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ABSTRACT

The exploration of the Berry phase in classical mechanics has opened new frontiers in understanding the dynamics of physical systems,
analogous to quantum mechanics. Here, we show controlled accumulation of the Berry phase in a two-level elastic bit, which is a classical
counterpart to qubits, achieved by manipulating coupled granules with external drivers. Employing the Bloch sphere representation, the paper
demonstrates the manipulation of elastic bit states and the realization of quantum-analog logic gates. A key achievement is the calculation of
the Berry phase for various system states, revealing insights into the system’s topological nature. Unique to this study is the use of external
parameters to explore topological transitions, contrasting with traditional approaches focusing on internal system modifications. By linking
the classical and quantum worlds through the Berry phase of an elastic bit, this work extends the potential applications of topological concepts
in designing new materials and computational models.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0

International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). https://doi.org/10.1063/5.0245354

I. INTRODUCTION

The study of geometric and Berry phases has profoundly
enriched the realms of classical and quantum mechanics. These
phases, arising during cyclic adiabatic processes, are far from mere
mathematical constructs; they provide deep insights into the essence
of physical systems. One remarkable aspect of the geometric phase
is its topological nature. It is insensitive to small perturbations or
deformations of the path but depends only on global properties such
as winding numbers or topology. This robustness makes it particu-
larly relevant for quantum computation and information processing
applications. In quantum computation, geometric phases can be uti-
lized for implementing quantum gates and performing fault-tolerant
operations on qubits. By carefully designing paths in parameter
space, one can manipulate qubits without being affected by certain
types of noise or decoherence processes."~ Topological insulators
are another area where geometric phases are crucial.” These mate-
rials exhibit unique electronic properties due to their nontrivial
topology. Geometric phases have also been observed in various other
systems, from neutrons’ behavior to twisted anisotropic materials’
properties.

The Berry phase, a topological interpretation of the geometric
phase, extends beyond quantum physics and mathematics, influenc-
ing classical mechanics as well.” * In classical mechanics, topology
relates to how system components are arranged and interlinked,
which defines the system’s structure and functionality. One exam-
ple is the spin-like topology that a Dirac-like equation can explain
in a one-dimensional (1D) harmonic crystal with masses coupled
by harmonic springs.”'’ In addition, it has been demonstrated that
periodic topological elastic systems can sustain geometric phases
that are “quantized” (such as the berry phase).'"'* Understanding
topological structures through geometric phases is crucial because
of the bulk-edge correspondence principle, which predicts local-
ized states at the boundary between crystals of differing topologies,
enabling disorder-resistant one-way information transmission."’

Despite progress, gaps remain in understanding the geometric
and Berry phases in classical counterparts of qubits, such as elastic
bits'* and phase-bits."”'® While geometric phases have been pro-
posed in superconducting circuits since their first demonstration
of coherent quantum effects,’”’** and studies have explored topol-
ogy and geometric phase in topological elastic oscillation, vibra-
tion, and waves,”” similar research in classical two-level systems is
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lacking. Nevertheless, geometric phases relate closely to the classical
idea of moving a vector parallelly across a curved surface. Building
on this insight, in this paper, we theoretically demonstrate the con-
trolled accumulation of a geometric or Berry phase in an elastic bit
constructed from coupled granules. We previously established the
feasibility of creating a classical analog to the qubit using a granular
system.'" Here, we manipulate the elastic bit using the amplitudes,
phases, and frequencies of external drivers and observe the resulting
phase accumulation.

Granular systems are notable for their highly adaptable dynam-
ics, ranging from strongly to weakly nonlinear or even linear.”*
The current study calculates the Berry phase for an elastic bit in a
harmonically driven linearized granular system, capable of gener-
ating coherent superpositions of classical in-phase and out-of-phase
states, analogous to quantum spin states.'* These states are projected
onto a Bloch sphere, a geometrical representation of a system’s state
defined by polar and azimuthal angles.”” The theoretical derivation
of the Berry phase is based on the theory of the Foucault pen-
dulum, where the system’s state revolves around a constant axis,
representing the adiabatic change.”® While this paper focuses on
calculating the Berry phase in a linearized granular system, future
work will explore weakly nonlinear and essentially nonlinear sys-
tems. The current linearized granular system’s primary assumptions
include simplifying nonlinear interactions, uniformity assumptions
for damping and mass, homogeneous material properties, and spe-
cific boundary settings. These simplifications facilitate the analytical
tractability of the model. Such assumptions, however, restrict appli-
cability to small amplitude oscillations, excluding significant non-
linear behaviors that may occur in real-world settings. To address
these limitations and improve generalizability, future studies will
explore nonlinear dynamics and diverse operational conditions, thus
broadening the applicability and enhancing the robustness of the
findings.

The article is organized as follows to sequentially unveil the var-
ious facets of this study: Sec. II introduces the granular system as a
two-level elastic bit, analogous to a qubit, and illustrates its states
on a Bloch sphere. Section III covers the application and manip-
ulation of these states using quantum-analog logical gates, under-
scoring their significance in quantum computing analog. Section [V
delves into the Berry phase calculations, explaining its role in
understanding the system’s vibrational behavior. Section V explores

(@)
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the topology of the granular system through Berry phase values,
examining its capability to generate a range of states and the impact
of external drivers on topological transitions. Finally, Sec. VI draws
the conclusions.

Il. REPRESENTATION OF A TWO-LEVEL ELASTIC
BIT ON A BLOCH SPHERE

This section presents a detailed study of a nonlinear granular
system, linearized and represented as a two-level elastic bit analo-
gous to a qubit, with its states depicted on a Bloch sphere. For such,
we study a granular system consisting of two elastically coupled
granules driven harmonically [Fig. 1(a)].

The system is governed by the following equations:

i 3/2
mti; = kNL[Fleth —ur + Uo]+/ - kNL[Lu — Uy + Go]i/z - 111;11, (1)
i 3/2
miiy = kaL[uz — Fe + 00]+/ +kne[ur —uz + ao]i/z — itz

Here, u; and u, represent the displacements of the granules from
equilibrium, F, and F, are the driving amplitudes, and wp is the

driving frequency. The term kNL(— f@)) denotes the nonlinear

3
stiffness between granules due to Hertzian contact and is dependent
on Young’s modulus E and Poisson’s ratio v of the granules. # is the
damping coefficient, and m(: %ﬂpR3) is the granule mass, which
depends on the radius R and density p of the granules. The static
overlap, 0o, simulates pre-compression in the system.

Higher pre-compression reduces the dynamic displacement
amplitude, allowing us to approximate the system as linear. Lin-
earization is achieved by expanding the nonlinear term in Eq. (1)
using a Taylor series and retaining only the linear component. The
resulting linearized equations are”’

mih = kL(Fleith - ul) - kL(u1 - uz) - I’]ilb (2)

miiy = —k (uz - Fae™") + ki (ur — u) — nita,

1
where k;, = %kNchg is the linear coupling stiffness.
All parameters employed in this study are non-dimensionalized
to facilitate generalized analysis and to focus on the intrinsic dynam-
ics of the system without the constraints of specific physical units.

In-Phase Mode:

1
. By =5(i)

Out-of-Phase Mode:
11
E; = V2 (_1)

Uy Uz

1€:/2:S1 G20z Aenigad /|

FIG. 1. (a) The schematic illustration of the granular system features two elastically coupled granules. These granules are subjected to two external harmonic excitations
(Fef“r' and F,e/®!), and a static pre-compression (o¢) is applied to control the system’s nonlinearity. (b) The two eigenstates of the linearized granular system are

1
V2

1

represented by the in-phase mode, which corresponds to the Eq = (1) state, and the out-of-phase mode of the granules, which corresponds to the £, = 7 (_11) state.
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Furthermore, the damping coefficient # is intentionally chosen to
be small to ensure the system remains underdamped. This choice is
pivotal for maintaining sustained oscillations in response to external
excitations as an overdamped system would fail to exhibit the oscil-
latory behavior essential for demonstrating the accumulation of the
Berry phase.

In our non-dimensional framework, we have chosen a damping
coefficient of 0.003, which represents minimal energy dissipation.
This allows the system to oscillate with negligible attenuation over
the timescales considered. This small damping ensures that the
steady-state response is predominantly governed by external driving
forces rather than internal dissipation. Consequently, even though a
mass with a unit velocity experiences only 0.003 N of resistance in
our non-dimensional terms, this effectively models a scenario where
damping is present but does not overshadow the driving dynamics.
By selecting a small #, we preserve the system’s sensitivity to external
parameter variations, thereby enabling the exploration of topolog-
ical transitions and Berry phase accumulation without significant
distortion from damping effects.

Equation (2) characterizes a linearized granular system sub-
jected to external driving. In solving this ordinary differential equa-
tion (ODE), the general solution comprises both a homogeneous
and a particular solution. The homogeneous solution, which arises
from the system’s intrinsic dynamics, typically involves terms of
the form €. However, due to the presence of damping (as indi-
cated by the damping coefficient #), the homogeneous solution
inherently decays over time, becoming negligible as ¢ approaches
infinity.

In practical scenarios, especially when analyzing steady-state
behavior, the transient effects captured by the homogeneous solu-
tion dissipate, leaving the particular solution as the dominant com-
ponent. The particular solution directly corresponds to the external
driving force and naturally adopts the form e'“"", aligning with the
driving frequency wp. This approach simplifies the analysis by focus-
ing on the sustained oscillations induced by the external excitation,
which are of primary interest in our study.

Therefore, by assuming a solution of the form &'“”", we effec-
tively capture the system’s steady-state response to the external
driving, bypassing the transient dynamics that fade due to damping.
This assumption is well-justified and aligns with standard practices
in analyzing driven oscillatory systems.

Assuming solutions of the form u; = APt and uy = Aye’Pt,
where A; and A, are the amplitude of the vibration displacement, we

iwpt

identify the eigenmodes E; = % (1) and E; = % (_11), correspond-

ing to in-phase and out-of-phase modes of the linearized granular
system (2), respectively [Fig. 1(b)]. These modes form an orthogonal
basis for the system, allowing us to express the displacement field as
a linear superposition of E; and E,,'*

U = (Zl) = ((X|E1> + /3|E1))6iwpt. (3)

Here, o and f3 are the coefficients for E; and E,, where it is nor-
malized to |a|* + |* = 1. In Eq. (3), we use the Dirac notation, an
analogy with a quantum system, for vectors and apply it to the elastic
states of the system by writing vectors in state space.'* This is because
the vectors E; and E; are two mutually orthogonal eigenstates of the
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system and form an orthonormal basis for a 2D Hilbert space. Fur-
thermore, as seen in Eq. (3), the complex coefficients (« and ) are
dependent on each other through phase and form a coherent super-
position of states in the space of two possible forms of vibration
(E1 and E,). On that basis, the modal contribution in the mode
superposition of the total displacement field can be written in the
form of a column displacement state vector, |¢),

o)

This framework allows us to create a two-level subsystem, an
elastic bit, analogous to a qubit in classical terms, through external
drivers.'"* An elastic bit is, therefore, a classical analog with respect
to the superposition of a qubit, the critical component of quan-
tum computing platforms. In the current study, we like to depict
the states of the elastic bit geometrically using the Bloch sphere.
Essentially, each elastic bit will be a vector on the Bloch sphere.
This vector will be defined in two coordinates, 6 and ¢, where 6 is
the polar angle and ¢ is the azimuthal angle. Therefore, the Bloch
sphere will represent a linear combination of E; and E, states with
complex coefficients that will depend on 6 and ¢, indicated by an
arrow. We can describe the state space of the granular system using
the parameters of the Bloch sphere as follows (see the Appendix for
details):

=1 ‘o) (4)

where the expression of polar (6) and azimuthal (¢) angles are

1 (F1 + B2k
Vel ) o)
¢-arg<a>—arg<ﬁ)_arg(ﬁ(

>

6 =2cos ' (|af) = 2cos”

kL(F1 +F2) (5)
—mawp + ki + inwp)

Car ki(Fi1 - F2)
g ﬁ(—msz + 3kg + inwp) '

The current study focuses on the Berry phase and the topology
of the linearized granular system as described in Eq. (1) and repre-
sented in Egs. (4) and (5). To investigate these aspects, we apply an
external harmonic excitation, driving both granules with differing
force amplitudes. The driving force takes the form

Fi=E+(1-8)e°, F=E-(1-&)" (6)

Equation (6) illustrates that the system is driven in such a man-
ner that the amplitudes of the external forces depend on the ratio of
two pure states ( £) of the linearized granular system and their phase
difference 6. In experiments, these parameters can be adjusted using
external signal generators. We will show that with the addition of
the drivers’ frequency together with the drivers’ amplitudes F; and
F,, various superpositions of the E; and E, states can be achieved.
This will allow us to examine their respective state vectors on the
Bloch sphere. Consequently, we will demonstrate that even though
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system (2) is homogeneous, adjusting the external drivers’ ampli-
tudes and frequencies leads to different Berry phases and, therefore,
different topologies. This approach contrasts with previous studies
that altered the system’s topology by changing internal parameters,
such as the system’s mass or the stiffness of its couplings. Our prior
work showed that changing internal parameters, such as the stiffness
of springs, could generate a Berry phase.' "'

To investigate the behavior of the elastic bit on the Bloch
sphere, we adjust the parameters £ and § as described in Eq. (6).
Figure 2 shows how these changes affect the polar angle (6) and
azimuthal angle (¢). We can visually trace the evolution of these
angles on the Bloch sphere. This visualization demonstrates how
varying £ and § influences the superposition states of the elastic bit.
Specifically, it reveals the range and nature of superposition states
achievable through parameter manipulation. The Bloch sphere thus
serves as a useful tool for comprehending how different parameters
alter the system’s states.

To investigate scenarios where the azimuthal angle ¢ remains
constant while the polar angle 6 varies, we keep § fixed and adjust
the ratio of &£ At 8=0, a pure state of E; is achieved, and at
0 = 7, a pure state of E, is obtained [see Fig. 2(a)]. As 8 changes from
0 to 7 [Fig. 2(a)], it signifies the generation of any superposition of
states, incorporating both pure states E; and E,. The superpositions

(%) and (%) are realized when the initial phase § is 0

and 71/2, respectively. In addition, the superposition of (%) is
observed in the case of § = 7.

We then explore another scenario where 0 is fixed and ¢ varies,
achieved by different parameter adjustments. As demonstrated in
Fig. 2(b), by setting &£ to 0.5 and varying § from —7 to +, we observe
a constant 0 while ¢ completes a full 27 rotation. This observation
is crucial for calculating the Berry phase, which requires a constant
0 and a varying ¢ that completes a 27 loop, a topic we will elab-
orate on in Sec. IV. Altering £ to a different value changes 6. By

| E1)
(a)
=7

| 1) —i| E2) i
V2 \" W |E1)—|Ez>
§=n/2

NS /
|E1)+|E2) \
V2 | E1)+i| Ep)
\/E

| E2)

pubs.aip.org/aip/adv

adjusting d from — to + for this specific 6, we can derive another
Berry phase value, as we will discuss in Sec. I'V. This demonstrates
our ability to obtain any combinations of 6 and ¢ values, hence the
ability to navigate the Bloch sphere using external drivers.

lll. REALIZATION OF QUANTUM ANALOG GATES WITH
AN ELASTIC BIT

Moving forward from the detailed representation of a two-level
elastic bit on a Bloch sphere in Secs. IT and I1I focuses on the practi-
cal application and manipulation of these representations. Revisiting
Fig. 2(a), we noticed that the pure states E; and E; manifest under
different driving parameters. Equation (4) reveals that these pure
states occur at polar angles 6 of 0 and 7, respectively, while the
azimuthal angle ¢ indicates the phase difference between E; and

E,. Furthermore, the equal superpositions of states, (%) and

% ), are represented on the Bloch sphere at coordinates (6, ¢)

= (7/2,0) and (7/2,7/2), and the opposite superpositions of these
states are represented by (%) and (%) located at (6, @)

=(n/2,0) and (7/2,27/3). These superposed states are achieved
through combinations of £ and §, induced by external excitations.
This section explains how these states change and demonstrates the
application of several quantum-analogous logical gates, illustrating
the convertibility to superposed states and their manipulation on
the Bloch sphere using an elastic bit. The logic gates are essen-
tial to quantum-analog computing, similar to classical logic gates
in standard computers. They are unitary operators that allow for
state changes, crucial for the function of quantum-inspired algo-
rithms, by utilizing superposition and entanglement principles.”®
Here, we demonstrate the quantum analogous gate in the elastic bit
and their corresponding unitary transformation matrix, which has a

basis state of E; = %(i) and E; = %(jl)

| Eq)
(b)
|B1)—i| B) £= 0.5
V2 |E) —|By)
/| e
|E1)+|Es)
V2 |E1)+i| Es)
V2

| E2)

FIG. 2. lllustration of the transformation of states of the two-level elastic bit system, represented geometrically on the Bloch sphere. Panel (a) shows the variation in the polar
angle () with the ratio of £ while keeping the azimuthal angle (¢) constant, illustrating the transition from pure states £4 (6 = 0) to E, (6 = ) and various superpositions
in between. The initial phase & was fixed during this demonstration. Panel (b) focuses on the azimuthal angle (¢) while keeping 6 constant, by varying & from — to +7 for
a set value of £ = 0.5. This panel effectively visualizes the full 27 rotation of ¢ on the Bloch sphere, crucial for the calculation of the Berry phase. The arrows on the sphere
indicate the direction of state vector evolution for different parameter adjustments, thereby providing a clear visual guide to understanding how external parameters such as
£ and & influence the states of the elastic bit. System parameters: m = 1, k. = 1, = 0.003, wp = V2.
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In Fig. 3, we illustrate the transformations of elastic bit states
through quantum-analog gate operations as follows: (i) from one
pure state to another [Figs. 3(a) and 3(b)], (ii) from a pure state to
a superposition of states, or vice versa [Fig. 3(c)], and (iii) from one
superposition of states to another [Figs. 3(d)-3(f)]. Specifically, the
Pauli X gate [Fig. 3(a)] converts the state |E; ) to |E;) and vice versa,
representing a bit flip in the quantum analog system. In contrast, the
Pauli Y gate [Fig. 3(b)] transforms |E;) to i|E,) and |E>) to —i|E1),
and vice versa. This indicates that the Pauli X and Y gates alter the

;

pubs.aip.org/aip/adv

0 1 0
_1]|E1) = |E2) and [0 _1]|E2) = |E1),

[i- é]|E1):ilEz>and[i é]|E2)=—i|E1).

The unitary operation, represented by the matrix [(1) _01],

serves as the quantum-analog counterpart to the classical NOT

state |E; ) to |E, ) along different trajectories, signifying distinct oper- ~ 8ate, commonly known as the Pauli X gate in quantum comput-
ational paths. The corresponding transformation matrices for these  ing Unlike the transformation matrix [‘1’ (1)] used in quantum

state changes are

(@) (b)
\E1)+2\Ez) % | % %

=
Pauli X Gate: [O _1]
© )
|E1)—i| E)
|By)—|Bs)
V2
|E1)+|E>)
V2 | E1)+i| E2)
; V2
| E2)
L1 1
Hadamard Gate: x/f[l _1] Pauli Z Gate: [0
|Ey) 1
(e)
(f) |E1)
\E|>‘-/+§!Ez) \E.)};‘\Eﬂ | Ey)
|E1)+|Es) i
Y |Br)+i| Bs)
|Bs) 1)~ |Es) ”
vz
125
|E1)+|E2)
|By)+il Ba) v
vz
0 1
: 5 0 1
S Gate [i 0 \Ba) TGate:[ in ]
e+ 0

| E2)
. 0
Pauli Y Gate: [—i

1
0

i
0

| E2)

| Ex)

]

2

| E1)+i| E2)
V2

FIG. 3. Transformation of the elastic bit
states through various quantum-analog
logical gates. Each panel represents a
different type of gate operation: panels
(a) and (b) display the effects of the Pauli
Xand 'Y gates, respectively, showcasing
state conversions (|E+) to |E;) and vice
versa) along distinct operational paths.
Panel (c) depicts the Hadamard gate’s
role in mapping pure states to equal
superpositions and conversely. Panels
(d)—(f) focus on the phase shift gate
families, Pauli Z, S, and T gates, respec-
tively. These gates demonstrate the
transformation of superposed states by
altering only one aspect of the complex
amplitude’s coefficient, thus modify-
ing the state’s direction through the
azimuthal angle ¢. The specific trans-
formations affected by each gate are
represented through transitions on the
Bloch sphere, with arrows indicating the
direction and nature of state changes.
System parameters: m=1,k =1,
7 =0.003, wp = V2.
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mechanics, our analogous system employs a different matrix. This
change arises because the computational bases in a true quantum

system are |0) = ((1)) and |1) = (T) However, in our elastic bit sys-

1 1
tem, we have defined the bases as |E;) = %(1) and |E;) = %(71).
Furthermore, within the |E1) and |E;) bases, the Pauli Y matrix is

denoted by [i :)] The Hadamard gate, as illustrated in Fig. 3(c),

transforms the pure states. Specifically, it maps |E1) to (%)

E, —|E . L .
and |E;) to (% ) This transformation signifies the mapping of
a pure state to a linear combination of superposed states, and vice

versa, through the Hadamard matrix % [i _11] as follows:

e - () ey ()
V2|t ] vz el a7 v )
The Pauli Z, S, and T gates [demonstrated in Figs. 3(d)-3(f)] are
instrumental in transitioning from one superposed state to another.
These gates modify only one aspect of the complex amplitude’s coef-
ficient: they alter the state’s direction through the azimuthal angle
¢ by m, /2, and 7/4, respectively. The Pauli Z gate, often referred
to as a phase flip, uniquely affects the linear equal superposition of
states. While it leaves |E;) and |E,) states unchanged, it transforms

[En)+E) 4 |E1)=|E>) |Er)+ilE,) |Ex)—ilE,)
the state (T) into (T) and ( 7 ) to ( 7 )
and vice versa, as can be seen through the following transformation

matrix [‘1’ (‘)] [refer to Fig. 3(d)]:
()
) ()

The other set of gates, as shown in Figs. 3(e) and 3(f), belong

to the phase shift gate family. These gates function by mapping the
|Ex)+|E»)
2

superposition of states. Specifically, they map the state (

to ei"(%) and the state (%) to eio(%), where
o represents the phase shift. The same goes for their opposite coun-
terparts. For the S gate [Fig. 3(e)], o is equal to 7/2, and for the T
gate [Fig. 3(f)], it is equal to 77/4. The operations of these gates are as

follows:

() ()
() ()
o))

)

e o)

pubs.aip.org/aip/adv

In summary, in this section, we delve into the manipula-
tion of elastic bit states using quantum-analog gate operations,
which are mathematically represented by transformation matri-
ces. To provide a clearer physical understanding of how exter-
nal drivers facilitate these transformations, we elaborate on the
interplay between the external parameters and the resulting state
changes.

The transformation matrices are inherently linked to the exter-
nal drivers’ characteristics—specifically their frequencies (wp) and
amplitudes (F; and F,). These drivers impose specific excitation
conditions on the granular system, effectively dictating how the sys-
tem transitions between different elastic states. By carefully tuning
the amplitudes and frequencies of the external drivers, we can engi-
neer the desired state transformations analogous to quantum gate
operations. For instance, let us consider the Pauli X gate operation,
which flips the state from |E;) to |E;) and vice versa. This transfor-
mation is achieved by setting the external drivers’ amplitudes and
frequencies such that the system’s response mirrors the matrix mul-
tiplication corresponding to the Pauli X gate. Similarly, other gates,
such as the Hadamard or Pauli Y gate, are realized by configuring
the drivers to induce superpositions or phase shifts in the elastic
bit states. To bridge the mathematical formalism with the physi-
cal implementation, we have introduced detailed explanations and
illustrative examples in Sec. II. Equations (4) and (5) demonstrate
how the state space parameters on the Bloch sphere—specifically
the polar (0) and azimuthal (¢) angles—are directly influenced by
the external drivers’ frequencies and amplitudes. In addition, Eq. (6)
explicates how the phase difference (&) between the drivers can be
manipulated to achieve precise control over the state superpositions.
Hence, by varying wp, F1, and F, correspond to different rotation
angles and axes on the Bloch sphere, effectively mapping to quan-
tum gate operations such as the Pauli X, Y, and Z gates, as well as the
Hadamard and phase shift gates. For instance, adjusting the phase
difference & between F; and F, allows us to implement phase shifts,
while altering the amplitude ratio & facilitates state flips analogous
to the Pauli X and Y gates. Finally, we incorporate illustrative exam-
ples (Fig. 3), demonstrating how specific combinations of external
driver parameters result in the application of these transformation
matrices. By linking the physical adjustments of the external drivers
to the mathematical form of the gate operations, we provide an intu-
itive understanding of how quantum-analog logic gates are realized
within our classical elastic bit system.

IV. BERRY PHASE OF THE ELASTIC BIT

Building on the foundations laid in Secs. II and III, where we
explored the representation of a two-level elastic bit on a Bloch
sphere and its practical application in quantum-analog gates, in
this section, we delve into the intricate calculations of the Berry
phase for the elastic bit. This exploration is crucial as it characterizes
the vibrational behavior and the topological nature of the granular
system.

The traditional conception of the Berry phase involves an
eigenvector tracing a closed path within the momentum space
of periodic systems, such as 1D crystals.”” This geometric phase
arises due to the adiabatic and cyclic evolution of the system’s
parameters, typically in the context of quantum mechanical
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systems where the momentum plays a pivotal role in defining the
manifold.

In our study, we extend the concept of the Berry phase to a
classical mechanical system—the two-level elastic bit—where the
manifold is not inherently tied to periodic structures or momen-
tum space. Instead, the manifold is constructed from the external
drivers’ parameters, specifically the amplitudes and phase differ-
ences of the driving forces. This approach does not contradict the
traditional understanding but rather generalizes the Berry phase
concept to broader contexts, including classical and non-periodic
systems.

To elucidate, we define the Berry phase within our system as
the geometric phase acquired by the elastic bit’s state vector as it
undergoes a closed loop in the parameter space formed by the exter-
nal drivers. This parameter space encompasses variables such as
the ratio of excitation amplitudes (&) and the phase difference (8)
between the drivers. By varying these external parameters cyclically,
the state vector traces a closed path on the Bloch sphere, analogous
to how eigenvectors trace paths in momentum space in quantum
systems.

To formulate the mathematical expressions for the Berry con-
nection and Berry phase, we employ a specific ansatz discussed in
Sec. II. Previous studies indicate that different ansatzes yield con-
sistent results.'”'> We will demonstrate that the trajectory of the
elastic bit’s state vector in parameter space, when mapped onto the
Bloch sphere, can be precisely controlled using the external drivers’
amplitude, phase, and frequency. This manipulation results in a
specific Berry phase. This approach differs from previous meth-
ods, where the Berry connection is defined by the variation in
complex amplitude unit vectors A; and A, in a space parameter-
ized by wave number. In our study, we discretize the polar and
azimuthal angles 6 and ¢ and base the Berry connection on these
values,”

BC(A1,Ay) = AF - (A1 + AAL) + AS - (Ay + AA). ?)

Equation (7) describes the Berry connection for a two-mass sys-
tem, extendable to systems with more masses. For example, using
three coupled granules creates an elastic trit, an elastic analog of a
qutrit.’” Our focus is on representing the states of the elastic bit on a
Bloch sphere, defining the Berry connection in relation to 8 and ¢ as
follows:

BC(6,¢) = ;[(cosz +é? sing) . (cos@

" ei(‘P+A‘P) sin w) + (cosg — ¢ sin 9)
2 2 2

. (cos 7(9 +40) — B0 gin 7(9 +40) )] (8)
2 2

We use Eq. (8) to calculate the Berry connection followed by the
Berry phase associated with polar and azimuthal angles. The Berry
phase signifies the total phase acquired by the unit vector tracing
a closed path in a manifold (see Fig. 2). This manifold is formed
by the evolution of elastic bit states influenced by £ and J, reflect-
ing the topological characteristics of the system. In cyclic adiabatic
processes, the Berry phase emerges as the phase difference over one
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complete cycle, determined by the geometric properties of the para-
meter space in the Hamiltonian.’' For the elastic bit, we can calculate
this phase difference using either the amplitudes of the granules
[Eq. (7)] or the Bloch sphere angles [Eq. (8)]. Our analysis centers
on the cyclic evolution of the Berry curvature in relation to changes
in the polar and azimuthal angles as i(y| d(ei,@ [w).

For the case of adiabatic transformation of the system, we take
the derivative of the state concerning 6 and ¢ and evolve around the

10
d 1 0 Zip 0 —Esini

state. Hence, we get (y|5|v) = 5 oss M|l 2 % =0 and
—e’ Cos —

_ 0
(1;/|%\1//) = %[cosg ¢ sin 9]['&‘” 9] = isinzg. For such, the berry
1

2 sin —
2

phase becomes

reif [ g )

(% d sz d L[ 50

_’fa (w%lw)dﬁ?ﬂf% <w\df¢lw>d¢—zf% isin - dg
1

=—5(<pf—(p,-)(1—cos 0). 9)

The above-mentioned expression of the berry phase requires
the polar angle 0 to be constant, and the azimuthal angle ¢ must
complete a total revolution to close the loop. As shown in Fig. 2(b),
keeping the polar angle 6 constant and completing a full revolution
of ¢ allow us to close the loop.

Figure 4 demonstrates how Berry phase values vary between
0 and 7 in response to changes in the amplitudes and frequencies
of external drivers. A complete 27 revolution of ¢ is necessary to
determine a specific Berry phase. Since the calculation of the Berry
phase is conditioned by the existence of a closed path in the para-
meter space, a closed path revolution of 27 radians of the azimuthal
angle ¢ is necessary to determine a specific Berry phase. This condi-
tion ensures that the elastic bit unit vector traces a closed path on the
manifold, where the manifold is formed by the evolution of elastic
bit states (see Fig. 2). Moreover, as previously demonstrated, elas-
tic bit states are influenced by two parameters: &, which is the ratio
of two pure states of the linearized granular system, and §, which
represents their phase difference. To achieve the required 27 revolu-
tion, we vary and discretize the phase § from — to +m while keeping
the state ratio £ constant. This process guarantees a periodic change
in the state, resulting in a full 27 revolution of the azimuthal angle
¢ with a constant polar angle 0, thereby facilitating the computation
of the Berry phase. This approach maintains the topological essence
of the Berry phase as it relies on the geometric properties of the para-
meter space rather than the specific nature of the underlying physical
system.

Focusing on the 3D representation in Fig. 4, we start with a
driving frequency of wp = /2, which aligns with the frequencies
used in Figs. 2 and 3. At wp = /2, the Berry phase attains a triv-
ial value of 0 when the ratio £ is either 0 or 1. Notably, an & ratio
of 1 corresponds to the in-phase vibration mode, and a ratio of
0 corresponds to the out-of-phase mode of the linearized granu-
lar system. Conversely, when E; and E, are in equal superposition
(& =0.5), the Berry phase reaches a nontrivial value of 7. Such find-
ings highlight the elastic bit system’s versatility in producing trivial
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FIG. 4. A 3D representation of the Berry phase variation in response to external
drivers underscores the system'’s ability to produce a range of Berry phase values

between 0 (trivial phase) and 7 (nontrivial phase). Here, wys = 1 and wpp = V3
are the two eigenmode frequencies for the linearized granular system.

and nontrivial phases, typically associated with integral multiples
of 7. It is important to note that the occurrence of a nontrivial
Berry phase of 7 depends not only on &£ but also on the driving
frequency wp, as depicted in Fig. 4. Altering the driving frequency
from wp = /2 allows tuning & to reach the same nontrivial Berry
phase of 7. Thus, Fig. 4 depicts how the frequencies and ampli-
tudes of the external drivers’ interplay to achieve a nontrivial Berry
phase. In Fig. 4, the range of wp is limited between 1 and \/3, corre-
sponding to the eigenfrequencies of the linearized granular system,
thereby enabling the system to vibrate in either pure in-phase, out-
of-phase, or superposed states. Further analysis of Fig. 4 reveals that
a driving frequency equal to the in-phase eigenfrequency (wp = 1)
necessitates an & ratio of 0 to achieve a nontrivial Berry phase of .
Conversely, when the driving frequency matches the out-of-phase
eigenfrequency (wp = \/3), an & ratio of 1 is required for the same
nontrivial Berry phase. The following expression can summarize
these observations:

E= (Zw%) +wpy — wéz)/4; wo1 < Wp < Wo2. (10)

Here w1 = 1 and wp; = \/3 are the two eigenmode frequencies for
the coupled granular system. Superpositions other than this specific
€ value yield Berry phase values that are not quantized (i.e., neither
0 nor 7). This demonstrates the system’s capability to generate a full
spectrum of Berry phase values.

V. SYSTEM DYNAMICS AND TOPOLOGICAL
CHARACTERISTICS VIA BERRY PHASE

Through strategic manipulation of external drivers, in the pre-
ceding sections, we showcased how distinct Berry phase values

pubs.aip.org/aip/adv

emerge, reflecting the system’s capability to generate a spectrum of
states, ranging from trivial to nontrivial phases. Building on this
foundation, this section focuses on understanding the topology of
the linearized granular system through Berry phase values since
prior research has linked the trivial and nontrivial topologies of
systems to integral multiples of 7, including 0.'"'* Interestingly,
although the current system (2) is homogeneous, the Berry phase
is not quantized, i.e., is not limited to 0 or 7, contrary to that noted
in Ref. 11.

As demonstrated before, Fig. 2 illustrates how the states of the
elastic bit evolve, parameterized by the external parameters £ and
§, forming a manifold. The Berry phase represents the total phase
gained by the unit vector across the manifold for a closed path. As
demonstrated in Fig. 4, setting (wp, &) to (v/2, 0.5) results in a non-
trivial Berry phase of 7. Achieving this Berry phase involves cycling
é from —7 to 7. If we now focus on the dynamics of the granules
with external drivers inputs of (wp, &, §) = (\/5, 0.5, ) or (wp, &, §)
= (\/E, 0.5, —m), we observe that the system oscillates such that only
the first mass vibrates, localizing all energy there and resulting in the
second mass being silent, as depicted in Fig. 5(a). Figure 5(a) plots
each mass’s amplitude as § cycles from —7 to 7, with wp and £ set at
V2 and 0.5, respectively. Conversely, inputs of (wp, & 6) = (v/2,0.5,
0) reverse the response, directing all energy to the second mass and
nullifying the first mass’s response [Fig. 5(a)]. Hence, the nontrivial
Berry phase signifies a distinct coupled vibration, with energy alter-
nating between granules and oscillation/rest cycles. Alternatively,
setting (wp, &) to either ( V2,0)or (v/2,1) yields a trivial Berry phase
of 0 (as is shown in Fig. 4), where both masses receive equal energy
and maintain identical amplitudes, regardless of & [Fig. 5(b)].

The dynamics of the system and their correlation with the
Berry phase are further explored by examining the phase differences
between the masses (denoted by ¢m,—m,) and between the masses
and the drivers. For simplicity, we focus on the phase difference
between the first mass and the first driver (denoted by ¢,,, _4,). When
& is equal to 0 or 1, resulting in a Berry phase of 0, ¢, —m, is either
0 (in-phase) or 7 (out-of-phase), as shown in Fig. 5(c). However, for
other values of &, ¢m,—m, varies with §, even when £ is constant. For
& values above 0.5, ¢, —m, starts at 0 (in-phase) at § = —7, returns
to 0 at § = 0, and follows a similar pattern from 0 to 7. If £ is below
0.5, $m,—m, begins at 7 (out-of-phase), returning to w at § = 0, with a
similar pattern for the remaining & values from 0 to 7. Interestingly,
at £=10.5, ¢m,—m, remains constant at 7z/2 for all § values, indicat-
ing a lack of phase transition, unlike the dual transitions observed at
lower and higher & values. This £ value coincides with the nontrivial
Berry phase of 7.

Focusing on ¢,,, _4,, as depicted in Fig. 5(d), we observe that for
E=0orl, ¢,,,_4 remains constant, regardless of § values. Similar
t0 G, —my> Pm,—q, varies with § for fixed € values. For £ less than
0.5, ¢, —a, starts at zero phase and returns to it for § ranging from
—mto . For £ greater than 0.5, the phase starts at 7 and returns to 7.
At €= 0.5, ¢, 4, consistently remains at 77/2, mirroring the behav-
ior of ¢m,—m,. This again marks the absence of a phase transition,
contrasting with the dual transitions at lower and higher £ values.
The & value of 0.5 represents a topological transition point. Below
and above this value, ¢, —m, and ¢,,, _4, exhibit different behaviors.
This transition indicates a change in the system’s topological prop-
erties as external parameters vary. To visualize this, we define two
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FIG. 5. Correlation of the dynamics of the linearized granular system with the calculated Berry phase values, revealing insights into the system’s topological nature. Vibration
amplitude responses: panel (a) shows the amplitude response of each mass as & cycles from —n to , illustrating how energy localization in the granules corresponds
to nontrivial Berry phase values; panel (b) contrasts this with scenarios leading to a trivial Berry phase, where both masses exhibit identical amplitude responses. Phase
difference analysis: panels (c) and (d) explore the phase differences between the granules (¢m,—m,) and between the granules and the drivers (¢, —q, ). They display how
these phase differences vary with & for different £ ratios, highlighting the distinct behaviors below and above the £ value of 0.5, which marks a topological transition point.

zones: the first corresponding to & values below 0.5 and the second
above 0.5. In Fig. 5(c), the first zone appears upper in the plot, while
in Fig. 5(d), it is lower. Reaching the topological transition point at
€ = 0.5, where the nontrivial Berry phase of 7 is obtained, the zones
invert their positions in the plots [Figs. 5(c) and 5(d)]. This inver-
sion results from changes in the drivers’ parameters. Unlike previous
studies where internal system parameters were used to achieve topo-
logical transitions, our study employs external driver parameters for
this purpose. For example, Deymier et al. in Ref. 32 demonstrated
band inversion and topological transitions based on the coupling
strength of elastic rotators.

While this section primarily discusses the characterization
of the granular system’s dynamics using Berry phase values at
the driving frequency wp = V2, it is important to note that the
same phenomenon occurs at other driving frequencies as well.
However, altering the driving frequency shifts the topological tran-
sition point to a different value of &, which can be precisely
determined from Fig. 4.

VI. CONCLUDING REMARKS

This study investigated the Berry phase in classical systems,
drawing parallels with quantum models, focusing on a two-level
elastic bit formed from externally driven coupled granular system.
The representation of the elastic bit states on the Bloch sphere has
allowed for a clearer visualization and manipulation of these states,
a concept previously unexplored in classical systems. This represen-
tation is crucial in understanding the dynamics of the system and
its transition between various states. We have shown that, similar to

quantum systems, classical elastic bits can transform analogous to
quantum gates. These transformations, executed through external
drivers, enable the manipulation of states on the Bloch sphere, offer-
ing insights into the potential of classical systems to mimic quantum
operations.

A significant contribution of our research is calculating the
Berry phase for an elastic bit. This phase varies depending on
the amplitudes, frequencies, and phases of external drivers, high-
lighting the elastic bit system’s capability to generate a broad
spectrum of Berry phase values, ranging from trivial to nontriv-
ial. Notably, we identified a nontrivial Berry phase of 7 under
certain conditions, associated with a specific coupled vibration
mode of the granular system. Therefore, the Berry phase is indica-
tive of the system’s vibrational behavior and topological proper-
ties. This discovery is pivotal for controlling topological properties
in classical systems and exploring the bulk-edge correspondence
principle.

The insights from studying the topological characteristics of
elastic bits via Berry phase calculations could lead to innova-
tive developments in materials science, particularly in designing
materials with distinctive mechanical properties. Extending these
concepts to systems with more than two levels, such as elastic
trits analogous to qutrits, could further unravel the intricacies of
higher-dimensional topological spaces.
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APPENDIX: MODAL REPRESENTATION
OF BLOCH STATES

We are studying a granular system composed of two elasti-
cally coupled granules, formulated using the dynamics equation
presented in Eq. (1). Linearization of Eq. (1) is achieved through
Taylor series expansion. The expansions for the equations of mass
1 and mass 2 are derived as follows:

. 3
- iwpt 3 .
mu; = kNL[Fle bt — u + Go]j_ - kNL[ul — U + Uo]i — Huy

3
= mzil =kNLU()2 [1+ pu
0

Fl elet _—

3
:|2
+

iwpt
F1EWD — U

3

2 Uy — Uz \?2 .

—kNLO‘OZ(l-F e - nu1
0o

+

3 3(F iwopt _ 3
ﬁmﬁlszLO'Oz[l‘Fz( 1¢ aal —g

0o

[ 3w 3
_kNLO'OZI:1+2(u10 uz)_g(
0

ul—uz)z_i(ul—uz)3+“.
(o) 48 0o

3 1 i 3 -1 i 2
= mi; = [EkNL‘To2 (Fie“”" —ur) - gy ® (Fre™" =)

0o

3 Fie“rt -y }
—_— — — +...
48 0o
.

_;7,;‘1
+

3 —2 i 3
- E NLO, 2 (F1elet - u1) + - :|

+

3 1 3 -1 2 3 -3 3 .
—| Shknrog (w1 —u2) = Skneoy * (w1 —uz2)” — —knoy > (w1 —uz)” +---| =i
2 8 48 )

= miiy = [kL(Fleith ) +ka(Fie =) s k(e - ) ']+

- [kL(ul — ) + ko - uz)2 + ks (w1 - uz)3 +.- -L - nin,

(A1)

. 3 3
i iwpt 2 H .
miiy = —kNL[u2 - F e + ao]fr +kne[ur — uz + 003 — it

3
= mﬁz = —kNLOO2 [1 + p
0

Uy — erlet:I

3

+

3

by 3

’ 3 ur—uz\> .

+ kNLUO 1+ —= — Uz
0o +

. 2 3( uy — Fyelrt
= miiy = —knpog [1 + 2( 2 02 -
0

3 3(ur—u 3(ur—up 2 3 (ur—u 3
+knrog [1+ 2 - = - e
2 0o 8 0o 48 00
3 1 . 3 _1 . 3 _3 .
= miip = —[EkNLGO2 (uz - erlwnt) - gkNLUO 2 (uz - er,th)z - ﬁkNLO'O ? (uz - erletf +-- ]
3 1 3 —1 3 -2
+ I:EkNLO'OZ (1 —up) — gkNLUo > (- ”2)2 - @kNLUO (- ”2)3 T ]
mijz = —[kL(uz - erith) + kz(uz - erith)z + k3(uz - erith)3 + - ]

+ [kL(u1 - uz) + kz(ul - uz)z + k3(u1 - u2)3 + .- -]+ - 1’]1:{2.

8

U — eriwnt 2 i w — erith 3 .
00 48 (o]
+

— ’1“2
+
+

— ;,qu
+

+

(A2)

AIP Advances 15, 025305 (2025); doi: 10.1063/5.0245354
© Author(s) 2025

15, 025305-10

1€:/2:S1 G20z Aenigad /|


https://pubs.aip.org/aip/adv

AIP Advances ARTICLE

1 3
3 2knro, *, and ks = — k1o, * represent
the first, second, and third order coupling stiffness of the granular
system, respectively, with knz being the nonlinear coupling stiffness
between the granules. For higher pre-compression (o), where the
relative displacement of the granules is less than pre-compression
i.e, if 6o > u1 — uy, this condition suppresses the higher-order stift-
ness. Consequently, k; and k3 are compared to k;. By taking only
the linear term from Eqs. (A1) and (A2), we obtain the linearized
equation of the coupled granular system as shown in Eq. (2) of the
article.
Assuming the solution for the linearized coupled granular net-
work as u; = A1e“?" and w, = A, and applying in Eq. (2), we
derive the simultaneous equation for the amplitude A, and A; as

1
Here, ki = ékNLaOz, ky=-3

~mwpAe”" = ki (Fie”" — Are")
- kL(Aleiw"t - Azeiwpt) - ir]a)DAleiw"t
= —mw%)Aleith = [ke(F1 — A1) — k(A1 — Az) - inwDAl]eith
= —mw123A1 =kp(F1 — A1) — ki (A1 — A2) — iqwaA,

= (—meD + 2kg, + iqu)Al —kiAs = kLFy,
(A3)

_meZJAzeith _ _kL(AZeith _ erith)
+ ki (Aleiw’)t - Azeiw[’t) - inwDAzei“)”’t
= —mwf)Azeim”t = [—kL(Az - Fz) + kL(A1 —Az) - iﬂwDAz]eith
= —mw12)A1 = —kL(Az - Fz) + kL(A1 —Az) - inwDAz
= —kLAl + (—mwf) + 2kL + iqu)Az = kLFz.
(A4)
By taking the real part of the coefficient of the amplitudes from

Egs. (A3) and (A4), we can write the stiffness matrix of the solution
as

_mwlz) + 2kr kg :| (A5)

—kL —meD + 2kL

- |

The eigenmode frequencies of the system depend on this stiff-
ness matrix. For the eigenmode frequencies, the determinant of the
stiffness matrix is det (K) = 0. With that, the eigenmode frequencies

are
[k [ 3k
wo1 = -+ wo2 = =L (A6)
m m

From the solution of the eigenmode frequencies, we observe
that the frequencies depend on the mass of the granules and the
linearized stiffness between them. Setting k; = 1 and m = 1, we find
the eigenmode frequencies as wo; = 1 and woz = \/3. By employing
the elimination and substitution method on the simultaneous ampli-
tude equations from Egs. (A3) and (A4), we derive the complex
amplitude solutions A; and A,,

B FlkL(—meZJ + 2k + iqu) + szf

A (-mwp + 2k + 1'11wD)2 B
(A7)

A Fik} + szL(*meD + 2k + inwp)
2 = .
(7mw%) + 2k + ir]wD)z - kf
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Using the complex amplitude (A; and A;) and the linearized
eigen states of (E1 = %(i) and E, = %(jl)), we can express the

displacement field of the granules through the superposition of the
states’ coefficients « and f3,'*

d[E1) + P|E2) ) e

U _ (Lll) _ (Al)eiwpt _ 1 (
vl A\ &l + B[

e = (1) (08 e

Substituting the complex amplitude (A; and A,), we obtain the
superposition of states coefficient & and ,

(X—A1+A2 _ kL(F1+F2)
V2 V2(-mwh + ki + inwp)” (A9)
CA-Ay ki (Fi - F»)

B=

V2 V2(-mwh + 3k + inwp)

With the two possible forms _)of eigenmode vibration (E; and Es),
the displacement field vector U of the coupled granules, utilizing the
coefficient of the complex amplitude, can be expressed as follows:

U=alE)) +BlEs) = U = rae™|E1) + rge™|E2), (A10)

where r, and rg are the magnitudes of the complex amplitude coef-
ficients of & and 3, respectively. These states are represented in polar
space as o = cos 6 and rg = sin 0, where 0 is the polar angle, indicat-
ing the angle of superposition states with the z-axis of a Bloch sphere,
as shown in Fig. 6.

In Fig. 6, the z axis in a Bloch sphere represents the pure states
|E1) and |E,), referred to as the polar angle. Multiplying both sides
of Eq. (A10) by the global phase ¢ % allows us to represent the

A
0

FIG. 6. Three-dimensional illustration of the Bloch sphere, showcasing its relation-
ship with the Cartesian coordinate system. This diagram highlights the sphere’s
axes and the defining angles—theta (0) and phi (¢)—representing an elastic
bit's state.
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displacement field as U’ = ¢ = U.** The state space of the granular
system can then be represented accordingly,

U’ = 1ol Br) + rge ) By) U7 = cos 6]Er) + sin 0¥ |E,). (A1l)

Here, the phase difference between the complex amplitude coef-
ficients is referred to as the azimuthal angle ¢ = £, - &;, which
signifies the rotation of the states in the x-y plane as depicted in
Fig. 6. To limit the ranges of both angles, we use the half-angle of
the polar angle 6 to represent the state on the Bloch sphere. Since
the global phase does not alter the superposition of states, we can
determine the displacement field as

- 6 i 0
U = cos E|El) +e? sin 5|E2) where,0<0<mand0< ¢ <27

(A12)

By the linear combination of E; and E; in Eq. (A12), we can

express the displacement field vector in terms of Bloch sphere angle

6 and ¢. The modal contribution of the displacement vector U is

described in a column state vector |y) either through the superposi-

tion coefficients & and 8 or the Bloch sphere angles 6 and ¢ as stated
in Eq. (4),
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