)) = tr(p1b1> (f;) . (612)

The map & has the property that it squares to itself, i.e. £2 = E, so that £*(p;2) is invariant
state of &:

(€ (pr2) E(by ® b)) = tr (€ (p12) (b1 @ b)) - (6.13)

The relative entropy of p;2 with respect to the invariant state £*(p12) = p1 ® Io/d mea-
sures the asymmetry of the state or the amount of information erased in partial trace:
S(p12/|E*(p12)) > 0; see figure 6.3.

A simple way to generalize partial trace is to consider a more general dual map &€ : Fio —

‘Fl ® ]12:

E(b; ® by) = by @ D(by)
= by |k) (K| (6.14)

where {|k)} is some distinguished basis of the second qudit. In the Schrédinger picture, the

state transforms according to

*(p12) Zpkﬂ ® |k), (Kl

peot” = (Kly iz [K)y pe = tr(pia(T@ [k), (Kl,)) (6.15)

41An alternative notation used in [166] is to denote £*(p) by po E.
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that dephases the density matrix and erases the information in the off-diagonal operators
|k) (K|. Similar to the £ of partial trace we have the property that £(I) = I so that £*(p)
is properly normalized. Furthermore, £ squares to itself which implies that £*(p12) is an

invariant state of £.

E*
Py ——— E¥p) = ®L/d | S(pil|E*(prn)
trz ......... a pl _- - a*’
(a)
E*
’ » D(p) = Y 1K)kl | S(p |1 E*(p))
k
(b)

Figure 6.3. Our entanglement measure is the relative entropy of the state p with
respect to its corresponding invariant state £*(p): S(p||€*(p)). (a) The example
where the map £ is a composition of partial trace of system 2 and the recovery
map a* which results in an invariant state £*(p12). (b) The example where the map
E* decoheres the density matrix p in a particular basis {|k)}.

In systems with conserved charges, the subalgebra of charge-neutral operators corre-
sponds to matrices that are block-diagonal in some basis labelled by charge. For instance,
take a qubit and the symmetry transformation o,. The Abelian subalgebra D C F of 2 x 2
complex matrices diagonal in o, basis is the charge neutral algebra. The dephasing map
E(b) = D(b) projects operators from F to D. For a general quantum system with symmetry
we need to define a linear map £ : F — A with A C F the subalgebra of charge-neutral
operators as a generalization of partial trace. An example of one such map is the Haar

average over the group G:
1 i
Bb) = / dgUibU, . (6.16)

The operator £(b) is charge-neutral for any charged operator b. In analogy to partial trace,
we require this map preserves the identity operator, and it leaves the charge-neutral operators
unchanged so that the state £*(p) defined by (£*(p))(b) = p(E(b)) for all b € F is invariant
under the map &: E(E*(p)) = £*(p). The generalization of partial trace is called the non-
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commutative conditional expectation (or in short conditional expectation) that is a linear
map from F to an arbitrary subalgebra A such that £(I) = I and &(ab) = aE(b) for all
a € Aand b € F [170], [172].° Since £(a) = a all invariant operators are in A and every

operator in A is invariant. As a result, £*(p) € A.

6.1.4 Generalized entanglement entropy and coarse-grained entropy

In conventional quantum information theory, the amount of entanglement between A;
and A, is measured by the distinguishability of the p;o with respect to the unentangled state
pP1 @ pa:

S(pi2llp1 @ p2) = =Sun(p12) + Sun(p1) + Sun(p2) (6.17)

which is called the mutual information. Consider a multi-partite global state |Q2) , ,, and its
reduced states p4 and pa on region A and the complementary region A’, respectively. The
distinguishability of |€2) from the tensor product state ps ® pas is measured by the relative
entropy

S (U llpa ® par) = 2S,n(pa) - (6.18)

The tensor product state p4 ® par has the same expectation values as |2) for all operators in
Fi @1 and I ® Fyur, however, all correlations between A and A’ are erased. The expectation
of all operators b ® b’ with b € F4 and i/ € F factors in the tensor product state ps ® par.

To generalize the notion of entanglement to a general subalgebra A C F we invoke the
Jaynes maximum entropy principle. Consider the set of all density matrices o that have the
same expectation values as p for operators in A: tr((o — p)a) = 0 for all a € A. According
to Jaynes the entropy of a state p with respect to a subalgebra A is the supremum of the

von Neumann entropy S,n(c) over the set of all consistent states o [145]:

SJ(p’ A) = SvN(Umaz) (619)

51In this paper, the operator b is chosen to belong to the algebra of charged operators, whereas a denotes a
charge-neutral operator.

180



where o, is consistent with p and has the maximum entropy. Hereafter, we suppress the
vN index of the von Neumann entropy.
The Jaynes maximum entropy consistent state is precisely the invariant state £*(p).

Given a general conditional expectation £ and a state o consistent with p on A we have

tr((€*(o) — E*(p))b) = tr((0 — p) E(b)) = 0, (6.20)

therefore £%(o) = £*(p). At the end of section 6.1.3 we showed that the invariant state is in

A, therefore the logarithm of an invariant state is also in \A:

tr(olog€(p)) = tr(cE(log€(p))) = tr(€7 (o) log £ (p))
= tr(E%(p)log &7 (p)) = =S(E7(p)) - (6.21)

In the above, we have assumed that the conditional expectation preserves the trace: tr(E(b)—
b) = 0 [166].% From the definition (6.10) it follows that the relative entropy of any consistent

state o consistent with p on A with respect to the invariant state £*(p) is

S(oll€*(p)) = =S(o)+5(€%(p)) =2 0. (6.22)

From the positivity of relative entropy we conclude that the invariant state of a conditional

expectation &£ is the maximum entropy state appearing in the Jaynes formula:

E*(p) = Omaa (6.23)

and the non-degeneracy of relative entropy tells us that this state is unique.” Therefore, our
proposed measure of the information lost in £ is the entanglement deficit from the maximum

value:

S(pll€"(p)) = S(Omaz) = S(p) - (6.24)

64We thank Horacio Casini for pointing this out to us.

"1If 0pnar and o, are both maximum entropy then S(o4z|/c

/
max

/
max*

) = 0, therefore 04 = 0
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As an example, consider the subalgebra of matrices A = F; ® Dy and the set of all o that
are consistent with p on 4 and maximize the entropy among them. The consistent states
are all op9 that satisfy tr((o12 — p12)(a1 ® |k) (k|)) = 0 for all basis vectors |k). The relative

entropy of 015 with respect to the invariant state in (6.15) is

S(o1a| Zpkpl ® |k) (k|) = =S(012) + H(p) + ZPkS Ay >0 (6.25)

where H(p) = — >, prlog(px) is the Shannon entropy of p; [173]. The maximum entropy

state is the invariant state, and the Jaynes entropy is
Sy(pra, Fi @ Da) = S(E%(p1a)) = H(p) + > peS(p}”) - (6.26)
k

The reduced state on system A; is p; = >, pkpgk). The von Neumann entropy of p; is less

than the Jaynes entropy because of the inequality [173]

Zpkplk) < H(p +Zka "y (6.27)

The definition of Jaynes entropy can be generalized beyond subalgebras to any subspace

of observables P:

S;(p, P) = sup {Sun(0)[tr((c — p)a) = 0,Ya € P} (6.28)

oEF*

where F* denotes the set of all states of the global algebra F. This measure is often called
the coarse-grained entropy. For instance, consider the subspace of observables built out of
linear sums of a; ® [ and I ® ay and a bipartite density matrix p;o. The relative entropy
S(p12llpr @ p2) = S(p1) + S(p2) — S(p12) = I(1 : 2) > 0, where I(1 : 2) is the mutual
information between site one and two. Therefore, the maximum entropy state in the Jaynes
formula that reduces to both p; and py is p1 ® py and as a result S;(p12, P) = S(p1 ® p2) =
S(p1) + S(p2) [171]. Our relative entropy measure

S(p12llomaz) = S(przllpr ® p2) = I(1:2) (6.29)
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equals the mutual information that well captures the amount of correlations between A; and
As. In the absence of a subalgebra and a conditional expectation o,,,, replaces £*(p) and we
propose S(p||omaz) as a measure of the information lost under restriction to the subspace of
observables P [171]. To find the maximum entropy state consider the Lagrange multipliers

A and the function
—tr(ologo) + > Ntr((p — 0)Oy) (6.30)

where O; is a basis for the subspace of observables P. Setting the variation of the expression
above with respect to ¢ and )\; establishes that the maximum entropy state logo,,a: =
i iO; € P for some constants p;. Similar to the case of conditional expectation the
maximum entropy state belongs to the subspace P, i.e. 0,4, € P, and the expectation value

of every operator that is not in P is zero. As a result

S(p“O-maz) - —S(,O) - tl"(p log Umaac) = S(Umaac) - S(p) : (631)

In QFT the von Neumann entropy of a region is divergent® and we can only compute the
relative entropy of states. This motivates us to replace Jayne’s maximum entropy principle

with the supremum of S(p||o) over all o consistent with p on P:

Ip(p) = O_Sélﬁﬁ(ﬂ”U)!“((U —p)a) =0,Va € P} (6.32)

that is the measure of information entropy produced under the restriction to a subspace
of observables P and has the advantage of being well-defined in QFT like in systems with
density matrices. We postpone further discussion of the generalized entanglement to future
work and in the remainder of this work focus on the case of charge-neutral subalgebras.

In a system with an internal symmetry group G, the symmetry transformation acts on

the local algebra of region A as a unitary transformation: b; — U, gT biU, for all b; € F; and U,

811t is a property of the algebra and not the states.
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some unitary representation of G. The operators in F; that are invariant under the action

of the symmetry form a subalgebra of uncharged operators that we denote by A;:
UlaiUy = a3, Va; € A; (6.33)
On a lattice, there is a unitary operator localized in J; that acts the same way as U, on Fi:
Tl = UbUl, Vb€ F (6.34)

we call this operator the twist and it generates another representation of the group that we

call the twist group G,: 1,47, = T45. The commutator of the twist with the group action is
UyThU] = Tyng—1 - (6.35)

For instance, in a bipartite system with symmetry transformation U, = el9(@1+@2) where
Q1 + Qo is the total charge of A the twist is 7, = €991; see figure 6.2. It belongs to JF;
and acts the same way as U, on F;. We postpone the subtleties in defining 7, in QFT
to section 6.1.17. The algebra A;5 of charge-neutral operators in Ay is larger than the
algebra generated by locally charge-neutral operators of A; and As, namely A; ® A,. This
is because there are operators that correspond to the creation of a pair of charged particles
of opposite charge one in region A; and the other in A;. We call these operators the bi-local
intertwiners Z;5,. We will see in section 6.1.13 that there exists a conditional expectation
constructed from the twist group &, : A — A; ® A, that washes out the information
content of the bi-local intertwiners: &,(Z15) = 0.° The amplitude for the invariant state
EX(p12) to spontaneously create an entangled pair of charge/anti-charge particles is zero.
The relative entropy S(pi2||Ef(p12)) measures the amount of correlations due to the bi-local
intertwiners. Note that the reduced state on A; ® A, still contains lots of correlations in
between region one and two. It is only the correlations due to intertwiners that are washed
out. In the presence of charges, the naive mutual information S72(pis||p1 ® p2) contains

unphysical correlations that cannot be accessed in any charge-conserving process. We would

919The map &, is from Fis to A; ® As. However, we will be mostly concerned with its action on Ajs.
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—
Ex: (_p E*(p)

E*: |E*w) E*(w)

Figure 6.4. A pictorial description of the relative entropy property in equation
(6.37) written in terms of states of F. The relative entropy of blue states S(p||€*(w))
is the relative entropy the red ellipse S(p||€*(p)) plus the relative entropy of the green
ellipse S(E*(p)||€*(w)). Note that since both £*(p) and £*(w) are invariant under
&, the green relative entropy is the same as S(p||£*(w)).

like to discard all operators that create charge on Ai5. First, we restrict the relative entropy
to the invariant algebra Aj;. In general, the relative entropy S*(p|lw) is a measure of
distinguishability of the two states using only the operators in A. Alternatively, one can

think of this relative entropy as
542 (pllw) = ST (E*(p) 1€ (w)) (6.36)

where £ : F13 — Ajp. The expression above implies that the distinguishability of invariant
states of € does not change under the restriction to the invariant subalgebra A;5 [170].
Second, we replace p; with £*(p1) to make sure that £*(p1) ® p has no bi-local intertwiners.
Therefore, we consider the measure S412(p15||EX (py @ pa)).

A useful property of relative entropy is that it satisfies the following equality (Theorem
9.3 of [170]); see figure 6.4:

ST(pll€*(w)) = SApllE*(w)) + ST (Pl €7 (p)) (6.37)
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where £ : F — A. Applying the identity above to the twist conditional expectation &,

implies that our measure splits into two terms °

S42(pro|| B (pr) ® pa) = S™E4 (p1o] | EZ (p1) @ pa) + S (p1a|| EX(pr2)) - (6.38)

The first term is the relative entropy with respect to the charge-neutral operators of A; and
Ay, and the second term is the contribution due to the bi-local intertwiners. We can use
the conditional expectation £ : Fi3 — Ajs to rewrite both terms in terms of the charged

algebras:

ST (E ()€ (B (pr2)) + ST (E(EX (pr2) |€(E7 (p1) @ p2)) - (6.39)

In section 6.1.5, we will see that the conditional expectations £ and &, are Haar averages
over the group and the twist group, respectively. If pio is invariant under U, we get the

following simplification

S72(p1o|| Ef (p12)) + ST2(Ef(p12) 1€ (1) @ p2) - (6.40)

From the conditional expectation in (6.16) it is clear that our relative entropies have the

general form S(3; prok| Xk qwr ). Relative entropy satisfies the inequality

ZpkpkHZQka H(pllq) +Zpk5 Pre||wr) (6.41)

where H (pl|q) is the classical KullbackLeibler divergence of the probability distributions py
and gi. To see this, consider the block-diagonal density matrices p = Gxprpr and w = Brqrwi

the relative entropy

S(pllw) = Hpllg) + > peS(porllwr) - (6.42)

10+This identity was also used in [174] to compute relative entropies in QFT.
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With respect to the subalgebra of operators [ ® a the density matrix is >, prpr and > qrwy
and since relative entropy is monotonic under restriction to the subalgebra we find that
relative entropy satisfies (6.41). In section 6.1.17, we generalize this inequality to QFT and

use it to bound the relative entropies in (6.40) from above and below.

6.1.5 Symmetry and intertwiners

6.1.6 Superselection sectors and intertwiners

We start by reviewing some definitions and set the notations for our discussion of quantum
systems with symmetries. Consider a quantum system and its Hilbert space H. The set of
all bounded linear operators acting on this Hilbert space forms an algebra, B(H), that acts
irreducibly on H. We call this algebra the field algebra and denote it by F. All proper
subalgebras of F act reducibly on H. A symmetry is a linear transformation of operators in
the algebra b — «,(b) € F that respects operator multiplication: ay(b1bs) = ary(b1)ay(be) and
is invertible.!! The set of all symmetry transformations of the algebra forms the symmetry
group GG. By Wigner’s theorem, any symmetry is represented by either a unitary or anti-
unitary transformation of the Hilbert space, i.e. |¥) — U, |V), and acts on the algebra as
ag(b) = UjbU,. The set of operators a that commute with U, form a subalgebra A C F that
we refer to either as the invariant subalgebra, or the subalgebra of charge-neutral operators.
On a lattice if the group G is Abelian U, is itself charge neutral and belongs to A.'?

If there exist vectors in the Hilbert space such that
(@|U,|¥) =0 (6.43)

for all U, € G we say that |®) and |¥) belong to different selection sectors.”® The Hilbert
space splits into a direct sum of selection sectors H = &,k ® H,- where I, is the irreducible

representation r of G and H,. is the Hilbert space corresponding to the charge neutral degrees

14In mathematical language, such a transformation is called an automorphism of the algebra. If we relax
the invertibility assumption we have an endomorphism of the algebra.

12¢4When Uy, is not in A we say the symmetry transformation is an outer automorphism of the algebra A.
I34Tf there exists no selection sectors; that is to say the only subspace of H invariant under the symmetry
transformation is the whole H we say the action of the symmetry is ergodic. For instance, the action of
modular flow on local algebras of QFT is ergodic.
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of freedom. The basis of the Hilbert space is |r,i) ® |a) where i = 1,---  d, with d, the
dimension of the irreducible representation r. The group acts as U = &,.U, g(r) ® 1., and by
Schur’s lemma the invariant operators of each irreducible representation are I, ® a, where
I, = X% |r,i) {r,i| is the identity operator in the Hilbert space K, of representation r. The
subalgebra of invariant operators is &,I, ® a which has the non-trivial center &, \,.I, ® 1,.
If the group G is Abelian all its irreducible representations are one-dimensional and we can
label them by charge ¢: H = &, |q) (¢| ® H, or simply H = &, H,.

Consider the Abelian group Z,; and its irreducible representations labelled by charge ¢:
Ul = e?™94/d with g =0,--- ,d—1and ¢=0,---,d — 1. The regular representation of G is

the vector space K of a qudit:

Uy =_1|(g + h) mod d) (h| (6.44)

where g+h is the group multiplication and the identity element is zero charge. The irreducible

representations are all one-dimensional and correspond to basis where all U, are diagonal

Uy =Y M99 ) (g]
q

q) = e elg) (6.45)
g
The dual group G is the Fourier space generated by

Ze 2miga/d | g\ (g| = Z\ q+ k) mod d) (k| . (6.46)

The elements of the dual group take us in between irreducible representations and commute

with the action of the invariant subalgebra
Uy k) (k| = [k +q) (k+q| U, . (6.47)

The operators that satisfy the equation above are called the intertwiners, and physically

they are charge creation/annihilation operators. Take the infinite Abelian group G = U(1)
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of rotations around a circle. The irreducible representations are constant momentum modes
and the intertwiners are the operators that add momentum Uq = >, |lqg + k) (k| and generate
the dual group G = Z with the multiplication operation that adds charges k + q.

Consider a finite non-Abelian group G represented in its regular representation by a qudit

of dimension |G|:

Uy =>_lgh) (hl (6.48)

where gh is the group multiplication. The Hilbert space splits into X = @, ;K,; where the
irreducible representation r with the index i running from zero to the dimension d,. The
irreducible representation r appears d, times in the decomposition of the regular represen-
tation, therefore 3, d? = |G|. An operator in K, can be written as >_;; by |r, i) (r,j| but by
Schur’s lemma the invariant operators are proportional to I,.. The intertwiners are linear
maps that take us in between different irreducible representations and commute with the

action of the invariant operators in the algebra:
Vil = |0) (0] V.5 . (6.49)

The partial isometry V,; = \/%Tr |0) (r, i| satisfies this equation, and is the non-Abelian analog

of |0) (g|. The map p, maps operators from the charged sectors to the vacuum sector:
pr(La) ="V, LaV}; (6.50)

where a € C is a complex number here. In the Abelian case, we constructed a unitary U, by
adding | + k) (¢| that generates the dual group G. For an arbitrary charge-neutral operator

a=,a4|q) (q| we have

pk(&) = Ugdﬁk

U =3 lg+k) (gl (6.51)
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which is a generalization of (6.46) to an arbitrary Abelian group. However, in the non-
Abelian case, adding a charge r to another charge ' corresponds to the tensor multiplication
of two irreducible representations that is not irreducible. The dual G to a non-Abelian
group G is not a group. The elements of the dual to a non-Abelian group are different
representations (not necessarily irreducible), and their multiplication is tensor multiplication
but there is no inverse operation. As we will see in the next section, when the representation
is infinite dimensional the operators V;.; can be thought of as isometries that take us between
the irreducible representations.

If the symmetry group G is compact there is a normalizable Haar measure dg and we

can integrate over the group to project to the zero charge sector Py = |0) (0] ® 1:

1
i / A9 Uy [¥) = Po| ) (6.52)

where |G| is the volume of the group. The resulting subspace is called the vacuum sector
which is spanned by all the invariant states of G. For an Abelian group G the other irreducible
representations are found using a Fourier transform with ¢ € G with the group multiplication

being the addition of charges:

1

2migq
|G|/QGG dge U, |U) = B, |¥) . (6.53)

The non-Abelian analog of this projector is

d
P = / dgv*(q) U 6.54
‘G’ gGG gX'r(g) g ( )

where x,(¢) is the character of the irreducible representation 7.

We say two vectors |U) and |®) belong to different superselection sectors of algebra A if
(V]a®) = 0 for all a € A. For instance, states |V,) and |®,) that were in different selection
sectors of F, belong to different superselection sectors of the neutral subalgebra A. Given

an algebra F and a compact symmetry group G the linear map £ : F — A that computes
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the group average of an operator b € F is a conditional expectation to the charge-neutral

subalgebra

1
Eb:—/ dg UTbU, . .
(b) Gl 19 U0, (6.55)

because it satisfies £(ab) = aL£(b) for alla € Aand b € F. This is the conditional expectation
that we advocated in section 6.1.2.

We can reconstruct the field algebra F from the charge-neutral subalgebra algebra A,
by adding the intertwiners back. In the Abelian case, the intertwiners U, = >, la£1) (g
are unitaries of the dual group. They create or annihilate charges. Enlarging the algebra of
charge-neutral operators by added to it Uq and taking the closure generates the full algebra
of charged operators. In the non-Abelian case, G the dual group is mathematically not a
group. However, we can still enlarge the charge-neutral algebra by adding the intertwiners
to obtain the full algebra F. In representation theory language, enlarging the algebra A by
including intertwiners corresponds to the crossed product of A by the dual group G: AxG ,
see appendix 6.1.23 for the definition of the dual group and crossed product.

In the remainder of this section, we provide several examples of quantum systems with
symmetry and highlight the role of the intertwiners. The first four examples have an Abelian
symmetry group and the last two have a non-Abelian symmetry. We postpone the discussion

of intertwiners for local algebras until the next section.

6.1.7 Example 1: Qudit

Consider the Hilbert space of a qubit H, and the algebra of 2 x 2 complex matrices.
Take the symmetry transformation to be the group Z, generated by the transformations:
ai(a) = a and ay4(a) = 0.a0..** Here, Uy = 0. = (—1)% where Q = 3(1 — 0.) is the charge
operator. The algebra of charge neutral operators Dy is the algebra of matrices diagonal in
the o, basis. The Hilbert space splits into two sectors Ho & H; with P, = |¢) (¢| projecting
to the sector of charge ¢. The intertwiner V' = |0) (1| solves the equation (6.47) and relates
the two charged sectors. The dual group is the Z, that is generated by o, = V + V. If we

144We use the notation Z,, = Z/nZ.
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add the intertwiner (or the generator of the dual group o,) to the invariant algebra Dy we
obtain the full algebra of the qubit.

For a qudit the Hilbert space is spanned by |k) with & = 1,---d, and we take the
symmetry group to be Z,; generated by the diagonal matrices Y2, €95/ |k) (k|. The invariant
sub-algebras are one-dimensional A, = a k) (k| and the projections to the superselection
sectors are P, = |k) (k|. Each |k') (k| is a unitary intertwiner from H; to H;. The dual
group is the Fourier transform Z, generated by the unitary >, [(k+ 1) mod d) (k|.

The generalization to infinite dimension is immediate. Take the Hilbert space of a free
particle on a circle and the rotation group around the circle: G = U(1). The Hilbert space
splits into one dimensional irreducible representations of the rotation group H = @z |k) (k|
where | k) is a momentum eigenstate. The invariant algebras are Ay = a|k) (k|, and the inter-
twiners are |k') (k|. The dual group is Z generated by the momentum addition/subtraction
operator >, |k £ 1) (k|. Adding the intertwiners to the invariant algebra gives all operators

in the Hilbert space of free quantum particle on a circle.

6.1.8 Example 2: Non-relativistic quantum fields

Consider a non-relativistic bosonic or fermionic field on a circle and assume that the total
number of particles is conserved. The particle number operator is N = [dx af(z)a(z) and
the symmetry transformations are £V, The Fock space is a direct sum of sectors with fixed
particle number n: ‘H = &,enH,, with vectors in each H,, represented by totally symmetric
(anti-symmetric) wave-functions of n-variable: e (1, x,). The intertwiners that take
us in between sectors are the creation/annihilation operators al(f)/a.(f) that map #, to
‘H,+1 and back according to

1 n+1

(airt(f)w(n))(xla xn—H) \/— Z il i lf iEkW (1'1, C L1y Th41, " >$n+l)

(a (YD) @, o ) = Vi T 1 / dyF "Dy, ) (6.56)

and f is a bounded complex function on the circle [59]. There are many intertwiners cor-

responding to different functions f, however adding one of them to the invariant algebra
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suffices to generate the full algebra. We choose [dz|f(z)|?> = 1 so that the intertwiner is
an isometry: (a(f)a'(f)yv™) = (a'(fa(f)y™) = ™). The full algebra F is generated by

operators ay(f) and al,.(f) satisfying

las(f), ax(9)ls =0, [as(f).al(g)ls = (f.9)1
[a,b] = ab+ ba, [a,b]y = ab — ba, (f,g9) = /dxmg(x) : (6.57)

The dual group is generated by the field operator ®(f) = a(f) + a'(f).

6.1.9 Example 3: Free relativistic fermions

In a general relativistic theory particle number is not conserved. However, in the case
of free fermions the transformation (—1)¢ with Q@ = [j%x) remains a symmetry, where
j%(x) =: Ui(2)¥(x) : is the charge density operator. The full algebra F is generated by
U(f) = [d*xf(x) ¥ (x) where f is a function of spacetime that solves the classical equations
of motion [165]. The Hilbert space splits into two sectors H = H, & H_ that correspond
to the even and odd number of fermions. The invariant algebra A is generated by all the
operators with an even number of fermions, e.g. X = U(y)¥(z) or Y = Y(y)¥(z)M.1
The operator W(f) adds a unit of charge and intertwines the two sectors. The unitary

U(f) = U(f) + Ui(f) with [dz |f(z)]2 = 1 generates the Z, dual group: (1,U(f)). It has

the following properties:

U(f)X = XU(f) — f(2)U(y) + f(y)¥(2)
UN)Y =YU(f) - f(2)T(y) + f(y)T(2) . (6.58)

Each choice of f leads to a particular choice of Z,. If we add any U (f) to the algebra
of invariant operators all other charged operators U (g) are created by closing the algebra,
because U(f)TU(g) is charge-neutral. Representations with different values of f are unitarily

equivalent by the inner automorphism U ( f)TU (9)-

15¢The commutators are [Q, X] = —2X and [Q,Y] = 0.
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The maps ps(a) = U(f)aU(f)! are outer automorphisms of the invariant algebra a € A:

psla) € A

prlaras) = pplar)ps(az) - (6.59)

For instance, for the total charge we have

pr(Q) = Q +W(f)U(f) — TI()u(f) . (6.60)

The operator U(f) has charge one:

pr((-1)9) = —(-1)? (6.61)
which implies that an average over the dual group kills the symmetry transformation
(1% +pp((-1)?) =0. (6.62)
6.1.10 Example 4: U(1) current algebra

As the next example, consider the algebra of a free compact relativistic boson in two
dimensions on a circle. The shift of the scalar field ¢ — ¢ + a is a U(1) global symmetry.
In the radial quantization frame, we consider the algebra of W(u) = €™ with J(u) =
[ 2 J(2)u(z) with u(z) a smooth function on the circle. It is generated by the U(1)-invariant

current J(z) = (00)(2) = X ez 27" jn. The scalar field expanded in terms of j, modes is

— Iy o — . 1 . —_n T ——n
d(2,2) = po —i(jolnz 4+ joIn2) + i Z - (an + jnZ ) ) (6.63)
0#n€Z
The operator ¢y and jo are canonical conjugates of each other: [¢g,jo] = i. The U(1)
symmetry group is generated by U, = €%, The vertex operator Vi(z,z) =: ek¢(=2) .
acting on the vacuum creates eigenstates of the conjugate momenta jo |k) = k|k) with
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|k) = Vi(0) |Q2) and (k|k') = 0. In fact, the vertex operator satisfies [jo, Vi] = kVj which
implies that it is a unitary intertwiner.

We can consider a(z) functions on the circle and the unitary vertex operator V(a) =:
9@ : with ¢(a) = [ dza(z)¢(z). Under the transformation ¢ — ¢ + 27 the vertex operator
should be invariant therefore the charge g, = [ dza(z) is quantized. When ¢, = 0 the vertex
operator V(«) is charge-neutral but when ¢, = [ dza(z) # 0 it is an intertwiner of charge q.
The dual group is Z and is generated by charged vertex operators V (ka) for k € Z. As in the
case of fermions, adding one intertwiner of unit charge adds all of them because V (a)VT(3)
with g, = gg is a charge-neutral operator. The action of the dual group on the invariant

algebra at point is
pa(J(2) =V (a)J(2)VI(a) = J(2) + a(2) (6.64)

which does not leave the neutral operators invariant. Instead it shifts it by an element of

the center of the algebra [175]. The action of the dual group on the symmetry generator is
pa(Us) = V()U,VT(a) = 9T, . (6.65)

The dual group is not compact, but we can formally define an average over the charged

sector as a distribution

S pralUa) = 22o(a) (6.66)

k=—00 | a|
6.1.11 Example 5: Permutation group

The simplest example of a non-Abelian group is the permutation group S;. Consider
three qubits and the symmetry group S3 that swaps the qubits. The elements of the group
are the identity, the two-cycles and the three cycles. The two-cycles are represented by
Ut2) = Si2, Uiy = S13 and Upz) = So3 where Sy is the swap operator of site i and j: S(12) =
b lab) (ba|. The three-cycles are Upag) = Yue labe) (bea| and Upsyy = 34 |abc) (cab).

The invariant algebra A is the set of 4 x 4 dimensional matrices |o;) (o;| where |o;) are
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invariant vectors of S3: |ag) = [000), |a;) = |111), |az) = %(]001) 4+ |010) + |100)) and
las) = 1(]011) + [101) + [110)).

The Hilbert space has two sectors H = (K1 ®@H1)®(Ko®Hsz). The vacuum representation

1
3

K1 is the trivial one-dimensional representation, and H; = .4|000) is the Hilbert space
of states invariant under S that is four dimensional and spanned by |a;). The Hilbert

space Ky is the two-dimensional irreducible representation of S3 corresponding to the Young

tableaux | The vectors |vg) = [100) — |001), and |v;) = 2]010) — (]100) + |001))

provide a basis for this representation. It is straightforward to see that the action of S
leaves the two-dimensional subspace spanned by these vectors invariant. Acting with the
invariant algebra, in particular |as) (as| on these vectors generates two perpendicular vectors
|vg) = |011)—|110) and |vsz) = 2]101)—(|011)+|110)), and the new two-dimensional subspace
is also preserved under the action of S3. The sector Ko ® Hs is the four dimensional subspace

A |v1). There is no totally anti-symmetric representation for qubits.

6.1.12 Example 6: The O(N) model

Consider a real vector field ®(f) with N components of form ¢V (f;) and f a collection of
functions fi,-- -, fx. The algebra F is generated by the Weyl operators W (f) = o2 PO )
The symmetry group O(N) acts on the vector fields which is equivalent to rotating fi:
UW(f)UI = W(g.f) and (g.f)i = ¥ g5jf;. The invariant algebra A is the algebra of O(N)
singlets generated by operators like ®(f) - ®(f) = 25 0V (f)®(f). The vacuum sector is

A|€Q). The other sectors correspond to other irreducible representations of O(N). Take the

operator ®(T) = Yo, _ Tk (fy) ... o) (fy) where the tensor T’ has symmetries
under the permutation of indices that is characterized by a young tableaux A = (A, -+, \s)
with the total number of boxes k = 377 ; A;. Such operators acting on the vacuum sector

take us to the charged sector with the irreducible representation characterized by the Young
tableaux A and dimension dim(\). One can find an orthonormal basis of such operators

O(T;) with j=1,--- ,dim(X) [175].
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6.1.13 Bi-local intertwiners

Consider a multi-partite quantum system on a lattice with a symmetry U, = €'9¢ and
local algebras F,4 associated with each region A (collection of sites on a lattice or a region of
space).' We say a symmetry of the global algebra F = F44 is internal if it preserves local

algebras:
UgaUl € Fa Ya€ Fu. (6.67)

There is a unitary group 7, = €994 localized in A that generates the group action in (6.67)
for operators in Fy; see figure 6.5. In section 6.1.2 we called the operator 7, the twist and
its corresponding group the twist group G,. When the group is Abelian 7, is charge-neutral
UntyU, ,J[ = U, and provides a center for the algebra of neutral operators. When the group G
is non-Abelian the operator P, in (6.54) is in the center of the algebra: Z = @\, P,.

Locality implies that F4 commutes with the algebra of the complementary region Fu.
Define the commutant of algebra F4 to be F/;: the set of all operators in the global algebra
Faa that commute with F,4. From locality it follows that F4 C F’y. We say the region A
has the duality property if )y = Fa. The full algebra of all charged operators satisfy the
duality property, however the algebra of charge-neutral operators A violate it. For instance,
on a lattice the total charge is Q = Qa4 + Q4 and Haa = Ha ® Ha the action of the
symmetry transformation on A, is captured by the twist operator 7, = €994, The local
algebra A4 has a non-trivial center Z4 = @, A, I, with r irreducible representations of 7, and
Ar complex numbers. The duality relation for charge-neutral algebras is: Ay = Z4 ® Ay
Note that here the commutant A’, is defined to be the algebra of operators in A4 that
commute with A4. On a lattice, the failure of duality is due to a non-trivial center for the
algebra of charge-neutral operators. However, in QFT the duality property can fail even
though the local charge-neutral algebra has a trivial center. The reason is that the operator
P, defined in (6.54) is not part of the local algebra of region A because it acts singularly on
the boundary of A.

164For the sake of the argument we have assumed G is a Lie group. However, the discussion applies to any
group G.
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Figure 6.5. Consider the operator £9 Joen @I Ghere j(x) is the charge density
and the region B is the blue region. (a) On a lattice we pick ¢(z) = 1 that is the
twist operator 7, = e991. Tt generates the action of the symmetry group on the
local algebra of A;. Averaging over 7, is a conditional expectation that projects F;
to A;. (b) The action of the symmetry on the region Ajs is given by £9(@1+@2),
Averaging over this unitary projects from Fjo to Ajz ¢) In a QFT choosing ¢(x) = 1
in A; and ¢(x) = 0 outside of A; leads to an operator that has a violent behavior
at the boundary of A; due to the discontinuity in c¢(x). If there is a gap between
Ay and Ay we can choose a ¢(x) = 1 inside A; and make it smoothly fall out to
zero without entering region A,. This is the analog of the twist operator in a QFT.
Averaging over this twist projects from Ao down to A; ® As.

More generally, consider the region A = A; U Ay with two disconnected pieces A; and
Ag. On a lattice the algebra of all charged particles is additive that is to say Fio = F1 ® Fo.
In QFT, the additivity property holds when A; and A, are not touching.!” Both on a lattice
or in QFT when we restrict to the subalgebra of locally charge-neutral operators additivity
fails: A; @ Ay # Aqp. Of course, A; ® A, is a subalgebra of A5 but there exist operators
in Ajo, namely the bi-local intertwiners, that are not generated in A; ® A;. The bi-local
intertwiner adds a charge ¢ to region A; and the opposite charge —g to the region A, so
that the total charge (); + ()2 is conserved. The action of the symmetry group on F; can
be captured by a local transformation £99 on a lattice. In QFT, the operator £9%' has a
singular behavior at the boundary of A;. However, as long as there is a gap between region

Ay and A, there is a unitary transformation 7, that matches £ 991 on A, and has a smooth

17+We have assumed that QFT has the split property [169].
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tail that leaks outside of A; but does not enter Ay; see figure 6.5. In analogy with the lattice

systems, we call this operator the twist and the symmetry it generates the twist group:

by — €99p 7199 = Tgbng Vb, € F1

[Tg,a2] =0, Vaz € Ay . (6.68)

In QFT, the local neutral-algebra has a trivial center. When G is compact one has the

conditional expectation &, : A;3 — A; ® Aj that is an average over the twist group:

1
E.(b) = 7/ dg b7, | 6.69
( ) |G| e, ng Tg ( )

By construction, the conditional expectation above sets any operators charged under ),
including bi-local intertwiners to zero. The conditional expectation projects down to the
invariant algebra. To go in the opposite direction, we need to enlarge the algebra A; ® A; by
adding the bi-local intertwiners to obtain A;5. Enlarging an algebra 4 by the intertwiners
of symmetry GG is mathematically described by the crossed-product of the algebra with its
dual group, Ais = (A1 ® A;) % G; see appendix 6.1.23 for details.

In QFT, there is no local Hilbert space H;, and we only have the global Hilbert space
‘H and local algebras A;. In a QFT with charges, analogously, we have the global Hilbert
space of type @&,/ ® H,. The intertwiner |r,i) (0] ® 1 takes us from the global vacuum to
the global charged sector |r,i) but it might not be localized in region A. We come back to
this issue in section 6.1.20. Similar to the Abelian case where we added |q) (g + 1| to get the
unitary U, we would like to extend the domain of |r,i) (0] to an operator that adds charge r
to any state. The tensor product of two irreducible representations r and r’ is a direct sum
of irreducible representations with Clebsch-Gordan coefficients. A charged operator that is

localized in A commutes with all ' € A’ and removes a charge r [176]-[178]:

Vei(lr i) @ a[2)) = a|€)
V.ia|) = i) @ a |Q) (6.70)

199



where 7* is the conjugate representation of r. The action of V,; on a vector |r,j) ® |Q) is
decided by the Clebsch-Gordan coefficients in the tensor product of representations r and
r’. The dual transformation maps the algebra of charge-neutral operators I, ® a back to the

vacuum sector

pr(a) =Y VisaVil . (6.71)

The map p,(a) maps the charge-neutral operators A to itself and since it is the representation

of the local algebra it respects the multiplication rule!®

pr(araz) = py(a1)p,(az) - (6.72)
The condition above together with (6.71) imply that V;; should satisfy the algebra

‘/r]ti‘/r‘,j = 5ij
S Vavihi=1. (6.73)

The algebra above is called the Cuntz algebra [179]. The Cuntz algebra has no finite dimen-
sional representations; however, it is easy to build representations of the Cuntz algebra in
infinite dimensions. For instance, take the Hilbert space of a particle on a circle and split it
into two sectors defined by projections to the even and odd momenta P, = Y, |2k) (2k| and
P =312k + 1) (2k 4+ 1|. The isometries Vi = >, |2k + 1) (k| and Vo = 3, |2k) (k| satisfy
the Cuntz algebra with i =1, 2.

The particle number is not conserved in relativistic QFT. Acting with VTTi creates one
charged particle but applying it again we can have several charged particles. There is a
subalgebra of the Cuntz algebra that corresponds to a sector with one charged particle
dori aijVMVTTj, where a;; are invariant operators. These operators can be represented by a

d, X d, matrix algebra.

18+Such a map is called an endormophism of the algebra.
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The operators V,; satisfies the non-Abelian intertwiner equation
Viia = pp(a)V,;,Va € A (6.74)

and VTTi acting on the vacuum sector creates charged states in representation r: |r,i) =
\/dTVTTi |2).  The factor /d, is needed to make sure (r,i|r,i) = 1. There are also the
states in the conjugate representation that are created by |r*,i) = V,.; |Q2).1 The conjugate

representation is

1
pre() = = S ViaVi, (6.7

In a charged sector the expectation value of a charge neutral operator satisfies

> (rilalr,i) = (Qlp:(a)|Q) - (6.76)

If p,(a) = a, one cannot distinguish charged sectors. However, if p,(a) # a, this is no longer
true. An example of this is the compact boson example:
pa(J(2)) = J(2) + a(z) . (6.77)

The group transformation U, = &, U, acts on the intertwiner according to the equation

UgVri = Di(9)yViyUf (6.78)

g

where D,(g); are the matrix elements of the representation matrix D, (g) with the orthogo-

nality relations®

d,
G|

Z D,(9)ix Dy (9); = Oy 03j0ky - (6.79)
g

194 Note that in this case there is no need for a factor v/d, to normalize the state.
2mi
20¢4In the case of an Abelian group this is U;VZI =e 1ol VaUy.
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In QFT, in analogy with lattice systems, it is tempting to take the local algebra of A to
be all charged operators |r,i) (r',1| ® a, however as we discussed above, in QFT |r, i) (0|®1 is
not localized in A, and the charge neutral algebra has no non-trivial center. Local charges on

A are created by the intertwiners V.|, instead of |r,1) (0| ® 1. Therefore, we define the local

i
algebra of charge operators to be the algebra generated by charge neutral operators a and the
isometries VTT1 Consider charged operators Y ; a;V;.;. Bi-local intertwiners create/annihilate
a charge in A; and create/annihilate the opposite charge in Ay so that the net charge is

preserved:

r 1 2
7)) = > (Vi)Y (6.80)
with Vr(ll ) and VT(?) supported on A; and A,, respectively. This is a unitary map in the
global algebra that is charge-neural. However, from the point of view of algebra A4; it is an
intertwiner.
In the remainder of this section, we provide several examples of bi-local intertwiners in

finite quantum systems and QFTs.

6.1.14 Example 1: Qubits

Consider two qubits in H; ® Ho and the symmetry group Zs corresponding to the action
of (=1)? = 0, ® 0. where the total charge Q = Q1 ® [+ 1® Q5 and Q; = %(]I — 0,) counts
the number of excitations “|1)”. The action of the symmetry group on the local algebra F;
is captured by the twist group 7, = (—1)%! that is localized in A;. The algebra of global
charge-neutral operators A;s is the set of all operators that commute with Q. The charge
neutral sub-algebras A4; ® I, and I; ® Ay commute with ), however, A;5 includes more
operators. In particular, the operator that creates a charge on site one and annihilates it on

site two commutes with @):

1
[Q, 0" ®0T] =0, ot = i(a(z) FioY) . (6.81)
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The algebra Aj, also includes operators that increase () by two units, |00) (11| € A;5 and
its T. The subspace H} = A;2|00) that is spanned by |00) and |11) is the zero charge sector
and the charged sector is Hj = A;5 |01) which is spanned by |01) and |10).

The subalgebra of A;y invariant under the twist group (—1)? is A; ® A,. Each sector
H) and M), further splits into two sectors depending on the eigenvalue of o{1). The operator
|11) (00| is an internal intertwiner for the twist group that is a unitary in H}, and 0~ @ o+ =
|10) (01| is an internal intertwiner for the twist group in #H). Local intertwiners create a
pair of charge/anti-charge excitations. The group average over the twist is a conditional

expectation &; : A — A1 ® A,y that washes out local intertwiners:

E-(b) = < (b4 0MbolV) . (6.82)

N | —

This can be easily extended to n qubits with the global symmetry Z, that is measured
by the total charge (—1)? = @™ 0% and the local charge associated with the region A
that is the first m qubits 7 = (=1)? = ®@7,0). The global Hilbert space splits into two
sectors H = H, @& H_ where Hy is spanned by all |sy,---s,) with s;s9---s, = 1. The
twist symmetry 7 = (—1)?' further splits each sector into two: sys5---s, = 21. The
operator [Si -« S, yg1 o) (8 -8l b oot with sp---s,, = =1 = —s}---s/ and
tm1 -ty = x1 = F(t,,1 - -t,) is an example of a local intertwiner.

As an example of a region with two non-overlapping pieces consider the local algebras
Ais and A; ® Ay where there are a total of three qubits. We first check the duality property.
Once we include the centers of local algebra the duality property holds: A}, = Z15 ® Ajs
and A} = Z3 ® Ajo. Note that the operator 73 = (—1)917% = ¢l @ ¢(3) is in A} but
not in A;,. In fact, if we only add 713 to Ao we generate the full Z3 ® A;>. The operator
713 is a twist operator similar to the ones in QFT because it acts on A; like (—1)91 it is
supported outside of A; but its support does not enter A;. We learn that another way to
express the duality relation for charge-neutral algebras is by enlarging A, with the twist
713. In mathematical language, we write the crossed product A} = Ajs x G13 where Gi3 is

the symmetry group generated by 713. We could replace 713 with 793 or 73 and the result
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remains the same. However, for the opposite region we have to enlarge A3 by 75 to obtain

T90 Aly = A3 x Go. If we have four qubits, then the equations become more symmetric:

/12 = A3y 1 Gy
34 = .A12 X G34 . (683)

A much simpler way to write the duality equation for charge-neutral algebrasis A’y = A4 xG
where G = (—1)? is the generator of the symmetry in the global algebra.

The interplay between duality and additivity of local algebras plays an important role in
the study of quantum systems with symmetries [166]. The action of a symmetry on a local
region A; is captured by the twist group Gy, generated by 7y, with Ay some region outside of
A;. On a lattice, one can take the twist to be 7;. Denote the local intertwiner that creates a
charge on A; and annihilates it in A; by Zj;. It generates a group dual to the twist group Gj;
or Gy, for k # j in QFT. When the algebra is Abelian this duality transformation is a Fourier
transform and indeed we find [Zj;, 73] # 0. In the qubit example, we have [Z;, 73] = 2Z;.

6.1.15 Example 2: Free relativistic fermions

Consider free fermions in (1 + 1)-dimensions. As we discussed in section 6.1.9 the sym-
metry of the global algebra is (—1)" where N is the total number of fermions, and the
invariant global algebra is all operators with an even number of fermions. The local algebra
of a region is generated by W(f4) with f4 any bounded complex function supported only a
region A.2 The symmetry acts on the local algebra as 7 = (—1)V4 where N, is the total
number of fermions in a region A. This operator is discontinuous at the boundary of A and
we can smooth it outside of A. The Hilbert space splits into four sectors corresponding to
two charges (N mod 2) = 0,1 and (N4 mod 2) = 0,1. The operator U(fa)¥T(g4) creates
a pair of charge/anti-charge particles in A and A’. It is a bi-local intertwiner for 44.

If we take two regions of space A; and A, that are non-overlapping and non-touching

the complementary region also has two disconnected pieces. This is analogous to the case

214+We thank Edward Witten for pointing this out to us.
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of four qubits we discussed above.?? In addition to A; ® A, the algebra of Aj;, includes the
intertwiners from region A; to A, that are \I/T( f1)¥(fy) with f; supported in A;. The twist
operator 7 = (—1)%! needs to be smoothed out outside of A; without leaking inside A,. We
call the smooth twist operator 713 because it is supported on A;3 and acts like (—1)M on

A;. The group average over 73 is a conditional expectation &; : A;3 — A; ® Aj:
1 1
E.(b) =5 (b+7i5'b713) (6.84)

It kills the local intertwiners: E(U(f1)¥T(f2)) = 0. In QFT, there are no local density

matrices, instead the local state is a restriction of the global pure state to the local algebra:
w(a; @ az) = (Q)a; @ az|Q) . (6.85)
The invariant state is

(Bf(w)(a1 @ a2) = 5 (w(ar ® az) + w(ri3' (a1 ® az)73)) (6.86)

N | —

which can be thought of as the restriction of the global density matrix

(1) 49 + 715 192) (2 755" (6.87)

DN | —

to the local algebra A;,.

6.1.16 Example 3: U(1) current algebra

In the free (1 + 1)-dimensional compact boson model, the symmetry group is £%° and

the Hilbert space has many sectors |a) with the vertex operators V(a) =: ¢ ®@ : with «
some function on the circle intertwining them. If we consider the local algebra generated
by £Y(4) with f4 some smooth function supported only on A then the total charge on A

is jo(A) = 5= §4 J(z) where A is some angle on the unit circle in radial quantization. The

221Tn higher than (1 + 1)-dimensions the complement of A;, is connected and the three qubit example is a
better analogy.
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A | = A\ i
(a) (b)

Figure 6.6. (a) The bi-local intertwiners in A; U Az conserve the total charge,
Ja,ua, 42 @(2) = ¢ = 0. (b) The subalgebra N7 C A; does not have any operators
that create and annihilate charges inside A; (the red excitations). Such an algebra
is generated by J(f) with functions localized in A;.

bi-local intertwiners between two non-touching, non overlapping regions A; and As are V(«)
with [, dz a(z) = g4 and [, 4, dz a(z) = ¢ = 0 so that they do not change the global

sector; see figure 6.6.

6.1.17 Intertwiners and Modular Theory

In a Poincare-invariant QFT in (d 4 1)-dimensions, the global algebra of spacetime F is
generated by the bounded functions of the field operator ®(f) with ®(f) = [ d¥ 1z f(z)P(x)
and f(z) a solution to the classical equations of motion that respects the boundary conditions
at infinity® [165], [169], [178]. This algebra is represented irreducibly on a global Hilbert
space H. The local algebra F4 C F is the subalgebra generated by ®(f) where f is only
supported in A. The local algebra of QFT does not have an irreducible representation and
there is no local Hilbert space [58]. The local algebra F4 and that of the complementary
region F4 both act on the global Hilbert space. The local states are the restriction of the
global state to the local algebra:

wA(b) = <Q|bQ> , Vbe Fyu . (688)

Since there are no local Hilbert spaces there are no density matrices either. Modular theory

is a mathematical formulation that allows us to define information theoretic quantities using

231 Assumptions about the smoothness of the function f are implicit in what is meant by a solution to the
classical equations of motion.
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only global states and local algebras, with no need for the existence of local density matrices;
see [165]. It applies to any quantum system from qubits to QFT. In QFT the algebras
Fa and Fu are isomorphic and the global vectors of QFT are analogous to the canonical
purification of p4 a density matrix of A in terms of |€2) a pure state of a double copy Hilbert

space Ha Q@ Ha:

w = ;pk k) (k
Q) =D Vo k) A ® k) 4 - (6.89)
k

If A; and A, are two non-overlapping and non-touching regions of space, and F; and F»
are their corresponding local algebras in QFT, the additive algebra of the union A;, is the
algebraic tensor product of local algebras Fio = F; @ F».24. There is no tensor product when
the regions A; and Ay touch. The algebra of invariant local operators A has a trivial center
because the twist operator £99' does not belong to A;, however, when A; and A, are not
touching the smoothed out twist commutes with both A; and A,; see figure 6.5.

In section 6.1.2, we argued that the correct entanglement measure in the presence of

charges is the relative entropy in (6.39):
ST (EN (wi2)[|€7(Er (wn2))) + 872 (E7(E7 (wi2) | €7(E7 (w1) ® wn)) (6.90)

with the conditional expectations

g (wlg Z UngU
|G| geG

(‘:* (U12 Z TgwlgT (691)
|G| geG

244In infinite dimensions, one has to be careful when tensoring von Neumann algebras since the weak closure
of operators depends on the Hilbert space on which it is acting [58]. This is the so-called split property of
QFT that we have assumed to hold in any reasonable model.
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where U, = €99 and 7, is the smoothed out £99'. By a unitary rotation of local states we

(UwUN(b) = w(UTbU) . (6.92)

We have structured this section in the following way: In section 6.1.18, we start by
a discussion of the local charged states and a lower and an upper bound on (6.90). In
section 6.1.19, we review the Tomita-Takesaki modular theory (see [180] for a more detailed
review) and compute the modular operators for charged states |r,i), and comment on the
mirror operators in the presence of charges. Section 6.1.20 discusses the relation between
the cocycle operator in modular theory and local charges. Finally, in section 6.1.21 we
introduce a canonical enlarging of the algebra of QFT that decouples charged modes across

the entangling surface.

6.1.18 Charged states

Consider the global invariant vector |2) and its local state w on region A. Since |Q) =

U, |2), the expectation value of all charged operators of the form b — E(b) vanishes in w:

w(b S (QUIBULQ) = (QED)Q) . (6.93)

geG

1
el

All the charged states |r, i) are perpendicular to the vacuum since they belong to different
superselection sectors. We denote by |r, i, A) = \/d, (VTEiA))Jr |©2) a state with a charge localized
in region A. A vector |®) = \%UQ} + |r, i, A)) that superposes the vacuum with a charged

state appears mixed to the local charge-neutral subalgebra of A:

(®|ad) ;(w(a) +wi(a)) (6.94)

208



where w,i(a) = (r,i|a|r, i) is the local charged state, which turns out to be independent of
i; see (6.98). The same holds for the local state of the vector |x) = %(V, i, A1) + |r,j, A2)).

With respect to any charge neutral operator a € A;5 the state seems mixed

(xlax) = & (@rs(a) +1ry(@) (6.95)

This is because

dy
|Gl

(r,1, Arlalr, i, As) = d, (QV.Pa(VENTQ) = Z2 ST (QuiviPa(ViE o, Q) . (6.96)

g Vi
g
Using the transformation rule of the intertwiner in (6.78) we find

(r,i, Ala|r,j, Ag) = ZD )ik Dy (g <Q“/;~(li)a<‘/;(l2))TQ>

glk

|G|

_51JZ Qv a(vVihto) = % Z r,k, Aylalr, k, As) (6.97)

where we have used (6.79). We learn that (r,i, Ay|r,j, A2) ~ 6 and when i = j the expecta-

tion value of a is independent of j:
wrsla) = (1., Alalr,j, A) = 3 (QVeraV|2) = w(pr(a)) - (6.98)
k

Therefore, w,(a) = w(pr(a)) = wyj(a) which implies that one cannot distinguish |r,i) and

|7,j) using charge-neutral operators. For a general vector |¥) =", ¢, |r,i, A) we have
= Z el (r, 1, Alalr, i, A) = w.(a)¢ = ¥(a), (6.99)

where ¢, = ¥, |eni[.

Now, consider non-touching regions A; and A, and a global invariant state Uy |Q2) = |Q).
The local states wis and w; ®wy both have zero total charge Q1+ @2 = 0 and we only need to
consider the charge neutral subalgebra 4; ® A, and the bi-local unitary intertwiners 75, =

ZI(VT(I1 ))TVT(JQ). The bi-local intertwiner is a unitary operator that creates an entangled pair of
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charge/anti-charge particles Z5, |?) = |Z12,). These states are orthonormal: (Z,.|Z,/) = 0,
and (Z,/|Z,|Z,) = 6,1 (QZ,). They have an overlap with the vacuum state

(OTia,) = S QUVE VIR = 3 (i Audri, ) (6.100)
The vacuum state has a non-zero amplitude to fluctuate to a state with multiple entangled
pairs (QZi2, - - - Li2,,) 7# 0. If the symmetry group is Abelian Zyo ., - - - Ly, = Z12 4o, -

The average £ projects the algebra A5 to A; ® Ay by discarding the bi-local intertwiner
Z15. The averaged state £(wq2) has zero amplitude for the creation of an entangled pair of
charged particles between region A; and A,. Adding any bi-local intertwiner Z;5 to A; ® As
immediately enlarges it to Ajs. If we want to isolate the contribution of any particular
Tio = Vi(z)V(y) with z € A; and y € A; to the relative entropy we need to find a subalgebra
of A5 that only includes this particular bi-local intertwiner, and none of the others.

There is a subalgebra of global charged neutral operators that has no bi-local intertwiners
in it; that is to say we have discarded Z;5 for any non-touching A; and A,. This is the algebra
of QFT with no charge creation or annihilation operators. For instance, in the example of
the U(1) current model, the algebra generated by J(z) without any vertex operators is such
a subalgebra. We denote such a subalgebra by N. The restriction of N to a region A; gives a
subalgebra N} C A; and a conditional expectation that washes out any bi-local intertwiners
within A;. The subalgebra N7 ® Ny C A;» has no bi-local intertwiners within A;, A, or
in between A; and A,. Enlarging N7 ® N5 by adding any Z;, gives a subalgebra of Ajs,
rather than immediately generating the whole A;5. For instance, in regions A; and A; we
can choose to add a bi-local intertwiner V1 (x)V (y) with x € A; and y € Aj; see figure 6.6.
The relative entropy

SWENI2 T2 (1)) | B2 (wi2)) < SA2 (Wil B (wi2)) (6.101)

measures the contribution of this particular bi-local intertwiner, and we have used the mono-
tonicity of relative entropy to get a lower bound on our entanglement measure due to bi-local

intertwiners. The authors of [166] argued that the bi-local intertwiners with the minimal

210



distance |z — y| in between A; and A, give the tightest lower bound for the relative entropy
S(wiz2||Ef(wiz)). In the literature, such bi-local intertwiners are also known as the edge
modes.

To find an upper bound on this entanglement measure we use the definition of £* and

the inequality in (6.41):
S712 (wis|| €} (wna)) < log |G| (6.102)

In section 6.1.19, we demonstrate a generalization of the inequality (6.41) that applies to

QFT.

6.1.19 Modular theory in the presence of charges

Consider two global vectors of a QFT, |Q2) and |¥) and a local algebra F4. The relative

Tomita operator is defined using the equation
Sanb|) =b'|[W),  Vbe Fu. (6.103)

This operator is labelled by the choice of two vectors and an algebra. To simplify the
notation, when it is clear from the context we suppress the algebra label. The equation

above defines the action of 5[?2 and its T everywhere in H if the action of operators in F4

and Fu on |Q) is dense in the Hilbert space: F4 |2) = H [58]. Such a vector |Q2) is called a

Reeh-Schlieder vector (cyclic and separating). In a Reeh-Schlieder state, the action of local
algebra F4 on |Q) can approximate any excitation in the global Hilbert space, even those
supported outside of A.2°> The vector |Q) is called Reeh-Schlieder if and only if it is cyclic
with respect to both F4 and F4. The squared norm of the relative Tomita operator is
called the relative modular operator Ayjn = STI}‘QS\I;‘Q and we define the anti-linear operator

Jyjo = S\I,mA;‘léQ. When both vectors are the same we call Sq = Sqjo the Tomita operator

254In finite quantum systems, the canonical purification of a density matrix p is a Reeh-Schlieder vector if
and only if all the eigenvectors of p are non-zero. That is to say p is entirely entangled with A’.
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and Ag = Agjo the modular operator. The anti-linear operator Jo = Agl{ QSQ is called the

modular conjugation of |2) and has the property that
by=JbJ € Fy Vb € Fy, (6.104)

where we have suppressed the €2 index of J. If |2) is Reeh-Schlieder the modular conjugation
is an anti-unitary J = J~! = J' [59]. An important result of the modular theory is that
the (relative) modular operator generates a flow called the (relative) modular flow that is an
outer automorphism of the algebra F4. This flow is independent of the second vector (for a

proof see [60], [181]); see figure 6.7:

(AL DAL T = (AL 'D(AY) € Fa VbeFa and VteR
(ALY (AL T = (AP V(A € Fa W € Fa and  Vt € R(6.105)

(a) (b)

Figure 6.7. If the region A is the Rindler wedge and the state is a QFT in
the vacuum, the modular flow is the boost that evolves operators geometrically
according to the arrows in (a) [58]. The modular conjugation map Jq is the CRT
(charge conjugation/reflection/time reversal) that sends operators from A to A" and
vice versa. (b) The relative modular flow generated by A&\p acts as the modular
flow of Q on the operators in A and the modular flow of state ¥ on the operators

in A’.

212



The above relations imply that the operator A&\I,A{zit commutes with all operators in

F 4. This operator is called the cocycle. Similarly for the modular conjugation we have
TyiabJuie = JabJo (6.106)

which implies that Jy|q.JJy commutes with all 4. The correlation functions of the operators
b,c € F4 in the state |2) have the KMS property which can be interpreted as an analytic
continuation of the modular flow to complex values of t: (QbAqc|Q) = (Q|cb|€2).26 The set
of operators h € F4 with the property that (Q|[h, b]|2) = 0 for all b € F4 forms a subalgebra
of Fa that we call the centralizer of w and denote it by F4 [182], [183]. The KMS property
implies that

QA —1h|Q) =0  VheTFy. (6.107)

Since b(€2) is dense in the Hilbert space the vector h|2) is an invariant state of the mod-
ular operator. The operators in the centralizer have the important property that A and A

commute [182]
A*hA™*=h  VzeC. (6.108)

In fact, an operator h € F, that is in the centralizer of {2 commutes with Agy for any
.27 Since h € F4 are invariant under the modular flow, we sometimes refer to them as the

modular zero modes. The modular zero mode satisfies the equation

(Rt —hy) Q) =0. (6.109)

261To show this we note that (Q[bAc|Q) = (Q[bSTSc|Q) = (ScQ|SbIQ) = (2]cb|Q), where we have used the
anti-linearity of S.

271To see this, we first rewrite b as lim.,_,o b, in (6.130) that is entire meaning that b, (z) defined in (6.131)
is in Fy for all complex z. Then, from (6.105) it follows that for all A in the centralizer of {2 we have

AGhAG" = AjybAgH, = h.
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Note that h; € Fa is also in the centralizer of (2. If the algebra has a center Z, the center

is inside the centralizer of all states. The operators in the center z € Z satisfy 2' = z; [184]:
210 1Q) = b2 |Q) = S(2b") |Q) = JAY22bT Q) = 2, JAY?T Q) = 2,b|Q) . (6.110)

The relative Tomita operator for an excited state h|2) and h an invertible element of

the centralizer is

Sajme = [|1[2) |Sa(hs) ™
Aopa = [|1]92) [*Aalhs| ™ (6.111)

where we have used (6.109). The relative entropy of two vectors with respect to an algebra

F4 is given by [185]
STA(]1Q) = — (¥|log AL ) (6.112)

When [2) and |¥) are the canonical purifications of density matrices o and p in (6.89) the

formula above matches the definition:

S(pllo) = tr(plogp) — tr(plogo) . (6.113)

The elements of the centralizer are the operators that commute with the density matrix.
The local state associated with the excited state h|Q2) with h in the centralizer is p, =
hph' /tr(p|h|?) that commutes with p the local state of |Q2). The relative entropy of these

states with respect to the vacuum defined by (6.112) is

S(hQ|Q) = —2log |1 Q) || + 2 (hQ| log ||| Q) (6.114)
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where |hS2) is the normalized state h|Q). If v is an isometry in the centralizer of Q2 then

v1|Q) has the same local state as |Q):
(Qobvt|Q) = (QvTb|Q) = (Q]b|Q) . (6.115)

That is why the equation (6.114) implies S(vTQ||€2) = 0 for v in the centralizer. Since p
and py, are simultaneously block diagonalizable their relative entropy can be understood as
a classical relative entropy. For instance, take p = >, qx |k) (k| and h =Y, \/% |k) (k| with
pr a probability distribution that is in the centralizer of p. The state p, = > i px |k) (k]| is

simultaneously diagonalized with p. The relative entropy above is

SO o lk) KD qi k) (k]) = pr(log pe — log q) = H(pllq) (6.116)

which is a special case of (6.42). More generally, for an operator h that in the centralizer of

©2) we have

Suina = [[712) | Swia(ha,) ™
Agjo = (|1 Q) [P Avjal s, |~ (6.117)

where we have used the fact that [Ay|q, hy,] = 0 because hy, € Fa and in the centralizer

of Q). Then, the relative entropy is
S(hQ|¥) = —2log ||h Q) || + 2 (k2| log |h||RQ) — (hQ|log Aga|h§2) . (6.118)

This is a QFT generalization of the equation (6.42). To see this, plug in the equation above
the block diagonal density matrices p = ®rqrpr, ¥ = Orpror and the operator h = @y, %:]1,C

that is the centralizer of both states:

ST (pllo) = H(plla) + > peS(pellow) - (6.119)
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In the presence of an internal symmetry UgbUgT € Fu for all b € Fu. From (6.103) we

can solve for the modular operator of U, |U):

St v = UySgU}
Af g = U, AU (6.120)

If |©2) is the invariant vacuum, i.e. U,|Q) = |Q), the modular operator and U, commute:
AU, = UygAq. As aresult, the modular flow Ag of charge-neutral operators remains charge-
neutral if |(2) is an invariant vector, and the charge of an operator V,; does not change under
the modular flow by Af,. Now, consider the twist unitary 7,. On a lattice, the twist operator
is in the center of the local charge-neutral algebra. In QFT the twist operator is not in the
center of the local algebra, but we still have

i = syl

SAEA (- OB = A4 (Q W) | (6.121)

This is expected because 7, |€2) has the same local state as |[2) with respect to the algebra
A @ As.
The relative Tomita operator of the charged states |r,i) = \/d_TVTTi 2) is

S| (ri) b Ir,i, A) = bl |r' 1", A) Vb € Fa (6.122)

which can be solved by setting S()r) = \/%VTESQW/J/ in the equation above. Below,
we suppress the algebra label in the relative modular operator and relative entropies if the
algebra is F4. Note that Sq is the Tomita operator for all charged operators, and we have

used Vji‘/;j = §;;. The relative Tomita operator kills the vectors b|s, j, A) for s # r, and on

)| (ri) = \/ V5ISaViy

d,s
Ao = VT ASHV Vi SaVi (6.123)

its domain it satisfies
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In particular, we find that > Agin A@iyje. For an Abelian symmetry, the inter-

_ 1
i) = 4,

twiner V; is a unitary operator and
Agey = VIAQV, . (6.124)
Therefore, the relative entropy states of sectors of charge ¢ and ¢’ is
S74(d'lg) = = (d' [V log AaVild') = — (¢ — gl log Aald’ — q) - (6.125)
For bi-local intertwiners Z;,, and the algebra Fi, we have

ShE = T.55"

S7i8, = ST

S72(Z]|Q) = — (Z| log Aq|Z,)

§72(QIL,) = — (Z][log Aa|Z]) . (6.126)

where for F;

Fi (1)
SQ|II, Z V TS ’r‘_] )Ta
f
St = ZW )Sg (Vi) - (6.127)
j
The relative Tomita equation defines the relative modular operator unambiguously if the
vector |€2) is Reeh-Schlieder. The Poincare-invariant vacuum of QFT is a Reeh-Schlieder
vector for local algebras F4. In a Reeh-Schlieder vector the excitations inside the region A
can approximate an arbitrary excitations outside. We are interested in studying the relative
modular operator with respect to the local charge-neutral subalgebras A4, and below we
show that the vacuum vector is Reeh-Schlieder with respect to A4. That is to say in QFT

an arbitrary uncharged operator in A can be approximated using local uncharged operators

.AA: .AA |Q> = .A |Q>
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First, let us take a look at the Reeh-Schlieder property for the full algebra F of QFT. In a
Reeh-Schlieder state an arbitrary excitation in F; ® Fy- can be approximated using operators
in F;. We want to find b, € F; such that for some &' € Fy, we have 0 |Q2) ~ b, |Q). We call
such an operator b, the mirror operator of /. To construct the mirror operator, we use the

following strategy
V' |92) = Sp(t)[2) = (A)2IW)Q) = AVEW)FAT2 1) (6.128)

with ('), = J(1)TJ € Fi where we have suppressed the Q index of Aq and .Jg. For a Reeh-
Schlieder vector in finite quantum systems, it is straightforward to check that the operator
(w'2bTw=1/2 ® 1) is the mirror of (1 ® b) where T is the transpose in the basis picked by the

density matrix w:

ST VPR A W 2 @ 1) [kkY = 3 /b 1k = > i1 @ b) |1l) (6.129)

kl l

where we have used the canonical purification of w in (6.89). Note that in the example
above, the modular conjugation operator J is the anti-linear swap operator in the Schmidt
basis of the state: Jc|kl) = ¢*|lk) where ¢ is a complex number. In a Reeh-Schlieder
state since all p, > 0, w™'/? is well-defined. Furthermore, the operator AY2(b7 @ 1)A~Y/2 =
wWwbTw 201 € Fi®1. Ina QFT, for a general b € Fy, the modular flow b(t) = A¥bA—" is
inside the algebra F; for all t € R, but the operator AY2bA~1/2 need not be in F;. Luckily, as

we demonstrate below, in QFT there are always operators in F; that approximate AY2pA~1/2
arbitrarily well.
Consider the operator
b, = \/Z / dt e AAT € Fy (6.130)

218



In the limit v — oo this operator approximates b,%® and for any v the modular flow of this

operator can be analytically continued to the whole complex plane [182]
b(2) = Ah, A = \/Z [ are A At e 7 (6.131)
Therefore, we find that mirror operator of & in the algebra F; that satisfies

v |Q) ~ b, |2)

b = T ((8)}):(1/2) . (6132)
If the operator b’ is an isometry, the equation
Qb Q) =1 (6.133)

implies that the probability for the spontaneous creation of the excitation b'b! |Q2) is almost
one. In general, if & is localized in a small region of Ay, its mirror is highly delocalized in
Ay If [/, A] = 0 from the mirror equation (6.132) we find that b, = (¥')}; see figure 6.8.
Consider the symmetry group G acting on the global algebra F. If o’ € Ay is a charge-
neutral operator from (6.131) it is evident that the mirror operator a,, is also charge-neutral,
and is therefore in A;. This implies that we can generate Ay, |Q2) using A, |2). The only other
operators in A are the bi-local intertwiners between A and A": I, = 3; VTTIV;’ .- Denote the

mirror of V;'; by (V;;)m. It has the same charge as V/;. Therefore, the operator 3=; Vii(wd)m

is charge-neutral with respect to the local algebra and therefore belongs to A4. Moreover,

the mirror of all operators in Ay, also belong to Aj, therefore in QFT A4, |Q2) = A|Q).

Since Ay [Q) = A12|9Q), it follows that for non-overlapping and non-touching A; and
Ay we have A; ® Ay |Q2) = A12[Q) = A|Q). All intertwiners between region A; and the

complement A} can be prepared locally by acting with 4; which includes the intertwiners

284Note that in the limit v — 0 the operator by is the modular zero mode, and for finite values of v this
(log pj, —log py1)?

operator sends off-diagonal elements |k) (k'| — e~ T |k) (K'|. Tt suppresses the off-diagonal terms

exponentially with parameter % The modular zero mode has the property that its modular flow is trivial:

(bo)~y = bg for all ~.
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A/

b

(a) (b)

Figure 6.8. Consider the case where region A is the Rindler wedge and we have
the vacuum of QFT (a) If b’ is localized in the small red circle inside A’ the operator
(V') is also localized in the red circle in A, however the the mirror operator in (6.131)
requires boosting that spreads its support in the blue region (b) The operators in
A’ that are approximately-invariant under modular flow (boost) are localized in a
small proper distance from the entangling surface. Their mirror operators are also
localized near the entangling surface in A.

between regions A; and Ay. As a result, the algebra (A; ® As) |Q) = A|Q), and the Tomita
operator for the algebra A; ® A, is densely defined.

6.1.20 Cocycle and intertwiners

In this section, we show that the intertwiner V,.; can be understood as an analytic con-
tinuation of the unitary cocycle. Consider two vectors |(2) and |¥) in different superselection

sectors of a QFT and the isometry defined by
1/2
T(a|¥)) = alyg |€2) (6.134)

that maps vectors from the [Q2) to the |¥) sector. This is an intertwiner that takes us
from one charged sector to another and commutes with the action of F4 [58]. When the
superselection sectors are due to symmetries, the intertwiner need not be localized in A. We

say the intertwiner is localized in A if T8 |Q2) = VT |(2) for all ¥’ charged operators in A’. We
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would like to understand when the intertwiner 7' is localized in A. In the last subsection,

we saw that the cocycle operator
upja(t) = Al Ag" (6.135)

belongs to the algebra. In fact, if both {2 and ¥ are Reeh-Schlieder it is a unitary operator.
For real values of ¢ the cocycle is an operator in A and commutes with &' [183], [186]. The
isometry in (6.134) can be created by an analytic continuation of the cocycle to imaginary

values Im(t) = —i/2:
TV [T) = V' AY6As"7 Q) = Vuga(—1/2) ) . (6.136)

The isometry in (6.134) commutes with all &’ € F if the analytic continuation of the cocycle
uy|o(—i/2) exists and belongs to F4.

On a lattice the cocycle is ug(t) = Ptw™ ® 1" with 1 and w the reduced density
matrices on A of |U) and |2), respectively. The analytic continuation of the cocycle to
Im(t) = —i/2 corresponds to 1/'/2w™'/2 ® 1 which is well-defined if all the density matrix w
has no zero eigenvalues. In fact, it suffices to assume that every zero eigenvalue of w is also
a zero eigenvalue of 1, because if w|£) = ¢ [£) = 0 we can define 1!/2w=1/2 |¢) = 0. In other
words, the cocycle has an analytic continuation if there exists a A > 0 such that w — A\ is
a non-negative operator. This is the necessary condition for the relative entropy S(v|lw) to
be finite. Similarly, in modular theory, the cocycle wy|o(t) can be analytically continued to
the 0 > Im(t) > —1/2 if w — Ay > 0. That is to say there exists a A > 0 such that for all
be Fyu:

w(b'b) — Mp(b'b) >0 . (6.137)

If |¥) and |Q) are vectors corresponding to states ) and w with w > A for some positive

A, the cocycle uy, has an analytic continuation to the strip 0 > Im(t) > —1/2 that remains
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inside the algebra [64]. This implies that there is a map u(t) analytic in the strip and strongly

continuous in ¢ with the property that

u(t) = uy(t)

u(t)b' Q) = V' AY |€) . (6.138)
In particular at u(—i/2) we have the map
u(—i/2)V" |[¥) = V'u(—i/2) |¥), (6.139)

which is the local intertwiners V,; we discussed in the case of charges in section 6.1.13. In
our examples of QFT with charges we have £ (wj2) > ﬁwlg, therefore the cocycle g, g2 (w0)

takes us from the sector [2) to the sector corresponding to £*(w).

6.1.21 Enlarging the QFT algebra

In section 6.1.13, we saw that one main difference between QFT and systems on a lattice
is that in QFT the twist operator 7, = €994 is not part of the local algebra, and as a result
the local invariant algebra has no non-trivial center. It is natural to ask whether one can
enlarge the QFT algebra by including 7, to make QFT more similar to the lattice models.
The local algebra of charged operators in QFT has charge neutral operators I, ® a € A4 and
charged operators VT&A) supported on A that belong to the dual group G: Fa= Ay x o G. It
we further enlarge the QFT algebra by adding 7, that belongs to G to it, we obtain F4 x G.
If the group G is Abelian this is (A4 X G) %G = A4 ® B(L*(()). Physically, this corresponds
to adding a qudit of dimension |G| to the local algebra of QFT exactly as we do on a lattice
[182]. There will be an analogous degree of freedom on the complementary region A’ and
the global Hilbert space factors as ‘H = @Q(K? ® IC;;‘/) ® Hq4. The enlarged local algebra
is the tensor product of the algebra of charge neutral operators with a qudit of dimension
|G| that carries the charge: A4 ® GL(|G|,C) where GL(|G|, C) is the algebra of a qudit. In

this enlarged algebra, the charge neutral operators have a non-trivial center: ®,),|¢) (¢|®1
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similar to systems on a lattice. When the group is non-commutative, it is still convenient to
consider the algebra represented on the Hilbert space @, (K4 ® K4') @ H,..

It is desirable to construct a conditional expectation that maps the enlarged algebra
Fa x G back down to the QFT algebra F4. In the Abelian case, this is simply an average

over the dual group

Z ¢l ©a)l, (6.140)

q

E(l¢) (d"| ®a

The QFT local algebra F, is generated by |0) (0] ® a and U, which transform under this

map to

E(ﬁq) =U, (6.141)

where in the second line we have used the fact that the group is Abelian. Under E any new

non-identity elements of the twist group 7, = 3°, €9?|q, A) (¢, A| are washed out
E(1,) = 0,0l . (6.142)

In the example of the free boson in section 6.1.10, the dual group is Z that is not compact

but we can still write

pa(J(u )+ 7{ Smt(2)alz) (6.143)

and the sum over charges in the range (—gq, ¢q) vanishes

o =J . 6.144
2q +1 k;q Pl (@) ( )

as one expects from a conditional expectation.
Our enlarged algebra has a representation in a Hilbert space that factors the charge

modes ®,(K: ® K) ® H,. We would like to find the vectors in this Hilbert space that

223



correspond to the states of the QFT algebra. We can extend our QFT states using the
conditional expectation E so that the relative entropy of states evaluated in the enlarged
algebra remains the same as that of the QFT algebra. For instance, the purification of the

state £%(¢) in (6.99) in this enlarged Hilbert space is

10,) = S VG 1) @ |w,)
1 ) . .
|E,) = A ZI: r, 1) @ |r*, 1) (6.145)

where r* is the dual representation of . The expectation values in this vector are

Z <@¢|(1T ® a)|@¢> = ZQW(PT(G))

r

(©,]V,404) = 0 (6.146)
and
1
(@¢|U; ® 110y) = d—tr(U;) =4(9) (6.147)

as expected from an invariant state of E. This vector is also Reeh-Schlieder with respect
to the QFT algebra because the action of V,; and [, ® a take us everywhere in the Hilbert
space.

For simplicity, we assume that the symmetry group is Abelian for the remainder of this
section. The relative Tomita equation for the vectors |6,,) = [00) ®|2) and |©4) = |00) ® |¥)

is

S8,10.(10) (1 ® a)[0u) = (1) {al @ a') [O)

Sg,0,[©a)]6,) = ([®al)|0,) . (6.148)

The domain of S7 is |q0) @H,, however, this operator is zero except for the subspace |00)®@H,
that is the domain of S*. On the common domain the two relative modular operators agree.

Since the zero vector is not in the domain of (S7)' the relative modular operators A" and
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AA are the same map from [00) ® Ho — |00) ® Ho. In fact, the purification of any state that
is invariant under the conditional expectation £ has this property. The distinguishability of

invariant states does not change as the restriction map £. Consider two invariant states:

w=>pglq) (gl @ w,
q

v ="> 1yla) (al ® g (6.149)

and their corresponding purifications

10u) = > Vgl —a) ® 1)
1O4) =" \/Py la. —a) @ |T,) (6.150)

Their relative modular operator is

p/
Ao, = 0810, =D Il —m) (I, =m| ® Agypq,, (6.151)

I,m 'm

and their relative entropy is
S(@wH@w) = — (0] log Aew|@w@w> = H(pHp’) + ZPZS(‘I’ZHQZ) (6.152)
!

as expected from the equation (6.41).

The algebra of QFT does not admit a tensor factorization when the regions A; and
Ay touch, however, as we saw in the presence of a symmetry the extended algebra factors
the charged excitations. The local algebra of any quantum field has a symmetry group R
associated with the modular flow. The modular flow is an outer automorphism similar to the
twist group. Similar to the case of twist that was not part of the algebra due to the infinities
near the entangling surface, the modular Hamiltonian, i.e. log Aq restricted to A is not part
of the algebra because of its discontinuous action at the entangling surface. For instance,
in the vacuum QFT and for the Rindler region |z!| > |¢| the modular Hamiltonian is the

boost operator [ du uT,, where T, is the null-null component of the stress tensor. The
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half-sided modular Hamiltonian [5° du uT,, is ill-defined because of its singular behavior at
u = 0. If we enlarge the local algebra of QFT by the modular group by adding the half-sided
modular Hamiltonian to the algebra, every mode that is charged under modular flow factors.
The Hilbert space splits into sectors H, with projections P, that project to the subspace with
modular frequency gq.

The modular group is R so its dual group is also R which is non-compact. In the case
of vacuum QFT in Rindler space, the centralizer is trivial since there are no local operators
that are invariant under boost. This implies that every mode is charged under the modular
flow [187]. Enlarging the algebra of QFT by the modular group factors the local algebra of
QFT completely: H = 69qu ® IC(;V where ¢ is the modular frequency. The enlarged algebra
is type Il and has a trace [188]. Entanglement entropy in the extended Hilbert space is
divergent, however the factorization of the Hilbert space resembles the structure of boundary
quantum field theory, and the insertion of a resolution of identity that is the center &, |q) (¢|

in the algebra.?’

6.1.22 Conclusions

In this work, we generalized the definition of entanglement entropy to the cases with no
tensor product structure, and used the new definition to define an entanglement measure that
captures the contribution of charges to entanglement in quantum systems with symmetries
in equation (6.39). The proposed measure is comprised of two relative entropies. One is the
relative entropy with respect to the charge neutral operators and the other is the relative
entropy due to the charge creation operators. We used representation theory to introduce
the charge creation operators called intertwiners and bi-local intertwiners, and wrote down
relative entropy that capture their contributions to entanglement. We set up the formalism to
compute these measures in QFT using the Tomita-Takesaki modular theory. We highlighted
the differences between QFT and lattice models, and discuss an extension of the algebra of

QFT that leads to a factorization of the charged modes.

29+We thanks James Sully for pointing out this connection to us.
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6.1.23 Appendix: Group and algebra extensions

Group extension: semi-direct product

Given two groups N and H consider the trivial extension that is the Cartesian product
group N x H where elements of group are (n, h) and the multiplication is (n1, hy).(ns, hy) =
(ning, hihy). If H acts on N by an outer automorphism ¢, : n — hnh~! with the composition
rule (¢n, © dny)(n) = ¢n,ny(n) we can consider a subgroup of G = N x4 H C N x H called
the semi-direct product and has the multiplication rule (nq, hy).(ng, he) = (n1¢n, (n2), hihs).
The inverse of (n,h) is (¢p-1(n~'), h7'). All we need for the construction of the semi-direct
product is the homomorphism ¢ : H — Aut(N).

In the semi-direct product extension GG, N is a normal subgroup and H = G/N is the
quotient group. An important example is the Poincare group that is the semi-direct product
of translations and the Lorentz group: R~ x O(1,d — 1). If N is the center of G the
semi-direct product is called a central extension. A trivial example of central extension is
the direct product group N x H where N is Abelian. Non-trivial examples comes from the
study of the projective representations of a group. Consider a group H, the Abelian group
of complex numbers C and the map ¢,(a) = ac(a, h) with ¢(a, h) a complex number. If
c(a, h)e(B,h) = c(aB, h) and c(a*, h) = c(a, h)*, this map is an outer automorphism of C,
and we can construct Cx,H with the multiplication rule («, hy).(5, he) = (aBc(B, h1), hihs).
We need to further check that ¢p, (a)dn, (@) = ¢p,n, () which imposes ¢(a, hy)c(a, hy) =
c(a, hihs).

Lie algebra extension: semi-direct sum

Consider the groups H and N are Lie groups and their corresponding Lie algebras b
and n. The map ¢ : H — Aut(N) induces a map ¢ : h — Aut(n) defined by the Lie

Correspondence

(6.153)
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where 7 and h are elements of the Lie algebra n and b, respectively. We obtain the notion

of a semi-direct sum of Lie algebras with the Lie bracket defined using the equation

~

(A, Fn), (R, o) = ([, o] + 4y, (R2) — W, (), [P, o)) (6.154)

There is another method to centrally extend Lie algebras. Every linear map x : hxh — C
that is anti-symmetric, i.e. X(ﬁl, ﬁg) = —X(ﬂg, Bl), and satisfies the Jacobi identity leads to
an extension defined by the Lie bracket

(), (8, ho)] = (e(ha, ho), [a, Ba)) (6.155)

A finite-dimensional simple Lie algebra has no non-trivial central extensions. To find ex-
amples of non-trivial central extension we have to consider infinite-dimensional Lie algebras.
As an example, we work out the central extension of the polynomial loop algebra: Kac-
Moody algebra. The loop group is defined to be the algebra of smooth G-valued functions
on a circle with group multiplication rule. These are loops C' on the group G, C : S — G
with (C1C)(0) = (C1)(0)(C2)(0). A loop Lie algebra is the vector space of smooth functions
from S* to g of G.

Consider the tensor product space g ® C*°(S'), where g is a finite dimensional simple
Lie algebra and C'*(S') is the algebra of smooth functions on S*. This vector space is a Lie

algebra with the bracket defined by

1@ f1,02 @ fo] = (01,02l @ fifa, (91,02 € 9). (6.156)

Importantly, this space is not a direct product of the two spaces g and C*°(S') due to the
smoothness condition of functions. Instead, it should be thought of as the Lie algebra of
smooth g-valued functions of S*. The Fourier transform on S! gives the basis §®e™ where 0
is the angle on S and n € Z. The Lie algebra generated by such generators is the polynomial
loop algebra. Another way to think about this algebra is in terms of the algebra of Laurent

polynomials },,cz fn2" with only finitely many non-zero f, and the standard multiplication
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and addition. Then, the algebra of G-valued functions on S is the Lie algebra of formal

sums .,cz 2" ® g, with the Lie bracket
[2" @ g1, 2™ @ Go] = 2" @ [1, 2] - (6.157)
The generators of the Lie algebra J, satisfy
" @ Ty, 2@ ) =Y 04 @ (6.158)

where C¥, denotes the structure constants of the Lie algebra g. The central extension of this

algebra is g ® C°(S') & C
[(a, 2" ® Jo), (B, 2™ @ )] = (k1 K (Juy, Jp)0nsmo, Y CH2™ ™ @ J,) . (6.159)
k

where K(J,, Jp) is the Killing form on g and & is the central charge. This is an affine Lie
algebra.

von Neumann algebra extension: Crossed product

Groups can act on von Neumann algebras and one can extend an algebra A by a group G
that acts on it as outer automorphisms to obtain a larger algebra called the crossed product
A x4 G [61], [189]. If the action of the G on A is ¢4(a) = ay = ugau, " with uguy = ug
we add u, to the set of operators in our algebra and consider the algebra of formal sums
Y gec Aguy with a, € A. If A acts on the Hilbert space H and L*(G) is the Hilbert space
of square-integrable functions of the group the crossed product algebra acts on H ®@ L*(G);
that is the space of square-integrable H-valued functions of G'. Vectors of this Hilbert space

are |VU) = 3" < ¢q |V; g) and the inner product is

(TID) = D cgby (W3 9|5 9) - (6.160)

geG

The multiplication rules are w, |V; g) = |¥; hg) and a, |V; g) = |a¥; g).
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Dual group and non-Abelian Fourier transform

Consider a locally compact Abelian group GG. The characters of GG are linear maps from G
to complex numbers. For instance, for the group U(1) of rotations on a circle the characters
are x(Up) = e with § € [0,27). The point-wise multiplication (x1x2)(Ug) = x1(Us)x2(Up)
gives the characters the structure of a group called the dual group of G that we denote by

G. The dual group allows us to define a Fourier transform for functions on the group G:

= > X 9)f(9) - (6.161)

geG

If the group is finite the dual Fourier transform is

f(9) |G| > xl(g (6.162)

xeG

To generalize Fourier transform to non-Abelian finite groups G' we replace the character of

group with its irreducible representations p,(g):

Flor) =" p(9)f(g) - (6.163)

geG

If p,(g) is represented by a d, x d, matrix then f(g) is also a matrix of same dimensions.

The inverse Fourier transform is

f(9) ‘G‘Zd e (Fp)pr(g™) (6.164)

where the sum is over irreducible representations p, of group GG and we have used the fact
that ‘—(1;' > ditr (pr(g9)) = 61 [190]. The analog of the multiplication of characters in the
non-commutative case is the tensor product of irreducible representations which does not
form a group, because the tensor product of irreducible representations is not in general

irreducible.
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6.2 Monotonic multi-state quantum f-divergences

6.2.1 Introduction

Motivation: In classical physics, the state of a system is a probability distribution
p(z) over the configuration space X. To distinguish different states one needs to compare

probability distributions. The Kullback-Leibler divergence

Dir({a}{p}) = D a(z)log(q(z)/p(x)) (6.165)

zeX

is a distinguishability measure that plays a central role in information theory and has an
interpretation in terms of the thermodynamic free energy difference of the state {q} from the
equilibrium distribution {p} [191]. It is non-negative, non-degenerate*® and monotonically
non-increasing under the action of a classical channel.*! The thermodynamic interpretation
of relative entropy explains why this measure of distinguishability is not symmetric under the
exchange of {¢} and {p}. The monotonicity under classical channels is an essential property
that any reasonable distinguishability measure should satisfy.*> We say a quantity satisfies

the data processing inequality if it is monotonic under the action of a channel. One can

consider symmetric distinguishability measures such as the log-fidelity

Dia({g}. {p}) = —2log 3 va(x)y/p(z) (6.166)

zeX

or, in general, a one-parameter family 6 € (0, 1) of non-negative, non-degenerate measures

Dy({a}|{r}) = log > gq(x (6.167)

( 1 zeX

3011t is zero if and only if the probability measures are the same.
311A classical channel a stochastic map T': X — Y with
channel is a conditional probability distribution.

321 Intuitively, this is because either the channel is noiseless in which case the distinguishability remains the
same, or it is noisy and the distinguishability decreases.

yey T(ylz) = 1. In other words, a classical
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that interpolate between Dx({q}||[{p}) at @ = 1 and log-fidelity at § = 1/2 and satisfy the

data processing inequality. It is tempting to generalize to a multi-state measure

Do anllprdores ) = =gy 08 (5 ) o)

O+ 40, =1 (6.168)

as a functional that interpolates between D, ({p;i}|/{p;}) and their corresponding log-fidelities
for different i and j. Note that the parameters (61,--- ,6,) can be thought of as a proba-
bility distribution. We are not aware of any arguments in the literature that proves that
the measure above satisfies the data processing inequality. In this work, we write down a
quantum generalization of the above measure and prove that it satisfies the data processing
inequality.

In quantum mechanics, the state of a system is a completely positive (CP) map from
the algebra of observables to complex numbers w : A — C with w(1) = 1. If the observable
algebra is the algebra of d x d complex matrices a state is a density matrix (positive operator

with unit trace): w > 0 with tr(w) = 1. The quantum relative entropy

S(llw) = tr(y log ¢h) — tr(¢ logw) (6.169)

is a measure of distinguishability of the density matrix ¢ from w. It is non-negative, non-
degenerate and has an operational interpretation in asymptotic asymmetric hypothesis test-

ing [192]. One can define a symmetric distinguishability measure called log-fidelity:

Dijpp(¢flw) = —210gtr\/cm : (6.170)

Since in quantum mechanics the density matrices need not commute there can be many

non-commutative versions of the Rényi divergences in (6.167) that interpolate between the
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relative entropy S(¢|lw) and log-fidelity. Two important families of measures of this kind

are the Petz Rényi divergences and the sandwiched Rényi divergences, respectively

i ] log tr (¢9w1_9>

1 1-0 1-0\0
71 log tr ((w 20 1w 20 ) ) . (6.171)

Dy(¢||w) =
So(||lw) =

0

These two families are distinguished because they satisfy the data processing inequality.
They have operational interpretations in hypothesis testing [193]. A larger two-parameter
family of Rényi divergences called («, z)-Rényi relative entropy interpolates between the two

families [146]. In our notation, we call them the (6, r)-Rényi divergences

Spr(¥]|w) = 9_110gtr[(w%¢?w1229)’"} . (6.172)

In fact, they were introduced earlier by [194] as entropic measures in out-of-equilibrium
statistical mechanics. They satisfy the data processing inequality in the range of (6,r)
specified by [195].

The generalization of hypothesis testing to a multi-state setup is often called quantum
state discrimination. In the asymmetric case, we are given some state and the task is to
identify whether the state is w or any of the alternative hypotheses ¢/, - - - , ¥ by performing
measurements on infinite number of copies of w. The distinguishability measure with a

natural operational interpretation in this case is [196]

¢mei;<15<¢||w> K={¢1, ¢} . (6.173)

Motivated by quantum state discrimination, in this work, we introduce a large family of
multi-state quantum Rényi divergences that interpolate between various S(¢;||w) and sat-
isfy the data processing inequality. We generalize our measures to multi-state quantum
f-divergences.

Method: We employ three main tools to construct the multi-state Rényi divergences

and prove their monotonicity. The first tool is the Araki-Masuda non-commutative LP,
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spaces [154] that we review in section 6.2.2 and 6.2.3. In particular, we use the Riesz-Thorin
theorem to prove that a contraction operator F' does not increase the LP norm of the vectors.
The second tool is the monotonicity of the relative modular operator in the Tomita-Takesaki
modular theory. A quantum channel * corresponds to a contraction F'in the GNS Hilbert

space. The relative modular operator satisfies the inequality
FIA g F < A wyjar (o) - (6.174)
The third tool is the Kubo-Ando operator mean for positive operators X and Y:
Xty = X2 f(x 2y X1/ x1/2 (6.175)

and an operator monotone function f with f(1) = 1. The Kubo-Ando mean has the property

that if X; <Y; and X5 <Y, then
Xifp Xo < YifpYs . (6.176)
This allows us to construct multi-state operator monotonicity inequalities of the type

FYA 1wl A o) F < (Agr (1))0 (@) A () [0+ () - (6.177)

The LP-norm of the vector (AwﬂwﬁfAMw)l/Q |w'/2) is the building block of the class of
multi-state Rényi divergences we construct in this work.

Summary of results: In the case of two states in (6.253), we write the (6, r)-Rényi
divergences as the (r,w)-norm of a vector in the LP, spaces.** We generalize them to two-state
divergences in (6.259). In theorem 6.2.1 we use the monotonicity of the relative modular
operator and the Riesz-Thorin theorem (see appendix 6.2.13) from the complex interpolation
theory to prove that these two-state measures satisfy the data processing inequality in the

range r > 1. 3

331 A similar expression appears in [194].
341The monotonicity of (6, r)-Rényi divergences was shown using different methods by [197].
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Section 6.2.6 generalizes the discussion to multiple states. First, in section 6.2.7, we use
the complex interpolation theory to prove a generalization of the Holder inequality to von
Neumann algebras (see theorem 6.2.2). This section follows the arguments by [154], and
can be skipped by the readers who are only interested in the multi-state Rényi measures.
Then, in section 6.2.8, we use the Kubo-Ando geometric mean to introduce the three-state
f-divergence in (6.303) and prove that they are monotonically non-increasing under quantum
channels in theorem 6.2.3. This measure depends on an arbitrary operator monotone function
f with f(1) = 1, the parameters 6y, 0y with 0 < 0; + 65 < 1, r > 1/2 and three states 11, 1)y

and w. Specializing to the case f(z) = 2® with a € [0, 1], in matrix algebras we obtain the

three-state Rényi divergences in (6.307).>* In a special case, this measure reduces to the
Rényi measures in [198], [199]:

G 1 12 ( —1/2.,, —1/2\? 172

So(V||w) = 7 1logtr (w (w (o ) w ) : (6.178)

We write down an n-state f-divergences in equation (6.317), multi-state Rényi divergences
in (6.325) and prove that they satisfy the data processing inequality. In matrix algebras,
this multi-density matrix measure is (6.326).

In section 6.2.10, we discuss our construction in arbitrary von Neumann algebras, focusing
on the case where a trace does not exist. This is important for the applications of this
work to infinite dimensional quantum systems such as the algebra of local observables in
Poincare-invariant quantum field theory. In section 6.2.11, we conjecture that similar to the
Petz divergences and the sandwiched Rényi divergences, the multi-state Rényi divergences
in section 6.2.6 have operational interpretations in terms of the optimal error probabilities
in various quantum state discrimination setups.

For the marginals of multi-partite systems, one can introduce the so-called swiveled Rényi
measures. Wilde__ 2015, [200], [201] In the case all ag in swiveled measures are non-negative

they can be understood as a special case of the multi-state measures introduced in this work.

354+We prove the monotonicity only in the range r > 1.
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6.2.2 Operator LP spaces

This section reviews the construction of the operator LP spaces in finite dimensional
matrix algebras. The observable algebra of a d-level quantum system is the algebra A of

d x d complex matrices. The linear map

Asa—la)=(a®7T)|e)
le) = > |k, k) (6.179)

k

represents the algebra on a Hilbert space H, with the inner product
(ar]as) = tr(alay) . (6.180)
We use the simplified notation

ale) = (a® 1) e)
dle) = (Z®d)|e) (6.181)

and refer to the algebra of operators ¢’ = (Z ® a’) as A, the commutant of 4. The Hilbert

space norm of a vector is
Ha) || = llall2 = tr(a’a)? (6.182)
and its oco-norm (operator norm) is
Ha) lloo = llallee =~ sup — (x[aW) . (6.183)

I lI=[Te) =1

The advantage of the Hilbert space representation H, is that one can think of superop-

erators ® : A — A as linear operators F' : H, — He:

Fla) = ®(a)e) . (6.184)
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Linear maps ® that are completely positive (CP) and unital are specially important in
physics. In the Hilbert space, they are represented by operators that are contractions, i.e.

| F|loo < 1.3 Tt is clear that F' can never increase the 2-norm of vectors
[E |a) [| < l'a) | - (6.186)
It cannot increase the operator norm either because

[Fa) e = sup |[(T|F(a®1)|x)|
M@lI=ll=1

< Fllsoll(@ ® 1) ]loe < flaflos - (6.187)
The 2-norm and the co-norm are special cases of the p-norms (Schatten norms) defined by
vpeloo: lall, = tr(a})'” (6.188)

where a = ayu is the left polar decomposition of a in terms of the positive semi-definite
operator ay and unitary u. For p € (0,1), they are quasi-norms because they no longer
satisfy the triangle inequality |la; + as|, £ |la1]l, + [|a2||p- The Hilbert space norm and the
operator norm correspond to p = 2 and p = oo, respectively. The map between the operators

a and the vectors |a) in matrix algebras is one-to-one.

Definition 6.2.1. We define the p-norm of a vector in the Hilbert space to be the p-norm

of the operator that creates it:

Ha) [l = llall, - (6.189)

364Consider an unital CP map ® : A — B. Using the Stinespring dilation theorem, the map decomposes as
®(a) = WTaW where W is an isometry since ® is unital. The action of the map on the GNS Hilbert space
is given by

®(a) Q) = Wia|Q4) (6.185)

where W satisfies W |Qp) = |©4). The GNS operator F corresponding to ® is defined by ®(a) |Qp) =
Fa|Qy4). Since A|Q4) is dense in H 4, the corresponding GNS operator is a co-isometry F = WT and a
contraction.
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Note that since ||a||, = ||uav]|, for any unitary u,v the p-norm of a vector satisfies

lua [a) [l = [ |a} [I, (6.190)

where u € A and v’ € A’ are unitaries.

Definition 6.2.2. We define the superoperator norms as®’

_ @)
H(I)H(P0—>p1) = sup e (6'191)
acA [lallp
and the norm for their corresponding operators as
Fla) = [®(a))
1E | po—p1) = 1@l po—sp1) - (6.192)

A complete normed vector space is called a Banach space. Since the Hilbert space norm

is complete with respect to the 2-norm

(ailaz) = tr(ai%)

(ala) = al3, (6.193)

we sometimes refer to the Hilbert space H. as the L? Banach space, or the L? space in
short. By analogy, we call the algebra A with the operator norm the L* space.®® The
representation a — |a) is then a linear map from L> — L?. We could also define the linear
map a — e, = |a) (e| that sends the algebra to a linear space of operators in B(H,) that we
denote by A, and call the predual of A. The subspace of operators |a, ) (e| is in one-to-one
correspondence with the subspace of unnormalized pure density matrices |ai/ %) <ai/ ?| of the
algebra A ® A’. The predual A, equipped with the 1-norm tr((e,). ) is called the L' space.
Since the maps a — |a) and a — e, are bijections in matrix algebras we can think of the

L', L? and L* spaces as the same space with different norms. As the dimension of algebra

371 Note that, by definition, |T]cc = [|T]|(2—2)-
381 Note that the algebra itself is a linear vector space.

238



goes to infinity an operator with finite 2-norm has finite co-norm but not necessarily a finite
1-norm. So we have the hierarchy L' C L? C L.
Our Hilbert space inner product is a map from L? x L? — C that is anti-linear in the

first variable. It could alternatively be interpreted as a map from L! x L* — C:
{a|b) = tr(a'ey) (6.194)
where & € L'. An important property of an inner product is the Cauchy-Schwarz inequality:
[ (alb) [* < (ala) (b]b) . (6.195)

The Cauchy-Schwarz inequality is saturated when |a) and |b) are parallel. This allows us to

write

o) 1| = S | (alb) | - (6.196)

Similarly, we can use (6.194) to write the operator norm ||b||, as

Ibloo = sup |tr(ead)] . (6.197)

tr((ea)+)=1

We say the space L™ is dual to L.
The generalization of the Cauchy-Schwarz inequality to the LP spaces is called the oper-

ator Holder inequality
e lloo:  llalbll < llall,lbll, (6.108)

and 1/p + 1/q¢ = 1. More generally, if 1/py + 1/p; = 1/r with r > 1 the operator Holder

inequality says

la™®ll, < llallp 18]l - (6.199)
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In the range py € (0, 1), the parameter p; is negative and we have a reverse Holder inequality
Vpo € (0,1): lallp 0]l < lla’dll, - (6.200)

The reverse Holder inequality follows from the Holder inequality and the property [la™ ||, =
Jal|,* [202]. We will prove the generalization of the operator Holder inequality in an arbitrary
von Neumann algebra in section 6.2.7.

We can realize the p-norm of the vector |a) € H, as an inner product between |a) and a

vector |xg) in the Hilbert space H,:

p—1
el = (@) = tr(a)3 " () = |<|||>||> = (mplay) - (6.200)
+ q

The vector |zo) ~ |a%") is normalized to have || |zo) ||, = 1. It follows from the Holder

inequality that
[ (blas) | < [bfall < llally o]l - (6.202)
We can absorb the unitaries in the polar decomposition of a in b to write
| (bla) | < lall|[blly - (6.203)

The p-norm is the maximum overlap between |a) and the vectors in the Hilbert space that

are normalized to have unit g-norm:

Vpe Lo lal, = sup [{z]a)]. (6.204)

[[zllg=1

Similarly, from the reverse Holder inequality in (6.200) we have

Vpe (0,1)  |lall, = inf |{(z]a)]. (6.205)

[[z]lg=1
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The equations above generalize (6.196) and (6.197) to arbitrary p. The duality between L'
and L is a special case of the duality between LP and L?. That is why the parameter ¢ is
called the Holder dual of p.

The vector |a) is a purification of the unnormalized density matrix aa’ = a2 of the

algebra:
(alb|a) = tr(baa’) . (6.206)

All vectors |ayu) purify the same state a?. To make the purification unique, we define an

anti-linear swap map J, in the basis of |k) in the definition of the vector |e):
Jo |k, K'Y = K/ k) . (6.207)
The map J.(a) = JeaJ, is an anti-unitary from A to the commutant algebra A’ that acts as
J(a®T)J.= (I ® (a")T) (6.208)
and the transpose matrix a’ defined in the {|k)} basis satisfies the equation
(a®I)le)=(ZT®a")l|e) . (6.209)
The only purification of the unnormalized density matrix aa' that is invariant under J, is
oy} = (0} @ (@*)) Je) . (6.210)

The set of such vectors is called the natural cone in H, that we denote by P?. Vectors in
the natural cone are in one-to-one correspondence with the unnormalized density matrices

T 2
aa’ = ay.
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To understand the L spaces better we define the relative modular operators correspond-

ing to algebra A:
Apw=¢@w . (6.211)

The vector |e) reduced to the algebras A and A’ gives the identity operator as an unnormal-
ized state. We use the notation A, = w ® Z. The superoperator on A that correspond to

the relative modular operator is
Dyjola) = aw™ € A. (6.212)

To every density matrix w we can associate an operator |w) (e| € L! with unit 1-norm and a
vector in LP

wi/?)y = AP le) = ALPTVZ W1/ (6.213)

wle wle

with unit p-norm. We can think of the L? space as the space of vector u |w!/?) for arbitrary
w and unitary u.

We use the Holder inequality to write the p-norm of a vector as

lay[3, = llaa'l, = sup [(@"2aa’)|= sup |(e]Af]aa")]
11/2)llg=1 [lwt/2) =1
1_ 1
= swp [(alAYfa)| = sup [IAZFla)|?.  (6.214)
llw?/2)l|=1 lw?/2) =1

Above we have used the fact that any vector in the natural cone |¢*/2) € L? can be written

as Ai/‘g le).? After a change of variables from 2p — p we have

Ha)ll, = sup [AZ"la) ]| Vp€[2,00]. (6.215)

wle
[[lw?/2)]|=1

391Since |aa') is in the natural cone it follows from (6.201) that the vector that saturates the Holder inequality
is also in the natural cone. Therefore, in the definition of the g-norm in (6.204) for |aa') we can restrict the
supremum to the vectors [¢)'/2) in the natural cone.
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We remind the reader that the norm of the vectors in the Hilbert space on the right-hand-side
of the equations above is the L? norm. Similarly, repeating (6.215) for the range p € (0,1)
using (6.205) we obtain

1

la)l, = inf [AZ7la)]  Vpe[L2). (6.216)

llot/2y=1 ' “le

The Rényi entropy of a normalized density matrix w on A can be written in terms of the

2p-norm of the vector |w'/?) € H,:

2p P 1
Sp(w) =17 S los o) (|2 = T8 lwllp = T log tr(w”) . (6.217)

Since p-norms of the vector v’ |w'/?) is independent of the unitary u’ the definition above

defines the Rényi entropy for the reduced state w on A for any vector |Q) € H,

2p
Sp(w) = - log || [€2) [l2p - (6.218)

The normalized vector d~'/?|e) corresponds to the maximally mixed density matrix and

maximizes the Rényi entropy. In the limit p — 1, we obtain the von Neumann entropy:
. 1/2
S(w) = _211)1_1% Il lw / ) ll2p - (6.219)

6.2.3 Operator L? spaces

The construction of the LP spaces in the last section used the unnormalized vector |e). In
an infinite dimensional algebra, this vector is not normalizable. The first step in generalizing
the discussion of the last section to infinite dimensions is to replace the maximally mixed

state with an arbitrary density matrix w:

w =3 pelk) (K (6.220)

that for simplicity we will assume to be full rank. Not every infinite-dimensional algebra

admits density matrices, however as we discuss in section 6.2.10, the construction presented
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in this section generalizes to the algebras with no density matrices. We remind the reader
that in our notation w and v are the reduced density matrices on A corresponding to the

vectors |Q2) and |¥) in the Hilbert space He = Ha @ Har.

Definition 6.2.3. We generalize the definition of p-norm in (6.188) to define a (p,w)-norm:
lallpw = llafw'/?) |, = llaw'?l, . (6.221)

Note that the (p,w)-norm is no longer invariant under a — a.*® Consider the -
representation m(a) = a ® 1 with some auxiliary system R. The (p,w)-norm satisfies

the equality

(@ © 1) llpwar = llallp.w (6.225)

if wap = wa ® op.

We consider the representation map

a—la), =a |w1/2)

W) =" \/pr [k, k) (6.226)

Since w is full rank this representation is faithful. We call H, the GNS Hilbert space and

sometimes refer to it as the L2 Banach space because the L2 norm is the Hilbert space norm:

la |w!?) [l20 = lalew2) ] . (6.227)

404We can define an alternate (p,w, *)-norm to be

1
21y |, - (6.222)

lallpw.s = llatlpw = llw*/Pall, = 184

As opposed to the p-norm the (p,w)-norm is not invariant under a — uav with u and v unitaries. Instead,
we have

luallpw = llallpw:  llallpw = llallpw,x - (6.223)

In other words, for unitaries u € A and v’ € A’ we have

[w @) llpo = 1) lpos 1 T2 [lpoe = 119 lpoys - (6.224)

More generally, one can define the Kosaki (p, o, w)-norms ||a|y.0.. = [|o'~1/Paw'/?||, [203].
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Since the (0o, w)-norm is the same as the oo-norm the algebra itself is the L space. The L}
space is the space of operators w, = a |w) (e| with the L' norm. Note that as opposed to the
p-norm, for the (p,w)-norms we have the hierarchy L>° C L? C L! when w is a normalized

density matrix because of the inequalities

lally = flalla = flafle

lalliw < llallzw < lafloow - (6.228)

The vector |a)  in the Hilbert space H,, corresponds to the state (density martix of A)
we = awa'. However, given a density matrix there are many vectors in H,, that purify it. In
the last section, we used the modular conjugation operator J, to fix a canonical vector for

each density matrix. To fix a canonical vector we start with the map
= [91?) = (1 PwT ) W) e M, . (6.229)
Any state of the form
(7 Puw ™) |wt/?) (6.230)

for unitary u has the same density matrix ). To make the correspondence between the
density matrices and their purification one-to-one we introduce the modular conjugation
operator J, that acts as (6.208) in the eigenbasis of w. From the argument in (6.210) it
is clear that the vector |¢)'/2) is the only J,, invariant vector representative of the density
matrix 1. Therefore, there is a one-to-one correspondence between the density matrices v

and the vectors
912 = A2 w2 (6.231)

that are invariant under J,,. These vectors form the so-called natural cone PZ.
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We define the (p,w)-norm of the vectors in the GNS Hilbert space H,, to be

la |w!’?) |l = lla

oo (6.232)

so that the (2,w)-norm is the Hilbert space norm of a|w!/?). Note that |w!/?) has unit
(p,w)-norm for all p.*!
To every density matrix ) we can canonically associate a unique operator |1w=2) (w'/?| €

L} with unit 1-norm and a unique vector in L?, with unit (p,w)-norm:
b [P Py = AT W) = AT ) (6.235)

As we vary from p = 2 to p = oo the vector above interpolates between ]wl/ %) with unit

(2, w)-norm and |w'/?) with unit (co,v)-norm. Note that if v is not normalized we have
1AGE 10 ) [l = 1l (6.236)
which is independent of w. Since w is invertible and L], C L? for any p < r the vector
AYP W2y € Ip (6.237)
for any @ € [0,1].#? In fact, we can extend 6 to the complex plane z = @ + it because

Al w2 = (DY - Dw), |w*/?)

|w|

(DY : Dw), = Al AT (6.238)

411 We can also define the alternate (p,w, *)-norm of a vector
la |0 ?) lp.wx = llallpw, = lla’ |0?) [lp - (6.233)

The (2,w, %) is the Hilbert space norm of af |w!/?). The (p,w, *)-norm of a vector has the advantage that it
is independent of unitary rotations v’ € A’:

'@ |t [lpw,s = 0 allpwn = llalw?) llpw,s - (6.234)
Therefore, it only depends on the reduced state on A that is aaf, and not a particular purification choice
u’ |a).

424 Note that in finite dimensions we can take 6 > 1 as well. However, in this work, we restrict to the range
because it generalizes to infinite dimensions.
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and the cocycle (D : Dw), is a partial isometry in the algebra for all real values of t. When
1 is full rank the cocycle is a unitary operator.

As we saw in the last section, the Holder inequality helps bound the p-norm in terms
of simpler norms such as the 2-norm and oco-norm. In section (6.2.7), we will prove the

following Holder inequality for the (p,w)-norms

1/po A1 . )
|AYE AR 0M2) e <l [l |1

Polw Y1 |w
1 1 1
—_—t — = (6.239)
bPo D1 r

Similarly, it is often helpful to relate the (p,w) — (p,w) norms of superoperators in
(6.191), or equivalently those of their corresponding operators in the GNS Hilbert space in
(6.192). This is achieved using an inequality established by the Riesz-Thorin interpolation
theorem that we prove in appendix 6.2.13. The theorem says that for 2 < pg, p; and 6 € [0, 1]
and any operator T : H4 — Hp we have

—0 0
|’T||(p9714)—>(17973) < HT”%p(hA)*)(pO,B)||T||(p1,A)~>(p1,B)

1 1—-6 6
= + —. (6.240)
Do Po P1

Lemma 6.2.0.1. Consider a contraction F : H4 — Hp*® where Ha = H,,, and Hp = H.,
are the GNS Hilbert spaces of states wa and wg, respectively. Then it cannot increase the

(p,w)-norm of a vector for p > 2, i.e.
1El o)) <1 - (6.241)

Proof. Since (2, A)-norm is the Hilbert space norm and (0o, A) norm is the co-norm, by the

same argument as in (6.187), we have

1 a),, Ml2.8 < [l1a),, [l2.4

IF |a),,, lloo. < @), llooa - (6.242)

431We remind the reader that a contraction is defined with respect to the infinity norm, and not any other
norms we discuss in this work.
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1Tl = 1Tz = 1 TNlq 2 1 Tleo = ITlown = [ Tllgws 2 1Tl205 2 1T 1ws
I
ITll2—2 = Tlg—q
v

171 (2,05)—(2.04)

Figure 6.9. The figure shows the hierarchy of norms for a linear operator T :
Hp — Ha with 2 < ¢ < co. The inequality between | T'||2—2 and [|T'[|(2.wp)—(2.w4)
saturates when the size of Hp and H4 are the same. See appendix 6.2.17 for a
comparison of || - |22 and || - ||—q norm.

Then, using the Riesz-Thorin inequality in (6.240) completes the proof. This lemma plays
a central role in our proof of the data processing inequality. See figure 6.9 for the relation

between different norms. O

In (6.215) we used the Holder inequality to rewrite the p-norm of the vectors as a vari-
ational expression in the Hilbert space. In constructing the GNS Hilbert space we replaced
le) with the state |w'/2?) and defined the vectors |a), = a|w!'/?). The definition of the LP

norms in (6.215) generalizes to the GNS Hilbert space:

1 1

1 11
laby By = law® 3, = law?afll, = sup [A[L™ aw/CP) |2
let/2)||=1
1_ 1
= sup AT la), I (6.243)
l[l1/2)]|=1

After a change of variables from 2p — p we find

1_1
Had, llpw = sup  [|AG7 [a), | Vp € [2,00]
[p1/2)eH.,
1_1
ol =I5 W e, (6.244)

where |1!/2) has unit norm. It was observed by [154] that the definition of the (p,w)-norm
above generalize to any von Neumann algebra, even to those that do not admit a trace such

as the local algebra of QFT. We will come back to this in section 6.2.10.
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6.2.4 Two-state Rényi divergences

Now, we are ready to define the distinguishability measures using the L? norm of the

vectors in the GNS Hilbert space.

Definition 6.2.4. We define the Petz divergences in terms of the Hilbert space norm of the

interpolating vector

2p 1/(2
Dip(ll) = 7= 1og 14,7 1'%} . (6.245)

and the sandwiched Rényi divergences using the (p,w)-norm of the vector ['/?) [204], [205]

Sp(llw) =

2p p _1 _1
1 NP ] 2 2 6.246
b1 [[12077%) [l2p, b_108 o™ 2apw ™2 ||, ( )

for p € [1/2, 00]. 4

These divergences are the generalizations of the Rényi entropy in (6.217) to the GNS
Hilbert space. Their asymmetry has to do with the fact that the reference state w is used
to construct the GNS Hilbert space. These two-state Rényi divergences satisfy the data
processing inequality [149], [202], [206]. The p — 1 limit of both quantities gives the relative
entropy [207]

SWllw) = —21lim 7, [6Y2) llzpo - (6.247)

Since we will be always working in the GNS Hilbert space H, we simplify our notation by
introducing |Q) = |w'/2). The vector [¢)'/?) is a purification of ¥ which is symmetric under
Jq. It can be written as

12 = Ay Q) (6.248)

441Cases p = 1 and p = oo are defined as limits p — 1 and p — oo.

249



The definitions in (6.245) and (6.246) are independent of the purification of 1. To see this,

we first define the relative modular operator for an arbitrary vector |¥)

Agjo = ha Q' (6.249)
so that it remains unchanged for other purifications of :

Aygio = Agjq - (6.250)
For an arbitrary vector |¥) € H, we can write the divergences in (6.171) as

Dijpltallwn) = 12108 18557 19) Il

2p
Sp(Wal|wa) = p—l g AY0 1) 20 - (6.251)

We also define the (p, 2)-norm in the GNS Hilbert space Hq using

1/2—1
119) o= sup 1AV PRy | pe 2,00
sup
1/2—1
1) o = inf 1\\Axfg Py, pell2). (6.252)

Definition 6.2.5. To interpolate between the two divergences following [146] we define the

(0,r)-Rényi divergences

So.r(Vallwa) =

?Il/m% 1€2) [|2r.0 (6.253)

for the range r € [1/2,00] and 0 € [0,1]. Even though in matriz algebras one can extend
beyond this range we limit our discussion to this limited range because outside of this range,
in infinite dimensions, the (0,r)-Rényi divergences might not be finite. We postpone a study

of the extended range to future work.

250



In matrix algebras, the expression in (6.253) becomes

2r

Sor(allwa) = 5= log [0 @™y,
1 1-0 0 1-0\T
=91 log tr (wAQT Yaw s ) } (6.254)
where in the first equality we have used
(1Qwa) ) = (wa®1)|9Q) . (6.255)

It follows from the definition in (6.253) that the (0, §)-Rényi divergences is the §-sandwiched
Rényi divergence and the (6, 1)-Rényi divergences is the §-Petz divergence. In the remainder
of this work, we suppress the subscript A unless there is potential for confusion. Note that

the matrix algebra expression enjoys the symmetry

(1 - Q)Se,r('lﬂHW) = 65179,7“((“)”1#) : (6256>

In the limit r — oo we can use the Lie-Trotter formula

lim (e21/7¢2/7)" = gorter (6.257)

r—00

for self-adjoint operators ay, as to write

. 1 0 log -+(1-6) logw
lim Sp,(¢flw) = T 0 log tr (e ) . (6.258)

A larger class of two-state f-divergences one can consider if

SI(wllw) = —2rlog || F(AYR)*19) l2ra (6.259)

where f is an operator monotone function.*® In the next subsection, we show that these

measures satisfy the data processing inequality. They are related to the f-divergences and the

454A function f : (0,00) — R is called operator monotone if for positive operators X and Y the inequality
X <Y implies f(X) < f(Y).
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Petz quasi-entropies. [149], [207]-[209] A few examples of the operator monotone functions

are
1. f(z) = 2° with o € (0,1).

2. flz) = —x~* with o € (0,1).
3. f(z) = zloga

4. f(z) =logz

For concreteness and the fact that at times we need f(1) = 1, we will be mostly concerned
with the first case: f(x) = x® However, we prove the data processing inequality for a

general operator monotone function f.

6.2.5 Data processing inequality for (0,r)-Rényi divergences

Consider a quantum channel ®* that sends the density matrices ¢4 and wy to ¥p =
®*(14) and wp = P*(wy4), respectively. We consider the GNS Hilbert spaces corresponding

to w4 and wg and call them H 4 and Hp. We have
(Q51b[25) = (Q4[D(B)[2a) (6.260)

In this subsection, we prove the data processing inequality for the (6, r)-Rényi divergences

in (6.253) and the divergences in (6.259) for r > 1:

SH®* ()| @*(wa)) < Sf(allwa)
Sor(P" (W a)[| 2" (wa)) < Sor(Yallwa) - (6.261)

In the range we are interested, the monotonicity of the (6,7)-Rényi divergences was first
proved by [197].4¢ In the Heisenberg picture, the quantum channel ®* is described by an
unital CP map ® : B — B(H,) that acts on the algebra. Note that the range of a CP map

4614See theorem 2.1 of [195] for a proof of the data processing inequality in extended range of (6, r) for matrix
algebras.
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need not be the full algebra B(H 4). For simplicity, sometimes we use the notation A for the

operators in B(H4).*

Theorem 6.2.1. Let ® : B — A be an unital CP map. Let 14, wa be states on A and
Y = ®*(1a), wp = P*(wa) be states on B. Forr > 1, the two-state f-divergences S (1]|w)

satisfy the data processing inequality

SI(¥pllws) < SI(Wallwa) - (6.262)

Proof. Let |Q24) and |Q2p) be the vectors corresponding to w4 and wp in their corresponding
GNS Hilbert spaces H4 and Hp. Let F' be the contraction operator corresponding to ® in
the GNS Hilbert space such that

O(b) |Q4) = Fb|Qp) . (6.263)
The monotonicity of the relative modular operator is the operator inequality*®:

F'Ay 0, F < Aggap - (6.264)

Choosing the function f(z) = —(t + x)~! that is operator monotone and operator convex*®

we obtain [210]

1 1
>

Fle——— F>_ — 6.265
t_'_A\I/A‘QA B t—l—A\meB ( )
Any operator monotone function f can be expanded as [211], [212]
FX) = +bX+/°°d (t)< ! ! ) (6.266)
— o MU\ET T x |

471In general, the range of a CP map is a *-closed subspace of observables inside B(H ), otherwise known
as an operator system.

481See [210], and [58] for a review of its proof using the Tomita-Takesaki modular theory

494 A function is called operator convex if f(0X + (1 —0)Y) < 0f(X) + (1 —0)f(Y).
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for a € R,b > 0 and p(t) a positive measure that satisfies®

S|

Therefore, we have the inequality

FTf(Au o) F < f(Auga,) - (6.269)
This implies
F(Aupia,) PE f (Aw 00 Ff(Augay) 2 < 1. (6.270)
Define the operator
Fr = f(Au00) " F (Do, (6.271)

In appendix 6.2.16, we show that (6.270) implies that F; is a contraction and satisfies

1E¢lps2m) o) < 1 - (6.272)

In the case of function f(x) = 2 the integral representation in (6.266) is

in(nf) [oc 11
o — Sin(m0) / dt ( - ) . 2
r o tt+ X (6.273)

which is equivalent to saying that Fj satisfies:

1 F5 | (p,05) > (p,04) <1

0/2 —0/2
Fy= A0, FALYR, - (6.274)

50+When f(0) := lim;_,o f(t) > —o0, we can write f as

1 1

F(X) = £(0) + bX + /OOO dp(t) <t - HX) (6.267)

where pu(t) satisfies [~ gz dpu(t) < co.
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This is similar to the argument by [213].
To prove the monotonicity under a contraction we use a proof similar to the one presented

by [202]:

||f(A\I’A\QA)1/2 ‘QA> ||27“7QA = ||Fff(A‘I/B|QB)1/2 |QB> ||27"7QA
< |IFfll2ram—enonll f(Awges)? 128) [l2r0p

S ||f<A\I’B|QB)1/2 |QB> ||27‘,QB (6275)

where we have used the definition of the (2r,5) — (2r,€4) norm for the contraction Fy
and the fact that it is less than one. This proves the data processing inequality in the range

r> 1.5 ]

Corollary 6.2.1.1. Let ® : B — A be an unital CP map. Let 14, wa be states on A and
g = O (VYa), wp = P*(wa) be states on B. The (0,r)-Rényi divergences satisfy the data

processing inequality
Sor(VBllwp) < Spr(allwa) (6.276)

forr>1and 6 € [0,1].

In appendix 6.2.14, we show that if w < ¢ for some constant ¢ the vector
Ayl 1) € LY (6.277)

in the extended range 6 € [ — 1,1] and r > 1. To prove the data processing inequality in
(6.275) we used the contraction in (6.274):

0 —0
Fy =AY 0 FAY S, - (6.278)

514+We restrict to r > 1 as we proved the Riesz-Thorin theorem for this range in appendix 6.2.13.
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The t of this operator is also a contraction

Fj =A% FIA g (6.279)
Therefore, we have
18G4 128) laros = IFFAGA% 19a) lons < 1AGA% 1924) 2r0. (6.280)
which says that the measure
o) = 28O o A ) s (6:251)

satisfies the data processing inequality in the extended range 6 € (—1,1). Another way to

define a measure with an extended range of monotonicity 6 € (—1,1) is

N —2r
SQ,T(¢||W) = —0

01

) log [|ATS" 19) [l2re - (6.282)

Note that this measure no longer vanishes at § — 0. For instance, when r» = 1 it corresponds

to a modification of the Petz divergence

0, 1-0
5 =gy o Ve (6:283)

that interpolates between the relative entropy S(w|®)) at 6 — 0 and S(¢||lw) at § — 1.
The measures defined above satisfy the data processing inequality and vanishes for identical
states, hence they are non-negative.>?

In general, when 6 > 1 we are not guaranteed that A?I,/‘gr) belongs to L? . Tt is known
that the (6,r)-Rényi divergences continue to satisfy the data processing inequality in the
regime r € [1/2,1) and r > max (6,1 — 0) [146]. In this range of parameters, the (0, r)-Rényi
divergences are finite for arbitrary states of infinite systems. However, we will not attempt

to prove the data processing inequality in this case. In matrix algebras, one can extend the

521Consider the CP map that sends all states to the same wg. After the channel the measure is zero. Since
it has not increased, it was non-negative before applying the channel.
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range of the parameters to §# € R/{1} and r > 0. The full range of parameters for which the

(0, r)-Rényi divergence satisfies the data processing inequality was characterized by [195].

6.2.6 Multi-state measures

We are now ready to generalize the construction of the two-state Rényi divergences to
several states. For completeness, we have included a discussion of the Holder inequality in
the first subsection. The reader only interested in the multi-state Rényi divergences can skip

this subsection.

6.2.7 Generalized Holder inequality

Consider the multi-state vector
0 0 On/pn
[Q50,9) = AG - AT 1) (6.284)

with 0 < 6, + -+ + 60, < 1. We have introduced the compact notation 8 = (01, ,0,),
P = (p1, - ,pn) and J = (Y1, -+ ,¥,). Note that by the relation (6.250) the vector above

only depends on the states w; to w, and not their purifications. We define the parameters

rn, and py
1 1 1
_— = + PR —
'n b1 Pn
1 0 0,
—=24 42 (6.285)
by y4! Pn

We analytically continue the vector in (6.284) to complex variables z; = 6; +it. Since py > 7,

the r,-norm analytically continued to the complex strip is finite

310 (Z:0) = 119252, 0)) v (6.286)

In matrix algebras, the function above is

- 11
1 (0, 5) = [Pl ey R | 6.287
¢|W n n
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Lemma 6.2.1.1 (Hadamard three lines). Let f(z) be a general function that is bounded and

holomorphic in the complex strip 6 € [0, 1] and continuous on its boundaries. Then we have

FOT< FOI I (6.283)

Proof. Define the function g(z) = f(z)f(0)*~!f(1)~* which is also holomorphic and bounded
in the strip and continuous on the boundaries of the strip. The function g(z) has value less
than or equal to one on the boundaries, therefore by the Phragmén-Lindelof principle (the
maximum modulus principle applied for the holomorphic functions bounded in the strip) it
takes its maximum on the boundary. As a result, |g(z)| < 1 everywhere in the strip. On the

real line z = 0 we obtain the inequality

LFO < LFOI 1))

This result is sometimes called the Hadamard three-lines theorem. OJ

Theorem 6.2.2 (Generalized Holder inequality). The function in (6.286) is bounded and

analytic on the complex domain of Z with 0 < 6y + --- 4+ 6, < 1. It satisfies the generalized

Hdélder inequality for the (p,w)-norms:>3

1A -+ AYH 1) HWQ<H||A;/’;;Z Huwlu%. (6.289)

Note that the measure above is independent of the state w. If the states 1; are all normalized

the right-hand-side is equal to one. In matrixz algebras, this is

1/p1 " - 1/pi
oy /P e < T, (6.290)
i=1

Defining the operators a; = wil /P gives the matriz form of the generalized Hélder inequality

lay -+ - anllr, < flallp, -~ - llanllp, - (6.291)

3+This was shown in theorem 5 of [154].
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Proof. To prove (6.289) we start by showing

1 1/pn 1/pn
1A - AP AT 1) [0

1 1/pn— 1/pn
< AYR - ALPL1) [0 1AYS 1) oo

V21[¢) U, 1|0 Un|Q

for arbitrary n. Define

+
Tn—1 Pn

1 _ 9 1-6
0

and the function
>0 0/pn 1-0)/pn
F0(0,9) = 1A - AYP AL 192) [, g0 -

It can be analytically continued to complex z = 6 + it.

Using lemma 6.2.1.1, the function in (6.293) satisfies the inequality
> 1 AL/P 1/pn -
Faal0.5) < 1800 - AR 1) 17, ol AR 19) 15,6
Choosing § = 1/2 and sending p; — 2p; gives

1 1/pn
1A A% 1) [0

2 2n 1/2 2/pn 1/2
<A AV I 12 ol AT 1 150

2 A2/ 1/2 1/pn
= 1A% - AV R 1) 172, o allvnlliP
Repeating this argument and using

1 1
1A 19) llpo = )"

we obtain the generalized Holder inequality in (6.289).
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6.2.8 Three-state Rényi divergences

In this subsection, we introduce the three-state Rényi divergences and use the monotonic-

ity of the relative modular operator show that they satisfy the data processing inequality.

Definition 6.2.6 (Kubo-Ando mean). For any operator monotone function f with f(1) =1
and positive operators X and Y the Kubo-Ando mean 8 is defined to be [155], [156]

Xty = X2 (X V2y X 12 x1/2 (6.297)

where we are assuming that X is invertible. Note that Xt;X = X.

The most important properties of the Kubo-Ando mean for us are the monotonicity

relation and the transformer inequality:
1. If XA S XB and YA S YB then XAijYA S XBﬁfYB

2. For any T we have
T(Xt,Y)TT < (TXTHt(TYT") (6.298)

with equality when T’ is invertible.

To simplify our equations we introduce the following notation:**

A\IJ|Q;A = A\IJA|QA

A‘\fI;1,\I/2‘Q<917 92) = Aglll‘ﬂﬁfA?IIzﬂQ . (6300)

541 In what follows, we could have chosen a more general case
A{yh%m(ghgz) = 91(Av,10)8r92(Aw,0) (6.299)

where g1 and g, are arbitrary operator monotone functions such that such g;(x) > 0 for = > 0, however, to
keep the presentation clean we restrict to the operator monotone functions g (z) = % and go(z) = 2% as
we did in (6.301). The definition of the multi-state Rényi divergences generalizes in the straightforward way.
Our proof of the data processing inequality will apply to this most general case.
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Choosing |€?) as the reference vector, |¥;) and |¥y) and 6 € (0, 1) we have two monotonicity
equations for the relative modular operators. Combining these two inequalities using the

Kubo-Ando mean and applying its property in (6.298) we obtain

FTA]\;Il,\IIQ\Q;A<01’92)F S (FTAG‘I}HQ,AF)ﬁf(FTA%QQM,AF)

< AJ\;L%MB(@L 02) - (6.301)

The first inequality becomes an equality when F' is invertible. As before, we can define the

contraction

1/2 —1/2
Fefl,ez = (A(pl,qum;A(ebQ?)) F (A]\;L%\Q;B(Qh%)) . (6.302)

Definition 6.2.7. For 0 < 6,,0, < 1, r € [1/2,00] and f any operator monotone function
with f(1) = 1, we define the three-state f-divergence as

Sgl,ez (Y1, Ys||lw) = —2rlog

‘(A{;h%m(el/r, QQ/T))l/Q )

27,0

= —2rlog (6.303)

01/r O /r 1/2
‘(A\Ifﬁﬂﬁf&y!ﬂ) €2)

2r,.Q
It is clear from (6.250) that the measure is independent of the purifications of 11 and bs.

Theorem 6.2.3. Let ® : B — A be an unital CP map such that for a state w on A,
the corresponding state on B is ®*(w). Let Q4 and Qp denote the states as vectors in the
corresponding GNS Hilbert spaces Ha and Hp and let F' : Hg — Ha be the contraction
operator corresponding to the map ® in the GNS Hilbert space. Given two states 11 and 1y

on A, for r > 1 the three-state f-divergence satisfies the data processing inequality

Sgl,eg;r(wlanHW; B) S Sgl,eg;r(%,?/f?”MA) . (6304)

261



Proof. To prove the data processing inequality for this three-state measure, we use the

contraction in (6.302) to write

; 1/2
H(A\Ill,\IIQQ;A (91,92)> ©24)

21,02 4
1/2
= ||FY, 4, (Aél,%m;g(@b%)) 92p) o
TEA
1/2
< ||FJ A (0,0 0
= 01,02 (2r05)—(2r.0) < \Ill,\I/2|Q,B( 1 2)) | B> or Qs
1/2
< (Aémm;g(@l,@z)) 1Q5) (6.305)
2T‘,QB

This proves the data processing inequality for r» > 1. O

As a particular example, we choose f(x) = z® with « € (0,1) as the operator monotone

function. The Kubo-Ando geometric mean is
XtoY = X2 (x 2y x~12)" x1/2 (6.306)

which satisfies the properties
1. (Xl ® XQ)jja(}/l Y Y2) — (Xlna)/l) ® (X2]ja§/2>
2. If [X,Y] = 0 then X%4,Y% = X(1-a)0iyab:

Definition 6.2.8. We define the three-state Rényi divergences as the special case of three-

state f-divergences when f(x) = x® with o € (0,1)

o —2r o 1/2
(00, 00ll) = g 108 | (A, ol ) 10
01 972
A w001, 02;7) = Ay 8 B A g - (6.307)
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Note that a in A, g, is simply an index and not a power. The powers of the relative
modular operator are chosen such that when the relative modular operators commute the

measure is independent of o. In matrixz algebras, this measure is

1/2
4 0
2r Tary o2 %
1 faths war

S o, (1, a|lw) = — log

=61 6) (6.508)

2r

where Oy + 01 + 05 = 1.

Special cases: In the 8, — 0, the expression above is independent of w and we obtain

(1-6) 0
(17a>rﬂ ra
1 a2

ST (1, Yallw) = gy o (6.309)

r

If we further set o = 6, up to an overall coefficient, it reduces to a generalization of the

geometric divergence defined by [198], [199]:

St V2lle) = gy Yow o ot (6.310)

T

In the special cases #; — 0 (or 3 — 0), the three-state measure in (6.308) reduces to the

(0, 7)-Rényi divergence

S&G;T(¢17¢2||w) = 897T(w2||w)
Sg,(];r(qu)bqu}QHw) = Se,r(¢1||w) : (6311)

Another special case where we recover the (6, r)-Rényi divergence is 11 = ts:

—2r , .
391’02;7‘(#),1#”&}) = (91 _ 1)(92 _ 1) log ||¢(01+02)/(2 )Weo/(Q )||27‘

— Ty S (V1) (6:312)

When a = 1/2 it is convenient to introduce the notation

Xty = X2 (XY xv2) e (6.313)
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to write

—2r
(1—61)(1—0)

01/r O /7 -
Sl (W1, | = 1og]( ol )2 o)

(6.314)

2r
6.2.9 Multi-state Rényi divergences

The generalization to arbitrary number of states is straightforward. We use the vector

notation W = (U, -+, 0,), = (01,---,0,) and f= (fi, -+, fa_1) to define the operator

—

AL 0) =AY atn b AT - (6.315)
We are using the simplified notation®®
Xutp Xofp, X3 = Xlﬂfl(XQuszs) . (6.316)

Definition 6.2.9. We define the multi-state f-divergence to be

ST () = o oo | (A5,) 1) (6317
w T T ML =) [\ e -
This is a special case of the more general measure
]? -1 AJF 1/2
ST (4 |w — log ’( s §> Q
I(llw) = NG sal@) | >2m
AJ\%\Q@) = 91(Bwy0)tp - B 190 (Dw,j0) (6.318)

for operator monotone functions fi,- -+, fu_1 with fi(1) =1 and g1, - - , g, with g; satisfying

gi(x) >0 for all x > 0 and +

=L s a normalization.
N(9)

In the remainder of this work, we focus on the measure in (6.317). We will see that when

0y + -+ -+ 6, = 1 this measure is independent of |(2).

Theorem 6.2.4. Let ® : B — A be an unital CP map such that for a state wa on A, the

corresponding state on B is wg = ®*(wa). Let Q4 and Qp denote the states as vectors in

5+Multi-variate operator geometric means were discussed by [214].
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the corresponding GNS Hilbert spaces Ha and Hp and let F : Hgp — Ha be the contrac-
tion operator corresponding to the map ® in the GNS Hilbert space. Given a set of states
JA = (Y1, -+ ,¥n) on A, forr > 1 the multi-state f-divergence satisfies the data processing

inequality
ST (Wallw) < ST (Fillwa) (6.319)
Proof. To prove the data processing inequality, as before, we first construct the inequality
FIAL  (O)F < A{%M;B( ) (6.320)
by repeatedly using (6.301), from which we get the contraction
7 7 oN1/2 7 N-1/2
Fl = (Aq o )) F (A@Q;B(9)> . (6.321)
We have

Far )’
:Hpg (A@Q;B(e)) Q)

H (AQQ;A()) e

2r,Q 4

(8505 10

2r,Q 4

< ||F9-]‘c||(2r,QB)H(2r,QA)

2rQp

(6.322)

< | (870 ®) 10

2r.Qp

This implies that the multi-state f-divergences satisfy the data processing inequality for

r > 1 for any quantum channel ®*. L

To be more concrete, we restrict to the geometric mean f,, in (6.306). Consider n operators

X1 to X, that pairwise commute. Define «,, = ag = 0 so that

9 On _ ymb1 0
Xllﬁa1"'ﬂan,1Xnn _Xl XJ" n

=1 —-a)(ar-aiq) . (6.323)
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Note that v; are all positive and add up to one, hence, they are a probability distribution.

We define the operator

b1 On_
A%\Q(Q’ T) = A\;11|Qﬁa1 e ﬁanflA&l’:]"Q . (6324)

The advantage of this definition is that it is independent of @& when the relative modular

operators commute. Then, the multi-state Rényi divergence is

—2r

I S \1)2
S2 = —1 A% (0; Q . 6.325
5010 = g gy s | (88a@n) 1] (6.325)
In matrix algebras, this measure becomes
a /7 —2r TQTI Tei”l 1/2 9o
S5, (Wllw) = mm——5 log ||| 1" fay + - Hau 007" | W (6.326)
' i (1—65) or

where 6y + 61+ ---+6, = 1. We can think of ; as a probability distribution associated with
states 1);. As before, when 6y = 0 the measure above is independent of w.

Similar to (6.282) we can divide our multi-state Rényi measure by (1 — 6y) to make it
more symmetric among 6y and the rest of 6;:

N 1 . -
ETWHW) = ﬁngr(wHw . (6.327)
0

Special cases: In the limit r — oo, we have the multi-variate Lie-Trotter formula for

self-adjoint operators ay, - ,a, [212], [215]
TILIEO (e‘“/” . -e""/r> = euttan (6.328)

In lemma 3.3 of [216] it was shown that for « € [0, 1] and a; and as self-adjoint

lim (e“l/rﬁae‘”/r)T = gllm®artaaz (6.329)

T—00
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This was further generalized by [217] to multi-variate geometric means

lim (e‘“/?"tia1 e ﬂanfle“"*/”y = g2 (6.330)

r—00

with +; given in (6.323). Notice that the right-hand-side of the equation above is invariant

under the permutations of a;. Applied to our measure, we find

. a /.7 -1 i log 1 ogw
A e o T R (o2 fiesvrtinlos) - (6.331)

which is independent of «;. Now, except for an overall 1/(1 — ) factor, the reference state
w is no longer distinguished from the rest. We include w inside 7,/7 as 9. We define the
vector 6, that is 0; = 1 — € for a particular j, and ¢; = €f; for i # j including 6y = €. Since
0. is a probability distribution the weights §; sum up to one; hence f; is also a probability

distribution. In the limit € — 0, all §; — 0 except for 6; that goes to one and we find®

n

() =3 e (vlog vy~ log ) = 3 S w1y (6.332)

i=0

5500

which is the weighted average of the relative entropies of 1; with respect to ;.
The same analysis can be repeated at finite r if all the states commute. In this case, we
have n probability distributions and our multi-state measure is independent of both r and

the vector a’:

Dg({pr}, -+ Apn}) = = i%u —g o8 (Z pi(x)’ -pn(x)9”> . (6.333)

zeX

This is the generating functional in (6.168). Taking the same ¢ — 0 limit of 9: gives a

weighted average of the relative entropies:

liy D () = 3~ D (011 - (6:354

i=1

564Since the measure does not depend on & we suppress it in the notation.
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Consider the the multi-state measure in 6.327. In appendix 6.2.15, we show that in case
where we set 6; = €f; and 0y = 1 — ¢, at finite r, we obtain the same weighted average of

relative entropies:

e—0

lim 5% (Jllw) = > BiS(illw) - (6.335)
i=1

6.2.10 Infinite dimensions

In this section, we generalize our discussion of LP spaces and the multi-state Rényi
divergences to an arbitrary von Neumann algebra. . This includes the local algebra of
quantum field theory (QFT) that is a type III algebra, meaning that it does not admit a
trace.”” We closely follow the reference by [154].

Any normal CP map w : A — C that satisfies w(1) = 1 is called a state. In infinite
dimensions, the vector |e) or a trace might not exist. However, we can use any normal state

w to define an inner product for the map a — a|Q):
(a19]a29) = w(alay) . (6.336)

The closure of the set a|Q2) is the GNS Hilbert space H,,. For simplicity, we have restricted
to the case of faithful normal states.

The Tomita operator Sq : H,, — H,, is the anti-linear operator defined by
Saa|Q) =a' Q) . (6.337)
The closure of S has a polar decomposition
So = JoAY? (6.338)

where Jgo and Ag = Agq are the generalizations of the modular conjugation and the modular

operator to arbitrary von Neumann algebras. The natural cone is the set of vectors that are

5T1Formally, a trace is a normal completely positive (CP) map from the algebra to the complex numbers
tr : A — C that satisfies Vaj, a9 € A:  tr(ajaz) = tr(agay).
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invariant under Jg. The vectors in the natural cone are in one-to-one correspondence with

the normal states on A. The relative Tomita operator is defined by the equation

Syina|Q) = a' |P) (6.339)
with polar decomposition (after closure)

Swie = Jualgj. (6.340)

where Ayjq is the generalization of the relative modular operator, and Jyq is an anti-
unitary operator if both w and ¢ are faithful. When |¥) belongs to the natural cone we have
Jojw = Jo, otherwise JojuJo is a partial isometry in A’; refer to [169].

Motivated by the expression (6.244) we define the (p, Q2)-norm of a vector |¥) € H,, as

1/2—1
119) lha = sup 1400191, ¥pe [2o0)
X w
. 1/2—1
1) o = inf [AYG 719}, Vpe(1,2). (6.341)

For p > 2 the (p,Q2)-norm is finite if |¥) is in the intersection of the domains of Ai/‘éfl/ P for

all |x) € H,. When |U) is outside of this intersection set we say || |U) ||,.o = co. The closure
of the set of all |¥) with finite (p,2)-norm is called the LP space [154]. For p € [1,2) the
LP space is defined to be the completion of the Hilbert space H,, with the (p, 2)-norm. In
general, we have LP C L7 for r < p and L’ is the algebra itself with its operator norm ||a||o.
The L? is the GNS Hilbert space H,, and the L is the space of normal linear functionals of
A. We can embed the vectors |¥) € H,, in L}, using the map

() =(¥]-Q) . (6.342)

However, since L] is larger than H,, not all states 1) can be expressed this way.
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The LP space is dual to the LI space when ¢ is the Holder dual of p:

1) llpw = sup [(x]¥) . (6.343)

XMlg,=1

Given a normal state ¢ € L}, the vector
Ay 1) e L2, (6.344)
for p € [2,00). For every vector |x) € LP, there exists a unique ¢ € L. such that
) = w19 (6.345)
with some partial isometry u € A. The vector
200) =AY 1) (6.346)
is analytic in the complex strip z = 0 + it with 6 € [0, 1]. The reason is that we can write
AL 19Q) = Ay o(DV : DQ), Q) (6.347)
where
(DY : DQ), = AfjnAq" € A (6.348)

is the Connes cocycle which is a partial isometry in the algebra for all real values of ¢.[186]
All the multi-state measures discussed in the previous section and the inequalities they

satisfy generalize to arbitrary von Neumann algebras except for (6.258).%

%84We do not know how to prove a generalization of (6.256) to arbitrary von Neumann algebras.

270



6.2.11 Quantum state discrimination

In asymmetric quantum state discrimination, we are given a state w that we do not
know a priori. The task is to perform measurements on this state to decide whether it is
w or any of the alternate hypotheses K = {t,---¢r}. We would like to know what is the
optimal measurement to perform on the state to make the decision and what is the minimum
probability of misidentifying the state.

First, consider the case with only one alternate hypothesis ). Assume we are given
n identical copies of the state prepared in the form w®" and we are allowed to use any
measurement in the n-copy Hilbert space to identify the state. Denote by (3, the probability
that we misidentify the state as ¢ with the optimal measurement. Any other measurement
strategy to distinguish the two states fails with probability larger than 3,. According to
quantum Stein’s lemma f3,, behaves asymptotically as [192]

lim —— log B, = S(4]lw) - (6.349)

n—o0 n

This provides an operational interpretation for relative entropy. The asymmetry of the
relative entropy is related to the fact that we assumed that in reality the state was w.
Of course, if we were given the state 1 instead the asymptotic error rates are controlled by
S(w||®). In general, in hypothesis testing we have two types of errors and their corresponding

optimal probabilities
1. «a,,: the state was 1) and we misidentified it as w.
2. B,: the state was w and we misidentified it as .

There is a trade-off between these two types of errors. Since we do not know whether the
state is w or ¥ we should try to adopt a strategy that minimizes a combination of both
errors. One might expect that these strategies would fail with minimal probabilities that
interpolate between S(1||w) and S(w|1)) as we go from minimizing the type 2 to type 1 errors.

This intuition is confirmed in symmetric hypothesis testing when we choose to minimize the
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average of the two error probability types. According to the quantum Chernoff bound, the

optimal error probability in the symmetric case in the n — oo limit is [218]

Een < e—nC(w,w)

_ . 6 1-6
C(h,w) = 1og66%5)tr(¢w ) (6.350)

Note that the quantity C(¢,w) is related to a minimization over the Petz divergences in
(6.245). The in-between strategies succeed with probabilities that depend on the Petz diver-
gences. For instance, let us restrict to the measurements that leads to type 2 errors smaller
than some constant £, i.e. 8, < e ™, and denote by «,, the optimal probability of the

type 1 errors among these measurements. In the limit n — oo we have [193]

iy < & HR )

H, (4]w) = sup —
0e(0,1)

(r = Do (tp[|w)) - (6.351)

The quantity H,.(¢||w) is called the Hoeffding divergence. The inequality above provides an
operational interpretation for the Petz divergences Dy(¢|lw). It follows from (6.349) that if
r > S(¢]|w) the error a,, tends to one exponentially fast for large n. It was shown by [193]

that as n — o

1—a,, <o "Hi@)

) 0—1
H (¢]|w) = sup
0>1

(r = Sp(¢[|lw)) - (6.352)

The function H(¢||w) is often called the converse Hoeffding divergence. It provides an
operational interpretation for the sandwiched Rényi divergences.
Now, let us consider the completely asymmetric case where we are given w but we have

several alternate hypotheses K = {¢1, - ,¢x}. The generalization of the quantum Stein’s
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lemma in (6.349) to the multi-state setting is called the quantum Sanov’s lemma. [219], [220]
It says that given w the optimal probability 3, of mistaking it for other states at large n is

Bn < e—nS(KHw)

S(K ) = min S ) (6:353)

In the symmetric case, given a set of hypothesis K, the multi-state Chernoff bound says that

the minimal errors are controlled by the multi-state Chernoff distance [221]

Eop<e™

However, away from the asymmetric case when we have to minimize various types of er-
rors that generalize the type 1 and type 2 errors to multi-state setting, one expects that the
multi-state measures that control the optimal probabilities to interpolate between the relative
entropies S(¢;|lw) and C(¢4, ;). The optimal error probabilities satisfy a data processing
inequality because all distinguishability measures are non-increasing as we restrict the set of
allowed measurements. Our multi-state measures interpolate in between these measures as
we vary the probability measure (6y,61,- - ,0,,) and satisfy the data processing inequality.
We take this as an evidence to conjecture that the multi-state Rényi divergences in (6.326)
have operational interpretations in asymmetric multi-state discrimination where we are given
the state w and the hypotheses are the states 1, -- ,,,. One attempt to make this con-
jecture more precise is as follows:*® In the multi-state setting with m alternative hypotheses
{t1,- -+ ¥} there are m probability errors f;, associated with misidentifying w with ;.
Choose a specific j and restrict to the measurements with error probabilities 3, < e™™"
for i # j at large number of measurements n. One might expect that the optimal error
probability for j is given by an infimum over 6; of some function of r; minus our multi-state
measures. However, we do not know what function of r; is relevant or how to fix the value

of the a; parameters. In the classical limit, the «; parameters go away making it easier to

59+We thank Milan Mosonyi for the suggestion.
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find the appropriate function of r;, however we will not attempt that here. For more recent

developments in quantum state discrimination refer to [222], [223].

6.2.12 Discussion

In this work, we constructed multi-state Rényi divergences and proved that they satisfy
the data processing inequality in the range r > 1 and 6; € [0,1]. Both the Petz and the
sandwiched Rényi divergences are monotonic in p; however, we did not explore potential
monotonicity of our multi-state Rényi divergences in any of the parameters r or 6. We
postpone this question to future work.

Recently, Fawzi and Fawzi used the Kubo-Ando geometric to define new quantum Rényi
divergences in terms of a convex optimization program and proved that they satisfy the
data processing inequality [224]. It would be interesting to use the non-commutative L?,
spaces to rewrite their expressions as (p,w)-norms and explore their potential multi-state
generalizations.

In section 6.2.7 we analytically continued the vector (6.284) to complex 6;. Consider the
vectors ) = u; [2) where u; € A are unitary operators. In that case, the relative modular

operator can be written in terms of the modular operator of w:
Ao = ulAqu' (6.355)
where Agq is the modular operator of €2. Then, our analytically continued vector is
[ (2)) = wr AF (ufug) AF (uug) - - Agruf |Q) (6.356)
If we take all z; to be imaginary we end up with modular evolved operators

11201, GE)) 11 = (1 () (s} o, -0 1) |
a; = AlaAG" . (6.357)
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For general values of t; we obtain a 2n-point modular correlation function that is not modular
time-ordered. In fact, since a € A belong to L° we can generalize our vector in (6.284) by

introducing operators a; € A (not necessarily unitaries)

setting |€2;) = |Q) and all z; = it; imaginary we obtain the out-of-time-ordered modular
multi-point correlators. It would be interesting to search for potential connections between
these out-of-time-ordered correlators and the notions of modular chaos previously introduced
in the literature.[225], [226]

It is important to note that in our definition of the multi-state Rényi divergences in
(6.326) we restricted to the range 0 < 6; + ---6,, < 1 to make sure that the resulting vector
is in L. In principle, we can extend beyond this range, for instance, by making some 6
negative. While the resulting multi-state measure would not always be finite, in an infinite
dimensional system that is hyperfinite (approximated by matrix algebras arbitrarily well)
one expects that this measure is finite for a large class of states ¢, --- ,1,. It would be
interesting to explore the data processing inequality in this extended range.®

Finally, the analysis with non-commutative L spaces suggests that one might be able to
prove an improved data processing inequality using Hirschman’s lemma, refer to [213], [227],

[228]. We postpone this to future work.

6.2.13 Appendix: Riesz-Thorin theorem

In this appendix, we prove the Riesz-Thorin theorem for the Araki-Masuda (p,w)-norms

229).

604+Note that our proof only works when all 6; are positive.
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Definition 6.2.10. Consider the algebras A and B, faithful states wa and wp and their
corresponding GNS Hilbert space Ha and Hp, respectively. For a bounded linear map T :
Ha— Hp and p,q > 2 as in (6.191) and (6.192) we define the (p, A) — (q, B) norm to be

17 1) .0
1Tl p,4)(.B) = sUP 02 A7 Ha.22s)

(6.359)
weta 110 lpea

Theorem 6.2.5 (Riesz-Thorin). Consider the algebras A and B, faithful states wa and wg
and their corresponding GNS Hilbert space Ha and Hp, respectively. For a bounded linear
map T : Ha — Hp and pg,q9 > 2, 6 € [0, 1] such that

1_1-0.6
Do Po P1
1 1—-6 0
— = + —, (6.360)

qo B qo q1

we have the inequality

HTH(pe A)—(q9,B) = HTH pOA qo,B)HTH‘(gPl,A)%((Il,B) : (6-361)

Proof. To prove this inequality, we first use the fact that any || |x) ||,,,4 = 1 can be written

as uA)l({fzfA lwa) to write the left-hand-side as

1
1T 4y 00,5) = LR Tl Y2 4 1924) g - (6.362)
X AU

We can use the definition of the (gp,2p) norm in (6.252) to write the expression above as

ot = s Ay Tub 020 (6:363)
UEA,|xX)EHA, €rp

We define the function

f(0) = ||A;>|Qq0BTUAp|QA |€24) | (6.364)
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and then analytically continue § — z = 6 + it to the complex strip 6 € [0, 1]. This function
is bounded, holomorphic everywhere inside the strip and is continuous on the boundaries of
the strip at # = 1 and § = 0. Therefore, by the Phragmén-Lindelof principle, it takes its

maximum value on the boundaries of the strip. Using lemma 6.2.1.1, we find

11 1_ 1 1

1_1 1 1 1_1 1
12g 05T Ul o a 124) | < 850 Tul o4 194) 1071 Ag 0l Tud Yo 24) |-

Taking the supremum of both sides and using sup(fg) < sup(f)sup(g) completes the proof.
[

6.2.14 Appendix: Extended range of ¢

Consider the (6, 7)-Rényi divergence. If we choose 6 € (—1,0] the measure need not be
finite. However, for a dense set of states it is finite. To see this, first assume that there exists

a positive constant ¢ such that for all a, € A we have
wlay) < cplay) . (6.365)

In the density matrix setting, it means that the following operator is positive semi-definite

) —w>0. (6.366)
Since the map ®* is CP we also have
c®*(¢p) — P*(w) > 0. (6.367)
For such states we have
(aQ|AyjaQ) = (a'V]a" V) > ¢ (aQ]a’Q) = ¢! (aQ]AqaQ) (6.368)
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which implies the inequality cAyjq > Ag. For 6 € [0, 1] we obtain®
& > AGPAGLAY (6.369)
This implies
& > A AN o - (6.370)
Therefore, the condition in (6.365) says that the vector
AYG19) € Ha (6.371)
for # € [—1,1]. For r > 1 this vector is in L, therefore
oo (V1) = 15 108 |AYE 19) are (6.372)

is finite. The (0, r)-Rényi divergences are defined for r € [1/2, 00] and 6 € [0, 1] but for r > 1

we can extend the range of 6 to [ — 1,1].

6.2.15 Appendix: The relative entropy limit

This appendix uses arguments similar to those by [213]. Consider the family of vectors
Ixe) € L?" such that |x.) = |Q) + €|x1) + O(€?). If we normalize the vector |x.) to |x.) =

Ixe) /|l Ixe) |2, we obtain

ity 5 111) = 19 I = Ty 7 (1 = Re {x2)) =0 (6:373)

Next, we note that for » > 1 we have

Re (X[ Q) < [ (Xl | < 11X larall 12} [l = 11X} lana < 11X Iz = (6.374)

614See also Lemma 5 of [213].
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where in the second inequality we have used the Hoélder inequality and the fact that the

(s,Q2)-norm of |2) is always one. In the last inequality, we have used the fact that for r > p
%) (70 < [T 1.0 - (6.375)

This follows from a simple application of the Hadamard three-line theorem to the function
| [¥) [I7.q; see lemma 8 and corollary 5 by [229] for more details.

Divide (6.374) by € and take the limit € — 0. Using (6.373) we obtain

1 _
i (1~ [ 1% ) = 0. (6.376)
As a result,
1 _ _
lim ~log [[[Xe) llzr = O ([l [Xe) ll2n) o = 0 - (6.377)

We are interested in the function
1
lim —log || [xe) ll2ra - (6.378)

e—0 ¢

The (p, Q)-norms are homogeneous therefore
log [[ [xe) ll2r = log || [Xe) [l2ng +log || [Xe) [|2.0 (6.379)
and
li L 1 =1 L 1 6.380
lim ~log|| [xe) llare = lim ~ log || [xe) [l2.0 - (6.380)

Therefore, we only need to study the (2, 2)-norm of the vector |x.).

In the three-state Rényi measures our vector of interest is

(1i5) e(1-p5) 1/2
Xe) = (A%Q VAN ) Q) . (6.381)
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We have
AT .
lig Lo | [ e = 5 (200, (AT & 805 ) 19) (6.382)
e—0
We only need to compute the derivative
0 (XH4aY) sy =log X +0, (X Py x/?)"
e=0
=(1—a)logX +alogY . (6.383)
Applied to our case in (6.382) we find
1 —1
lim ~log || [xe) llore = 5~ (BS(¥n]|w) + (1 = B)S(¥2]lw)) - (6.384)
As a result, from eq (6.327) we get
i 8% o (1 Vallo) = (W) + (1 = Sl (6359

To generalize to n states we need to compute

: ﬂan—l :L)€_>0

= (1 — al) log X + 10, (XSﬂOQ o

86 (Xleﬁoa T ﬂan—IX’fL> -0
=y log X1 + Y log Xo + -+ + v, log X, (6.386)
Consider the vector
B1 eBn 1/2
) = (8ot 2Fa) 190 (6.387)
Then,
(6.388)

hm Ga @ZJHw Zﬁl (Ui]|w) .

Oc,
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6.2.16 Appendix: The (p — ¢)-norm of contractions

Lemma 6.2.5.1. Consider a linear operator Fy : Hp — Ha that satisfies HF}FfHOO <1;

see equation (6.270). For ¥p € [2, ]

1 ¢l p.os)—»man <1 -

(6.389)

Proof. First, note that ||F]1L1‘7f||Oo < 1 implies that F is a contraction, i.e. |Ff|ew < 1,

because || 1T, = ||T||3, for any linear operator T : Hp — H4 and Vp € [1,00]. The proof

has two steps: First, we show that for a contraction Fy we have || Ff|pap—maa) < [[Fflle

for p = 2, 00. Then, we use the Riesz-Thorin interpolation theorem to establish (6.389).

For the first step, consider an isometry V' : Hp — H 4 and a cyclic and separating vector

1Qp) = V1|Q4). For p=2 we have

1 F¢l2.00m) > 2.04)

_ M 92B) 20,

“es [16198) |20,
tput
:supHFfV VOVTQ4) |20,
bl 161928) (2,05
[VOVT[Q4) [|2

<||FfVT|| o sup
A e TA YT

<[1F V|

<[ Frlloo -

(6.390)

In the third line, we have used Hoélder’s inequality and (6.227). By a similar argument, for

p = 00, we obtain

1 E4 | (00,02) — (c0.24)

| F4b [Q2B) ||oo,04
=Su
veh 1101925) o

IFVIVIVT Q) (.04

=sup

bels 161928) l|lso.05
VOV

<||FfV oo sup
bes  |blloo

<[1F V|

<[l
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where we have used ||a [24) ||co.0, = ||@|loec Which follows from equations (6.232) and (6.221).

Since ||Ff|l < 1, the above inequalities imply that for p =2 or p = oo

1 Ef | pop)—»0a) <1 (6.392)

In the second step, we use the Riesz-Thorin interpolation theorem,

||Ff||(p97QB)_>(p079A) < ||Ff||%o_o?QB)—>oo,QA)||Ff||?2,QB)—>2,QA) (6-393)

for i = 1p;00 + p% with 6 € [0, 1] where we set py = oo and p; = 2. From equation (6.392),
||Ff||(p67QB)_>p67QA) <1 (6.394)
for Vpy € [2, 00]. Just by relabeling py to p, we obtain the statement in (6.389). [

6.2.17 Appendix: Comparison of norms

Lemma 6.2.5.2. For q € [2,00] we have |T||4—q < [|T]|2-2, see figure 6.9.
Proof.

1T'(a® )| 17|l (@ ® T) |l
1T)lgq = sup ————— <sup = 1Tl = | T 252 (6.395)
T @@ ), o |le®I), -

where we have used the Holder inequality and the last equality follows from the definition

of the || - |22 norm. O
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7. SUMMARY

In this thesis, we studied the operator algebra quantum error correction(OAQEC) and the
generalizations of information measures in a general quantum system (von Neumann alge-
bras).

We formulated the known QEC conditions, such as the Knill-Laflamme condition and
the sufficiency condition in the Schrodinger picture in the language of OAQEC for a general
von Neumann algebra. Most importantly, we constructed a unique unital recovery map from
the Petz dual map of a given error map (unital CP) with a trivial kernel.

We observed that the real-space renormalization theory exhibits the approximate QEC
structure. We studied it by applying the continuous multiscale entanglement renormalization
ansatz (C(MERA) to the 1 + 1-dimensional massive free boson fields.

We constructed the generalized entanglement entropy that captures the entanglement due
to the presence of charges in a general quantum system using quantum relative entropy. It
captures the contributions from the bi-local intertwiners. They are charge-neutral operators
in the algebra of two local regions in spacetime, but charge operators in each local algebras.
We worked out examples in finite-dimensional systems and quantum field theories.

We achieved the generalization of quantum relative entropy into the multistate f-divergence.
We showed that the multistate f-divergence satisfies the monotonicity under a single unital
completely positive map. Although we do not have its physical interpretation, we speculated

its potential application to quantum state discrimination.
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