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Search for exotic Higgs boson decays with CMS and
fast machine learning solutions for the LHC

Ho Fung Tsoi

Abstract

There exists potential for discoveries beyond the Standard Model in scalar sector, which
could manifest as Higgs boson exotic decays into new light pseudoscalars. This search
targets such decays, focusing on pseudoscalar masses ranging from 12 to 60 GeV, in final
states where one pseudoscalar decays into two b quarks and the other into two τ leptons or
two muons. The analysis is based on a dataset of proton-proton collisions at

√
s = 13 TeV,

collected by the CMS detector during LHC Run 2, with an integrated luminosity of 138
fb−1. Dedicated neural networks are used to distinguish between signal and background,
significantly enhancing sensitivity. The results are presented as exclusion limits at 95%
confidence level on the model-independent branching ratio and are interpreted within
two-Higgs doublet models augmented by a singlet.

The second part of this thesis presents machine learning methods to enhance overall
sensitivity in the low-latency domain for the LHC experiments. A novel machine learning-
based trigger algorithm is developed, using anomaly detection to search for new physics
in a model-agnostic manner as close to the raw collision data as possible. This anomaly
detection trigger is sensitive to a wide range of both conventional and unconventional
physics signatures and has an inference latency of O(100) ns on an FPGA. It is deployed
during Run 3 in the CMS Level-1 trigger system, which processes the first round of real-
time event selection from collision data at a rate of 40 MHz. Additionally, a novel model
compression method using symbolic regression is developed to accelerate machine learning
inference to nanosecond speeds on FPGAs. This method demonstrates potential to signif-
icantly reduce the computational costs of machine learning algorithms while maintaining
performance comparable to that of neural networks. These advancements are crucial for
meeting the sensitivity and computational demands of resource-constrained environments
such as the LHC experiments.
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Chapter 0

Introduction

Exotic and rare decays of the recently discovered Higgs boson [29–31] present an avenue

for searches of new physics phenomena. However, searches for extended Higgs sectors

with light partners of the 125-GeV Higgs boson present an experimental challenge in

reconstructing their signatures in profuse backgrounds in proton-proton collisions at 13

TeV. The challenge begins early in the data acquisition process itself. Machine learning

(ML) techniques are among the most promising options for selecting these rare events

and analyzing them. This thesis presents several interconnected results, starting with

an ML-enabled study of existing data, followed by the implementation of ML-enabled

trigger electronics systems for ongoing data acquisition, and potential improvements for

the future.

Part I of this thesis presents a physics analysis. It explores the search for new physics

beyond the Standard Model (BSM) through the exotic decays of the Higgs boson, analyzing

proton-proton collision data collected by the Compact Muon Solenoid (CMS) detector at

the Large Hadron Collider (LHC). This analysis indicated no deviations from the Standard

Model (SM) predictions with the current data and analysis strategies.

Despite this null result, exclusion limits can be derived. These limits indicate that any

signal production rate, or coupling constant associated with the interaction, exceeding

a certain value is ruled out with a certain level of statistical confidence. This suggests
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either the non-existence of the signal or that the current experimental framework lacks

the sensitivity to detect the signal if it exists. These constraints can also be interpreted

within the parameter phase space of theoretical models that predict these new physics

phenomena. These results enable experimentalists to refine their analysis techniques to

probe previously unexplored phase space while inspiring theorists to adjust their current

models or develop new ones.

Analyses searching for new physics often face the challenge of limited statistics in their

data samples. While it is possible to optimize existing analysis techniques and collect

more data for future analyses, this process is typically lengthy. For instance, the discovery

of the Higgs boson was the result of many years of persistent efforts.

However, we cannot simply wait for more data to be collected and rely solely on

incremental improvements to current analysis techniques. Instead, we must continuously

pursue innovative and unconventional methods to improve our existing approaches. ML

has proven to be effective in advancing various scientific and technological sectors. There

is no doubt that ML is transforming, and will continue to transform, the way we do

experimental high-energy physics (HEP), potentially revolutionizing the field.

Part II of this thesis introduces ML methods to address the limitations of current

strategies in the search for new physics at the LHC, aiming for more fundamental ad-

vancements.

For example, the analysis presented in Part I faces a significant challenge: the target

signature includes soft (low-momentum) final-state objects, resulting in over 90% of the

signal being filtered out by the Level-1 trigger before reaching the analysis phase. This

occurs because the analysis relies on a traditional trigger strategy that implements a

simple momentum cut on the physics objects for event selections. Such a trigger strategy

typically requires a relatively high momentum threshold for selecting objects to maintain

a manageable output rate, given the extreme collision rate of 40 MHz at the input. As

a result, the decay channel with the highest branching ratio (two hadronically decaying

tau leptons) is completely discarded from the analysis due to the high tau momentum
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threshold required by the existing trigger path. This is a common issue in many new

physics searches at the LHC.

To address this, a novel trigger strategy is developed and introduced in CMS, using

an ML-based anomaly detection technique to search for new physics in a model-agnostic

manner. This strategy aims to improve overall sensitivity at a lower level, specifically at

the Level-1 trigger. The Level-1 trigger is crucial as it processes the first round of event

selections immediately after the collider produces raw collision events. Events that do not

pass the trigger selections are permanently discarded, making it essential to preserve as

many potential events as possible at the Level-1 trigger. The anomaly detection trigger

can identify a wide range of rare SM and BSM signals without prior knowledge of any

physics models, outperforming traditional triggers in certain areas. This novel trigger

strategy is particularly effective for challenging signatures that traditional triggers would

typically reject.

The development of the anomaly detection trigger faces challenges due to the so-called

Level-1 constraints, which arise from the scarcity of computational resources and the need

for low-latency decisions. The current Level-1 trigger system requires a latency below O(1)

µs, and the algorithm must fit on a single Field-Programmable Gate Array (FPGA) board

with limited resources. To address these challenges, various techniques are employed to

compress the size of the model while maintaining competitive performance.

In response to the increasing demands for fast ML algorithms in resource-constrained

environments such as the LHC experiments, a novel model compression method using

symbolic regression (SR) is developed. SR is shown to be effective in a benchmark LHC

dataset for physics object identification, achieving nanosecond-latency inference speeds on

an FPGA with significantly lower resource consumption compared to traditional modeling

approaches. It is demonstrated that SR has potential as a promising alternative to neural

network-based models in various fields.
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Part I

Search for exotic Higgs boson

decays with CMS
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Chapter 1

Theoretical motivations

Before discussing the analysis of the search for exotic Higgs boson decays, it is essential

to introduce the Standard Model (SM) of particle physics, as presented in Sec. 1.1. The

SM currently provides the most accurate theoretical description of elementary particles

and their fundamental interactions. Yet, it is incomplete, leaving many questions about

the universe unresolved. This motivates the development of new physics models beyond

the Standard Model (BSM). Among the various BSM theories, two-Higgs doublet models

are a straightforward extension of the SM scalar sector. These models predict that the

125-GeV Higgs boson can decay exotically into new particles not predicted by the SM.

Such models have not yet been ruled out by experimental results published so far, thus

motivating further exploration. The motivations and phenomenology of these models are

discussed in Sec. 1.2.

1.1 The Standard Model of particle physics

The SM is a theoretical framework describing the fundamental laws of nature that govern

elementary particles and their interactions [32–35]. It predicts the existence of elementary

matter particles, namely quarks and leptons, and accounts for three of the four known

fundamental interactions: electromagnetic, weak, and strong forces. The SM is formulated

as a quantum field theory, with its dynamics described by a Lagrangian. In this theory,
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quantum fields are the fundamental entities defined in spacetime, and particles emerge as

the excited states of the underlying fields.

Matter particles are represented by spin-12 fermionic fields. Gauge symmetries give rise

to spin-1 bosonic fields, where gauge bosons mediate the forces between fermions. There

is a special spin-0 bosonic field, called the Higgs field, which is responsible for electroweak

symmetry breaking, giving mass to some of the gauge bosons via the Brout–Englert–Higgs

mechanism [36–41]. Matter particles acquire mass through their Yukawa coupling with

the Higgs field [33]. The quanta of the Higgs field correspond to the Higgs boson, which

acquires mass through self-interaction.

All particles predicted by the SM, including the Higgs boson, have been experimentally

observed, and the model parameters have been precisely measured to be consistent within

the SM framework [2, 29–31,42].

The construction of the particle content and their interactions are given in Sec. 1.1.1.

The electroweak symmetry breaking and the Higgs mechanism are discussed in Sec. 1.1.2.

The Higgs boson in the context of the LHC is discussed in Sec. 1.1.3.

1.1.1 Gauge symmetry and Lagrangian

The physics of the SM [32–35] is encoded in the Lagrangian (density), which takes the

form

LSM = Lgauge + Lfermions + LYukawa + LHiggs. (1.1)

This Lagrangian respects the global Poincare symmetry and the internal gauge symmetry

SU(3)C × SU(2)L ×U(1)Y.

Poincare symmetry, the symmetry of spacetime in special relativity, dictates that phys-

ical laws remain invariant under spatial and temporal translations, spatial rotations, and

Lorentz boosts. These symmetries are global, meaning that transformations apply uni-

formly across spacetime points (i.e., a spatial translation of a system applies the same

translation to every point within the system). According to Noether’s theorem [43], each

of these symmetries corresponds to a conservation law: the conversation of momentum and
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energy, angular momentum, and center-of-mass velocity, respectively. Therefore, Poincare

symmetry establishes the fundamental constraints for the spacetime framework in which

quantum fields are embedded.

In gauge theory, when quantum fields undergo local gauge transformations (i.e., phase

changes that depend on spacetime points), additional terms arise from the kinetic terms

in the Lagrangian because the transformations vary from point to point in spacetime, in-

ducing dynamics. These additional kinetic terms, which vary with spacetime coordinates,

are nontrivial for the Lagrangian and can alter the underlying physics if not properly

treated. To counteract these terms and maintain gauge invariance, new gauge fields that

transform under the same local gauge transformations are introduced. This ensures that

the Lagrangian remains gauge invariant, preserving the physical laws.

The introduction of gauge fields leads to their dynamic behavior and interactions with

other fields that are coupled to them. Consequently, this results in the dynamic mediation

of forces between fermions through the exchange of gauge bosons, with each force arising

from a specific gauge symmetry.

The SU(3)C subgroup generates strong interactions, where C stands for color charge.

There are three color charges, namely red, blue, and green (purely a naming convention,

as they could be called anything else without changing the physics). Quarks are charged

under this group and form color triplets, where a triplet represents the three color states

of a quark field. The SU(3)C transformations on a color triplet can be thought of as

rotations within its color space. The gauge symmetry ensures that all color states are

dynamically equivalent, with distinctions arising only from the rules of color exchange to

maintain charge conservation during interactions.

There are eight generators of SU(3)C, corresponding to eight independent transforma-

tions, which generate eight types of gauge bosons called gluons. According to Yang-Mills

theory [44], a gauge theory based on a non-Abelian symmetry group, these gluons are

massless spin-1 bosons that can also self-interact. The theory of strong interactions is

called quantum chromodynamics (QCD).
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The product group SU(2)L×U(1)Y generates electroweak interactions, where L stands

for left-handedness and Y stands for hypercharge. The theory is chiral in nature, as left-

handed fermionic fields are charged under SU(2)L to form doublets, while right-handed

ones are neutral and form singlets. The three generators of SU(2)L are called weak isospin,

and the generator of U(1)Y is called weak hypercharge, resulting in four massless gauge

bosons in total. However, the bosons enabling weak decays must be massive to account

for their short lifetimes.

After electroweak symmetry breaking, the SU(2)L × U(1)Y symmetry is broken and

reduced to U(1)EM, splitting the electroweak force into the observed weak force and elec-

tromagnetism. Through the Higgs mechanism, three weak bosons acquire mass and are

identified as the observed massive W± and Z0 bosons that mediate the weak force, with

the SU(2)L symmetry being spontaneously broken. The remaining weak boson remains

massless and is identified as the photon γ, which mediates the electromagnetic force, cor-

responding to the U(1)EM symmetry. The electroweak symmetry breaking and the Higgs

mechanism will be discussed in Sec. 1.1.2.

The SM Lagrangian in Eq. 1.1 is decomposed to reflect the different sectors and physical

manifestations.

• Lgauge represents the kinetic terms for the gauge fields:

Lgauge = −1

4
GaµνG

aµν − 1

4
W a
µνW

aµν − 1

4
BµνB

µν , (1.2)

where Ga=1,...,8
µν , W a=1,2,3

µν , and Bµν are the SU(3)C, SU(2)L, and U(1)Y gauge field

tensors, respectively. These tensors encode the spacetime propagation of the gauge

fields and their self-interaction strength. Only the non-Abelian gauge fields Gaµ and

W a
µ are self-interacting, whereas the Abelian gauge field Bµ propagates freely until

it couples with other fields.

• Lfermions represents the kinetic terms for quarks and leptons, which take the generic
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form for each fermionic field ψ:

Lψ = iψ̄γµDµψ, (1.3)

where Dµ is the covariant derivative that incorporates gauge field interactions, and

γµ are the gamma matrices, which are essential for forming the basis of fermions

in relativistic quantum mechanics. Together, these elements ensure the gauge and

Lorentz invariance of the theory. This generic form encodes how fermions propagate

in spacetime and the forces they experience through their interactions with gauge

bosons. For the first generation of matter, the left-handed quarks and left-handed

leptons form SU(2)L doublets, namely qL =
( uL
dL

)
and lL =

( eL
νL

)
, while the right-

handed ones form singlets: uR, dR, and eR. The exact form of Dµ depends on the

gauge group under which the fermion is charged:

Dµ =

(
∂µ − igsG

a
µT

a − igW a
µτ

a − ig′BµY

)
, for qL;

Dµ =

(
∂µ − igsG

a
µT

a − ig′BµY

)
, for uR, dR;

Dµ =

(
∂µ − igW a

µτ
a − ig′BµY

)
, for lL;

Dµ =

(
∂µ − ig′BµY

)
, for eR.

(1.4)

Here, T a=1,...,8 (3×3 matrices acting on color triplets), τa=1,2,3 (2×2 matrices acting

on weak isospin doublets), and Y (a constant that takes different values among

fermions) are the generators of SU(3)C, SU(2)L, and U(1)Y, respectively, with gauge

couplings gs, g, and g′. These extend similarly to the other two generations of

fermions.

• LYukawa represents the Yukawa coupling terms connecting different fermions via a

scalar field ϕ, which take the generic form:

yijψ̄iϕψj , (1.5)
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Table 1.1: Field content of the SM. The bold numbers denote the fundamental represen-
tations of the non-Abelian gauge groups: 3 in SU(3)C and 2 in SU(2)L, while 1 denotes
a singlet, indicating the field is not charged under that group. The numbers under U(1)Y
denote the hypercharge Y : a field with Y = 0 is not charged under U(1)Y. The represen-
tations and charges are the same across the three generations of fermions.

Field SU(3)C SU(2)L U(1)Y

Spin-1/2 matter field

qL 3 2 1/6

uR 3 1 2/3

dR 3 1 -1/3

lL 1 2 -1/2

eR 1 1 -1

Spin-1 gauge field

Ga=1,...,8 8 1 0

W a=1,2,3 1 3 0

B 1 1 0

Spin-0 scalar field

Φ 1 2 1/2

where yij are the Yukawa coupling constants specific to different pairs of fermions

represented by the indices i and j. Fermion masses are generated through these

couplings only after electroweak symmetry breaking, with each fermion mass being

directly proportional to its corresponding Yukawa coupling constant.

• LHiggs represents the Higgs sector:

LHiggs = |DµΦ|2 − V (Φ), (1.6)

where V (Φ) is the potential of the Higgs field Φ, responsible for electroweak sym-

metry breaking. This part will be described in Sec. 1.1.2.

The field content of the SM is summarized in Tab. 1.1.

1.1.2 Electroweak symmetry breaking and Higgs mechanism

An important observation about the SM Lagrangian in Eq. 1.1 is that it does not include

mass terms in order to preserve gauge invariance. If a massive gauge field Aµ existed,
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there would be a mass term of the form m2AµA
µ in the Lagrangian. However, such a

term depends on the choice of gauge, thus spoiling gauge invariance. The same principle

applies to fermions, where a mass term of the form m2ψ̄ψ = m2(ψ̄LψR+ ψ̄RψL) breaks the

SU(2)L symmetry, which is chiral in nature. Therefore, all fermions and gauge bosons in

the SM must be initially massless. However, the observed W/Z bosons and fermions are

massive, indicating that the original gauge symmetry must be broken. This phenomenon is

explained by the Brout–Englert–Higgs mechanism [36–41] as the electroweak symmetry is

spontaneously broken, which consequentially gives mass to the W/Z bosons. Concurrently,

fermions acquire mass through their Yukawa couplings with the Higgs field [33].

The Higgs Lagrangian reads:

LHiggs = DµΦ
†DµΦ− V (Φ), (1.7)

where the Higgs field is a complex scalar doublet charged under the electroweak SU(2)L×

U(1)Y:

Φ =

ϕ+
ϕ0

 , (1.8)

and therefore

DµΦ =

(
∂µ − igW a

µτ
a − i

g

2

′
Bµ

)
Φ. (1.9)

The Higgs potential takes the form:

V (Φ) = −µ2Φ†Φ+ λ(Φ†Φ)2, (1.10)

where µ2 and λ are real numbers to ensure unitarity. The parameter λ controls vacuum

stability and must be a positive number to avoid minima at −∞. The parameter µ2,

if positive, triggers electroweak symmetry breaking. This can be seen by plotting the

potential when µ2 > 0 and λ > 0, which takes the shape of a “Mexican hat”, as shown in

Fig. 1.1. At zero field value, the potential is at a local maximum (top of the hat). Instead,

the minimum of the potential is located at a non-zero field value, indicating that the Higgs
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Figure 1.1: The shape of the Higgs potential where the minimum is at a non-zero field
value.

field attains a non-zero vacuum expectation value (vev):

⟨Φ⟩0 =

 0

ν√
2

 with ν =

√
µ2

λ
. (1.11)

In fact, there exist infinitely many solutions that are degenerate to Eq. 1.11 as one can

rotate it by a U(1) transformation while the potential remains at its minimum value. How-
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ever, when the system condenses by choosing one of these gauge choices for the vacuum

state, this configuration no longer respects the original gauge symmetry. It should be em-

phasized that only the specific configuration breaks the gauge symmetry once the vacuum

state is chosen, whereas the Lagrangian itself remains gauge invariant. This phenomenon

is referred to as spontaneous electroweak symmetry breaking: SU(2)L×U(1)Y → U(1)EM.

The consequences of electroweak symmetry breaking include the generation of masses

for the gauge bosons through the Higgs mechanism, the existence of the Higgs boson, and

the generation of masses for the fermions via Yukawa couplings. These are realized by

first expanding the Higgs field around its vev in the gauge from Eq. 1.11:

Φ =
1√
2

 0

ν + h(x)

 , (1.12)

where h(x) is a real scalar field representing the fluctuations around the vacuum state.

Substituting Eq. 1.12 into the Higgs Lagrangian in Eq. 1.7, we get:

|DµΦ|2 − V (Φ) =
(ν + h)2

8

(
g2(W 1

µ)
2 + g2(W 2

µ)
2 + (gW 3

µ − g′Bµ)
2

)
+

1

2
(∂µh)

2 + ν2λh2 + νλh3 +
λ

4
h4,

(1.13)

where the second line gives rise to the Higgs boson, which has cubic and quartic self-

couplings and has a mass at tree level:

mh =
√
2λν. (1.14)

To read off the masses of the gauge bosons, one can rewrite the first line of Eq. 1.13 in

terms of the physical fields:

m2
WW

−
µ W

+µ +
1

2
m2
ZZµZ

µ +
1

2
m2
γAµA

µ

+
2m2

W

ν
hW−

µ W
+µ +

m2
W

ν2
h2W−

µ W
+µ +

m2
Z

ν
hZµZ

µ +
m2
Z

2ν2
h2ZµZ

µ,

(1.15)
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whereW±
µ = (W 1

µ∓iW 2
µ)/

√
2 correspond to the W± bosons, Zµ = (gW 3

µ−g′Bµ)/
√
g2 + g′2

corresponds to the Z boson, and Aµ = (g′W 3
µ + gBµ)/

√
g2 + g′2 is orthogonal to Zµ and

corresponds to the photon γ. The masses read:

mW =
νg

2
, mZ =

ν
√
g2 + g′2

2
, mγ = 0. (1.16)

The second line of Eq. 1.15 gives rise to couplings between the Higgs boson and the heavy

gauge bosons with coupling strengths:

ghWW =
2m2

W

ν
, ghZZ =

m2
Z

ν
, ghhWW =

m2
W

ν2
, ghhZZ =

m2
Z

2ν2
. (1.17)

On the fermion side, the Yukawa terms for the first generation read:

LYukawa = −yuq̄LΦ̃uR − ydq̄LΦdR − ye l̄LΦ̃eR + h.c., (1.18)

where Φ̃ = iσ2Φ
∗ is required to ensure the correct coupling pairs, and yf is the Yukawa

coupling strength for the corresponding flavor. After electroweak symmetry breaking,

Eq. 1.18 becomes:

LYukawa = −muūLuR −mdd̄LdR −meēLeR

− mu

ν
hūLuR − md

ν
hd̄LdR − me

ν
hēLeR + h.c.,

(1.19)

where the fermion masses take the generic form:

mf =
yfν√
2
, (1.20)

and the Higgs boson couples to a pair of same-flavor fermions at a strength proportional

to the fermion mass:

ghff =
mf

ν
. (1.21)

The same coupling structure applies to all three generations of fermions.



15

Table 1.2: Particle content of the SM. The numbers are quoted from Ref. [26].

Particle Symbol Mass Charge [qe] Forces

Spin-1/2 quark (matter)

Up quark u 2.16 MeV +2/3 Strong, Weak, EM

Down quark d 4.67 MeV −1/3 Strong, Weak, EM

Strange quark s 93.4 MeV −1/3 Strong, Weak, EM

Charm quark c 1.27 GeV +2/3 Strong, Weak, EM

Bottom quark b 4.18 GeV −1/3 Strong, Weak, EM

Top quark t 172.7 GeV +2/3 Strong, Weak, EM

Spin-1/2 lepton (matter)

Electron e 0.511 MeV −1 Weak, EM

Muon µ 105.7 MeV −1 Weak, EM

Tau τ 1.777 GeV −1 Weak, EM

Electron neutrino νe ≃ 0 0 Weak

Muon neutrino νµ ≃ 0 0 Weak

Tau neutrino ντ ≃ 0 0 Weak

Spin-1 gauge boson (force carrier)

Gluon g 0 0 Strong

W boson W± 80.4 GeV ±1 Weak, EM

Z boson Z 91.2 GeV 0 Weak

Photon γ 0 0 EM

Spin-0 Higgs boson (special scalar)

Higgs boson h 125 GeV 0 −

The particle content of the SM is summarized in Tab. 1.2.

1.1.3 Higgs boson

In this section, we discuss the Higgs boson in the context of the LHC [2, 42]. Previously,

we saw in Eq. 1.13 the existence of the Higgs boson as the excitation around the vev of the

Higgs field. The Higgs boson couples to itself (see Eq. 1.13), to the heavy gauge bosons

(see Eq. 1.15), and to the fermions (see Eq. 1.19). This coupling structure leads to a rich

phenomenology, including various production mechanisms of the Higgs boson at particle

colliders and multiple decay channels that can be explored to validate the SM.

Before discussing the production mechanisms of the Higgs boson and its production

rate at the LHC, it is important to define the expected production rate of a particle as

the product of the cross section and the instantaneous luminosity.
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In particle physics, the cross section is a measure of the probability that a specific

interaction will occur when two particles collide. It is typically expressed in units of

barn (b), where 1 b is equivalent to 10−28 m2 due to the small scale in high energy physics.

Analogously, the cross section can be thought of as an effective area of the “target” particle

that appears to the “projectile” particle during a collision. Thus, the smaller the cross

section, the higher the chance for the “projectile” particle to miss the “target” particle

during each pass. Theoretical models, such as the SM, allow for the prediction of the cross

section for specific interactions, which can then be compared to the experimental data.

On the other hand, the instantaneous luminosity is defined as the rate at which particles

cross per unit area at a given point in the accelerator, measured in cm−2s−1.

Fig. 1.2 shows the SM prediction for the production cross sections of the Higgs boson

at a mass of 125 GeV resulting from proton-proton collisions at the LHC. The total Higgs

production cross section at a center-of-mass energy
√
s = 13 TeV is 55.4±2.5 pb [1], which

is around 5 × 10−35 cm−2. At a typical instantaneous luminosity of 2 × 1034 cm−2s−1,

achieved during LHC Run 2, it is expected to produce one Higgs boson per second. In

the Run 2 data collected from 2016 to 2018, corresponding to an integrated luminosity of

around 138 fb−1, it is expected that nearly 8× 106 Higgs bosons were produced.

The three dominant production channels are described below.

• Gluon-gluon fusion (ggF). This is the dominant channel where a pair of gluons,

each from one of the protons, fuses via a virtual quark loop, and the Higgs boson

is produced at the hqq vertex. The leading-order Feynman diagram of this process

is depicted in Fig. 1.3a. Despite the fact that the leading order already involves

loops, which are generally considered as small corrections in perturbative quantum

field theory, this channel still accounts for around 87% of the total Higgs production

cross section. The dominance is due to the hqq coupling strength being proportional

to the quark mass (see Eq. 1.21), leading to the dominance from the top quark, the

heaviest particle in the SM. The experimental signature of this channel is that the

Higgs boson is typically isolated without nearby accompanying particles.
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Figure 1.2: The SM prediction for the cross sections of the 125-GeV Higgs boson in
different production modes, plotted as functions of the LHC energy. The figure is taken
from Ref. [1]

• Vector boson fusion (VBF). This is the second most dominant channel, where

each quark from one of the protons emits a vector boson V = W/Z, then the vector

boson pair fuses to produce a Higgs boson at the hVV vertex, as depicted in Fig. 1.3b.

This channel accounts for around 7% of the total Higgs production cross section.

The two quarks that emitted the vector bosons remain in the final state as two high-

energy jets in the forward and backward regions of the detector. This results in the

signature of the Higgs boson accompanied by a back-to-back jet pair near the beam



18

(a) Gluon-gluon fusion (ggH). (b) Vector boson fusion (VBF).

(c) Associated production with a vector boson
(VH).

Figure 1.3: The three dominant Higgs production channels at the LHC.

axis with a large invariant mass.

• Associated production with a vector boson (VH). This channel involves a

quark from a proton annihilating with an anti-quark from another proton to produce

a W/Z boson, which then emits a Higgs boson, as depicted in Fig. 1.3c. This results

in the Higgs boson being accompanied by a W/Z boson in the final state. Although

the cross section is smaller than that of the VBF channel, the decay products from

the associated V can be used to distinguish this process from other SM processes.

The Higgs boson may decay into different SM particles when allowed by kinematics

and the coupling structure. Fig. 1.4 shows the SM prediction for the branching ratios of

the different Higgs decay channels, where the branching ratio is defined as the probability

of a particle decaying through a particular channel among all possible channels.

In general, the Higgs boson couples more strongly to heavier particles, meaning it

decays more preferentially to heavier fermions than lighter fermions. The decay of the

Higgs boson into bottom quarks is the most dominant channel, accounting for more than
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Figure 1.4: The SM prediction for the branching ratios of the different Higgs decay chan-
nels, assuming a Higgs boson mass of 125 GeV. The values are quoted from Ref. [1]

half of all decay occurrences. For a generic Higgs decay h → X + Y, the condition

mX+mY ≤ mh ≈ 125 GeV must be satisfied for energy conservation. The decay channels

h → WW/ZZ, even though 2mW/Z > mh, are possible when one of the heavy vector bosons

is off-shell, referring to a virtual particle with a mass different from its nominal value, as

allowed by the uncertainty principle. Although the Higgs boson does not directly couple

to massless particles, decay channels such as h → γγ/gg are possible through indirect

couplings in higher-order processes.

In 2012, the ATLAS [45] and CMS [46] Collaborations announced the observation of a

new scalar boson at a mass of around 125 GeV [29–31] from proton-proton collision data

at the LHC. Since then, more data have become available, allowing for a more precise

characterization of the particle. So far, the observed boson is consistent with the Higgs
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and heavy gauge bosons, plotted as functions of particle mass, which are consistent with
the SM prediction. The figure is taken from Ref. [2].

boson predicted by the SM within the experimental uncertainties [2, 42]. Fig. 1.5 shows

the consistency of the CMS measurements with the theoretical prediction of the Higgs

boson couplings with SM particles.
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1.2 New physics beyond the Standard Model

1.2.1 The Standard Model is incomplete

Although the SM has been experimentally verified with unprecedented precision and ac-

curacy, it is considered an effective field theory valid only up to a certain energy scale and

is expected to fail beyond that point. There are several unresolved puzzles in the uni-

verse that the SM is not capable of addressing, motivating the exploration of new physics

beyond the SM.

For instance, the SM accounts for only three of the four known fundamental forces,

excluding the gravitational force at the quantum level. Incorporating gravity into the same

theoretical framework as the other three forces results in a non-renormalizable quantum

field theory [47], which predicts observable quantities with unrealistic infinite values.

Another missing piece is the absence of a candidate for dark matter in the SM. Astro-

physical observations provide strong evidence for the existence of dark matter [48]. These

observations indicate a new form of matter that is electromagnetically neutral and thus

invisible, yet its existence is inferred from its substantial gravitational effects on large-scale

objects such as galaxies. The nature of dark matter remains unknown today.

Arguably, the most profound problem related to the SM scalar sector is the huge

energy gap between the electroweak scale and the Planck scale, known as the hierarchy

problem [49]. The electroweak scale, set by the vev of the SM Higgs field, is measured to

be ν ≈ 246 GeV. The Planck scale, on the order of 1019 GeV, refers to the energy scale at

which the effects of quantum gravity become significant. Since the SM is an effective field

theory valid up to a certain energy scale Λ, the Higgs mass squared receives leading-order

quantum corrections through Yukawa coupling to the top quark (heaviest SM particle),

which scales quadratically with Λ:

m2
h = m2

h,0 +∆m2
h, ∆m2

h ∼ O(Λ2). (1.22)

This shows that the Higgs mass is sensitive to new physics through Λ. Assuming that
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the SM holds all the way up to the Planck scale, we have Λ ∼ 1019 GeV. This implies

that extreme fine-tuning is necessary to almost perfectly offset this quadratic divergence,

thereby justifying the surprisingly small observed Higgs mass compared to this scale. This

issue refers to the naturalness of the Higgs mass and suggests the likelihood of the existence

of new physics below the Planck scale.

Besides these issues, there are several more unresolved problems not mentioned here,

all pointing to the fact that the SM is incomplete, prompting the formulation of BSM

theories.

1.2.2 Motivations for exotic Higgs boson decays

The ATLAS and CMS experiments have put upper bounds of 12 and 16%, respectively,

on the branching ratio of the Higgs boson to undetected particles at 95% confidence level,

using the Run 2 data at
√
s = 13 TeV [2, 42]. This leaves room for exotic decays of the

Higgs boson to BSM particles. Theoretically, extensions of the SM scalar sector are well-

motivated, and exploring exotic Higgs decays can serve as a direct probe into these BSM

theories [28,50,51].

First, the scalar sector is theoretically favorable for serving as a bridge connecting

the hidden sector to the SM, known as the Higgs portal [52]. Hidden-sector matter,

by definition, is not charged under the SM gauge group and thus does not have direct

couplings with the SM fermions and gauge bosons. However, the SM scalar sector can

be minimally extended to mediate interactions between SM particles and hidden-sector

particles. For example, dark matter can be introduced into a theory through the Higgs

portal [53].

Second, the scalar sector remains the least understood sector within the SM. The exact

nature of the observed scalar boson—whether it belongs to the SM, a minimal framework

to realize it, or a broader and more fundamental theory—remains an open question. Many

BSM theories propose an extended scalar sector that can predict multiple scalar bosons,

with the potential to adjust one to align with the SM predictions [28]. More importantly,
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these theories offer potential solutions to some of the previously mentioned problems. Such

BSM theories can manifest as exotic decays of the Higgs boson.

Additionally, the narrow decay width of the SM Higgs boson could potentially enhance

the branching ratios for decays to BSM particles. The decay width, which is the sum of

partial widths from all possible decay channels, measures the instability of a particle and

is inversely proportional to its lifetime according to the uncertainty principle. The SM

Higgs boson has a width of around 4 MeV [1], which is only 0.003% of its mass (125 GeV).

This small Higgs width is mainly due to the small Yukawa couplings to fermions. For

comparison, the W boson, with a mass of 80 GeV, has a width of 2 GeV [26]. The tiny

width of the Higgs boson in the SM implies that even a small coupling of the Higgs boson

to a new light BSM particle could lead to a significant enhancement of the total width,

resulting in a non-negligible exotic decay channel.

1.2.3 Two-Higgs doublet models augmented by a scalar singlet

There exists an interesting class of exotic decays in which the Higgs boson decays into

a pair of light pseudoscalar particles, which then decay into SM particles. Such decays

are allowed in various theories, such as two-Higgs doublet models augmented by a scalar

singlet (2HDM+S) [28,50].

These models are well-motivated for several reasons. First, the scalar sector of the next-

to-minimal supersymmetric extension of the SM (NMSSM) is a specific case of 2HDM+S,

which, as a supersymmetric theory, offers a solution to the hierarchy problem [49]. In

general, 2HDMs provide additional sources of charge-parity (CP) violation that can po-

tentially explain the baryon asymmetry in the universe [54]. As one of the simplest possible

extensions of the SM, these models have not yet been excluded by experimental data.

We first discuss the generic class of 2HDMs. In the SM, the scalar sector minimally

consists of a complex scalar doublet, subject to the potential in Eq. 1.10. In 2HDMs, two

doublets, Φ1 and Φ2, are proposed, giving rise to a more complicated potential and richer

phenomenology.
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Under the assumptions, for simplification in most phenomenological studies, that CP

is conserved in the scalar sector (allowing distinction between predicted scalars and pseu-

doscalars) and that there are no quartic scalar potential terms odd in either of the doublets

due to a discrete Z2 symmetry (preventing flavor-changing neutral currents at tree level),

the most general scalar potential takes the form [28]:

V = m2
11Φ

†
1Φ1 +m2

22Φ
†
2Φ2 −m2

12(Φ
†
1Φ2 +Φ†

2Φ1) +
λ1
2
(Φ†

1Φ1)
2 +

λ2
2
(Φ†

2Φ2)
2

+ λ3Φ
†
1Φ1Φ

†
2Φ2 + λ4Φ

†
1Φ2Φ

†
2Φ1 +

λ5
2
[(Φ†

1Φ2)
2 + (Φ†

2Φ1)
2],

(1.23)

where all parameters are real-valued.

Minimizing the potential, the two doublets attain their vevs:

⟨Φ1⟩0 =

 0

ν1√
2

 , ⟨Φ2⟩0 =

 0

ν2√
2

 , (1.24)

where v =
√
v21 + v22 ≈ 246 GeV for electroweak symmetry breaking. Expanding around

the vacuum state and substituting into the two-Higgs Lagrangian, there are eight degrees

of freedom for the two complex scalar doublets.

Defining two important angle parameters: α and β. The ratio of the vevs can be

parameterized by β:

tanβ =
v2
v1
. (1.25)

The angle β diagonalizes the squared mass matrix of the charged scalars. One massless

charged field is absorbed to give mass to the W± boson, while the other one, with a

non-zero mass eigenvalue, results in the physical charged scalar H±. The angle β also

diagonalizes the squared mass matrix of the pseudoscalars, where one of them is massless

and is absorbed to give mass to the Z boson, while the massive one results in the physical

pseudoscalar A. The angle α diagonalizes the squared mass matrix of the neutral scalars,

resulting in two physical neutral scalars H and h. In total, there are five physical Higgs

bosons: H±, A, H, and h.
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Table 1.3: Four coupling types of 2HDMs (and of 2HDM+S) that forbid flavor-changing
neutral currents at tree level [27, 28].

Type I Type II Type III Type IV

Up-type quark Φ1 Φ1 Φ1 Φ1

Down-type quark Φ1 Φ2 Φ1 Φ2

Charged lepton Φ1 Φ2 Φ2 Φ1

In a widely assumed scenario known as the decoupling limit [50], the lightest neutral

scalar h is identified as the observed 125-GeV Higgs boson. In this scenario, all other

Higgs bosons are much heavier than h, leading to SM-like couplings for h. This limit also

corresponds to (β − α) ≈ π/2, where the h state tends to align with the full vev and is

principally responsible for electroweak symmetry breaking.

In general, 2HDMs can predict scalar-mediated flavor-changing neutral currents at

tree level, which are forbidden in the SM and strongly constrained by experimental data.

These can be avoided by ensuring that fermions with the same quantum numbers couple

only to one of the two doublets [27]. Four coupling types can satisfy this condition, as

listed in Tab. 1.3.

Adding an additional complex scalar singlet as a next-order extension of 2HDMs,

known as 2HDM+S, significantly enriches the phenomenology of exotic decays of the 125-

GeV Higgs boson [50]. Considering that the parameter space for 2HDMs regarding these

exotic decays is tightly constrained by current experimental data, 2HDM+S introduce a

broader spectrum that remains unexplored.

The singlet has only small couplings to the doublets in the potential to preserve the

SM-like couplings for h. This extension gives rise to two new physical states that are mostly

singlet-like: a scalar (s) and a pseudoscalar (a). These states acquire their couplings to

the SM particles only indirectly through mixing with the doublets. If the new states are

light enough, exotic Higgs decays to these light states h → ss/aa/Za, which then decay to

SM particles, are possible.

In particular, we investigate h → aa, which is the search performed for this thesis

work and presented in Ch. 3. This decay channel has a simpler coupling structure and
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therefore offers easier interpretation than a similar topology h → ss. This is because the

singlet-like pseudoscalar, a, has mixing with just one pseudoscalar from the doublets, while

the singlet-like scalar, s, has mixing with two scalars from the doublets, introducing an

additional degree of freedom from the extra mixing parameter. Therefore, the focus is

typically on the pseudoscalar case rather than the scalar case when searching for such a

decay topology.

This channel also allows probes of a wider mass range ma ≤ mh/2 ≈ 62.6 GeV com-

pared to h → Za, which can only probe ma ≤ mh − mZ ≈ 17 GeV. Different types of

2HDM+S have different preferences for the final states in which the pseudoscalars decay,

depending on the parameter tanβ = ⟨Φ2⟩0/⟨Φ1⟩0, as described below. Here, we assume

ma is above the bb-threshold so that a → bb is possible.

• Type I: all fermions couple to the same doublet. The branching ratios of the

pseudoscalar to fermions do not depend on tanβ and are proportional to those of

the SM Higgs boson to fermions. In this case, decays to heavier fermions are always

more favorable than lighter ones, when kinematically allowed.

• Type II: up-type quarks couple to Φ1, while leptons and down-type quarks

couple to Φ2. The branching ratios to down-type quarks and leptons (up-type

quarks) are enhanced (suppressed) when tanβ > 1, and vice versa. For example,

h → aa → bbbb/ττbb are the dominant channels for large tanβ > 1, while a → cc

can be comparable to a → bb for tanβ < 1, even though c is lighter than b. Also,

Type II of 2HDM+S is essentially the scalar sector of the NMSSM.

• Type III: both up-type and down-type quarks couple to Φ1, while leptons

couple to Φ2. The branching ratios to leptons (up-type and down-type quarks) are

enhanced (suppressed) when tanβ > 1, and vice versa. For example, h → aa → ττττ

is the dominant channel for large tanβ > 1, while h → aa → bbbb is the dominant

channel for tanβ < 1.

• Type IV: up-type quarks and leptons couple to Φ1, while down-type
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quakrs couple to Φ2. The branching ratios to down-type quarks (up-type quarks

and leptons) are enhanced (suppressed) when tanβ > 1, and vice versa. For example,

h → aa → bbbb is the dominant channel for large tanβ > 1, while a → bb/cc/ττ

can be comparable for tanβ < 1.
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Chapter 2

Experiment overview

This chapter provides a brief overview of the experimental setup. Sec. 2.1 introduces the

Large Hadron Collider (LHC). Sec. 2.2 introduces the Compact Muon Solenoid (CMS)

detector located on the LHC ring, describing its subdetectors that capture different aspects

of collision events and the trigger system that handles initial event selections. Sec. 2.3

covers the reconstruction of physics objects relevant to the analysis in this thesis.

2.1 The Large Hadron Collider

The LHC [55] is the largest and highest-energy particle collider in the world. It features a

27-km synchrotron ring composed of superconducting magnets and is situated about 100

m underground on the Franco-Swiss border near Geneva, Switzerland. Built by CERN

(the European Organization for Nuclear Research), the primary objectives of the LHC

are to search for the Higgs boson and new physics beyond the Standard Model, such as

supersymmetry and dark matter.

The performance of a particle collider is defined by three main factors: the type of

particles it collides, the energy of the colliding beams, and the luminosity. The LHC

is designed to collide protons at a maximum center-of-mass energy of 14 TeV with an

instantaneous luminosity of up to 1034 cm−2s−1. Protons are chosen due to their stability

and their ability to achieve the highest possible collision energy, as they lose less energy
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Figure 2.1: The CERN accelerator complex. The injection sequence goes as: Linac 4 →
PS Booster → PS → SPS → LHC. The figure is taken from Ref. [3].

through synchrotron radiation in magnetic fields compared to lighter subatomic particles.

The TeV energy scale is crucial for testing electroweak physics and searching for new

phenomena predicted at this energy level.

The CERN accelerator complex includes several machines that sequentially increase

the energy of a proton beam, with the LHC being the final stage, as shown in Fig. 2.1.

Initially, protons are generated by stripping electrons from hydrogen ions using electric

fields and then accelerated to 160 MeV in the Linear Accelerator 4 (Linac 4). The proton

beam is then sequentially injected into the Proton Synchrotron Booster (PSB), the Proton

Synchrotron (PS), and the Super Proton Synchrotron (SPS), where it is accelerated to 2,

26, and 450 GeV, respectively.
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After these stages, the protons are divided and injected into two parallel beam pipes

in the LHC, where they circulate in opposite directions. It takes about 4 minutes to fill

each beam pipe and an additional 20 minutes to accelerate the protons to their maximum

energy. During Run 2, each proton beam reached an energy of 6.5 TeV, roughly 7000

times the proton’s rest mass, traveling at 99.999999% the speed of light and orbiting the

27-km LHC ring at a frequency of 11 kHz. The two beams are then directed to collide at

four interaction points along the LHC ring.

The proton beam consists of bunches rather than a continuous stream, allowing in-

teractions to be separated from each other at discrete intervals (25 ns, or 40 MHz). The

machine is expected to produce N events:

N = σL, (2.1)

where σ is the cross section for a specific interaction or a collection of interactions, and

L =
∫
L(t)dt represents the integrated luminosity over a period of time.

The instantaneous luminosity is characterized by several machine factors:

L =
N2
b nbfrevγ

4πϵnβ∗
F. (2.2)

Here, Nb ≈ 1011 is the number of protons per bunch, nb = 2808 is the number of bunches

per beam, frev ≈ 11 kHz is the revolution frequency, γ is the relativistic Lorentz factor,

ϵn is the normalized transverse beam emittance, β∗ is the beam beta function at the

collision point, and F is the reduction factor due to the crossing angle at the collision

point. Together, these factors result in the nominal value of L = 1034 cm−2s−1.

The CMS measurements of the SM cross sections are shown in Fig. 2.2. The LHC is

scheduled to collect data with an integrated luminosity of 450 fb−1 by the end of Phase-1,

it will then upgrade to the Phase-2 high-luminosity LHC (HL-LHC), where 3000 fb−1 of

data will be collected by its end, as illustrated in Fig. 2.3.
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Figure 2.2: Summary of CMS measurements of the SM cross sections. The figure is taken
from Ref. [4].

2.2 The Compact Muon Solenoid detector

The LHC ring hosts four detectors where collisions take place, with CMS [6, 46] being

one of them. CMS is a general-purpose detector capable of a wide variety of missions,

including studying the nature of electroweak symmetry breaking, precision measurements

of elementary particles, and searching for new physics beyond the SM. When a collision

occurs, many particles are produced, some stable and some unstable. The unstable parti-

cles quickly decay into stable particles that can be detected. Essentially, CMS acts as a

high-speed camera, capturing snapshots of these particles from collisions every 25 ns.
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Figure 2.3: Data taking schedule of the LHC and the HL-LHC. The figure is taken from
Ref. [5].

A schematic view of CMS is shown in Fig. 2.4. CMS has a compact cylindrical shape,

measuring 15 m in diameter and 28.7 m in length, and weighs 14,000 tons. CMS adopts

a coordinate system with the origin at the nominal collision point. The x-axis points

radially inward toward the center of the LHC, the y-axis points vertically upward, and the

z-axis points along the beam direction in a right-handed manner.

Since the detector is cylindrical, the azimuthal angle ϕ is defined in the x-y plane and

measured from the x-axis, while the polar angle θ is measured from the z-axis. Since

the rest frame of the detector is not necessarily the rest frame of the colliding particles,

quantities invariant under Lorentz boosts along the beam direction are defined. These

include the transverse component of momentum (pT), energy (ET), and missing energy

from undetected particles (MET). Additionally, pseudorapidity (η) is defined to replace

the polar angle:

η = − ln tan(θ/2), (2.3)

where the difference in η is Lorentz invariant along the beam direction.
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Figure 2.4: Schematic view of the CMS detector. The figure is taken from Ref. [6].

CMS consists of several concentric layers of subdetectors that capture different prop-

erties of the particles produced in a collision. First, it has a superconducting solenoid

magnet with 6 m internal diameter, generating a 3.8 T magnetic field to bend the tra-

jectories of charged particles. The charge of a charged particle can be determined by the

bending direction in the magnetic field. The transverse momentum of a charged particle

can be inferred from the curvature of the trajectory: higher momentum results in smaller

curvature.

The innermost layer within the magnet is a tracker that records these trajectories

traced by charged particles, as described in Sec. 2.2.1. Outside the inner tracker are

the calorimeters that record the energy of various particles, as described in Sec. 2.2.2

and Sec. 2.2.3. Outside the magnet, the muon system is dedicated to detecting muons,

as described in Sec. 2.2.4. There is a two-tier trigger system that promptly filters and

processes collision data, as described in Sec. 2.2.5.
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Figure 2.5: Schematic view of the Phase-1 CMS tracker, showing one quadrant in the r−z
plane. The pixel detector is shown in green, while the strip detector is shown in red and
blue. The figure is taken from Ref. [7].

2.2.1 Tracker

The innermost part of CMS, closest to the collision point, is the tracking system [6,

46]. The tracker is designed to provide high-precision measurements of the trajectories of

charged particles and to reconstruct primary vertices for promptly produced particles and

secondary vertices for long-lived particles. When charged particles enter the tracker and

interact electromagnetically with the silicon sensors, signals are generated and recorded

as hits. These hits are then used as input for track reconstruction algorithms to identify

particle tracks.

Positioned closest to the collision point, the tracker aims to capture as many particles

from a collision as possible, providing more accurate and complete track measurements

and enhancing the reconstruction of interaction vertices. However, each collision produces

a large number of particles, averaging around 1000 particles per bunch crossing under

design conditions, and occurs every 25 ns. This requires the tracker to have high spatial

granularity and fast response time to resolve the tracks and correctly assign them to the

bunch crossing. Additionally, a high radiation tolerance is required to withstand exposure

to a high particle flux for a long period of time. Therefore, the tracker is made entirely of

silicon to handle these challenging operating conditions.

The tracker consists of a pixel detector and a strip detector, as shown in Fig. 2.5.
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The pixel detector, positioned closest to the collision point and before the strip detector,

primarily provides resolution for measuring the impact parameter. It has a configuration

of four barrel layers and three forward disks on each end to provide a four-hit coverage for

tracks, with a total of 124 million readout channels.

The strip detector has a longitudinal length of 5 m and a diameter of 2.5 m, consisting

of ten barrel layers and nine forward disks on each end. There are 9.3 million silicon

microstrips in total, providing a hit resolution of 20 µm for perpendicular crossing.

In summary, the tracker can detect charged particles with pT > 50 MeV within |η| <

2.5, providing a pT resolution of around 1% and an impact parameter resolution of around

10 µm for charged particles at pT = 100 GeV in the central region of the detector.

2.2.2 Electromagnetic calorimeter

The next layer is the electromagnetic calorimeter (ECAL) [6, 8, 46], which is designed

specifically to measure the energy of electrons (e) and photons (γ).

A calorimeter is a detector that measures the kinetic energy of particles. When a

high-energy particle enters the calorimeter, it interacts with the detector materials, which

are chosen for their high absorbing power. These interactions induce the production of

secondary particles, resulting in a cascade shower until the particles lose most of their

kinetic energy. The energy deposited by these secondary particles is converted into signals

that can be collected and used to infer the energy of the incident particle.

A schematic view of the ECAL is shown in Fig. 2.6. The ECAL consists of a barrel

and two endcap sections, made up of 75848 lead tungstate (PbWO4) crystals. When

a high-energy electron enters the ECAL crystals, it interacts electromagnetically with

the material, primarily losing energy through bremsstrahlung (e → eγ), radiating high-

energy photons. These photons then undergo pair production, creating electron-positron

pairs (γ → e+e−). These processes repeat, creating a cascade of decays where more

particles are produced with decreasing energy until the secondary particles have a mean

energy below the process thresholds. The PbWO4 crystal is chosen for its ability to
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Figure 2.6: Schematic view of the CMS ECAL, showing one quadrant in the r − z plane.
The figure is taken from Ref. [8].

effectively contain these electromagnetic showers. Each PbWO4 crystal has a length of 23

cm, corresponding to around 25 radiation lengths, where one radiation length is defined

as the mean length traveled by an electron such that its energy is reduced by a factor of

e1 through electromagnetic interactions with the material.

The ECAL has a barrel energy resolution for electrons [56]:

σ

E
=

2.8%√
E/GeV

⊕ 12%

E/GeV
⊕ 0.3% (2.4)

where the three sources correspond to the stochastic, noise, and constant terms, respec-

tively.

2.2.3 Hadron calorimeter

Surrounding the ECAL is the hadron calorimeter (HCAL) [6, 9, 46], which is designed to

measure the energy of hadrons—particles made of quarks and gluons. This is crucial for

reconstructing hadronic jets and MET. When high-energy hadrons enter the HCAL, they

interact strongly with nuclei in the medium, producing secondary particles that interact

further downstream, resulting in hadronic showers.
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Figure 2.7: Schematic view of the CMS HCAL during Run 2 operation, showing one
quadrant in the r − z plane. The figure is taken from Ref. [9].

Hadronic showers typically spread wider and over a longer distance than electromag-

netic showers due to more complex hadronic interactions and a longer nuclear interaction

length, which is defined as the mean free path for a hadron traversing the medium before

undergoing a nuclear interaction. This means that a larger HCAL volume is required to

allow hadronic showers to fully develop and be contained. Therefore, the HCAL is posi-

tioned farther away from the collision point than the ECAL to ensure that the more com-

pact electromagnetic showers are contained first and do not mix with the larger hadronic

showers.

The HCAL consists of four subdetectors optimized for different η ranges: the hadron

barrel (HB) for |η| < 1.39, the hadron endcap (HE) for 1.3 < |η| < 3, the hadron outer

(HO) for |η| < 1.26, and the hadron forward (HF) for 3 < |η| < 5.2, as shown in Fig. 2.7.

The HB and HE consist of alternating layers of brass absorber plates and scintillator tiles.

The HO is located outside the magnet coil and provides additional coverage for the tails

of hadronic showers when the ECAL barrel and HB cannot fully contain them. The HF

consists of steel absorbers with quartz fibers to withstand the harsh environment in the
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high pseudorapidity regions, where the particle flux is highest.

The combined ECAL and HCAL in the barrel and endcap regions provide an energy

resolution for charged pions [6]:

σ

E
=

84.7%√
E/GeV

⊕ 7.6%. (2.5)

2.2.4 Muon system

The last layer is the muon system [6, 10, 46], a dedicated detector that provides precise

muon measurements.

High-energy electrons are stopped in ECAL through bremsstrahlung, which occurs at

a rate inversely proportional to the square of the mass. Muons, which are heavier, have

a bremsstrahlung rate suppressed by a factor of (me/mµ)
2 ≈ 10−5 compared to electrons.

For muons at the GeV scale, energy loss occurs primarily through ionization. As a result,

muons are not stopped by calorimeters and can escape the detector, necessitating the muon

system in the outermost layer to trace their trajectories. The main feature of muons in

the detector is their long trail of ionization: they produce tracks in the tracker, deposit

small fractions of energy in calorimeters, and produce tracks in the muon system.

The muon system is positioned outside the solenoid magnet, consisting of three types

of gas ionization chambers as of Run 2: drift tubes (DTs) for |η| < 1.2, cathode strip

chambers (CSCs) for 0.9 < |η| < 2.4, and resistive plate chambers (RPCs) for |η| <

1.9, as shown in Fig. 2.8. The muon pT measurement is improved when combined with

information from the tracker, achieving a pT resolution of 1% in the barrel and 3% in the

endcaps for pT up to around 100 GeV [10].

2.2.5 Trigger system

Due to the extremely high data rate of proton-proton collisions at the LHC, where the

beams cross every 25 ns (40 MHz), producing O(100) terabytes of data per second, it is

impossible to process and store all data. Therefore, a trigger system is used to reduce
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Figure 2.8: Schematic view of the CMS detector during Run 2 operation, showing one
quadrant in the r − z plane, with the different muon stations indicated. The figure is
taken from Ref. [10].

the rate in real time to a manageable level in two steps: the Level-1 (L1) trigger and the

High-Level trigger (HLT) [6,11,46]. A trigger decision determines whether to store a given

event immediately after the collision for further analysis, based on a set of event selection

criteria related to the physics signatures presented in an event.

The L1 trigger is implemented in custom hardware processors and is designed to reduce

the input rate from 40 MHz down to 100 kHz. The trigger decision at L1 is based on coarse-

grained trigger-level information to maintain an overall latency below 4 µs, fixed by the

event processing time and the capacity of the buffer system. The architecture consists of

several trigger subsystems, as shown in Fig. 2.9.

The calorimeter trigger receives inputs of local energy deposits from the calorimeters,

calibrates them in Layer 1, and then reconstructs from them to form physics objects such

as electrons, photons, tau leptons, jets, and energy sums in Layer 2. The muon trigger
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Figure 2.9: The CMS L1 trigger during Run 2 operation, with each trigger subsystem
indicated. The figure is taken from Ref. [11].

receives inputs of muon information from the three muon stations, each with muon track

finders for muon reconstruction in the respective η range. These are then combined in

the global muon trigger for final muon selection. The global trigger combines calorimeter

objects and muons to make the final trigger decision. Ensuring the quality of the selection

criteria in L1 is essential since it performs the first round of event selection at the LHC,

and events that are not triggered are permanently discarded.

The HLT is implemented in software running on CPUs and GPUs from a farm of
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commercial processors and is designed to reduce the rate from L1 of 100 kHz to 1 kHz for

permanent storage for offline analysis. The HLT has access to the full event information

and can reconstruct finer-grained physics objects to apply more sophisticated selection

criteria than L1.

The HLT processes and filters data in parallel sequences based on specific physics

requirements, called HLT paths. These HLT paths consist of sequences of object recon-

struction and selections that progress from simpler to more complex along the sequence.

These HLT paths are then grouped into datasets that share similar physics objects, such

as single muon and di-tau datasets, for offline analysis.

2.3 Reconstruction and identification of physics objects

This section discusses the reconstruction and identification of physics objects in CMS.

The idea of the particle-flow (PF) algorithm is discussed in the following. The specific

objects most relevant to the analysis presented in Ch. 3 include electrons (Sec. 2.3.1),

muons (Sec. 2.3.2), hadronic tau (Sec. 2.3.4), and b jets (Sec. 2.3.3).

The PF algorithm [12] aims to construct a global event description by integrating

information from all subdetectors to optimally reconstruct and identify particles produced

in collision events. Five individual particles, called PF candidates, are first reconstructed

using their unique signature produced in the detector, as shown in Fig. 2.10 and described

in the following.

• Photons are neutral and do not produce tracks in the tracker. They enter the

ECAL, create electromagnetic showers, and are contained within the ECAL. These

showers result in deposits of energy in clusters of neighboring ECAL cells. The

corresponding ECAL clusters are not matched to any tracks in the tracker.

• Electrons are charged and produce tracks in the tracker. Similar to photons, they

create electromagnetic showers and are contained within the ECAL. The electron

tracks can be extrapolated to the corresponding ECAL clusters to form electron
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Figure 2.10: Schematic view in a transverse slice of CMS, showing the signature of each
of the five PF candidates. The figure is taken from Ref. [12].

trajectory. Their energy is determined by combining the information of the track

momentum and the ECAL energy clusters.

• Muons produce tracks in the tracker, traverse the calorimeters leaving almost no

trails, and produce hits in the muon chambers before escaping the detector. They

lose energy primarily through ionization, resulting in relatively clear trajectories

with long trails across the detector. Their energy is determined from the curvature

of the tracks.

• Charged hadrons produce tracks in the tracker, traverse the ECAL, create hadronic

showers in the HCAL, and are contained within the HCAL. The hadronic shower

shape is typically wider and longer than electromagnetic showers due to the more

complex nuclear interactions and a longer nuclear interaction length. Their trajec-
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tories are determined by extrapolating the tacker tracks to the compatible HCAL

clusters. Their energy is measured by combining the information of the track mo-

mentum and the ECAL and HCAL energy clusters.

• Neutral hadrons are reconstructed in a similar way to charged hadrons, except

that they are not matched to any tracks in the tracker.

These PF candidates are then used for downstream reconstruction and identification

algorithms to further improve the respective performance and to form higher-level objects,

such as missing transverse energy, hadronic taus, and jets with flavor tagging.

2.3.1 Electrons

Electrons are reconstructed using information from the tracker and the ECAL and iden-

tified using a multivariate technique [57].

The first step of electron reconstruction is to find ECAL clusters. A cluster is formed

by grouping neighboring cells that have energy higher than a certain threshold, typically

a few times higher than the expected electronic noise. Clusters with a local maximum

energy greater than 1 GeV are used to seed the next steps, assuming they correspond

to an incident particle. Since electrons originating from the primary vertex may undergo

showering in the tracker before reaching the ECAL, there could be multiple secondary

electrons and photons from bremsstrahlung and pair production surrounding the primary

electrons, thus producing multiple clusters around the primary one. Therefore, these

neighboring ECAL clusters are combined to form superclusters that include all the possible

energy deposits from the primary electrons and their radiations.

Since electrons lose energy by radiating bremsstrahlung photons along the way, which

can perturb the trajectories, a dedicated tracking algorithm is needed to take this factor

into account when reconstructing electron tracks and estimating the track parameters.

The electron tracks are then combined with the ECAL superclusters to form electron can-

didates based on the kinematics and quality of the tracks, the shape of the superclusters,

and the compatibility between the tracks and the superclusters. The superclusters are
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also refined by using tracking information to include additional clusters from photon con-

version and bremsstrahlung that were missed when forming superclusters using only the

ECAL information. The electron reconstruction efficiency, defined as the ratio between

the number of reconstructed superclusters matched to reconstructed electrons and the to-

tal number of reconstructed superclusters, is measured from the data to be above 95% for

pT > 10 GeV using Z → ee events.

For electrons promptly produced at the primary vertex, various background sources

can lead to misidentification. These include secondary electrons from b or c quark decays,

hadrons with high ECAL deposits that fake electrons, and electrons originating from

photon conversions. A multivariate discriminant is constructed to identify electrons. The

discriminating variables are mainly based on the sums of isolation energy around the

direction of the electron, the geometric shape of the ECAL shower, the quality and hit

pattern of the electron track, and the compatibility between the track and the ECAL

clusters. Three working points, corresponding to three threshold cuts in the multivariate

discriminant, are defined with identification efficiencies of 70, 80, and 90%, respectively.

2.3.2 Muons

Muons are reconstructed using information from the tracker and the muon system and

identified based on sequential selection requirements [10].

Muons are essentially ionization tracks without complex patterns as other particles.

The first step involves the local reconstruction of hits of the muon trajectory in muon

chambers. When muons traverse a muon chamber, they ionize gas molecules in the cells to

produce free electrons along their trajectories. These free electrons are then guided by the

applied electric field to arrive at the cell boundary, producing electric signals that encode

the positions and time arrivals of the muon trajectory within the cell. These measurements

are calibrated in each of the three muon subdetectors for local reconstruction of the muon

hits. Furthermore, each of the CSC and DT chambers consists of multiple layers, and the

muon hits are interpolated to form straight-line segments to be used as inputs for muon
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track reconstruction.

The reconstruction of muon tracks is based on the tracks independently reconstructed

in the muon system (standalone-muon tracks) and in the tracker, respectively. There are

three types of reconstructed muons.

• Tracker muons are reconstructed starting from the tracker tracks. These tracks are

extrapolated outward to the muon system with the loose requirement that at least

one CSC or DT segment is matched to the extrapolated track. This loose requirement

is efficient in covering low-pT muons as they typically penetrate through fewer muon

chambers. However, this can also lead to a higher fake rate and lower momentum

resolution.

• Global muons are reconstructed starting from the standalone-muon tracks. These

tracks are extrapolated inward to match compatible tracker tracks. In contrast to

tracker muons, additionally requiring the presence of standalone-muon tracks leads

to higher efficiency for high-pT muons and better momentum resolution.

• Standalone muons are reconstructed only using standalone-muon tracks without

compatible reconstructed tracker tracks. They are mainly cosmic muons which enter

the muon system from outside the detector and are not energetic enough to penetrate

to the inner tracker.

These reconstructed muons are then identified into different categories based on a set

of selection criteria on various variables. The main variables include the quality of the

tracks, the compatibility in the track matching, and the compatibility with the primary

vertex. The so-called medium muon identification is a working point defined to optimally

select prompt muons and muons from heavy flavor decays, with an overall efficiency of

99.5% for identifying muons from simulated W/Z decays. A tighter working point, called

tight muon identification, is defined to further suppress muon misidentification and has

efficiencies ranging from 95 and 99%.
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2.3.3 Jets and b-tagging

Quarks and gluons can be produced from high-energy proton-proton collisions. Due to

QCD confinement, these quarks and gluons cannot exist freely and will undergo parton

showering and hadronization, in which hadrons are formed out of them. These hadrons

tend to move closely along the same direction as the original quark or gluon, resulting in

a collimated shower of particles called a jet. Individual particles of the jet can be grouped

to reconstruct the jet. Identifying the original particle of the jet is called jet tagging.

Jets are reconstructed by clustering PF candidates with the anti-kT algorithm [58,59].

The algorithm iteratively combines particles into a jet using the distance measures:

dij = min(p−2
T,i, p

−2
T,j)

∆R2
ij

R2
, diB = p−2

T,i. (2.6)

Here, dij is the distance between the i-particle and the j-particle, which have transverse

momenta pT,i and pT,j , respectively. ∆R
2
ij = (ηi−ηj)2+(ϕi−ϕj)2 is the angular separation,

which is Lorentz invariant along the beam direction. The parameter R defines the size of

the jet cone for the clustering. diB is the distance between the i-particle and the beam.

The power of −2 to the momenta ensures that the jets are preferentially seeded from the

most energetic particles. During Run 2, CMS set R = 0.4 as the standard jet size, called

AK4 jets.

The iteration proceeds as follows. The first step is to collect the list of particles in

the event and compute the distances in Eq. 2.6 for all particles. Then, find the smallest

value among all dij and diB. If the smallest value is of type dij , a new particle is formed

by combining the i-particle and the j-particle by summing their 4-momenta; the i-particle

and the j-particle are then removed from the list, and the new particle is added to the

list. If the smallest value is of type diB, then the i-particle is considered a jet and removed

from the list. After updating the list of particles, the distances are recalculated. These

steps are repeated until the list is exhausted.

Since protons are bunched in a beam, many collisions occur simultaneously in a single
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bunch crossing. For each bunch crossing, the collision with the highest
∑
p2T, where the

sum runs over the tracks of the primary vertex, is identified as the event of interest, since it

potentially contains the hardest scattering process. Other primary vertices are considered

as additional background collisions, called pileup.

Particles from the pileup vertices can overlap with particles from the vertex of interest

and confuse the jet reconstruction. The number of pileup vertices in Run 2 was on aver-

age 23 in the 2016 data-taking period, and 32 in 2017 and 2018 [60]. These pileup effects

are mitigated using the standard technique called charged-hadron subtraction (CHS) [12],

where charged particles with reconstructed tracks associated with pileup vertices are iden-

tified and excluded before the jet clustering step. Neutral particles from pileup are treated

by applying an event-by-event energy correction to the reconstructed jets.

The reconstructed jet energy is successively corrected for several factors [61]. First,

there is a pileup offset correction, which estimates and subtracts the additional energy

incorrectly included in the jet reconstruction from pileup. This term helps to remove pileup

contributions from photons and neutral hadrons after the CHS. Then, corrections are

applied to adjust the non-uniformity of the jet energy response and remove its dependence

on the jet pT and η due to detector effects. The residual difference between data and

simulation is corrected.

Jets originating from b quarks are called b jets. B jets contain b hadrons from the

hadronization of b quarks. The lifetime of b hadrons is on the order of τ ∼ 1.5 ps or

cτ ∼ 0.45 mm, which is relatively longer than that of light-flavor hadrons. This leads to

displaced tracks originating from a secondary vertex (SV) due to the decay of b hadrons,

as illustrated in Fig. 2.11. Therefore, reconstruction of secondary vertices is crucial in

b-tagging.

A jet flavor classification algorithm called DeepJet is used to tag b jets [13,62]. DeepJet

is a neural network trained to classify the flavor of a given jet. The input features to the

neural network include properties of the SV and all constituent particles of the jet, as

well as jet-level information such as the jet kinematics and the number of tracks. Three
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Figure 2.11: Characteristics of a jet originating from a b or c quark, which consists of
tracks originated from a secondary vertex (SV) displaced from the primary vertex (PV)
with a large impact parameter (IP). The figure is taken from Ref. [13].

working points are defined, corresponding to the b-tagging efficiencies of 65, 80, and 95%,

respectively, measured in simulated top-quark pair events, with misidentification rates as

light-flavor jets of 0.1, 1, and 10%, respectively, measured in simulated QCD multijet

events [63].

2.3.4 Hadronic taus

The τ lepton has a mass of 1.777 GeV and has the following leading decay modes [26].

• Leptonic decays (τµ, τe)

– τ− → µ−ν̄µντ 17.4%

– τ− → e−ν̄eντ 17.8%

• Hadronic decays (τh)

– τ− → h−ντ 11.5%
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– τ− → h−π0ντ 25.9%

– τ− → h−π0π0ντ 9.5%

– τ− → h−h−h+ντ 9.8%

– τ− → h−h−h+π0ντ 4.8%

Here, h± denotes a charged hadron such as a charged pion or a charged kaon, and the num-

bers shown are the measured branching ratios. The electrons and muons in the leptonic

final states are reconstructed as previously described in Sec. 2.3.1 and Sec. 2.3.2 respec-

tively. About two-thirds of the time, tau leptons decay hadronically into final states that

contain either one or three charged hadrons, accompanied by a neutrino and sometimes

neutral hadrons.

Reconstruction of τh is done using the hadron-plus-strips (HPS) algorithm [64]. A

τh manifests as a narrow jet with a low multiplicity of jet constituents compared to

gluon/quark jets. The final states are characterized by the number of charged hadrons

and the number of π0.

The charged hadrons are reconstructed as tracks in the tracker with HCAL clusters. A

π0 promptly decays into a pair of photons that are likely to be converted into e−e+ pairs.

The e−e+ pair will radiate bremsstrahlung photons and will be separated by the magnetic

field, with a larger separation in ϕ than in η due to the direction of the field.

A π0 is reconstructed by iteratively clustering electrons and photons within a ∆η×∆ϕ

window called a strip. The strip size varies in 0.05 < ∆η < 0.15 and 0.05 < ∆ϕ < 0.3, and

is dynamically determined from the pT of the electrons and photons being clustered. This

dynamic adjustment is necessary because for boosted τh, the decay products are more

collimated. The strip size can dynamically shrink to fully contain the potential candidates

of electrons and photons, minimizing background contributions. However, if a larger strip

size is used, it can also contain the candidates but will increase background contributions

and contaminate the strip reconstruction. These strips are then combined with charged

hadrons to form the τh candidates, with requirements on the reconstructed mass to be

compatible with different decay modes.
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Identification of τh from background objects is done using the DeepTau algorithm [65].

Background objects include electrons, muons, and gluon/quark jets, which can potentially

be misidentified as τh. DeepTau is a neural network trained to simultaneously discriminate

genuine τh against these three classes of background objects. The input features to the

neural network include properties of all reconstructed individual particles near the τh

candidate and properties of the τh candidate itself. Various working points are defined for

each of the three discriminators by setting the target identification efficiencies measured

from h → ττ events with τh pT ∈ [30, 70] GeV. The identification efficiencies range from

40 to 98%, 99.5 to 99.95%, and 60 to 99.5% for discriminators against jets, muons, and

electrons, respectively.
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Chapter 3

Search for Higgs boson decaying

to a pair of pseudoscalars h → aa

This chapter presents two analyses, and their statistical combination, of the search for

exotic decays of the Higgs boson to a pair of light pseudoscalars, using proton-proton

collision data at
√
s = 13 TeV, collected by the CMS detector during LHC Run 2 (three

data-taking years 2016-2018), with an integrated luminosity of 138 fb−1. Sec. 3.1 presents

the analysis in the final state with two b quarks and two tau leptons (h → aa → ττbb).

Sec. 3.2 presents the combination analysis between the ττbb and the µµbb final states.

Sec. 3.3 discusses some future aspects.

3.1 Search for h → aa → ττbb

This section details the full Run 2 analysis of the search for h → aa → ττbb [15].

Sec. 3.1.1 outlines the strategy of the analysis and improvements compared to a pre-

vious effort. Data and simulation samples are described in Sec. 3.1.2. Trigger and object

selections are outlined in Sec. 3.1.3 and Sec. 3.1.4, respectively. Sec. 3.1.5 presents the

background estimation. Sec. 3.1.6 presents the correction factors applied to simulation.

Sec. 3.1.7 presents the dedicated neural networks used for optimization and the event

categorization. Sec. 3.1.8 presents the systematic uncertainties. Sec. 3.1.9 presents the
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signal extraction method. Sec. 3.1.10 presents the results as exclusion limits and model

interpretation.

3.1.1 Analysis strategy

For the Higgs boson with a mass of 125 GeV, the decay h → aa is possible if ma ≤ mh/2 =

62.5 GeV. The analysis probes the range of ma from 12 to 60 GeV, where the final state-

objects are resolved. For masses around 10 GeV and below, the decay products begin to

merge, and dedicated reconstruction techniques will be needed.

The final state has two b quarks and two τ leptons. The b quarks undergo parton

showering and hadronize to form b jets that are identified using the b-tagging algorithm

discussed in Sec. 2.3.3. As discussed in Sec. 2.3.4, a τ lepton can decay hadronically (τh),

into an electron (e), or a muon (µ), with accompanying neutrinos.

The branching ratios of ττ decays are: ττ → τhτh (≈ 42%), ττ → µτh (≈ 23%),

ττ → eτh (≈ 23%), ττ → eµ (≈ 6%), ττ → ee (≈ 3%), and ττ → µµ (≈ 3%). Although

the branching ratio is the largest in the τhτh final state, it is not considered in the analysis

due to the too high threshold on τh pT in the existing trigger path, which is not efficient in

selecting low-momentum τh originating from the light pseudoscalar. The ee and µµ final

states are not considered due to their low branching ratios and the large Drell-Yan (DY)

background (Z → ee/µµ). Therefore, only three ττ final states are analyzed: µτh, eτh,

and eµ.

The three leading background processes are top-quark pair production with additional

jets (tt+jets), DY Z boson production with additional jets (Z+jets), and events with jets

misidentified as one or more of the final-state objects (fakes). Other minor background

processes include single top quark (ST), massive vector boson pair (VV), W boson with

additional jets (W+jets), and SM Higgs boson. The Z → ττ+jets background is estimated

from a combination of data and simulation, the fake background is estimated using data-

driven methods, and the rest are estimated from simulation.

Events are selected by requiring the presence of the ττ final-state objects and at least
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one b-tagged jet. The selected events are then divided into two categories based on the

number of b-tagged jets: events with exactly one b-tagged jet fall into a category called

‘1 b tag’, while events with more than one b-tagged jet fall into another category called

‘> 1 b tag’.

Each category is further divided into several subregions to optimize the signal sensitiv-

ity. For each of the two categories in each of the three ττ final states, a dedicated neural

network is trained as a binary classifier to distinguish between the h → aa → ττbb sig-

nal and various background processes. The input features to the neural networks include

pT, angular variables, and invariant masses constructed from combinations of the four

final-state objects. The classifier output is interpreted as signal probability and used as a

discriminant, with subregion threshold values defined by optimizing the overall sensitivity.

The invariant mass of the two τ leptons, mττ , is used as the observable for the final

likelihood fit. The signal hypothesis appears as a resonance in the mττ distribution,

with different mass points peaking at their corresponding values. This allows for the

identification of the signal mass potentially responsible for any excess in the data. Finally,

a binned maximum likelihood fit is performed simultaneously on the mττ distributions in

all subregions.

Compared to a previous effort [16], which was the first LHC search in this final state

done by CMS using partial Run 2 data collected in 2016 with an integrated luminosity of

35.9 fb−1 (referred to as the 2016-only analysis), the full Run 2 analysis has the following

improvements.

1. Optimization using machine learning. The 2016-only analysis performed se-

quential optimization selection (cut-based), applying hard-threshold cuts on sev-

eral discriminating variables for optimization. In contrast, the full Run 2 analysis

employs dedicated neural networks trained to distinguish between signal and back-

ground events. These neural networks utilize more discriminating variables, allowing

for the machine-learning of correlations between them. This approach results in ad-

ditional sensitivity improvement beyond what is achieved by the increased data size
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alone.

2. Advanced object reconstruction techniques. Central algorithms for object

selection in CMS have been improved since the 2016-only analysis. Advancements

in algorithms for τh and b-tagging, for instance, lead to better reconstruction and

identification efficiencies.

3. Advanced background estimation techniques. One of the main background

processes, Z → ττ , was estimated entirely from simulation in the 2016-only analysis.

In the full Run 2 analysis, it is estimated from a combination of data and simulation,

reducing sources of systematic uncertainties.

4. Advanced signal mass reconstruction technique. In the 2016-only analysis,

the observable mττ was reconstructed from only the visible parts of the τ leptons

without accounting for neutrinos. In the full Run 2 analysis, a dedicated algorithm

is used to account for missing energy, providing a more accurate reconstruction and

a better mass resolution.

5. Finer-grained selection. The 2016-only analysis selected events with only one

bin in the b jet multiplicity—requiring at least one b jet. The full Run 2 analysis

separates events into categories with exactly one b jet and at least two b jets, leading

to better sensitivity.

6. Increased low-mass sensitivity. The selection in the eµ final state is modified to

improve sensitivity for low mass signals, down to 12 GeV, which was not possible in

the 2016-only analysis.

7. Increased statistics. The statistics of the data samples used increases from 35.9

fb−1 in 2016 to 138 fb−1 combining all three years (2016-2018) in Run 2. This leads

to an improvement in the expected exclusion limits by a factor of 2 due to luminosity

scaling.
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Figure 3.1: Schematic view of an event of the production of a Higgs boson in association
with a pair of top quarks (tth), simulated by a MC generator. The two incident protons
are represented by the big ovals in green. The big circle at the center represents the hard
scattering process that produces a top-quark pair and a Higgs boson, with their subsequent
decays represented by the small circles in red. The oval in purple represents the secondary
interaction called the underlying event. Parton showering is followed by hadronization,
represented by the small ovals in green. Finally, the hadron decays are represented by the
circles in dark green. The figure is taken from Ref. [14].

3.1.2 Simulation

Simulation is necessary to provide expected background estimation and signal modeling,

which are compared with the observed data for signal extraction. Fig. 3.1 illustrates

different processes involved in a typical proton-proton collision event. When protons collide
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at high energy, hard scattering processes occur, which are described by perturbative QCD

and are model-dependent (SM or BSM). Since protons are composite particles, secondary

interactions can also occur, called underlying events, which are not the event of interest.

Additional QCD radiation is produced, creating cascades of radiation called parton (quarks

and gluons) showers, and the average parton energy decreases during the process. Below

the QCD scale, partons start to hadronize to form hadrons, which then further decay into

stable particles to be detected by the detector.

These processes can be factorized and simulated by Monte Carlo (MC) generators.

Several independent generators can provide matrix element calculations for hard scattering

processes, depending on the physics models. The DY Z+jets, W+jets, and VV events are

generated using the MadGraph5 aMC@NLO package [66]. The tt+jets and ST events are

generated using the POWHEG package [67–70]. The SM Higgs boson events are generated

using the POWHEG package [71–75].

The signal h → aa → ττbb events are generated by the MadGraph5 aMC@NLO package

using the NMSSMHET model [50]. Mass points from 15 to 60 GeV in steps of 5 GeV, and

an additional mass point of 12 GeV, are generated. The two leading production channels,

gluon-gluon fusion (ggF) and vector boson fusion (VBF) (see Sec 1.1.3), are considered

for the signal generation.

The parton distribution functions (PDFs) are described by the NNPDF3.1 set [76].

Parton showering and hadronization are simulated using the PYTHIA package [77]. The

underlying events for the 2016 (2017-2018) data are described by the CUETP8M1 [78]

(CP5 [79]) tune. Jets are matched between the matrix element level and the showering

level [80–82]. Furthermore, pileup interactions are simulated and superimposed onto the

simulated hard scattering events, which are reweighted to match the pileup distribution

in data. The CMS detector simulation is performed using the GEANT4 package [83,84].
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Table 3.1: Summary of trigger pT thresholds in the three data-taking years [15]. The pT
requirements apply to the corresponding HLT-reconstructed objects. In each final state
per year, events are selected if they pass any of the available triggers.

µτh

2018 2017 2016

single-µ pT(µ) 24, 27 24, 27 22

cross-µτh (pT(µ), pT(τh)) (20, 27) (20, 27) (19, 20)

eτh

2018 2017 2016

single-e pT(e) 32, 35 27, 32 25

cross-eτh (pT(e), pT(τh)) (24, 30) (24, 30) —

eµ

2018 2017 2016

cross-eµ (pT(e), pT(µ)) (23, 8), (12, 23) (23, 8), (12, 23) (23, 8), (12, 23)

3.1.3 Trigger selection

The trigger (online) selection is based on the final-state objects from the two τ . Depending

on the data-taking period and the ττ final state, there are different trigger paths that select

on a single lepton or both objects. The µτh final state uses single-µ and cross-µτh triggers;

the eτh final state uses single-e and cross-eτh triggers; the eµ final state uses cross-eµ

triggers. These triggers require the corresponding electron or muon reconstructed at the

HLT to be isolated. The pT thresholds for the triggers are tabulated in Tab. 3.1.

3.1.4 Object selection

In the µτh, eτh, and eµ final states, the presence of a pair of µτh, eτh, and eµ with opposite

electric charge is required, respectively. Events with extra electrons or muons are rejected

to suppress background contributions from DY and multilepton events.

Muons are required to be within |η| < 2.4. They must pass the medium identification

working point, which has an overall efficiency of 99.5% [10] (see Sec. 2.3.2). In the µτh

final state, the offline selection requires the muon pT threshold to be 1 GeV higher than

the corresponding trigger threshold listed in Tab. 3.1, where the trigger becomes fully

efficient with the efficiency independent of the pT. For the cross-eµ triggers in the eµ final
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state, the muon pT threshold is required to be 1 GeV higher when the online threshold is

23 GeV, for the same reason above. However, it is required to be 5 GeV higher when the

online threshold is 8 GeV, as a too low pT threshold would lead to a high misidentification

rate.

Electrons are required to be within |η| < 2.4. They must pass the multivariate identi-

fication at a working point that has an efficiency of 90% [57] (see Sec. 2.3.1). In the eτh

and eµ final states, the offline selection requires the electron pT threshold to be 1 GeV

higher than the corresponding trigger threshold listed in Tab. 3.1.

To suppress misidentification rate of a prompt lepton from non-prompt or fake leptons,

it is useful to calculate the energy sum from other particles surrounding the lepton. This

is done by defining the relative lepton isolation [10,57]:

I
l={e,µ}
rel =

∑
charged pT +max(0,

∑
neutral pT − p

pileup(neutral)
T )

p
l={e,µ}
T

. (3.1)

Here,
∑

charged pT sums over the charged particles with tracks originating from the primary

vertex, while
∑

neutral pT sums over the neutral particles, and the lepton of interest is

excluded from these sums. All the sums are calculated within a cone centered around

the lepton direction with a radius of ∆R =
√
(∆ϕ)2 + (∆η)2. Since neutral particles do

not have tracking information, the neutral particle sum includes contributions from both

the primary vertex and pileup vertices. Therefore, the term p
pileup(neutral)
T represents the

neutral particles from pileup and is subtracted from the neutral particle sum. For muon

isolation, p
pileup(neutral)
T is estimated from charged particles associated with pileup vertices,

using a known ratio of neutral to charged hadron production in inelastic proton-proton

collisions, which is estimated from simulation. For electron isolation, it is estimated from

the pileup energy flow density.

The size of the isolation cone is set to be ∆R = 0.4 for muons and ∆R = 0.3 for

electrons. Muons and electrons are required to be isolated: Iµrel < 0.15 and Ierel < 0.1. In

the eµ final state, the electron and the muon are required to be separated by ∆R > 0.3.

In the µτh and eτh final states, τh candidates are selected using the HPS algorithm [64]
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(see Sec. 2.3.4). The τh candidates are required to be within |η| < 2.1 (2.3) if the events

(do not) pass the cross triggers. The τh pT threshold in offline selection is required to be

5 GeV higher than the corresponding trigger threshold listed in Tab. 3.1. For events that

pass only the single lepton triggers, the τh candidates are required to have pT > 20 GeV.

They are also required to be separated from the selected electron or muon by ∆R > 0.4.

To reduce the τh misidentification rates against jets, electrons, and muons, the DeepTau

algorithm is applied [65] (see Sec. 2.3.4). The medium working point is chosen for the

discriminator against jets in both final states, which corresponds to an efficiency of 70%.

In the µτh final state, the tight working point is chosen for the discriminator against

muons, and the very-loose working point is chosen for the discriminator against electrons,

effectively suppressing the large Z → µµ background. Conversely, in the eτh final state, the

tight working point is chosen for the discriminator against electrons, and the very-loose

working point is chosen for the discriminator against muons, effectively suppressing the

large Z → ee background.

Additionally, at least one b-tagged jet is required in all final states. First, at least one

untagged jet within |η| < 2.4 and with pT > 20 GeV is selected, which must be separated

from any of the selected electron, muon, or τh by ∆R > 0.5. Then, b jets are tagged using

the DeepJet algorithm [13, 62] (see Sec. 2.3.3). The medium working point is chosen,

corresponding to a b-tagging efficiency of 80% and a misidentification rate of 1% against

light-flavor jets.

3.1.5 Background estimation

Some background processes are estimated directly from simulation, some are estimated

entirely from data, and some are estimated from a combination of data and simulation.

The estimation methods are described as follows.

• Z → ττ is estimated using the embedded technique [85]. In this method, Z → µµ

events are selected from data as the baseline events, as they have a clean signature

with relatively low background contamination. Then, the muon pairs are removed
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and replaced by simulated τ pairs that have the same kinematic properties. This

results in the Z → ττ events estimated from data, except for the decays of the τ

leptons being simulated, reducing the number of corrections needed and systematic

uncertainties due to simulation. In fact, due to the lepton universality in the SM

except in the scalar sector, the estimation also includes all other SM non-Higgs

processes with two τ leptons. In principal, the selected data can include h → µµ

events, but since the Yukawa coupling is directly proportional to the fermion mass,

so the embedded h → ττ is negligible compared to its actual rate. Therefore, these

embedded ττ events have to be excluded from all other SM background processes

to avoid double counting, except for the Higgs boson processes, which need to be

estimated separately.

• jets → τh fake accounts for events inclusively with a jet misidentified as the τh

candidate in the µτh and eτh final states. This background is estimated from data

in a sideband region using the fake rate method with the following steps.

1. The first step is to measure the fake rate, f , which is defined as the probability

for a jet reconstructed as a τh that passes the τh identification against jets. This

fake rate is a function of the τh pT and is measured from the Z → µµ+jets events

selected from data. This rate is also measured separately for the µτh and eτh

final states by setting the corresponding working points of the τh identification

against electrons and muons.

2. Then, an orthogonal sideband region is defined with the same baseline selection,

except that the τh candidate fails the τh identification, making it likely to be a

jet fake.

3. In the sideband region, start from the data and subtract from it all the MC

simulated events where the τh candidate is either a genuine τh or a lepton fake.

This step removes the non-jet fakes from the estimation. Essentially, these data

events represent the inclusive background events with a jet reconstructed as the

τh candidate which fails the τh identification.
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4. Finally, scale these data events by the factor f
1−f , which represents the ratio

between the number of jets passing the τh identification and the number of

jets failing the τh identification. These scaled data now represent the inclusive

background events that have a jet reconstructed as the τh candidate which

passes the τh identification.

Since this method inclusively estimates all background events with a jet faking the

τh, these events should be excluded from all the simulated events to avoid double

counting.

• QCD multijet accounts for QCD events with jets misidentified as one or both

leptons in the eµ final state. In the following, OS (SS) denotes opposite-sign (same-

sign) electric charge of the eµ pair. This background is estimated from data in

different sideband regions with the following steps.

1. An orthogonal sideband region, called the SS region, is defined with the same

baseline selection except with a SS eµ pair. Conversely, the baseline region is

called the OS region.

2. In the SS region, start from the data and subtract all the MC simulated events.

This removes all background contributions except the QCD multijet process, as

it is not estimated from any simulated samples. These data events, with both

leptons being isolated, are denoted as QCDiso-e,iso-µ
SS .

3. There are three multiplicative scale factors needed to extrapolate these data

events from the SS region to the OS region using other sideband regions by

inverting the isolation of the two leptons. The first one is the OS-to-SS scale

factor, which is the ratio of the number of QCD events between the OS and SS

regions: QCDiso-e,anti-µ
OS /QCDiso-e,anti-µ

SS . This is parameterized by the separation

between the leptons, ∆R(e, µ), measured from another orthogonal region with

an isolated electron and an anti-isolated muon.

4. The second scale factor is a 2D correction factor to account for the lepton pT
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dependence of the OS-to-SS scale factor. This is measured similarly to the OS-

to-SS scale factor but parameterized by the pT of both leptons and serves as a

closure correction to the OS-to-SS scale factor.

5. The third scale factor is a 2D correction factor to adjust the OS-to-SS scale

factor from having an anti-isolated muon to an isolated muon. This factor is

parameterized by the pT of both leptons. It is measured by taking the ratio

between the OS-to-SS scale factor measured with an anti-isolated electron and

an isolated muon, and the OS-to-SS scale factor measured with both leptons

being anti-isolated:
QCDanti-e,iso-µ

OS /QCDanti-e,iso-µ
SS

QCDanti-e,anti-µ
OS /QCDanti-e,anti-µ

SS

.

Since this method accounts exclusively for the QCD multijet process, there is no

double counting with other background processes.

• tt+jets is estimated from MC simulation. It includes three possible decay modes of

the W bosons from the top quarks: 1) both W bosons decay hadronically, 2) one W

boson decays leptonically and the other hadronically, and 3) both W bosons decay

leptonically. To avoid double counting with the embedded ττ events, the simulated

tt+jets events that contain two genuine τ leptons are excluded. To avoid double

counting with the jet → τh events in the µτh and eτh final states, the simulated

tt+jets events that contain the τh candidate originating from a jet are excluded.

These exclusions are applied to all other simulated processes.

• Z → ee/µµ, ST, VV, SM Higgs boson are the remaining background processes

and have small contributions. These are all estimated from the MC simulation.

For each simulated process with a cross section σ and an arbitrary number of simulated

events Ngenerated, all simulated events are scaled by a factor of σL/Ngenerated to produce

the yield expected for the integrated luminosity of L.
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3.1.6 Corrections to simulation

Simulation samples are used to predict the expected yields of the signal and background

processes under study. They are based on the best-known theoretical predictions and

experimental conditions, aiming to accurately represent the underlying physics processes

for interpreting of the real data.

However, there can be various sources of mis-modeling or imperfections in the simu-

lation, causing disagreements between data and simulation and affecting the reliability of

the simulated events. For example, the actual detector response and resolution may not be

perfectly modeled in simulation, leading to simulated object energy being systematically

lower or higher than the measured energy. Therefore, scale factors are derived and applied

to the simulated quantities to align them with the data. These corrections are necessary

to ensure proper agreement with real data, providing a more accurate description and

reducing systematic uncertainties.

The main corrections applied to simulation in the analysis are listed below.

• Trigger efficiencies are corrected by scaling the corresponding triggered events to

account for the differences in trigger performance between simulation and data.

• Pileup reweighting is applied to correct the pileup profile in simulation to match

that observed in data.

• Lepton reconstruction and identification efficiencies are corrected separately

for electrons and muons.

• Electron energy is corrected for the scale and resolution.

• τh reconstruction and identification efficiencies are corrected separately for

genuine and misidentified τh candidates.

• τh energy is corrected separately for genuine and misidentified τh candidates.

• Jet energy is corrected by applying multiplicative scale factors that account for

various mis-measurement effects, adjusting the scale of the jet energy distribution.
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Jet energy resolution is then corrected by smearing, which adjusts the shape of the

jet energy distribution.

• Missing transverse energy is corrected for resolution and response by applying

recoil corrections to W+jets, Z+jets, and Higgs boson samples. For samples without

recoil corrections, correction is applied to account for the energy measurements not

clustered into jets.

• B-tagging efficiencies are corrected as a function of the b-tagging discriminant,

jet flavor, pT, and η.

• Top quark pT spectrum is corrected in the tt+jets samples as a function of the

top pT to account for the missing higher-order calculations at the matrix element

level in simulation.

• Z pT spectrum is corrected in the DY Z → ee/µµ samples as a function of the Z

pT to account for the missing higher-order calculations at the matrix element level

in simulation.

3.1.7 Optimization using neural networks

In the following, we first discuss the signal mass reconstruction and then the machine

learning-based optimization.

The SVFit algorithm [86] is used to reconstruct the invariant mass of the two τ leptons,

mττ , which serves as the observable for signal extraction. Instead of reconstructing the

mass from only the visible τ decay products, mvis
ττ , the algorithm reconstructs the full

mass, by taking into account the missing transverse energy from the invisible neutrinos.

Compared to mvis
ττ , the mττ distribution of the signal h → aa → ττbb has a more accurate

resonance peak centered around the corresponding mass hypothesis and has an improved

resolution.

After the baseline selection, events with two τ leptons and at least one b-tagged jet

passing various object quality tests are selected and categorized into the ‘1 b tag’ and ‘>
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Table 3.2: Composition ratios of the three leading background processes in the background
class.

tt+jets (%) Z → ττ (%) fakes (%)

µτh ‘1 b tag’ 42.4 17.4 40.2

µτh ‘> 1 b tag’ 68.5 6.2 25.3

eτh ‘1 b tag’ 51.3 12.5 36.2

eτh ‘> 1 b tag’ 73 4.8 22.2

eµ ‘1 b tag’ 92.5 3.1 4.4

eµ ‘> 1 b tag’ 98.5 0.7 0.8

1 b tag’ categories. The categories are further divided into subregions to optimize the

overall sensitivity (signal-to-background ratio) using deep neural networks (DNN).

One DNN is dedicated to each category in each ττ final state, resulting in a total of

(2 categories)× (3 ττ final states) = 6 DNNs. Each DNN is trained as a binary classifier

to distinguish the signal class from the background class. Details of the DNN optimization

are presented below.

Training data preparation

The training data is split into two classes: signal and background. The signal class

is prepared by combining simulated signal events of all 11 generated mass points. The

background class is prepared by combining only the three leading background processes:

tt+jets, Z → ττ , and fakes. The tt+jets events are taken from the simulated samples.

The Z → ττ events are taken from the embedded samples. In the µτh and eτh final states,

fakes refers to the jet → τh events estimated from the data-driven fake rate method; in

the eµ final state, fakes refers to the QCD multijet events estimated from the data-driven

OS/SS method.

The three background processes are combined into a single background class without

applying event weights, using composition ratios according to the weighted mττ distri-

bution after baseline selection. This approximation represents the true background com-

position and simplifies training by avoiding the need to weight the training data. The

background composition ratios are listed in Tab. 3.2.

To ensure unbiased training and classification, the number of training events in the
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Table 3.3: Numbers of training events in the signal and background classes. All events
are required to pass the baseline selection.

signal tt+jets Z → ττ fakes

µτh ‘1 b tag’ 158664 67273 27608 63783

µτh ‘> 1 b tag’ 28721 19674 1781 7266

eτh ‘1 b tag’ 51753 26549 6469 18735

eτh ‘> 1 b tag’ 10046 7334 482 2230

eµ ‘1 b tag’ 110020 101768 3411 4841

eµ ‘> 1 b tag’ 16733 16482 117 134

signal class should be equal to that in the background class. The number of training events

in each class is set by the number of available simulated signal events, which is much less

than the available background events. In the background class, the number of training

events for the three background processes is allocated according to the composition ratios

in Tab. 3.2. Additionally, all training events are required to pass the baseline selection to

represent the actual distributions in the analysis. All three years of data are combined for

maximum statistics, and the DNNs are trained without differentiating between the years.

The numbers of training events are tabulated in Tab. 3.3.

Input features

Essentially, a DNN classifier learns the correlation of the input features that distinguish

between different classes. The input features are chosen based on the principle that the

signal class and the background class should be differently distributed in these variables

to maximize discrimination power.

An important point to note is that the mττ variable should be explicitly excluded from

the list of input features. This is because mττ is the observable for signal extraction in the

analysis. The DNN discriminant is used to define subregions of mττ that maximize the

overall signal-to-background ratio. If the DNN discriminant is highly correlated with mττ ,

defining subregions by cutting on the discriminant value would introduce shaping effects

on the signal resonant distribution in mττ , biasing and invalidating the optimization.

Therefore, the mττ variable is not considered as an input to the DNNs, and the correlation

between the DNN output and mττ is checked after training.
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The input features include lower-level kinematic properties of the final-state objects

and higher-level variables such as angular separation and invariant masses. In the ‘1 b tag’

category, these variables are constructed from the two τ objects and the leading b-tagged

jet. In the ‘> 1 b tag’ category, there are more variables due to the additional sub-leading

b-tagged jet.

All the input features are listed below.

• µτh ‘1 b tag’: pT(µ), pT(b1), pT(ττ), η(ττ), mb1µ, mb1τh , mb1ττ , ∆R(µ, τh),

∆R(b1, µ), ∆R(b1, τh), ∆R(b1, ττ), mT(µ, p
miss
T ), mT(τh, p

miss
T ), mT(b1, p

miss
T ), Dζ .

• µτh ‘> 1 b tag’: pT(µ), pT(b1), pT(b2), mb1µ, mb1τh , mb2µ, mb2τh , mbb, mb1ττ ,

mb2ττ ,mbbµ,mbbτh ,mbbττ , ∆R(µ, τh), ∆R(b1, µ), ∆R(b1, τh), ∆R(b2, µ), ∆R(b2, τh),

∆R(b1,b2), ∆R(b1, ττ), ∆R(b2, ττ), ∆R(bb, µ), ∆R(bb, τh), ∆R(bb, ττ),mT(µ, p
miss
T ),

mT(τh, p
miss
T ), mT(b1, p

miss
T ), mT(b2, p

miss
T ), ∆ma, Dζ .

• eτh ‘1 b tag’: pT(e), pT(b1), pT(ττ), η(ττ),mb1e,mb1τh ,mb1ττ , ∆R(e, τh), ∆R(b1, e),

∆R(b1, τh), ∆R(b1, ττ), mT(e, p
miss
T ), mT(τh, p

miss
T ), mT(b1, p

miss
T ), Dζ .

• eτh ‘> 1 b tag’: pT(e), pT(b1), pT(b2), mb1e, mb1τh , mb2e, mb2τh , mbb, mb1ττ ,

mb2ττ ,mbbe,mbbτh ,mbbττ , ∆R(e, τh), ∆R(b1, e), ∆R(b1, τh), ∆R(b2, e), ∆R(b2, τh),

∆R(b1, b2), ∆R(b1, ττ), ∆R(b2, ττ), ∆R(bb, e), ∆R(bb, τh), ∆R(bb, ττ),mT(e, p
miss
T ),

mT(τh, p
miss
T ), mT(b1, p

miss
T ), mT(b2, p

miss
T ), ∆ma, Dζ .

• eµ ‘1 b tag’: pT(e), pT(µ), pT(b1), pT(ττ), η(ττ), mb1e, mb1µ, mb1ττ , ∆R(e, µ),

∆R(b1, e), ∆R(b1, µ), ∆R(b1, ττ), mT(e, p
miss
T ), mT(µ, p

miss
T ), mT(b1, p

miss
T ), Dζ .

• eµ ‘> 1 b tag’: pT(e), pT(µ), pT(b1), pT(b2), mb1e, mb1µ, mb2e, mb2µ, mbb, mb1ττ ,

mb2ττ , mbbe, mbbµ, mbbττ , ∆R(e, µ), ∆R(b1, e), ∆R(b1, µ), ∆R(b2, e), ∆R(b2, µ),

∆R(b1,b2), ∆R(b1, ττ), ∆R(b2, ττ), ∆R(bb, e), ∆R(bb, µ), ∆R(bb, ττ),mT(e, p
miss
T ),

mT(µ, p
miss
T ), mT(b1, p

miss
T ), mT(b2, p

miss
T ), ∆ma, Dζ .

Here, b1 and b2 refer to the leading and sub-leading b-tagged jets, respectively. ττ repre-

sents the reconstructed di-τ system using the SVFit algorithm. pmiss
T is the magnitude of
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the missing transverse momentum vector, p⃗miss
T , calculated as the negative vector sum of

the transverse momenta of all the PF candidates in an event [87].

The transverse mass of an object X = {e, µ, τT,b1, b2} and the missing momentum is

defined as:

mT(X, p
miss
T ) ≡

√
2pXTp

miss
T (1− cos(∆ϕ)), (3.2)

where pXT is the transverse momentum of the object X, and ∆ϕ is the azimuthal angle

between the X momentum and p⃗miss
T . Signals typically have a small value of mT, while

backgrounds such as W+jets and tt+jets tend to have larger values of mT due to a higher

pmiss
T .

The Dζ variable is defined as [88]:

Dζ ≡ pζ − 0.85pvisζ , (3.3)

where ζ denotes the axis along the bisector of the transverse momenta of the two τ

candidates, pζ is the projection of p⃗miss
T onto to the ζ axis, and pvisζ is the projection of the

visible τ decay products onto the ζ axis.

In the ‘> 1 b tag’ category, the presence of all four final-state objects allows for the

reconstruction of both pseudoscalar masses and their difference:

∆ma ≡
mbb −mττ

mττ
. (3.4)

∆ma is typically narrowly peaked around 0 for the signal while widely distributed for the

background.

Moreover, the signal typically has lower-pT final-state objects since they are the decay

products of the light pseudoscalars, while the background has a wider pT spectrum. Simi-

larly, the signal typically has more narrowly peaked invariant masses than the background.

The final-state objects of the signal have a more correlated angular separation between

each other, restricted by the unique decay topology, while the angular separation is more

randomly distributed for the background. The signal and background distributions of the
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input features for the ‘1 b tag’ category are shown in Fig. 3.2, and those for the ‘> 1 b

tag’ category are shown in Fig. 3.3 and Fig. 3.4, in the µτh final state as an illustration.

The correlations between the input features are shown in Fig. 3.5 for the ‘1 b tag’

category and in Fig. 3.6 for the ‘> 1 b tag’ category, using the µτh final state as an

illustration. In signal events, some inputs can be more correlated than others because

they are of the same kind but only constructed from different combinations of the final-

state objects (ττbb), all originating from the two pseudoscalar decays that originated from

the same Higgs boson decay. Highly correlated inputs include invariant masses and ∆R.

In comparison, the inputs are less correlated for background events, since the final-state

objects from different background processes are not necessarily from the same resonant

decays and may even be completely independent of one another.

Having some highly correlated input features is not a concern for the analysis as long

as there is no overfitting of the model and the model output is not correlated with the

observable mττ , which is used for signal extraction. These will be checked after the models

are trained.
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(a) pT(µ) (b) pT(b1) (c) pT(ττ)

(d) η(ττ) (e) mb1µ (f) mb1τh

(g) mb1ττ (h) ∆R(µ, τh) (i) ∆R(b1, µ)

(j) ∆R(b1, τh) (k) ∆R(b1, ττ) (l) mT(µ, p
miss
T )

(m) mT(τh, p
miss
T ) (n) mT(b1, p

miss
T ) (o) Dζ

Figure 3.2: The 15 input features for the ‘1 b tag’ category in the µτh final state. The
signal (background) class is represented by the distributions in blue (orange).
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(a) pT(µ) (b) pT(b1) (c) pT(b2)

(d) mb1µ (e) mb1τh (f) mb2µ

(g) mb2τh (h) mbb (i) mb1ττ

(j) mb2ττ (k) mbbµ (l) mbbτh

(m) mbbττ (n) ∆R(µ, τh) (o) ∆R(b1, µ)

Figure 3.3: The first 15 input features for the ‘> 1 b tag’ category in the µτh final state.
The signal (background) class is represented by the distributions in blue (orange).
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(a) ∆R(b1, τh) (b) ∆R(b2, µ) (c) ∆R(b2, τh)

(d) ∆R(b1,b2) (e) ∆R(b1, ττ) (f) ∆R(b2, ττ)

(g) ∆R(bb, µ) (h) ∆R(bb, τh) (i) ∆R(bb, ττ)

(j) mT(µ, p
miss
T ) (k) mT(τh, p

miss
T ) (l) mT(b1, p

miss
T )

(m) mT(b2, p
miss
T ) (n) ∆ma (o) Dζ

Figure 3.4: The last 15 input features for the ‘> 1 b tag’ category in the µτh final state.
The signal (background) class is represented by the distributions in blue (orange).
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(a) Input correlation in signal events.

(b) Input correlation in background events.

Figure 3.5: Correlation matrices for the 15 input features for the ‘1 b tag’ category in the
µτh final state, evaluated with the signal and background events, respectively.
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(a) Input correlation in signal events.

(b) Input correlation in background events.

Figure 3.6: Correlation matrices for the 30 input features for the ‘> 1 b tag’ category in
the µτh final state, evaluated with the signal and background events, respectively.
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Model and training

The DNN models are implemented and trained using the Keras library [23]. The

fundamentals of neural networks are discussed in more details in Part. II. Essentially, a

fully-connected neural network [89–93] consists of three components: 1) input layer, 2)

hidden layers, and 3) output layer. The number of nodes in the input layer equals the

number of input features. The number of hidden layers and the number of nodes per hidden

layer are hyperparameters that can be varied and optimized for different problems. Nodes

between adjacent layers are connected with model weights, which are used to perform

matrix multiplications when data flow from one layer to the next, followed by nonlinear

activation at each node. The rectified linear unit (ReLU) [94] function is used as activation

for nodes in the hidden layers:

ReLU(x) = max(0, x), (3.5)

which is nonlinear while not being computationally intensive. The output layer consists

of one node for binary classification, which can be constrained to output a probability-like

value between 0 and 1 by using the sigmoid function as activation:

σ(x) =
1

1 + e−x
. (3.6)

For a binary classifier trained with supervised learning, training data are labeled: the

signal class is labeled as y = 1 and the background class is labeled as y = 0. Given an

event with an input vector x, a DNN can be constructed as a function that predicts the

probability for the event being a signal: ŷ = f(x;w), where w denotes the model weights.

The model weightsw are learned from the labeled training data by minimizing an objective

function called the loss function l(ŷ, y), which typically measures the distance between

the model prediction ŷ and the label y. A gradient-based optimization algorithm called

Adam [95] is used to find the optimal model weights for the training dataset {(xi, yi)}i=1,...,n
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with inputs xi and labels yi:

w∗ = argmin
w

n∑
i=1

l(f(xi;w), yi), (3.7)

where the binary cross-entropy loss [93] is used:

l(ŷ, y) = −
(
y log ŷ + (1− y) log(1− ŷ)

)
. (3.8)

If a training event is a signal (y = 1), the loss becomes l = − log ŷ, which is zero if the

model makes a perfectly correct prediction (ŷ = 1), and penalizes with positive infinity

loss if the model makes a perfectly wrong prediction (ŷ = 0). Conversely, for a background

event (y = 0), the loss is − log(1 − ŷ). Therefore, the model learns to output a value as

close to 1 (0) as possible for a signal (background) event, effectively computing the signal

probability for a given event.

The input features are standardized so that each of them has a zero mean and unit

variance. This ensures all inputs are on the same scale for faster convergence in the

optimization process. The training data are randomly split into three sets: the training

set (≈60%), the validation set (≈20%), and the test set (≈20%). The training set is used

for training, where the model weights are optimized with respect to it. The validation

set is used for independent evaluation concurrently at train time for monitoring purposes.

The test set is used for independent evaluation after the model is trained.

If the model size is too large, it is prone to overfitting. Overfitting occurs when the

model is too expressive and fits to noisy fluctuations and outliers in the training dataset,

similar to fitting a 10-order polynomial to parabolic data. During training, overfitting is

indicated by a much lower training loss compared to validation loss. Overfitting prevents

the model from generalizing to unseen data, such as the test set. Dropout [96] is a

common technique to reduce overfitting, which randomly selects nodes from a layer and

sets them to zero during training, ensuring no specific nodes become overly important. A

dropout layer is applied to each hidden layer in the models, with the dropout rate being
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Table 3.4: Summary of the DNN architecture. All DNNs have two hidden layers, each
followed by a dropout layer. The numbers of nodes in the input and hidden layers, as well
as the dropout rates, are shown.

Input dim. Layer-1 dim. Layer-2 dim. Dropout rate for layer-1 Dropout rate for layer-2

µτh ‘1 b tag’ 15 52 36 0.2 0.2

µτh ‘> 1 b tag’ 30 62 32 0.3 0.4

eτh ‘1 b tag’ 15 52 36 0.2 0.2

eτh ‘> 1 b tag’ 30 58 34 0.3 0.4

eµ ‘1 b tag’ 16 52 34 0.4 0.3

eµ ‘> 1 b tag’ 31 56 38 0.2 0.3

a hyperparameter. Conversely, if the model size is too small, it is prone to underfitting,

failing to learn useful information from the data.

To find the optimal model architecture, the Hyperband algorithm [97] is used in the

KerasTuner framework [98]. This algorithm employs an adaptive resource allocation strat-

egy to efficiently perform hyperparameter search across a large set of random model config-

urations. The hyperparameters include the number of hidden layers, the number of nodes

per hidden layer, and the dropout rate per hidden layer. The optimized hyperparameters

are summarized in Tab. 3.4 for the DNNs in the six categories.

The training curves are shown in Fig. 3.7. Training is set to stop early when there is

no significant gain or when the performance on the training set becomes better than on

the validation set.

Performance and Validation

The distributions of the DNN output (score) are shown in Fig. 3.8. As expected, the

signal events tend to have score values close to one, while the background events tend to

have score values close to zero. The distributions for the test set are consistent with those

for the training and validation sets, suggesting that the model is not over-trained and can

generalize its performance to unseen data. The receiver operating characteristic (ROC)

curves are shown in Fig. 3.9.

A ROC curve measures the true positive rate (signal efficiency) as a function of the

false positive rate (background efficiency). Every point on the ROC curve corresponds to

a threshold value on the score: for a given event, if its score is higher than the threshold, it

is predicted as signal; otherwise, it is predicted as background. The area under the curve
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(a) ‘1 b tag’, µτh. (b) ‘> 1 b tag’, µτh.

(c) ‘1 b tag’, eτh. (d) ‘> 1 b tag’, eτh.

(e) ‘1 b tag’, eµ. (f) ‘> 1 b tag’, eµ.

Figure 3.7: In each category, the loss as a function of the training epoch is plotted on the
left, while the accuracy as a function of the training epoch is plotted on the right. The
blue (orange) curves represent evaluation on the training (validation) set.

Table 3.5: Classification accuracy (with a score threshold of 0.5) evaluated on the test set.

Accuracy (%)

µτh ‘1 b tag’ 96.2

µτh ‘> 1 b tag’ 97.5

eτh ‘1 b tag’ 97.4

eτh ‘> 1 b tag’ 97.4

eµ ‘1 b tag’ 97.6

eµ ‘> 1 b tag’ 98.1

(AUC) quantifies the ROC curve. The AUC is higher than 0.99 in all six categories.

Tab. 3.5 lists the classification accuracy, measured as the probability of the classifier

making the correct classification. In this example, the decision threshold is set at a score

value of 0.5.
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(a) ‘1 b tag’, µτh. (b) ‘> 1 b tag’, µτh.

(c) ‘1 b tag’, eτh. (d) ‘> 1 b tag’, eτh.

(e) ‘1 b tag’, eµ. (f) ‘> 1 b tag’, eµ.

Figure 3.8: DNN score distributions in the six categories. The box histograms in red
(green) represent the signal (background) class evaluated on the training and validation
sets combined. The filled histograms in orange (blue) represent the signal (background)
class evaluated on the test set.
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(a) ‘1 b tag’, µτh. (b) ‘> 1 b tag’, µτh.

(c) ‘1 b tag’, eτh. (d) ‘> 1 b tag’, eτh.

(e) ‘1 b tag’, eµ. (f) ‘> 1 b tag’, eµ.

Figure 3.9: ROC curves in the six categories, evaluated on the test set. The area under
the curve (AUC) is indicated. The dotted lines represent a classifier that does not learn
and makes predictions by random chance.
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(a) Signal (15 GeV). (b) Signal (35 GeV).

(c) Signal (60 GeV). (d) Signal (all masses).

(e) Background. (f) Observed data.

Figure 3.10: 2D correlation plots of mττ vs. DNN score, for the µτh ‘1 b tag’ category.
Signal, background, and observed data are plotted separately.

The DNN score and mττ are validated to be uncorrelated, as shown in Fig. 3.10.

Categorization

The DNN scores are used to define subregions for mττ in each of the six categories.

Each category typically has several signal regions (SRs) with high signal-to-background
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ratios to enhance sensitivity, and one control region (CR) that is signal-depleted and

background-enriched to validate the background estimation. The SRs (CRs) are defined

by events with high (low) DNN score.

However, as shown in Fig. 3.8, the score distributions are highly concentrated around

the score boundaries: signal events are piled up at the rightmost bin while background

events are piled up at the leftmost bin. This concentration can potentially lead to imprac-

tical threshold definitions. For instance, the overall sensitivity could change dramatically

when the SRs are redefined with a score threshold changing from 0.99999 to 0.99998.

Therefore, the DNN score is first transformed to dilute the density of the high score

region, using the property of the tanh function:

p̃k = tanh−1(p× tanh(k))/k, (3.9)

where p̃k ∈ (0, 1) is the transformation of the raw DNN score p ∈ (0, 1), and k > 0 is a

parameter that controls the dilution. The parameter is set to k = 1.5 for the µτh and eτh

final states, and k = 2.5 for the eµ final state.

After the transformation, the DNN scores are plotted, comparing the observed data

with the expected signal and background distributions with event weights applied, as

shown in Fig. 3.11.
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Figure 3.11: Pre-fit distributions of the DNN score with the category indicated, comparing
the weighted background events and the observed data. The total background uncertainty
is shown in grey. The lower panel shows the ratio of the observed data to the expected
background yields. The figures are taken from Ref. [15].
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These scores are used to define various subregions using a grid-scan strategy described

in the following steps, performed separately in each category per data-taking year.

1. Starts from the first threshold and insert it in the high score region, say a score value

of 0.99. This defines two subregions: the first SR called SR1 (score > 0.99), and the

CR (score < 0.99).

2. Compute the expected exclusion limit (see Sec. 3.1.9) combining SR1 and CR, which

quantifies the sensitivity of the signal extraction.

3. Change the threshold to a lower score value in small grid points and repeat the

computation of the expected exclusion limit. This generates the expected exclusion

limit as a function of the score threshold.

4. Fix the threshold to the score value that gives the minimum expected exclusion limit

among the grid points.

5. Insert a new threshold and repeat the scanning procedures while keeping the first

threshold fixed. This creates three subregions: SR1, SR2, and CR.

6. Keep inserting new thresholds until there is no additional gain in sensitivity.

This strategy is an approximation to search from all the possible combinations of

thresholds, as only one threshold is varied at a time while keeping others fixed. To validate

the thresholds obtained from the above steps, some thresholds are scanned again but in

a reverse order. Thresholds are updated if the sensitivity improves. The final subregion

definitions are summarized in Tab. 3.6. Threshold values can differ between different data-

taking periods because of varying trigger paths, causing slight differences in the respective

distributions.

3.1.8 Systematic uncertainties

In analyses, uncertainties quantify the reliability and precision of predictions and mea-

surements. There are two types of uncertainties: statistical and systematic. Statistical
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Table 3.6: Definition of the subregions for mττ by threshold cuts on the DNN score.

‘1 b tag’ ‘> 1 b tag’

SR1 SR2 SR3 CR SR1 SR2 CR

µτh 2018 > 0.98 ∈ (0.95, 0.98) ∈ (0.9, 0.95) < 0.9 > 0.99 ∈ (0.96, 0.99) < 0.96

µτh 2017 > 0.97 ∈ (0.94, 0.97) ∈ (0.9, 0.94) < 0.9 > 0.98 ∈ (0.94, 0.98) < 0.94

µτh 2016 > 0.97 ∈ (0.94, 0.97) ∈ (0.89, 0.94) < 0.89 > 0.97 ∈ (0.93, 0.97) < 0.93

eτh 2018 > 0.97 ∈ (0.945, 0.97) ∈ (0.9, 0.945) < 0.9 > 0.96 — < 0.96

eτh 2017 > 0.985 ∈ (0.965, 0.985) ∈ (0.93, 0.965) < 0.93 > 0.985 — < 0.985

eτh 2016 > 0.985 ∈ (0.965, 0.985) ∈ (0.93, 0.965) < 0.93 > 0.96 — < 0.96

eµ 2018 > 0.99 ∈ (0.95, 0.99) ∈ (0.85, 0.95) < 0.85 > 0.98 ∈ (0.94, 0.98) < 0.94

eµ 2017 > 0.985 ∈ (0.95, 0.985) ∈ (0.85, 0.95) < 0.85 > 0.97 ∈ (0.93, 0.97) < 0.93

eµ 2016 > 0.99 ∈ (0.95, 0.99) ∈ (0.85, 0.95) < 0.85 > 0.98 ∈ (0.94, 0.98) < 0.94

uncertainties refer to the random fluctuations in a measurement process arising from the

limited sample size, which can be improved by increasing the sample size. Systematic

uncertainties refer to those that consistently impact the result and cannot be improved

by increasing the sample size. These can arise from sources such as theoretical modeling,

detector effects, background estimation methodologies, and selection criteria.

The systematic uncertainties are listed in the following.

• Trigger efficiencies. An uncertainty of 2% is associated with triggers without

a τh requirement, and 5-10% for triggers with a τh requirement. These are shape

uncertainties applied to events according to their triggered paths.

• Luminosity. Uncertainties associated with luminosity measurements are applied

as normalization uncertainties to simulated events, amounting to 1, 2, and 1.5% for

the 2016, 2017, and 2018 data-taking periods, respectively, along with additional

correlated uncertainties between the periods [99–101].

• Lepton reconstruction and identification efficiencies. A normalization uncer-

tainty of 2% is associated with electron [57] and muon [102], respectively.

• Electron energy. Uncertainties associated with the electron energy scale depend on

the electron pT and η [103]. These are shape uncertainties, and as energy variations,

they can cause event migration between subregions.
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• Muon energy. Uncertainties associated with the muon energy scale depend on the

muon pT and η, varying between 0.4-2.7% as shape uncertainties [10].

• τh reconstruction and identification efficiencies. Uncertainties associated with

these efficiencies depend on the τh pT and η, varying between 3-5% [64]. They are

applied as shape uncertainties separately on τh matched to a genuine τh, electron,

and muon, respectively, at the generator level.

• τh energy Uncertainties associated with the τh energy scale depend on the τh pT and

decay mode, varying between 0.2-1.1% [64]. They are applied as shape uncertainties

separately on τh matched to a genuine τh, electron, and muon, respectively, at the

generator level.

• Jet energy. Uncertainties associated with the jet energy corrections are applied

as a function of the jet pT and η [61]. They cause shape variations ranging from

10-15%. Uncertainties associated with the jet energy resolution are also applied.

• Missing transverse energy Shape uncertainties are associated with the recoil

corrections and the unclustered energy measurements.

• B-tagging efficiencies. There are several sources of uncertainty that contribute to

the efficiency measurements: jet energy scale uncertainties, contamination of light-

flavor jets in heavy-flavor jet regions, contamination of heavy-flavor jets in light-

flavor jet regions, and statistical uncertainties [13]. These uncertainties are applied

according to the simulated jet properties and are taken as shape uncertainties.

• tt+jets background estimation. There is a normalization uncertainty of 4.2% on

the production cross section [104]. Shape uncertainties are associated with the par-

ton shower uncertainties and the variations of the renormalization and factorization

scales.

• Embedded Z → ττ background estimation. A normalization uncertainty of 4%

is applied [85]. Shape uncertainties are associated with the tau tracking efficiencies
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and the event contamination from non-DY and non-Higgs processes.

• Fake background estimation. For the QCD multijet background in the eµ final

state, a normalization uncertainty of 20% accounts for the limited statistics in the

estimation from the sideband regions. The scale factors obtained from fits have

associated shape uncertainties. For the jet → τh background in the µτh and eτh

final states, since the fake rate is measured only from the Z → µµ+jets events

but generalized to all other possible background sources such as W+jets and QCD

multijet, a normalization uncertainty of 20% is applied for that. There are also shape

uncertainties associated with the fake rate measurements.

• Signal modeling. Uncertainties from the perturbative QCD calculations, PDFs,

and the strong coupling constant (αs) contribute to the SM Higgs boson production

cross sections [1]. These uncertainties affect the overall signal yields with negligible

shape effects and are accounted for by a normalization uncertainty of 3.6% on the

sum of the ggF and VBF Higgs boson production cross sections.

• Other background estimations. In Z → ee/µµ samples, an uncertainty of 10%

is associated with the Z pT reweighting factor, taken as a shape uncertainty. Nor-

malization uncertainties on the production cross sections amount to 5, 5, and 2% for

diboson, single top, and DY samples, respectively [104]. Normalization uncertainties

on the production cross sections and the branching ratios for the SM Higgs boson

background are also accounted for [1].

The normalization uncertainties refer to uncertainties that change the overall event

yields while keeping the shapes of the mττ distributions unchanged, whereas the shape

uncertainties change the shapes. Uncertainties that affect any of the input features to the

DNNs are propagated to the DNN scores correspondingly.
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3.1.9 Signal extraction

With a signal and background model that predicts the expected event yields along with

uncertainty descriptions, parameters producing the most compatible model with the ob-

served data are obtained using a statistical method called a maximum likelihood fit [105].

A binned maximum likelihood fit is performed based on the mττ distributions in all sub-

regions and final states simultaneously.

Starting from the binned likelihood function that describes the compatibility between

the observed data and the predictions:

L(data|µ,θ) =
∏
i

Poisson(ni|µsi(θ) + bi(θ))p(θ̃|θ). (3.10)

Here, the product runs over all the bins of the distributions of the fit observable, mττ ,

where the i-th bin follows a Poisson distribution with observed data ni and expected yields

from signal µsi and background bi in that bin:

Poisson(ni|µsi(θ) + bi(θ)) =
e−(µsi(θ)+bi(θ))(µsi(θ) + bi(θ))

ni

ni!
(3.11)

The signal strength is controlled by the parameter µ. Both signal and background yields

are parameterized by the nuisance parameters θ, which control the variations in the sys-

tematic uncertainties. The nuisance parameters are constrained through the probability

density functions p(θ|θ̃) ∝ p(θ̃|θ), where θ̃ represent the nominal values.

According to the nature and properties of the uncertainty, a probability density func-

tion is assigned to each nuisance parameter. Nuisance parameters representing normal-

ization uncertainties are assigned a log-normal probability density function. Nuisance

parameters representing shape uncertainties are assigned a Gaussian distribution, requir-

ing two shape templates corresponding to ±1 standard deviation of variations as inputs

for the shape interpolation. The statistical uncertainties due to limited sample size are

accounted for by a Poisson nuisance parameter per bin [106].

A binned maximum likelihood fit is performed in the background-only hypothesis (µ =
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0) using the CMS statistical analysis and combination tool called COMBINE [107]. The fitted

mττ distributions are shown: µτh ‘1 b tag’ in Fig. 3.12, µτh ‘> 1 b tag’ in Fig. 3.13, eτh

‘1 b tag’ in Fig. 3.14, eτh ‘> 1 b tag’ in Fig. 3.15, eµ ‘1 b tag’ in Fig. 3.16, and eµ ‘> 1 b

tag’ in Fig. 3.17.

The statistical uncertainties dominate over the systematic uncertainties in the analysis

due to the small sample size available. Among the systematic uncertainties, the dominant

ones include the signal modeling, the normalization uncertainties in the fake background

yields, and the uncertainties in the tt+jets cross section. Overall, the observed data is

consistent with the SM predictions in all subregions and final states.
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Figure 3.12: Post-fit distributions of mττ for the µτh ‘1 b tag’ category, with the subregion
indicated. The signal (35 GeV) is shown as a box histogram in red, assuming the branching
ratio B(h → aa → ττbb) = 10%. The figures are taken from Ref. [15].
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Figure 3.13: Post-fit distributions of mττ for the µτh ‘> 1 b tag’ category, with the
subregion indicated. The signal (35 GeV) is shown as a box histogram in red, assuming
the branching ratio B(h → aa → ττbb) = 10%. The figures are taken from Ref. [15].
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Figure 3.14: Post-fit distributions of mττ for the eτh ‘1 b tag’ category, with the subregion
indicated. The signal (35 GeV) is shown as a box histogram in red, assuming the branching
ratio B(h → aa → ττbb) = 10%. The figures are taken from Ref. [15].
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Figure 3.15: Post-fit distributions of mττ for the eτh ‘> 1 b tag’ category, with the sub-
region indicated. The signal (35 GeV) is shown as a box histogram in red, assuming the
branching ratio B(h → aa → ττbb) = 10%. The figures are taken from Ref. [15].
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Figure 3.16: Post-fit distributions of mττ for the eµ ‘1 b tag’ category, with the subregion
indicated. The signal (35 GeV) is shown as a box histogram in red, assuming the branching
ratio B(h → aa → ττbb) = 10%. The figures are taken from Ref. [15].
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Figure 3.17: Post-fit distributions ofmττ for the eµ ‘> 1 b tag’ category, with the subregion
indicated. The signal (35 GeV) is shown as a box histogram in red, assuming the branching
ratio B(h → aa → ττbb) = 10%. The figures are taken from Ref. [15].
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3.1.10 Exclusion limits and model interpretation

Since no excess of events over the SM predictions are observed, an upper bound can be set

to exclude higher signal strength values statistically incompatible with the observation,

called exclusion limits, using the modified frequentist CLs technique in the asymptotic

approximation [105,108–110].

The signal-plus-background hypothesis (s+b) and the background-only (b-only) hy-

pothesis are compared using the test statistic:

qµ = −2 ln
L(data|µ, θ̂µ)
L(data|µ̂, θ̂)

, (3.12)

where µ̂ and θ̂ globally maximize L, θ̂µ maximize L conditional in µ at which qµ is

computed, and 0 ≤ µ̂ ≤ µ is required to ensure a non-negative signal strength and a

one-sided confidence interval. To derive exclusion limits, the CLs criterion is used:

CLs =
CLs+b

CLb
=

p(qµ > qobsµ |s+b)

p(qµ > qobsµ |b-only)
= α, (3.13)

where p(qµ > qobsµ |s+b) and p(qµ > qobsµ |b) are the probabilities of getting a qµ value

larger than the observed value qobsµ under the two hypotheses, respectively, and α sets

the confidence level (CL) at 1 − α for excluding the signal strength value larger than µ.

Typically, exclusion limits are set at 95% CL (α = 0.05) for LHC results.

The observed and expected exclusion limits at 95% CL on the signal branching ratio

B(h → aa → ττbb) are shown in Fig. 3.18 for the three ττ final states and their combina-

tion. Limits are higher for high-mass pseudoscalars because the signal has more overlap

with the background in the mττ distributions. In the µτh and eτh final states, limits are

higher for low-mass pseudoscalars because they become boosted with their decay products

starting to merge and overlap with each other, therefore the signal acceptance is lower due

to the minimum ∆R requirement. Only the eµ final state is sensitive to the lowest mass

point of 12 GeV, because it has a looser ∆R requirement than other final states. µτh is

the most sensitive final state, setting observed (expected) limits as low as around 1.8%
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Figure 3.18: Observed and expected model-independent exclusion limits at 95% CL on
the branching ratio B(h → aa → ττbb) (%). The three final states are shown: µτh (upper
left), eτh (upper right), and eµ (lower left), as well as the combination (lower right). The
figures are taken from Ref. [15].

(1.7%) at 35 GeV. Although B(ττ → µτh) = B(ττ → eτh), but eτh is less sensitive due

to the higher-pT requirements from the triggers. The combination of the three ττ final

states sets observed (expected) limits between 1.7-7.7% (1.5-5.7%) for a pseudoscalar mass

between 12 and 60 GeV.

The model-independent limits on B(h → aa → ττbb) are converted to limits on B(h →
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Figure 3.19: Branching ratio B(aa → bbττ) as a function of tanβ predicted in 2HDM+S
for a pseudoscalar mass of 40 GeV. The figure is taken from Ref. [16].

aa) interpreted in 2HDM+S scenarios. This requires theoretical predictions on B(aa →

ττbb) [50, 111]. Fig. 3.19 shows B(aa → ττbb) as a function of tanβ in the four types of

2HDM+S for a single mass point. As discussed in Sec. 1.2.3, the pseudoscalar decay in

Type I is independent of tanβ. The branching ratio in Type II increases monotonically

with tanβ, starting to converge around tanβ = 2. The branching ratios in Type III and

IV are at maximum at around tanβ = 0.6 and tanβ = 2, respectively.

Fig. 3.20 shows the observed exclusion limits on B(h → aa) in the four types of
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2HDM+S, with tanβ around the values corresponding to the highest B(aa → ττbb). The

observed exclusion limits on B(h → aa) plotted in the plane of tanβ vs. signal mass for

Type III and IV are shown in Fig. 3.21. The phase space enclosed by the contour line

of B(h → aa) = 16% is where the analysis is sensitive enough to exclude more than the

constraint from the CMS measurements, which sets a limit of 16% on the branching ratio

of the Higgs boson to undetected particles [2].
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Figure 3.20: Observed exclusion limits at 95% CL on the branching ratio B(h → aa) (%).
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Figure 3.21: Observed exclusion limits at 95% CL on the branching ratio B(h → aa)
(%), plotted in the plane of tanβ vs. signal mass. The results are obtained from the
combination of all final states, interpreted in 2HDM+S Type III (upper) and Type IV
(lower), respectively. The figures are taken from Ref. [15].
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3.2 Combination of the ττbb and µµbb final states

This section presents the combination of the two channels h → aa → ττbb and h → aa →

µµbb [15]. Sec. 3.2.1 provides an overview of the h → aa → µµbb analysis. Sec. 3.2.2

outlines the combination strategy. Sec. 3.2.3 presents the combination results. Finally,

Sec. 3.3 discusses future aspects.

3.2.1 Analysis overview of h → aa → µµbb

The µµbb channel has a lower branching ratio predicted in 2HDM+S compared to the

ττbb channel due to the mass difference between the muon and τ lepton. For example,

in 2HDM+S Type III, B(aa → ττbb) can reach around 50% at tanβ = 2, while B(aa →

µµbb) is only around 0.2% in the same scenario. However, this channel benefits from

the high muon performance and the high di-muon mass resolution in CMS, making it

competitive despite the low predicted branching ratio. Unlike the presence of τ leptons in

the ττbb channel, this analysis has only one final state, µµbb, and probes a similar mass

range between 15 and 62.5 GeV.

Events are required to have two prompt muons with opposite electric charge and

separated by ∆R > 0.4. The leading and sub-leading muons must have a pT of at least 17

and 15 GeV, respectively. The muons are required to pass the tight muon identification

(see Sec. 2.3.2) and be isolated with Iµrel < 0.25 (see Eq. 3.1).

Additionally, events are required to have at least two jets with pT > 15 GeV, separated

from muons by ∆R > 0.4. As in the ττbb channel, DeepJet is used to tag b jets [62, 63].

At least two b-tagged jets are required: one must pass the tight working point with an

efficiency of 65% and a misidentification rate of 0.1%, and the other must pass the loose

working point with an efficiency of 95% and a misidentification rate of 10% (see Sec. 2.3.3).

The di-muon mass, mµµ, is used as the observable for signal extraction due to its

high resolution and its resonant distribution for the pseudoscalar mass. The two leading

background processes are DY Z → µµ and tt+jets. The total background events are col-

lectively estimated by fitting parametric polynomials to the data. The signal is described
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by parametric models fitted to the simulated signal samples and interpolated between the

limited number of generated mass points.

To suppress background, events are required to have mµµ between 14 and 70 GeV

and pmiss
T < 60 GeV. Optimization is done based on the variable χ2

d = χ2
H,d + χ2

bb,d,

where χH,d and χbb,d are the decorrelated variables that measure the compatibility of the

reconstructed masses with the signal hypothesis:

χH =
mµµbb/GeV− 125

σH
, χbb =

mbb −mµµ

σbb
. (3.14)

σH and σbb are the mass resolutions obtained by Gaussian fits to mµµbb and mµµ in

simulated events, respectively. Events are required to have χ2
d < 1.5.

The selected events are then divided into five categories. The first category, called

‘Low pT’, selects events with at least one b-tagged jet with low pT < 20 GeV, improving

sensitivity for low signal masses. Another category, called ‘VBF’, targets the VBF pro-

duction channel of the Higgs boson by selecting events with two jets that have a large

invariant mass mjj > 250 GeV. The other three categories are based on whether the b jet,

which passes the loose working point at baseline, passes at most the loose (TL), medium

(TM), or tight (TT) working points, respectively.

Signal is estimated from simulation with associated systematic uncertainties. Back-

ground is estimated by fitting parametric models to data, with uncertainties in both the

parameters and the functional form. An unbinned maximum likelihood fit is performed

on the mµµ distributions. The fitted background models are consistent with data in all

five categories, as shown in Fig. 3.22, with no excess of data events observed. Therefore,

exclusion limits at 95% CL on the signal branching ratio B(h → aa → µµbb) are obtained,

as shown in Fig. 3.23.
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Figure 3.22: Fitted background models in mµµ in the five categories. The figures are taken
from Ref. [15].
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3.2.2 Combination strategy

In the combination, systematic uncertainties common between the two analyses are corre-

lated. These include theoretical uncertainties related to signal modeling and experimental

uncertainties related to jet energy, b-tagging, and muon performance. All other uncer-

tainties are included but treated as uncorrelated between the two channels.

To combine the two channels, the branching ratios of the pseudoscalars to the fermions

are required. To obtain the combined limits on B(h → aa → llbb) = B(h → aa →

µµbb)+B(h → aa → ττbb), the yields of the signals h → aa → µµbb and h → aa → ττbb

are scaled by B(aa → µµbb)/B(aa → llbb) and B(aa → ττbb)/B(aa → llbb), respectively,

in the combined fit. The relative branching ratios can be computed from the exact decay

width predicted in 2HDM+S [50,111]:

Γ(a → ll) =
(ξMl )2m2

lma

8πν2

√
1−

4m2
l

m2
a

, (3.15)

where ξMl depends on the 2HDM+S types and the coupling parameters, ν ≈ 246 GeV, ml

is the lepton mass, and ma is the pseudoscalar mass. Within the same 2HDM+S scenario,

the ratios become:

B(aa → µµbb)

B(aa → llbb)
≈

(
1 +

m2
τ

m2
µ

)−1

,
B(aa → ττbb)

B(aa → llbb)
≈

(
1 +

m2
µ

m2
τ

)−1

, (3.16)

for ma >> ml. Here, the dependence on the 2HDM+S type and parameters are canceled

in the ratios. Consequently, the signal combined in this way and the combined limits on

B(h → aa → llbb) are independent of the 2HDM+S type and tanβ. However, these limits

are not model-independent as they are still interpreted within the 2HDM+S framework,

where the relative signal strengths are predicted.

The combined limits on B(h → aa) can then be directly derived by dividing the

combined limits on B(h → aa → llbb) by the predicted B(aa → llbb), which depends on

the 2HDM+S type and tanβ.
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3.2.3 Exclusion limits and model interpretation

The combined analysis shows statistical uncertainties dominating over systematic uncer-

tainties. Systematic uncertainties contribute around 6% of the total uncertainty, primarily

associated with the theoretical modeling of the signal, jet energy scale in the µµbb channel,

and fake background estimation in the ττbb channel.

Fig. 3.24 shows the exclusion limits at 95% CL on B(h → aa → llbb) combining

the µµbb and ττbb channels. These limits range from 0.6-7.7% (observed) and 0.8-5.7%

(expected). Although interpreted within the 2HDM+S framework, these limits are inde-

pendent of the model type and parameters, as discussed in Sec. 3.2.2.

Fig. 3.25 shows the observed combined limits at 95% CL on B(h → aa) in the four

types of 2HDM+S. In Type II, which is a particular case of producing the scalar sector

of the NMSSM, the limits are observed to be in the range of 5-23% for tanβ > 1. The

observed combined limits on B(h → aa) plotted in the plane of tanβ vs. signal mass for

Type III and IV are shown in Fig. 3.26. Additionally, the combination result is added to

the CMS plots that summarize the results of all h → aa searches in different channels.

Fig. 3.27 shows the summary for the 2HDM+S Type II (tanβ = 2) scenario. In the

pseudoscalar mass range between 12 and 60 GeV, the limits from this combination are the

most stringent among the analyzed channels.
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Figure 3.24: Observed and expected exclusion limits at 95% CL on the branching ratio
B(h → aa → llbb) (%) within 2HDM+S, where l = µ, τ . The figure is taken from Ref. [15].
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Figure 3.26: Observed exclusion limits at 95% CL on the branching ratio B(h → aa)
(%), plotted in the plane of tanβ vs. signal mass. The results are obtained from the
combination of the ττbb and µµbb final states, interpreted in 2HDM+S Type III (upper)
and Type IV (lower), respectively. The figures are taken from Ref. [15].
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3.3 Future prospects

The searches for h → aa will continue as more data will be collected in the ongoing

Run 3 and the upcoming Phase-2 HL-LHC. To examine the expected sensitivity gain in

the future, a projection study based on the 2016-only analysis results to the HL-LHC is

performed in the h → aa → bbττ channel [18].

In Phase-2 HL-LHC, the center-of-mass energy is expected to reach 14 TeV with a total

integrated luminosity of 3000 fb−1. In this study, the Phase-2 single-µ trigger requiring

an isolated muon with pT > 24 GeV is simulated, and its efficiency per event for the

µτh final state is shown in Fig. 3.28 (top). The expected exclusion limits are obtained

by projecting the results to 3000 fb−1. As shown in Fig. 3.28 (bottom), the expected

exclusion limits on the branching ration B(h → aa → bbττ) reach as low as around 0.4-

0.5% in the intermediate mass range, compared to the lowest 1.5% at 35 GeV in the full

Run 2 analysis shown in Fig. 3.18.

Despite the anticipated sensitivity improvement due to increased data statistics, a

significant challenge in all searches for h → aa remains unaddressed. The main issue

is that the final-state objects are typically too soft because they originate from light

pseudoscalar decays, causing most of the signal events to be rejected by triggers that set

relatively high pT thresholds on these final-state objects.

For example, both the 2016-only and the full Run 2 analyses of the search for h →

aa → bbττ did not consider the τhτh final state due to the low signal acceptance caused by

the high τh pT threshold at trigger, despite it having the highest branching ratio among all

ττ final states. Moreover, in the analyzable µτh final state, Fig. 3.29 shows that most of

the final-state µτh have low momenta, and existing single-µ and cross-µτh triggers already

remove over 90% of the signal yields.

The issue remains unaddressed if the same trigger strategy continues in the future,

regardless of increased data statistics. Even more stringent pT thresholds would likely be

implemented to manage trigger rates during high-luminosity collision runs. This challenge

will persist in all LHC analyses targeting signatures with low-pT final-state objects. In



113

Figure 3.28: Phase-2 trigger study for the search channel h → aa → bbττ . Top: trigger
efficiency of the isolated single-µ trigger (pT > 24GeV ) as a function of the generated
muon pT. Bottom: expected exclusion limits at 95% CL on the branching ratio B(h →
aa → bbττ) (%), with and without the trigger efficiency corrections. The figures are taken
from Ref. [18].
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Private Work (CMS simulation)

Figure 3.29: Event yield of the h → aa → ττbb signal as a function of the muon and τh
pT in the µτh final state, prior to applying trigger pT requirements.

Part II, potential solutions are proposed to address this challenge at a lower level using

novel machine learning methods at the trigger and in the low-latency domain.
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Chapter 4

Summary of Part I

A search for new physics beyond the Standard Model with the CMS experiment is pre-

sented, targeting an exotic decay of the Higgs boson to a pair of light pseudoscalars, which

subsequently decay to a pair of b quarks and a pair of τ leptons: h → aa → ττbb. The

analysis is performed using the full Run 2 dataset of proton-proton collisions at
√
s = 13

TeV, collected by the CMS detector, corresponding to an integrated luminosity of 138

fb−1. No excess of events over the Standard Model predictions is observed. Exclusion

limits at 95% confidence level are set on the branching ratio B(h → aa → ττbb), ranging

from 1.7-7.7% (observed) and 1.5-5.7% (expected), for a pseudoscalar mass between 12

and 60 GeV.

The analysis is combined with the h → aa → µµbb analysis, which sets exclusion limits

at 95% confidence level on the branching ratio B(h → aa → µµbb), ranging from (0.17-

3.3)×10−4 (observed) and (0.35-2.6)×10−4 (expected), for a pseudoscalar mass between

15 to 62.5 GeV.

The combined analysis sets exclusion limits at 95% confidence level on the branching

ratio B(h → aa → llbb), where l = µ, τ , ranging from 0.6-7.7% (observed) and 0.8-5.7%

(expected), interpreted within the 2HDM+S framework.

Interpreting in 2HDM+S, observed exclusion limits at 95% confidence level on the

branching ratio B(h → aa) are set at around 23% for most of the Type II scenarios, and
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as low as 1 and 3% for Types III (tanβ = 2) and IV (tanβ = 0.5), respectively.

The main challenge for these analyses targeting signatures with low-momentum final-

state objects is the harsh trigger selection that requires high-momentum thresholds on

the objects. The issue persists if the trigger strategy remains unchanged, regardless of

increased data statistics and improved offline analysis techniques. This problem brings up

the next part of the thesis, which introduces novel machine learning methods to address

the issue at a lower level.
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Part II

Fast machine learning solutions for

the LHC
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Chapter 5

Motivations and fundamentals

Machine learning (ML) has proven its huge success in most, if not all, scientific and

technological domains [112]. The particle physics research program at the Large Hadron

Collider (LHC) is no exception. The demand for ML applications is expected to grow

rapidly due to their potential of surpass the performance limitations of traditional methods

and algorithms across various fields.

In particular, protons are collided every 25 nanoseconds during LHC runs, correspond-

ing to an extreme rate of 40 MHz, producing hundreds of terabytes of raw data per second.

Due to the limited bandwidth and storage space, and because potential physics processes

of interest occur at low probabilities, the raw data must be processed and filtered at the

edge of the detectors. This processing is handled by the trigger system [11, 113–115],

which performs the first round of data selection to decide if an event should be stored

for later analysis or discarded permanently. Additionally, because this processing is run

in real time concurrently with the 40 MHz collisions, the trigger system is constrained

to make decisions within 4 microseconds (4 × 10−6 s). Therefore, algorithms capable of

selecting potential physics events out of the vast and noisy background while requiring

minimal computational resources and operating extremely quickly are essential for this

critical task.

This motivates fast ML in the context of the LHC—running physics-sensitive ML algo-
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rithms efficiently on custom hardware such as Field-Programmable Gate Arrays (FPGAs)

with a low latency typically on the order of microseconds and below. This combination

leverages the capability of ML algorithms to generalize accurate predictions by automat-

ically learning from data, often outperforming traditional algorithms limited by explicit

instructions. FPGAs can be customized for a given algorithm to optimize resource allo-

cation and running speed, which is ideal for resource-constrained environments such as

the LHC experiments. They can potentially run models of reasonable size within sub-

microseconds.

Before delving into the anomaly detection trigger algorithm in Ch. 6 and the symbolic

regression for efficient model compression in Ch. 7, this chapter briefly introduces the nec-

essary fundamentals. The fundamentals of ML are presented in Sec. 5.1. The fundamentals

of FPGAs and the implementation of ML on FPGAs are presented in Sec. 5.2.

5.1 Machine learning

In ML, problems are defined and solved by leveraging data. Without explicitly pro-

grammed logic, ML models automatically learn and recognize patterns from data and

make predictions [93,112].

Input features are variables that quantify the properties of data and are used for ML

models to learn patterns. The choice of features depends on the problem at hand, as some

features can be more relevant in solving one problem but add noise in another. Features

can be of different types.

For example, the features used in the analysis presented in Sec. 3.1.7 are numerical with

continuous values, such as the momenta and invariant masses of the final-state objects.

However, discrete values, such as the number of jets or the discriminant working points,

could also be potential features. For image problems, images are the raw data, where each

image can be converted into a 2D array of pixel intensity values or a 3D array with an

additional dimension representing the RGB colors. For language problems, texts are the

raw data, where each word is extracted and embedded into a vector space representation
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that can be processed by ML models.

Once a set of features is chosen, they are used to train the ML model for a specific

goal, such as classifying the categories of the data or making numerical predictions. The

process of creating and optimizing the set of input features for a given problem is called

feature engineering.

Two types of learning are focused in the following chapters: supervised and unsuper-

vised. In supervised learning, training data are labeled to guide the model to learn the

definite answers, which requires pre-specified input-output pairs. For example, the train-

ing data in the analysis presented in Sec. 3.1.7 have each event labeled as either signal or

background, which is a classification problem. For a regression problem, such as predicting

the energy of a given jet from a set of features representing the corresponding detector

response, the true energy value for each input jet needs to be specified in the training

data.

In contrast, unsupervised learning does not require labeled data and allows models to

discover patterns inherently present in the data. Anomaly detection [116] is an example,

which is employed to build the trigger algorithm presented in Ch. 6. This approach

identifies rare or unexpected deviations from the training data without knowing the exact

forms of the deviations.

Anomaly detection is particularly valuable for new physics searches at the LHC since

the space of possible theoretical physics models is vast and it is inefficient to target one

specific model at a time in each analysis. This approach is well-suited for situations where

theoretical models are not known or well-defined, allowing for the detection of any unusual

signatures deviating from the Standard Model (SM) predictions that could potentially

indicate new physics, without relying on specific physics models.

ML models have adjustable parameters that parameterize their predictions, optimized

by an objective function called a loss function. The loss function typically measures the dis-

tance between the predicted outputs and the expected outputs, depending on the problem.

Minimizing this loss function trains the model to perform the desired task. Regularization
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terms can be added to the loss function to penalize certain undesired behaviors, such as

excessively large model weights.

Since ML models can involve numerous tunable weights, finding the optimal set of

weights is a complex multivariate optimization problem typically approached by numer-

ical methods. Gradient descent is a class of iterative methods to solve this optimization

problem numerically. In its simplest form, gradient descent initializes a set of model

weights θ to θ0 and updates iteratively in the direction of the negative gradient of the loss

function J :

θi+1 = θi − α∇θJ(θi), (5.1)

where the values at step (i + 1) are updated based on the previous step i, and α is the

learning rate that controls the size of the steps. The gradient terms can be efficiently com-

puted with backpropagation [117], which uses the chain rule to propagate errors backward

through the neural network (NN), avoiding the direct computation of gradients that can

be computationally infeasible, especially for large models.

In principle, the loss function J is computed by averaging individual losses across the

entire training dataset. However, this can be computationally intensive for large datasets

or models. Instead, the loss function can be estimated from a small subset of the dataset,

called a mini-batch, and the model weights are updated once for each mini-batch instead

of once for the entire dataset. This is referred to as mini-batch stochastic gradient descent.

There are more sophisticated gradient descent variants, such as Adam [95], which adaptively

adjust the learning rate for each weight, ensuring stable and efficient convergence.

Sec. 5.1.1 and Sec. 5.1.2 describe the fully-connected NN and convolutional NN (CNN),

respectively, which are building blocks of the anomaly detection models presented in Ch. 6.

5.1.1 Fully-connected neural network

An NN in ML is a class of artificial models that process data and make predictions similarly

to how biological neurons function in the human brain [89–93]. Constructing an NN

involves three essential components: the input layer, hidden layers, and output layer.
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Figure 5.1: An example fully-connected NN with two hidden layers is shown, with the first
hidden layer consisting of 12 neurons and the second hidden layer consisting of 8 neurons.
The NN has 6 input features and produces 1 output. The figure is generated using the
NN-SVG tool [19].

The input layer receives the input features, while the output layer produces the model

outputs. The hidden layers, situated between the input and output layers, consist of

nodes (neurons) that receive, weigh, and combine inputs from neurons in the previous

layer, apply activation functions, and then send the processed data to the next layer. An

NN is fully-connected if each neuron in one layer is connected to all neurons in adjacent

layers. Fig. 5.1 shows an example of a fully-connected NN with two hidden layers.

Starting from the input layer, denoted as x(0), which receives a vector representing

the n0 input features: x(0) = x ∈ Rn0 . The input features are then passed through a

stack of hidden layers, where a linear transformation followed by a nonlinear activation is

performed in each passage from one layer to the next. The hidden layer l > 0, which has

a dimension of nl, receives the input vector x(l−1) ∈ Rnl−1 from the previous layer l − 1
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and outputs the transformed vector x(l) ∈ Rnl , which takes the generic form:

x(l) = g(l)(w(l)x(l−1) + b(l)). (5.2)

Here, w(l)x(l−1) + b(l) is a linear transformation which weighs each of the neuron values

from the previous layer by the weight matrix w(l) ∈ Rnl×nl−1 and adds the bias terms

b(l) ∈ Rnl . Then, each of the neurons is activated by a nonlinear function g(l)(·), which is

essential as nonlinearity ensures the NN can learn complicated patterns from data.

Conversely, if all layers perform only linear transformations, these serial linear trans-

formations are equivalent to a single linear transformation regardless of the number of

layers stacked, limiting the NN to linear data. In fact, the universal approximation the-

orem [91] guarantees that any continuous function can be approximated to an arbitrary

level of accuracy by a fully-connected NN with at least one hidden layer and a sufficient

number of neurons.

Combining all operations, a fully-connected NN with L layers, excluding the input

layer, is essentially a function ŷ = ϕ(x;w, b), where ϕ : Rn0 → RnL integrates all linear

transformations and nonlinear activations from all layers, with w and b representing all

the weights and biases.

The weights w and biases b are trainable parameters determined by minimizing the

objective function with respect to a training dataset {(xi, yi)}i=1,...,N . Finding the optimal

w and b involves solving the following optimization problem:

w∗, b∗ = argmin
w,b

N∑
i=1

l(ϕ(xi;w, b), yi), (5.3)

where l(·) is the individual loss function. This optimization problem can be solved numer-

ically using gradient-based methods.
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Figure 5.2: An example of a convolution operation of a 3×3 filter applied to a 5×5 input,
with valid padding and a stride size of 1. The output value 2 in blue corresponds to the
dot product of the input subgrid in red and the filter in green: (−2) × (1) + (1) × (1) +
(2)× (1) + (3)× (0) + (−4)× (0) + (0)× (0) + (1)× (−1) + (−3)× (−1) + (1)× (−1) = 2.

The output dimensions are calculated by: ⌊H−M+2P
S +1⌋ × ⌊W−N+2P

S +1⌋ = ⌊5−3+2(0)
1 +

1⌋ × ⌊5−3+2(0)
1 + 1⌋ = 3× 3.

5.1.2 Convolutional neural network

CNN [118,119] is a type of NN where neurons are connected in specific orders, specifically

designed for processing data with a fixed-grid topology, such as images.

The key feature of a CNN is the convolution operation, which involves small matrices

of weights, called filters, sliding over the input grids and performing inner products to

detect patterns. For an input matrix I of dimensions H ×W , a 2D convolution operation

with a filter F of dimensions M ×N (M ≤ H and N ≤W ) is given by:

(I ∗ F )[i, j] =
M−1∑
m=0

N−1∑
n=0

I[i+m, j + n]F [m,n], (5.4)

where valid padding and a stride size of 1 are assumed. Padding is a technique to preserve

information at the grid boundary and control the output dimension by adding extra grid

points surrounding the original input grid. There are two common padding options: valid

padding and same padding. Valid padding refers to no extra grid points being added.
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Same padding refers to adding extra grid points such that the output dimension remains

the same as the input. Stride size is a parameter that controls the number of grid points

to move at a time when sliding the filters across the input grid. The output dimension for

a convolution operation is given by ⌊H−M+2P
S +1⌋×⌊W−N+2P

S +1⌋, where P and S denote

the padding and the stride size, respectively. The filter weights are trainable parameters.

An example of a 2D convolution operation is illustrated in Fig. 5.2.

It is straightforward to generalize the 2D convolution operation to volume inputs,

such as an image with RGB colors, which can be represented by a tensor of dimensions

H×W×3, as opposed to a grayscale image represented by a tensor of dimensionsH×W×1.

For an input tensor I of dimensions H ×W ×L, where L denotes the number of channels,

a 2D convolution operation with K filters of dimensions M ×N ×L, denoted collectively

by the F tensor of dimensions M ×N × L×K, is given by:

(I ∗ F )[i, j, k] =
L−1∑
l=0

M−1∑
m=0

N−1∑
n=0

I[i+m, j + n, l]F [m,n, l, k], (5.5)

where valid padding and a stride size of 1 are assumed. The number of filters K in the

convolution operation becomes the number of channels in the output tensor.

Additionally, pooling layers can be used to perform dimensionality reduction. Similar

to convolutional layers, pooling is done by sliding filters to aggregate information but

without trainable weights. There are two primary kinds of pooling: max pooling and

average pooling. Max pooling sets the output value as the maximum value within the

subgrid, while average pooling uses the average value calculated within the subgrid.

As the outputs of convolutional and pooling layers are still in tensor form with multiple

dimensions, they can be flattened into a vector followed by a fully-connected NN to produce

the output layer for the desired goal, such as classification or regression. An example CNN

is illustrated in Fig. 5.3.
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Figure 5.3: An example CNN with a 2D convolutional layer and a pooling layer followed by
a fully-connected NN. The convolutional layer has 2 filters of dimensions 9× 9, operating
with valid padding and a stride size of 1. The pooling layer has a filter of dimensions 5×5,
operating with valid padding and stride dimensions the same as the pool dimensions. The
pooling output is flattened into a vector fed as inputs to a fully-connected NN, which has
a hidden layer with 128 neurons and an output layer of 1 neuron. The figure is generated
using the NN-SVG tool [19].

5.2 Field-programmable gate array (FPGA)

5.2.1 Basics

A field-programmable gate array (FPGA) is a type of configurable integrated circuit that

can be re-programmed multiple times for different algorithms, even after the board is

manufactured. An FPGA board consists of various building blocks with different compu-

tational functionalities, interconnected as needed to perform specific algorithmic compu-

tations. The main advantages of FPGAs are their efficient performance leveraging parallel

programming and their flexibility as customizable hardware [120].

Comparing to CPUs and GPUs, which are more general-purpose processors, FPGAs

can be configured to have direct hardware implementations for a specific algorithm, re-

ducing unnecessary operations and optimizing implementation efficiency. ASICs, on the

other hand, can be more optimized for a specific algorithm for maximum performance and

efficiency but cannot be changed once manufactured, making them much less flexible than
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FPGAs.

These features make FPGAs particularly attractive for the LHC trigger environment,

which requires low-latancy algorithms to process and filter collision data concurrently at

an input rate of 40 MHz. Additionally, the re-programmable nature of FPGAs grants

flexibility for algorithm testing, modifications, and upgrades, which are frequently needed

for the trigger systems as the detector conditions and the LHC running conditions are

constantly evolving.

Some terminologies and essential building blocks of FPGAs are described below [20,

120].

• Digital signal processors (DSPs) are a type of FPGA resources. They are spe-

cialized for performing arithmetic operations such as additions and multiplications.

They are often more scarce in ML model implementations, which involve many

arithmetic operations from matrix computations.

• Lookup tables (LUTs) are a type of FPGA resources. They can be used to per-

form logic functions and can be configured as pre-defined tables that map inputs to

outputs via simple memory lookup, potentially saving intensive runtime calculations

for complex functions.

• Flip-flops (FFs) are a type of FPGA resources. They control data flow using the

clock signal to ensure data synchronization and enable proper sequential operations

by retaining past data states.

• Block RAMs (BRAMs) are a type of FPGA resources. They provide fast data

storage and retrieval, essential for executing complex algorithms with low latency.

• Fixed-point precision refers to the representation of real numbers with a fixed

number of bits for the integer part (I) and a fixed number of bits for the fractional

part (F ), denoted as ⟨I + F, I⟩. Compared to floating-point representation, fixed-

point representation allows for reducing the resources needed to represent numbers

and perform arithmetic operations.
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• Clock cycle is the basic unit of time defined by the oscillation period of a clock

signal, used to synchronize sequential operations and coordinate the timing of data

flow. In the LHC trigger environment, a typical clock frequency of 200 MHz is

needed, corresponding to a period of 5 ns for a complete clock cycle.

• Initiation interval (II) is the number of clock cycles required to initiate consecutive

operations. For highly parallelizable operations, a lower II is desirable, allowing new

data to be processed more frequently and reducing latency. For complex operations

with high data dependencies, a higher II is necessary to ensure current operations

are completed before the next ones can be initiated.

• Latency measures the time required for an algorithm to run from input to output,

which is crucial for applications with strict time constraints.

• Reuse factor determines how many times a resource is reused for multiple op-

erations. A higher reuse factor results in more serial operations, requiring fewer

resources but leading to higher latency and lower throughput. Conversely, a lower

reuse factor allows for more parallel operations, resulting in lower latency and higher

throughput, but requiring more resources.

• High-level synthesis (HLS) refers to a design process that allows hardware func-

tionality to be written and manipulated using high-level languages such as C++,

greatly simplifying the design and optimization process. HLS tools then convert

these high-level descriptions into hardware description languages (HDLs) that de-

scribe electronic circuits, which can be synthesized into FPGA configurations.

5.2.2 Machine learning inference on FPGAs with hls4ml

hls4ml [20, 121] (high-level synthesis for machine learning) is a package that converts

ML models written within common ML library frameworks into FPGA implementations

using HLS. hls4ml is a python package that, combined with HLS tools, reduces the need
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Figure 5.4: hls4ml workflow of converting an ML model into an FPGA implementation.
The figure is taken from Ref. [20].

for extensive experience in specialized hardware languages. Its easy-to-use feature benefits

users from a wide range of scientific and technological areas, including the LHC community.

The workflow is illustrated in Fig. 5.4. ML models are first built and trained using stan-

dard ML libraries such as Keras [23] and PyTorch [122]. hls4ml supports automatic HLS

conversion of different types of ML architectures, including boosted decision trees [123],

fully-connected NNs [20], CNNs [124], and symbolic expressions [25]. Using the hls4ml

converter, the trained models are then converted into HLS project where the implementa-

tion configuration can be tuned and optimized for specific applications. The HLS project

can then be synthesized for implementation on FPGAs.

There are three general techniques to optimize for efficient ML inference on FPGAs:

compression, quantization, and parallelization [20]. These techniques are essential for

environments with scarce resources and tight latency constraints. For instance, pruning

is a specific method of model compression to reduce the size of the model [125–127]. ML

models can have a large number of parameters, some of the parameters may be redundant

and removable without downgrading performance. Unimportant weights can be identified

by their small values below a certain threshold, which can be removed. Zeroing these

weights effectively reduces the number of arithmetic operations while maintaining model
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performance since these pruned weights have minimal impact on the output.

Another general technique is quantization, which involves reducing the precision of the

numeric representation and calculations [24,126,128]. In most standard ML libraries, 32-

bit floating point precision is assumed for representation and calculations. However, this

high precision often introduces redundancy, as it is typically not necessary for ML mod-

els to achieve optimal performance. Thus, precision can be quantized to fixed precision,

taking a fixed and smaller bit width as desired. A technique called quantization-aware

training [24] is beneficial for training pre-quantized NNs, as opposed to post-quantization

which can lead to significant performance downgrades since the quantization is done with-

out fine-tuning.

Moreover, leveraging parallelization for computations and tuning for the optimal con-

figuration for a specific use case is very useful [20]. This can be controlled by adjusting

the reuse factor for operators such as multipliers, which consume DSPs that are often

scarce for NN models. For instance, full parallelization can be achieved by setting all

multipliers to be reused as minimally as possible so that the multiplications are performed

simultaneously. This allows for higher throughput and lower latency but requires more

resources. Conversely, full serialization can be achieved by setting all multipliers to be

reused as much as possible so that the multiplications are performed sequentially. This

requires fewer resources but results in lower throughput and higher latency. Therefore,

there is a trade-off between resource utilization and throughput, which can be tuned and

optimized for specific problems depending on the performance goal and environmental

constraints.
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Chapter 6

Anomaly detection in the Level-1

trigger for model-agnostic new

physics searches

This chapter presents a novel ML-based algorithm implemented on an FPGA for the

CMS Level-1 (L1) trigger system: Calorimeter Image Convolutional Anomaly Detection

Algorithm (CICADA) [21]. CICADA uses the anomaly detection technique based on

low-level calorimeter information to search for new physics in a model-agnostic way at

the trigger level. Alongside the Anomaly eXtraction Online Level-1 Trigger Lightweight

(AXOL1TL) [129] algorithm, which follows the same principle but is based on global

trigger information, this marks the first time CMS has implemented such a new trigger

strategy, distinct from the existing methods. The anomaly detection triggers have shown

potential in detecting both rare and new physics signals in a completely different manner,

capable of capturing unconventional experimental signatures that might escape traditional

trigger selection. Both CICADA and AXOL1TL are deployed during the ongoing Run 3

in CMS, initiating a novel approach to hunting for new physics at the LHC.

The motivation for the anomaly detection trigger is discussed in Sec. 6.1. Sec. 6.2

introduces the concept of anomaly detection in ML and its applications at the LHC.
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Then, CICADA is introduced. Sec. 6.3 describes the datasets used. Sec. 6.4 details the

model architecture and training process. Sec. 6.5 presents the model performance. Sec. 6.6

provides a summary and discusses future aspects.

6.1 Motivations

Although a significant milestone was achieved in 2012 by ATLAS and CMS with the

discovery of the Higgs boson [29–31], the LHC has yet to discover any new physics beyond

the Standard Model (BSM).

There are three possibilities: 1) the new physics occurs at a scale beyond the current

LHC energy scale, 2) new physics is present in the data but there are not enough data

samples collected to reveal it statistically, or 3) new physics is present in the data but we

have been looking in the wrong places or using the wrong event selections. Both 1) and

2) can be addressed by increasing the collision energy and collecting more data for future

analysis. However, 3) is a more systematic problem, which, if not properly addressed,

would hinder our ability to discover new physics regardless of how high collision energy is

or how much more data is collected.

This systematic problem is particularly critical at the L1 trigger. The L1 trigger per-

forms the first round of event selection immediately after collisions occur. The trigger

algorithms determine whether the 40 MHz collision events contain potential physics sig-

nature and should be stored for later analysis or discarded immediately. If the trigger

algorithms are not capable of detecting new physics and discard those events, they will

be lost permanently and never be available for offline analysis, no matter how capable the

offline analysis techniques are. Therefore, the anomaly detection algorithms are developed

and targeted for the L1 trigger system as a front guard to preserve as many potential new

physics events as possible [21,129].

With the targeted system identified, the ML-based anomaly detection technique [116]

is chosen to address the issue for several reasons. First, ML is data-driven, allowing

models to make decisions based on patterns present in the data, thus minimizing human
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Figure 6.1: Comparison of anomaly detection trigger and traditional trigger in terms of
rate control and model independence. The plot is for illustration purposes and is not
drawn to scale.

interventions and reducing bias. ML models excel at learning unknown and complex

correlation and have already proven very successful in tackling problems with complicated

data structures [112]. This contrasts with traditional triggers that rely on simple cuts on

object momentum. The anomaly detection technique does not require targeting a specific

physics model, making it a model-agnostic method capable of identifying all possible new

physics signatures that deviate from the abundant standard physics processes.

Traditional triggers have mainly relied on two strategies: model-oriented selection and

object-oriented selection [11]. The pros and cons of the two strategies, along with the

new anomaly detection strategy, are compared in terms of trigger rate control and model

independence, as shown in Fig. 6.1, and discussed below.

• Model-oriented selection targets a specific known physics model or a class of
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models sharing a well-defined physics signature in a collision event. For instance,

the dedicated vector boson fusion (VBF) trigger requires the presence of a pair of

forward-backward jets with a large invariant mass. This trigger specifically targets

VBF-like topologies and is highly efficient for signals from specific models, such as

Higgs boson production via VBF. The precise and narrow phase space results in a

low trigger rate, minimizing the burden on the L1 trigger system, which is limited to

a maximum output rate of 100 kHz. However, this type of trigger only works within

a dedicated phase space, which is often very limited and cannot be generalized to

other analyses. In the context of new physics searches, where models may exhibit a

wide range of different topologies or where the true models are unknown, this trigger

strategy can become inefficient.

• Object-oriented selection targets specific physics objects or combinations of physics

objects and selects them based on their kinematic properties. For example, the anal-

ysis presented in Ch. 3 relies entirely on such triggers, such as single-µ and cross-µτh

triggers in the µτh final state (see Sec. 3.1.3). These triggers are more general-

purpose and model-independent, as they can capture a wide range of signals when

the relevant objects are present in the final state and pass simple kinematic cuts,

such as minimum-pT thresholds. However, these triggers, which can select a wide

range of events, typically require high thresholds on the object pT to prevent the

trigger rate from exceeding the L1 output limit. This significantly lowers the signal

acceptance, especially for analyses involving low-pT final-state objects. The analysis

presented in Ch. 3 exemplifies this issue, as it involves low-pT final-state objects

originating from light pseudoscalar decays. The most sensitive τhτh final state is

completely discarded due to the excessively high pT thresholds in τh-based triggers,

and over 90% of signal events are removed by the triggers in the other analyzable

final states (see Fig. 3.29).

• Anomaly detection can achieve both effective rate control and model indepen-

dence while maintaining physics sensitivity, thus addressing the issues associated
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with the two traditional trigger strategies mentioned above. This approach does not

rely on any specific physics models as inputs when building the trigger, nor is it

constrained to select a particular set of physics objects, making it model indepen-

dent. Additionally, by leveraging the power of ML to automatically identify hidden

correlations in data, anomaly detection triggers exhibit high physics sensitivity com-

pared to simple cut-based selections. As a result, signal acceptance for a wide range

of signals can potentially remain high even at a relatively low trigger rate, avoiding

significant compromise on challenging signals, such as those with low-pT objects, to

suppress the trigger rate. The concept of anomaly detection will be explained in the

next section.

6.2 Anomaly detection

Anomaly detection [116] is a data analysis technique used to identify rare or unexpected

patterns within a large set of similarly distributed events, as illustrated in Fig. 6.2.

There are two classes of events in anomaly detection: normal and anomalous. It is

assumed that the majority of events in a dataset follow the same or similar distributions,

referred to as normal events. Outliers, which deviate significantly from the majority,

indicate critical incidents and are referred to as anomalous events. For example, fraud

in a credit card account can be detected through unusual spending patterns, such as a

high-value purchase in foreign currency or multiple high-value purchases within a short

period.

In the context of the LHC, collisions are dominated by uninteresting background pro-

cesses with large cross sections (see Fig. 2.2 for cross section measurements of SM pro-

cesses), such as soft QCD, constituting the normal events. Interesting physics processes

with unconventional signatures occur at low probabilities and can naturally be treated as

anomalies to be detected, these include rare SM processes such as Higgs boson production,

and BSM processes such as dark matter production with large missing energy.

The unsupervised anomaly detection technique is of particular valuable for new physics
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Figure 6.2: Illustration of anomaly detection. Anomalous data (rare occurrences: non-
rectangular shapes, in red) are identified as deviations from normal data (abundant oc-
currences: rectangular shapes, in blue). In the context of the LHC, normal events corre-
spond to abundant SM processes with large cross sections, such as soft QCD productions.
Anomalous data, on the other hand, correspond to rare SM processes or BSM processes
with signatures deviating from normal data.

searches at the LHC. In this approach, ML models are trained on unlabeled and unfiltered

collision data to learn patterns from the abundant normal events. In theory, these ML

models can detect anomalous events from all rare or new physics processes simultaneously,

as long as their signatures deviate from the normal events, since no specific physics models

are assumed during training. This method allows for model-agnostic new physics searches

by capturing as many potential events as possible for offline analysis, reducing the risk of

permanently discarding significant events through traditional triggers.

6.3 Datasets

The input features to CICADA [21] are sourced from the calorimeter layer-1 trigger sub-

system in CMS, abbreviated as CaloLayer-1. CaloLayer-1 receives low-level information,

such as energy deposits at the trigger tower level, from the ECAL and HCAL (see Fig. 2.9
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Figure 6.3: Input features to CICADA: energy deposits at the trigger tower level in the
calorimeter layer-1 trigger subsystem, received from the ECAL and HCAL. Each input
event consists of energy deposits in the 18(iϕ)× 14(iη) = 252 trigger regions, where each
region is a 4× 4 trigger towers. Here, iϕ and iη refer to special trigger coordinates, which
take integer values to label the discrete region locations. The heat map displays an example
of a ZeroBias data event, with the energy deposit values indicated by color intensity. The
correspondence of a trigger region is marked by red squares in both the input heat map
(left) and the trigger tower map (right). The figure is adapted from Ref. [21]

for the L1 trigger subsystems). Fig. 6.3 (right) illustrates the geometric coordinate system

for CaloLayer-1 in iϕ and iη, which take integer values to represent discrete trigger regions.

Each trigger region encompasses 4 trigger towers. There are 18(iϕ)× 14(iη) = 252 trigger

regions in total, with each region containing the summed energy deposits from both ECAL

and HCAL. These 252 energy deposits serve as the input features per event for CICADA.

For unsupervised anomaly detection, the training data consist entirely of ZeroBias

data, which are unfiltered collision events, removing any bias toward specific physics sig-

natures that might be introduced by trigger selection. ZeroBias data are real collision

events instead of simulated ones, meaning their true underlying physics processes are

unknown and cannot be correctly labeled. However, the expected occurrence of differ-

ent known processes can be roughly estimated from SM cross section measurements (see
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Fig 2.2), which are predominantly QCD processes. Although ZeroBias data also include

rare SM processes, such as Higgs signals that are potential events of interest, or may even

contain tiny and unknown signals from new physics processes, these can still be detected

as anomalies during inference. This is because, during training, their contribution is negli-

gible compared to the vast number of QCD events, which have orders of magnitude higher

cross sections.

The ZeroBias datasets collected during Run 3 in 2023 are used for training. The

energy deposits in the inputs represent low-level information that does not involve any

high-level reconstruction entities, such as electron or jet features, minimizing potential

bias introduced by other algorithms. An example input feature map from a ZeroBias

event is shown in Fig. 6.3 (left).

Background events, such as soft QCD processes, form the bulk of ZeroBias data, typi-

cally resulting in low-energy deposits across many trigger regions due to multiple soft jets.

On average, ZeroBias events exhibit low-energy and noisy patterns in the regional map.

In contrast, interesting events generally involve a high momentum transfer in the hard

scatter process, resulting in more distinct deposit patterns due to the high-energy objects

or high-multiplicity objects in the final state.

For evaluation, five simulated signals are chosen to represent a broad range of different

experimental signatures, demonstrating the generalization capability of the anomaly detec-

tion trigger. These signals include both rare SM and BSM processes: 1) Higgs boson decays

into two long-lived particles, which then decay into four b quarks (HTo2LongLivedTo4b),

2) soft unclustered energy patterns (SUEP), 3) BSM Higgs boson production in association

with two b qaurks, where the Higgs boson decays into two b quarks (SUSYGluGlutoBB-

HtoBB), 4) top quark pair production (TT), and 5) Higgs boson production via VBF,

where the Higgs boson decays into two c quarks (VBFHto2C).

The SUEP signal, in particular, presents an unconventional experimental signature,

involving multiple low-energy jets depositing energies in the calorimeters that are typically

too soft to be clustered into objects due to the energy threshold in the clustering algo-



139

Figure 6.4: Illustration of the autoencoder that compresses and then reconstructs the
regional energy deposits: input → CNN encoder → latent space → CNN decoder →
output. The figure is generated using the PlotNeuralNet tool [22].

rithms [130, 131]. This type of signal is easily rejected by traditional triggers since there

are no reconstructed objects to be selected, leaving only faint patterns in the regional

map. Therefore, it serves as an excellent example to demonstrate the performance of the

anomaly detection trigger.

6.4 Model architecture and training

6.4.1 Autoencoder

The autoencoder architecture [132] has the potential to perform unsupervised new physics

detection at the LHC [133]. An autoencoder is a type of NN architecture that consists

of an encoder and a decoder. The encoder is an NN that transforms the input into a

compressed representation called latent space, which encodes the essential information

of the input. The decoder is an NN that mirrors the encoder to decompress the latent

representation and reconstruct the input. Essentially, the autoencoder is designed to learn

how to reconstruct its input. The size of the latent space is typically smaller than the

input size to ensure effective compression; otherwise, the autoencoder might learn a trivial

identity function.

Since the CICADA inputs are image-like data (see Fig. 6.3), CNNs are used to form

both the encoder and decoder. Each input is represented by a tensor with dimensions

of 18× 14× 1, retaining the regional map geometry of 18(iϕ)× 14(iη), with one channel

representing the energy deposits per region. Fig. 6.4 illustrates the autoencoder model
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used to reconstruct the regional energy information.

Fig. 6.5 shows the configuration of the autoencoder implemented in Keras [23]. The

CNN encoder starts with a convolutional layer containing 20 3 × 3 filters, with same

padding and a stride size of 1, followed by ReLU activation (see Eq. 3.5). An average

pooling layer with 2× 2 filters is then applied to reduce the dimensions of the convolution

output by a factor 2. Another convolutional layer with 30 3× 3 filters is applied, followed

by ReLU activation. The convolution output is then flattened into a 1D array and fed

into a dense layer with 80 neurons, activated by the ReLU function. The output layer,

which forms the latent space, has a dimension of 80, smaller than the regional input

with 18× 14× 1 = 252 features. The decoder mirrors the encoder architecture, using an

upsampling layer to increase the image dimensions through interpolative resizing. The

autoencoder combines the encoder and decoder networks, with the output retaining the

same dimensions as the input.

There are more than 300,000 trainable parameters, which are the filter weights and

neuron connection weights. These weights are optimized using the Adam optimizer [95] to

minimize the reconstruction loss, computed by the mean squared error (MSE) between

the inputs and outputs:

l(x, ŷ) =
1

n

∑
i

(xi − ŷi)
2, (6.1)

where x and ŷ represent the input and output tensors, respectively, and the sum runs over

the n = 252 trigger regions per event. Approximately one million ZeroBias data events

collected in Run 3 during 2023 are used for the training.

The reconstruction performance is quantified by the MSE, which is used as the anomaly

score for detecting anomalous events. ZeroBias events are expected to have low anomaly

scores because the autoencoder is trained to reconstruct these events well. In contrast, rare

SM or BSM events are expected to have high anomaly scores because they are assumed

to be effectively absent in the training, making the autoencoder less capable of accurately

reconstructing their unfamiliar patterns.

Fig. 6.6 shows the reconstruction performance of the autoencoder after training. For
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Figure 6.5: Configuration of the autoencoder model for CICADA implemented in
Keras [23].
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(a) A ZeroBias input.
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(b) A ZeroBias output.
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(c) A signal input.
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(d) A signal output.

Figure 6.6: Comparison of inputs and reconstruction outputs from the autoencoder. In
the ZeroBias event, the reconstruction is fairly good, with the major high-energy regions
well-reconstructed in both intensity and location (anomaly score = 0.81). In the signal
event, which is simulated SUEP, the model fails to reconstruct the high-energy regions in
the lower part (anomaly score = 14.21). The figures are taken from Ref. [21].

the ZeroBias event, the model captures and reconstructs the major high-energy deposits in

both intensity and location, resulting in an anomaly score of 0.81. Conversely, an example

BSM event with an unconventional experimental signature, known as SUEP, shows poor

reconstruction, where some major high-energy deposits are diluted and blurred, resulting
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in a higher anomaly score of 14.21.

6.4.2 Model compression

In principle, the anomaly score computed from the autoencoder outputs can be used as

a discriminant to trigger anomalous events at runtime. However, the autoencoder, with

over 300,000 parameters, is too large to be implemented on an FPGA board with limited

resources and to run within the tight sub-microsecond latency constraint. Additionally,

computing the MSE involves summing the differences across the 252 regions and squaring

them, which adds further computation time to the algorithm. Therefore, the model needs

to be compressed to a much smaller size to be deployable.

First, a model compression technique called knowledge distillation [134, 135] is em-

ployed. Instead of implementing the oversized autoencoder, referred to as the teacher

model, its knowledge is transferred to a smaller model, referred to as the student model,

as illustrated in Fig. 6.7. In this setup, the teacher model, which has already been trained,

is capable of learning complex patterns from the data due to its high expressivity and

large number of trainable parameters. The student model takes the same input tensors as

the teacher model but follows with much fewer layers of operations, ultimately outputting

a single number. The anomaly score (MSE) is calculated for each training event using

the outputs of the teacher model and is used as a label when training the student model,

which learns to directly output the anomaly score, bypassing the MSE calculation. Thus,

the student model is trained under the supervision of the teacher model to directly regress

the anomaly score.

Next, the student model is further compressed by quantization [24, 126, 128]. The

teacher model does not need to be quantized since it is not intended for deployment.

However, quantization is essential for the student model to be deployed, as it limits the

numerical representation and calculations to shorter and fixed bit widths. This conserves

FPGA resources, such as DSPs, which are typically scarce for NNs. The bit widths need to

be carefully determined: a too short bit width can prevent the model from learning useful
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Student model

Score regression

Compute MSE(input, output)

Anomaly score

Teacher model

Figure 6.7: Illustration of knowledge distillation: the smaller model, called the student
model, learns to directly regress the anomaly score produced by the larger autoencoder
model, called the teacher model. The figure is generated using the PlotNeuralNet [22] and
the NN-SVG [19] tools.

patters, while a too long bit width can lead to high resource utilization. The regional

energy received at CaloLayer-1 is 10-bit long, taking integer values between 0 and 1024.

The optimal architecture of the student model is determined using the AutoQKeras

framework [24], which treats quantization configuration as hyperparameters in the hyper-

parameter search in KerasTuner [98]. The student model is trained using Adam [95] to

minimize the MSE between the anomaly score from the teacher model and the output of

the student model.

Fig. 6.8 shows the configuration of the final student model implemented in QKeras [24].

The input layer is a vector with a length of 252, matching the data format received from

hardware at CaloLayer-1. The input vector is first reshaped to a tensor with dimensions

of 18 × 14 × 1 to be fed into a convolutional layer with 3 3 × 3 filters, assuming valid

padding and a stride size of 2, followed by ReLU activation. This output is then flattened

and passed to a dense layer with 20 neurons, also followed by ReLU activation. The final

output layer has one neuron. In both the convolutional and dense layers, the bias terms

are removed to reduce the number of parameters in the model. All filter weights, neuron
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Figure 6.8: Configuration of the student model for CICADA implemented in QKeras [24],
which is the final model to be converted into an FPGA implementation.

connection weights, and the ReLU function are quantized to 16 bits, with 4 bits for the

integer part. The weights connecting to the output are quantized to 16 bits, with 2 bits

for the integer part.

6.5 Performance

The final student model of CICADA is converted into HLS using hls4ml [20, 121] and

synthesized with Vivado HLS (2020.1) [136] on a Xilinx Virtex-7 FPGA. The resource

utilization and latency (in the order of 100 ns) are well within the available budget,

meeting the stringent L1 constraints and allowing room for further modifications and

improvements in the future.

Evaluation is conducted on the test set of ZeroBias data and various simulated signal
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Figure 6.9: Anomaly score distributions comparing ZeroBias data and various signals.

samples mentioned in Sec. 6.3. Fig. 6.9 shows the score distributions. As expected,

ZeroBias events have low scores close to 0, while all signal events peak at higher score

values and have a long tail in the high score region. This anomaly score serves as a

discriminant, allowing various working points to be defined for the trigger.

Fig. 6.10 shows the ROC curves, which plot signal efficiency against background effi-

ciency, with background referring to ZeroBias data. On the horizontal axis, the background

efficiency is converted into trigger rate in MHz, which is useful for defining working points

for the trigger.

The entire L1 trigger system includes numerous trigger algorithms targeting different

experimental signatures, such as muons and jets, so the total bandwidth is shared by

many individual trigger paths [11]. Therefore, the new trigger path cannot operate at a

high trigger rate in order to comply with the L1 constraints. The vertical line in Fig. 6.10

indicates an output rate of 3 kHz for CICADA. Below this line is the region of interest



147

Private Work (CMS data/simulation)

Figure 6.10: ROC curves plotted for various signals vs. ZeroBias data. The trigger rate
on the horizontal axis refers to the rate of triggering on ZeroBias events in MHz, with the
dashed line indicating a trigger rate of 3 kHz. Practically, the anomaly detection trigger
is expected to operate at a trigger rate around and below this line due to the limited
bandwidth shared by many different physics groups.

where working points can be defined. It is evident that CICADA is very sensitive to all

the signals, maintaining signal efficiencies above 10% even at a low output rate of 1 kHz

from an input rate of around 25 MHz.

The HT trigger, which selects events based on the scalar sum of pT of jets [11], is one

of the common traditional triggers and is chosen for comparison with CICADA. Fig. 6.11
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(a) Hto2LongLivedto4b.

Private Work (CMS data/simulation)

(b) SUEP.
Private Work (CMS data/simulation)

(c) SUSYGluGlutoBBHtoBB.

Private Work (CMS data/simulation)

(d) VBFHto2C.

Figure 6.11: ROC curves in the region of low background efficiency, comparing CICADA
(red) and the HT trigger (black). Several practical CICADA rates are indicated by the
vertical dashed lines.

shows the ROC curves focusing on the region of low background efficiency. CICADA

achieves significantly higher signal efficiencies across different signals with varying signa-

tures, especially for signals with low-energy jets in the final states, where the HT trigger

is not efficient. This is because CICADA identifies anomalies based on the deposit energy

and the deposit pattern. The additional gain in CICADA compared to the HT trigger

can be attributed to detecting anomalies in deposit patterns, which the HT trigger is

not sensitive to. Therefore, the HT trigger is more comparable to CICADA for signals

with energy anomalies dominating over pattern anomalies, such as high mass BSM Higgs

boson decays (SUSYGluGluBBHtoBB). However, CICADA shows a significant advantage

for signals with low-energy deposits that have pattern anomalies, such as SUEP.
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It is also interesting to investigate what particular signatures CICADA prefers to

capture as anomalies. Fig. 6.12 shows the distributions of the L1 jet multiplicity and pT

before and after applying the CICADA trigger. CICADA prefers a high multiplicity of jets

as well as jets with high pT in the final state. However, unlike traditional triggers, which

typically apply hard threshold cuts on the object pT resulting in zero acceptance below the

threshold, CICADA remains sensitive to the entire spectrum of jet pT, including regions

with very low jet pT. This suggests that CICADA can detect signals with very low-pT jets

that would have been rejected by traditional cut-based triggers. These conclusions also

apply to other L1 objects such as electrons/photons and taus, but not muons since they

do not deposit energy in the calorimeters. Essentially, CICADA prefers final states with

a high multiplicity of objects and objects with high pT, but it does not lose significant

acceptance to low-pT objects.

As the trigger system involves many different trigger paths that capture different sig-

natures, it is crucial to understand the overlap between CICADA and all existing triggers.

Fig. 6.13 shows the CICADA pure rate as a function of the overall rate. The pure rate

corresponds to events triggered only by CICADA and not by any other existing trigger

paths, representing the purity gain by adding CICADA to the trigger system. The overall

rate refers to the total events triggered by CICADA regardless of whether other trigger

paths are also fired. A few benchmark points are indicated: an overall rate of 5 kHz

includes a pure rate of 3 kHz.

As a trigger algorithm, the stability of CICADA needs to be demonstrated to ensure

that it does not produce unexpected behaviors, such as a sudden rate hike during a collision

run. As seen in Fig. 6.14, the CICADA score distributions remain stable across three

different runs in 2023. Runs B, C, and D refer to data-taking periods from April-May,

May-June, and June-August in 2023, respectively, where running conditions can change

during and across these periods. If the CICADA score threshold is defined in one run, the

output rate would remain almost constant in other runs, indicating that CICADA would

not undergo significant rate changes under typical running conditions. This stability is
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crucial for maintaining a stable total rate below the limit for the entire trigger system. The

stable CICADA rate also allows for pre-defined working points to adapt different running

conditions, proving flexibility.
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Figure 6.12: Signatures that CICADA prefers to trigger on. Top: trigger-level jet mul-
tiplicity profiles before and after applying the CICADA trigger. Bottom: jet pT profiles
before and after applying the CICADA trigger. The histograms in purple show the Zero-
Bias profiles where no threshold cut is applied on the CICADA score. The histograms in
other colors show the profiles at various threshold cuts on the CICADA score.
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Figure 6.13: Illustration of rate overlap between CICADA and the existing trigger menu.
The CICADA pure rate as a function of the CICADA overall rate. The pure rate refers to
the rate attributed to CICADA only, without any other existing trigger paths being fired.
The figure is taken from Ref. [21].
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Figure 6.14: Illustration of the rate stability of CICADA across different 2023 runs. Top:
CICADA score distributions. Bottom: CICADA rate as a function of the score threshold.
The figures are taken from Ref. [21].
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6.6 Summary and future prospects

In summary, an anomaly detection trigger algorithm called Calorimeter Image Convolu-

tional Anomaly Detection Algorithm (CICADA) has been developed for Run 3. CICADA

leverages machine learning to perform model-agnostic new physics searches using low-level

calorimeter information at the Level-1 trigger in CMS. CICADA has demonstrated its abil-

ity to capture both conventional and unconventional experimental signatures from a wide

range of rare and new physics signals. It prefers to select final states with high object mul-

tiplicity and high-energy objects and is also sensitive to objects with very low momentum,

which would typically be rejected by traditional triggers based on hard threshold cuts on

object momentum.

It is the first development of an anomaly detection algorithm in the trigger system,

opening new avenues for physics research at the LHC. For instance, it potentially en-

ables new physics searches in challenging and previously unexplored phase spaces, such

as soft unclustered energy patterns and highly-compressed scenarios in supersymmetry

models, which feature very soft objects in the final states. Additionally, CICADA can

be combined with offline analyses that use anomaly detection techniques to perform truly

model-agnostic searches throughout the entire selection process.

The main challenge in developing CICADA is to meet the stringent resource and

latency constraints at the Level-1 trigger. Although model compression techniques are

employed to ensure that the final model fits within an FPGA’s budget and runs with a

latency on the order of 100 ns, there is always a trade-off with the inference accuracy.

These model compression techniques may not always achieve the desired performance

while staying within tight constraints for every problem. Therefore, it is imperative to

explore new techniques that allow for higher flexibility in developing future algorithms in

resource-constrained environments like the LHC experiments. One promising technique

is symbolic regression, which can effectively compress machine learning models and be

efficiently implemented on FPGAs. This will be presented in the next chapter.
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Chapter 7

Symbolic regression for

hardware-efficient inference

In this chapter, a novel model compression method using symbolic regression (SR) in the

context of FPGA is presented. This approach addresses the limitations in developing

efficient ML algorithms in resource-constrained environments, such as the extremely tight

resource and latency budgets at the Level-1 (L1) trigger encountered when developing the

anomaly detection algorithms in the previous chapter. This chapter provides a lower-level

improvement method, aiming to add more flexibility in future ML modeling to achieve

effective and efficient inference on FPGAs for solving critical tasks.

A brief introduction to SR is given in Sec. 7.1. Then, a study of SR for fast machine

learning inference on FPGAs is presented [25]. Sec. 7.2 presents strategies for efficient im-

plementation of SR on FPGAs. Sec. 7.3 describes a benchmark LHC jet tagging dataset

used for the study. Sec. 7.4 outlines the configurations for expression searching. Sec. 7.5

presents the results of model performance and FPGA resource utilization. Sec. 7.6 dis-

cusses future aspects.
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7.1 Symbolic regression

SR is an ML technique that searches for models in the form of mathematical expressions

to fit a dataset [137–139]. Unlike neural network (NN) models, which often involve a large

number of parameters and function as black-box machines, symbolic models are typically

more compact and allow for human interpretation since they are presented as analytic

equations.

This naturally prompts an investigation into whether symbolic models can perform as

well as common ML models, such as NNs, while consuming fewer computational resources.

This is particularly relevant for the L1 trigger system in LHC experiments, which often

require compromises on model performance to stay within resource budgets and meet

the extreme sub-microsecond latency requirement. Therefore, the study of SR presented

here focuses on the primary objective of model compression for fast inference on custom

hardware such as FPGA.

In traditional regression techniques such as polynomial regression, the functional form

of the model is fixed, for instance, by the highest degree in the polynomial. The coeffi-

cients are then adjusted by fitting the model to data. These traditional methods require

human input to guess the exact functional form that could describe the shape of the

data distributions. Their effectiveness is greatly limited and highly dependent on specific

problems, especially for those with arbitrarily complicated shapes without underlying true

functions. This requires humans to handcraft custom equation forms iteratively, which

can be time-consuming and does not guarantee finding the desired solutions.

In contrast, SR is a regression method that leverages the power of ML to find the

best-fit equations without prior human guesses of the final functional form. SR can be

performed using genetic programming or NNs, as described in Sec. 7.1.1, where the func-

tional forms themselves are ‘trainable parameters’, automatically determined from data

in a supervised manner. In these approaches, only the building blocks of the expressions,

instead of the full expressions, are needed. The building blocks include mathematical op-

erators that can make up the expression candidates, such as unary operators (e.g., sin(x),
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exp(−(x)2)) and binary operators (e.g., +, ×, sin(x) cos(y)).

Even with only a few mathematical operators, the equation search space in SR can grow

exponentially, making it capable of fitting a wide range of different distributions. However,

the downside is that SR is a complex combinatorial problem that is NP-hard [140]. As

a result, searching for the best possible expressions typically involves high computational

intensity. On the other hand, constraining the final expressions to be in a compact form

is essential for human interpretability and efficient deployment in resource-constrained

environments. This must be considered in SR algorithms to balance the trade-off between

model performance and the practicality of the expressions.

7.1.1 Methods

There are two main computational approaches to SR: genetic programming and deep

learning.

Genetic programming, first proposed in Ref. [137], formulates populations of programs

and evolves them to solve particular computational problems in a manner inspired by

biological evolution. In the context of SR, mathematical expressions are represented in a

tree-like structure, where variables, constants, and operators are represented by tree nodes

connected according to their algebraic relations. As shown in Fig. 7.1, new expressions

can be created by mutation, where a tree node is randomly chosen to change its content,

or by crossover, where subtrees from two expression trees are swapped.

PySR [141] is one of the SR libraries based on genetic programming, developed for

discovering interpretable expressions for sciences. The algorithm creates and evolves ex-

pressions in multi-populations and filters candidates based on a tournament selection. It

has been demonstrated that SR can potentially be used to extract underlying relations

from data of physical systems, such as rediscovering Newton’s force laws from a system of

interacting particles [142].

While the genetic programming approach is effective in finding accurate expressions to

fit data, it is not computationally efficient due to its discrete nature of constructing and
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Figure 7.1: Illustration of genetic programming approach to SR, where expressions are
represented as trees. Mutation: a tree node is randomly chosen, and its content is changed
(top). Crossover: subtrees from two expression trees are swapped (bottom).

evolving the candidates. This inefficiency is exacerbated for large and high-dimensional

datasets.

On the other hand, SR can be performed using deep learning, particularly by training

NNs to find the best-fit equations. This approach allows for faster convergence due to

gradient-based optimization and the possibility of scaling SR to larger and more complex

datasets. Equation learner [143–145] is one of the earliest approaches using NNs to per-

form SR. It uses a fully-connected NN and generalizes the activation functions to custom
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Figure 7.2: Illustration of NN approach to SR. Unary operator (left): activation functions
can be generalized to more different mathematical operations, such as sin(x), which acti-
vate one neuron. Binary operator (right): activation functions can also be generalized to
operations involving two inputs, such as x×y, which activate two neurons simultaneously.

mathematical operators, as shown in Fig. 7.2. Unary operators, such as sin, can activate

one neuron, while binary operators, such as ×, can activate two neurons simultaneously,

allowing for a greater variety of expression candidates.

Finding compact expressions requires NNs to have a highly sparse connection struc-

ture, which traditionally has relied on multistage pruning methods, such as in Ref. [146],

to encourage sparsity. These methods involve a one-time pruning to remove all parame-

ters with values below a certain threshold, often resulting in a significant compromise in

accuracy. SymbolNet [147] extends the idea and improves it with a SR-dedicated pruning

framework inspired by the dynamic sparse training [148]. This allows SR to scale to data

with higher input dimensions and to find symbolic models that are as compact as possible

while maintaining competitive performance.
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7.2 Efficient implementation on FPGAs

After symbolic expressions are found, they can be converted into FPGA firmware with

hls4ml [20, 25, 121]. Strategies are developed to adapt and optimize symbolic models for

the FPGA environment.

One such functionality in hls4ml allows for approximating mathematical functions

with lookup tables (LUTs), called LUT-based functions. This is similar to the quantization

of NNs discussed in Sec. 6.4.2, where model weights are represented in fixed and short bit

widths. The LUT-based approximation replaces mathematical functions, such as sin, with

a fixed-size table of pre-computed input-output pairs. The table range and size can be

customized; for example, a LUT-based sin function can be defined for −8 < x < 8 with

256 steps for granularity.

Fig. 7.3 compares sin and tan functions with their LUT-based approximations. These

approximations avoid the runtime computation of mathematical functions, which can be

very computationally intensive. For example, a tan function can take over 40 clock cycles to

compute on an FPGA, whereas a LUT-function operation is a simple memory lookup that

takes only one clock cycle, regardless of the underlying mathematical function. Replacing

mathematical functions with LUT-based counterparts significantly reduces FPGA resource

usage and speeds up inference, while maintaining flexibility in the table definition to adapt

to specific problems at hand.

If function accuracy cannot be compromised by LUT-based approximations, the orig-

inal mathematical functions can be retained, and an alternative strategy to search for

efficient symbolic models for FPGA implementation can be used. The method is called

latency-aware training [25], which adds penalty weights to mathematical operators during

model training according to their individual computation latency.

To quantify the model size for symbolic expressions, a metric called complexity [141]

can be defined by counting the total number of tree nodes in the expression tree. This

can be computed using the preorder traversal function in Sympy [149]. For example, the

expressions y+sin(x) and (x×y)×ex in Fig. 7.1 have complexities of 4 and 6, respectively.
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Figure 7.3: Comparison of the original mathematical function and the LUT-based approx-
imation, which is discretized within a finite range by a pre-computed table of input-output
pairs. Two functions are illustrated: sin (left) and tan (right). Two table definitions with
different granularity are compared, with the precision of ⟨12, 6⟩. The table definition is
denoted as LUT(xmin,xmax,table granularity). The figures are taken from Ref. [25].

There is a simple assumption that every node is equally weighted. However, this does

not hold true if complexity is used as a proxy for approximating computational resource

consumption, as computing an exponential function is more intensive than performing an

arithmetic addition, for instance.

In latency-aware training, the latency of each operator, measured in clock cycles, is

assigned as the complexity of the operator. The total complexity of an expression is the

sum of complexities of all its building blocks. By including complexity as one of the

constraint terms in training, operators that require more clock cycles to compute on an

FPGA are penalized more, ensuring that the final expressions obtained are optimized in

terms of resource utilization and latency simultaneously.
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7.3 Dataset

To demonstrate the effectiveness of SR as a model compression technique, the LHC jet

tagging dataset [150] is chosen for the study, designed to benchmark the performance of

various fast ML algorithms on FPGAs. The dataset consists of simulated jets produced

from high-energy proton-proton collisions at the LHC. Each jet can contain up to 150

particles and originates from either a light quark (q), gluon (g), W boson (W), Z boson

(Z), or top quark (t).

The anti-kT algorithm [58,59] is used to cluster the jets with a cone radius of R = 0.8

(see Sec. 2.3.3). A minimal selection based on the jet pT is applied to remove extreme

outliers [20]. The task is to identify a given jet as one of the five classes from 16 high-

level input features:
∑
z log z, Cβ=0,1,2

1 , Cβ=1,2
2 , Dβ=1,2

2 , D
(α,β)=(1,1),(1,2)
2 , Mβ=1,2

2 , Nβ=1,2
2 ,

mmMDT, and Multiplicity. These input features are built from various jet reconstruction

algorithms and are standard variables for studying jet substructure. More details on these

features are described in Refs. [20, 151, 152]. For training, the inputs are standardized to

have a zero mean and unit variance.

7.4 Experiments

First, a baseline model is needed to evaluate what SR can improve upon conventional

algorithms. The baseline is a small-sized fully-connected NN consisting of three hidden

layers with 64, 32, and 32 neurons, respectively, each followed by a ReLU activation [20].

The input layer has 16 neurons, and the output layer has 5 neurons followed by a softmax

activation [93]:

softmax(x)i =
exp(xi)∑
j exp(xj)

, (7.1)

where the denominator sums over the 5 classes. The softmax outputs, softmax(x)i, give

the probabilities of the input jet originating from class i. The jet is identified according

to the class that has the highest probability output. This baseline is chosen for its small

model size, making it practical for FPGA deployment while maintaining reasonable jet
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tagging accuracy. The baseline model is implemented in QKeras for quantization-aware

training [24].

There are two experiments for the two strategies outlined in Sec. 7.2: one for studying

the LUT-based functions and another for studying the latency-aware training [25]. Similar

to the baseline, each symbolic model consists of five expressions, with the five outputs

corresponding to the probabilities of being one of the five jet classes.

In the experiments, SR is performed using PySR [141], which is highly configurable to

fit symbolic expressions under different constraints. In PySR, the model selection strategy

is set to be based on the highest accuracy for a given maximum expression complexity. The

configurable parts include the choice of operators allowed in expressions, the complexity

assignment to each operator, and the various constraints on the operators, such as function

nesting. These constraints will be set differently for the two experiments.

In general, the training attempts to solve the following optimization problem:

f∗{q,g,W,Z,t} = argmin
f{q,g,W,Z,t}∈S

∑
i

∑
jet∈{q,g,W,Z,t}

l(fjet(x
i), yijet). (7.2)

Here, f{q,g,W,Z,t} are the five expressions that take the 16 input features as variables x. S

is the equation space containing all possible equations with complexity up to a maximum

value c ≤ cmax and satisfying the constraints defined in the training configuration. The

first sum runs over the training dataset {xi,yi}, where yi are the labels. The second sum

runs over the five jet classes. l is the individual loss function, taken as the L2 margin loss:

l(ŷ, y) = (1− ŷy)2, with labels set to +1 for the true class and −1 otherwise. The jet class

corresponding to the expression that outputs the highest score is identified. To constrain

the size of the symbolic models and ensure faster convergence, 6 out of the 16 features are

selected using a random forest regressor in scikit− learn [153] for the training.

For the study of LUT-based approximations, four types of expressions are considered:

polynomial, trigonometric, exponential, and logarithmic. These models are compared in

terms of jet tagging accuracy and FPGA resource utilization, with and without the LUT-

based approximations applied to the functions. To search for the polynomial expressions,
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the choice of operators are limited to arithmetic: + and ×. To search for other types

of expressions, additional operators are allowed: sin(·) for trigonometric, exp(−(·)2) for

exponential, and log(| · |) for logarithmic. A complexity of 1 is assigned indistinguishably

to all operators, since the latency is equivalent in all lookup table operations. Constraints

include excluding any kind of function nesting, such as sin(sin(·)), and setting the max-

imum expression complexity cmax to 20, 40, and 80, respectively, to obtain different sets

of expressions. For each symbolic model, there are two sets of identical expressions: one

using the original functions and another using the LUT-based functions.

For the study of latency-aware training, no LUT-based functions are employed, so

different operators will be computed at runtime on an FPGA with varying latencies. To

account for this, the latency for each operator, obtained from synthesis results, is measured

in clock cycles and assigned as operator complexity in the search. The choice of operators

include + [1], − [1], × [1]. sin(·) [8], tan(·) [48], exp(·) [3], sinh(·) [9], cosh(·) [8], and

log(| · |) [4], where the numbers in square brackets refer to the corresponding number

of clock cycles assigned as operator complexity, for the precision ⟨16, 6⟩, for example.

The constraints include excluding any kind of function nesting and setting the maximum

expression complexity cmax to 20, 30, 40, 50, 60, 70, and 80, respectively, to obtain different

sets of expressions.

All models are converted into FPGA implementation using hls4ml [20, 25, 121] and

synthesized with Vivado HLS (2020.1) [136] on a Xilinx Virtex-9 FPGA. The FPGA clock

frequency is set to 200 MHz, corresponding to a clock period of 5 ns. The SR models are

compared with the baseline in terms of jet tagging accuracy, FPGA resource utilization

(DSPs and LUTs), and latency.

7.5 Results

Tab. 7.1 shows the five expressions of the trigonometric model obtained at cmax = 20,

and Tab. 7.2 shows expressions for the top quark class in each of the four models. These

expressions demonstrate the possibility of obtaining very compact expressions that pro-
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Class Trigonometric model (cmax = 20) AUC

g sin(−2Cβ=1
1 + 0.31Cβ=2

1 +mmMDT +Multiplicity− 0.09Multiplicity2 − 0.79) 0.897

q −0.33(sin(mmMDT)− 1.54)(sin(−Cβ=1
1 + Cβ=2

1 +Multiplicity)− 0.81)sin(mmMDT)− 0.81 0.853

t sin(Cβ=1
1 + Cβ=2

1 −mmMDT + 0.22(Cβ=2
1 − 0.29)(−Cβ=2

1 + Cβ=1
2 −Multiplicity)− 0.68) 0.920

W −0.31(Multiplicity + (2.09−Multiplicity)sin(8.02Cβ=2
1 + 0.98))− 0.5 0.877

Z (sin(4.84mmMDT) + 0.59)sin(mmMDT + 1.14)sin(Cβ=2
1 + 4.84mmMDT)− 0.94 0.866

Table 7.1: Expressions of the trigonometric model (cmax = 20), with ROC AUC shown.
The table is taken from Ref. [25].

vide reasonable performance. Fig. 7.4 shows the ROC curves comparing the baseline NN

model and the trigonometric model with and without LUT-based approximations. In this

example, the expressions with LUT-based approximations do not compromise accuracy

compared to the same expressions using the original functions. Their performance is very

close the that of the baseline NN, which has a much larger model size.

Model Expression for the top quark class (cmax = 40) AUC

Polynomial Cβ=2
1 + 0.09mmMDT(2C

β=1
1 +Mβ=2

2 −mmMDT −Multiplicity− (1.82Cβ=1
1 −Mβ=2

2 )(Cβ=2
1 − 0.49mmMDT)− 3.22)− 0.53 0.914

Trigonometric sin(0.06(
∑
z log z)Mβ=2

2 − 0.25Cβ=2
1 (−Cβ=1

1 + 2Cβ=2
1 −Mβ=2

2 +Multiplicity− 8.86)−mmMDT + 0.06Multiplicity− 0.4) 0.925

Exponential 0.23Cβ=1
1 (−mmMDT +Gauss(0.63Multiplicity) + 1)−Gauss(Cβ=1

1 ) + 0.45Cβ=2
1 − 0.23mmMDT 0.920

+0.23Gauss((4.24− 1.19Cβ=1
2 )(Cβ=2

1 −mmMDT)) + 0.15

Logarithmic Cβ=2
1 − 0.1mmMDT(Multiplicity× log(abs(Multiplicity)) + 2.2)− 0.02log(abs(Multiplicity)) 0.923

− 0.1(Cβ=2
1 (Cβ=1

1 − 1.6Mβ=2
2 +mmMDT + 1.28)−mmMDT − 0.48)log(abs(Cβ=2

1 ))− 0.42

Table 7.2: Expressions for the top quark class (cmax = 40), with ROC AUC shown. The
table is taken from Ref. [25].

Fig. 7.5 shows the accuracy of the symbolic models relative to the baseline. Three

different model sizes are examined for the symbolic models: cmax = 20, 40, and 80. All

models are implemented for a range of fixed-point precision. The polynomial models are

the simplest type as they do not have any mathematical function in the expressions, but

their accuracy at cmax = 80 can already achieve above 90% relative to the baseline, which

is a fully-connected NN with a few thousands parameters. For other types of models, the

relative accuracy can achieve over 90% even for very compact expressions with cmax = 20.

The LUT-based approximations lead to minimal drops in accuracy in some cases, but

these are not significant.

Fig. 7.6 and Fig. 7.7 show the DSP and LUT usage of the models, respectively. The

baseline NN consumes the most resources, while symbolic models consume orders of mag-



166

0.0 0.2 0.4 0.6 0.8 1.0
True positive rate

10 3

10 2

10 1

100
Fa

lse
 p

os
iti

ve
 ra

te    QAT NN                 SR (sin)               SR (sin LUT)
g (0.942)
q (0.908)
t (0.964)
W (0.954)
Z (0.950)

g (0.906)
q (0.865)
t (0.929)
W (0.928)
Z (0.915)

g (0.906)
q (0.862)
t (0.929)
W (0.928)
Z (0.914)

Figure 7.4: Comparison of ROC curves of the baseline quantization-aware trained (QAT)
NN and the trigonometric model (cmax = 80) with and without LUT-based approximations
applied. The numbers in brackets are the corresponding ROC AUC values. The figure is
taken from Ref. [25].

nitude less in general. This significant drop in resource utilization is expected since each

symbolic model consists of only five lines of equations involving a very limited numbers of

operations. In contrast, the baseline NN involves large matrix multiplications with thou-

sands of model parameters. The same symbolic models with LUT-based approximations

lead to significant improvements in resource consumption. This is expected since the orig-

inal mathematical functions are computed at runtime, while the lookup table operations
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Figure 7.5: Accuracy of the symbolic models relative to the baseline NN. Three different
model sizes are considered: cmax =20, 40, and 80. Symbolic models with and without
LUT-based approximations are compared. The figures are taken from Ref. [25].

involve only simple memory retrieval. There is an upward trend in resource consumption

with the increase in bit width, as it takes more resources to represent numbers and perform

the calculations.

Fig. 7.8 shows the latency of the models. The baseline NN requires a constant latency

of 65 ns to compute in all cases. Most symbolic models require much less latency, especially

those with LUT-based approximations. In particular, the logarithmic models at cmax = 20
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Figure 7.6: DSP utilization on an FPAG. Three different model sizes are considered:
cmax =20, 40, and 80. Symbolic models with and without LUT-based approximations are
compared with the baseline NN. The figures are taken from Ref. [25].

at the lowest two bit widths (12 and 13) require only one clock cycle to compute, which

is 5 ns. These models achieve an accuracy of around 93.5% relative to the baseline NN

while reducing latency by a factor of 13. This demonstrates the potential of SR to perform

competitively while requiring significantly fewer resources and lower latency to run.

For the latency-aware training, where LUT-based approximations are disabled, the

symbolic models obtained using the same configuration with and without setting the op-
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Figure 7.7: LUT utilization on an FPAG. Three different model sizes are considered:
cmax =20, 40, and 80. Symbolic models with and without LUT-based approximations are
compared with the baseline NN. The figures are taken from Ref. [25].

erator complexity to the corresponding latency are compared in Fig. 7.9. Models are

trained repeatedly in the range of cmax between 20 and 80, and two bit widths are con-

sidered: ⟨18, 8⟩, ⟨16, 6⟩. The difference in relative accuracy is mostly within 1% between

models with and without latency-aware training. However, as expected, the latency is

systematically lower for models obtained from latency-aware training. This demonstrate

the effectiveness of integrating hardware constraints into the training process, leading to
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Figure 7.8: Inference latency on an FPGA. Three different model sizes are considered:
cmax =20, 40, and 80. Symbolic models with and without LUT-based approximations are
compared with the baseline NN. The figures are taken from Ref. [25].

more hardware-efficient models to be discovered.
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Figure 7.9: Symbolic models with and without latency-aware training (LAT) are compared
in terms of accuracy relative to the baseline NN (top) and latency (bottom). Seven
different model sizes are considered: cmax =20, 30, 40, 50, 60, 70, and 80. Two bit widths
are considered: ⟨18, 8⟩ and ⟨16, 6⟩. The figures are taken from Ref. [25].
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7.6 Summary and future prospects

In summary, this study demonstrates that symbolic regression can be an effective model

compression technique for developing lightweight models on FPGAs, achieving compara-

ble performance to conventional models like neural networks while requiring significantly

fewer FPGA resources and lower latency. In particular, symbolic models performing

a benchmark LHC jet tagging task achieve inference latency as low as 5 nanoseconds

and overall accuracy over 90% relative to the baseline neural network, which requires 65

nanoseconds to run. This provides an alternative modeling method with greater flexibility

and improvements for developing machine learning algorithms to perform critical tasks in

resource-constrained environments such as the Level-1 trigger in LHC experiments.

High-energy physics problems at the LHC typically involve many input features. For

instance, the anomaly detection trigger presented in Ch. 6 has 252 input features, and some

other problems involving detector readout signals can easily exceed such level. However,

most symbolic regression methods, such as those based on genetic programming, cannot

efficiently handle datasets with more than O(10) inputs, greatly limiting their potential

applications. A recent study in Ref. [147] provides a solution by training neural networks

in a pruning framework dedicated to symbolic regression, which can efficiently scale to

datasets with up to O(1000) inputs. This opens up the possibility of deploying more

symbolic models on FPGAs to perform critical physics tasks while running fast enough to

meet the harsh constraints imposed by the extreme data rate of 40 MHz at the LHC.
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Chapter 8

Summary of Part II

The second part of this thesis partially addresses the challenge faced in the analysis pre-

sented in the first part: low signal acceptance due to low-momentum objects in the final

states being rejected by traditional trigger selection based on hard threshold cuts on object

momenta. This problem is common across similar analyses at the LHC. A novel machine

learning trigger algorithm called Calorimeter Image Convolutional Anomaly Detection

Algorithm (CICADA) has been developed, which has the potential solve this issue.

CICADA uses anomaly detection techniques to perform model-agnostic new physics

searches at the trigger level. It has demonstrated high signal sensitivity to both conven-

tional and unconventional experimental signatures from a wide range of signals, including

those with signatures similar to the analysis presented in this thesis. In particular, CI-

CADA is sensitive to challenging signatures such as soft unclustered energy patterns,

which would likely be rejected by traditional triggers. This demonstrates the potential of

anomaly detection triggers to broadly enhance the physics program at the LHC.

Developing CICADA is challenging due to its deployment on FPGAs in the Level-1

trigger system, which has stringent requirements on resource budgets and latency limits

below microseconds. Model compression techniques are in high demand to address these

challenges for future developments. Another study investigates the use of symbolic re-

gression as a new modeling method for fast machine learning inference on FPGAs. This
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method has demonstrated competitive performance comparable to conventional models

such as neural networks, while requiring significantly fewer FPGA resources and lower

latency. This provides an alternative method with improvements and higher flexibility for

future algorithms that need to meet stringent computational constraints.
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Chapter 9

Conclusion and future prospects

The main challenge for searches such as the h → aa described in Part I is the ability

to target signatures with low-momentum final-state objects in the harsh trigger selection

that requires high-momentum thresholds on the objects. This issue persists if the trigger

strategy remains unchanged, regardless of increased luminosity and improved offline anal-

ysis techniques. This problem brings up Part II, which introduces novel machine learning

methods to address the issue at a lower level.

The studies in Part II provide new solutions to solve physics problems for the LHC,

especially for the low-mass searches for new physics beyond the Standard Model, while

addressing the challenging and unavoidable computational constraints. The anomaly de-

tection triggers are currently deployed in CMS during Run 3, and it is expected that

interesting anomaly datasets will soon be collected and analyzed to look for new physics.

New opportunities are present in the ongoing Run 3, and they also pave the way for the

upcoming HL-LHC era.
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Appendix A

Published results and personal

contributions

This thesis is primarily based on the following published results, with personal contribu-
tions indicated.

• CMS Collaboration, “Search for exotic decays of the Higgs boson to a
pair of pseudoscalars in the µµbb and ττbb final states”, Eur. Phys. J.
C 84, 493 (2024), doi: https://doi.org/10.1140/epjc/s10052-024-12727-4, arXiv:
2402.13358. [15]

– Was the lead analyst for the ττbb final state, and led the combination analysis
of the two final states.

• CMS Collaboration, “Level-1 Trigger Calorimeter Image Convolutional Anomaly
Detection Algorithm”, CMS Detector Performance Summaries (public docu-
ment): CMS-DP-2023-086 (2023) [21].

– Developed the model of the Calorimeter Image Convolutional Anomaly Detec-
tion Algorithm (CICADA): model architecture design, training, and evaluation.

• CMS Collaboration, “The Phase-2 Upgrade of the CMS Data Acquisition
and High Level Trigger”, CERN-LHCC-2021-007, CMS-TDR-022 Technical De-
sign Report (2021). [18]

– Performed the sensitivity projection study for the Phase-2 trigger in the analysis
channel h → aa → ττbb [Sec.10.3.2.5, pp.240-243 in the TDR].

https://doi.org/10.1140/epjc/s10052-024-12727-4
https://arxiv.org/abs/2402.13358
https://cds.cern.ch/record/2879816
https://cds.cern.ch/record/2759072
https://cds.cern.ch/record/2759072
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• H.F. Tsoi et al., “Symbolic regression on FPGAs for fast machine learning
inference”, EPJ Web Conf. 295, 09036 (2024), 26th International Conference on
Computing in High Energy and Nuclear Physics (CHEP 2023),
doi: https://doi.org/10.1051/epjconf/202429509036, arXiv: 2305.04099. [25]

– Validated the HLS implementation and performed the experiments.

• H.F. Tsoi et al., “SymbolNet: Neural Symbolic Regression with Adaptive
Dynamic Pruning”, arXiv: 2401.09949. [147]

– Proposed the model and performed the experiments.

https://doi.org/10.1051/epjconf/202429509036
https://arxiv.org/abs/2305.04099
https://arxiv.org/abs/2401.09949
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