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Ch’épter 1
Introduction and Survey of Results

Our original motivation for undertzking the work presented in this book® has been to
clarify the connections between the braid (group) statistics discovered in low-dimensional
quantum field theories and the associated unitary representations of the braid groups with
representations of the braid groups obtained from the representation theory of quantum
groups - such 2 U,(g), with deformation parameter ¢ = gy := exp(in/N), for some N =
3,4,... ' Among quantum field theories with braid statistics there zre two-dimensionel,
chiral conformal field theories and three-dimersional gauge theories with a Chern-Simons
term in their action functional. These field theories pley an important role in string
theory, in the theory of critical phenomena in statistical mechaxics, and in a variety of

systems of condensed matter physics, such as quantum Hall systems.

An example of a field theory with braid statistics is a chiral sector of the two-
dimensional Wess-Zumino-Novikov-Witten model with group SU(2) 2t level k which is
closely related to the re.presentation\ theory of 5U(2)i-Kac-Moody 2lgebra, with k =
1,2,83,.... The braid statistics of chiral vertex operztors in this th&ary can be understood
by analyzing the solutions of the Kuizhnik-Zzamolodchikov equations. Work of Drinfel'd
[4] has shown that, in the example of the SU(2)-WZNW model, there is a close connection

between solutions of the Knizhaik-Zamolodchikov equations 2ad the representation theory

°This book is based on the Ph.D. thesis of T.K. and on resulis in [, 11, 24, 28, 42, 61)
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of Uy(sl;) if the level k is related to the deformation parameter ¢ by the equation «

" exp(ix /(k +2)), and k is pot a rational number. For an extension of these results to
. negative ratiopals see [62]. Unfortunately, the SU(2)-WZNW model is a unitary quant

field theory only for the values k = 1,2,3,: -+, oot covered by the results of Drinfel’d. (
goal was to understand the connections between the field theory and the quantum gr¢
for the physically interesting case of positive integer levels. (This motivates much of «

analysis in Chapters 2 through 7.)

The notion of symmetry adequate to describe the structure of superselection sect
in quantum field theories with braid statistics turns out to be quite radically differs
from the notion of symmetry that is used to describe the structure of superselect!
sectors in higher dimersional quantum field theories with permutation (group) statisti
(i.e., Fermi-Dirac or Bose-Einstein statistics). While in the latter case compact grov
and their representation theory provide the correct notion of symmetry, the situati
is less clear for quantum field theories with braid statistics. iOnc conjecture has be
that quantum groups, i.e., quesi-triangular {quasi-)Hopf algebr:as, might provide a usei

notion of symmetry (or of “quantized symmetry”) describing the main structural featus

of quantum field theories with braid statistics. It became clear, fairly soon, that t
quantum groups which might appear in unitary quantum field theories bave a deformati
parameter ¢ equal to a root of unity and are therefore pot semi-simple. This circumstan
is the source of a variety of mathematical difficulties which bad to be overcome. We
on these aspects started in 1989, and useful results, eventually Jeading to the z_:jtatcrial
Chapters 4, 5 and 6, devoted to the representation theory of Uy(g), g 2 root of unity, 2
to the sq»ca.lled vertex-SOS transformation, were obtained in the diploma thesis of T.]
see [6). Our idea was to combine such resilts with the general theory of braiz"i‘ statist
in low-dimensional quantum field theories, in order to develc;p an zdeguate fconéept.

“qumtizcé symmetries” in such theories; see Chapter 7, Sects: 7.1 and 7.2.

In the course of our work, we encountered a variety of mathematical subtleties 2
diffculties which led us to study certain -abstract algebraic structures — a class of (

necessarily Tennekian) tensor categories — which we call quantum categories. Work
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Doplicher and Roberts [29] and of Deligne [56] and lectures at the 1991 Borel seminar in

Bern played an important role in guiding us towards the right concepts.

These concepts and the results on quantum categories presented in this volume,
see also [61), are of some intrinsic mathematical interest, independent of their origin in
problems of quantum field theory. Althoﬁgh problems in theoretical physics triggered our
investigations, and in spite of the fact that in Chapters 2, 3 and 7, Sects. 7.1 through 7.4
we often use a Iug'uagev coming from local quantum theory (in the algebraic formulation
of Hazg and collaborators [17, 18, 19, 20]), all results and proofs in this volume (after
Chapter 2) can be understood in a sease of pure mathematics: They can be read without
knowledge of I;cal quantum theory going beyond some expressions introduced in Chapters

2 and 3, and they are mathematically rigorous.

Ia order to dispel possible hesitations and worries among readers, who are pure
mathematicians, we now sketch some of the physical background underlying our work,
-thereby intféducing some elements of the languege of algebraic quantum theory in a

non-technical way. For additional details the reader may glance through Chapter 2.

For quantum field theories on a space-time of dimension four (or higher) the con-

cept of a global gauge group, or symmetry G is, roughly spezking, the following one: The

Hilbert space H of physical states of such a theory carries a (highly reducible) unitary
representation of the group G. Among the densely defined operators on H there are the
so-called local field operators which transform co%'ariaptly under the adjoint action of the
group G. The fixed point algebra, with respect to this group action in the total field zlge-
bra, is the algebra of observables. This algebra, denoted by A, is a C*-2lgebra obtained

2s 20 inductive limit of a net of von Neumann algebras 4(O) of observebles locelized in
bounded open regions O of space-time. The von Neumenn algebras A(O) are isomorphic
to the unique hyperfinite factor of type II1;, in 2ll examples of algebraic field theories that
one understands reasonably well. The Hilbert space 'deecomposes into a direct sum of

orthogonal subspaces, called superselection sectors, carrying inequivalent representations

of the observable algebra A. All these representations of .4 can be generated by corﬁposing

a standard representation, the so-called vacuum representation, with *endomorphisms of

A. Each superselection sector also carries a representation of the global gauge group G _

which is equivalent to a mulitple of a distinct irreducible represent‘ation of G. As shown
by Doplicher, Haag and Roberts (DHR) [19), one can introduce a notion of tensor prod-
uct, or “composition”, of superselection sectors with properties m;logoui to those of the
tensor product of representations of a compact group. The composition of superselection

sectors can be defined even if one does pot know the global gauge group G of the theory,

'yet. From the properties of the composition of superselection sectors, in particular from

the fusion rules of this composition and from the gtatistics of superselection sectors, i.e.,
from certain representations of the permutation groups canonicelly associated with su-
perseleétion sectors, one can reconstruct important data of the global gauge group G. In
particular, one can find its character table and its 6-5 symbols. As proven by Doplicher
and Roberts [29], those data are sufficient to reconstruct G. The representation category
of G turns out to reproduce 2ll properties of the cqmpositionl_ of superselection sectors,
and one is able to reconstruct the algebra of local field 6pcra't:<3rl from these data. One
says that the group G is dual] to the quantum theory describea by A and H.

The results of Doplicher and Roberts can be viewed as the answer to a purely mathe-
matical duality problem (see also [56]): The fusion rules and the 6-j symbols obtained

from the composition of superselection sectors are nothing but the structure constants of
a symmetric tensor category with C* structure. The problem is how to recopstruct from
such an abstract category a compact group whose representation category is isomorphic
to the given tensor category. It is an old result of Tannaka gﬁd Krein that it is always
possible to reconstruct a compact group from a symmetric tensor category if the category
is Tannakian, i.e., if vt;e know the 'dimensiogs of the repreéentatipn spaces and the Clebsch-
Gordan matrices, or 3-5 symbols, which form the besic morpﬁésm spaces. The resulis of
Doplicl;er and Roberts represeat a vest generalization of the T-‘;nnz.ka-}(re'z'n results, since

the dimensions and Clebsch-Gordan metrices zre not known aﬁpriori_.

Anotber duality theorem related to the one of Doplicher and Roberts ‘is due to

Deligne [56] which requires integrality of certain dimensions but no C*® structure on the

symmeiric tensor category. (It enables one to recomstruct algebrzic groups from certain

\Y



symmetric tensor categories.) Disregarding some subtleties in the hypothesesvof these
duality theorems, they teach us that it is equivalent to talk about compact groups or

certain ‘:)'thmettic tensor categories.

Quantum field theories in two and three space-time dimensions can also be formu-
lated within the formalism of algebraic quantum theory of DHR, involving an algebra A
of observables and superselection sectors carrying representations of A which 2re compo-
sitions of a standard representation with *endomorphisms of A. This structure cnable; us
to extract an abstract tensor category described in terms of an algebra of fusion rules and
6-5 symbols. Contrery to the categories obtained from quantum field theories in four or
more space-time dimensions, the tensor categories associated with quantum field theories
in twq and thrée space-time dimensions are, in generg.l, pot symmetric but only braided.
Therefore, they cannot be representation categories of cocommutative algebres, like group

algebras. In many physicelly interesting examples of field theories, these categories ace

- not even Tagnekian and, therefore, cannot be identified, naively, with the representation

category of a Hopf algebra or a Qumtum group; see [61]. The complications coming from

these features motivate many of our results in Chapters 6 through 8.

The following models of two- and three.dimensional quantum field theories yield

non-Tannekian categories:

(1) Minimal conformal models [7] and Wess-Zumino-Novikov-Witien models (8]

in two space-time dimensions .

The basic feature of these models is that they exhibit infinite-dimensional symme-
tries. The example of the SU(n)-WZW model can be understood as a Legrangian
field theory with action functional given by

509) = 56 Jotr ((97'0.9)(970g)) &=
+ 5k fon tr (57 d5)),
where, classically, a field configuration g is a meap from the two-sphere 57 to the
group G = SU(n), and § is an arbitrary extension of g from S? = 8B° to the ball

B3 (such an extension always exists, since 7, of a group is trivial). The second term

5

inI S(g) is :the so-called Wess-Zumino term which is defined only mod kZ. Classi
cally, the theory exhibits a symmetry which is the product of two loop groups, fo
right- and l;ft movers, respectively. For k =1,2,3,..., the quantum theory 2ssoci
ated with S(g) bas conserved currents generating two commuting 5u(n)-Kac-Mood,
algebras atrlevél k, whose universal enveloping algebras contain Virasoro algebras
'(Sugawua construction). From the representation theory of the infinite-dimensiona
Lie algebras of symmetry generators in thc;e models, i.e., the representation the
ory of Virasoro- or Kac-Moody algebras, one can construct algebras of so-calle

chiral vertex operators which play the role of Clebsch-Gordan operators of (a semi

simple quotient of) the represestation category of the Viresoro- or Kac-Moody al
gebra. Local conformally covariant field operators are then constructed by takin
linear combinations of products of two such chiral vertex operators, a holomorphi

one (left movers) and an anti-bolomorphic one (right movers). - ‘

of inferest in relation to the main subject of our work is that the algebras of chir:
vertex operators, the holomorphic ones, sey, appcuing: in these models provid
us with categorial data corresponding to non-Tannzkian braided tensor categorie:
(This can be understood by studying the multi-valuedness properties and operatc
product expansions of chiral vertex operators. A very thorough analysis of ‘.5
SU(2)-WZW model can be found in the papers of Tsuchiya and Kanie 2nd «
Kohno quoted in [9]; see 2lso 8, 61).)

Zamolodchikov and others have studied “non-critical perturbations” of minimal cor
formal models which are integrable field theories [10]. Their results suggest the
there are plenty of massive quantum field theories in two space-time dimensior
with fields exhibiting non-zbelian braid statistics, as ofiginally described in [11

(A perturbation of minimal conformal models giving rise;t‘o massive integrable fie!

theories is obtained from the dpafield; a field with braid statistics is the fie

obtzained from a chiral factor of the é@_,)-ﬁdd, after the perturbation has be
turned on [12].) To such non-conformal field theories one can also associate certz
braided tensor categories. However, the general theory of superselection sectors

two-dimensional, massive quantum field theories leads to 2lgebraic structures mo

6



general than braided tensor categories, including ones with pop-abelian fusion rule
algebras. A general understanding of these structures has not been accomplished,

yet.

(2) Three-dimensional Chern-Simons gauge theory, [13, 14, 15] .

Consider a gauge theory in three space-time dimensions with a simply connected,
compact gauge group G £ su (n). Let A denote the gauge field (vector potential)
with values in g = Lie(G), the Lie algebra of the gauge group G, and let ¢ be a
matter field, e.g. a two-component spinor ﬁeﬂld in the fundamental representation of
G. There may be further matter fields, such 2s Higgs fields. The action functional
of the theory is given by

S[A,¥,¥] & g7 [tr (F*)d vol.
—Lltr (ANdA+3ANANA) (1.1)
+ 2 P(Pa+m)Ydvol. +-+-,

where g, A and m are positive constants, and ! is an integer.

This cless of gauge theories has been studied in [13, 14, 15].' Although the results in
these papers are not mathematically rigorous, the main properties of these theories

are believed to be es follows:

The gluon is massive, and there is no confinement of colour. Interactions persist-
ing over arbitrarily large distances are purely topblogica.l and are, asymptotically,
described by a pure Chern-Simons theory. Thus the statistics of coloureci'partic]es
~ in Chern-Simons gauge theory is believed to be the same as the statistics of static
colour sources in a pure Chern-Simozs theory w}iich is known explicitly [16).  The
statistics of coloured asymptotic particles can be studied by znalyzing the statis-
tics of fields creating coloured states from the vacuum sector. Such fields are the

Mandelstam siring operators, Ya(7.), which are defined, heuristically, by

valn) = * T NPl | AOKaaT (12)

where ‘a and 8 are group indices; v, is a path contained in a space-like surface,

. starting at z and reaching out to infinity, N is some normal ordering prescription,

7

and P denotes path ordering. (Similarly, conjugate Mandelstam strings ¥a(7.) are
defined.)

For the field theories described in (1) and (2), one observes that when the grouﬁ Gis
SU(2) the combinatorial data of a braided tensor category, an algebra of fusion rules and
6-j symbols (braid- and fusion matrices), can be reconstructed from these field theories
which is isomorphic to a braided tensor category that is obtained from the representation

theory of the quantum group Uy(sl;), where
g =9, k=123:",

(with k =l + const.). These categories are manifestly non-Tannakian. This is the reason
why it is not possible to reconstruct field operators transforming cox'&fiantly under some
representation of Uy(sl;) on the Hilbert space of pbysical states of those theories. However,
passing to a quotient of the representation category of Uy(sl;), ¢ = cxp(iw/(’: +2)),
described in Chapters 6 and 7, we can construct a s‘erni-simpl;, non-Tannakian, braided
tensox'category describing the composrivtion and braid st;tistici of superselection sectors
in these quantum field theories. In this sense, Uy(sl;) is tlhe “quantized symmetry” dual

to the quantum field theories described above. (For precise details see Chapter 7.)

The strategy used to prove this duality is to compare the fusion rules 2nd the Gi'j
symbols of Uy(sl;) with the corresponding data of the field theories found, e.g., in [9], and
to show that they coincide. More precisely, ’it is quite easy to show that the representations
of the braid groups essociated with tensor products of the fundamental representation of
U,(sly) coincide with those associated with arbitrary compositions of the “fundamental
superselection sector” of the corresponding field theories. One implication of our work
is thet, in fact, the entire braided tensor categories coincide. ?Thil result follows from a
much more general uniqueness theorem stating that wheneveriz braided tensor ;ateéorjr

with C® structure is generated by arbitrary tensor products of & selfconjugate object, p,

whose tensor square decomposes into two irreducible objects, i.e.,

pOp =169, (1.3)

8
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(wbere ‘1 is the neutral object, corresponding to the trivial representation of Uy(sh), to
the vacuum sector of the field theory, respectively),and a certain invariant associated with
p, the so-called monodromy of p with itself, is non-scalar, then the category is isomorphic

to the semi-simple subquotient of the representation category of U,(sl;), for ¢ = + e*ﬁ"‘,

k=1,23,....

The abstract nature of eq. (1.3) suggests that this result applies to a class of local
quantum field theories more general than the models described above. This observation
and the fact that those models are not rigorously understood in every respect led us to
work within the general framework of algebraic field theory. In this framework, p and
can be interpreted as irreducible *endomorphisms of the observable algebra 4, with 1 the

identity endomorphisms of A, and eq. (2.3) for a selfconjugate object p of a braided tensor

category with C* structure is equivalent to some bounds on a scalar invariant essociated
with p, its gtatistical dimension, d(p); namely (1.3) is equivalent to
1 <dp) <2. o (14)

The main result of this book is a complete classification of braided tensor categories

with C*-structure that are generated by a not necessarily selfconjugate, irreducible object

p whose statistical dimension, d(p), satisfies (1.4). This is the solution to a very limited

generalization of the duality problem for groups. Our method of clessification is unlikely to
be efficient for much larger values of d(p) than those specified in eq. (1.4) - except, perheps,
for certain families of examples connected with more general qur.ntu;;n groups. However,
our solution to the problem corresponding to the bounds on d(p) in eq. (1.4) might serve
as a guide for more general attemptis. In particular, our notions of product category and
induced category might be useful in a general context.

The constructive part of our classification consists in the description of two families
.of categories: First, we x;eed to understand the representation theory and tensor-product
decorhpositiom of Uy(sly), with g a root of unity; (Chapters 4 and 5, and [6]). This will
permit us to construct a non-Tannekizn, braided tensor category by pessing to the semi-

simple quotient of the representation category of U,(sl,); (vertex-SOS transformation; see

9
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Chapter 6 and [61]). The generating object p, of this category can always be multiplied
with the generator of a category whose fusion rules are described by the group algebra of
a cyclic group Z,,a=23,..., without c.ha.nging the statistical dimension. The second
task is thus to classify categories whose fusion rules are given ‘by the group aigebras of

abelian groups.

It turns out that, besides the operation of taking products of categories just alluded
to, we also need the notion of induced categories which are, in-general, not quotients of

representation categories; (Chapter 8, Sect. 8.1).

For a selfconjugate, generating object p, with 1 < d(p) < 2, our proof of uniqueness

relies on an inductive procedure reminiscent of what is known 2s cabeling. In order tc

extend our proof of uniqueness to categorieskgenerated by a non-selfconjugate, irreducible
object, we have to study the interplay between the group of “invertible objects” in 2
category and gradings. This will permit us to separate the subcategories corresponding
to invertible objects from the entire category and to thereby reduce the classificatior
problem to that of categories with a selfconjugate generator whose statistical dimensior
satisfies (1.4); (Chapter 8).

As a prerequisite to the classification of braided tensor categories with C* structure
satisfying (1.4), we present a classification of fusion rule algebras which have the same
properties 2s the object algebras of a tensor category; (Chzpter 3 and Sect. 7.3). Ou
classification s limited to fusion rule algebras generated by an irreducible object p o

statistical dimension d(p) satisfying

1<dp) <2, | (s

We find that there are many more fusion rule algebras thed there are object .aigeb:a

of braided tensor categories. Our classification relies on results of T.K. in [42).

When d(p) = 2 we essentially reproduce the fusion rules of the finite s_ubgroﬁ;
of SU(2) which have been classified and described in terms of certain Coxeter grépl
by Mac Kay. In the sense that-symmetric tensor categori_ei are dual to g;'oup_s ar

10



braided tensor categories are a natural generalization of symmetric tensor categories, our
main result might be viewed as a natural generalization and completion of the Mac Kay

correspondence for d(p) = 2 to the entire range 1 < d(p) < 2.

~ Ogne application of our classification theorems to conformal field theory, in partic-
ular to minimal conformal models and SU(2)-WZIW theories, is that we can reproduce
the fusion rules, the braid- 2nd the fusion matrices of these models from an algebraically
simpler object, & quantum group. This is one way of making “the quantum group struc-
ture” of conformal field theories precise. Our uniqueness theorems permit us, moreover, to
establish a precise connection between SU(2)-WZW theories at level k and SU(k)-WZW
theories at level 2 which is useful to understand the details of the conformal imbedding
of (5%(2)a x 5u(k);)-Kac-Moody algebra into 3?4(2k)1;1(ac-1_\{oody algebra. For example,
we find that the braided tensor categories constructed from the representation theory of

5u(k);-Kac-Moody algebra, with k even, are non-trivially induced by those constructed

from §3(2),-Kac-Moody algebra. This result is useful in the context of certain systems in

condensed matter physics.

We conclude this introdﬁction with some additional comments on the contents of
the verious chapters of this book and 2 summary of our mein results, Theorem 3.4.11 and
Theorem 8.2.11.

Survey of Contents

In Chapter 2 we explain the appearance of certain braided tensor categories, called C*-
quantum categories, in Jocal quantum theories in two and three space-time dimexnsions.
To this end, we use the formelism of algebraic field theory, which - following the arguments
of Section 2.1 and the introduction - is expected to describe two dimensional conformal
field theories and three dimensional topological field theories. In Section 2.2 we review the
C*-algebra approach to local quantum theories with braid statistics, in a form developed
in [15, 24] geperalizing the algebraic field theory of [19] for quantum theories with (para-)

permutation statistics. In this framework the objects of the considered C*-quantum cat-

11

egory are a subset of the endomorphisms of the observable algebra A and the arrows
(or morphisms) are operators in U intertwining these endomorphisms. The quaantitative
description of the structure of these categories in terms of R- and F- matrices is derived
in Sectiop 2.3. In Sectiop 2.4 we show how to extract unitary representations of the braid
groups equipped with Markov traces from a C*-quantum category. '

The objects of a quantum category together with the o?cra.tions of taking dire&
sums and tensor products form a balf algebra over the positive integers which we skall
call a fusion rule algebra. An axiomatic definition of fusion rule algebr# which forgets
about their origin from quantum categories is given in Section 3.1. In Section 3.2 we
show tht notions familiar in C*-categories czn already be defined from the fusion rule

algebra itself, namely a unique positive dimeasion (the statistical or Perron-Frobenius

dimension) for rational fusionrules and a universal group-of gradings. These concepts’

are eventually combined in the construction of quotients of fusion rule algebras, so called
Perron-f‘robcx;iﬁs algebras. In Sectiop 3.3 we demonstrate how non trivially graded invert-
ible objects may be used in order to derive simplified descripﬁons of fusion rule &]gébru.
_In particular, we derive for cyclic grading goupl a general present'&ﬁon of a fusion rule
2lgebra in terms of an accordingly smaller fusion rule dgei:ra, whose invertible objects are
all trivially graded. We give several criteria implying that this fusion rule algebra js either
Z,-graded or ungraded. Among the categories that ere constructed from Z;- or ungraded
algebres we find those which are generated by a single object p of dimension d(p) not
greater than two ( with the exception of two algebras at d(p) = 2). They are classified
in Section 3.4, using the methods developed in the previous section. More precisely, we

first determine the fusion rule algebras with a selfconjugate generator of dimension less

than or equal to two and we analyze the action of the resp;:ctive groups of invertible .

objects. Composing them with Z, -algebras and twisticg them we obtain the complete

list of fusionrules given in Theorem 3410

In the following three chapters we construct the C°-quantum categories with A,-

fusionrules from the quantum group Uy(sé;).

i

. - 1
For this purpose, we review in Chapier 4 the geaeral defintion of a quesitrian-

12

i
]
i
!
i
'
i

vy



gular Hopf algebra, [3, 5), and the quantum groups Uy(s&), [2]. We introduce anti-
cohomomorphic »-operations on quasitriangular Hopf algebras arid define the finite di-

mensional examples U;*4(s4,) for ¢ a root of unity.

The representation theory of Uy(st;) is treated in Chapter § following the remarks on
inyirimt fbnm, commutativity constrainis and contragradient representations for general
quantum groups made in Sectiog 5.1. In Sectiop 5.2 we give a8 summary of the irreducible
and the unitary representations of U:“'(sl,), ma in Sectiop 5.3 we study their tensor
product decompositions. The formula given in Theorem 5.3.1 involves projective repre-
sentations with vanishing q-dimensions, which naturally form a tensor ideal in the category

of representations of U,{sf;). The subquotient of the abstract representation ring by this

ideal is a fusion rule algebra in the sense of Chapter 3, as described in Section 5.4.

In order to obtain a semisimple category we need not only divide oﬁt the radical
of the objects, i.e., the representation ring, but perform a similar quotient for the entire
category including the moq:»hisms; i.e., the intertwiners of represgntuﬁons. This procedure
is described in Section 6.1. We give the explicit definition of the structure matrices and
verify the polynomial equations for the quotient category in Section 6.2. In S&LOA_G_Q
we prove that this category is a C*-quantum category if ¢ = ezp(+ ). The connection
between balancing (or statistical) phases of a quanium category and the special element
of a ribbon-graph Hopf algebra and the relation between Markov traces and quantum
traces are explained in Section 6.4.

The first two sections of Cﬁagte} 7 ere devoted to the mathematical interpretation

of the structure matrices fognd in Ckapter 2 and the connection of duality theory for -

abstract tensor categories and the notion of duality in terms of global gauge symmetries
for local quantum theories. We start with a summary of the ingredients entericg the
definition of an abstract quantum category and show its equivelence to the systems of
R- and F- matrices we bave used so far. Furthermore, we draw the connection to the
theory of inclusions and towers of algebras, see [41, 23], if the category is obtained from
a sef_.’ of quasi-commuting endomorphisms on a h)'perﬁniie von-Neu;na.nn elgebras, e.g.,

a local subalgebra of the observable algebra of a local quantum theory. We review the
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known duality results, [29, 56), for abstract, symmetric categories and the existence of
field operators with global gauge group symmetry entailed by them. For braided, non-
Tannakian categories the notion of duality needs to be modified, involving semisimple
quotients of Tma.ba.n categories arising from non-semisimple quantum groups. In thi
setting, however, the a-.na.!ogous construction of fields which are gauge symmetric witk
respect to the dual Hopf algebra does not yield an operator algebra with local braic
relations and a closing operatorproduct expasion. This is explained in Sectiog 7.2.

The goal of S_c_gt_;gn_s_'{_& and 1.4 is to select from the list of fusion rule zlgebra:
given in Theorem 3.4.11 those which are actually realized as the object algebras of :
C*-quantum category and, furthermore, characterize them by the decomposition of th
tensor producis p o pand p o "ﬁ of the generator. VThe precise correspondence betwee:
the dimension restriction I < d(p) < 2 and the structure of these fundamental product
is given in Proposition 7.3.1. Tbis result is refined in Pxoposi§ion 7.3.5, where we shov
that the restriction 1 < d(p) < 2 is equivalent to a two channel decomposition of p ©
with one object being invertible so that the projections on the invertible object define .
Temperley-Lieb algebra in End( p®" ). In particular, the exclusion of the D,-type fusio:
rule algebras is inferred from the genefa.l result in Proposition 7.3.4 asserting that if po
decomposes completely into M invertible objects, then M = 2" for some n € N. v I
Section 7.4 we exploit the fact that the natural braid gfoup representation in End( p&"
factors through a Temperley-Lieb a]gébra in order to compute the statistical phases for th
C'-qua.ntum; categories with fusionrules given in Theorem 3.4.il.i). We ﬂﬁd consistenc
requirements in this computation that allow us to discard the D and E-type algebras an
certain twisied A-type algebras from the list of admissible objeqt algebras. The remainir
algebras, listed in Proposition 7.4.11 together with their possibls statistical phbases, can a
be obtained from a direct product of an A,- algebra and the fusion rule algebra given't
the group Z,, for some r € N, either by inclusion or by quotieniing with some irreducibl

graded fusion rule algebra epimorphism.

The resulis of Section 7.4 suggest that all relevant qﬁantum categories cen |

. 4 ‘
obtained from a product of a category with A,-fusionrules ‘and a category with Z

Y
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fusionhﬂés. Havinyg constructed categories with A,-fusionrules in Chapters 4,5 and 6

we are left with the characterization of the quantum categories for the Z,-case. More gen-
erally, we classify in Sectiop 7.5 the quantum categories for which all objects are invertible
so that the fusionrules are given by a finitely generated, abelian group G. The set of in-
equivalent quanturn categories for a fixed group G carries a natural group structure and
we show this group to be canonically isomorphic to the cohomology group H4(G, 2; U(1)),
associated to Eilenberg-MacLane spaces. We discuss in some detail the Z,-obstruction
of these categories to be strict , i.e., their non trivial structure if viewed 2s monoidal
categories. In the concluding Proposition 7.5.4 we also give the structure matrices for a

convenient choice of morphisms.

It turns out that any fusion rule algebra and any choice of statistical phases for

the untwisted cases of Proposition 7.4.11 is realized by a subcategory of a C°quantum
category with A,-fusionrules and a Z,-category.

The aim of Clﬁagter 8 is to prove the uniqueness of these categories and to con-
struct the categories with twisted fusionrules. The main tool in this is the notion of
induced categoriesvdeveloped in Proposition 8.1.4. We also define 2a action of the group

‘ H4(Grad(O%5), 2; U(I)) on the set of quantum categories with fusion rule algebra Obj,
where Grad(Ob;) is the corresponding universal grading group. In the second part of
Section 8.1 we find conditions that the orbit of a category with respect to this action
conta.in; a category, which is induced by a smaller one. The obstructions bere are found

~ to be elements of H*(Grad(Obj), 2; Z;), see Lemma 8.1.13.

In Lemma 8.2.4 of Section 8.2 we show that this obstruction is trivial in the case
of A-type algebras. Using the uniquenss of induced categories and the uniqueness of 4;-
categories given in Proposition 8.2.6 v.ve icfer the uniqueness and thereby the clessification
of the untwisted A-type (not necessarily C* ) quantum categories in Theorems 8.2.8 and
8.2.9. The respective categories with twisted fusionrules are presented in Theorem 8.2.10
in'terms of the untwisted categories they induce. Combining these results with Proposition
7.4.11 we arrive at the classification in Theorem 8.2.11 of 'C'-quantumv categories with a

generator of dimension less than two.
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Chapter 2

Loéal Quantum Theory with Braid
Group Statistics

2.1 Some Aspects of Low-Dimensional, Local Quan-

tum Field Theory

'As described in the introduction, it is the purpose of this work to elucidate properties of
superselection sectors of local quantum theories with braid (group) statistics. In partic-

ular, we are interested in understanding the laws by which two superselection sectors of

a local quantum theory with braid statistics can be composed. In more conventional field

theoretic jargon, we are interested in understanding the operator algebra and the operator

product expansions of analogues of charged fields in theories with braid statistics. This

involves, in particular, introducing appropriate algebras of fusion rules and attempting
to classify them. It ix;vol\(rcs, furthermore, to characterize and classify the statistics of su-
perselection sectors, or, in other words, the statistics of “charged fields”. More precisely,
we wish to dcscnbe, as completely as possible, those umtary representations of the braid
group, B, that describe the stntlstncs of superselection sectors in local quantum theories
with braid statistics. It is well known [19, 20] that in quantum field theory in four- or

higher-dimensional sfmce-time the statistics of superselection bsectorAs, or, equivalently, of
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charged ﬁeld;:, is described by unitary representations of the permutation group, Se. It

is quite a recent result, due to Doplicher and Roberts [29], that the iepresentation: of

the permutation group S, and the composition laws of the su;ﬁerselection sectors (fusion
rules) of a local quantum field theory in four or more dxmens:om can be denved from
the: representatxon theory of some compact group which, in fact, ha.s the mterpretat:on of

a global symmetry of the quantum field theory.

It is then vnavtural to ask whether the fusion rules and the reﬁresenta.tions of B,

encountered in local quantum field theories with braid statistics can be derived from the

" representation theory of a natural algebra which, moreover, can be interpreted as a gener-

alized global symmetry (“quantized symmetry”) of the quantum field theory? A conjecture

proposed frequently, but not really well understood (see, however, [30] for an example that

.is understood in detail) is that quasi-triangular (quasi-) Hopf algebras, in p&rticular quan-

tum groups, could play the role of algebras whose representation theory yields the fusior
rules and the braid group representations of local quantum the§ﬁa with braid statistics

and that they can be interpréted as “global syrmﬁetri‘es” of such theories [31, 28, 32].

~ One of our main goals in this book is to describe some classes of local quantun
theories for which the conjecture just described can actually be proveﬁ completely. The
quantum groups appearing in our ‘escamples are Uy(sé,), and we shall pro§e that the defbr
mation parameter ¢ must have one of the values exp(nr /N), N a positive integer (> n + 1)
Our results are complete for U,(s,). (For some sunpler examples, involving quasx Hop
algebras, see also [33]. )

Next, we wish to recall some basic facts about braid statistics. In the context 6
qﬁantum mechanics of point particles in two-dimensional spac%, btaid. statistics w#s dis
covered in [34, 35, 36]. However, a more precise analysis of braid; statistics and a classiﬁt:la
tion of all possible braid statistics requires the principles of locé.l quantum (ﬁeld) theory
Examples of local qua.nfum field theories, more precisely Chern-Simons gaug; theories
in three space-time dimensions with braid statistics were described in [36, 37, 38] an
numerous further articles; see also [13, 14, 15]. It has been recognized in [15]) that, apar

from permutation statistics, braid statistics is the most general statistics of superselectio
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sectors and charged fields that can appear in local éumtum theories in three space-time
dimensions; (see also [22] for related, partial results). Historically, braid statistics of fields
actually first appeared in quantum field models in two space-time dimensions with topo-

logical solitons; (see [11] and refs. given there). It should be efnpha.sized, bowever, that the

theory of statistics of superselection sectors in general local quantum field theories in two -

space-time dimensions is considerably more gcﬁerd than the theory of braid statistics.
But, for the chiral sectors of two-dimensional conformal field theories, the statistics of su-
perselection sectors and of the corresponding chiral vertex operaior: is always described
by representations of the braid gfoup B, generated by certain Yang-Baxter matrices;
see [21, 9, 11, 26, 27, 28, 22]

Inspired by results in [16], it bas been argued in [24] that the theory of the statistics
of sectors in general threé-dimensional, local quantufn theory is equivalent to the theory of
the statistics of chiral vertex operators in two-dimcnsioﬁal conformal field theory; (i.e., the
same braid statistics appear in both classes of theories). We may therefore focus our

jzd;’umtion on the analysis of statistics in three-dimensional local quantum theory.

Next, we review some characteristic features of local quantum theory in three space-

" time dimensions.

(a) Spin in three space-time dimensions.
According to Wigner, a relativistic particle is described by a unitary, irreducible
representation of the quantum mechanical Poincaré group, P}, which is the universal

covering group of the Poincaré group, ’Pl. In three space-time dimensions, '
Pl =50(2,1) » R®.

The three-dimensional Lorentz group, SO(2,1), is homeomorphic to R? x §1, its
covering group is therefore homeomorphic to R3. If one imposes the relativistic
spectrum condition one concludes that those representations of the quantum me-
chanical Poincaré group associated with three-dimensional Minkowski space that
are relevant for the de.scription of a relativistic particle are characterized by two real

parameters, the mass M > 0, and the “spin” s € R. In particular, spin need not be
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a..:': integer or half-integer number.

. (b) Localization properties of one-particle states.

Let us now consider a local, relativistic quantum theory in three space-time dimen-

sions describing a particle of mass M > 0 and spin s. As shown by Buchholz and
Fredenbagen [20], one can then in general construct a “string-like field”, ¢, with
' non—vamshmg matrix elements between the physxca.l vacuum, £, of the theory and
otne-pamcle states of mass M and spin s. This result follows from very general
;;i-inciples of local quantum theory; (locality, relativistic spectrum condition, exis-
tence of massive, isolated (finitely degenerate) one-particle states). The field + is,
in general, neither observable nor local. However, as shown in‘ [20], it can always be
léxcalized in a space-like cone, C, of arbitrarily small opening angle; (see Sect. 2.2 for
p'recise definitions and results). Physically, C can be interpreted as the location of
a fluctuating string of flux attached to a “charged particle”. Particles of this kind are
epmuntcféd in three-dimensional Chern-Simons gauge théoriet, (13, 14,.37, 38, 15).
It can ha.ppen‘ that the field ¢ is actually localizable in bounded regions of space-time.
(This would be the case in field theories without local gauge invariance.) Then a general
result, due to Doplicﬂer, Haag and Roberts [19), proves that the spin of particles created
by applying ¥ to the vacuum () is necessarily integer or half-integer, the statistics of ¢

is permutation statistics, and the usual spin-statistics connectxon bolds. It follows that if

the spin of a particle created by applying some field 1 to the vacuum Q2 is ncnther integer.

nor half-integer then the field ¢ cannot be localizable in bounded regions of space-tlme
- but ¥ is still localizable in space-like cones. It has also been proven in [15] that if the
spin of the particle created by 9 is neither integer nor half-inte?er then 3 has necessarily

non-trivial braid statistics, and a fairly non-trivial spin-statisfics connection holds. We

thus expect that particles with spin s ¢ 3Z can only be encountered in quantum ﬁ;:ld,

theories with a manifest or hidden local gauge invariance.

Another general result of [15] is that, under a certain minima.lity assumption on the

structure of superselection sectors, non-trivial braid statistics can only appear in theories

in which the discrete symmetries of space reflections in lines l.nd time reversal are broken '
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Thus the only realistic candidates of relativistic qﬁantum field theories in three
space-time dimensions describing particles with spih s ¢ 1Z and with braid statistics,
called anyons [36), are Chern-Simons gauge theories described in [13, 14, 37, 38, 15}, with
an action S given e.g. by (1.1), or non-linear 0(3)—-&-modeln with Hopf terms equivalent to

ebelian Chern-Simons theories. See also [14, 15] for a beuristic discussion of the properties

of these theories.

» Since 2 mathematically rigorous analysis of the quantum field theories just referred
to would be difficult and has, in fact, not been carried out, so far, we shall, in this book,

follow an ariomatic approach. The formalism most convenient for our purposes turns out

" to be algebraic quantum field theory, as originally proposed by Haag and Kastler [17].

Since algebraic quantum field theory does not appear to be terribly well known among
theoretical physicists or mathematicians, we shall now give heuristic motivations of some

of its main concepts which will then be reviewed more precisely in Sect. 2.2.

The local, gauge-invariant observables of a gauge theory are constructed
from real currents, J%(z), z € M®, a =1,2,3,..., which commute among each other at

space-like separated arguments, from Wilson loop operators, W([.),V and Mandelstam

string operators, M(7), where L is an arbitrary smooth, bounded, space-like loop without '

double points, and + is an arbitrary smooth, bounded, space-like curve; etc.. In order
{0 obtain densely defined operators on the vacuum sector, Hy, of the theory, one has to
smear out these currents, Wilson loops and Mandelstam strings: Let f be a real-valued

test function. We define

Jo(f) = ]l dz J°(z) f(z).
Md

One may éxpe(:t that J'( f) defines a selfadjoint operator on the vacuum sector H;.
Moreover, all bounded functions, A, of J°(f) are localized on the support of f, (in the
sense that [A, J’(y)] = 0 whenever y is space-like separated from the support of f, for

all ).

" Let ¥ be a finite-dimensional parameter space equipped with a smooth measure, do,
and let {£(c): 0 € suppdo C T} be a family of smooth, Epace-like loops, free of selfin-

tersections, smoothly dependingon ¢ € ¥ and contained in a space-time region © C M¢.
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. Heuristically, we define an operator

Wo = fdaW(L(a))

(where the integral is interpreted in the weak sense). One can imagine that Wy defines
a closed operator on Hj all of whose bounded functions are localized in O. (Similar ideas

apply to the Mandelstam strings M().)

We now define local observable algebras 2A(O), for O some bounded space-time re
gion, as the von Neumann (weakly closed*) algebras [17] generated by all bounded function.

of the operators

{J‘(f)rsuppfco) a=112131"'; WO;MO}-

As explained above, one expects that if O; and O, are two space-like separated space-time

regions then locality of the theory implies that _
[4,B]=0 forall A€2(0)), BeA(0,).

It is also clear that if O; C O, then A(0;) C A(0;). The general properties required o
the net {A(O)}ocms of local algebras are discussed in [17, 19] and will be briefly sketche:
in Sect. 2.2 ' ’

Let U; denote the unitary representation of 151 describing the dynimics of th
gauge theory on its vacuum sector H;. Let A be an element of P} projecting onto a
element (A,a) € P, (where A is a Lorentz transformation and a € R? is a space-tim

translation). Then one expects that, for every observable 4 € A(0), U;(2) AU, (A)* onl

" depends on (A, ) and is contained in the algebra 2 (O(A,.)), where

One) = {z eM?: _A"(z —a)€ O} .
Hence we have a representation, e, of P}, on the-algebra of observables of the theory give
; . | .
by .
aa)(4) = Dh(X) AT (A)*,
with .

a,0)(A(0)) = A(On) -
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We now suppose the theory has some non-trivial conserved charges giving rise to superse-

lection rules. Let H; be a Hilbert space of states of “charge 5" orthogonal to the vacuum °

sector H,; (the charge is here viewed as being “multiplicative”). It is customary to assume

that there exist a field ¥’ (v,) carrying “charge ;" ‘with non-vanishing matrix elements

between vectors in H; and vectors in H;. Here 7, is either a point z € M (charged -

local fields) or a space-like string starting at a point = € me and extending to space-like
infinity (Mandelstam operators in gauge field theories without colour confinement, such
as three-dimensional Chern-Simons gauge theories). Let {y(o): vE Y} be a smooth,
finite-dimensional family of space-like strings contained in a “space-like cone” C C M¢,

and let do be ; smooth measure on 3. Heuristically, one defines
$(0) 1= [ dogi(a(0)).
z

One may imagine that $7(C) defines a closed operator on the entire physical Hilbert space
of the theory. Then 47(C) has a polar decomposition

vi(e) = Ui | ()|,

* where [(C)| is a positive, selfadjoint eﬁerator of charge 0, hence leaving all super-
‘'selection sectors invariant, and Ug 'is an operator carrying “charge ;" and mapping the
‘otthogona.l complement of the null space of [7(C)| isometrically to (a subspace of) the
physical Hilbert space. Heuristically, the operators U and [$#(C)| commute with all
observables localized in regions space-like separated from C. One can now extend Ui
to an isometrie operatot Vi, defined on the entire physical Hilbert space, which carries
the same charge as Ué and commutes with all observables localized in regiens space-like

- separated from €, for some cone C containing C.
For every bounded observable A of the theory, the operator
A= () 4%

is then expected to be again a bounded observable, and xf A is localized in a space-time
region space-like separated from C then p"_,(A) A. The map /’Z' is therefore called an
~ endomorphism of the observable algebra localized in ¢
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In the next section, we recall rigorous results, due to Buchholz and Fredenhagen [20],
asser.ting the existence of endomorphisms with the properties of pirunder very general,
physically plausible bypotheses on the theory. The Buchholz-Fredenhagen construction

of endomorphisms does not involve first constructing operators analogous to V’ Rather -

the existence of such operators - wlnch are bounded versxon: of charged field operators -
is derived from the existence of loca.hzed endomorplnsms It is-one of the major goals of
our work to construct operators analogous to the operators Vj and discuss their algebraic
properties, in particular their statistics, for some class of field theories in three space-
time dimensions characterized in tem:u of nets of local observable algebras and families

of localized endomorphisms.

ﬁom now on, we shall work within the formalism of algebraic field theory [17, 18,

19, 20, motivated by the heuristic considerations sketched above, and our analysis will

be mathematically rigorous. We expect that the hypotheses on which our analysis is

based can be verified for some two-dxmennona.l conformal field theones (30, 25] and some

three-dxmensxonal Chern-Simons gauge theories [38]

It should be mentioned that, in Sects. 2.2-2.4 and in Chapter 6, the reader is expected

. to be vaguely familiar with one of the references [11 15, 22].

2.2 Generalities Concerning Algebraic Field Theory

- The starting point of the algebraic formulation of local, relativistic quantum theory is

a net, .{Q((O)}, of von Neumann algebras of local observables indexed by bounded, open
regions, O, in Minkowski space M4, If S is an unbounded space-time region in M? one
defines an algebra of observables localized in S by setting
%A(8)= U %0, ' (21)
ocs .
© bounded

where the closure is taken in the operator norm. We define the a?lgebra. A of all quasi-local

observables as

%A= 2A(S = M), | (2.2)
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The algebras %(S) and A are C';a]gebrn. The relative commutant, A%(S), of A(S) in A
is defined by »

A(S)={A€A:[A4,B)=0, forall BeAS)}. (2.3)
The causal complement, &', of a region S C M¢ is defined as
S'={zeM:(z - ¥)<0, forall yeS}). (2.4)
Let Co be a wedge in (d — 1)-dimensional space. The causal completion, C, of C, is defined
by .
¢ =(C) - (28)

and is called a simple domain. If the opening angle of Cp is less than 7 C is called

a space-like cone.

Locality and relativistic covariance qf the theory are expressed in the following two
postulates on the structure of the net {%(O)}.
(1) Locality:
‘ A(S’) € A%(S), _ (26)
for any open region S C M. k

(2) Poincaré covariance: There is a representation, a, of the Poincaré group, ‘Pl,

as a group of *automorphisms of % with the property that

ana)(2A(S)) = ASney), @7)

where .

Swe = {z €M : A"z —a) e S}. | (2.8)
The properties of a physical systém described by {2, a} can be inferred from the repre-
sentation theory of {A,a}. We focus our attention on the analysis of physical systems
at zero temperature and den;ity. Then it suffices to consider a restricted class of rep-
resentations of {2, a} which has been described in work of Borchers [18] and Buchholz
and Fredenhagen [20]. Buchholz and Fredenhagen start from the assumption that all
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representations describing a local, relativistic system at zero temperature and density car
be reconstructed from what they call massive, single-particle representations [20]. They
then prove that there exists at least one vacuum representation, 1, of A on a separable
Hilbert space, 'thcont‘aining a unit ray, Q, the physical vacuum, which is cyclic for 2
and is space-time translation invariant, i.e.,

(2,1(aa(A)0) = (,2(4)), - 29

i

for all A € 2 and all ¢ € MY here {a. = a(,,,)} is a representation of spacc-tirﬁe
translations of M4, [In the analysis of [20] full Poincaré covariance is not assumed; if
is 'suiﬁ;ient to require locality and space-time translation covariance. In our analysis
space-rotation covariance will be used at some point, but full Poincaré covariance is nof
needed.] It follows from (2.9) that space-time translations are unitarily implemented or
H, by a group of operators U, (a) = expi(a®H, —3. B), a = (a°,&) € M¥, and it follows

from the starting point chosen in [20] that the relativistic spectrum condition,
i L

spec (Hl, ﬁ1) c V+ . ' . (2.10:

" holds.

In the following, we shall assume for simplicity that there is a unique vacuum rep

resentation, (i.e., there is no vacuum degeneracy). This assumption must be given up i

' the study of two-dimensional theories with topological solitons [11]. Our analysis can b

extended to certain theories with vacuum degeneracy without much diﬁicuity, in pa}ticu

lar to a class of two-dimensional theories with solitons. It can also be applied t6 studyin

.the chiral seciors of two-dimensional conformal field theories; see e.g. [23, 22, 25]. W

shall, however, focus our attention on three-dimensional theories, following (15, "24], sinc

these have been studied less intensely.

If the vacuum is unique, and under suitable physically plausible hypotheses‘;i'escribe;
in [20],:all representations, p, of % encountered in the analysis of relativistic, local system
at zerbl temperaturev and density have the property that, for an arbitrary space-like con
cc M‘, the restriction of p to A°(C) is unitarily equivalent to the restriction of th

l v
!
!
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vacuum representation, 1, to A5(C), i.e.,

P lQl‘(C) = llﬂ‘(C) . - (211)

A representation of 2 with this property is said to be localizable in spacc-lii:c cones
relative to the vacuum representation. In the framework of [20], only representations,
p, of 2 satisfying (2.11) are considel;ed which -are translation-covariant, i.e., for which
there exists a continﬁous, unitary representation, Uy, of Mi on the representation space

(superselection seétor) ‘H,, corresponding to the representation p such that

P(aa(4)) = Up(a) p(4) Up(—a), (212)
where .
Uy(a) = expi (a°H, - &- B,) , (2.13)
and i
spec (H,, }3,) cv,. B (2.14)

A fundamental assumption on the choice of the net {%(O)} of local algebras is duality, [19,
20): One assumes that the algebras 2(Q) are chosen so large that

1((S)) = TG, (215)

where B' denotes the commufing algebra of a subalgebra, 9B, of the algebra, B(H,), of all
bounded operators on H;, and B" = (B')' denotes its weak closure. [Duality (2.15) can
be derived from a suitable set of postulates for local, relativistic quantum field theory, [39],

and expresses the property that states in H; do not carry a non-abelian charge.]

Remark. The analysis presented in this chapter can be apf’lied to the chiral sectors
of two-dimensional conformal field theory if Minkowski space is replaced by the circle S?,
a compactified “light-ray”, with a distinguished point P, the point at infinity, (correspond-
ing to the auxiliary cone, C,, introduced below), space-like cones, C, in M? are replaced
by intervals I C s , and Poincaré covariance is replaced by covariance under PSL(2,R).
In this case, the spectrum condition becomes the requirement that the generator, Ly, of

rotations of S? is a positive operator with discrete spectrum.
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" Next, we construct an extension of the algebra 2 which will be more convenient for

our analysis. First, we note that the vacuum representation 1 of A is faithful. In the
following, we shall identify 2 with the subalgebra 1(21) of B(H,). I Bisa subalgébra
of % we denote by B the weak closure of 1(B) in B(H,;). Let C, be some aux:lxuy

space»hke cone in M¢ of arbitrarily small opening angle, and set

i ) ,C.+z={yEM‘:y-zEC.}.
We define an enlarged algebra, B°*, containing 2:
—_————n
B = |J (. +3z) . (2.16)
: . zEMP . .
A fundamental result of Buchholz and Fredenhagen [20] is that every representation p of A
localizable in space-like cones relative to 1 has a continuous extension to BC*. Moreover,

given a space-like cone C in the causal complement of C, + z, for some z € M‘,. there

exists 3 *endomorphism, g%, of B° such that
PA(A)=4A, forall Ae%(C), (2.17)

and the representation 1(2()) of B is unitarily equivalent to the representation p of

‘Bc‘, i.e., there exists a unitary operator V¢ from H, to H,; such that

| - A=AV 0

Next, l)et pc be a *endomorphism of B localized in a space-like cone C, in'the sense.

of equétion (2.17), and let 5¢ be a *endomorphism of 8% Jocalized in a cone C, with
the property that ¢ is unitarily equivalent to some subrepresentation of pc. Let S be
a simple domain in the causal complement of C, + z, for some z € M9, with the property

that C UC is contained in the interior of S. Then there exists a partial isometry s

PC lc’
on 'H,,!called a “charge-transport operator”, such that
i .
E pC(A)Pfc.Ig = P.:c.ﬁcﬁl(A) ) it (219)
i ! '
for all?A € BC. It follows from (2.17) and duality, see (2.15) and [19, 20], that
IS 4, € A(S)" c B%. : 7 (220)
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Let p and g be two representations localizable in space-like cones relative to 1, and let p?
and p* be two *endomorphisms of B localized in space-like cones, C, and Cq, with the
properties that C, C C'g,C, UC, C (Cq + z)', for some z € M?, and p and g are unitarily
equivalént to p® and f', respectively. We define p o g to be the unique equivalence class

. of representations of B°* unitarily equivalent to the representation p° o g% of B on H;. -

It is easy to check that p o g is again localizable in space-like cones relative to 1, that it
is translation-covariant (see (2.12)) and satisfies the relativistic spectrum condition (see
(2.14)), provided p and g are translation-covariant and satisfy the relativistic spectrum
condition. It is not hard to see [20] that if Cp and Cy are space-like separated (Cp C C',)
then p? o p" = p%0 p®. Hence ) )
pog=gop. (2.21)
Clearly
' lop=pol=p. . (2.22)

Fredenhagen [40] has isolated natﬁra.l physical conditions which imply the following prop-

erties of reﬁresentations of 2 localizable in space-like cones relative to 1.; see also [20, 19).

Property P

(P1) Every representation p of 2 which is localizable in space-like cones relati\{e {0 1, and
which is space-time translation-covariant and satisfies the relativistic spectrum condition
can be d;composed into a direct sum of irreducible, translation-covariant represent.ationx
of A which satisfy the relativistic spectrum condition and are localizable in space-like
cones relative to 1.

(P2) Let p be an equivalence class of irreducible representations of % which are translation-

covariant, satisfy the relativistic spectrum condition and are localizable in space-like cones.

relative to 1. Then there exists 2 unique equivalence class, §, of conjugate representa-
tions of 2 with the same properties as p such that po § = $ o p contains the vacuum

representatibn, 1, precisely once.

From now on, Property P is always assumed to hold; see also t23, 24).
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- of 1 such that

s
!
i
i
'

Deﬁnifibn 2.2.1 We denote by L = Lot 0 the complete list of all inegquivalent, irre-

duciblei, translation-covariant representations of A which satisfy the relativistic spectrum

condition and are localizable in space-like cones relative 16 1.

It follows from Property P that, for ¢ and j in L, the product representation, i o 3,
can be decomposed as follows: '

= ioj =P P+, with KWk, - (2.23)

! ’ kel p=1 :
for all 4 = 1,...,Nijx. The multiplicity, Ni;a = Njis, of kin {0 is 2 non-negative
integer; and, by Property (P2), can also be defined as the multiplicity of 1 in ko0 3.
The int@gers (Ni;2) are the fusion rules of the theory. By the definition of i 0 j, Nijx can be
interpreted as the multiplicity of the reprcsentatioh k of 2 in the representation i (p":())
of 2, where g} is a *endomorphism of B localized in a spagc-like cone C C (C, + 2)'
for some z, with the property that j is unitarily equivalent to 1(p{.()) It is not hgrd' tc
derive i’r_om this that, given k, i and j in L, there exists a compl;ex Hilbeﬁ space Vi (p’,’:),

of operators, V, from the representation space, Hy, of k to the representation space, H;

i((A)V=Vk4), forall Aeg; (224
the diménsion of Vi (pg)i is given by Ni;x, and the s;:alat product, (V, W), between tw
elements V and W of V (p}) is defined by a

VW= (VWi (2.25

By (2.24), V*W intertwines the representation k of 2 with itself and hence, by Schur’
lemma, must be a multiple of 1]y, , because k is irreducible. Intertwiner spaces

Vi (p™ 0--- 0 p’); are defined similarly, for arbitrary i,7,... ,jnand kin L.

Remark.
One pt:u'pose of Chapters 2 and 7-is to use the intertwiners in Vi(pi)i, 4,3,k in L, t
construct certain (bounded) operators on the total physical Hilbert space of the theor:
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called charged fields, which have non-zero matrix elements between different superselectién
sectors, are localized in space-like cones and hence can be used to, for example, construct
Haag-Ruelle collision states [20]. Quantum groups will appéax in the construction of such
fields in space-times of dimension d = 3 and for some class of theories, including conformal

field theories, in two space-time dimensions.

The first step in our construction of charged fields is to construct (“horizontal”) local
sections of orthonormal frames of intertwiners of a bundle, T;;, of intertwiners satisfying
(2.24), whose base space is a “manifold” of *endomorphisms, p?, of B localized in space-
like cones contained in (C, + z)', for some z, with the property that 1(p?(-)) is unitarily
equivalent to j, and whose fibres Vi(p’); are isomorphic to CNik. Such local sections
of frames are constructed as follows: We choose a reference ﬁorphism, p";, localized in
a space-like cone Co C (Cs + 2, for some z, and an orthoriormal basis {V;"‘ (pﬁ) }:'::
for the Hilbert space V; (pé).' consisting of partial isometries from H; to H; satisfying
(2.24). Given an arbitrary *endomorphism, p?, of B localized in a space-like cone
C C (Cq + ), for some z, and unitarily.equivalent to pl, we choose a unitary charge
transport operator I‘f,' 5 8¢ (2.19), which belongs to an algebra B(S)" C BC* associated
with a simple domain § C (C, + z)', containing C; and C. A basis for Vi(p”); is then given
by {V;"( ' )}:’:, where .

Vi) =i (T5,) V(). (226)

Note that, since I'S, ; € A(S)" C B, and i is a representation of B, i (I, ;) is
) AN

a wéll-defmed unitary operator on M.

Bundles I 5, » and local sections of frames of intertwiners in Z;; j, & are con-
structed similarly; see [24}=
Remark.

Since, for j € L, ¢ is an irreducible *endomorphism of B, the choice of I“:, i is unique
Yo
up to a phase factor. This phase factor cannot be chosen continuously, even in "small

neighbourhoods” of P These technicalities are of no concern in this book, except in
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Theorem 2.3.1, below.

2.3 Statistics and Fusion of Intertwiners; Statistical

Dimensions
Let C be a space-like cone which is the causal completion of a wedgé Co in (d — 1)-
dimens;iona.l space. With C we associate a unit vector & € §9? which specifies the
asymptotic direction of the central axis of Co; (for d =3, & is the unit vector in R?
specifying the asymptotic direction of the half-line bisectiﬁg Co). Using polar coordinates,
¢ can be described by d — 2 angles; in particular, for d = 3, € is described by one angle
fe (—;r,r]. Our coordinates are chosen such that the unit vector € associated with C,
is given by (-1,0,.. . 0). If p is a *endomorphism of 8% localized in a cone C, the unit
vector € associated with C is called the ;zsymptotic direction, as ;(p), of p. We ﬁxay choose
the ref;rence morphisms g}, j € L, such that as (pf,) =(1,0,.. ;!, 0). In d = 3 dimensions,
the asymptotic directions of the morphisms p’ inherit the ordering of the angles in (-, ).

We say that two *endomorphisms, p; and pa, of B are causally independent, de-
noted p,ng, if they are localized in cones C; and C; such that C; C 5.

We now recall a basic result proven in [24].

|
Theorlem 2.3.1 Forpand q in L, let p* and p" be two *endomorphisms of ‘Bc" localized
in spaée—like cones contained in C, and unitarily equivalent to p and g, respectively. Let
the inticrtwiners {V;" (p’)}::: and {V,"‘ (p')}::: be defined as in (2.26). Then there are
matrices, called statistics-(or braid-) matrices, ; '

! (RGip (P s (0 10) 1

such t;;at
.V..""(p’)Vp"‘(P')=§R(J',p,as(p’),q,as(ﬂ')&)ﬁ",."kﬂ‘)%"‘(ﬂ’% L@

|
1
1
!
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provided p'x;)'. The statistics matrices are locally independent of the choice of the
auziliary cone C,. Moreover, the following properties hold.

(a) In d > & space-time dimensions, the matrices
R(3,p, 58 (), 0, 38 (#), k) = R0, p,0,k) (228)
are independent of as (7*) end as (o%). ’
(b) For d =3,
Ri,p s (Phas s (00 = R h), (229)

for as (p?) 2 as (p?). [The matrices R*(j,p,q,k) depend on pP and p? énly through p
and g and the sign of as (p*) — as(p?).]

Remarks.

It is easy to see that
3 RE(5,p. 0, k)ks R¥(4,q,p, k) = 676563 (2:30)
Ly .

and that the matrices R*(j, p,q, k) ;atisfy the Yang-Bazter equations in SOS-form.

We now assume that the represéntatiom p € L are rotation-covariant. Thus if 0

denotes a space rotation then

Plao(4)) = Up(0)p(A)Tp(07"), ) (231)

whiere U, is a unitary representation of the universal covering group of SO(d — 1) on the
representation space H, of p. Since pis irreducible and ag,, is the identity when 0,, is

a rotation through an angle 2r, it follows that

U, (Oz') = "]

H, ?
where the real number s, is called the spin of representation p; (for d = 3, s, can, a prior,

be an arbitrary real number, while, for d > 4, s, € %Z)
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(232)

Theorem 2.3.2
R*(j,p, g, k)i = et s=4=mIR (5, p, g, k)f (2.33)
Remark.
The fact that in d > 4 space-time dimensions R = R~ and Theorem 23.2 imply that
sp€iZ forall pe L. ‘
All the results reviewed above are proven in>[24}.

Next, we recall what is called fusion of intertwiners [24]. For p,q and r, let p?, p?
and p" be three *endomorphisms of B unitarily equivalent to p,q and r, respectively,

and localized in the interior of a simple domain S C C;. Then there exist N, partial

‘isometries, ;
i I‘i’op',p'(l"’) € m(5) C Bc. :‘ : (234)
p= 1, <y Npq.r, such that
7 (p'(4)) Troptor () = Toropa r (1) £ (4). (2.35)
Let o,(r;p, q) be given by
| oulripr0) = (F (S0 () V), VEAVRGD) . (236)

Note that' Ny, =1, so that there is a unique (up to a phase) isometric intertwiner of the
type of VP(p"), for all r € L.

Theorem 2.3.3

(a) There exist matrices (f‘(j, p,q,k)::;) only dcﬁgnding on the representations
7,20, k,i and v, (but not on the specific choice of ¢¥, p% and p'), such that

VIV =

gyﬁ(j,p, 4B 50, P, 0) 7 (THope (1) VI(T). (237
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The matrices F can be ezpressed in terms .of the matrices R* and R~ as follows

F(j:?: 9 k):u"; = .
Z Ri({» q, E: 1):2‘: R*(j: P, k» q_)::: R:F(jr E: L 1)2‘11 . (238) .
% :

{b) There ezist matrices (F"(j, ?,4, k):;‘;) only depending on the representations
5,2,9,k,i and r, (but not on the specific choice of p®, p% and p*), such that

5 (TS () V() =

Y (5,2, g, Ragoa(rip ) V() ViH(69). (2:39)

The matrices F' can be ezpressed in terms of R* and R~ by a formula analogous to

(2.86); (see Theorem 2.8.4, (1))

(c) The matrices F' and F' are related to each other by the following equations

P, k)ias FGip, 0, k) = 616265, )
v .
and .
PUo)(j,p,q, k)25 := " F(j,p,9, k)% F(i,p, 0, k) (2.41)
v .
are the matriz elements of orthogonal projections, P("-")(j, P, 4, k), with -
3 PU#(5,p,q,k) = Uy, (poopt); 2 (completeness). (2.42)
™ .

: Reniarks.

(2) The consistency of the two equations (2.38) (+ « —) follows easily from Theorem
' 2.3.1. Theorem 2.3.3 is proven in [24].
(b) We recall that V,(¢?); is the Hilbert space of intertwiners V from M, to H; satisfying

J(PP(A)V =VEk(4), forall = Aed,
see (2.20). We define Vi (p° 0 p%); to be the Hilbert space spanned by the intertwiners
(V@) ieL, a=1,.., Ny, B=1,...,Nus}.
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Then ‘the matrices R%(j,p,q,k) define unitary maps from V, (p” o‘p')’. to Vi (p'o i
proviéed p” and p' are causally independent (p’Xp‘), the matrices F and F define
unitary endomorphisms of V, (p” 0 p*),, and the matrices PU#)(5,p, g, k) define orthogonal
projections on Vi (p” 0 p7);. ‘

(c) It is sometimes preferable to use

é i‘(j’Pn an):z =
Y RE(L,5,2, 9050 RE(p, 5,0, K)ig R¥ (1,75, k)il F(1,p, 0,700 (243)
nep

instead of (2.38), in order to compute the F matrices from the R* matrices. It is useful

1o express the matrices R¥, R~, F and F graphically as follows

QL pV

i o R¥(j,p,0,K)% (2.49)
“ R Gkl (2.45)
|

|

, P, q,V !

! i

| - »

j k o F(j,pq, k)2 - (246)
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j K e FGpa k). (247)
p,a q,B
We also introduce the graphical notation
pa p,B
i wE() =tennim, e
i
i
and ,
j : N af .
i N T ST
p.a p,B

Identities between R*, R™, F' and F' can now conveniently be expressed graphically.

It is quite straightforward to prove the following theorem [24].

"Theorem 2.3.4 The matrices R*,f‘ and F* satisfy the equations

(a) r s

g .sp’q‘

s p q
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p q S p q s (2.50
/
) ( =
k /
S r S r
ele.; (polynorxﬂa.l equations)
®) |
$,B P g
> pkqg =g85 X r — (2.51
k... . [
r,a P q

(c) There ezist numbers d, > 1, for all p€ L, and unitafy matrices,
Vi =V (p,q,1), such that

p,a q,8 b,d q,B
) i j i
|
rYy ¢ r,y
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r,y

and

|

p,a q,B ’ p,a an
For the proof of Theorem 2.3.4 see [24].

Rémarks.

(2) Equation (2.38) for P and a similar equation for ' follow from Theorem 2.3.4,(a).
(b) The number d,,p € L, is called the statistical dimension of representation p. If
R* = R~, i.e., if the theory has permutation group statistics then d, € N, [19]. It is
shown in [19, 20, 23], that d, = d;. From Theorem 2.3.4, (b) and (c), it follows that d, is
the largest eigenvalue of the fusion rule matriz N,, defined by

(N’)jk = Njpi .

This can be shown by noticing the ideptitien

dpd, = d,d, (2.54)
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=Y q p rl =X N4 r =%nN.,d. (255

Identity (2.54) follows from Theorem 2.3.4,(b) and (c); [22]. Thus (d,),e is & Perron-
Frobenius eigenvector, correspon&ing to the eigenvalue d,, of the fusion matrix N,. Con-
nected to this result is the interpretation of d} as a Jones indez, [23, 41]. See Chapter 3.
(c) As a special case of Theorem 2.3.4;(c) we note that

P . p :
! :
| - )L
N] [] d’
1 i
‘ P P
P
This identity is important in the construction of invariants of links and of ribbon graphs

from the matrices {R*, P, F}; see [43, 28, 44].

(2.56)

The main result of this section is the insight established in [15, 24, 22] that every
local, relativistic quantum theory, in the sense of Sects. 2.1, 22 in three or more space-
time dimensions [and the chiral sectors of every two dimensiéna] conformal field theory]
provides us, in a canonical \way, with certain combinatorial d&ta, namely the fusion rules
(N,)peL, and the statistics-(or braid) and fusion matrices, Rt, F' and F, respectively. In
d > 4 space-time dimensions, we bave that R* = R-, butind =2,3 dimensions R* and
R~ are, in general, distinct; see Theorem 2.3.2. It is natural to ask, whether these data
might be dual to some simpler algebraic object, such as a group or a quantum group. In

a remarkable series of papers {29], Doplicher and Roberts have shown that if R* = R-,
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i.e., for permutation group statistics, the data {(N,),g,,R, F, f'} are dual to a compact

- group, i.e., L can be viewed as the set of finite-dimensional, irreducible representations

of & compact group, G, Ny ; is the multiplicity of representation j of G in the tensor

product representation p ® k, and R, F",F are standard 6-index symbols associated with -

the representation theory of G.

The point of this work is to show that if R* # R, (frequently the case in d = 2,3), -
then the data {(N,),g,, R, F, F} are often dual to some guantum group, {1, 2, 3]. We

- shall discuss in detail one example (see Sect. 6.3.) of a local relativistic quantum theory,

encountered in the stuay of three-dimensional Chern-Simons gauge theory with gauge
group SU(2),which leads to quantum SU(2), i.e., Uy(s&2), with g a root of unity. The

same example appears in the study of two-dimensional Wess-Zumino-Novikov-Witten

_models based on SU(2) current algebra and of minimal conformal model 19, 31]..

In the next section, we study properties of the representations of the braid groups

determined by the statistics matrices ‘R*.

2.4 Unitary Representations of the Braid Groups
Derived from Local Quantum Theory; Markov

Traces -

We return to the study of a local quantum theory described by an algebra 2 ,a *auto-
morphism group, a, and a set; L, of representations localizabig in space-like cones. We
show héw, ford=2o0r3 ;Lnd assuming that R* # R~, the quantum theory determines
unitary representations of the braid groups, B,, on n sfrands, for arbitrary n, equipped

with a positive Markov trace 7a. These results are discussed in more detail in [22, 24].

For every p € L and every n € N, we define a space Q;,") of paths of length n, as

follows: Every element w € ™ is a sequence of symbols

w=(man, haay,..., ta0a),  with  pi €L, (2.57)
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and a; = 1,..., Ny, s 1 =1,...,0, with o =1. Two neighbors, p;_, and p;, are

constrained by the requirement that Npwicawss # 0.

We fix a *endomorphism p® of BCe. With each path w € A, we associate an

intertwiner

=TTV (p), (259)

: : =1

intertwining the representation 1((g")*(-)) of A with the representation w, of 2, where
w4 = p, is the endpoint of w. Here, (p7)" = pPo...0p" (n-foid composition of p” with
itself). The space of these intertwiners carries a natural scalar product (-,-), defined as in
(2.21), Sect. 2.1. In this scalar produét, {V,, twE Q;"),uq. = k} is an orthonormal basis
for the space, Vi ((¢*)"),, of intertwiners between representations 1 ((?)"(-)) of 2 and k,
ie., :

(Vu; Vw') = 5:».»‘ . . ; (259)
We define a path algebra 145, 46], A (Q(")) by setting

A(0g) = @‘B(vk(w)"),) . (260

where B () is the algebra of all linear endomorph:sms of a Hilbert space H. It is easy

to see that [24]

| AlOP) 2 1((Pr@)y . (261
Next, we define a unitary representa.tion of the braid group B, on n strands with val.

ues in A (Q(")) Let 0f?,...,02!, be the usual generators of B,. We define a umtary
representation, , of B, on V,. ((p”)")1 by setting o ‘

: (5?‘V)u=§:&*(w,w‘)%q (262

where )
RE(w,w') = B* (pio1, 2,y i Yiaiainn (263
if w=(pe, )y,

L+#1, o) = ay, for L #1i,i+ 1. For all other choices of u', gwen w, we set R (w,w') = 0.

n and 0’ = (pp, ), ., Where By = e for
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Let b =[1%_, of¢ be an arbitrary element of By; €a = %1, ka € {1,...,n—1}, for
a=1,...k. We define

a=1

with Rf as in (2.63). The representation " of B, on Vi((¢*)"), is then completely
determined by setting

V) 1= X Bulw, o WVor - wy =y = k.  (265)

It is not hard to show, see [22, 24], that “:be b is, in fact, a unitary representa-
tion of B, on Vi((p°)*);- This representation admits a unique, positive, normalized
Markov trace, 75, constructed as follows [24]: Given w = (41,01, .+ s iny @n) € Qg‘), we
set @ = (p1,...,4n). We define E

PHi

=1

ﬂww—ﬂrc”lm; | . (266)

for @ = ', and ﬁ‘(w w')=0, otherwise; the matrices F(:[) have been defined in (2.48),
Chaptcr 2.3. The matrix F(w,w') is defined similarly; see (2.49), Chapter 2.3. Then 7§,
is given by

TBi= ¥ T tr () B w)Fese) © (267)

B ger .u-rq-(m ..... bn)
for 4m1,3,3

The quéntity 7h (61) =: X is called statistics parameter (23, 22], and one can show [23,
22, 19] that the statistical dimension, dy, is given by

dy = |rh (&)l : (2.68)
The fusion rules (Np) ¢, and the values of the Markov traces H
{-r,’:,(z) :b€B,,p€ L} )

on B, for all n =2,3,4,..., are intrinsically associated with the quantum theory de-
scribed by {2, a,L}. They do not depend on how the phases and normalizations of the
intertwiners V. (pP) are chosen, in contrast to the data {R%, F, F}.

*Clearly, 7§, can be extended to a state on A (0?"), for every n.
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We know from [43] that a quasi-triangular (quasi-) Hopf algebra K with universal
R-matrix R, and a list, £, of finite-dimensional, irreducible representations of positive

g-dimensions of K also give rise to representations of the braid groups B, equipped with

- Marko_:v tucés_ Th» P € L, for all n = 2,3,4,.... From the results reviewed in this section
we knéw that only those quasi-triangular (quasi-) Hopf algebras, K, and families, £, of

representations of K can appear in local, relativistic quantum theory for which
(1) the associated representations of B, are unitarizable, for all n; and
!
(2) the Markov traces 7jy, p € L, are positive.

For K = U, (s8441), this restricts the values of ¢ to ¢ = exp(ix/N),

- N=d+2,d+3,...,,. What, as ﬁeld theorists, we are longing for is a g;cnefal theo-

rem which completely characterizes those fusion rules and positive Markov traces on B,

n=2,3,4,..., which come fron qua.si-triangulu (quasi-) Hopf algebras. We do not know

a general result of this type, yet. [In d > 4 space-time dimensions, the results of Doplicher

~and Roberts [29] completely settle an analogous problem, with K the group algebra of

a compact group.]
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Chapter 3

Superselection Séctors and the

‘Structure of Fusion Rule Algebras

As proposed. in [23], it is of interest to investigate the structure of the chain of algebru
C-1=p (B")'n (‘Bc‘) Cpop (%C‘)Iﬂ (‘BC‘) Cpopop (‘Bc‘)' N (%c') AN (31)

where p is an irreducible *-enddmorphism an 7 a conjugate endomorphism. The point of
studying algebra chains obtained by alternating compositions of the form (3.1) is that they
admit faithful traces which give rise to conditional expectations and thus to Temperley-
Lieb algebras [41] as suBalgebra.s. This structure has been studied in rather much detail.
For rational local quantum theories, i.e.,. theories with a finite number of supefselec-

tion sectors, one finds that the chain (3.1) eventually leads to a tower in the sense of

- Jones [41). The factors in these algebras are distinguished by the inequivalent, irreducible

representations occuring in the compositions pogopopo..., which makes it natural to
try to connect the inclusions of the algebras defining the tower to the fusion rules {N;;x}
introduced in Sect. 2.2; see also [47, 41]. Assuming that every irreducible representation
of 2 is contained in some p" o p™, we shall explain, in some detail, how \fusion rules can
be recovered from (3.1) and from towers that are in some sense coupled or isomorphic
to (3.1).

Since most of the structural information can be obtained from the fusion rules alone,

-
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“and (a,b) := £(a 0 b) is the usual cuclidian scalar product on NI,

a larger part of this section is devoted to the study of fusion rule algebras, as introduced

in [47]. In view of a classification problem solved in Section 7.3, we give a formal treatment

of the action of the group of automorphisms in a fusion rule algebra.

~ On the level of algebra-chains, similar to (3.1), automorphisms give rise to concur-
rent Temperley-Lieb algebras which, for a special decomposition .rule for p 0 5, lead to
a complete determination of the underlying theory, as we shall see at the end of this

.
section.

3.1 | Definition of and General Relations in Fusion
Rule Algebras, and their Appearance in Local

" Quantum Field Theories

A fusion rule algebra (superselection structure, ...) ®is a pos‘itive lattice (I@l = Nu‘l),

with a distributive and commutative multiplication
’(I>x<I>—-HI>; axb—aob,
an inv‘olutive and additive conjugaﬁion, -
% : -:95%; a—7d
with 'a':o’5=_5-5, a unit 1 € & with
‘ . loa=a and T=1
and an additive evaluation ¢

e : - N such that
e@) = efa), €(1)=1

It follows, that the scalar product (, ) obeys - N
(eoz,y)= (z,%oy), (3.2
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so that we have, for the length |la]} := /(a,a) of a € &,
llall =1liall, llaobll=llaoBl, etc.. (3-3)

Minimal elements, ¢, in @, i.e., vectors that cannot be written s the sum of two other

nonzgero vectors, are characterized by

ligl=1. - (34)

Every vector of & can be written uniquely as a sum of the minimal elements ¢ € &, and
any additive bijection of ¢ onto itself coneéponds {0 a permutation in

L = {¢ € ®|¢ minimal}. In particular, we have that 1 € L, that the conjugation is an
involution, ; = ¢, of L, and that ' '

| e(48;) = 6. : (3.5)

A fusion rule subalgebra (sub-superselection structure) &' is an invariant sublattice of 9,
which contains 1, closes under multiplication and for which (3.4) holds, for all minimal

vectors.

Note that a fusion rule algebra is simple, in the sense-that there do not exist proper

ideals, i.e., if ®, is a sublattice of & spanned by minimal vectors with

B, =9, and $,0dC9,
it follows from (3.5) that 1 € @, and hence & = &,.

The multiplication in & is determined by the products of the minimal elements

¢iodi =) Nijidi, (3.6)
: kel
where the structure constants N;;x € N are, what we previously referred to as fusion

rules.
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In terms of the fusion rules, the definition of the fusion rule algebra is given by: .

i

a) commutativity . Nije = N,-; &
b) associativity ZN;,-,; Niey = E Niy Njrg
k- I3
c) unit Nai = Mj=6&; (3.7
d) involution Nix = Ny '
; e) evaluation : Ny, = §&;.

A rep{'esentation of a fusion rule algebra, , of @ on a lattice A = N* is an assignment,

a— p(a), of elements, @, in & to additive mappings of A to itself (i.e., p(a) is a nonnega-

tive, integer k x k matrix), with
p(1) =1, p(a)p(d) = p(aob) and p(z)= p(a). (3.8)

The representation we are primarily interested in is given by (right) multiplication of ¢
onA%Q,sotﬁat ~ . - 3 ‘
| p(4;) = N}, ! (39)
where (N;),, = Nijx are the matrices of fusion rules. .

y
K

In fact, any lattice A that carries a representation of $ and has an element w with

| @olal)=ele)  (310)

can be written as a sum A = &, © 3}, where &,, P2 are $-invariant, and &, is equivalent

to the right representation. If a representation, p, satisfies ||p(4;)|| = |[Nill, then we call p

dimension preserving. Eqs. (3.8) yield:
, NN =T MM 1)
N=1, Ny=N . ' (3.12)
Using (3.10), for w = 1, and (3.12), (3.7) we see that
Ni=Ni=4;, aswellas Ny= CN,C, (3.13)
where (C);; = &. i \‘ |
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Moreover, commutativity of o implies
[N, N] =o0. ' « (3.14)

Suppose we have a lattice §, and nonnegative integer matrices N; acting on &,, that obey

(3.12), (3.13) and (3.14), for a given involution C, then we find that

a) (L,N;N;1) = &4
b  (LNN;N.1) = Ny; (3.15)
¢) (1,N;N;N;N;1) = z Nijo Ny

(137

By (3.14), these expressions are completely symmetric in the indices 1,7,k and £ and, by

(3:12), are invariant under conjugation (%, 7, k,£) — (i, 7, k, ), so that equations (3.7) are

easily verified. Hence any set of matrices obeying (3.12), (3.13) and (3.14) determines

a fusion rule algebra.

From the results reviewed in Sections 2.1-2.4 it is clear that every local quantum
theory satisfying properties (P1) and (P2) of Section 2.2 defines a fusion rule algebra, 3.
Let '

B= \ AC.+z)
. zeM~
denote the auxiliary C* algebra, introduced in Sect. 2.2, containing the observable al-

gebra 2; (C, is the auxiliary space-like cone). We define & to be the fusion rule algebra
generated, through arbitrary compositions, by the family L of transpoftable, irreducible
*endomorphisms of B localizable in space-like cones. Let C be an arbitrary, non-empty
space-like cone space-like separated from C,. We define the von Neumann algebra M1 to
be the local algebra

m = M(C) :=2A(C) .
By Haag duality in the form considered in [20),
o = FC),

on the vacuum sector, Hj, of the theory. Let U = U(C) denote the group of unitary

elements in 9M, i.e.,

Ui={vem:v:=v-}.
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-Since every endomorphism in L is transportable, and hence is unitarily equivalent to

endomorphism localized in a space-like cone of ’arbitrarily small 6pening angle contained
the cone C, we can choose a representative which is a *endomorphism of I acting trivia
on M in every equivalence class of‘unitarily equiv.alent ’endomorphis;ns in L. By al
including arbitrary compositions of such endozﬁorphisms we obtain a subset, End(C
of End(ﬁJI(C)) wi:?ch is closed under composition and hence is a (sub-)semigroup. TI
semigréup End.(C) contains the subgroup, Int(C), of inner *automorphisms of M give
by | ‘
Int(C):={ov:3V e U(C) st. ov(A)=VAV' VAeMm}.

The fusion rule algebra & of the local quantum theory under consideration is then give
by ‘

® = End;(C)/ Int(C). v (3.16

The cone C, although chosen arbitrarily, and the von Neummr‘x"a.lgebras D = M(