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Abstract. Reacceleration of cosmic rays produced by galactic sources in the galactic wind
flow is considered. The particles can be reaccelerated by the shocks propagating in the galactic
wind flow and at the termination shock. The problem of the cosmic ray spectrum continuity
is investigated. Numeric results are presented and discussed. Applications are given for an
explanation of the cosmic ray spectrum beyond the “knee”.

.

1. Introduction
The existence of a Galactic Wind driven by cosmic rays (CR) in our Galaxy has been discussed
extensively in recent years [10, 5, 6, 7, 23]. Cosmic ray sources in the galactic disk produce
energetic particles which can not freely escape from the Galaxy but rather amplify Alfvén waves
(see e.g. [22]). Such waves lead to an efficient coupling of the thermal gas to energetic particles
[17], and pressure gradient of cosmic rays drive a Galactic Wind flow. Typically, the gas flow
becomes supersonic at distances of about 30 kpc. This radially directed flow should terminate
in a so-called termination shock at distances of several hundreds kpc. It was recognized quite a
while ago that this shock may reaccelerate cosmic ray particles [11, 12]. However this idea faces
two problems. The first one is the difficulty of observation of accelerated particles in the Galaxy.
In fact the condition of efficient acceleration coincides with the condition of strong modulation
of particles in the Galactic Wind flow. The second problem arises because near the termination
shock the number density of CRs that were produced in the inner Galaxy is expected to be
small in comparison with the actual CR number density in the inner Galaxy. All this means
that one cannot expect continuity of the CR spectrum between the reaccelerated particles and
those produced by the disk sources.

The second problem is avoided in the self-consistent model of CR propagation in the Galactic
Wind [17]. CR particles with energies in the neighborhood of 1015 eV have approximately the
same Galactic CR number density everywhere in a huge halo with radius 100 kpc in this model.
This size is not small compared to the distance to the termination shock. In fact, particles which
are reaccelerated in this extended halo by multiple interactions with so-called slipping interaction
region (SIR) shocks [21] that propagate from the disk towards the termination shock, can for
the same reason also be observed in the disk with essentially the same intensity as in their
production region. And this is an attractive reacceleration mechanism to produce the observed
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CRs beyond the so-called knee at several ×1015 eV to the so-called ankle at a few ×1018 eV
total energy as demonstrated recently by Völk and Zirakashvili [21].

Nevertheless, we should not dismiss the possibility of reacceleration at the termination shock
completely. It may play a rôle in a very different parameter regime.

If we however concentrate on the possibility of reacceleration on the termination shock, the
first problem is unavoidable, and the CR spectrum should be discontinuous.

As we shall show below, this is indeed the case if the maximum energy of accelerated particles
is the same at different parts of the termination shock. However, one can expect that the Galactic
Wind flow originating from small galactocentric radii in the disk should be more powerful and
more turbulent in comparison with the flow originating from larger radii. The distance to
the termination shock will be correspondingly larger, and the cosmic ray diffusion coefficient
will be smaller at small galactic colatitudes. The maximum energy of particles, accelerated at
termination shock, will be larger near the poles in that case. We shall show in this paper that
it is possible to obtain spectral continuity if the maximum energy varies from the “knee” value
3·1015Z eV at the Galactic equator to about 1017Z eV at the Galactic pole. Here Z is the nuclear
charge number of particles. The “knee” energy is presumably the maximum energy for Galactic
CR sources in the Galactic disk. This value can be larger than estimated earlier [14, 19, 1] if the
magnetic field strength at supernova shocks substantially exceeds the typical interstellar values
of several μG. Such high field configurations might be unusually strong stellar fields in the winds
of very massive stars [3, 20, 4], or the strong Alfvénic wave turbulence excited at strong shock
waves, as speculated by Völk [18] and recently calculated in a simplified nonlinear model by
Lucek and Bell [15] and Bell and Lucek [2].

2. Energetic constraints
Let us assume that our Galaxy is surrounded by a Galactic Wind with radial velocity u. The
energy input rate necessary for such a flow is

ε̇ = 2πρr2u3 . (1)

Here ρ is the gas density at the radial distance r in the Galactic Wind. The distance to the
termination shock Rs can be found from the condition ρu2 ∼ PIG, where PIG is the intergalactic
pressure. Using Eq. (1) we obtain

Rs =

√
ε̇

2πPIGu
= 180 kpc

(
ε̇

1041erg s−1

)1/2
(

10−15erg cm−3
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)1/2(
500km s−1

u

)1/2

(2)

The magnetic field is almost azimuthal at large distances in the Galactic Wind flow and its
strength is given by Parker’s formula [16]

B ≈ Bg

R2
gΩ(θ) sin θ

ru
, (3)

where Bg is the poloidal field strength at galactocentric distance r = Rg where Rg is the Galactic
radius, Ω(θ) is the angular velocity of the Galactic rotation and θ is the galactic colatitude. Using
this equation one can find the magnetic Mach number in the galactic wind flow Ma:

Ma =
u
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2ε̇u

BgΩR2
g sin θ
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(4)

186



Disk
CR 

diffusion

termination shock

advection
CR 

diffusion-advection 
boundary

Figure 1. Meridional cross-section of the Galactic Wind flow. The direction of the gas velocity
is shown by the arrows. The supersonic gas flow is bounded by the termination shock. CR
transport is mainly diffusive inside the diffusion-advection boundary; outside this boundary it is
determined by convection in the gas flow (in the dashed region). The galactic disk is indicated
by the black ellipse.

This value should be large enough for the termination shock to be strong. Since the Galactic
Wind is mainly driven by cosmic rays, ε̇ should be of the order of the galactic CR sources power
that hardly exceed 5 × 1041 erg s−1. Strictly speaking it should be smaller because a part of
that energy is “lost” in the Galactic gravitational field (the escape velocity is comparable with
u). However, the Galactic Wind flow can be partially centrifugally driven if Bg is larger then 1
μG (Zirakashvili et al. 1996). In this case some part of the kinetic energy of the Galactic Wind
is supplied by the Galactic rotation.

3. Cosmic ray propagation in the Galactic Wind flow
A schematic picture of the Galactic Wind flow geometry is given in Fig.1. The azimuthally
symmetric flow originates in the Galactic disk and extends the frozen-in magnetic field. At
small heights above the disk the gas velocity is perpendicular to the galactic disk. The flow is
approximately radial at large distances from the Galaxy. The gas is assumed to be fully ionized
in the wind, supporting magnetohydrodynamic waves. These may also be resonantly excited by
the anisotropic streaming of the CR component. Their amplitudes will ultimately be limited by
damping through nonlinear wave-particle interactions.

Cosmic ray transport in the Galactic Wind is strongly affected by the properties of the
magnetic field. Since the average poloidal magnetic field component is weak in our Galaxy [9],
we shall assume that the Galactic Wind streams originating from different parts of the Galactic
disk drag out the magnetic field together with closed magnetic loops with sizes of the order
1 kpc. These magnetic disturbances become strongly elongated at large distances from the
Galaxy due to the acceleration and spherical expansion of the Galactic Wind flow [25]. Hence,
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the distant wind is filled by almost azimuthal, sign-dependent magnetic fields. But Parker’s
formula (3) and similar expressions remain valid. CR diffusion in such a field should be very
anisotropic. Random drift motions and wandering of magnetic field lines would produce an
anomalous transport across magnetic lines that is disregarded in this paper.

In the following we shall use the self-consistent model of cosmic ray propagation in the
Galactic Wind flow [17]. Cosmic ray diffusion is considered along field lines alone. The parallel
diffusion coefficient D‖ is determined by Alfvén waves generated by the cosmic ray streaming
instability. Its value does not depend on distance and is given by [17]

D‖ = 1026 ÷ 1027 p

Zmpc
cm2s−1 (5)

Here p is the momentum of particles, mp is the proton mass. The numerical factor in Eq. (5)
is inversely proportional to the Galactic CR power. It is not exactly known because uncertain
characteristics of the nonlinear damping of Alfvén waves propagating in a one direction [24]. In
addition, the strong CR gradient near the termination shock can result in even weaker diffusion.
This requires a special investigation that is beyond the scope of this paper. We shall use a
simplified approach here and consider the CR diffusion coefficient (5) as a free parameter.

Assuming azimuthal symmetry the isotropic part of a CR distribution function N(r, θ, p, t)
evolves according to the following equation

∂N

∂t
=

1
r2

∂

∂r
r2D‖ cos2 α

∂N

∂r
− u

∂N

∂r
+

2up

3r

∂N

∂p
+ R̂N + Q(p)

δ(r − Rg)
4πR2

g

(6)

Here α is the angle between the magnetic field and the radial direction, and Q(p) describes the
source of CR particles at the radial distance r = Rg=15 kpc from the galactic center. The CR
distribution function N is normalized in the form n = 4π

∫
p2dpN , where n is the CR number

density. It was assumed that the Galactic Wind flow is radial and that the Galactic Wind
velocity u is constant. The linear operator R̂ describes the cosmic ray reacceleration by SIR
shocks (see Sect.6). The value of cos α in the radial Galactic Wind flow is given by [16]

cos α =
u√

Ω2r2 sin2 θ + u2
. (7)

The Galactic Wind flow is bounded by the termination shock at the distance Rs(θ) that depends
on the galactic colatitude θ. It might be partially smoothed due to the Galactic CR pressure.
One has to expect that the termination shock creates strong MHD turbulence downstream,
towards intergalactic space. CR diffusion is strongly reduced in this case and should be close
to the Bohm limit. This holds up to a maximum particle rigidity that is determined by the
condition DB ∼ uRs where DB = vrg/3 is the Bohm diffusion coefficient of particles with
gyroradius rg and velocity v. Its numerical value is determined by the local magnetic field
strength. At large distances in the radial Galactic Wind flow the magnetic field strength is
given by Eq. (3). Then, the estimate gives the following maximum energy

Emax = Z sin θ

(
Ω(θ)

5 × 10−16s−1

)(
Bg

2μG

)(
Rg

15kpc

)2

0.6 · 1017eV, (8)

We should note that this energy is not small for small θ because the angular velocity of the
galactic rotation Ω increases toward the galactic center. Higher energy particles cross the
termination shock diffusively. We shall disregard CR diffusion beyond the termination shock.

The boundary condition at the termination shock is given by the continuity of N and of the
flux density: (

D‖ cos2 α
∂N

∂r
+ u

(
1 − 1

σ

)
p

3
∂N

∂p

)∣∣∣∣
r=Rs(θ)

= 0. (9)
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Figure 2. Spectral energy distributions (in arbitrary units) of the CR protons in the Galaxy
(solid curve) and at the spherical termination shock (dotted curve).

Here σ is the termination shock compression ratio.
CR diffusion in latitude direction is disregarded in Eq. (6). However, we shall assume that

CR particles from different flux tubes are mixed near and in the Galaxy. This means that the CR
distribution is independent of colatitude at the inner boundary at r = Rg. Particles that were
accelerated at one part of the termination shock can return to the Galaxy and reach another
part of termination shock in this case.

4. Numerical results. The case without reacceleration by SIR shocks.
We obtained a steady-state numerical solution of Eq. (6) for a wind velocity u = 500 km
s−1 and a termination shock compression ratio σ = 4. This relatively large compression ratio is
possible even for magnetic Mach number Ma ∼ 3 since the termination shock should be partially
smoothed due to presence of relativistic small energy cosmic rays which have adiabatic index
4/3. The angular velocity of galactic rotation was taken as Ω(θ) = 0.5 · 10−15/ sin θ s−1. We
used the following spectrum of galactic CR sources Q(p) ∼ p−γd exp(−p2/p2

max), where γd is the
power-law index of the CR sources. The value γd = 4.0 was used. The value of the maximum
momentum of Galactic CR source particles pmax was taken as pmax = 3 · 106Zmpc.

For a numeric solution of Eq. (6) we used an implicit finite-difference scheme with a non-
uniform grid. The grid steps were taken smaller near the termination shock and close to the
Galaxy.

The results obtained for a spherical termination shock at distance Rs = 300 kpc and diffusion
coefficient D‖ = 2.5 · 1025p/(Zmpc) are shown in Fig.2. The CR spectral energy distribution
(SED) at energies smaller then 3 × 1015 eV is formed in the Galactic Wind flow as a result
of the interplay of diffusion and advection [17]. At larger energies, particles appear that were

189



Figure 3. Spectral energy distributions (in arbitrary units) of the CR protons in the Galaxy
(solid curve) and at different colatitudes of the non-spherical termination shock: θ = 0 (dashed
curve), θ = π/4 (dash-dotted curve), θ = π/2 (dotted curve).

reaccelerated at the termination shock. However, the SED is not continuous in the Galaxy for
this case. It simple to see that the particles with maximum energy are not strongly modulated
in the Galactic Wind flow. Hence one can expect that a non-spherical termination shock with
different maximum energies at different colatitudes may provide a more continuous spectrum.

The numerical results for a non-spherical termination shock are shown in Fig.3. The
termination shock shape and the dependence of the CR diffusion coefficient on latitude were
taken as

Rs(θ) = 150
√

(1 + 3 cos2 θ) kpc (10)

D‖ = 1026 p/(Zmpc)
(1 + 3 cos2 θ)

cm2s−1 (11)

It is simple to see that the SED is continuous in the Galaxy.

5. Spiral structure of our Galaxy, wind shocks.
Since potential CR sources in the disk are primarily concentrated in the spiral arms, we can
assume that the CR pressure in and above the spiral arms is larger than between the arms.
Hence, the CR-driven Galactic Wind flow should be modulated by the spiral structure. The
situation differs from the Solar Wind case because of the relatively fast rotation of the Galaxy.
Indeed, the Galactic Wind flow time to the (magneto)sonic point is about 100 million years and
is comparable with the period of Galactic rotation. This means that the modulation by the spiral
pattern should produce magnetosonic waves, propagating in the Galactic Wind flow. At large
distance from the Galaxy these spiral compression waves propagate in the radial direction and
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approximately perpendicular to the wind magnetic field which is by then practically azimuthal.
The radial and azimuthal wavenumbers for these waves are

kr =
Ωpm

us
, kφ =

m

r
, (12)

where Ωp is the angular velocity of the spiral pattern, m is the number of spiral arms and us is
the radial velocity of the wave. This value is approximately the sum of the wind velocity u and
the phase velocity of the fast magnetosonic waves cf traveling in the radial direction. At large
distances we simply have

cf =
√

V 2
a + c2

s

where Va and cs are the Alfvén and the sound velocity, respectively.
The nonlinear steepening of magnetosonic waves can produce a train of forward shocks at

large Galactocentric distances. The characteristic distance can be found from the following
estimate. The inverse steepening time is krδu, where δu is the velocity perturbation in the
wave. During this time the wave propagates the distance δr ∼ (u + cf)/(krδu). Using the
expression for the radial wave number we obtain

δr ∼ (u + cf)2

mΩpδu

For u + cf ∼400 km s−1 , δu ∼ 50 km s−1 , Ωp = 30 km s−1 kpc−1 [8] and m = 2, δr is about 50
kpc. The velocity perturbation δu is half of the velocity jump at the shock formed. We therefore
conclude that spiral shock formation is possible at distances of 50 to 100 kpc.

The results of numerical calculations of SIR shocks [21] are shown in Fig.4. One can see that
SIR shocks with a velocity jump of the order 100 km s−1 are formed at distances exceeding
50 kpc. These SIR shocks form a saw-tooth wave velocity profile. The compression ratio σs of
these shocks is about 2.0. In the sequel we shall call the entire saw-tooth wave the ”SIR shock
system”. These spiral shocks should not be confused with the spiral density wave in the Galactic
disk. The radial dependence of the spiral density wave in the Galactic disk will be transformed
into a latitude dependence of the spiral shocks in the Galactic Wind flow (see Fig.1).

We should underline that the shocks in the Galactic Wind have two distinct features in
comparison with the Solar Wind.

First of all the shock structure is stationary in the frame of reference corotating with the spiral
pattern. Material Galactic rotation still exists in this frame except at special Galactocentric
radii. Therefore these shocks are not in corotation with the matter in the Galactic disk but
rather slip through it and this is why we called them SIR shocks.

The second feature is the absence of backward SIR shocks. Outward moving large-amplitude
periodic waves steepen into a train of shocks (saw-tooth wave), where forward shocks are followed
by rarefaction waves, like in a gas at rest.

6. Reacceleration by SIR shocks
The cosmic ray reacceleration by SIR shocks is described by the linear operator R̂ [21]:

R̂N =
Δu

L

⎛
⎝p

3
∂N

∂p
− 1

lnσs

p∫
0

dp′

p′

(
p′

p

)γs N(p′) − N(p)
ln(p′/p)

⎞
⎠ (13)

It combines the adiabatic energy losses of the particles between the SIR shocks of compression
ratio σs with multiple reacceleration at these shock fronts (the first and second terms in the
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Figure 4. Radial dependencies, taken at one azimuth angle. The values of the radial gas
velocity u (thick solid line, in units of km s−1 ) are given on the left abscissa. The right abscissa
shows the values of the cosmic ray and gas pressures Pc (thing solid line) and Pg (dotted line),
respectively (in units of 10−13 erg cm−3), the gas number density n (dashed line, in units of
10−3cm−3), and the total magnetic field tension B2

t /4π (dash-dotted line, in units of 10−13 erg
cm−3). Forward SIR shocks form a saw-tooth velocity profile at large distances in the Galactic
Wind flow.

round brackets, respectively). Here L is the distance between shocks and γs = 3σs/(σs − 1) is
the single shock spectral index.

The numerical solutions of Eq. (6) was obtained for the Galactic Wind velocity u=300 km
s−1, the radius of the spherical termination shock Rs=300 kpc, σ = 3, m = 2, us = 450 km s−1,
Δu = 100 km s −1, Ωp = 30 km s−1 kpc−1, Ω = 20 km s −1 kpc−1. We also take γs = 6 which
corresponds to the SIR shock compression ratio σs = 2.

Also, a spectral index of galactic CR sources γd = 4.0 and a self-consistent cosmic ray diffusion
coefficient D‖ = 1027p/(mpc) cm2 s−1 independent of r were used. These values approximately
correspond to those obtained in the self-consistent model of CR propagation in the Galaxy [17].
The high energy cut-off of galactic CRs was taken as pmax = 3 · 106 Zmpc.

The differential spectral flux calculated for the different cosmic ray nuclei and the
corresponding all-particle spectral flux, as well as the experimental all-particle spectrum
measured by the KASCADE collaboration [13], are shown in Fig.5.

7. Discussion
The numerical results obtained in this paper permit us to conclude that the reacceleration of
galactic cosmic rays by shocks in the Galactic Wind flow can explain the observable CR spectrum
beyond the “knee” energy.
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Figure 5. Calculated differential spectral flux I(E) (in units of m−2sr −1s−1GeV−1) of the CR
protons (dashed curve), helium nuclei (dash-dotted curve), carbon (dotted curve), iron (dash-
dot-dotted curve), all-particle (solid curve) in the Galaxy for the exponential cut-off, and the
all-particle spectral flux observed by the KASCADE collaboration (empty circles). The chemical
composition has been fixed at E = 9 · 1014 eV from Fig.5 of Kampert et al. [13]. The data for
the all-particle spectrum are also taken from Kampert et al. [13].

We expect that the all-particle spectrum will be continuous even in the case of CR
reacceleration on the spherical termination shock. This is because the discontinuity of the
proton spectrum in Fig.2 will be smoothed after adding other nuclei.

However, if the preliminary experimental results of the KASCADE collaboration [13] will
be confirmed and if the observable spectra of different nuclei are continuous at the “knee”,
we should prefer the reacceleration on the non-spherical termination shock. It can provide a
continuous CR spectrum beyond the “knee” (see Fig.3). This is so because different parts of
the termination shock have different maximum energies for the accelerated particles.

We consider this version of CR reacceleration as an alternative possibility of reacceleration
at quasi-perpendicular spiral shocks in the Galactic wind flow [21] (see Sect.5,6). It is possible
if moderately strong shocks are formed in the Galactic Wind flow. This type of reacceleration
will work even for larger values of the parallel diffusion coefficient D‖ ∼ 1027p/(Zmpc) cm2 s−1

when the reacceleration at the termination shock is weak. The CR reacceleration at termination
shock would be realized in the case of small CR diffusion coefficient and relatively weak spiral
shocks in the Galactic Wind flow. The reacceleration on spiral shocks [21] is more important in
the case of larger diffusion coefficient and stronger spiral shocks.

The maximum energy in our model is not larger than the energy given by Eq.(8), i.e. it is
about 1017 eV for CR protons. Iron nuclei have a maximum energy which is a factor of 26 larger.
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Higher energy particles should be considered as extragalactic or accelerated downstream from
the termination shock.
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