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Abstract: Currently, most quantum homomorphic encryption (QHE) schemes only allow a

single evaluator (server) to accomplish computation tasks on encrypted data shared by the

data owner (user). In addition, the quantum computing capability of the evaluator and

the scope of quantum computation it can perform are usually somewhat limited, which

significantly reduces the flexibility of the scheme in quantum network environments. In

this paper, we propose a novel (t, n)-threshold QHE (TQHE) network scheme based on the

Shamir secret sharing protocol, which allows k (t ≤ k ≤ n) evaluators to collaboratively

perform evaluation computation operations on each qubit within the shared encrypted

sequence. Moreover, each evaluator, while possessing the ability to perform all single-qubit

unitary operations, is able to perform arbitrary single-qubit gate computation task assigned

by the data owner. We give a specific (3, 5)-threshold example, illustrating the scheme’s

correctness and feasibility, and simulate it on IBM quantum computing cloud platform.

Finally, it is shown that the scheme is secure by analyzing encryption/decryption private

keys, ciphertext quantum state sequences during transmission, plaintext quantum state

sequence, and the result after computations on the plaintext quantum state sequence.

Keywords: threshold quantum homomorphic encryption; Shamir secret sharing; quantum

computation; quantum computing cloud platform

1. Introduction

In the current era of information, safeguarding the security of private data is of

paramount importance. Although traditional encryption techniques are excellent at se-

curing data, the need to decrypt data arises when private data need to be computed and

analyzed, which can potentially give rise to security risks. However, the privacy-preserving

homomorphic encryption technique, as a revolutionary cryptographic tool, offers an inno-

vative solution by allowing evaluation computations to be performed on encrypted data

without the need for decryption. This means that the necessary computations and analyses

can be performed while the private data remain encrypted, at the same time protecting

the confidentiality and integrity of the private data. Since Rivest et al. [1] introduced the

concept of classical fully homomorphic encryption (FHE) in 1978 and Gentry [2] proposed

a classical FHE scheme in 2009, FHE has been widely used in various fields, including

functional encryption [3], delegating computations [4], obfuscation [5] and plaintext encryp-

tion [6–9]. However, most classical FHE schemes cannot satisfy the security requirements

of information theory.
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With the rapid advancement in the field of cryptography, quantum cryptography

has opened up a new avenue for the development of privacy-preserving homomorphic

techniques. Quantum cryptography is based on the principles of quantum mechanics, and

its security relies solely on the correctness of quantum mechanics, rather than computa-

tional assumptions. Therefore, it is capable of achieving information-theoretic security.

In this context, quantum homomorphic encryption which integrates the concepts of ho-

momorphic encryption and delegated quantum computation, as an important research

branch in the field of quantum cryptography, provides a more secure data processing and

computation mechanism, simultaneously offering a higher level of protection for sensitive

information privacy.

In recent years, there has been a significant growth trend in research on quantum

homomorphic encryption. This is attributed to the fact that quantum homomorphic en-

cryption technology not only achieves the security requirements of information theory, but

also provides an efficient approach to computing encrypted data. In 2012, Rohde et al. [10]

proposed a restricted QHE scheme using the quantum wandering walk model. In 2013,

Liang et al. [11] gave mathematical definitions of symmetric and asymmetric quantum

homomorphic encryption schemes, and proposed a framework of QHE schemes with

reference to classical homomorphic encryption schemes, which has been used until now. In

their paper [11], four symmetric quantum homomorphic encryption schemes and one asym-

metric quantum fully homomorphic encryption (QFHE) scheme were constructed based

on the quantum one-time pad (QOTP). In 2015, Liang [12] constructed a QFHE scheme

based on the quantum universal circuit. This scheme [12] uses the universal set of quantum

gates {X, Y, Z, H, S, T, CNOT} to achieve arbitrary quantum computation. However, the

decryption of a T gates in this scheme requires interaction steps and is only applicable to

delegated quantum computation between two parties. In the same year, Broadbent and

Jeffery [13] proposed two QHE schemes with a constant finite number of non-Clifford gates

(such as T gates) in the quantum circuit, where evaluator can perform at most a constant

number of non-Clifford gates on the encrypted data. They also give a formal definition of

QFHE. In 2016, Dulek et al. [14] extended the research from the scheme [13] and introduced

a novel QHE scheme, which can effectively compute quantum circuits of arbitrary poly-

nomial size and correct errors that arise during the evaluation computation stage when

computing the T gates on the ciphertext quantum state sequence. In 2018, Ouyang and

Tan [15] proposed a QHE scheme with a constant number of non-Clifford gates based on

quantum codes. In addition, numerous other QHE schemes based on various approaches

have been introduced [16–23].

However, it should be highlighted that currently, most QHE schemes are primarily

designed for scenarios involving only a single evaluator [10–15,17–23]. When a data

owner requires an evaluator to perform a large number of evaluation computation tasks

on his or her encrypted private data, the burden on the single evaluator becomes quite

heavy and may not be able to respond in a timely manner to perform computation tasks

assigned by other users [24–27]. The data owner sometimes may be unwilling to place

complete trust in a single evaluator, instead, anticipate multiple evaluators collaborating

to accomplish some significant evaluation computation tasks [28–30]. In addition, the

flexibility of most QHE schemes is significantly diminished due to the constraints on the

quantum computing capacity of the evaluator and the scope of quantum computation it

can perform [12,13,15,23,31,32].

In 2019, Chen et al. [31] proposed a (t, n)-threshold QHE scheme with a flexible number

of evaluators based on Cao and Ma’s [33] (t, n)-threshold quantum state sharing (QSTS)

scheme. In this scheme [31], the data owner selects any d (t ≤ d ≤ n) evaluators from the

n evaluators to share encrypted data, and these d evaluators can collaboratively perform
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all evaluation computation tasks (single-qubit gate unitary operations) on the encrypted

data. Then the data owner can obtain the expected result after computations on her private

plaintext data by decrypting the final ciphertext data. However, the scheme proposed by

Chen et al. [31] imposes restrictions on the types of single-qubit gate unitary operations that

evaluators can perform on encrypted data. The first d − 1 evaluators are limited to perform-

ing only single-qubit gate unitary operations from the set of single-qubit gates {X, Y, Z, H},

while the last evaluator is allowed to perform single-qubit gate unitary operations from

the set of single-qubit gates {X, Y, Z, H, S, T}. That is, the first d − 1 evaluators are not able

to perform the single-qubit gates S and T, and not every evaluator can perform arbitrary

single-qubit gate unitary operation in the set of single-qubit gates {X, Y, Z, H, S, T} on

the encrypted data. We know that in the scheme [31], the d evaluators selected randomly

from the n evaluators are a stochastic process. Since any evaluator could potentially be

selected to serve as the d-th evaluator, each evaluator has the ability to perform single-qubit

unitary operations {X, Y, Z, H, S, T, U(θ)}. However, it is important to note that the scope

of quantum computation that evaluators can perform is subject to highly limitations.

In 2022, Liu et al. [32] proposed a (t, n)-threshold QHE scheme based on the Chen

et al. [31] scheme. By exploring the relationship between the sets of single-qubit gates

{X, Y, Z} and {H, S, T}, they transferred the operations of {H, S, T} which originally needed

to be performed by the first d − 1 evaluators to the last evaluator. It makes all k evaluators

can perform any single-qubit gate unitary operation from the set of single-qubit gates

{X, Y, Z, H, S, T}, but the first d − 1 evaluators only have ability to perform the single-

qubit unitary operations from {X, Y, Z, U(θ)}, while the last evaluator have ability to

perform the single-qubit unitary operations from {X, Y, Z, S, T, U(θ)}. It also has a certain

impact on the flexibility and efficiency of the scheme. For this we propose a novel TQHE

scheme based on the Shamir (t, n)-threshold secret sharing protocol [34]. Our proposed

scheme not only supports a flexible number of evaluators but also ensures that all evaluators

have the ability to perform all single-qubit unitary operations from {X, Y, Z, H, S, T, U(θ)}
and are allowed to perform any computation task assigned by the data owner on the

encrypted data. The proposed TQHE scheme exhibits excellent flexibility and can be easily

implemented through simple operations. In the future, we anticipate that this scheme

will play a crucial role in quantum network communication applications, providing more

solutions to address security and privacy concerns in the computation of private data.

Our Contributions

First, we propose a novel (t, n)-threshold QHE scheme based on Shamir secret shar-

ing, supporting any k (t ≤ k ≤ n) evaluators of the n evaluators to cooperatively perform

homomorphic evaluation computations on the ciphertext quantum state sequence shared

by the data owner Alice. Alice is able to obtain the expected result after computations on

the plaintext quantum state sequence by decrypting the final computed ciphertext quantum

state sequence. Second, in our TQHE scheme, all evaluators, while having the capability

to perform all single-qubit unitary operations {X, Y, Z, H, S, T, U(θ)}, can perform any

single-qubit gate unitary operation from the set of single-qubit gates {X, Y, Z, H, S, T} on

the ciphertext quantum state sequence. Third, we provide a (3, 5)-threshold QHE example

to clarify our scheme and validate its correctness and feasibility through simulations on the

IBM quantum cloud platform. Finally, the security of the scheme is shown by analyzing

the encryption/decryption private keys, ciphertext quantum state sequences during trans-

mission, the plaintext quantum state sequence, and the result after computations on the

plaintext quantum state sequence.

The remaining sections of this paper are organized as follows: Section 2 covers some

preliminaries. Section 3 provides a detailed introduction to our novel TQHE scheme.
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Section 4 provides a concrete example and simulates it on the IBM quantum computing

cloud platform. Section 5 analyzes the security. Section 6 provides some comparisons.

Section 7 concludes the entire paper.

2. Preliminaries

In this section, we introduce some background knowledge that is crucial for un-

derstanding our scheme, including the classical Shamir (t, n)-threshold secret sharing

protocol [34] and a brief overview of the TQHE scheme framework.

2.1. Shamir (t, n)-Threshold Secret Sharing Protocol

The principle of Shamir (t, n)-threshold secret sharing protocol consists of two core

algorithms as follow.

(1) The share generation algorithm: Given a finite field GF(d), where d is a large

prime number, the trusted data owner Alice randomly selects a t − 1 degree polynomial:

f (x) = a0 + a1x + a2x2 + · · ·+ at−1xt−1 mod d, (1)

where (a0, a1, a2, . . . , at−1) ∈ GF(d), and a0 is a secret integer. Alice selects n non-

zero and distinct elements {xi ∈ GF(d)|i = (1, 2, . . . , n)} to compute n secret shares

{ f (xi) ∈ GF(d)|i = (1, 2, . . . , n)}, and then securely transmits them to n participants

R = {Bobg1
, Bobg2 , · · · , Bobgn}, gi ∈ {1, 2, . . . , n}(0 < i ≤ n) through secure classical chan-

nels, ensuring that each participant holds a private share f (xi) ∈ GF(d)(i = 1, 2, . . . , n).

(2) The secret reconstruction algorithm: If any t participants {Bob1, Bob2, · · · , Bobt} out of

n participants want to reconstruct the secret a0, each participant Bobi in {Bob1, Bob2, · · · , Bobt}
first takes out their private share f (xi), and then uses the following Lagrange

interpolation equation:

f (x) =

(

t

∑
r=1

f (xr) ∏
1≤j≤t,j ̸=r

x − xj

xr − xj

)

mod d, (2)

to cooperate in reconstructing and calculating the secret information. In Equation (2), if

x = 0, then

a0 = f (0) =

(

t

∑
r=1

f (xr) ∏
1≤j≤t,j ̸=r

xj

xj − xr

)

mod d, (3)

is the original secret integer.

In Equation (3), the secret information a0 can be reconstructed by t participants using

their private shares after cooperative computation. k (t ≤ k ≤ n) participants can still

accurately reconstruct the secret information a0 through cooperative computation using

their private shares.

a0 =

(

t

∑
r=1

f (xr) ∏
1≤j≤t,j ̸=r

xj

xj − xr

)

mod d

=

(

t+1

∑
r=1

f (xr) ∏
1≤j≤t+1,j ̸=r

xj

xj − xr

)

mod d

= · · ·

=

(

k

∑
r=1

f (xr) ∏
1≤j≤k,j ̸=r

xj

xj − xr

)

mod d

= · · ·

=

(

n

∑
r=1

f (xr) ∏
1≤j≤n,j ̸=r

xj

xj − xr

)

mod d.

(4)
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2.2. Definition of TQHE

Based on the existing TQHE schemes [31,32], we provide a specific definition for

TQHE as follows.

Definition 1 (TQHE framework [31,32]). A TQHE scheme consists of four main steps:

(1) Key Generation. TQHE.KeyGen (1κ) → (ske, ρevki
, skd). It is used to generate

a series of keys, which include the encryption private key ske and the decryption private key

skd for the data owner Alice, and evaluation keys ρevki
(i = 1, 2, . . . , k) for the k evaluators

{Bob1, Bob2, · · · , Bobk};

(2) Encryption. TQHE.Encske
(|ma⟩) → (|ca⟩). Alice runs the TQHE.Encske

(|ma⟩) to

encrypt her original plaintext quantum state sequence |ma⟩ using her encryption key ske to obtain

the original ciphertext quantum state sequence |ca⟩;
(3) Homomorphic Evaluation. TQHE.Eval (χi, ρevki

, |ca⟩) → (|cb⟩). It is used to process

the quantum ciphertext state sequence without decryption. After Alice shares the encrypted cipher-

text quantum state sequence |ca⟩ to k (t ≤ k ≤ n) evaluators {Bob1, Bob2, · · · , Bobk}, they run

the TQHE.Eval (χi, ρevki
, |ca⟩) sequentially to obtain the final homomorphic ciphertext quantum

state sequence |c f ⟩;
(4) Decryption. TQHE.Decskd

(|c f ⟩) → (|m f ⟩). Alice runs the TQHE.Decskd
(|c f ⟩) to

decrypt the final ciphertext quantum state sequence |c f ⟩ using her decryption key skd to obtain the

expected plaintext quantum state sequence |m f ⟩ =
k

∏
i=1

χi|ca⟩.
Here, |ma⟩, |m f ⟩ ∈ the quantum message space M, and ca, c f ∈ the quantum ciphertext space

C. χi ∈ the set of quantum gates F∆, i.e., χi ∈ F∆. As for the security of a TQHE scheme, it should

satisfy indistinguishability under chosen-plaintext attacks (q-IND-CPA) in quantum polynomial

time (QPT). Hence, a TQHE scheme is said to be q-IND-CPA secure if for any QPT adversary

A = (A1,A2) there exists a negligible function satisfying Pr[PubK
cpa
A,TQHE(κ) = 1] ≤ 1

2 +

negl(κ), where PubK
cpa
A,TQHE is a model of quantum indistinguishability under CPA [14].

Definition 2 (Quantum indistinguishability under CPA). The game model of quantum indis-

tinguishability under chosen-plaintext attack (IND-CPA) PubK
cpa
A,TQHE(κ) for a TQHE scheme and

a QPT adversary A = (A1,A2) is defined as

(1) The challenger runs TQHE.KeyGen (1κ) → (ske, ρevkj
, skd), j ∈ [1, k] ∩Z.

(2) The challenger sends ρevki
, i ∈ [2, k] ∩ Z to A1. Then, A1 outputs a quantum state in

M⊗E , where M is the message space and E is an arbitrary state related to the environment.

(3) For r ∈ {0, 1}, let Ξ
cpa,r
TQHE : D(M) → D(C) be Ξ

cpa,0
TQHE(ρ) = TQHE.Encske

(|0⟩⟨0|) and

Ξ
cpa,1
TQHE(ρ) = TQHE.Encske

(ρ). A random bit r ∈ {0, 1} is chosen and Ξ
cpa,0
TQHE(ρ) is applied to the

state in M.

(4) A2 obtains the state in C ⊗ E and outputs a bit r
′
.

(5) The output of the game is defined as 1 if r
′
= r and 0 otherwise. If r = r

′
, A2 wins

the game.

3. Our Scheme

In this section, we have proposed a novel TQHE scheme based on the Shamir (t, n)-

threshold secret sharing protocol. It has a flexible number of evaluators, supporting k (t ≤
k ≤ n) evaluators to perform arbitrary single-qubit gate unitary operation (any evaluation

computation task) from the set of single-qubit gates {X, Y, Z, H, S, T} on the ciphertext

quantum state sequence. Figure 1 shows the main flow chart of the proposed scheme.
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0|  2,3| ,1| A 

, 1| k k − 

1,2|  1,| k k − 

1,| A 

2 2( )U  −

( )k kU  −
kG3G

1G 2G

Alice

One-way quantum channel

Two-way classical channel

...
0

1

|
k

i

i

G 
=



3,2| 
2,1| 

1Bob 2Bob 3Bob
1kBob −

Decryption

1 1( )k kU  − −−

1 1( )U  −

kBob

Encryption

Figure 1. The main process of the (t, n)-threshold QHE scheme we proposed, where

Encryption/Decryption refers to the encryption unitary operation U(θA) and decryption unitary

operation U(γA + γ1 + γ2 + · · ·+ γk), respectively.

The Proposed TQHE Scheme

In our TQHE scheme, initially, Alice encrypts her original plaintext quantum state

sequence into the ciphertext quantum state sequence. Subsequently, k (t ≤ k ≤ n) evalua-

tors sequentially perform the evaluation computation task on the ciphertext quantum state

sequence encrypted by Alice. Then, the last evaluator sends the final ciphertext quantum

state sequence to Alice. Finally, Alice decrypts it to obtain the result computed on the

original plaintext quantum state sequence. The detailed procedure of our proposed TQHE

scheme is given as follows.

Step 1: Key generation stage

In this stage, Alice executes the key generation algorithm [35] to generate a series of

initial keys.

(1) The shadow key generation sub-algorithm

Initially, Alice runs the shadow key generation sub-algorithm to randomly create a

polynomial of degree t − 1, denoted as f (x) = a0 + a1x + a2x2 + · · ·+ at−1xt−1 mod d,

where GF(d) is a finite field, d is a randomly selected large prime number, and

(a0, a1, a2, . . . , at−1) ∈ GF(d).

Afterwards, Alice randomly selects n different elements {xgi
∈ GF(d)|gi ∈

{1, 2, . . . , n}} (0 < i ≤ n) as inputs for the polynomial f (x) to sequentially obtain the

shadow keys {wkgi
= f (xi) ∈ GF(d)|i = (1, 2, . . . , n)} for each of the n participants

{Bobg1
, Bobg2 , . . . , Bobgn}. Subsequently, Alice selects any k (t ≤ k ≤ n) participants

{Bob1, Bob2, . . . , Bobk} from the group of the n participants {Bobg1
, Bobg2 , . . . , Bobgn} as k

evaluators, with Bob1 being the first randomly chosen evaluator. Finally, Alice computes

the private keys θi(i = 1, 2, . . . , k) of k evaluators according to Equations (5) and (6), where

θi = 2π · Liwki

d
mod d, (5)

Li = ∏
1≤r≤k,r ̸=i

xr

xr − xi
mod d. (6)

The private key θ1 of Bob1 is kept secretly by Alice, while the remaining k − 1 private

keys {θ2, θ3, . . . , θk} of {Bob2, Bob3 . . . , Bobk} are secretly distributed by Alice over secure

classical channels.

(2) The rotation key generation sub-algorithm

Alice runs the rotation key generation sub-algorithm to generate k randomly dif-

ferent rotation keys {γi ∈ [0, 2π]|i = 1, 2, . . . , k} and then distributes the k − 1 rotation

keys {γ2, γ3, . . . , γk} to the k − 1 evaluators {Bob2, Bob3, . . . , Bobk} through secure classical

channels. Similarly, the rotation key γ1 of Bob1 is kept secretly by Alice.

Step 2: Encryption sharing stage
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(1) The data owner Alice has an original |ψ0⟩ plaintext quantum state sequence of

length m:

|ψ0⟩ = {|ϕ0,u⟩ = α0,u|0⟩+ β0,u|1⟩|u = 1, 2, . . . , m}, (7)

where |α0,u|2 + |β0,u|2 = 1. She defines a 2 × 2 unitary matrix U(θ) =

(

cos(θ) − sin(θ)

sin(θ) cos(θ)

)

,

and an angle parameter “θ” is introduced to describe a specific transformation or operation

of the matrix. The behavior of this matrix will depend on the specific value of “θ”. U(θ)

can be used to achieve various types of qubit operations, such as phase shift transformation

of the quantum state. Therefore, by adjusting “θ”, we can perform different phase shift

unitary operations on the quantum state, which in turn enables the protection of private

data. Performing the phase shift unitary operation U(θ) on a qubit state |ϕ⟩ = α|0⟩+ β|1⟩
satisfies Equation (8):

U(θ1)U(θ2)|ϕ⟩ = U(θ1 + θ2)|ϕ⟩ =
(

cos(θ1 + θ2) − sin(θ1 + θ2)

sin(θ1 + θ2) cos(θ1 + θ2)

)

|ϕ⟩. (8)

(2) Alice randomly selects c ∈ Z and uses θA = 2π − 2π · a0
d − γA as her encryption

private key where γA = 2cπ − θ1 − γ2 − γ3 − · · · − γk , θ1 = 2π · L1wk1
d mod d and L1 =

∏
1≤r≤k,r ̸=1

xr
xr−x1

mod d. Next, she performs the encryption unitary operation U(θA) on

the plaintext quantum state sequence |ψ0⟩, resulting in the original encrypted ciphertext

quantum state sequence

|ψA,1⟩ = U(θA)|ψ0⟩
= U(θA){|ϕ0,1⟩, |ϕ0,2⟩, . . . , |ϕ0,m⟩}
= {|ϕA,1,1⟩, |ϕA,1,2⟩, . . . , |ϕA,1,3⟩}. (9)

(3) Alice randomly prepares some decoy particles from states {|0⟩, |1⟩, |+⟩ = (|0⟩+
|1⟩)/

√
2, |−⟩ = (|0⟩ − |1⟩)/

√
2}, randomly inserts these decoy particles into the ciphertext

quantum state sequence |ψA,1⟩ to obtain a new quantum state sequence |ψA,1⟩
′
, and metic-

ulously records the insertion positions and initial states of each decoy particle. These decoy

particles are primarily used for the security check during the transmission of quantum

ciphertext sequences [36]. Subsequently, Alice transmits |ψA,1⟩
′

to the first evaluator Bob1

over a quantum channel. After confirming that Bob1 has received |ψA,1⟩
′
, Alice informs

Bob1 of the positions where each decoy particle was inserted and the corresponding mea-

surement basis (X-basis or Z-basis). Afterwards, Bob1 measures the states of these decoy

particles using the corresponding basis (X-basis or Z-basis) and sends the measurement

results to Alice. Alice compares whether the results from Bob1 match the initially states of

the decoy particles. If the error rate is below a certain low threshold value, Alice instructs

Bob1 to proceed to the next step; otherwise, Alice will ask Bob1 to abort the process and

restart a new one. It is important to note that, during each transmission of the quantum

state sequence, both the sender and the receiver should conduct similar security check

procedures and this process will not be described repeatedly in the following text.

(4) Following the successful security check, Bob1 removes the decoy particles from the

sequence |ψA,1⟩
′

to obtain the ciphertext quantum state sequence |ψA,1⟩. During this stage,

Bob1 temporarily refrains from performing the evaluation computation operation and the

phase shift unitary operation on the sequence |ψA,1⟩. Instead, he randomly re-inserts decoy

particles into the sequence |ψA,1⟩ to obtain a new quantum state sequence |ψ1,2⟩
′

and then

transmits it to the next evaluator Bob2 through a quantum channel.
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(5) After receiving |ψ1,2⟩
′

on security, Bob2 removes the decoy particles to obtain the

quantum state sequence |ψ1,2⟩ = |ψA,1⟩. Then, Bob2 applies the phase shift unitary opera-

tion U(θ2 − γ2) on each individual qubit in the quantum state sequence |ψ1,2⟩, resulting in

the quantum state sequence

|ψ2,3⟩ = U(θ2 − γ2)|ψ1,2⟩. (10)

Next, Bob2 sends |ψ2,3⟩
′

formed by inserted decoy particles into |ψ2,3⟩ to the next

evaluator Bob3. Similarly, Bob3, Bob4, . . . , Bobk−1 perform the security check and the phase

shift operation U(θ3 − γ3), U(θ4 − γ4), . . . , U(θk−1 − γk−1) on their respective received

quantum state sequences |ψ2,3⟩, |ψ3,4⟩, . . . , |ψk−2,k−1⟩. Finally, Bobk−1 sends the quantum

state sequence |ψk−1,k⟩
′

with inserted decoy particles to the k-th evaluator Bobk.

Step 3: Evaluation computation stage

In this stage, Alice sends the order in which k (t ≤ k ≤ n) evaluators perform

calculations to them separately through a secure classical channel. Moreover, Alice di-

vides the evaluation computation tasks G = G1G2 · · · Gk that she wishes to perform on

the original plaintext quantum state sequence into k segments, and distributes the seg-

mented task Gi = ∏
p
v=1 Vv, (Vv ∈ {X, Y, Z, H, S, T}, p ∈ Z+, and i = 1, 2, . . . , k) to the

i-th evaluator Bobi over secure classical channels for the subsequent evaluation compu-

tation. In our scheme, the single-qubit gate unitary operation assigned to the evalua-

tors comes from the set of single-qubit gates {X, Y, Z, H, S, T}, where X =

(

0 1

1 0

)

, Y =

(

0 −i

i 0

)

, Z =

(

1 0

0 −1

)

, H = 1√
2

(

1 1

1 −1

)

, S =

(

1 0

0 i

)

and T =

(

1 0

0 eπi/4

)

. The set

{X, Y, Z, H, S, T} is the universal set of single-qubit gates. These single-qubit gates can be

used to approximate any single-qubit unitary operation with arbitrary precision [37]. A

quantum state of a single qubit can be represented as |ϕ⟩ = α|0⟩+ β|1⟩, where α and β are

complex numbers satisfying |α⟩2 + |β⟩2 = 1. These universal single-qubit gates are used to

manipulate individual qubits to implement an arbitrary single-qubit transformation in the

evaluation computation stage. Evaluators can utilize these gates to rotate and transform the

state of qubits, enabling the execution of various quantum evaluation computation tasks.

Our scheme involves performing the evaluation computation tasks G on a sequence of

quantum states. This is achieved by performing single-qubit gate unitary operations from

the set of single-qubit gates {X, Y, Z, H, S, T} on each qubit of the quantum state sequence.

The k evaluators sequentially perform the evaluation computation task Gi (0 < i ≤ k)

(the composite single-qubit gate unitary operation) assigned to them by Alice, and Bob1

finally sends the final ciphertext quantum state sequence after completing the evaluation

computation tasks for Alice.

(1) After the quantum state sequence |ψk−1,k⟩
′

successfully passes the security check,

Bobk removes the decoy particles to obtain the quantum state sequence |ψk−1,k⟩. Next,

he sequentially applies the phase shift unitary operation U(θk − γk) and performs the

evaluation computation operation Gk on the sequence |ψk−1,k⟩ to obtain the quantum

state sequence

|ψk,k−1⟩ = GkU(θk − γk)|ψk−1,k⟩. (11)

Bobk then sends |ψk,k−1⟩
′

obtained after inserting the decoy particles in |ψk,k−1⟩ to the

next evaluator Bobk−1.
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(2) Following the successful security check, Bobk−1 performs the evaluation computation

operation Gk−1 on the received sequence |ψk,k−1⟩ and obtains the quantum state sequence

|ψk−1,k−2⟩ = Gk−1|ψk,k−1⟩. (12)

Bobk−1 then sends |ψk−1,k−2⟩
′

formed by inserted decoy particles into |ψk−1,k−2⟩ to the

next evaluator Bobk−2.

(3) Bobk−2, Bobk−3, . . . , Bob2 do something similar to Bobk−1. After successfully passing

the security check, they perform the evaluation computation operation Gk−2, Gk−3, · · · , G2

on the received sequence |ψk−1,k−2⟩, |ψk−2,k−3⟩, . . . , |ψ3,2⟩, respectively. In the end, Bob2

sends |ψ2,1⟩
′

obtained after inserting the decoy particles in |ψ2,1⟩ to the next evaluator Bob1.

(4) After passing the successful security check, Bob1 sequentially performs the evalua-

tion computation operation G1 and the phase shift unitary operation U(σ) (σ = θ1 − γ1 is

secretly calculated by Alice and then secretly shared with Bob1, who has no knowledge of

the private key θ1 and the rotation key γ1) on the sequence |ψ2,1⟩, resulting in the quantum

state sequence

|ψ1,A⟩ = U(σ)G1|ψ2,1⟩. (13)

Finally, Bob1 sends |ψ1,A⟩
′

obtained after inserting the decoy particles in |ψ1,A⟩ to the

data owner Alice.

Step 4: Decryption stage

After securely receiving |ψ1,A⟩ resulting from the collaborative computations of k (t ≤
k ≤ n) evaluators, sent by Bob1 who performed the last evaluation computation operation,

Alice uses her rotation key γA and the random rotation keys {γi|i = 1, 2, . . . , k} of the k

evaluators to perform the decryption unitary operation D = U(γA + γ1 + γ2 + · · ·+ γk)

on the sequence |ψ1,A⟩. Taking the u-th quantum bit |ϕ1,A,u⟩ of the decryption sequence

|ψ1,A⟩ as an example, the decryption process is illustrated below:

D|ϕ1,A,u⟩ = U(γA + γ1 + γ2 + · · ·+ γk)|ϕ1,A,u⟩
= U(γA + γ1 + γ2 + · · ·+ γk)U(θ1 − γ1)G1G2 · · · GkU(θk − γk) · · ·U(θ2 − γ2)|ϕ1,A,u⟩
= G1G2 · · · GkU(γA + γ1 + γ2 + · · ·+ γk)U(θ1 − γ1)U(θk − γk) · · ·U(θ2 − γ2)U(θA)|ϕ0,u⟩

= G1G2 · · · GkU(γA + θA +
2π

d
· a0)|ϕ0,u⟩

=
k

∏
i=1

GiU(2π)|ϕ0,u⟩

=
k

∏
i=1

Gi|ϕ0,u⟩.

(14)

In the above Equation (14), it should be noted that U(γA + γ1 + γ2 + · · ·+ γk)U(θ1 −
γ1) = U(γA + θ1 + γ2 + · · ·+ γk) = I. Apparently, Alice performs the decryption unitary

operation on the final ciphertext quantum state sequence |ψ1,A⟩ and obtains the correct

result, which is the same as that obtained by performing evaluation computation directly

on the plaintext quantum state sequence |ψ0⟩:

D|ψ1,A⟩ =
k

∏
i=1

Gi|ψ0⟩. (15)

Specifically, any k (t ≤ k ≤ n) evaluators selected from n evaluators sequentially

perform the evaluation computation operation on the ciphertext quantum state sequence

encrypted by data owner Alice. The last evaluator, after completing the collaborative

computations, sends the final ciphertext quantum state sequence to Alice. Alice decrypts
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it to obtain the expected result of computing on the plaintext quantum state sequence. In

other words, the result of Alice’s decryption operation on the final ciphertext quantum state

sequence is the same as the result of Alice performing the same evaluation computation

operations directly on the plaintext quantum state sequence.

4. Example and Simulation

In Section 3, we proposed a novel TQHE scheme and analyzed its correctness. To

better illustrate the scheme, in this section, we first present a specific example of (3, 5)-

threshold QHE to demonstrate the correctness and feasibility of the TQHE scheme (Figure 2).

Subsequently, the correctness of the example is verified by running simulation experiments

on the IBM quantum computing cloud platform.

One-way quantum channel
Two-way classical channel

Alice 1Bob 2Bob 3Bob

0| 

TY

2 2( )U  − 3 3( )U  −

ZS HZ

E

2
0| re  Decryption

1 1( )U  −

Encryption

Figure 2. The example process of (3, 5)-threshold QHE for the proposed scheme, where Encryption =

U(θA) , Decryption = U(γA + γ1 + γ2 + γ3), and E indicates that no evaluation computation

operation and unitary operation are being performed.

4.1. Example

In this example, suppose Alice wants at least three evaluators to collaborate on the

evaluation computation tasks G. First, Alice selects three participants {Bob1, Bob2, Bob3}
out of the five participants {Bobg1

, Bobg2 , Bobg3 , Bobg4
, Bobg5} as evaluators to perform the

evaluation computation operations on Alice’s encrypted quantum state sequence |ψA,1⟩.
After completing the collaborative computations, the last evaluator Bob1 sends the final

ciphertext quantum state sequence |ψ1,A⟩ to Alice. Finally, Alice can obtain the expectant

result by decrypting |ψ1,A⟩. In the following example, the security check steps are excluded.

First, Alice generates a series of keys. By inputting parameters n = 5, t = 3, d = 7 into

the shadow key generation sub-algorithm, she obtains a random quadratic polynomial

f (x) = (2 + 3x + x2) mod 7 with coefficients {a0 = 2, a1 = 3, a2 = 1}, where a0 is the

secret information. Next, by inputting five parameters {xg1
= 1, xg2 = 3, xg3 = 5, xg4

=

2, xg5 = 4} into the polynomial f (x), she obtains five shadow keys {wkg1
= f (xg1

) =

f (1) = 6, wkg2 = f (3) = 6, wkg3 = f (5) = 0, wkg4
= f (2) = 5, wkg5 = f (4) = 2}.

Suppose Alice selects three evaluators {Bob1, Bob2, Bob3} to perform the evaluation

computation operation tasks G = TYZSHZ on the original plaintext quantum state se-

quence |ψ0⟩ =
√

2
2 (|0⟩+ |1⟩), which consists of only a single quantum bit.

First, Alice computes the private keys {θ1 = 2π · L1wk1
d = 2π · 1

d (( f (x1)
x2·x3

(x2−x1)(x3−x1)
)

mod d)= 8
7 π, θ2 = 12

7 π, θ3 = 12
7 π}(x1 = xg1

= 1, x2 = xg4
= 2, x3 = xg2 = 3; wk2 =

wkg4
= f (xg4

) = 5, wk3 = wkg2 = f (xg2) = 6) and generates the rotation keys {γ1 =
17
21 π, γ2 = 55

28 π, γ3 = 65
42 π} by running the rotation key generation sub-algorithm. Later,

Alice communicates with {Bob1, Bob2, Bob3} to instruct them to perform the evaluation

computation operation {G1 = TY, G2 = ZS, G3 = HZ}, and secretly distributes their

respective shadow keys {θ2, θ3} and rotation keys {γ2, γ3} to the evaluators {Bob2, Bob3}
through secure classical channels. Bob1’s private key θ1 and rotation key γ1 are kept secretly

by Alice.
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Next, Alice utilizes her encryption private key θA = 2π − 2π · a0
d − γA = 343

84 π (γA =

2π − θ1 − γ2 − γ3 = − 223
84 π) to perform the encryption unitary operation U(θA) on the

plaintext quantum state sequence |ψ0⟩ and obtains the encrypted quantum state sequence

|ψA,1⟩ = U(θA)|ψ0⟩ =
1

2
|0⟩+

√
3

2
|1⟩, (16)

and then transmits it to Bob1.

After receiving |ψA,1⟩, instead of performing the evaluation computation operation

and the phase shift unitary operation on it, Bob1 directly transmits |ψA,1⟩ (renamed to

|ψ1,2⟩) to Bob2.

After receiving |ψ1,2⟩, Bob2 applies the phase shift unitary operation U(θ2 − γ2) on

|ψ1,2⟩, yielding

|ψ2,3⟩ = U(θ2 − γ2)|ψ1,2⟩ =
√

2 +
√

6

4
|0⟩+

√
6 −

√
2

4
|1⟩, (17)

and then sends the quantum state sequence |ψ2,3⟩ to Bob3.

After receiving |ψ3,2⟩, Bob2 performs the evaluation computation operation G2 on

|ψ3,2⟩, yielding

|ψ2,1⟩ = G2|ψ3,2⟩ = −i|1⟩, (18)

and then sends the quantum state sequence |ψ2,1⟩ to Bob1.

After receiving |ψ2,1⟩, Bob1 sequentially performs the evaluation computation opera-

tion G1 and the phase shift unitary operation U(σ) (σ = θ1 − γ1 is secretly calculated by

Alice and then secretly shared with Bob1) on |ψ2,1⟩, yielding

|ψ1,A⟩ = U(σ)G1|ψ2,1⟩ = −1

2
|0⟩ −

√
3

2
|1⟩, (19)

and then sends the quantum state sequence |ψ1,A⟩ to Alice.

Finally, Alice performs the decryption unitary operation D = U(γA +γ1 +γ2 +γ3) on

the quantum state sequence |ψ1,A⟩ resulting from the cooperative evaluation computation

operations by the three evaluators, and obtains the final result

|ψre2
0 ⟩ = D|ψ1,A⟩ = U(γA + γ1 + γ2 + γ3)|ψ1,A⟩ = −|0⟩. (20)

Now, let us analyze the result of directly using the evaluation computation operator G

on the original plaintext quantum state sequence |ψ0⟩. Obviously, the result is

|ψre1
0 ⟩ = G|ψ0⟩ = TYZSHZ|ψ0⟩ = −|0⟩. (21)

From here, we see that Alice’s decrypted result |ψre2
0 ⟩ is the same as the result |ψre1

0 ⟩
obtained by direct computation on the plaintext quantum state. Theoretically, if Alice mea-

sures |ψre2
0 ⟩ in Z-basis, she can obtain a measurement result of 0 with the probability 100%.

4.2. Simulation Experiment

On the IBM quantum computing cloud platform, we experimentally verify the cor-

rectness and feasibility of the given (3, 5)-threshold QHE example. The quantum circuit

diagram for this example is shown in Figure 3b. Considering that the IBM quantum com-

puting cloud platform does not allow operations to be performed on an arbitrary quantum

state (the initial quantum state of a single quantum circuit in the IBM quantum comput-

ing cloud platform is the |0⟩ state) and has some limitations on the number and spatial
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dimensions of quantum states [38–40], the experimental verification process of inserting

and removing decoy particles is omitted in this section.

(a) Quantum circuit 1 on IBM quantum backend

(b) Quantum circuit 2 on IBM quantum backend

Figure 3. The quantum circuit diagram of the composite single-qubit gates TYZSHZ directly acting

on |ψ0⟩ in the IBM quantum computing cloud platform in the subplot (a). The quantum circuit

diagram of the (3, 5)-threshold QHE example in the IBM quantum computing cloud platform in the

subplot (b), where RY(θ) represents the phase shift unitary operation U(θ).

Five rounds of experiments are conducted on the (3, 5)-threshold example using

two different backends, ‘ibm_brisbane’ and ‘ibm_lagos’, and three different measurement

shots, 1024, 4096 and 8192, for the quantum circuit diagram presented in Figure 3b. The

experimental measurement results are shown in Table 1.

On the one hand, on the quantum computing cloud platform, we measure the results

of the composite evaluation computation operations G1G2G3 directly acting on Alice’s

original plaintext quantum state |ψ0⟩. The quantum circuit diagram is shown in Figure 3a.

On the other hand, we simulate the entire process of the (3, 5)-threshold QHE example

on the quantum computing cloud platform and measure the results of performing all

the evaluation computation operations and the unitary operations. The quantum circuit

diagram is shown in Figure 3b.

The results of the 1024 measurements performed on the backend ‘ibm_brisbane’ and

‘ibm_logo’ after applying the composite single quantum bit gate G = G1G2G3 directly to

the original quantum plaintext quantum state |ψ0⟩ =
√

2
2 (|0⟩+ |1⟩) have a high probability

(99.2% and 100%) corresponding to the state |0⟩, respectively.

Table 1. Comparison of experimental results using two different backends and different shots for the

example.

Running Environment Result (a) Result (b) Result (c) Result (d) Result (e)

Backend1: ibm_brisbane |0⟩: 99.8% |0⟩: 99.3% |0⟩: 99.6% |0⟩: 99.4% |0⟩: 99.6%
Shots: 1024 |1⟩: 0.2% |1⟩: 0.7% |1⟩: 0.4% |1⟩: 0.6% |1⟩: 0.4%
Backend1: ibm_brisbane |0⟩: 99.8% |0⟩: 99.5% |0⟩: 99.4% |0⟩: 99.9% |0⟩: 99.7%
Shots: 4096 |1⟩: 0.2% |1⟩: 0.5% |1⟩: 0.6% |1⟩: 0.1% |1⟩: 0.3%
Backend1: ibm_brisbane |0⟩: 99.9% |0⟩: 99.5% |0⟩: 99.2% |0⟩: 99.7% |0⟩: 99.8%
Shots: 8192 |1⟩: 0.1% |1⟩: 0.5% |1⟩: 0.8% |1⟩: 0.3% |1⟩: 0.2%
Backend2: ibm_lagos |0⟩: 99.6% |0⟩: 99.8% |0⟩: 99.3% |0⟩: 99.5% |0⟩: 99.4%
Shots: 1024 |1⟩: 0.4% |1⟩: 0.2% |1⟩: 0.7% |1⟩: 0.5% |1⟩: 0.6%
Backend2: ibm_lagos |0⟩: 99.9% |0⟩: 99.5% |0⟩: 99.6% |0⟩: 99.4% |0⟩: 99.5%
Shots: 4096 |1⟩: 0.1% |1⟩: 0.5% |1⟩: 0.4% |1⟩: 0.6% |1⟩: 0.5%
Backend2: ibm_lagos |0⟩: 99.8% |0⟩: 99.7% |0⟩: 99.9% |0⟩: 99.4% |0⟩: 99.7%
Shots: 8192 |1⟩: 0.2% |1⟩: 0.3% |1⟩: 0.1% |1⟩: 0.6% |1⟩: 0.3%
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In all the measurement results in Table 1, the results of the 8192 measurements per-

formed on the backend ‘ibm_brisbane’ have the smallest probability (99.2%) corresponding

to the state |0⟩, which shows that the fidelity should be the smallest in this situation. As-

suming the theoretical density matrix is denoted by ρT = 1.0|0⟩⟨0|+ 0.0|1⟩⟨1|, and the

experimental density matrix is denoted by ρE = 0.992|0⟩⟨0| + 0.008|1⟩⟨1|, the smallest

fidelity can be calculated as follows:

F(ρT , ρE) = Tr

√

√

ρT · ρE ·
√

ρT = 99.5%, (22)

the fidelity of 99.5% is very close to the theoretical value of 100%. In the five rounds

of experiments, the 99.5% fidelity is the lowest, and the fidelities of the other twenty-

nine measurement results are higher than the fidelity of this particular measurement. By

calculation, the average fidelity of the thirty experiments is 99.8%, which implies that all

the obtained fidelity values from the measurements are very close to the theoretical value of

100%. Thus, the experimental results further validate the correctness of the (3, 5)-threshold

QHE example and the feasibility of the proposed TQHE scheme.

5. Security Analysis

In this section, we analyze the security of the proposed TQHE scheme in three aspects.

The analysis includes the security of the encryption/decryption private keys, ciphertext

quantum state sequences during transmission, the plaintext quantum state sequence, and

the result after computations on the plaintext quantum state sequence.

(1) The security of the encryption/decryption private keys

Theorem 1. The proposed TQHE scheme is perfect with respect to the probability distribution of

the encryption private key θe over the private key space, that is,

I(θe;Ω) = H(θe)− H(θe|Ω) = 0, (23)

where Ω denotes the set of key information distributed to the evaluators, H(θe) is the information

entropy of the encryption private key θe and I(θe;Ω) represents the mutual information of θe with Ω.

Proof. We know Alice’s encryption private key θe = 2(c − 1)π − 2π · a0
d + θ1 + γ2 + γ3 +

· · · + γk. Essentially, the private share θ1 in θe, and the rotation keys {γ2, γ3, . . . , γk}
are each derived independently from a uniform distribution, and since θ1 is kept secret

by Alice, the secret a0 cannot be recovered even if all evaluators conspire [34], which

provides the maximum entropy for the encryption key. The conditional entropy of the

encryption key θe is the same as its total entropy, H(θe|Ω) = H(θe), and hence the mutual

information I(θe;Ω) = H(θe)− H(θe|Ω) = 0, proving the security of the encryption key

θe in the privacy key space [40–42], the encryption key is secure. Likewise, except for

honest Bob1, the decryption key θd = 2cπ + γ1 − θ1 is random for the remaining k − 1

evaluators and attackers, since they cannot obtain any information about the decryption

key. The conditional entropy of the decryption key θd is the same as its total entropy,

H(θd|Ω) = H(θd), and then the mutual information I(θd;Ω) = H(θd)− H(θd|Ω) = 0. So,

the decryption key θd is also secure.

(2) The security of the ciphertext quantum state sequences during transmission

During the encryption and evaluation computation stages, the transmitted ciphertext

quantum state sequences could be subject to an intercept–resend attack by an eavesdropper,

Eve, over the quantum channel. If Eve intercepts and resends the quantum states, it may

alter the state of the transmitted ciphertexts, potentially leading to incorrect quantum
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computations by the evaluators on incorrect ciphertext quantum states and erroneous

decryption by the data owner. To defend against this, we insert l decoy particles into the

transmitted ciphertext quantum state sequence. These particles are randomly placed and

can take one of four possible states {|1⟩, |0⟩, |+⟩, |−⟩}. If Eve intercepts and measures a

decoy particle, the probability of correctly choosing the measurement basis is 1/2, and the

probability of matching the correct basis is also 1/2.The probability that Eve successfully

intercepts the decoy particles without altering their state is
(

l
4(m+l)

)l
where m is the length

of the ciphertext sequence and l is the number of decoy particles inserted. The probability

that Eve’s attack is undetected is

Prsd = 1 −
(

l

4(m + l)

)l

. (24)

When the number l of inserted decoy particles in the transmitted quantum state

sequence is sufficiently large, the probability Prsd of detecting the intercept–resend attack

approaches 1, ensuring the security of the transmitted ciphertext quantum state sequence.

Thus, by inserting decoy particles with different states, we can effectively prevent intercept–

resend attacks. The ciphertext quantum state sequences is secure during transmission.

(3) The security of the plaintext quantum state sequence

Theorem 2. The proposed TQHE scheme is q-IND-CPA secure. For any OPT adversary A, he

cannot distinguish between the original ciphertext quantum state sequences encrypted from different

original plaintext quantum state sequences.

Proof. We prove Theorem 2 through the following indistinguishability game GameA,ξ . For

any adversary A and a security parameter κ, the proposed TQHE scheme holds that

Pr[GameA,ξ(κ) = 1] ≤ 1

2
+ negl(κ), (25)

where Pr
[

GameA,ξ(κ) = 1
]

is the probability that A wins the indistinguishability game

GameA,ξ and negl(κ) is a negligible function. In the game GameA,ξ , an adversary A =

(A1,A2) is constructed. A1 firstly selects an input |m0⟩ according to the evaluation key

ρevki
. The challenger samples a random bit r ∈ {0, 1}. If r = 1, the input |m0⟩ is encrypted

to |ca⟩ and send to A2; otherwise, r = 0, |m0⟩ is swapped out and replaced by a dummy

input |0⟩⟨0| to obtain |ca⟩. Then, the challenger sends the challenge ciphertext |ca⟩ to A2. In

our proposed TQHE scheme, Adv
q-IND-CPA
E (A) is the advantage of winning the q-IND-CPA

game when the adversary A faces the encryption algorithm, where Adv
q-IND-CPA
E (A) ≤

negl(κ). The probability that A2 guesses r
′
= r (wins the GameA,ξ) is

Pr
[

GameA,ξ(κ) = 1
]

= Pr[r
′
= r] =

1

2
+ Adv

q-IND-CPA
E (A) ≤ 1

2
+ negl(κ), (26)

we can conclude that the adversary A wins the indistinguishability game with a probability

no higher than 1/2. Therefore, the proposed TQHE scheme satisfies q-IND-CPA. In other

words, the plaintext quantum state sequence is secure.

(4) The security of the result after computations on the plaintext quantum state sequence

Theorem 3. The proposed TQHE scheme for an arbitrary OPT adversary A, he cannot distinguish

the final ciphertext quantum state sequences evaluated computations on different original plaintext

quantum state sequences.
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Proof. We prove Theorem 3 through the following indistinguishability game GameA,η . In

the game GameA,η , an adversary A = (A1,A2 is constructed. A1 firstly selects an input

|m0⟩ according to the evaluation key ρevki
. The challenger samples a random bit r ∈ {0, 1}.

If r = 1, the input |m0⟩ is encrypted to |ca⟩ and sent to A2; otherwise, r = 0, |m0⟩ is

swapped out and replaced by a dummy input |0⟩⟨0| to obtain |ca⟩. Then, the challenger

computes the homomorphic evaluation TQHE.Eval (χi, ρevki
, |ca⟩) to obtain the result |c f ⟩.

These two types of computations are represented by η.real and η.ideal, respectively. Then,

the challenger decrypts the |c f ⟩ to obtain |m f ⟩ which is sent to A2. In our proposed TQHE

scheme, A2 guesses r
′
= r with a probability significantly lower than 1/2. The probability

that the adversary A wins is

Pr
[

GameA,η(κ) = 1
]

=
1

2
Pr[η.real] +

1

2
Pr[η.ideal]

= Pr[r = 0]Pr[A3 guesses 0|r = 0] + Pr[r = 1]Pr[A3 guesses 1|r = 1]

≤ 1

2
+ negl(κ).

(27)

We can conclude that A wins the indistinguishability game with a probability no higher

than 1/2. That means the adversary A cannot distinguish the final ciphertext quantum

state sequences by evaluating computations on different original plaintext quantum state

sequences. Furthermore, the result after computations on the plaintext quantum state

sequence is secure.

6. Comparisons

In this section, the approximate efficiency of the scheme will be analysed in terms

of the approximate counts of the total computational complexity and time complexity

of one successful execution of the TQHE scheme by the data owner and the evaluators.

Comparison with the existing TQHE schemes [31,32] in terms of flexibility and efficiency

shows that our proposed TQHE scheme has better flexibility and higher efficiency.

Computational complexity: In the key generation stage, the data owner computes

and distributes the key information for k evaluators with complexity O(t + n + k); in

the encryption sharing stage, the data owner performs m encryption unitary operations

and the evaluators perform km phase shift unitary operations with complexity O(m); in

the evaluation computation stage, k evaluators perform the combined execution of the

homomorphic evaluation computation task with complexity O(Cm) (where C is the total

number of evaluation computation gates to be performed, a non-negligible constant);

in the decryption stage, the data owner performs m decryption unitary operations with

complexity O(m). Hence, the computational complexity of the proposed scheme is O(t +

n + k), O(m), O(Cm), O(m).

Time complexity: In the single execution scheme, in the key generation phase, the data

owner executes the key generation and distribution algorithm with complexity O(t+ n+ k);

in the encryption sharing stage, the data owner applies m encryption unitary operations,

while the evaluators execute km phase shift unitary operations, with an overall complex-

ity of O(m); in the evaluation computation stage, k evaluators cooperate to perform all

homomorphic evaluation computation tasks with complexity O(tk) (t is the average com-

putation time for each evaluator to perform the assigned evaluation task); in the decryption

stage, the data owner performs m decryption unitary operations with complexity O(m).

Therefore, the computational complexity of the proposed scheme is O(t + n + k), O(m),

O(tk), O(m).
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As shown in Table 2, the total computational complexity and time complexity of the

TQHE schemes of Chen et al. [31] and Liu et al. [32] are the same in the four stages of

the TQHE scheme, which are O(nk · k3), O(m), O(Cm), O(m) and O(nk · k3), O(m), O(tk),

O(m), respectively. Moreover, in our scheme, any evaluators have the ability to perform any

single-qubit unitary operations from {X, Y, Z, H, S, T, U(θ)} and can execute any single-

qubit gate unitary operations from {X, Y, Z, H, S, T}, which shows that our proposed

scheme has more excellent flexibility compared to scheme [31] and scheme [32].

Table 2. Comparison with the schemes proposed by Chen et al. [31] and by Liu et al. [32].

Property Chen et al.’s Scheme [31] Liu et al.’s Scheme [32] The Proposed Scheme

The scope of quantum evaluation
computation of k evaluators

{X, Y, Z, H}1 {X, Y, Z, H, S, T}1 {X, Y, Z, H, S, T}1

∗ {X, Y, Z, H}2 ∗{X, Y, Z, H, S, T}2 ∗{X, Y, Z, H, S, T}2

∗ · · · ∗ · · · ∗ · · ·
∗{X, Y, Z, H}k−1 ∗{X, Y, Z, H, S, T}k−1 ∗{X, Y, Z, H, S, T}k−1

∗{X, Y, Z, H, S, T}k ∗{X, Y, Z, H, S, T}k ∗{X, Y, Z, H, S, T}k

The quantum computing capability
possessed by evaluators

The first k − 1 evaluators:
All k evaluators: {X, Y, Z, U(θ)} All k evaluators:

{X, Y, Z, H, S, T, U(θ)} The kth evaluators: {X, Y, Z, H, S, T, U(θ)}
{X, Y, Z, H, S, T, U(θ)}

Computational complexity
O(nk · k3),O(m),O(Cm),

O(m)
O(nk · k3),O(m),O(Cm),

O(m)
O(t + n + k), O(m),

O(Cm), O(m)

Time complexity
O(nk · k3),O(m),O(tk),

O(m)
O(nk · k3),O(m),O(tk),

O(m)
O(t + n + k), O(m), O(tk),

O(m)

“∗” represents the connection of the quantum evaluation computation scopes of each evaluator.

7. Conclusions

In summary, we first propose a novel TQHE network scheme with a flexible number

of evaluators in this paper, in which any evaluators have the ability to perform single-

qubit unitary operations {X, Y, Z, H, S, T, U(θ)} and can execute any single-qubit gate

unitary operations from the set of single-qubit gates {X, Y, Z, H, S, T} assigned by the data

owner on the ciphertext quantum state sequence. Subsequently, a specific (3, 5)-threshold

QHE example is given to further show the correctness and feasibility of our scheme. In

addition, the example is then simulated on the IBM quantum computing cloud platform,

and the results of the experiment also verify the correctness and feasibility of the scheme.

Finally, a comprehensive analysis of the security of the encryption/decryption private

keys, ciphertext quantum state sequences during transmission, the plaintext quantum

state sequence, and the result after computations on the plaintext quantum state sequence

indicates that our proposed scheme is secure.
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