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Non-additive probabilities and quantum logic in

finite quantum systems

A Vourdas

Department of Computing, University of Bradford, Bradford BD7 1DP, United Kingdom

E-mail: A.Vourdas@bradford.ac.uk

Abstract. A quantum system Σ(d) with variables in Z(d) and with Hilbert space H(d), is
considered. It is shown that the additivity relation of Kolmogorov probabilities, is not valid
in the Birkhoff-von Neumann orthocomplemented modular lattice of subspaces L(d). A second
lattice Λ(d) which is distributive and contains the subsystems of Σ(d) is also considered. It is
shown that in this case also, the additivity relation of Kolmogorov probabilities is not valid.
This suggests that a more general (than Kolmogorov) probability theory is needed, and here we
adopt the Dempster-Shafer probability theory. In both of these lattices, there are sublattices
which are Boolean algebras, and within these ‘islands’ quantum probabilities are additive.

1. Introduction

Quantum mechanics is a probabilistic theory, but quantum probabilities are more general than
the standard (Kolmogorov) probabilities. Many authors have discussed various aspects of
quantum probabilities[1, 2, 3]. Operational and convex geometry methods have been studied in
[4, 5, 6, 7]. Test spaces have been studied in [8, 9], and fuzzy phase spaces in [10, 11]. Category
theory methods have been studied in [12, 13]. We are interested in quantum probabilities as non-
additive probabilities, and in particular in their link to logic. Non-additive probabilities describe
aggregations, where ‘the whole is greater than the sum of its parts’. In this general area, the
Dempster-Shafer theory has been used extensively in Artificial Intelligence, Operations Research,
Economics, etc[14, 15, 16, 17], and here we use it for quantum probabilities and link it to quantum
logic. Quantum logic is based on the Birkhoff-von Neumann orthomodular lattice of closed
subspaces of a Hilbert space and has been studied extensively in the literature[18, 19, 20, 21, 22].

Kolmogorov’s probability theory is intimately related to set theory and Boolean algebra. It
is a map from the powerset 2Ω of some set Ω, to [0, 1]. The powerset 2Ω is a Boolean algebra
with subset (⊆), intersection (∩) union (∪), complement (A = Ω−A), as the logical connectives
partial order (≺), conjuction (∧), disjunction (∨), negation (¬), correspondingly. The additivity
property of Kolmogorov probabilities is

δ(A,B) = 0; δ(A,B) = p(A ∨B)− p(A)− p(B) + p(A ∧B), (1)

where A,B ⊆ Ω, and p(A) are probabilities. From this follows that

p(A) + p(A) = 1. (2)

In recent work we have shown that the analogues of these additivity relations, are not valid in
general, for quantum probabilities.
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We consider a quantum system Σ(d), with variables in Z(d) (the integers modulo d), described
with the Hilbert space H(d). We then consider two different lattices. The first lattice L(d) [23]
is the Birkhoff-von Neumann orthomodular lattice of closed subspaces of H(d), which in the
finite case considered here, is actually the modular orthocomplemented lattice of subspaces.
The second lattice Λ(d) [24] is the distributive lattice (Heyting algebra) of subsystems of Σ(d).
A subsystem is a smaller system with variables in a subgroup of Z(d). The subgroups of Z(d)
are Z(e) where e|d (e is divisor of d), and therefore the subsystems of Σ(d) are Σ(e) with e|d.
We will show explicitly how the states of a subsystem are embedded into the larger system. L(d)
is a different lattice from Λ(d). L(d) has an infinite number of elements, while Λ(d) has a finite
number of elements (corresponding to the divisors of d). Furthermore, the logical connectives
in the two lattices are different.

In both of these lattices we show that the analogue of the additivity property δ(A,B) = 0
is not valid in general. It is valid only within sublattices of L(d), and also sublattices of Λ(d),
which are Boolean algebras. As soon as we work with structures which are not Boolean algebras,
the additivity property δ(A,B) = 0 is not valid.

The Birkhoff-von Neumann lattice L(d) is not distributive, and this is a big deviation from
Boolean algebras. Somebody might conjecture that the lack of distributivity is the only factor
responsible for the non-additivity of quantum probabilities. For this reason we considered the
second lattice which is distributive. But even in this case, quantum probabilities are non-
additive.

There is a long history of the study of non-additive probabilities, and a practical scheme
is the Dempster-Shafer theory[14, 15, 16, 17]. We adopt this scheme and interpret quantum
probabilities as Dempster-Shafer probabilities. In the present paper we review and expand the
work in [23, 24]. The emphasis is on the physical implications, and the interplay between
quantum physics and logic (the formal proof of some statements, involves lattice theory
techniques and has been given in [23, 24]). We also compare and contrast the two lattices,
because there is different reason for the non-additivity of probability, in these two cases. In
L(d) is non-commutativity, and in the Heyting algebra Λ(d) the non-validity of the ‘law of the
exclusive middle’ (¬a∨a ≺ I) and the fact that two negations of a statement are not equivalent
to the statement (a ≺ ¬¬a).

2. The Dempster-Shafer theory: lower and upper probabilities

The Dempster-Shafer theory assigns two probabilities to a subset A of Ω. The lower probability
(or belief) ℓ(A) and the upper probability (or plausibility) u(A) = 1 − ℓ(A). In Kolmogorov
probability theory these two quantities are the same, due to Eq.(2). Kolmogorov probability
theory is based on Boolean logic, according to which an element of Ω, belongs to either A or
to A. In Dempster-Shafer theory there are three categories: ‘belongs to A’, ‘belongs to A’ and
‘don’t know’. In this case

ℓ(A) + ℓ(A) ≤ 1, (3)

and the 1 − ℓ(A) − ℓ(A)), corresponds to the ‘don’t know’ category. The upper probability
combines the ‘belong to A’ and the ‘don’t know’.

In his original work Dempster[14] considered Kolmogorov probabilities associated to subsets
of a space X. He then considered a multivalued map from X to another space Ω. There is
uncertainty related to probabilities in the space X, but there is an extra level of uncertainty due
to the multivaluedness in the space Ω, which is sometimes called ambiguity in order to distinguish
it from the original uncertainty. In a quantum context, the Dempster multivaluedness is the
fact that a product of two classical quantities becomes the product of two operators which can
be ordered in various ways.
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An example similar to one in ref[25], is a company which does not know the exact age of its
employees. It knows that n1 employees are under 30 years old, n2 employees are between 30
and 50, and n3 are over 50. It wants to find the probability that a random employee is under 40
years old. The set A contains employees whose age is under 40. In this example, n1 employees
belong to A, n2 employees belong to A, and n3 employees belong to Dempster’s ‘don’t know’
category. The lower probability is n1/(n1 + n2 + n3) (‘safe choice’) and the upper probability
(n1 + n2)/(n1 + n2 + n3).

The lower and upper probabilities obey the inequalities

ℓ(A ∪B)− ℓ(A)− ℓ(B) + ℓ(A ∩B) ≥ 0

u(A ∪B)− u(A)− u(B) + u(A ∩B) ≤ 0 (4)

3. Non-commutativity in L(d) and the non-additivity operator D(H1, H2)
Let H1, H2 be subspaces of H(d). We define the conjunction and disjunction as

H1 ∧H2 = H1 ∩H2; H1 ∨H2 = span(H1 ∪H2). (5)

We also use the notation O = H(0) (the space which has only the zero vector) and I = H(d),
for the smallest and greatest elements in the lattice. We denote as Π(H1) the projector to the
subspace H1.

In the lattice L(d), we define the following ‘non-additivity operator’:

D(H1, H2) = Π(H1 ∨H2) + Π(H1 ∧H2)−Π(H1)−Π(H2). (6)

The Tr[ρD(H1, H2)] with a density matrix ρ, is analogous to δ(A,B) and it indicates
deviations from additivity by quantum probabilities. The disjunctions describe ‘aggregations’
of subsystems, and the non-additivity shows that an aggregation (or clustering or coalition) is
different than a naive sum of its parts. The commutator [Π(H1),Π(H2)] is related to D(H1, H2),
through the relation[23]:

[Π(H1),Π(H2)] = D(H1, H2)[Π(H1)−Π(H2)]. (7)

This shows a strong link between non-commutativity and non-additivity of quantum
probabilities. Within the lattice L(d), there are sublattices which are Boolean algebras, and
there the projectors commute, the D(H1, H2) = 0 and quantum probabilities obey the additivity
relation Tr[ρD(H1, H2)] = 0 which is analogous to δ(A,B) = 0 for Kolmogorov probabilities.
But in the full lattice both [Π(H1),Π(H2)] and D(H1, H2) are in general non-zero and and
therefore Tr[ρD(H1, H2)] is in general non-zero. Taking into account Eq.(4), we interpret a pair
Tr[Π(H1)ρ] and Tr[Π(H2)ρ] of quantum probabilities, as upper or lower probabilities according
to whether Tr[ρD(H1, H2)] is negative or positive correspondingly.

3.1. Example

We consider the 3-dimensional space H(3) and its subspaces

H1 = {a(1, 0, 0)}; H2 = {a(1, 1, 0)}. (8)

Here we give the general vector in these subspaces. In this case

H1 ∨H2 = {(a, b, 0)}; H1 ∧H2 = O. (9)
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The corresponding projectors are

Π(H1) =




1 0 0
0 0 0
0 0 0


 ; Π(H2) =

1

2




1 1 0
1 1 0
0 0 0


 ; Π(H1 ∨H2) =




1 0 0
0 1 0
0 0 0


 (10)

Therefore

D(H1, H2) =
1

2




−1 −1 0
−1 1 0
0 0 0


 (11)

We also consider the density matrix

ρ =




a 0 0
0 1− a 0
0 0 0


 ; 0 ≤ a ≤ 1 (12)

In this case Tr[ρD(H1, H2)] = (1/2)− a and the Tr[Π(H1)ρ] and Tr[Π(H2)ρ] are upper or lower
probabilities in the cases that a > (1/2) or a < (1/2), correspondingly.

4. The Heyting algebra Λ(d)
In this section we study the lattice Λ(d) of subsystems of Σ(d). This is a distributive lattice,
which is a Heyting algebra (every finite distributive lattice is a Heyting algebra). We show that
the analogue of Eq.(1) is not valid, and we interpret the corresponding quantum probabilities
as Dempster-Shafer probabilities. There are sublattices of Λ(d) which are Boolean algebras (all
chains) and in these ‘islands’ the probabilities obey Eq.(1), and they are additive (Kolmogorov)
probabilities. But in the full lattice they cannot be interpreted as Kolmogorov probabilities.
This shows that the distributivity property in a lattice, is not enough to make the corresponding
probabilities to be Kolmogorov probabilities. We need to have a Boolean algebra. Probabilities
in structures which are not Boolean algebras, are not Kolmogorov probabilities, and in this
paper we interpret them as Dempster-Shafer probabilities.

For simplicity, we use the same symbols for the logical operations in the two lattices L(d)
and Λ(d), although they are different.

4.1. The lattice Λ1(d) of divisors of d
We consider the set of all divisors of d. This set with

a ∧ b = GCD(a, b); a ∨ b = LCM(a, b), (13)

where GCD and LCM are the greatest common divisor and least common multiplier
correspondingly, is a lattice which we denote as Λ1(d). The negation ¬a is the largest divisor
of d, which is coprime with a. The partial order in this lattice is divisibility (e ≺ d means e|d),
and I = d and O = 1 are the greatest and smallest elements. This lattice is a Heyting algebra
and it is isomorphic to the lattice of subsystems below.

4.2. Subsystems of Σ(d)
A subsystem of Σ(d), is a smaller system with variables in a subgroup of Z(d). The subgroups
of Z(d), are the Z(e) with e|d. Therefore if e|d, the Σ(e) is a subsystem of Σ(d).
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Let |Xd; r〉 where r ∈ Z(d), be an orthonormal basis in H(d) which we call ‘basis of position
states’. The Xd in this notation is not a variable, but it indicates that they are position states
in H(d). Σ(e) can be embedded into Σ(d) as follows:

e−1∑

r=0

ar|Xe; r〉 →

d−1∑

r=0

ar|Xd;
rd

e
〉; e|d. (14)

The set of subsystems of Σ(d) with the logical operations

Σ(e) ∧ Σ(f) = Σ(e ∧ f)

Σ(e) ∨ Σ(f) = Σ(e ∨ f)

¬Σ(e) = Σ(¬e) (15)

is a Heyting algebra with O = Σ(1) and I = Σ(n). It is isomorphic to Λ1(d) and we denote it
as Λ(d). The physical meaning of the logical operations is discussed in ref[26]).

For e ≺ f ≺ d, we define the projector from the subsystem Σ(f) to a smaller subsystem Σ(e),
as

̟(f → e) =
e−1∑

r=0

|Xf ;
fr

e
〉〈Xf ;

fr

e
|; e ≺ f ≺ d. (16)

We also denote the ̟(d → e) simply as ̟(e). Taking into account Eq.(14), we find the following
compatibility condition:

̟(f → e)̟(f) = ̟(e); e ≺ f ≺ d. (17)

All these projectors commute with each other. Logical operations analogous to Eq.(15) can
also be defined for the corresponding projectors. For example, ̟(e1) ∨̟(e2) = ̟(e1 ∨ e2) and
̟(e1)∧̟(e2) = ̟(e1∧ e2). Also ¬̟(e) = ̟(¬e) is projector to the space of the system ¬Σ(e).

4.3. The non-additivity operator ̟S(e1, e2)
In [26] we have proved that

H(e1 ∨ e2) = span[H(e1) ∪H(e2)]⊕ S(e1, e2). (18)

where S(e1, e2) is a s-dimensional space (where s = e1∨e2−e1−e2+e1∧e2), which is orthogonal
to span[H(e1)∪H(e2)]. Comparison of Eqs(5),(18) shows that the disjunction in the two lattices
L(d) and Λ(d) is different, and it proves again that the two lattices are different. The projector
to the space S(e1, e2) is

̟S(e1, e2) = ̟(e1 ∨ e2)−̟(e1)−̟(e2) +̟(e1 ∧ e2). (19)

Taking the trace of these projectors with a density matrix ρ we get probabilities:

ℓ(e1 ∨ e2)− ℓ(e1)− ℓ(e2) + ℓ(e1 ∧ e2) = Tr[ρ̟S(e1, e2)]. (20)

This shows that these probabilities are not Kolmogorov probabilities. They are lower
probabilities (the Tr[ρ̟S(e1, e2)] is non-negative) and the letter ℓ in the notation, indicates
this. In the special case that e1 ≺ e2 then ̟S(e1, e2) = 0. Therefore in chains within the lattice
Λ(d), the probabilities obey Eq.(1) and they can be interpreted as Kolmogorov probabilities.
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We next insert e2 = ¬e1 in Eq.(19) and we get

̟S(e,¬e) = ̟(e ∨ ¬e)−̟(e)−̟(¬e) +̟(1). (21)

We use the notation ¬Σ̃(e) for the system ¬Σ(e) = Σ(¬e) without its lowest state |X; 0〉 (the
corresponding projector is ̟(¬e) − ̟(1)). In set theory (which is a Boolean algebra) ‘do not
belong to A’ is equivalent to ‘belong to A’. Also A ∪ A = Ω and this leads to Eq.(2). In the

present formalism (which is a Heyting algebra) ‘does not belong in ¬Σ̃(e)’ is not equivalent to
‘belongs in Σ(e)’. Firstly, e ∨ ¬e 6= I in general (here I = d), and secondly ̟S(e,¬e) is in
general non-zero.

4.4. Example:

We consider the Λ(12) which comprises of the subsystems of Σ(12). The projectors to these
subsystems are

̟(2) = |X12; 0〉〈X12; 0|+ |X12; 6〉〈X12; 6|

̟(3) = |X12; 0〉〈X12; 0|+ |X12; 4〉〈X12; 4|+ |X12; 8〉〈X12; 8|

̟(2) ∨̟(3) = ̟(6) =

5∑

ν=0

|X12; 2ν〉〈X12; 2ν|

̟(2) ∧̟(3) = ̟(1) = |X12; 0〉〈X12; 0| (22)

In this case

̟S(2, 3) = ̟(2 ∨ 3)−̟(2)−̟(3) +̟(2 ∧ 3) = |X12; 2〉〈X12; 2|+ |X12; 10〉〈X12; 10|. (23)

The heart of Boolean algebras is the ‘law of the excluded middle’ ¬a∨ a = I, i.e., something
is either true or false. This is not valid in Heyting algebras, where ¬a ∨ a ≺ I . Equivalently,
in Boolean algebras ¬¬a = a, i.e., two negations are equivalent to the positive statement. In
Heyting algebras this is not true (a ≺ ¬¬a) .

We next exemplify the fact that ‘does not belong in ¬Σ̃(e)’ is not equivalent to ‘belongs in

Σ(e)’. In Λ(12), the spaces of subsystems Σ(2) and ¬Σ̃(2) = Σ̃(3) are span{|X12; 0〉, |X12; 6〉}

and span{|X12; 4〉, |X12; 8〉}, correspondingly. The state |X12; 5〉 does not belong to either ¬Σ̃(2)
or Σ(2).

5. Discussion

Kolmogorov probabilities are intimatelly connected to Boolean logic, and their additivity
property is that δ(A,B) = 0 in Eq.(1). Quantum logic is based on the orthomodular lattice
L(d) of Birkhoff and von Neumann. We have introduced the non-additivity operator D(H1, H2)
in Eq.(6), which quantifies the difference between an aggregation and the sum of its parts, and
we have shown in Eq.(7) that it is related to the commutator of two projectors. Therefore
non-commutativity is reponsible for the non-additivity of quantum probabilities. Within L(d)
there are sublattices which are Boolean algebras and there the projectors commute and the
corresponding probabilities are Kolmogorov probabilities. But in the full lattice L(d), we have
interpreted quantum probabilities as Dempster-Shafer probabilities.

The lattice L(d) is not distributive (it is modular which is a weak version of distributivity).
Lack of distributivity is a strong deviation from Boolean algebras. Therefore the question arises,
if the lack of distributivity alone, is what makes quantum probabilities to be non-additive. In
order to answer this question, we have considered the lattice Λ(d) of subsystems, which is
distributive (it is a Heyting algebra), and which is associated to commuting projectors. In
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this case also the quantum probabilities are non-additive, and they can be interpreted as lower
probabilities within the Dempster-Shafer theory. This is because ‘does not belong in ¬Σ̃(e)’ is
not equivalent to ‘belongs in Σ(e)’ (in Heyting algebras two negations of a statement is not the
same as the original statement). In chains within Λ(d) quantum probabilities are additive, i.e.,
they are Kolmogorov probabilities.

The work shows the non-additive nature of quantum probabilities, and their interpretation
in the context of the Dempster-Shafer theory. We note that without additivity the concept of
integration needs revision. Choquet integrals [27] is the appropriate concept in this case, and
further work is needed in this direction.
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