
W. N. Polyzou · Ch. Elster · W. Glöckle · J. Golak · Y.
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Abstract We review the construction and applications of exactly Poincaré invariant quantum mechanical
models of few-degree of freedom systems. We discuss the construction of dynamical representations of the
Poincaré group on few-particle Hilbert spaces, the relation to quantum field theory, the formulation of cluster
properties, and practical considerations related to the construction of realistic interactions and the solution of
the dynamical equations. Selected applications illustrate the utility of this approach.

1 Introduction

While there is strong evidence that QCD is the theory of the strong interactions, direct calculations of scatter-
ing observables in QCD with mathematically controlled errors are difficult at some important energy scales.
These difficulties are particularly significant at the few-GeV scale, where perturbative methods are not appli-
cable. This is an interesting energy scale because it is the scale where sensitivity to sub-nuclear degrees of
freedom is expected to begin. Mathematical models that are motivated by QCD may provide useful insight
into the dynamics at these energy scales.

Poincaré invariant quantum mechanics is one of a number of approaches that can be used to model systems
of strongly interacting particles at the few GeV energy scale. At the simplest level it is quantum mechanics
with an underlying Poincaré symmetry. While Poincaré invariant quantum mechanics can be treated as a
phenomenology that is independent of QCD, it can also be related to QCD. Poincaré invariant quantum
mechanics has proved to be useful in applications, but there are no textbook treatments of the subject.

Historically, Poincaré invariant quantum mechanics was first articulated by Wigner [1], who pointed out
that a necessary and sufficient condition for a quantum theory to be relativistically invariant is the existence of
a unitary ray representation of the Poincaré group on the quantum mechanical Hilbert space. Wigner’s work
did not have a significant impact on applications of quantum field theory, but it directly motivated attempts
to provide an axiomatic [2; 3; 4] foundation for quantum field theory. These axioms provide a Hilbert space
formulation of quantum field theory that can be directly related to Poincaré invariant quantum mechanics.
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Dirac [5] studied the problem of constructing the Poincaré Lie algebra for systems of interacting par-
ticles. He observed that the presence of interactions in the Hamiltonian implied that at most a sub-algebra
of the Poincaré Lie algebra could be free of interactions. He identified the three largest sub-algebras, and
classified dynamical models according to which sub-algebra remained free of interactions. Dirac used the
terms instant, point, and front-forms of dynamics to label the different kinematic sub-algebras. Bakamjian
and Thomas [6] provided the first construction of the full Poincaré Lie algebra for a system of two interacting
particles in Dirac’s instant-form of the dynamics. Coester [7] generalized Bakamjian and Thomas’ construc-
tion to systems of three interacting particles. His construction also led to a S matrix that satisfied spacelike
cluster properties. Sokolov [8] provided a complete construction of the Poincaré Lie Algebra for a system
of N interacting particles in Dirac’s point-form of the dynamics that was consistent with a stronger form
of spacelike cluster properties, where the Poincaré generators satisfy cluster properties. This stronger form
of cluster properties provides a simple relation between the few and many-body systems that is difficult to
realize in theories satisfying only S-matrix cluster properties. Coester and Polyzou [9] provided the complete
solution for systems of N-particles in all three of Dirac’s forms of the dynamics satisfying the strong form of
cluster properties. A more general construction based on only group representations, that has Dirac’s form of
dynamics as special cases, was given in [10; 11]. The subject was reviewed by Keister and Polyzou in [12].

There have been many applications of Poincaré invariant quantum mechanics in all three of Dirac’s forms
of dynamics. The earliest applications involved the study of electromagnetic probes on mesons, nucleons, and
nuclei. Some of the relevant papers are [13; 14; 15; 16; 17; 18; 19; 20; 21; 22; 23; 24; 25; 26; 27]. The first
three-nucleon bound state calculation using this framework was performed by Glöckle et al. [28]. Calculations
of the triton binding energy with realistic interactions have been performed recently [29]. Applications to
nuclear reactions appear in [30; 31; 32; 33; 34; 35] which include reactions with particle production [36].

This mini-review is limited to theories that are formulated by constructing exact unitary representations of
the Poincaré group on few-particle Hilbert spaces. There are many other approaches to relativistic quantum
mechanics that have been successfully applied at the few GeV scale. Each one emphasizes different desirable
features of the full field theory, however when the number of degrees of freedom is limited, it is impossi-
ble to satisfy all of the axioms of the underlying field theory. Our preference for using Poincaré invariant
quantum mechanics is based on three observations: (1) many computational methods successfully used in
non-relativistic quantum mechanics can be directly applied in Poincaré invariant quantum mechanics, (2) the
theories involve a finite number of degrees of freedom, allowing exact numerical calculations of model pre-
dictions, (3) the theories share most of the axiomatic properties of quantum field theory and there is a direct
relation to the Hilbert space formulation of field theory. The fundamental property of the quantum field theory
that is given up in order to have a theory of a finite number of degrees of freedom is microscopic locality.
The justification for this choice is that microscopic locality is not an experimentally testable property since
probing a system at arbitrarily short distance scales requires arbitrarily large energy transfers. In addition,
Poincaré invariant quantum mechanics does not have a large enough algebra of observables to localize parti-
cles in arbitrarily small spacetime regions. One manifestation of this is the absence of a reasonable position
operator [37] in relativistic quantum theories of a finite number of degrees of freedom.

In the next section we discuss the construction of representations of single-particle Hilbert spaces. In
Sect. 3 we discuss irreducible representations of the Poincaré group that act on the single-particle Hilbert
spaces. In Sect. 4 we construct a dynamical representation of the Poincaré group by adding interactions to
the mass Casimir operator of a non-interacting irreducible representation constructed from tensor products
of single particle representations. The strong and weak form of cluster properties are discussed in Sect. 5.
The formulation of the three-body problem is discussed in Sect. 6. The relation to quantum field theory is
discussed in Sect. 7. Selected few-nucleon applications are discussed in Sect. 8.

2 Particles, Hilbert Spaces and Irreducible Representations

Experiments measure observables that describe the state of free particles by considering how the particles
interact with classical electromagnetic fields. A complete experiment measures the linear momentum and
spin state of each initial and final particle. There is a natural connection with these single-particle observables
and irreducible representations of the Poincaré group. The Poincaré group has ten infinitesimal generators.
These Hermitian operators include the Hamiltonian which generates time translations, the linear momentum
operators which generate space translations, the angular momentum operators which generate rotations, and
the rotationless boost generators which generate transformations that change the momentum of the particle.
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From these ten infinitesimal generators it is possible to construct two Casimir invariants, four independent
commuting Hermitian observables and four conjugate operators. The Casimir invariants fix the mass and spin
of the particle. Eigenvalues of the commuting observables label the states of the particle, and the conjugate
operators determine the spectrum of the commuting observables and thus the allowed states of the particle.

For a standard description of a particle, the commuting observables can be taken to be the three compo-
nents of the linear momentum, and a component of a spin operator. The spectrum of the momentum is R3,
while the spectrum of a component of the spin vector takes on discrete values in integer steps from − j to j.
In this case the Hilbert space is

Hm j = L2(R3)⊗C2 j+1. (1)

Single-particle states are represented by wave functions, ψ(p,µ) = 〈(m, j)p,µ|ψ〉. The relations of the oper-
ators m, j2,p and j · ẑ to the Poincaré Lie Algebra determines a unitary representation, U1(Λ ,a), of Poincaré
group on Hm j:

〈(m, j)p,µ|U1(Λ ,a)|ψ〉=
∫ j

∑
µ ′=− j

Dm, j
p,µ;p′,µ ′ [Λ ,a]dp′ψ(p′,µ

′) = ψ
′(p,µ) (2)

where the Poincaré group Wigner function is

Dm, j
p,µ;p′,µ ′ [Λ ,a] : = 〈(m, j)p,µ|U1(Λ ,a)|(m, j)p′,µ

′〉

= δ (p−Λ p′)

√
ωm(p)
ωm(p′)

eip·aD j
µµ ′ [Rwc(Λ , p)] (3)

and Rwc(Λ , p) is a Wigner rotation.
Because a sequence of Lorentz boosts that start and end at the rest frame generally define a rotation,

in order to obtain an unambiguous definition of a spin vector for all values of the particle’s momentum,
it is necessary to define a standard way to measure a spin observable. The above representation implicitly
defines the spin projection by its value in the particle’s rest frame after the particle is transformed to the rest
frame with a rotationless Lorentz transformation. This is one of an infinite number of possible choices of spin
observables. This choice is consistent with the “canonical” spin that appears in standard Dirac u and v spinors.
Different spin observables are related by momentum-dependent rotations that lead to different couplings to
the electromagnetic field. This ensures that measurable physical quantities are independent of the observables
used to label single particle states.

These single-particle representations are irreducible, and all positive-mass positive-energy irreducible rep-
resentations of the Poincaré group can be put in this general form. These irreducible representations will be
important in formulating dynamical models. In general, any unitary representation of the Poincaré group can
be decomposed into a direct sum or direct integral (for continuous mass eigenvalues) of irreducible represen-
tations. We will build the dynamical unitary representation of the Poincaré group out of the non-interacting
irreducible representations.

3 Poincaré Group Wigner Functions and Kinematic Subgroups

In the previous section we represented single-particle wave functions in the basis of generalized eigenstates
|(m, j),p,µ〉.

The state of the particle could be also alternatively determined by measuring the particles’ four velocity,
vµ = (

√
1−v ·v,v), and spin projection:

|(m, j),v,µ〉= |(m, j),p(v,m),µ〉m3/2, (4)

or the light-front components of the four momentum p+ =
√

m2 +p2 +p · ẑ,p⊥ = (p · x̂,p · ŷ), and light-front
spin projection:

|(m, j), p+,p⊥,µ〉=
j

∑
µ ′=− j

|(m, j),p(p+,p⊥,m),µ
′〉

√
ωm(p)

p+ D j
µ ′µ [B−1

c (p)B f (p)] (5)
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where B−1
c (p)B f (p) is a Melosh rotation [38], defined by a light-front-preserving boost followed by the

inverse of a rotationless boost. The different basis choices are related to the basis |(m, j),p,µ〉 by the unitary
transformations in (4) and (5). The light-front preserving boosts have the desirable property that they form a
group, which means that there are no Winger rotations for any sequence of light-front preserving boosts that
start and end in the rest frame; the price paid for this is that the Wigner rotation of a pure rotation is not equal
to the rotation.

The Poincaré group Wigner functions depend on the choice of basis. The Wigner functions

Dm, j
v,µ;v′,µ ′ [Λ ,a] : = 〈(m, j)v,µ|U1(Λ ,a)|(m, j)v′,µ

′〉 (6)

Dm, j
p+,p⊥,µ;p′+,p′⊥,µ ′ [Λ ,a] : = 〈(m, j)p+,p⊥,µ|U1(Λ ,a)|(m, j)p′+,p′⊥,µ

′〉 (7)

are related to the Wigner function (3) by the unitary transformations (4) and (5).
While the concept of a kinematic subgroup does not make sense for a single particle, the kinematic sub-

group for an instant-form dynamics is the subgroup of the Poincaré group that leaves the Wigner function (3)
independent of mass; the kinematic subgroup for a point-form dynamics is the subgroup of the Poincaré group
that leaves the Wigner function (6) independent of mass; the kinematic subgroup for a front-form dynamics is
the subgroup of the Poincaré group that leaves the Wigner function (7) independent of mass. Different mass-
independent subgroups appear in different irreducible bases because the unitary transformations relating the
irreducible bases (4) and (5) to the basis |(m, j)p,µ〉 depend on the particles’ mass. These mass-independent
subgroups become kinematic subgroups in dynamical models because the mass acquires an interaction while
the other operators used to construct dynamical irreducible bases remain interaction free. More generally, it
is possible to define perfectly good single-particle bases where the identity is the only subgroup where the
corresponding Wigner function is independent of mass.

4 Two-Body Models: Clebsch–Gordan Coefficients

The two-body Hilbert space is a tensor product of two single-particle Hilbert spaces, H = Hm1 j1 ⊗Hm2 j2 .
The non-interacting representation of the Poincaré group on H is the tensor product of two single-particle
(irreducible) representations of the Poincaré group, U0(Λ ,a) :=U1(Λ ,a)⊗U2(Λ ,a). While the single-particle
representations of the Poincaré group are irreducible, their tensor product is reducible. Formally the tensor
product representation can be expressed as a direct integral of irreducible representations,

U0(Λ ,a) = ∑

∫
⊕

jls
dmU0,m, j,l,s(Λ ,a), (8)

where U0,m, j,l,s(Λ ,a) are mass m spin j irreducible representations of the Poincaré group. The quantum num-
bers l and s are invariant degeneracy parameters that distinguish multiple copies of the irreducible represen-
tations with the same m and j. They have the same quantum numbers as the spin and orbital angular momen-
tum. The mass m is the two-particle invariant mass that has a continuous spectrum starting from m1 +m2. The
Poincaré group Clebsch–Gordan coefficients relate the tensor product representation to the direct integral of
irreducible representations and satisfy

∑

∫
Dm, j

p,µ;p′,µ ′ [Λ ,a]dp′〈(m, j, l,s),p′,µ
′|(m1, j1),p1,µ1;(m2, j2),p2,µ2〉

= ∑

∫
〈(m, j, l,s),p,µ|(m1, j1),p′1,µ

′
1;(m2, j2),p′2,µ

′
2〉dp′1p′2

×Dm1, j1
p′1,µ ′1;p1,µ1

[Λ ,a]Dm2, j2
p′2,µ ′2;p2,µ2

[Λ ,a]. (9)

The Clebsch–Gordan coefficients, 〈(m, j,d),p,µ|(m1, j1),p1,µ1;(m2, j2),p2,µ2〉,d := {l,s}, are basis-dependent
and are known in all three of the representations [7; 12; 39; 40].

The two-body irreducible basis states look similar to relative and center of mass variables in non-
relativistic quantum mechanics; but they differ in the structure of the Poincaré group Clebsch–Gordan coef-
ficients, which contain momentum-dependent spin rotation functions and non-trivial kinematic factors that
ensure unitarity.
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The basis states {|(m, j, l,s),p,µ〉} transform irreducibly under U0(Λ ,a):

U0(Λ ,a)|(m, j,d),p,µ〉=
′

∑

∫
dp′|(m, j,d),p′,µ

′〉Dm, j
p′,µ ′;p,µ [Λ ,a]. (10)

While (10) is not the dynamical representation of the Poincaré group, by working in this non-interacting
irreducible basis it is possible to construct dynamical representations by adding an interaction v, which in this
basis has a kernel of the form

〈(m′, j′,d′),p′,µ
′|v|(m, j,d),p,µ〉= δ j′ jδµ ′µ δ (p′−p)〈m′,d′‖v j‖m,d〉, (11)

to the non-interacting two-body mass operator. This interaction has the same form as a typical Galilean invari-

ant non-relativistic interaction if we replace m =
√

m2
1 + k2 +

√
m2

2 + k2 by k and d = {l,s} by (l,s).

We define the dynamical mass operator M :=
√

m2
1 + k2 +

√
m2

2 + k2 + v. Simultaneous eigenstates of

M,p, j2 and j · ẑ can be constructed by diagonalizing M in the irreducible non-interacting basis. These eigen-
functions have the form

〈(k′, j′, l′,s′),p′,µ
′|(λ , j),p,µ〉= δ j′ jδµ ′µ δ (p′−p)φλ , j(k2, l,s) (12)

where the wave function, φλ , j(k2, l,s), is the solution of the mass eigenvalue problem with eigenvalue λ :

(λ −
√

m2
1 + k2−

√
m2

2 + k2)φλ , j(k, l,s)

=
∞∫

0

k′2dk′∑
s′

j+s

∑
l′=| j−s|

〈k, l,s|V j|k′, l′,s′〉φλ , j(k
′, l′,s′). (13)

The dynamical unitary representation of the Poincaré group is defined on this complete set of states,
|(λ , j),p,µ〉 by

U(Λ ,a)|(λ , j),p,µ〉=
j

∑
µ ′=− j

∫
dp′|(λ , j),p′,µ

′〉Dλ , j
p′,µ ′;p,µ [Λ ,a]. (14)

The relevant dynamical feature is that the Poincaré group Wigner function now depends on the eigenvalue λ

of the dynamical mass operator, which requires solving (13).
Because of the choice of basis, the Poincaré group Wigner function Dλ , j

p′,µ ′;p,µ [Λ ,a] has the same structure
as the Wigner function (3) and thus has the property that when (Λ ,a) is in the three-dimensional Euclidean
subgroup, it is independent of the mass eigenvalue λ , which means that for this dynamical model the kinematic
subgroup is dictated by the choice of representation used to define the irreducible basis.

Even though the dynamics has a non-trivial interaction dependence, it is only necessary to solve (13),
which is analogous to solving the center of mass Schrödinger equation in the non-relativistic case.

This construction can be repeated using different irreducible bases, such as (4) or (5), where the
Wigner functions have different mass-independent symmetry groups. For these bases if we choose to use
the interactions

〈(k′, j′, l′,s′),v′,µ
′|vpoint |(k, j, l,s),v,µ〉= δ j′ jδµ ′µ δ (v′−v)〈k′, l′,s′‖v j‖k, l,s〉 (15)

〈(k′, j′, l′,s′), p′+,p′⊥,µ
′|v f ront |(k, j, l,s), p+,p⊥,µ〉

= δ j′ jδµ ′µ δ (p′⊥−p⊥)δ (p′+− p+)〈k′, l′,s′‖v j‖k, l,s〉, (16)

where the reduced kernels 〈k′, l′,s′‖v j‖k, l,s〉 are the same in (11), (15), and (16) in the bases (2), (4), and (5),
respectively, and construct dynamical eigenstates of the form

|(λ , j),v,µ〉, |(λ , j), p+,p⊥,µ〉 , (17)

then Eq. (13) still determines the binding energy and scattering phase shifts. It follows that the resulting two-
body models have the same bound-state and scattering observables, however each of the resulting unitary
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representations of the Poincaré group has a different kinematic subgroup. The dynamical irreducible eigen-
states transform like |(λ , j),p,µ〉 with the Wigner function (14) replaced by (6) or (7) where m is replaced by
λ . This makes these unitary transformations dynamical.

The mass operators and interactions, v,vpoint and v f ront are distinct operators, but the three representations
are related by unitary transformation that leave the binding energies and scattering observables unchanged.
The dynamical calculations are identical in all three cases and are given by solving (13). This shows that
dynamical models with different kinematic subgroups are equivalent and cannot be distinguished on the basis
of any experimental observations.

5 Cluster Properties: Ekstein’s Theorem

An important feature of non-relativistic quantum mechanics is that the same interactions appear in the few
and many-body problems. Specifically, the Hamiltonian becomes a sum of subsystem Hamiltonians when
the short-ranged interactions between particles in different subsystems are turned off. In the relativistic case
the corresponding requirement is that the unitary time-translation group breaks up into a tensor product of
subsystem groups when the system is asymptotically separated into independent subsystems. We call this the
strong form of cluster properties.

The observable requirement is that the S-matrix clusters. We call this the weak form of cluster properties
because it follows from the strong form of cluster properties, however because different Hamiltonians can
have the same S-matrix, the weak form of cluster properties does not imply that the same interactions appear
in the few and many-body Hamiltonians. Because of this, in order to maintain a simple relation between the
few and many-body problem, we require that Poincaré invariant quantum theories satisfy the strong form of
cluster properties.

A theorem of Ekstein [41] provides necessary and sufficient conditions for two short-ranged interactions
to give the same S matrix. The requirement is that the Hamiltonians are related by a unitary transformation A
satisfying the asymptotic condition

lim
t→±∞

‖(I−A)U0(t)|ψ〉‖= 0 (18)

where U0(t) is the non-interacting time translation operator. We refer to unitary transformations with this prop-
erty as scattering equivalences. It is important that this condition be satisfied for both time limits; to appreciate
the relevance of this condition consider two Hamiltonians with different repulsive potentials. Because these
Hamiltonians have the same spectrum and multiplicities they are related by a unitary transformation, however
the derived S-matrices may have different phase shifts. The phase shifts differ if and only if two time limits
do not agree.

Scattering equivalences that preserve weak cluster properties but not strong cluster properties exist and are
the key to restoring the strong form of cluster properties in Poincaré invariant quantum theory. The strategy is
illustrated in the formulation of the three-body problem in the next section.

6 Three-Body Problem

The strong form of cluster properties implies that given a set of dynamical two-body generators, the three-
body generators necessarily can be expressed as sums of one, two and three-body operators

H = H1 +H2 +H3 +H12 +H23 +H31 +H123 (19)
P = P1 +P2 +P3 +P12 +P23 +P31 +P123 (20)
J = J1 +J2 +J3 +J12 +J23 +J31 +J123 (21)

K = K1 +K2 +K3 +K12 +K23 +K31 +K123. (22)

The one and two-body operators in (19–22) are the same operators that appear in the two-body problems,
while the three-body operators, H123,P123,J123 and K123 are the only new ingredients in the three-particle
generators.

It is easy to show that if the generators have this form it is impossible to satisfy the Poincaré commutation
relations if all of the three-body operators vanish. However, although the commutation relations put non-linear
constraints on these operators, it will become clear that the solutions are not unique.
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To avoid solving the non-linear problem of satisfying the commutation relations, it is more productive
to start by first satisfying the commutation relations at the expense of strong cluster properties. This can be
done by applying the method of Sect. 4 directly to the three-body problem. This involves adding suitable
interactions to the non-interacting invariant three-body mass operator.

To begin the construction we consider a three-body system where only one pair of particles interact. The
relevant basis is a non-interacting three-body irreducible representation of the Poincaré group. It is constructed
by successive pairwise coupling using the Poincaré group Clebsch–Gordan coefficients. If we assume that
particles one and two are the interacting pair then preferred order of coupling would be (12)→ ((12)(3)):

|p1,µ1〉⊗ |p2,µ2〉 → |(k12, l12,s12, j12)p12,µ12〉
(23)

|(k12, l12,s12, j12)p12,µ12〉⊗ |p3,µ3〉 →
|(q,L(12)(3),S(12)(3)J(12)(3),k12, l12,s12, j12)p,µ〉. (24)

We introduce the following shorthand notation for the basis states in these equations. We write (23) as |1⊗
2〉 → |(12)〉 and (24) as |(12)⊗ 3〉 → |(12)(3)〉. Using this notation we define two different embeddings of
the two-body interaction in the three-body Hilbert space using the two representation in (24):

〈(12)′⊗3′|v12⊗|(12)⊗3〉
= 〈k′12, l

′
12,s

′
12‖v j‖k12, l12,s12,〉δ (p′12−p12)δ (p′3−p3)δ j′12 j12

δ j′3 j3 (25)

and

〈(12)′(3)′|v12|(12)(3)〉 = 〈k′12, l
′
12,s

′
12‖v j‖k12, l12,s12,〉δ (p′−p)

×δ (q′−q)
q2 δ j′(12)(3) j(12)(3)

δ j′12 j12
δL′(12)(3)L(12)(3)

δS′(12)(3)S(12)(3)
δµ ′µ (26)

where the reduced kernel, 〈k′12, l
′
12,s

′
12‖v j‖k12, l12,s12,〉, is identical in (25) and (26). These expressions define

different interactions, (v12⊗ 6= v12).
We use these two interactions to define two different 2 + 1-body mass operators M(12)⊗(3) and M(12)(3)

defined by

M(12)⊗(3) :=

√
(

√
(
√

m2
1 + k2

12 +
√

m2
2 + k2

12 + v12⊗)2 +p2
12)+

√
m2 +p2

3)2−p2) (27)

M(12)(3) :=

√
(
√

m2
1 + k2

12 +
√

m2
2 + k2

12 + v12)2 +q2 +
√

m2
3 +q2. (28)

Because of the invariance principle [42; 43; 44] the S-matrix can be computed by replacing the Hamiltonian
by the mass operator (this is equivalent to evaluating the S-matrix in the three-body rest frame) in the standard
time-dependent representation of the scattering operator.

M(12)⊗(3) is the mass operator of the tensor product of a two-body representation involving particles one
and two and a spectator representation of the Poincaré group associated with particle three, U12(Λ ,a)⊗
U3(Λ ,a). By construction it is consistent with the strong form of cluster properties. The mass operator M(12)(3)
commutes with the three-body spin and commutes with and is independent of the total three-body momentum
and z-component of the three-body canonical spin. Simultaneous eigenstates of M(12)(3),p, j2, jz are complete
and transform irreducibly with respect to the Poincaré group. This defines a dynamical unitary representation
of the Poincaré group, U(12)(3)(Λ ,a), on the three-body Hilbert space following the construction of Sect. 4.

The scattering operators associated with both of these operators are related by

〈(12)⊗ (3)|S(12)⊗(3)|(12)⊗ (3)〉
= 〈k′12, l

′
12,s

′
12‖S j‖k12, l12,s12,〉δ (p′12−p12)δ (p′3−p3)δ j′12 j12

δ j′3 j3 (29)

and

〈(12)(3)|S(12)(3)|(12)(3)〉= 〈k′12, l
′
12,s

′
12‖S j‖k12, l12,s12,〉δ (p′−p)

×δ (q′−q)
q2 δ j′(12)(3) j(12)(3)

δ j′12 j12
δL′(12)(3)L(12)(3)

δS′(12)(3)S(12)(3)
δµ ′µ (30)
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where the reduced two-body kernels 〈k′12, l
′
12,s

′
12‖S j‖k12, l12,s12,〉 are identical. Because the delta functions

become equivalent when they are evaluated on shell, the S matrices in both representations are identical.
Ekstein’s theorem implies the scattering equivalence A(12)(3)U12(Λ ,a)⊗U3(Λ ,a)A†

(12)(3) = U(12)(3)(Λ ,a).
To construct a dynamical representation of the Poincaré group with all three particles interacting we first

construct the mass operator

M = M(12)(3) +M(23)(1) +M(31)−2M0. (31)

Because each term in (31) commutes with p, j2, jz, and is independent of p and jz it follows that simulta-
neous eigenstates of M,p, j2, jz are complete and transform irreducibly, thus defining a dynamical unitary
representation, U(Λ ,a), of the Poincaré group on the three-nucleon Hilbert space.

Because each of the 2+1 mass operators in (31) is scattering equivalent to 2+1 mass operators associated
with a tensor product representation, it follows that M can be expressed as

M = A(12)(3)M(12)⊗(3)A
†
(12)(3) +A(23)(1)M(23)⊗(1)A

†
(23)(1)

+A(31)(2)M(31)⊗(2)A
†
(31)(2)−2M0. (32)

From this representation it follows that when interaction between the ith particle and the other two particles
are turned off that

U(Λ ,a)→ A( jk)(i)U( jk)(Λ ,a)⊗Ui(Λ ,a)A†
( jk)(i) (33)

which formally violates the strong form of cluster properties.
The strong form of cluster properties can be restored by transforming U(Λ ,a) with the product A† =

A†
(12)(3)A

†
(31)(2)A

†
(23)(1). Because products of scattering equivalences are scattering equivalences, this does not

change the three-body S matrix. This transformation also restores strong-cluster properties, because A† →
A†

( jk)(i) when the interactions between particle i and the other two particles are turned off, canceling off the
extra unitary transformations in (33). The undesirable feature of A is that the individual A( jk)(i)’s do not
commute, so it introduces an exchange asymmetry that does not affect the S-matrix. The exchange symmetry
can be manifestly restored by replacing the product of the A( jk)(i)’s by a symmetrized product, such as:

A := eln(A(12)(3))+ln(A(23)(1))+ln(A(31)(2)) (34)
U⊗(Λ ,a) = A†U(Λ ,a)A. (35)

Equation (35) defines a unitary representation, U⊗(Λ ,a), of the Poincaré group that satisfies the strong form
of cluster properties because

A → A( jk)(i) (36)

when the interactions between particle i and the other two particles are turned off. Thus

U⊗(Λ ,a)→ A†
( jk)(i)U( jk)(i)(Λ ,a)A( jk)(i)

= A†
( jk)(i)A( jk)(i)U( jk)(Λ ,a)⊗Ui(Λ ,a)A†

( jk)(i)A( jk)(i)

= U( jk)(Λ ,a)⊗Ui(Λ ,a) (37)

This property ensures that the infinitesimal generators have the additive form (19–22) and (35) generates the
required three-body interactions.

Because there are many other ways to construct symmetric products of non-commuting operators and
because it is possible to add a three-body interaction to M that commutes with and is independent of the
total momentum and spin, it is clear the three-body parts of the generators that are required to restore the
commutation relations are not unique. It is also important to note that it is not possible to use the freedom
to add three-body interactions to eliminate the three-body interactions required to restore the commutation
relations; in this representation the generated three-body interactions do not commute with the non-interacting
spin.
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This construction can be extended to formulate dynamical models satisfying the strong form of cluster
properties for any fixed number of particles, isobar models in any of Dirac’s form of dynamics. It is even
possible to treat production beyond isobar types of models.

Models with different kinematic subgroups can be constructed by starting with different irreducible bases
(4, 5). As long as the reduced kernels of the interactions are identical, all of the Bakamjian–Thomas three-body
mass operators, M, will give identical bound-state and scattering observables. They are related by scattering
equivalences constructed by applying the unitary transformations

|(λ , j),v,µ, . . .〉= |(λ , j),p(v,λ ),µ, . . .〉λ 3/2, (38)

or

|(λ , j), p+,p⊥,µ, . . .〉= |(λ , j),p(p+,p⊥,λ ),µ
′, . . .〉

√
ωλ (p)

p+ D j
µ ′µ [B−1

c (p)B f (p)] (39)

on each invariant subspace of the associated mass operator. Each of these representation is in turn scattering
equivalent to a representation that satisfies strong cluster properties and has the same kinematic subgroup.

Because A is a scattering equivalence, it is only necessary to solve the Faddeev equations for the mass
operator M in a non-interacting irreducible basis. Furthermore, since all bound state and scattering observables
can be computed using only the internal mass operator, with the delta functions in p and µ removed, this
equation is the same in all of Dirac’s forms of dynamics when expressed in terms of the kinematic mass and
kinematically invariant degeneracy quantum numbers. The operators A and the choice of kinematic subgroup
are only needed if the three-body system is embedded in the four-body Hilbert space or if the eigenstates are
used to construct electroweak current matrix elements.

7 Connection with Quantum Field Theory

Poincaré invariant quantum mechanics as formulated by Bakamjian and Thomas resembles non-relativistic
quantum mechanics more than quantum field theory. The Hilbert spaces have the same structure as non-
relativistic Hilbert spaces, the theory is not manifestly covariant, spin 1/2 particles are treated using two-
component spinors. In spite of these apparent differences there is a direct connection to quantum field theory
which we outline below.

To develop the connection we assume the existence of an underlying quantum field theory with a Poincaré
invariant vacuum and a collection of Heisenberg fields, φ i(x), where the bold face indicates a multi-component
field. The index i distinguishes different types of fields.

In quantum field theory Hilbert-space vectors are constructed by applying functions of smeared fields,

φi( f ) =
∫

d4xf(x) ·φ i(x) (40)

to the physical vacuum |0〉.
Polynomials in the smeared fields applied to the physical vacuum generate a dense set of vectors. The

field theoretic unitary representation of the Poincaré group U†(Λ ,a) acts covariantly on the smeared fields:

U†(Λ ,a)φ i(f)U(Λ ,a) =
∫

d4xf(Λx+a)S(Λ)φ i(x) (41)

where S(Λ) is the finite dimensional representation of the Lorentz group appropriate to the field. The covari-
ance of the fields implies Poincaré transformation properties of test functions that leave the scalar product
invariant.

If the field theory has one-particle states, then there are functions, A, of smeared fields with the property
that A|0〉 is a one particle state. One-particle eigenstates that transform irreducibly with respect to the Poincaré
group can be constructed by projecting A|0〉 on states of sharp linear momentum and canonical spin. This can
be done using the unitary representation (41) of the Poincaré group

|(m, j)p,µ〉= A(p,µ)|0〉

:=
j

∑
ν=− j

∫
dRd p0d4xeip·xU(R,x)A|0〉D j∗

µν(R)δ (p2 +m2)θ(P0) (42)
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where R is a rotation, dR is the SU(2) Haar measure, U(R,x) is the unitary representation of the Poincaré
group restricted to rotations and spacetime translations, and D j∗

µµ(R) is a SU(2) Wigner function.
The normalization of these states can be chosen so

〈(m′, j′)p′,µ
′|(m, j)p,µ〉= δ (p′−p)δm′mδ j′ jδµ ′µ . (43)

It follows from the definitions and the group representation properties that these states transform as mass m
spin j irreducible representations of the Poincaré group:

U(Λ ,a)|(m, j)p,µ〉 =
j

∑
µ ′=− j

|(m, j)Λ p,µ
′〉eiΛ p·aD j∗

µ ′µ [B−1(Λ(p))ΛB(p)]

√
ωm(Λ p)
ωm(p)

=
j

∑
µ ′=− j

∫
dp′|(m, j)p′,µ

′〉D ′m j
µ ′,p′;p,µ [Λ ,a] (44)

To construct scattering states define C(p,µ) := (
√

m2 +p2A(p,µ))− [H,A(p,µ)]−). Scattering states are
then given by the Haag–Ruelle method: [45; 46]

|(p1,µ1, . . . ,pN ,µN)±〉= lim
t→±∞

U(−t)∏
j
[C j(p j,µ j)e

−itωm j (p j)]|0〉 (45)

where the limits are strong limits after smearing over suitable momentum wave packets.
The operators ∏ j[C j(p j,µ j)|0〉 can be considered as mappings from an N particle channel Hilbert space,

Hα , to the Hilbert space of the field theory. Vectors in the N-particle channel Hilbert space are square inte-
grable functions in the variables p1,µ1, . . . ,pN ,µN . We denote these operators by Ωα± where α indicates the
channel.

The direct sum of all of the channel Hilbert spaces, including the one-particle channels, defines an asymp-
totic Hilbert space. We define Ω± that maps the asymptotic Hilbert space to the physical Hilbert space by

Ω±

 |fα1〉
|fα2〉
...

 = ∑
α

Ωαi±|fαi〉. (46)

By construction these wave operators satisfy the intertwining relations [46]

U(Λ ,a)Ω± = Ω±⊕α Uα(Λ ,a). (47)

The Poincaré invariant S operator of the field theory is given by

S = Ω
†
+Ω− (48)

where each Uα(Λ ,a) is a tensor product of single particle irreducible representations of the Poincaré group
on the channel subspace Hα

Poincaré invariant quantum mechanics formulated in the previous sections has the same basic structure.
The primary difference is that the asymptotic Hilbert space for the field theory has an infinite number of
channels and describes physics at all energy scales, while the Poincaré invariant quantum mechanical wave
operators involve only a subset of these channels that are experimentally relevant only up to a given energy
scale.

If Π is a Poincaré invariant projection operator on the asymptotic subspaces corresponding channels of a
Poincaré invariant quantum model that also limits the maximum invariant mass of the asymptotic states, then
the following operator

W = Ω f +ΠΩ
†
qm+ = Ω f−ΠΩ

†
qm− (49)

maps an invariant subspace of the quantum mechanical Hilbert space to an invariant subspace of the field
theory Hilbert space in a manner that satisfies

ΠSqmΠ = ΠS f Π (50)
WUp(Λ ,a) = U f (Λ ,a)W . (51)
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These mappings define the relevant relation between the Poincaré invariant quantum theory and the underlying
field theory.

Thus, for asymptotic scattering states in the range of Π the Poincaré invariant quantum mechanical theory
can be designed to give identical results to the field theory. Obviously the two theories differ on asymptotic
states that are not in the range of Π .

Even though the Poincaré invariant quantum theory does not satisfy microscopic locality, we see that it
can give the same S matrix elements as the full field theory at a given energy scale.

8 Few Nucleon Applications

In this section we discuss an illustrative set of applications to few nucleon problems. A realistic nucleon–
nucleon interaction is needed for these applications. The invariant mass operator for two free nucleons can be
expressed in terms of a relative momentum as

m012 =:
√

k2 +m2
1 +

√
k2 +m2

2. (52)

It is always possible to express the two-body interaction as an addition to k2:

M12 = m12 + v12 :=
√

k2 +2µvnn +m2
1 +

√
k2 +2µvnn +m2

2 (53)

where following [47] vnn is a realistic nucleon–nucleon interaction [48; 49] and µ is the reduced mass

µ =
m1m2

m1 +m2
. (54)

In this representation the dynamical two-body mass operator becomes a function of the non-relativistic center
of mass Hamiltonian:

M12 =
√

2µhnr +m2
1 +

√
2µhnr +m2

2 (55)

where

hnr =
k2

2µ
+ vnr. (56)

It is a consequence of the Kato–Birman [42; 43; 44] invariance principle that the relativistic wave operators
for (53) and non-relativistic wave operators for (56) are identical

Ωnr± : = lim
t→±∞

eiHnrte−iHnr0t = lim
t→±∞

eihnrte−ih0t = lim
t→±∞

eiMte−iM0t

= lim
t→±∞

eiM2te−iM2
0 t = lim

t→±∞
eiH2

r te−H2
r0t = lim

t→±∞
eiHrte−iHr0t = Ωr± (57)

where M = M12 in (57). The identity (57) ensures that both scattering operators are identical as functions of
k2:

Snr = Ω
†
nr+Ωnr− = Ω

†
r+Ωr− = Sr (58)

Here the relativistic and non-relativistic S are related because the interactions are fit to the same two-body
data correctly transformed to the center of momentum frame. The non-relativistic Hamiltonian (56) is NOT
the non-relativistic limit of (53).

This construction, which first appeared in [47], shows that existing realistic interactions can be directly
used in the formulation of a Poincaré invariant two-body problem. Equation (55) implies that the wave func-
tions of (56) and (53) are identical functions of k2, l,s.

If we replace the interaction in (11) by the interaction v12 in (53) and use this in the three-body calculation
discussed in Sect. 6 then the three-body S-matrix can be expressed in terms of three-body mass operators:

S̄ac = δac−2πiδ (Ma−Mc)T ac(zc) (59)
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which are functions of the transition operators

T ac(z) = T ac(z) = V c +V aR(z)V c (60)

where a,b,c ∈ {(12)(3),(23)(1),(31)(2)},

M(i j)(k) =

√(√
m2

i + k2 +2µvnn +
√

m2
j + k2 +2µvnn

)2

+q2 +
√

m2
k +q2. (61)

Va = Ma−M0 V c = ∑
a6=b

Va R(z) = (z−M)−1 (62)

Rc(z) = (z−M0−Vc)−1 (63)
R(z) = Rc(z)+Rc(z)V cR(z) (64)

and vnn is the nucleon–nucleon interaction that appears in (53) embedded in the three-nucleon Hilbert space
with the delta functions in (26). The Faddeev equations can be derived using standard methods

T ab(z) = V b + ∑
c6=a

VcRc(z)T cb(z). (65)

While it does not make any sense to study the non-relativistic limit of interactions that are constructed by
fitting to two-body bound and scattering data, we can compare the relativistic and non-relativistic three-body
calculations that use the same two-body interaction, vnn, as input. In the Poincaré invariant quantum mechanics
case the Faddeev equations have the form

〈a|T ab(z)|b〉= 〈a|V b|b〉+ ∑
c6=a

∫
〈a|c〉〈c|VcRc(z)|c〉〈c|T cb(z)|b〉 (66)

where 〈a|c〉 are Poincaré group Racah coefficients, which are the unitary transformation that relate three-body
Poincaré irreducible bases constructed using pairwise coupling in different orders. These coefficients, which
have the form

〈a|c〉= δ (p−p′)δµµ ′δ (m−m′)δ j j′R
m j(da,dc), (67)

with da and db distinct sets of invariant degeneracy parameter, replace the non-relativistic permutation
operators.

The construction of the kernel is facilitated by the fact that the two-body eigenfunctions of (55) and (56)
are identical. The kernel of the relativistic Faddeev equation can be directly related to the non-relativistic
two-body t using the following relations:

〈c′|VcRc(zc)|c〉= 〈c′|Tc(zc)(zc−M0)−1|c〉
= 〈c′|Vc|c−〉(zc−M0)−1 = 〈c′|Mc−M0|c−〉(zc−M0)−1

=
2µ

ω1ω2 +ω ′
1ω ′

2

(ω1 +ω2)2 +(ω ′
1 +ω ′

2)
2√

(ω1 +ω2)2 +q2 +
√

(ω ′
1 +ω ′

2)2 +q2
〈c′|tnr(kc)|c〉(zc−M0)−1

(68)

where

ωi =
√

k2 +m2
i , (69)

which holds for the half shell kernel; this can be used as input to construct the fully off-shell kernel using the
first resolvent identity [50]

Tc(z′) = Tc(zc)+Tc(z′)
(z′− zc)

(z′−M0)(zc−M0)
Tc(zc) z′ 6= zc (70)

Alternatively, this kernel has also been computed using an iterative procedure based on a non-linear integral
equation [51].
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Fig. 1 Comparison of relativistic and non-relativistic calculations of the observable Ay at low energies

The differences with the non-relativistic three-body calculations are the different off-shell dependence
dictated by (68), the differences in the Poincaré group Racah coefficients (67) and the non-relativistic permu-
tation operators. These differences show up for the first time in the three-body system, since our two-body
interactions are designed to reproduce the same experimental two-body cross sections as the non-relativistic
calculations.

Solving these equations leads to three types of predictions: binding energies,

M|Ψ〉= λ |Ψ〉 (71)
|Ψ〉= E(V )|Ψbt〉 Mbt |Ψbt〉= λ |Ψbt〉, (72)

scattering probabilities (N = 3 only),

|S f i|2 = |〈Ψ+
f |Ψ

−
i 〉|2 = |〈Ψ+

bt f |Ψ
−

bti〉|
2 , (73)

electromagnetic and weak current matrix elements

〈Ψf |Iν(0)|Ψi〉= 〈Ψf |AIν(0)A†|Ψi〉 , (74)

where Iµ(0) is a current that is conserved, covariant, and clusters in the representation (35) of the three-body
dynamics.

In what follows we discuss three applications of Poincaré invariant quantum mechanics that illustrate its
ability to model a variety reactions where relativity may be important.

8.1 Relativistic Spin Rotations in Low Energy Ay

A calculation by Miller and Schewnk [52] suggested that Wigner rotations might have an observable effect on
the polarization observable Ay for low-energy p-d scattering. Comparison of three-body calculations based on
Poincaré invariant quantum mechanics [34] and non-relativistic quantum mechanics using the same realistic
CD-Bonn interaction [49] as input indeed show a surprising sensitivity of Ay to Wigner rotations. These
calculations, which are shown in Fig. 1, compare the non-relativistic result (dotted curve), the relativistic result
without Wigner rotations (dashed curve) and the full relativistic calculation (solid curve) to data [53; 54].
While the relativistic effects move the calculations away from the data, this calculation illustrates that the
relativistic effects cannot be ignored in these calculations, even at these low energies.

8.2 Relativistic Effects in Exclusive Pd Breakup

The value of Poincaré invariant quantum mechanics is that it provides a consistent framework to study strong
interactions in the few GeV energy scale. At this scale it is more efficient to perform calculations using
direct integration [55; 56] rather than with partial wave expansions. The feasibility of using Poincaré invariant
quantum mechanics to treat nucleon deuteron-scattering at these energy scales was established by solving the
Faddeev equation of Sect. 6 using Malfliet and Tjon [57] interactions to model the nucleon–nucleon potential.
The two-body interactions were included using the method discussed above. Convergence of the solutions
of the Faddeev equations was established up to 2 GeV [31; 32; 33]. In three-body reactions there are many
observables that can be used to test the sensitivity of relativistic effects. One interesting observable is the
cross section when the outgoing protons in a breakup reaction are measured at symmetric angles relative
to the beam direction. These cross sections were computed [32] in non-relativistic and Poincaré invariant
three-body models using the same Malfliet–Tjon two-body interactions as input.

Figure 3 shows cross sections for different choices of angles symmetric about the beam direction. The
solid curve is the relativistic calculation while the long dashed curve is the non-relativistic one. The other two
curves compare the exact calculation to the first terms in the multiple scattering series both for the relativistic
and non-relativistic cases. As the angle is increased the relativistic and non-relativistic curves, exhibit different
behavior. For this kinematic configuration the multiple scattering series converges quickly, although this result



14

Fig. 2 Comparison of relativistic and non-relativistic calculations of exclusive proton deuteron breakup scattering at non-
symmetric angles

Fig. 3 Comparison of relativistic and non-relativistic calculations of exclusive proton deuteron breakup scattering at symmetric
angles

Fig. 4 Comparison of a front-form calculation of the elastic electron–deuteron scatting observable A(Q2) with and without
“pair current” contributions

Fig. 5 Comparison of a front-form calculation of the elastic electron–deuteron scatting observable B(Q2) with and without
“pair current” contributions

depends on what is measured. Figure 2 shows similar plots for non-symmetric angles. Again the first order
multiple scattering calculations work reasonably well and there is a definite difference between the relativistic
and non-relativistic predictions. In both cases the data [58], has the same qualitative behavior as the relativistic
calculations.

8.3 Exchange Currents in Electron–Deuteron Scattering

The last application involves electron scattering off of nuclear targets at values of momentum transfer Q2

appropriate to J-lab experiments. In Poincaré invariant quantum mechanics electron scattering observables
in the one-photon-exchange approximation can be expressed in terms of matrix elements of a conserved
covariant current Iµ(x) which should have a cluster expansion

Iµ(x) = ∑ Iµ

i (x)+∑ Iµ

i j(x)+∑ Iµ

i jk(x)+ · · · . (75)

Both Poincaré covariance, current conservation, and cluster properties put dynamical constraints on the cur-
rent operator.

The deuteron is the simplest electromagnetic target that is sensitive to the two-body part of the cur-
rent. While a general method for constructing Iµ(x) based on dynamical considerations is not known, the
constraints can be satisfied by using the Wigner–Eckart theorem for the Poincaré group, which amounts to
computing a maximal set of linearly independent current matrix elements and using covariance and current
conservation to generate the remaining matrix elements. Different model two-body currents can be tested in
this framework. For elastic scattering off of a deuteron there are three independent observables which can be
taken as, A(Q2),B(Q2), and T20(Q2,70o). The input to a calculation is a deuteron wave function, a dynam-
ical representation of the Poincaré group, nucleon form factors [59; 60; 61; 62; 63], and a model exchange
current [64]. The calculations illustrated in Figs. 4, 5, and 6 use a model of the deuteron with a light front
kinematic symmetry. The dynamical representation of the Poincaré group is constructed from the Argonne
V18 interaction [48], the nucleon form factors are from Ref. [61] (labeled BBBA) and the exchange current
is the long-range part of a “pair current” derived from the one-pion-exchange part of the V18 interaction.
Figures 4, 5, and 6 show comparisons of A(Q2),B(Q2), and T20(Q2,70o) to experimental data with and with-
out the exchange current. Two different implementations of the Poincaré group Wigner–Eckart theorem are
responsible for the small difference in the curves labeled II and III.

These three calculations illustrate both the power and flexibility of Poincaré invariant quantum mechanics
as a tool to study systems of strongly interacting particles at scales up to a few GeV. Data shown for A are
from [65; 66; 67; 68; 69; 70; 71; 72; 73; 74; 75], for B are from [65; 71; 72; 76; 77; 78], and for T20 from
[79; 80; 81; 82; 83; 84].

Fig. 6 Comparison of a front-form calculation of the elastic electron–deuteron tensor polarization with and without “pair
current” contributions
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These calculations demonstrate that Poincaré invariant quantum mechanics is a useful framework for
making realistic models of system of strongly interacting particles at the few-GeV energy scale. Some of
these effects extend to surprisingly low energies.
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