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LIST OF FIGURES

As computational effort required to solve a problem grows, the necessity to utilize varied
computational resource also extends. Previously, solving highly complex scientific problem
were significantly approximated and solved using classical algorithms on classical systems.
With the need to extend the system size, the usage of supercomputers also grew due to their
parallel processing capabilities. Finally, with the development of quantum hardware and
the availability of powerful classical devices, computing solutions to previously intractable

problems appears to be a possibility. . . . . . ... L0000 0oL

The modeling framework for Physics Informed Machine Learning. The loss that is used for
minimization comes from the physical governing expression and thus it can be stated that

the network learns physical entities. . . . . . . . . . . . . ... L L.

Bloch sphere representation of a qubit along with the parametric angle 6 and ¢ correspond-
ing to the point represented by |¢). If the point is assumed to lie on the surface of the
sphere and can be represented by (n,,n,,n,| = (cos&sin ¢, sin 8 cos ¢, cos 0), then it is

deemed a pure state and can be represented by Eq. 1.1 . . . . . . . . ... ...

A typical variational quantum algorithm, consisting of a PQC. U(6) denotes a parameterized

multi-qubit unitary, comprising of parameters 6. . . . . . . . . . . . .. L.,

Restricted Boltzmann Machine used to calculate the electronic structure of periodic mate-
rials. Here, the sign layer consists of two units, one to account for the real part and the

other for the complex part of the wavefunction. . . . . . . . . . . . . . . ... ...

a) Quantum circuit to sample Gibbs distribution. This circuit consists of 2 visible units,
2 hidden units, and 4 ancilla qubits. R, represents the single qubit rotation, C'— C — R,
represents the controlled-controlled rotation, with visible and hidden units being the control
qubits and ancilla qubit being the target qubit. After measurement, if the ancilla qubits
are in |1111), only then the qubits correspnding to the visible and hidden units give the
distribution P(x). b) Decomposition of the C — C — R, gate for |11). Here U = V? and
this leads to choosing V' = R, (6/2). ¢) C —C — R, conditioned by |00), [01), |10), and |11)

can be achieved by implementing the circuit in this form. . . . . . . . . . . .. .. ..

The probabilities of states with ancilla qubits being in |1111) for both the cases of with and

without measurement error mitigation for the first iteration. . . . . . . . . . . . . ..

Band structures of h-BN calculated using (a) classical simulation with a warm start (red).
The solid black curves show the valence and conduction bands from exact diagonalization.
(b) the gasm backend simulation with the aid of a warm start (red). (c) The implementation

the RBM sampling circuit on ibmgq_toronto (green) and ibmgq_sydney (red). . . . . . .
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2.5

2.6

3.1

3.2

Band structure of the graphene for U = 0eV calculated using (a) classical simulation with
a warm start (red). The solid black curves show the valence and conduction bands from
exact diagonalization, (b) the gasm backend simulation with the aid of a warm start (red).
(c¢) Implementation on actual IBM computing devices. (d) Same as in (a) with Hubbard
on-site interaction U = 9.3 eV. The four bands correspond to the two non-degenerate spin-
states for each of the valence and conduction bands in plot (a). (e) Same as in (b) with
Hubbard on-site interaction U = 9.3eV. (f) Same as in (c) with Hubbard on-site interaction
U=93eV. . . . e e

Error in fidelity (1 — F), are plotted as a function of the reciprocal lattice vector (k) for

classical simulation and gasm backend. . . . . . . . . . . . . ... ...

(a) The RBM architecture used in this work. The visible node contains n neurons (green),
the hidden node has m neurons (blue) and the phase node contains 2 neurons, one to model
the real part(orange) of the phase of the wavefunction and the other to model the imaginary
part (grey). The weights and biases of the respective units are displayed. The RBM ansatz
for the required state is defined from the Boltzmann distribution over the state-space of
the visible-hidden units (b) The QML algorithm used to perform the variance penalized
optimization. The part of step (ii) marked within the red box is performed on a quantum
processor (QPU). All other steps are performed on a classical computer. Each step is
marked with a Roman numeral. We follow each of these Roman numerals for discussing

the algorithm in section 3.3.2 . . . . . . . . . . . L. Lo

The Gibbs sampling quantum circuit used to create the Boltzmann distribution in Fig.
3.1(b) (highlighted within the red box in Fig. 3.1(b) step(ii)) for the case of n = m = 2.
The circuit contains single-qubit R, gates parameterized by biases (d, 5) of hidden and
visible neurons and C' — C — R, gates parameterized by weights W between the hidden and
visible neurons. Each C'— C — Ry gate is conditioned to rotate by different angles 6; and 6o
for different choices of configurations of the control qubits. This can be implemented by use
of X gates as illustrated at the bottom. The open circles show a node in state |0) and the
closed circles show a node in state |1). At the end of the circuit all qubits are measured and
configurations wherein the ancilla qubits are all in state |1) are post-selected (see text for
details). For (n 4+ m) visible and hidden neurons, there will be (n 4+ m) visible and hidden
qubits and also (n +m) single R, gates as there are that many biases. However since the
C —C — R, gates are always controlled by 1 visible and 1 hidden qubit, there will be m x n
such possibilities each of which targets one ancilla thereby making the size of the ancilla
register m x n. Thus there will be O(n x m) gates and number of qubits in the circuit. We

discuss this further in section 3.3.3. . . . . . . . . . . ... oo
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3.3

3.4

3.5

(a) The top view of the TMDC monolayer as studied in this report. The orange atoms
are a chalcogen whereas the blue atoms are the metal centre. (b) The real-space trigonal
prismatic unit cell highlighting Dgs; symmetry. This shows that in the TMDC monolayer
unlike in graphene, the constituent atoms have a non-coplanar arrangement. (c¢) The unit
cell in reciprocal space showing the important symmetry points (T', K, M, K’). We shall
investigate the energy and other properties within the sector marked in green following the
usual I' — K — M — T path as in [90]. The co-ordinates of the symmetry points as (k, ky)
are: I' = (0,0), K = (2% 0), M = (&, —%—) where ag is the metal-chalcogen bond length.

3ao %’ \/§ao
For systems studied in this report the metal centre is Mo, W and the chalcogen is S

(a) Valence (VB) and conduction band (CB) of MoS; calculated using all flavors of RBM and
overlayed against exact diagonalization. The valence band is simulated using A = 0 in Eq.
3.2 and the conduction band using (O = |vg)(vg|, w =0, A = 5) in Eq. 3.2 where |vg) is the
valence band state at each k-point. For IBMQ implementations we used ‘IBM-Sydney’ and
‘IBM-Toronto’. All parameters are randomly initialized (see Fig. 3.2) or warm-started with
the initial guess of a converged nearby k-point. (b) The corresponding energy errors from
(a) in eV. (c) The corresponding state infidelities (1-Fid) where Fid = [(Vrpm|VExact)|* (d)
The orbital decomposition of the states at K-point where [0) = d.z2, |1) = dyy, |2) = dg2_ 2.
The states from RBM calculations matches well with those from exact diagonalization in

phase and amplitude. The width for each bar is set differently for visual clarity. . . . . .

(a) Valence (VB) and conduction band (CB) of WS; calculated using all flavors of RBM and
overlayed against exact diagonalization. The valence band is simulated using A = 0 in Eq.
3.2 and the conduction band using (O = |vg)(vg|, w = 0, A = 5) in Eq. 3.2 where |vp) is the
valence band state at each k-point. For IBMQ implementations we used ‘IBM-Sydney’ and
‘IBM-Toronto’. All parameters are randomly initialized (see Fig. 3.2) or warm-started with
the initial guess of a converged nearby k-point. (b) The corresponding energy errors from
(a) in eV. (c) The corresponding state infidelities (1-Fid) where Fid = [(Vrpm|VExact)|* (d)
The orbital decomposition of the states at K-point where [0) = d.z2, |1) = dyy, |2) = dg2_ 2.
The states from RBM calculations matches well with those from exact diagonalization in

phase and amplitude. The width for each bar is set differently for visual clarity.
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3.6

3.7

3.8

(a) The exact energy contours in valence band (VB) for s=1 within the three-band approx-
imation for the Hamiltonian in Eq. 3.8 as a function of (ks, k,) near the K-point in MoS,
(b) Same as in a) but for s=-1 (c¢) Same as in a) for the conduction band (CB). The crosses
in (a), (b) and (c) denotes the (kg, k,) pair wherein calculations for all three flavors of
RBM have been executed. (d) Energy errors in €V from three flavors of RBM calculations
for points denoted as cross in a) for the valence band (s=1) case computed using A = 0
in Eq. 3.2 in MoSy. The x-axis is a flattened point index with (kg, k) pairs marked as
crosses in (a) mapped to integers such that the origin is at the K-point. From the K-point,
the flattened point index scale moves spirally outwards grouping all (k,, k) pairs satisfying
|k| = y/kZ + k2 as consecutive integers and then proceeding to the next |k| (e) Same as
in d) but with points denoted in b) as crosses for other valence band with s=-1 (f) Same
as in d) but for points denoted in c¢) as crosses for the conduction band computed with
A=5,w=0,0 =) () in Eq. 3.2. (g) The amplitude for the occupancy of d» orbital
on the metal for states computed at (k,, k) pairs near the K-point from all three flavors of
RBM as well as the exact states in valence band (s=1) for MoSs. The amplitude of states
with the same |k| = | /kZ + k2 appear bunched together as ’steps’ due to flattened point-
index scale used. Near the K-point the amplitude is the same for all such pairs within a
given step due to isotropy of the energy surface. However away from the K-point deviations
appear due to trigonal warping owing to the Ds; symmetry of the unit cells in TMDCs.
The states from all flavors of RBM can resolve the influence of warping accurately with the
performance worsened for the noisy variant. (h) Same as in g) for valence band (s=-1) (i)

Same as in g) for conduction band. . . . . . .. ..o oL Lo L Lo

(a) The energy comparison between exact (1), RBM-cl (2), RBM-qasm (3), RBM-IBMQ
(4) for computation with O = L? and eigenvalue w = 0.0 a.u. in Eq. 3.2. The exact energy
is 1.5950 eV and is the conduction band energy at K-point in MoSs shown in Fig. 3.4. (b)
The constraint violation error |(L?) —w| of the state obtained from different flavors of RBM
and the desired value w. (c¢) The energy error in €V from (a) of the states obtained from
RBM. (d) The state infidelities (1-Fid where Fid = [(Vrpm|¥Exact)|?) obtained from RBM
and the exact one (e-h) corresponds to an equivalent set of plots as in (a~d) just described
but with the other eigenspace of L? with eigenvalue w = 4 a.u. The exact energy here is
the valence band energy at K-point for MoSs; shown in Fig. 3.4 and is -0.0629 eV. . . . .

(a) The energy comparison between exact (1), RBM-cl (2), RBM-qasm (3), RBM-IBMQ
(4) for computation with O = L? and eigenvalue w = 0.0 a.u. in Eq. 3.2. The exact energy
is 1.749 eV and is the conduction band energy at K-point in WSy shown in Fig. 3.5. (b)
The constraint violation error |(L?) —w| of the state obtained from different flavors of RBM
and the desired value w. (c) The energy error in eV from (a) of the states obtained from
RBM. (d) The state infidelities (1-Fid where Fid = |(Urpnm|VExact)|?) obtained from RBM
and the exact one (e-h) corresponds to an equivalent set of plots as in (a~d) just described
but with the other eigenspace of L? with eigenvalue w = 4 a.u.The exact energy here is the

valence band energy at K-point for WSs shown in Fig. 3.5 and is -0.0572eV. . . . . . .
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4.1

4.2

4.3

4.4

4.5

5.1

Phase Transition in Quantum Rabi Model. (a) The rescaled ground state en-
ergy eg/wo = (Hpapi) /Q and (d?eq/dg?)/wo as functions of g. The discontinuity in
(d*eq/dg?)/wo at g = g. = 1 indicates a continuous phase transition. (b) The order
parameter ng = % (a'a) as a function of g. ng becomes non-zero when the Z; symmetry

is spontaneously broken at ¢ >g.=1.. . . . . . . . ..o Lo L Lo

Restricted Boltzmann Machine architecture. The first layer is the visible layer with
bias parameters denoted by a;. The second layer is the hidden layer with bias parameters
denoted by b;. The third layer is the sign layer with bias parameters denoted by c. The
weights associated with the connections between the visible neurons and the hidden neurons
are designated by w;;. The weights associated with the connections between the visible

neurons and the neuron of the sign layer are designated by d;. . . . . . . . . . . . ..

The quantum circuit to sample the Gibbs distribution. n is the number of qubits
belonging to the visible layer and m is the number of qubits belonging to the hidden layer.

There are m x n ancillary qubits. . . . . . . . . . . o000 0oL

Finite-Size Scaling for Quantum Rabi model. We used N = 8,10,...,32. (a)
Graphs of Ag,,(9;8,10), Ag,,(9;10,12),..., Ag, (g;30,32) as a function of g. (b) In-

tersection points gy(f,\,]) where Aan(gy(lZ,\,[);N —4,N —2) = Ay (g,(L],\,,);N —2,N), as a

function of 1/N. As N — oo, ¢ — 0.999996. So, ¢\ = 0.999996. (c) Graphs
of Ap,,(9;8,10), Ag,,(9;10,12),..., Ag,,(g;30,32) as a function of g. (d) Intersection

points ggg) where Ap_ (ggg); N —4,N -2)=Ag,, (ggév); N —2,N), as a function of 1/N.

As N = 00, ) 5 0.999987. So, g5 = 0.999987. . . .
QRBM Implementation of FSS for QRM. The light blue line represents results ob-
tained from exact diagonalization and dashed black line represents QRBM results. (a) Clas-
sical implementation of QRBM corresponding to normal phase, graphs of Agy, (g;8,10),
Ap,,(9:10,12), ..., Ap, (g9;14,16) as a function of g. (b) QRBM implemented on gasm
simulator corresponding to normal phase, graphs of Ay, (g;8,10), Ag, (9;10,12), ...,
Ag,,(g;14,16) as a function of g. The g£np) in both cases is calculated to be 1.008.
(¢) Classical implementation of QRBM corresponding to superradiant phase, graphs of
Ap,,(9:8,10), Ag,,(9;10,12), ..., Ag,,(g;14,16) as a function of g. (b) QRBM imple-

mented on gasm simulator corresponding to superradiant phase, graphs of Ag,,(g;8,10),Ap, ,(g; 10, 12),

..., Am,,(9;14,16) as a function of g. The gﬁs”) in both the cases is calculated to be 0.996.
The inset plots display the mean percentage error between the exact diagonalization results
and QRBM results. . . . . . . . .00 0000 e

Unweighted tree subgraph seen by QAOA from the edge {L, R} with p = 2 on a four-regular
graph. The operation p produces the parent of a node, and the operation ¢ produces the

set of a node’s immediate children. . . . . . . . . . . . . . ... L.
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5.2

5.3

6.1

6.2

6.3

6.4

a) The approximation ratios obtained with directly optimized parameters, parameter set-
ting method of Ref. [9], and parameter setting methods presented in this work. b) The gap
between the approximation ratios with optimized parameters and with parameter setting
methods of Ref. [9], (i) and (ii). The proposed parameter setting methods perform bet-
ter when compared to the prior work, as indicated by the reduced gap from the objective

obtained with the optimized parameters.

Approximation ratio for the graphs with edge weights drawn from a Cauchy distribution for
N = 14. The proximity to the optimized parameter scenario, especially for large p, indicates
the power of the suggested parameter setting strategies and shows a clear improvement
over the earlier work. Our methods reduce the optimality gap by a factor of 8 for p = 3 as

compared to Ref. [9]. .

a) Fully passive HADAR makes use of heat signals, as opposed to active sonar, radar,
LiDAR, and quasi-passive cameras. Atmospherical transmittance window (white area) and
temperature of the scene determine the working wavelength of HADAR. b) HADAR takes
thermal photon streams as input, records hyperspectral-imaging heat cubes, breaks the
TeX degeneracy through TeX-Net, and generates TeX vision for improved detection and
ranging. c¢) TeX vision demonstrated on our HADAR database indicates that HADAR

perceives textures through the darkness with a comprehensive understanding of the scene.

Monte Carlo path tracing simulation of a light bulb to explain the ‘ghosting effect’. Geo-
metric texture on a light bulb can only be seen when the bulb is off whereas this texture
is completely missing when it is glowing. The blackbody radiation can never be turned off
leading to loss of texture for thermal images. This ghosting effect presents the long-standing

roadblock for heat-assisted machine perception.

Architecture of TeX-Net for inverse TeX decomposition. TeX-Net can either be trained
with ground truth 7', m, and V in supervised learning, or alternatively, with material
library M, Planck’s law B, (T, ), and the mathematical structure of X,, in unsupervised
learning. In supervised learning, the loss function is a combination of individual losses with
regularization hyper-parameters. In unsupervised learning, the loss function defined on the
re-constructed heat cube is based on physics models of the heat signal. In practice, a hybrid
loss function with T, e, V contributions (50%) in addition to the physics-based loss (50%)
is used. The sigmoid function before the temperature is to set lower and upper bounds of
temperature. Res-1/2/3/4 are Res-Net with downsampling. The plus symbol is addition

operation followed by upsampling.

Saliency map of TeX-Net in supervised learning. The active region in Saliency maps is local-
ized and highly correlated with the corresponding material region (last column), indicating
that TeX-Net has properly learnt spatial and spectral features for material classification.
3 samples out of 20 materials are shown. a, Saliency map for class 2, window glass. b,
Saliency map for class 5, aluminum. c, Saliency map for class 7, tire. Pred: material index
prediction of TeX-Net.
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6.5

6.6

6.7

Al

a, Loss curves in supervised learning showing the convergence of TeX-Net training. b,
Ground truth TeX vision. ¢, Output of TeX-Net. d, Ground truth material map. e, Material
map from TeX-Net. The comparisons of TeX-Net output with the ground truth show that
TeX-Net is indeed able to do TeX decomposition. Small prediction errors in temperature
lead to texture error in brightness, and hence there are some noisy spots observed in c. This
can be improved by imposing sophisticated smooth constraint on temperature and harder
training in the future. This training was done on the Street Long-Animation dataset in the
HADAR database.

Physics-based loss decreases as the number of materials in the library increases. a, materials
are added into the library with a greedy approach, and pixels are classified into those
material classes based on visual similarity. Temperature and thermal lighting factors are
solved out accordingly. b, Pixels are classified into material classes with a neural network
(TeX-Net). TeX-Net finds more accurate TeX decomposition, and again, we can see that
with more materials in the library, the physics-based loss is lower. The error in (b) after 5

materials is noise.

TeX vision comparison between the ground truth and TeX-Net output. TeX-Net was trained
with hybrid loss, an equal-weight combination of supervised loss, and physics-based loss.
The HADAR database was split into a training set (80% data) and a validation set(20%
data) for 5-fold cross-validation. The TeX-Net was trained with 40K epochs.

(a) Structure of the honeycomb lattice. The green circle shows the nearest neighbors (three
in this case), the blue circle shows the second-nearest neighbors (six in this case), and the
orange circle shows the third-nearest neighbors (three in this case). (b) The unit vectors

aj, ag of the real space lattice are indicated.
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Bl

B2

The lower bound for probability of successfully collapsing the ancilla register in state |1_,;> as
deduced in Eq. B25 (R.H.S of Eq. B25) is plotted in red and the actual probability of such
an event (Eq. B22 or L.H.S of Eq. B25) is plotted in green as a function of training iteration.
We see that the green curve is always slightly above the red one in accordance with Eq.
B25 deduced above. The simulation is from the ‘RBM-qasm’ variant for conduction band
(CB) of MoS; at (kg, ky) = K symmetry point which is where the direct band-gap is lowest.
The simulation is performed by warm starting with initial parameter set from a converged
run at a nearby k-point to ensure faster and accurate convergence. With the said warm
start the desired accuracy of < 10™* eV in energy error was reached within 200 iterations.
The high value of the probability of the successful event (and the associated lower bound)
as seen from the y-scale is problem-specific as it entirely depends on (@, 57 W, k) (see Eq.
B22 and Eq. B25) . For these systems, even with a moderate k parameter i.e. k < 1.5
for all iterations, the remaining set (&, g, W) are such that a high value of Pyyccess as seen
on the y-scale is attained. The parameter set (@, 5, W) depends on the updates from the
cost-function and hence on the Hamiltonian of the system being treated. For this choice
of k parameter, the specific values of the y-scale in the plot is thus characteristic of the
systems being studied in this report and may be different for other systems. However the
lower bound deduced in Eq. B25 is mathematically generic and should be valid for any
arbitrary system and a given k parameter, even though the specific value it acquires during

training may vary . . . . . . . o oL oL e e e e e e

The energy error (eV) for 4 arbitrarily chosen (k, k,) points within the Brillouin zone in
the I' — K — M —T" path of the conduction band (CB) of MoS; after training the network
using the ‘RBM-IBMQ’ variant with and without Measurement Error Mitigation (MEM).
Each of the 4 points is marked on the x-axis as (1),(2),(3),(4). We also plot the energy
error as a function of the training epoch/iteration with and without MEM in (b) for point
index (1) in (c) for point index (2) (d) for point index (3) (e) for point index (4). We see
from (a) that the results with MEM are of higher accuracy for all 4 points than without
MEM. However by far the greatest impact which MEM has on the results is on improving
self-convergence. This is best seen from (b)-(d). The error bars in (a) on the points without
MEM are to highlight the statistical uncertainty due to time averaging from this poor self-
convergence. FEach such bar designates the sample standard deviation of the last 30 points
(marked in (b)-(d) with a vertical dashed line) in the training process whereas the orange
circles in (a) are the corresponding sample mean. Each calculation with and without MEM
is done using a single run on IBM-Sydney and followed till 150 iterations. All simulations
are performed by warm starting with initial parameter set from a converged run at a
nearby k-point in ‘RBM-qgasm’ variant. This is done so that same initial parameter set is
used for simulations with and without MEM which eliminates biases due to random initial
parameterization and affords a strictly fair comparison. The 4 points chosen are not the

symmetry points as we have seen that symmetry points usually converges better regardless
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B3

B4

The ideal probability of successfully collapsing the ancilla register in state |1_¢;> as computed
from Eq. B22 (b) The difference between a) and the fraction of the total number of times
the ancilla register collapsed in state |1,) as obtained from the direct measurement statistics
in the quantum circuit. This quantity is procured by counting the number of times such an
event happened while measuring all the qubits and dividing the count with the total number
of measurement shots used (10° in this case). We see this value deviates only marginally
from the ideal value in a) indicating that the desired event is extremely favorable. (c) The
KL divergence of the distribution constructed from post-selecting all bit-strings (&, l_i) for
the visible and hidden-node qubits after the ancilla register collapsed in state |1,) and the
exact RBM distribution. We see that the KL divergence is extremely close to zero indicating
that the circuit can correctly learn the RBM distribution with the designated number of
shots. This is because in most of them the favorable outcome of ancilla register collapsing
to |1,) happens naturally (see (a) and (b)) for the systems being studied in this report
even with moderate k-parameter (k < 1.5) (see text for discussion). (d)-(e)-(f) are similar
plots as (a)-(b)-(c) but with 10* total measurement shots. All the results are simulated in
the ‘RBM-qasm’ variant for conduction band (CB) of MoS, at (k;,k,) = K symmetry
point which is where the direct band-gap is lowest. The simulation is performed by warm

starting with initial parameter set from a converged run at a nearby k-point. . . . . . .

(a) The energy of the valence band (VB) at (k;, k,) = K point for MoS, for the exact case
and the two flavors of RBM namely ‘RBM-qasm’ and ‘RBM-cl’ are plotted by changing
the number of neurons m in the hidden node. (b) The corresponding energy errors from
the calculations in a) (c) The corresponding state infidelities from the calculations in a) (d)
Similar result as in a) but for the conduction band (CB) at (kg, k,) = K point for MoS,.
(e) The corresponding energy errors from the calculations in d) (f) The corresponding state

infidelities from the calculationsind) . . . . . . . . . ..o
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B5

B6

B7

(a) The exact energy contours in valence band (s=1) within the three-band approximation
for the Hamiltonian (see Eq. 8 in main manuscript) as a function of (ks, k) near the
K-point in WSz (b) Same as in a) but for s=-1 (c¢) Same as in a) for the conduction band.
The crosses in (a), (b) and (c) denotes the (k;, k) pair wherein calculations for all three
flavors of RBM have been executed. (d) Energy errors in €V from three flavors of RBM
calculations for points denoted as cross in a) for the valence band (s=1) case computed
using A = 0 in Eq. B1 in WS,y. The x-axis is a flattened point index with (k;, k) pairs
marked as crosses in (a) mapped to integers such that the origin is at the K-point. From
the K-point, the flattened point index scale moves spirally outwards grouping all (k,, k)
pairs satisfying |k| = ,/k2Z + k2 as consecutive integers and then proceeding to the next
|k| (e) Same as in d) but with points denoted in b) as crosses for other valence band with
s=-1.(f) Same as in d) but for points denoted in c) as crosses for the conduction band
computed with (A = 5,w = 0,0 = |1p)(1p|) in Eq. B1 (g) The amplitude for the occupancy
of d,» orbital on the metal for states computed at (k;, k,) pairs near the K-point from
all three flavors of RBM as well as the exact states in valence band (s=1) for WS;. The
amplitude of states with the same |k| = /kZ + k2 appear bunched together as 'steps’ due
to flattened point-index scale used. Near the K-point the amplitude is the same for all such
pairs within a given step due to isotropy of the energy surface. However away from the
K-point deviations appear due to trigonal warping owing to the Dg; symmetry of the unit
cells in TMDCs. The states from all flavors of RBM can resolve the influence of warping
accurately with the performance worsened for the noisy variant.(h) Same as in g) for valence
band (s=-1) (i) Same as in g) for conduction band. For all these calculations the warping

parameters are kept the same as that for MoSs even through the band energies are obtained

within the three-band approximation calculated using RBM for WS, in the main manuscript 199

(a) The energy of the valence band (VB) at (k;,k,) = K point for WSes in the three-
band model [5] for the exact case and the two flavors of RBM namely ‘RBM-qasm’ and
‘RBM-cl’. The calculations are done by starting from a network trained with the converged
results for the VB of MoS; at the K point. (b) The corresponding energy errors from the
calculations in a) (¢) The corresponding state infidelities from the calculations in a) (d)
Similar result as in a) but for the conduction band (CB) at (k;, k,) = K point for WSes.
The calculations are done by starting from a network trained with the converged results for
the CB of MoS, at the K point (e) The corresponding energy errors from the calculations
in d) (f) The corresponding state infidelities from the calculations in d). (g)-(1) are results
for WSes similar to (a)-(f) but at a different symmetry point i.e. (kg,k,) = M point. The
calculations in this case are done by starting from a network trained with the converged
results for the VB/CB of MoSs at the M point . . . . . . . . . . . . ... .. ...

The dissociation curve for the ground state of LiH in ‘RBM-cl’ and ‘RBM-qgasm’ variant
overlayed against the exact value. (b) The error in energies from a) from the exact value.
¢)The dissociation curve for the excited state of LiH in ‘RBM-cl’ and ‘RBM-qasm’
variant overlayed against the exact value. (d) The error in energies from c¢) from the exact

value. In all of the results in this panel we usen=4andm=4 . . . . . . . . . . ..
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B8

The dissociation curve for the ground state of LiH in ‘RBM-cl’ variant overlayed against
the exact value for two different m. (b) The error in energies from a) from the exact value
for both m. c)The dissociation curve for the excited state of LiH in ‘RBM-cl’ variant
overlayed against the exact value for two different m. (d) The error in energies from c)
from the exact value for both m. In all of the results in this panel we use n =4 and m = 4
and compare it withn=4andm=6 . . . . . . . . . . . . ... ...
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ABSTRACT

Optimization and Machine learning (ML) have emerged as two positively disruptive
methodologies and have thus resulted in unprecedented applications in several domains of
technology. In recent years, ML has forayed into physical sciences and provided promising
outcomes thanks to its ability in representing and generalizing complex functions to reveal
underlying relations among variables describing a system. By casting ML as an optimization
task, we first focus on its application in solving quantum many-body problems. Leveraging
the power of quantum computation, we develop hybrid quantum machine learning proto-
cols and implement benchmark tests to calculate the band structures of two-dimensional
materials. We also show how this method can be used to estimate the critical point for a
quantum phase transition. One hurdle in such techniques is related to parameter optimiza-
tion, wherein to obtain the desired result, the parameters have to be optimized, which can
be computationally intensive. For a particular class of problem and a choice of algorithm, we
deduce a simple parameter setting rule. This rule is projected as a heuristic and is validated
numerically for several problem instances. Finally, by venturing into thermal photonics, a
framework that takes advantage of the spectral and spatial information of hyperspectral
thermal images to establish a completely passive machine perception, titled HADAR is pre-
sented. A conventional deep neural network is developed that utilizes the governing equation
of HADAR and its performance in semantic segmentation is demonstrated. Altogether, this
report establishes the need for creative algorithms that exploit modern hardware to solve

complex problems that were previously deemed unsolvable.
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1. INTRODUCTION

As electronic computation developed through the advent of a transistor, the domain of
algorithmic research also expanded to identifying and solving complex problems. Computa-
tion provided a way to go beyond both the mathematical limitation set forth for analytic
exploration and also the engineering limitation for experimental investigations. Taking ad-
vantage of classical computers to solve problems in physical sciences involved using Monte
Carlo methods for problems in neutron diffusion [1], statistical mechanics [2], and eventually
understanding molecular dynamics [3], [4].

To motivate the need for numerical simulation, consider the problem of electronic struc-
ture. For a pure-state in a quantum-mechanical system, every statistical description, like the
probabilistic outcomes of a measurement of any property, the post-measurement state, and
the expectation value of the property associated with several observations are all encoded
in the wave-vector of the system |¢). This fundamental entity, which contains and directs
information in the quantum state, is the wavefunction 1. To solve a quantum many-body
problem, an exponential amount of information is required to get a complete description of
1. In order to obtain the solution to this fundamentally many-body bottleneck that scales
exponentially as the system size, resorting to computation was the best way forward. From
a finite set of one-electron orbitals, approximation of the many-electron wavefunction as a
linear combination of antisymmetrized tensor products (Slater determinants) were proposed,
to solve the electronic structure problem, wherein these methods formulate an ansatz for an
eigenstate. Then, the expectation values of observables and correlation functions with re-
gard to that wavefunction are calculated. For molecular systems of size N, the techniques
arranged in the increasing order of scaling are described in Table.1.1.

(CCSD(T)) is deemed the gold standard. For solid-state systems, mean-field treatment
based on density, DFT, became quite popular as this method was less expensive than the
wavefunction methods. However, to solve systems that are strongly correlated and require
a larger basis set description, a compact representation of the wavefunction is required.

Solving an inverse problem possesses wide applications in several branches of science and

engineering as it provides valuable information about the internal parameters of the system,
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Table 1.1. Scaling of certain quantum chemistry techniques as a function of
system size N.

Technique Scaling

Hartree-Fock (HF) [5], [6] N3 ~ N4

Coupled-Cluster with Singles and Dou- | N
bles (CCSD) [7], [8]

Coupled-Cluster with Singles, Doubles, | N7
and perturbative estimate to the con-
nected Triples (CCSD(T)) [9]

Density Functional Theory (DFT) [10] | N3

which may or may not be measurable. A method that can learn the measurable entities,
having defined a governing equation to inform about the internal structure, can significantly
outperform traditional methods in terms of reconstruction accuracy and speed, especially in
scenarios where the availability of data is limited.

In both the problems described above, a technique that acts as a universal approximater
and contains attributes of dimensionality reduction and feature extraction is required. Ma-
chine Learning (ML) is credited for possessing these exact qualities and has thus yielded
unprecedented applications in several domains of technology. Along with the data revolu-
tion, the usage of the Graphical Processing Units(GPUs) has steered remarkable progress in
the study of ML and is becoming increasingly popular in several domains of physical sciences
like astronomy [11], [12], material science [13], [14], cheminformatics [15].

Also, providing solutions to these quantum many-body problems necessitated the usage of
parallel processing systems and methods to use these systems. For decades, detailed atomistic
simulations were performed on supercomputing clusters. However, all these calculations
were done on conventional computers. To deal with such problems that are fundamentally
quantum in nature, Richard Feynman remarked that the computation must also be quantum
mechanical in nature. If that could be realized, then a problem that grows exponentially with

the problem size would scale linearly using quantum resources. This sparked an inspiration
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Quantum Algorithms
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Classical Algorithms

>

Computational Effort

Figure 1.1. As computational effort required to solve a problem grows, the necessity
to utilize varied computational resource also extends. Previously, solving highly complex
scientific problem were significantly approximated and solved using classical algorithms on
classical systems. With the need to extend the system size, the usage of supercomputers also
grew due to their parallel processing capabilities. Finally, with the development of quantum
hardware and the availability of powerful classical devices, computing solutions to previously
intractable problems appears to be a possibility.

to Mathematicians and computer scientists to develop such methods, which eventually led
to algorithms such as Shor’s factoring algorithm [16] and Grover’s search algorithm‘[17].
With the growing computational effort required to solve complex problems, the need for
efficient computing resources and ingenuous algorithmic advances becomes apparent. The
first part of the report deals with encoding a Neural Network (NN) as a wavefunction ansatz
and devising algorithms that can be executed on a quantum computer to solve the described
quantum many-body problems. In the second part, taking inspiration from the success of ML
in solving inverse problems, NN based method to decompose hyperspectral thermal images
is developed. In essence, we propose algorithms that utilize both classical and quantum

information to help our quest in solving complex physio-chemical problems.
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1.1 Paradigms of Machine Learning

In general, neural networks are function approximators that are trained to optimize a
specific cost function of interest over the dataset. The cost function is chosen so as to
maximize an outcome from the output of the neural network. The process of optimizing the
cost function is referred to as the ‘learning’ of the network. Problems solved by ML usually
appear in the following categories. Real-life complex problems usually involve a combination

of techniques that are used to address each of them independently [18].

o Supervised Learning: Given a set of N labeled training examples that can be rep-
resented as D = {(zy,yn)} with 2y representing the input data and yy representing
the corresponding label it gets assigned, while n labels the entries in the data set. The
goal of supervised learning is to predict the value of the label for a given input that
does not belong to the training set. If y is a continuous variable this problem is termed

regression, and if it is a discrete set, this problem is termed classification.

o Unsupervised Learning: Given data that is not labeled, the task is to learn the
properties that are intrinsic to the distribution that generated it. Tasks here appear in
forms such as dimensionality reduction, feature extraction and representation learning,
problems related to representing data in more compact and convenient spaces and
generative modeling which involves generating artificial samples that represent the

data set.

+ Reinforcement Learning: In this model, a system working in an environment learns
to make the right decisions so as to maximize the rewards given the state of the system
and and its accessible environment. This model does not fit itself under supervised
learning due to the lack of a function to be optimized neither does it fit under the
umbrella of unsupervised learning due to the presence of a feedback loop mechanism

of assigning rewards that tells the user about the quality of a given action.

e Generative modeling: Here the idea is given the training to try and learn the joint

probability distribution of the data that underlies it. It can be visualized as learning
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the features of a vector along with a label that corresponds to it. Classifiers based on
this method include Naive Bayes classifier, Bayesian network, Markov random fields.
These techniques are well suited in generating artificial samples that correspond to a

given class and hence the name.

e Discriminative modeling: Here the idea is given the training data to try and learn
the conditional probability distribution of the label given the features. Classifiers based
on this method include Logistic regression, Support Vector Machine, Traditional neural
networks, Nearest neighbor. These techniques are well suited in doing classification

tasks, thus justifying the name.

1.1.1 Physics Informed Machine Learning

When attempting to solve a physical problem, that involves governing physical laws, it
becomes crucial to integrate thee knowledge of those laws rather than relying on the ML
model to make arbitrary decisions. This is especially important when there is scarcity in
the amount of available data. Intuitively, utilising the information provided by the physical
laws, restrict the solution space for the ML model output. This increases the robustness and
accuracy of the network being trained on the dataset describing the physical problem, as it
can generalize well on other problems described by the same governing equations. A typical

workflow is described in Fig. 1.2

1.2 Quantum Circuit Model

A quantum system with two degrees of freedom is called a qubit. In the gate model of the
quantum computing paradigm, transformations between states are achieved using unitary
matrices which are represented as ‘Quantum Gates’. Since all quantum gates are unitary,
the inverse of such gates necessarily exists and hence transformations using quantum gates
alone are always reversible. The way to incorporate irreversibility in the paradigm is by
making projective measurements that disturb the state vector irrevocably making it lose its
present memory (interactions with the environment induce irreversibility too in the form of

qubit decoherence).
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Figure 1.2. The modeling framework for Physics Informed Machine Learning. The loss
that is used for minimization comes from the physical governing expression and thus it can
be stated that the network learns physical entities.

A single qubit pure state in the two-dimensional basis of (]0),|1)) can be written in the

form:
) = cos(g)]0> +el? sin(g)|1> (1.1)

with the vector (nm ny, nz> = <sin 0 cos ¢, sin 0 sin ¢, cos 9) residing on a Bloch sphere,
shown in Fig 1.3 made up of parameterized angles {6 € [0, x|, ¢ € [0, 2n|} defined in the Bloch

sphere. For multiple qubits (say N), the corresponding state space is H, ® Hp ® He....Hy
with the computational basis defined using the Kronecker product as |i4) ®|ig)......|ix) where
the labels (A, B, C...N) are physically used to separate the state-space of each qubit.

A multi-qubit pure state can be written as:

11 1
Wasc.n = D> . Z i aipic. iy |ialB.dN) (1.2)

ia=0ip=0 in=0

with the coefficients C} i iy € C* Vij ,j € {4, B,..N}.
A quantum circuit is essentially an assembly of quantum gates which transforms an initial
state of a multi-qubit system to a final desired state. The set of quantum gates operationally

represents a user-defined unitary transformation. Such operations are frequently followed by
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Figure 1.3. Bloch sphere representation of a qubit along with the parametric angle § and
¢ corresponding to the point represented by |¢). If the point is assumed to lie on the surface

of the sphere and can be represented by (nI7 Ny, nz) = (cosﬂsin ¢, sin 6 cos ¢, cos 9), then

it is deemed a pure state and can be represented by Eq. 1.1

measurement either in the computational basis or in the basis of the operator whose statistics

in the prepared state is desired [19] . Some frequently used gates are listed as follows:

CcoS g —isin g
—1S1n 5 COS 5
cOS g sin g
o Ry(Q) =
.0 0
sing  cosg
-0
e 2 0
° RZ(Q) =
0 ez
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1.3 Variational Quantum Algorithms (VQAs)

A variational quantum algorithm, in general, is a quantum-classical hybrid network,
comprising Parameterized Quantum Circuits (PQCs). These variational algorithms can be
thought of as similar to ML models, where certain parameters of the model are tuned (during
training) to obtain the desired result. The difference however, comes from the fact that
PQCs are made up of parameterized unitaries, wherein the unitary operations have tunable

parameters denoted by 6 as shown in Fig 1.4. An archetypal workflow of VQAs is as listed:
o A state preparation is performed, where the qubits are initialized to the desired state.

o An appropriate parameterized unitary is constructed with the required set of single and
multi-qubit operations. Usually, the quantum circuit is transpiled and decomposed into

a bunch of elementary gate operations as allowed by the appropriate quantum hardware

to execute the required operation.
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Figure 1.4. A typical variational quantum algorithm, consisting of a PQC. U(6) denotes
a parameterized multi-qubit unitary, comprising of parameters 6.

» An observable of choice is measured after the action of the unitary.

» The expectation value, denoted by f(f) is evaluated and is utilised in a well-defined

cost function.

o A classical optimization is performed to identify parameters that reduce the cost and

are plugged into the unitary for the second iteration of this process.

In this way, ‘learning’ of the parameters is executed for a given task.

VQAs are run with reduced quantum resource allocation by using shallow quantum cir-
cuits for carrying out computations on a quantum device. This is because, in the near-term
hardware, only a short gate sequence, i.e. the circuit depth, can be executed before de-
coherence is reached. This has garnered popularity for using VQAs to show the possible

implications of using quantum computations for certain complex tasks.
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1.4 Thesis Overview

A brief highlight that captures the content in each of the chapters in this report is listed

as follows:

« In chapter 2, we introduce a Restricted Boltzmann Machine (RBM) based variational
quantum algorithm to evaluate the valence bands of two-dimensional materials viz.
monolayer graphene and hexagonal Boron Nitride (h-BN). We present the quadratic
scaling in resources and how by considering a particular coefficient to the Boltzmann
distribution, the probbaility of successful sampling can be improved. We also bench-
mark the algorithm on IBM-Quantum systems and establish the fidelity of the resulting

eigenstates.

o In chapter 3, we propose how the RBM based algorithm can be used to filter any
energy eigenstate of the system based on either the symmetry properties or a prede-
fined input choice. We specifically exhibit the results for monolayer transition metal
dichalcogenides. Also, a generic lower bound for the successful sampling of the quan-
tum circuit in the algorithm is derived in terms of the parameters of the network. A
proof of feasibility of the cost function used to train the network is also presented.
We also report the results from a molecular example, LiH wherein the multireference

correlation is important due to geometric distortion.

o In chapter 4, we show the application of the RBM based algorithm to estimate the
critical point for the quantum phase transition in the Quantum Rabi Model by propos-
ing an alternative Finite Size Scaling method in which the truncation of the system is

done in the Hilbert space instead of the physical space.

o In chapter 5, we address the issue of finding the optimal parameters for a weighted
graph for a specific quantum optimization algorithm. We develop parameter setting
heuristics for the Quantum Approximate Optimization Algorithm (QAOA) applied to a
general class of weighted problems. Having derived the optimal parameters for QAOA
with depth p = 1 applied to the weighted MaxCut problem under different assumptions
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on the weights, we numerically validate this approach on general weighted graphs and
show that on average the QAOA energy with the proposed fixed parameters is only

1.1 percentage points away from that with optimized parameters.

In chapter 6, we venture into the realm of thermography. Taking advantage of intrinsic
attributes of thermal radiation, we devise a method for passive machine perception.
We also show how a deep learning based neural network can solve an inverse problem
to decompose the hyperspectral thermal images into their constituent components and

their implications toward practical computer vision are presented.
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2. QUANTUM MACHINE LEARNING FOR VALENCE BAND
CALCULATIONS

The contents of this chapter are adapted from the article ‘Sureshbabu, Shree Hari, et al. "Im-
plementation of quantum machine learning for electronic structure calculations of periodic
systems on quantum computing devices." Journal of Chemical Information and Modeling
61.6 (2021): 2667-2674".

2.1 Introduction

Machine learning (ML) driven by big data and computing power has made a profound
impact on various fields, including science and engineering [1]. Remarkably successful appli-
cations of machine learning range from image and speech recognition [2], [3] to autonomous
driving [4]. The recent success of machine learning is mainly due to the rapid increase in
classical computing power. This impact of ML has made it a useful tool to solve various
problems in physical sciences [5]. Quantum computing is a new way of computation by
harnessing the quantum properties such as the superposition and entanglement of quan-
tum states. Some quantum algorithms run on quantum computers could solve the problems
which are intractable by classical computers [6]. Recent progress in the development of Noisy
Intermediate-Scale Quantum (NISQ) devices [7], makes it possible to run and test multiple
quantum algorithms for various practical applications.

Quantum machine learning [8], the interplay of classical machine learning techniques
with quantum computation, provides new algorithms that may offer tantalizing prospects to
improve machine learning. At the same time, these techniques aid in solving the quantum
many-body problems [9]-[14]. Using neural networks with a supervised learning scheme, Xu
et al. [15] have shown that measurement outcomes can be mapped to the quantum states for
full quantum state tomography. Cong et al. [16] have developed a quantum machine learning
model motivated by convolutional neural networks, which makes use of O(log(/N)) variational
parameters for input sizes of N qubits that allows for efficient training and implementation

on near term quantum devices.
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It is important to solve many-body problems accurately for the advancement of material
science and chemistry, as various material properties and chemical reactions are related to
quantum many-body effects. Carleo and Troyer [17] introduced a novel idea of representing
the many-body wavefunction in terms of artificial neural networks, specifically restricted
Boltzmann machines (RBMs), to find the ground state of quantum many-body systems and
to describe the time evolution of the quantum Ising and Heisenberg models. This represen-
tation was modified by Torlai et al. [18] for their purpose of quantum state tomography in
order to account for the wavefunction’s phase.

Quantum chemistry and electronic structure calculations using quantum computing are
considered one of the first real applications of quantum computers [19]-[23]. Xia and
Kais [24] proposed a quantum machine learning method based on RBM to obtain the elec-
tronic structure of molecules. The traditional two-layer RBM was extended to three layers
to take into account the signs of the coefficients for the basis functions of the wave function.
This method was applied to molecular and spin-lattice systems. Recently, Kanno et al. [25]
have extended the method proposed by Xia and Kais by providing an additional unit to the
third layer of an RBM in order to represent complex values of the wavefunctions of periodic
systems.

Since the discovery of graphene, it has sparked a huge interest due to its remarkable
properties. Recently, there has been a lot of interest in studying graphene for quantum
computing applications [26], [27]. Hexagonal Boron Nitride (h-BN) gained attention when
it was shown that graphene electronics is improved when h-BN is used as a substrate for
graphene [28]. Of late the interest to study h-BN for quantum information has grown since it
was discovered that the negatively charged Boron vacancy spin defects in h-BN display spin-
dependent photon emission at room temperature [29]-[31]. Hence, in addition to studying
graphene, it is important to study h-BN as it is a potential candidate for creating spin qubits
that can be optically initialized and readout.

In this chapter, we implement the quantum machine learning method with a three-layered
RBM along with a quantum circuit to sample the Gibbs distribution [24], [25] to calculate
the electronic structure of periodic systems. Specifically, the implementation on NISQ de-

vices is shown by modifying this quantum machine learning algorithm to run on an actual
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quantum computer. As the benchmark test, we demonstrate the performance of this algo-
rithm first through the simulation of tight-binding and Hubbard Hamiltonians of hexagonal
Boron Nitride and monolayer-graphene respectively, on the IBM quantum computing pro-
cessors, which is done using the IBM quantum experience [32]. The valance band of the 2-D
honeycomb lattices is calculated using quantum machine learning methods on IBM-Q and
the Qiskit simulator. As we shall see such valence band calculations on IBM-Q after em-
ploying a warm start and measurement error mitigation are shown to be in good agreement

with the exact calculations.

2.2 Methodology

In this section, we review the basic outline of the machine learning algorithm used and

also discuss the implementation details

2.2.1 Quantum Machine Learning Algorithm

A quantum many-body state |¥) can be expanded in terms of the basis |x), |¥) =
> WU(x) |x) where ¥(x) is the wavefunction. Carleo and Troyer’s [17] method involved rep-
resenting the trial wave function U(x;6) in terms of a neural network with parameters 6
and to obtain the ground state by minimizing the expectation value of the Hamiltonian of a
quantum many-body system, E(0) = (U (0)| H |¥(0)). This was shown to use lesser number
of parameters compared to tensor-networks, indicating the efficiency of using such a rep-
resentation. More specifically, the ansatz of a trial wave function is given by the marginal
probability P(x;#) of a visible layer of the RBM, ¥(x;6) = /P (x;60). While the learning of
conventional RBMs is done by maximizing the likelihood function with respect to training
data sets, the ground state of a neural network RBM state is obtained by minimizing the
energy E(f) using the stochastic optimization algorithm.

Xia and Kais [24] introduced the third layer with a single unit to take into account the
signs of the wavefunction and apply the quantum Restricted Boltzmann machine on actual
quantum computers rather than the Monte-Carlo method on classical digital computers.

This quantum machine learning algorithm was further extended to take into account the
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complex value of the wavefunction [25]. However, implementation on an actual quantum
computing processor was not shown, which would require multiple ancillary qubits as shown
in this work.

The RBM we consider here consists of three layers: a visible layer, a hidden layer, and
a complex layer, as shown in Fig. 2.1. In contrast with the conventional RBMs with visible
and hidden layers, the complex layer is added to take into account the real and imaginary

values of the wavefunction of a quantum state.

Hidden layer Sign layer

Visible layer

Figure 2.1. Restricted Boltzmann Machine used to calculate the electronic structure of
periodic materials. Here, the sign layer consists of two units, one to account for the real part
and the other for the complex part of the wavefunction.

The wavefunction of a periodic system can be expressed as:

W) =D P)s(x) %) . (2.1)

where
S o2 GO bt )y wijothy
P(x) = ——1 . . (2.2)
S Yin eZi aiof +) 2 bihi ) wiiof by
s(x) = tanh [(c+ Y _dioy) +i(e+ > fioy) (2.3)
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Here o7 is the z-component of the Pauli operators at site i, |x) = |ofo5035...07) is the basis
vector and the values that of and h; take are {+1, -1}. a;, b;, ¢, and e denote the trainable
bias parameters of the visible units, the hidden units, the unit representing the real part
of the complex layer, and the unit representing the complex part of the complex layer,
respectively. wjj, d;, and f; denote the trainable weights corresponding to the connections
between o7 and hj, o7 and the unit representing the real part of the complex layer, o7 and

the unit representing the complex part of the complex layer, respectively. All the parameters

are randomly initialized and the values of these random numbers range from -0.02 to 0.02.

a) b)

Visible units —

— P(x)

Hidden units —

Ancilla units — —1111)

L

Figure 2.2. a) Quantum circuit to sample Gibbs distribution. This circuit consists of 2
visible units, 2 hidden units, and 4 ancilla qubits. R, represents the single qubit rotation,
C —C — R, represents the controlled-controlled rotation, with visible and hidden units being
the control qubits and ancilla qubit being the target qubit. After measurement, if the ancilla
qubits are in |1111), only then the qubits correspnding to the visible and hidden units give
the distribution P(x). b) Decomposition of the C — C' — R, gate for |11). Here U = V2 and
this leads to choosing V' = R,(0/2). ¢) C — C — R,, conditioned by |00), |01), |[10), and |11)
can be achieved by implementing the circuit in this form.

In order to obtain the probability distribution, the quantum circuit (shown in Fig. 2.2)
is employed. The quantum circuit consists of a single qubit rotation (R,) and a controlled-
controlled rotation operations (C'— C' — R,). The angle by which the R, operation rotates
is determined by the visible and hidden bias parameters a; and ;. The angle by which
the C — C' — R, operation rotates is determined by the weights connecting the visible and

hidden layers w;;. For each combination of visible and hidden units, y = {¢*, h}, in order to
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increase the probability of successful sampling, the distribution Q(y) is sampled rather than

P(y) [24]. The two distribution functions P(y) and Q(y) are given by

eZi aiO’iZ"rEj bjhj+zij wijof hy

B Zy’ ezi aiUiZ,+Zj bth{JrZij wijo'iZ/hJ{

P(y) (2.4)

e%(Zi aio’iZ+Zj b hj+Zij wijohy)

Zy’ e%(zi aiof/+zj bjhﬁzij wijgiZ/hJ{)

Qy) = (2.5)

Here, k is taken as maz(1, %) [24]. This is done in order to make the lower bound of the
probability of successful sampling a constant. If k is taken to be 1, then the number of
measurements required to get successful sampling becomes exponential. (See Appendix A).

The target qubits for the controlled-controlled Rotations are the ancilla qubits. Once
all the rotations are completed, the ancilla qubits are measured. If the ancilla qubits are in
|1), then the sampling is deemed successful. Then, the qubits corresponding to the visible
and hidden units are measured to obtain the distribution Q(y). Once the distribution Q(y)
is obtained, the probabilities are calculated to the power of k£ and then normalized to get
P(y). With P(y) computed through our QML algorithm and s(y) computed classically, the
wavefunction |¢) is computed and through this the energy F(f) is obtained. This value
of E(f) is optimized through gradient descent until the eigenvalue of the Hamiltonian is
obtained.

For this algorithm, the number of qubits required scales as O(nm) and the complexity
of the gates turns out to be O(nm) for one sampling [24], where, n is the number of visible

units and m being the number of hidden units.

2.2.2 Implementation methods

The developed quantum machine learning algorithm for calculating the band structures
of h-BN and monolayer-graphene is executed using the following tools:

(i) We start with the implementation of the algorithm classically. Classical simulation
is performed to ensure the algorithm performs accurately. Here classical simulation implies

that the gates were simulated on a classical computer.
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(ii) Having ensured that the algorithm works when implemented classically, we move
on to implementing it using Qiskit [32]. Qiskit stands for IBM’s Quantum Information
Software Kit (Qiskit) and is designed to mimic calculations performed on a real noisy-
intermediate scale quantum computing device using a classical computer. Specifically, we
implemented the algorithm on the gasm backend, which is a high-performance quantum
circuit simulator amenable to treat the errors (noise) associated with the implementation
of the quantum circuit with appropriate customizable noise models. Essentially, the gasm
simulator is designed to replicate an actual noisy quantum device. Even if a custom noise
is not chosen, depending on the circuit being executed the simulator automatically assumes
a noise consistent with the hardware of the real device. The C' — C — R, gate can be
implemented by using g¢iskit’s multi-controlled y-rotation (mcry) operation, by specifying
the control, target and ancillary qubits. The circuit is executed multiple times on the
simulator each time culminating in the chosen set of measurements. The return values
are the probabilities for observing the system in measurement basis states with statistical
errors due to finite sampling.

(iii) We conclude our discussion by implementing and demonstrating the validity of our
results using two actual IBM-Q quantum computers available. Qiskit’s results in (i) are
compared with those obtained from these real quantum devices.

In the following section, we display the simulation results. The terms ‘RBM Value’ and
‘Exact Value’ stand for the values of valence band energies obtained from training our RBM
and from exact diagonalization of the Hamiltonian, respectively.

Initializing the parameters of the RBM randomly can lead to the energies corresponding
to certain k£ points being stuck at local minima. To enhance the generalizing capability of
a machine learning model, transfer learning technique has been successfully used. Recently,
it has also been extended to the realm of quantum computing [33]. However, in our case
in order to improve the convergence, a method of warm starting is sufficient, wherein the
parameters of a previously converged point are used to initialize the parameters of the current
point of calculation. Noting that the band structure exists in a 4D space corresponding to

energy as a function of k;, k,, and k., in this case too, if the optimization is performed such
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that the energy is minimized for every (k,, k,, k) point, then the parameters of such a point
in 4D space can be considered to improve the convergence of the other points.

When implementing the algorithm on NISQ devices, we have to account for the noise
that interferes with the accuracy of the results. In this work, we try to mitigate the errors

that occur during measurement using Measurement FError Mitigation.
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Figure 2.3. The probabilities of states with ancilla qubits being in |1111) for both the
cases of with and without measurement error mitigation for the first iteration.

The counts corresponding to each state will not be definite as a result of noise. There
will be a finite number of counts corresponding to the other basis states even when the
measurement outcome is supposed to result in one. So the counts for each state can be written
as a column vector and a matrix, called the calibration matrix, can be defined corresponding
to the concatenation of all column vectors describing the counts for all the basis states. The
least-squares method can now be used to get the error mitigated probabilities for each of the
states by using the calibration matrix, the ideal state vector, and the noisy result that was
obtained [32]. An example of the probability distribution ((y) obtained with and without

measurement error mitigation is shown in Fig. 2.3.
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2.3 Results and Discussion

As a benchmark test of our quantum machine learning algorithm on existing IBM quan-
tum computers, we calculate the electronic structures of two well-studied 2-dimensional
periodic systems with hexagonal lattices namely Boron-Nitride and monolayer graphene. In

this section, we discuss the results for each of the two systems.

2.3.1 Band Structure of h-BN

Hexagonal Boron nitride (h-BN) has a unit cell containing one B atom and another N
atom. For h-BN, the levels involving the other valence orbitals, the 2s,2p,, and 2p,, are
either quite far above or far below the Fermi level. The conduction and valence bands,
which are around the Fermi level, are formed from the 2p, orbital and hence, a tight-binding
Hamiltonian using the frontier 2p, orbital and with third-nearest neighbor interaction on
each of the two atoms of the unit cell is employed to obtain the electronic structures of the
materials. Such a treatment affords the requisite dimensionality reduction as the number
of qubits available on the IBM quantum computers is limited. Considering spin-degeneracy,
the tight-binding Hamiltonian of the h-BN is thus given by a 4 x 4 Hermitian matrix (see
Appendix A). The number of visible units needed for the simulation is 2, and the number of
hidden units is taken to be equal to the number of visible units. For quantum optimization, 2
qubits are used to represent the visible nodes and 2 qubits to represent the hidden nodes. In
addition, 4 ancillary qubits are required (see Fig. 2.2). In total, the number of qubits required
is equal to 8. The sampling of Gibb’s distribution is performed by applying the following
sequences of quantum gates: 4 single-qubit rotation gates (R,), 16 controlled-controlled
Rotation gates (C'— C' — R,), and 24 bit-flip (X) gates, as illustrated in Fig. 2.2.

For h-BN band structure calculation, we start with the results of training RBM by imple-
menting the gate-set (see Fig. 2.2) classically and then on the Qiskit’s quantum simulator,
called the gasm backend. Fig. 2.4 (a) shows the band structures of h-BN as a function of
wave-vector amplitude sampled from the 1st Brillouin zone. We overlay the valence band
energies obtained from our RBM network on a classical computer with the exact diagonal-

ization of the 4 x 4 tight-binding Hamiltonian (black curve). The two results are in excellent
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agreement. It must be noted that without a warm start, results may show deviations from
the exact value at certain k-points as the optimization protocol may get locally trapped.
However, the use of the warm starting technique eliminates such convergence issues. Fig. 2.4
(b) shows the band structure calculation of h-BN wherein for the RBM, the quantum gates
are implemented on the Qiskit gasm backend. For the sake of our simulations, no noise
model was considered and the results obtained are just with statistical errors. Even in this
case, if a warm start is provided, the quantum machine learning algorithm on the Qiskit
qasm simulator renders the exact valence band. In Fig. 2.4 (c¢) we show the implementation
results for the valence band calculations using RBM wherein the gate-set is implemented on
real IBM quantum devices, namely the ibmq _toronto and ibmq__sydney, both of which are 27
qubit devices. We see the results are in excellent agreement with the exact diagonalization

when a warm start is provided along with Measurement Error Mitigation.

a) b) c)
10 = Exact value L 10} - Exact value 10 = Exact value
* RBM Value * RBM Value RBM value from ibmq_toronto

qasm backend * RBM value from ibmq_sydney
5 Classical simulation J 5 -W 5 IBM-Q implementation

Energy (eV)

T K M r r K M r r K M r
Reciprocal Lattice Reciprocal Lattice Reciprocal Lattice

Figure 2.4. Band structures of h-BN calculated using (a) classical simulation with a
warm start (red). The solid black curves show the valence and conduction bands from exact
diagonalization. (b) the gasm backend simulation with the aid of a warm start (red). (c)
The implementation the RBM sampling circuit on ibmq_ toronto (green) and ibmgq _sydney
(red).

2.3.2 Band Structure of monolayer Graphene

Much like h-BN, monolayer graphene also consists of two atoms in its unit cells. However,
unlike the previous case, both the atomic centers are made up of carbon. Also, similar to
h-BN, in the case of graphene, the levels involving the other valence orbitals, the 2s, 2p,,

and 2p,, are either quite far above or far below the Fermi level. The orbital responsible
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for electrical conduction is just the 2p, orbital and hence, a tight-binding Hamiltonian for
the valence and conduction band with third-nearest neighbor interaction is constructed by
taking into account the frontier 2p, orbital on each of the carbons. The resultant matrix as
before is a 4 x 4 matrix including spin-degeneracy(see Appendix A). We introduce spin-spin
interaction in graphene using the Fermi-Hubbard model with an onsite repulsion parameter
U between opposite spins. In order to simulate graphene, the number of visible units and the
number of hidden units is equal to 2. Therefore, 2 qubits to represent the visible nodes and
2 qubits to represent the hidden nodes, and in addition to that, 4 ancilla qubits are required.
In total, the number of qubits required is equal to 8. The number of quantum gates required
to sample Gibb’s distribution is 4 single qubit Rotation gates (R,), 16 Controlled-Controlled
Rotation gates (C'— C' — R,)), and 24 Bit-flip (X) gates.

The band structures of monolayer graphene are calculated using the IBM Qiskit simulator
and by running the QML algorithm on the IBM-Q quantum computers. Fig. 2.5 (a) shows
the results for the band structures of graphene at zero U using the classical simulation. As
before the results are overlayed on top of the eigenvalues obtained from exact diagonalization
of the 4 x 4 Hamiltonian. In Fig. 2.5 (b) we show the band structure of the graphene for
U = 0 calculated using the Qiskit qasm simulator. Finally, in Fig. 2.5 (c) we show the
results of the quantum machine learning algorithm for calculation of the band structures of
the graphene on IBM-Q quantum computers, the ibmgq _toronto, and ibmgq_sydney. Even for
the case of graphene, the results are in good agreement with the exact diagonalization when
a warm start is provided along with Measurement Error Mitigation.

To show the band splitting for a non-zero on-site repulsion U, the Fermi level is shifted by
a chemical potential g = 15 eV, which controls the filling of electrons. Fig. 2.5 (d-e)plots the
band structures of graphene for U = 9.3 eV obtained using the classical simulation, Qiskit
gasm backend, and the actual implementation on an IBM quantum computer. The RBM

results are again in good agreement with that from exact diagonalization in all of the cases.
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Figure 2.5. Band structure of the graphene for U = 0eV calculated using (a) classical
simulation with a warm start (red). The solid black curves show the valence and conduction
bands from exact diagonalization, (b) the gasm backend simulation with the aid of a warm
start (red). (c) Implementation on actual IBM computing devices. (d) Same as in (a)
with Hubbard on-site interaction U = 9.3eV. The four bands correspond to the two non-
degenerate spin-states for each of the valence and conduction bands in plot (a). (e) Same as
in (b) with Hubbard on-site interaction U = 9.3eV. (f) Same as in (¢) with Hubbard on-site
interaction U = 9.3eV.

2.3.3 Fidelity

To verify if the eigenstates provided by the QML algorithm match those obtained from
exact diagonalization, the fidelity for each k point is calculated. It can be seen from Fig. 2.6
that the error (1-Fidelity) is very small for classical simulation and simulation on the gasm

backend for both the materials. The fidelity is calculated as follows:
Fidelity = |(¥|®)]|?

where, |¥) is the eigenvector obtained from QML and |®) is the eigenvector obtained from

exact diagonalization.
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Figure 2.6. Error in fidelity (1 — F'), are plotted as a function of the reciprocal lattice
vector (k) for classical simulation and gasm backend.

2.4 Conclusion

The primary goal of this study was to examine the performance of an RBM on a NISQ
device in order to calculate the electronic structure of materials. In this work, the materials
that were taken under consideration were hexagonal Boron Nitride (h-BN) and monolayer
Graphene, both of which are two-dimensional solids. A tight-binding and a Hubbard Hamil-
tonian were constructed for h-BN and graphene respectively. By using an RBM and a
quantum circuit to sample Gibbs distribution, the valence band energies for each of the two
materials were obtained. In the case of graphene, the simulations were performed first for
the case when the Hubbard interaction U is equal to 0 and then for the case of non-zero U.
The band splitting for the case of non-zero U was also shown. The simulations for both,
graphene and h-BN were done using IBM’s ¢iskit framework as well as on real IBM quantum
computing platforms.

Implementing RBM classically can either use Maximum-likelihood based gradient descent
(which has a time complexity that is exponential in the size of the smallest layer)[34] or Con-
trastive Divergence using Gibbs sampling, a Markov Chain Monte Carlo (MCMC) method
(which is a more efficient approach) to estimate the gradients [35]. The time complexity for
training an RBM in the classical case scales as O(N) , where N is the size of the training
data, while the implementation of RBM on a quantum computer has been shown to have

quadratic speed-ups [36]. Also, computing the ground state of a given Hamiltonian using
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exact diagonalization has a complexity of ~ ¢, where q is the dimension of the column space
of a given matrix [37]. However, setting k = max(1, @) provides a constant lower bound
in the probability of successful sampling and thus the complexity for one iteration scales
as O(mnN), where N is the number of successful sampling required to get the distribution
P(x).

The current quantum machine learning method could calculate only on the ground state
energy of the periodic systems, i.e., the valence band, an extension is needed to treat systems
with multiple valence bands [38] or to procure higher order energy bands. This can be done
by sampling the orthogonal subspace of the previously computed valence band. Also, to
calculate the transition matrix elements, the valence and conduction Bloch wavevectors
should be obtained. The expectation value of an operator with respect to the ground state
may be calculated using the Hellmann-Feynman method [39]. Here, the effect of noise on
quantum machine learning is not fully explored, while the Qiskit qasm simulator and IBM-
Q noisy quantum computers show the effect of noise on quantum optimization. With the
field of quantum computing developing rapidly, the curiosity of combining machine learning
and quantum computing has led to very interesting researches. With the development of
quantum computers and their capability to scale very fast, quantum machine learning can
prove to be useful in not only electronic structure methods, but also as a significant tool in

developing new materials and understanding complex phenomena.
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3. QUANTUM MACHINE LEARNING FOR EIGENSTATE
FILTRATION

The contents of this chapter are adapted from the article ‘Sajjan, Manas, Shree Hari Suresh-
babu, and Sabre Kais. "Quantum machine-learning for eigenstate filtration in two-dimensional
materials.” Journal of the American Chemical Society 143.44 (2021): 18426-18445".

3.1 Introduction

Machine learning concerned with identifying and utilizing patterns within a data set has
gained tremendous importance within the last decade. Even though the germinal idea can
be traced back to the 1950s [1], it is safe to say that the domain has become a pioneering
field of research within the last few years due to escalation in computational prowess and
data availability, and have metamorphosed several disciplines including autonomous driving
2], image-recognition[3], speech recognition[4], natural language processing [5], computer
games [6], and even refugee integration[7]. Consequently the integration of the technique
in solving problems of physico-chemical interest [8] have also been explored with remark-
able success whether in predicting ground-state density functionals[9], [10], self-energy in
Dynamical Mean-Field Theory (DMFT) for the Anderson model[ll], atomistic potentials
and forcefields for molecular dynamics[12], [13] or unsupervised learning of phases of the
2D-Ising Hamiltonian[14]. Similar advancements have also been made in the field of Deep
Learning[15] and Artificial Neural Networks (ANN) which has been successfully used to learn
phase transition parameters[16], [17] or in quantum phase recognition [18]. Among the var-
ious architectures in this category, Restricted Boltzmann machine (RBM) based generative
models being a universally powerful approximator for any probability density[19], [20] have
particularly gained attention. RBMs have been successfully used to reconstruct quantum
states in tomography from measurement statistics[21]. Carleo and Troyer showed how a neu-
ral network encoding a shallow RBM ansatz requires fewer parameters than certain kinds
of matrix product states and can predict the ground state energy and unitary dynamical

evolution of simple spin models with high accuracy [22].
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However, all the algorithms discussed above have trained machine learning or deep-
learning models on a classical computer to effectively recreate either a quantum state or
its essential features. The past decade has also witnessed unprecedented development in
quantum computing as a new paradigm which is fundamentally different than its classical
counterpart in processing and storing data and performing logical operations[23] harnessing
the power of quantum superposition and non-classical correlations like entanglement. A nat-
ural question that has spawned is whether such quantum machines can interpret and produce
statistical patterns in data which are either difficult for classical machine learning algorithms
or the performance of machine learning algorithms on quantum computer can outperform
the classical variants in efficiency [24]. This has naturally motivated the development of a
host of quantum -machine learning algorithms like Quantum Principal Component Analy-
sis (PCA) [25], Quantum Support Vector Machines (QSVM)[26], Quantum Reinforcement
Learning [27], quantum supervised and unsupervised learning [28], kernel design for Gaus-
sian processes[29], Gaussian process regression[30], quantum classifier[31] or a plethora of
linear algebra routines like HHL[32], QSVDI[33], ¢BLAS[34] which forms the backbone of the
quantum versions of many other machine learning algorithms. Each of these methods has
reported theoretical speedup over the best-known classical algorithm under certain specific
circumstances [35]. Similar investigations have also been undertaken for artificial neural net-
works to discover any unforeseen quantum advantage. For instance, Amin and co-workers
have demonstrated a Quantum Boltzmann Machine [36] by adding an off-diagonal transverse
field to the training model thereby making it more expressive to treat larger classes of prob-
lems [37]. Weibe et al have shown how sampling from a Gibbs distribution as is required for
training an RBM can be distinctly accelerated using a quantum processor[38].

Motivated by such recent developments, Xia and Kais [39] proposed an actual quantum
circuit using polynomial resources to correctly learn the amplitude of the RBM ansatz en-
coded within a neural network representing the state of a quantum system. The work also
extended the neural network to three layers to learn the sign of the various components
of the encoded wavefunction. The algorithm was benchmarked by showing the evaluation
of ground states on simple molecular systems like Hy, LiH, etc thereby formally extending

the efforts mentioned above to actual electronic structure calculations which are considered
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to be powerful applications of near-term quantum devices. Indeed, interesting algorithmic
advances have been made recently that can capture both the ground and excited state of
such electronic structure problems with good accuracy [40]-[46]. Kanno et al. [47] modified
the above method to encompass the complex phase of each component of the wavefunc-
tion by adding an additional neuron to the third layer. However both the work simulated
the performance of the algorithm for ground states only on noiseless classical devices. In
fact, due to conditional dependence on the sequence of measurements of the ancilla register,
straight-forward implementation of the algorithm on a present-day actual NISQ device is

difficult.

3.2 Theory

Our objective is to develop an efficient algorithm to train a neural network to perform

the following minimization in a d-dimensional space

min (Y| H]y)
$=A{lz) | Olz) =wlz) ¥z € C} (3.1)

where H € C% is the hermitian Hamiltonian defining the problem. Similarly O € C%*? is
the user-defined hermitian operator. w is the eigenvalue (real-valued) of the operator O and
|z) is the corresponding eigenvector. The set S is the collection of all such eigenvectors with
a specific eigenvalue w. The operators O which we shall discuss will generally have more than
one element in set S due to degeneracy in the eigenspace labelled by w. By construction,
the form of the algorithm shall always normalize the state [¢)) and hence normalization as
a further constraint is unnecessary. We will return to this point later. The primary goal
of the network is to then encode a normalized state-vector |¢) which is a formal solution
to Eq.3.1. The corresponding state so obtained is from the eigenspace of O with eigenvalue
w. If several such choices exist, the network learns the one with minimum energy. To solve
the quadratic minimization problem with quadratic constraint in Eq. 3.1 we will define a

penalty procedure as
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F(jv), H,0,7) = (¢|H[v) + M0 — w)*|$) (3:2)

where A > 0 is the penalty parameter. We provide a formal and original proof of equivalence

of Eq. 3.2 with respect to Eq. 3.1 based on the following Theorem.

Theorem 3.2.1. Let {\i}2, be a sequence in the penalty parameter such that Ay < Ay <
AgeeeAoo = 00. Also let P = {|1h)}2, such that ¥ |¢;) € P the following is true.

|1/}1> = arg minF(Aiv ﬂu 67 |’l/}>> (33)
P

In other words, P is the set of minimizers for Eq. 3.2 for each penalty parameter X € {\}{°;.
If |[W*)y € P is a limit-point of the convergent sequence {1;}°, in P i.e [*) = lim;_oo 1))
then |¢*) € S

An original proof of Theorem 3.2.1 is in Appendix B based on the fact that both the
1st and 2nd term in Eq. 3.2 are quadratic forms. An intuitive explanation can be provided
that would suffice to appreciate the discussion in this report. One can note that in the cost
function defined in Eq. 3.2 the term (4| H|t) imposes the minimization of energy as required
in Eq. 3.1. The second term i.e. (¢)[(O — w)?[4) is the variance of the operator O with the
mean being the eigenvalue w and is non-negative by construction. For large values of the
penalty parameter A, the minimization of the overall cost function is afforded if the variance
term is pinned to zero i.e. the state |1)*) so chosen is an eigenstate of the operator O with
eigenvalue w. The space of such states is defined by the set S in Eq. 3.1. If several such
choices exist, the role of the 1st term kicks in to guarantee optimality in energy.

While penalized optimization schemes with cost function of the kind in Eq. 3.2 has been
employed in classical algorithms like in Density Matrix Renormalization Group (DMRG)[48],
in Quantum Monte-Carlo methods in the past [49] and even recently [50] are also beginning
to gain attention in recent literature on quantum algorithms beyond quantum-machine learn-
ing i.e. in algorithms using Unitary-Coupled Cluster Ansatz (UCC) of variational quantum

eigensolver (VQE) [51], yet a formal proof is lacking. Besides a more popular choice that has

27



been studied in some detail is constraining the average value of the operator <¢\O|¢> [52],
[53] with the required eigenvalue instead of penalizing the variance as in Eq. 3.2. However,
this recent study [51] shows Eq. 3.2 is a better penalty procedure in terms of feasibility
and final error than restraining the average without providing a formal proof of equivalence
between Eq. 3.2 and Eq. 3.1. Ref[51] also implemented the same to target symmetry op-
erators on molecular systems using UCC-VQE using Qulacs[54] which is an ideal simulator
of a real quantum computer. However, in this report, we shall use Eq. 3.2 to develop and
train a shallow neural network using a quantum machine learning algorithm with quadratic
resource requirements in terms of the size of qubit register, number of gates and parameter
counts. The ansatz which the neural network would encode for the quantum state |1)) would
correspond to a probability density represented by RBM. We benchmark our algorithm on
important 2D periodic materials like transition metal di-chalcogenides (TMDCs) and show
implementations not only on quantum simulators but on actual NISQ devices (IBM-Q).
TMDCs have never been studied before using any quantum algorithm. In the next few
sections, we shall show how to filter any specific state of these 2D materials using either
symmetry operators of the Hamiltonian or user-defined constructions of operator O in a
unified manner using the same algorithm. Such an attempt to the best of our knowledge is
the first of its kind in QML as all previous reports have focused exclusively on targeting the

ground state of the system alone [47], [55].

3.2.1 Filter for specific excited states

To target the first excited state of the system, one can use a user-defined operator (O =
|g)(g],w = 0) where |g) is the ground state of the system obtained by training the network
in a previous computation with A = 0 in Eq. 3.2. In essence, we require the neural-
network to return a state-vector in the null space of operator |g)(g|. Since the null-space
is d — 1 dimensional, the minimum energy criterion as enforced by the 1st term in Eq. 3.2
guarantees the first excited state. This method using the penalty program in Eq. 3.2 is
formally equivalent to deflation technique if one recognizes the idempotency of O = [g){g].

Deflation has been the cornerstone of many classical algorithms in the past for obtaining
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excited states[56], [57] and even a quantum algorithm as well with UCC-VQE [58]. But the
formal reduction of our penalty procedure to deflation in Eq. 3.2 based on Theorem 3.2.1
offers a slightly different perspective. Moreover as we shall see shortly, the penalty program
in Eq. 3.2 is more general and can be used to sieve any state based on arbitrary operator
O. For higher excited states (say the t th) one can add similar terms to Eq. 3.2 with the set
{OAi}f: which forms a set of commuting operators with progressively refined null-space. For
the choice of the penalty parameter A in Eq. 3.2, one can choose any number greater than
the spectral range of the Hamiltonian H as that would always work. The spectral range can

be computed from the knowledge of the ground state and ||H||,.

3.2.2 Filter for arbitrary states using symmetry operators

Eq. 3.2 can be used to solve a more general problem with any symmetry operator of
the system O (by definition such operators satisfy [O, H | = 0 and hence share the same
eigenspace). The corresponding user-desired eigenvalue w labels the symmetry sector (set
S in Eq. 3.1). Unlike in the previous case in section 3.2.1, usual symmetry operators need
not satisfy idempotency and hence relaxation to deflation is impossible. To demonstrate
our point, here we shall use O = L? where L? is the squared-orbital angular momentum
operator, a symmetry for 2D materials. w would be set to the desired eigenvalue of L? . We
shall see that the network will always learn the lowest energy eigenstate correctly despite
multiple-fold degeneracy. To sieve other states from the entire degenerate subspace one can
use a combination filter of O; = L? and O, = |v)(v| where |v) is the lowest energy state in
the symmetry subspace obtained from the RBM. The penalty parameter A can be chosen

using the prescription in [51].

3.3 Algorithm

3.3.1 The Model

In the early 1980s, Hopfield networks [59] defined a probability distribution over a set
of random variables which is encoded within the nodes of a unidirected graph using the

physical notion of energy of interaction between the nodes. Boltzmann machines (BM) are
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Figure 3.1. (a) The RBM architecture used in this work. The visible node contains
n neurons (green), the hidden node has m neurons (blue) and the phase node contains 2
neurons, one to model the real part(orange) of the phase of the wavefunction and the other to
model the imaginary part (grey). The weights and biases of the respective units are displayed.
The RBM ansatz for the required state is defined from the Boltzmann distribution over the
state-space of the visible-hidden units (b) The QML algorithm used to perform the variance
penalized optimization. The part of step (ii) marked within the red box is performed on a
quantum processor (QPU). All other steps are performed on a classical computer. Each step
is marked with a Roman numeral. We follow each of these Roman numerals for discussing
the algorithm in section 3.3.2

extensions of such a network that categorizes the node space into visible/physical layer and
hidden/latent layers maintaining all to all connectivity[60]. Restricted Boltzmann Machine
(RBM) [8], [20], [61]-]64] is a practically useful sub-category of BM which permits interaction
only between the visible layer and hidden layer. The energy function used in the RBM
model is thus that of a partially connected classical Ising network and the ansatz for the
probability distribution is the corresponding thermal distribution. The ansatz is optimized to
mimic the underlying probability distribution of the given data using free parameters called
weights and biases[19], [62]-[67]. The goal of this paper is to use the RBM distribution to
encode the amplitude field of an arbitrary quantum state |¢)) which is a solution to Eq. 3.1.
Such neural-network quantum states (NQS) have been successfully employed in a variety

of problems recently [8], [20], [22], [68] by training the weights and biases using a classical
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computer. Herein we shall train the network by constructing the RBM distribution using a
quantum circuit and discuss the quantum advantages.

The RBM network we use in this report consists specifically of three layers each having
multiple neurons. The schematic of the network architecture is presented in Fig. 3.1(a).
The first layer is the visible node consisting of n neurons, the second layer is the hidden
node consisting of m neurons and the last layer is a phase node consisting of two neurons.
While the n neurons are responsible for encoding the actual state, the purpose of the hidden
neurons m is to add more controllable parameters to make the joint probability distribution
(to be defined in Eq. 3.4 soon) more expressive and induce higher order correlation among n
neurons [20]. Variables encoded by the visible node neurons (henceforth denoted by {o;} )
and those by the hidden node neurons (henceforth denoted by {h;}7,) are both binary
random variables as o; and hy € {1, —1}. As depicted in Fig. 3.1 (a), the bias vector of the
visible neurons is denoted as @ € R", bias vector of hidden neurons is denoted as be R™, the
interconnecting weights of the visible and hidden neurons are denoted as W € R™m, The

joint RBM distribution[8], [20], [62]-[64] P(a@,b, W, &, h) defined over the variables (&, h) is

@2 WOIHY S b S wijoih

Zi aiO'i+Zj b; hj+Zij wijoihy

-

P(@,b,W,3a,

)

)

= (3.4)

> {oh} €

For an electronic Hamiltonian with r spin-orbitals and N electrons, a Jordan Wigner
mapping (JW) [69] would make n = r or (or n = O(logs(r)) for Bravi-Kitaev mapping
[69]). However, it is well understood now that qubit requirements can be tapered by using
additional symmetries like Z5 [70]. Chemically inspired process of reducing qubit cost like
using an active space [71] (wherein number of physical qubits required is still r but logical
qubits required are much less as some qubits have frozen occupation/eigenvalue with Z
operator) or using point-group symmetry or angular-momentum symmetry of the required
state[70], [72] are also being recently employed. Thus a direct relationship of n with r would
depend on the specification of the mapping and tapering used. Whatever may be the method,
if the final A matrix is C%4 (as used in Section 3.2) then it is safe to say that in our model
n = logy(d). The number of hidden units m in our model is user-defined (for almost all data

in this chapter we have used n = m) but the hidden node density o = ™ can be tuned to
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enhance the final accuracy desired. We shall return to this point later. Neurons in the phase
node are always 2 in number.

The purpose of the neurons in the phase node is to account for complex values and capture
the phase of the wavefunction [47] unlike in conventional two-layer RBM networks[21] which
faithfully recovers only the amplitude. As shown in Fig.3.1(a), for the phase node, the biases
are denoted by {c,e} € R? where c is the bias for the neuron capturing the real part of the
phase and e is the bias for the neuron encoding the corresponding imaginary part. The phase
node shares interconnections with the visible node only and is defined by d € R" for the real
part of the phase and f € R" for the associated imaginary part. The corresponding phase

function for the quantum state |¢)) defined using these nodes is

s(d. f.c.e,d) = tanh | (¢ + 3" dio) +i(e + 3 fior) (3.5)

Together the set X = (d, l;, W, (f, f, ¢, e) thus defines the complete set of trainable param-
eters of the model which the network shall learn iteratively to mimic the coefficients of the
quantum state |¢) in the chosen basis. We shall discuss the algorithm to do this in the next

section.

3.3.2 Outline of the Method

The entire algorithm is schematically depicted in Fig. 3.1(b). It goes as follows.

(i) The first step is to initialize the parameters in the parameter vector X = (d, b,W.d, f, c,e)
on a classical computer. All parameters are randomly initialized in the parameter range
[-0.02, 0.02] to avoid the vanishing gradient of the activation function for the phase node
[39]. Sometimes if random initialization returns a poorly converged result, we use the
initial parameter set of a converged point in a similar problem as the starting guess, a

process known as warm optimization.

(ii) In the second step the set (a, b, W) is fed into a quantum circuit for Gibbs sampling

shown in Fig. 3.2. This step is performed on a quantum computer. The circuit
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requires n 4+ m qubits to encode the visible node and the hidden node respectively and
additionally m xn ancillary qubits. The entire register is initialized to |0). The purpose
of the circuit is to sample a bit string (&, fz) € {1,—1}"*" from the RBM distribution
P(d, b,W,&, ﬁ) defined in before in Eq. 3.4 [55]. In reality the circuit actually draws a

sample (&, 1) from

e%(zi aiO'i-‘ij bjhj-i-zij wijaihj)

a,b,W,d h) =
Q((I, ) , O, ) Z{ " e%(ziaigﬁ_zj‘bjh’j—"_ZijwijUihj)

(3.6)

and then reconstruct P(a,b, W, 3, ﬁ) x Q(a,b, W, 3, ﬁ)k The real-valued parameter k

will be discussed shortly.

The state of the visible node qubits and hidden node qubits are denoted henceforth
as |o;) and |h;) respectively. Note when o; (or hj) = —1, |o) (or |h;)) = |0) and |1)
otherwise. In the circuit shown in Fig. 3.2 the single-qubit Rz, gates acting only on the
visible and hidden units have rotation angles parameterized by (@, l;) and are responsible
for creating the non-interacting part of the distribution in Q(d, E,VT/,&, E) while the
interaction terms {>7; ; wijo1h;} are turned on through using C' —C — R, gates acting on
ancilla register as the target. The rotation angles of these doubly-controlled R, gates are
parameterized by W and are different for different configurations of the control qubits
(always 1 hidden and 1 visible). Various such choices can be realized by using X gates
as shown in Fig. 3.2. After all such operations, we measure all the (m +n +m x n)
qubits and post-select the results wherein the ancilla qubits have collapsed to state
|1111...1,,,) only. We show that the probability of such a successful event has a generic
lower bound determinable in terms of the parameters of the network (@,b, W) (for
details of the derivation of the generic bound refer to Appendix B). This master lower
bound generalizes the previously noted one[39] as a special case. The role of the real-
valued parameter k kicks in here. It serves as a regulator and is chosen in simulation
to make the aforesaid lower bound a constant value (see Appendix B). After the post-
selection, the corresponding states of the visible and hidden units are equivalent to

all possible bit strings sampled from the distribution Q(a, Z;, W, a, ﬁ) from which the
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Figure 3.2. The Gibbs sampling quantum circuit used to create the Boltzmann distri-
bution in Fig. 3.1(b) (highlighted within the red box in Fig. 3.1(b) step(ii)) for the case
of n = m = 2. The circuit contains single-qubit R, gates parameterized by biases (d, b)
of hidden and visible neurons and C' — C' — R, gates parameterized by weights W between
the hidden and visible neurons. Each C'— C — Ry gate is conditioned to rotate by different
angles 61 and 65 for different choices of configurations of the control qubits. This can be
implemented by use of X gates as illustrated at the bottom. The open circles show a node
in state |0) and the closed circles show a node in state |1). At the end of the circuit all
qubits are measured and configurations wherein the ancilla qubits are all in state |1) are
post-selected (see text for details). For (n + m) visible and hidden neurons, there will be
(n 4+ m) visible and hidden qubits and also (n + m) single R, gates as there are that many
biases. However since the C'— C' — R,, gates are always controlled by 1 visible and 1 hidden
qubit, there will be m x n such possibilities each of which targets one ancilla thereby making
the size of the ancilla register m x n. Thus there will be O(n x m) gates and number of
qubits in the circuit. We discuss this further in section 3.3.3.

desired distribution P(d, bW, &, ﬁ) is constructed. The primary quantum advantage

in our algorithm comes at this step where the full RBM distribution is constructed.

Indeed we shall elaborate in Section 3.3.3, that there exist no polynomial-time classical

algorithms for the construction of full RBM distribution. In our case, we can access

the full distribution using quadratic resources by leveraging a quantum computer. The

physical reason for this advantage is rooted in quantum parallelism which before a

projective measurement allows the general state of the (m +n +m X n) qubits to be a
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(iii)

superposition of all possible bit-strings with the coefficients sampled from the full RBM
distribution. Many such measurements are necessary to construct the RBM distribution
encoding the target state as post-measurement we can retrieve only one such bit-string.
As explained above, the k parameter in our model is useful here as it can be adaptively
chosen by the user to control the measurement statistics (see Appendix B). Besides,
for all systems primarily treated in this manuscript, we shall show that the chances of
the ancilla register collapsing in the favorable state are naturally high even for modest
values of the k parameter. (see Appendix B) With P(d, b,W,&, ﬁ) constructed, one
can now compute the marginal distribution over the state space of the visible units only
as p(d, g, W,c?) where p(a, 5,W,c?) =Y, P(a, 5, W, 3, FL) Now +/p(a, b, W,&) defines
the amplitude of wavefunction over basis states of the visible units i.e. |oy09....0,).
The phase of each component of the wavefunction is now constructed classically using
(cz f, ¢,e) and tanh activation of neurons in the phase node as defined before in Eq.

3.5

With the two information from step (ii), the target wavefunction can now be con-

structed classically as

¢(X) = Z ﬁ(av 57 W’&‘)S(Czﬁcve76)|0102--'0n> (37)
With the wavefunction, the cost function in Eq. 3.2 can now be constructed classically
with the (ﬁ .0, A) from the user where H and O are the Hamiltonian and filter operator

for the system being investigated respectively and A is the penalty parameter.

The next step is to check for convergence criterion or maximum number of iterations

(to be discussed later). If either of the criterion is satisfied, results are printed

If either of the criterion from the previous step is not satisfied then the parameter set
X is updated using steepest - descent algorithm with a learning rate (set to 0.005 in
all our calculations). The updated parameter vector X is fed into step (i) for the next
iteration of the algorithm. We have also used the ADAM optimizer[73] but there is

no significant change in convergence for the systems treated in this report. It must be
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emphasized that unlike in classical supervised deep learning models, the learning of our
network does not require prior training against a pre-assigned labeled data-set. The
network learns the target eigenstate directly through minimization of the cost function

(see Eq. 3.2) using the optimizer of choice (gradient descent in this case).

3.3.3 Resource Requirements

The power of an RBM ansatz even though underutilized in material science is beginning
to gain attention in many areas of fermionic and bosonic physics [20], [68], [74]. Using n
visible neurons and m hidden neurons, a recent study [75] has shown explicitly how a shallow
RBM ansatz (a = ™ = 1) like ours already captures several orders of perturbation theory
and is a good approximant to the exact state. Classically, constructing such a full RBM
distribution will require tracking amplitudes from a 2™ dimensional state space and hence
has exponential resource requirements in preparation. Ref[76] formalizes and consolidates
this statement by proving that a polynomial-time algorithm for classically simulating or
constructing a full RBM distribution is not only absent now but is unlikely to exist even in
the future as long as the polynomial hierarchy remains uncollapsed. However, such analysis
does not preclude the existence of efficient quantum algorithms such as the one considered in
this work. The quantum circuit in our algorithm (see Fig. 3.2) uses m-+n+m Xxn qubits only
for constructing the state indicating an O(m X n) scaling in qubit resource which if expressed

in terms of hidden node density a = ™ is O(an?) The gate-set comprising single-qubit R,

gates scales as m +n too, one for each of the bias terms (@, E) of the visible and hidden node
qubits. Each C' — C — R, gate in the circuit mediate a single interaction term within the W
matrix between a spin of the visible layer o; and a spin of the hidden layer h;. Since there
are m x n such terms, the number of C'— C — R, gates are m X n too, with the targets being
each qubit in the ancilla register. Toggling between the various configurations of the control
qubits (1 visible 4+ 1 hidden) would require 6 R, gates additionally in each C' — C' — R,
(see Fig. 3.2) and hence the total number of such R, gates is 6mn. This indicates the total

gate requirements of our sampling circuit is also O(m x n) which is equivalent to O(an?).

The number of variational parameters in our algorithm for amplitude encoding using RBM is
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m-n for the biases of the two nodes and m xn for the W matrix. For the phase encoding, the
variables are two n-dimensional vectors (CZ; ﬁ and two scalars (¢, e). Thus the total number
of variational parameters is m x n+m+3n+2 = an? + an + 3n + 2 which is also quadratic.
The upshot is then, our algorithm for an RBM ansatz uses O(an?) qubits (circuit width),
gate-set (circuit depth), and variational parameters to encode any arbitrary quantum state
of n qubits in a d = 2"-dimensional Hilbert space. Removing redundancy in global phase
and normalization, a general such state would require 2(2" — 1) parameters. One must know,
in the RBM construction circuit no specific structure or sparsity has been assumed in the W
matrix which if present may lower the requirements further. Quantum advantages have also
been observed in supervised learning using the RBM distribution [38]. The study indicated
that for the data-set of size IV, a quantum circuit with amplitude amplification reduces the
complexity of the algorithm from the conventional O(N) to O(v/N), a quadratic boost. It
must also be emphasized that all the results in this manuscript are primarily treated for
the case of @ = 1 as that suffices for the description of the system we study. We show
how the results change for changing hidden node density « in Appendix B. Even though
a = 1 is good for systems in this report, for the case where the state is highly entangled,
the user may be required to enhance the hidden node density as that increases the number
of variational parameters and make the ansatz more expressive [20]. That may also be the
case for molecular systems under geometric distortion wherein multi-reference correlation
is important (we explore this point briefly in Appendix B). In this work all our results are
compared against exact diagonalization as it affords the best accuracy in a given basis. The

exact diagonalization results are obtained using ‘Numpy’ package[77] in python 3.0 with

LAPACK routine.

3.3.4 Implementation Methods

We implement the algorithm in three flavors of computation. The first flavor henceforth
designated as ‘RBM-cl’ involves implementing the entire gate set of the Gibbs sampling
circuit on a classical computer. This computation returns to us the exact state after the

termination of the circuit. The second flavor is henceforth designated as ‘RBM-qasm’.
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This has been implemented by simulating the Gibbs sampling circuit using Qiskit which
stands for IBM’s Quantum Information Software Kit (Qiskit) [78]. We specifically used
the gasm__simulator at Aer provider (hence the name RBM-qasm) which is a quantum
computer simulator and hence can mimic calculations performed on a noisy-intermediate
scale quantum computing device even using a classical computer with options to incorpo-
rate customizable noise models. Unlike in ‘RBM-cl’ where the exact state is returned,
in ‘RBM-qasm’, the Gibbs sampling circuit in Fig. 3.2 is interrogated multiple times to
build measurement statistics. From the observed bit-strings, the measurement probabilities
P(a, l;, W, a, ﬁ) are computed and hence the results are subjected to statistical fluctuations
due to finite sampling errors. No noise model was used during the simulation in ‘RBM-
qasm’. Finally to see the effect of noise we also investigated the performance of our algorithm
on real IBM-Q) quantum computers using the Qiskit interface. We used IBM-Q Sydney[79]
and IBM-Q Toronto[80] interchangeably both of which are 27 qubit machines and hence
suitable for our case studies. Calculations of this flavor are henceforth referred to as ‘RBM-
IBMQ’. To reduce the effect of noise on the sampling probabilities we employ Measurement
Error Mitigation (MEM) [81] directly implementable on Qiskit. We show in this report that
MEM alone guarantees smooth and clear self-convergence in training (see Appendix B). The
final accuracy of the results is affected by both MEM and warm-starting. We have seen
without warm-starting convergence can not only be slow but sometimes the network can
even be trapped in a local minima. It is in general difficult to assess apriori when the need
for warm-starting can arise without a knowledge of the optimization surface as the objective
function being optimized for the amplitude and the phase are non-convex in the arguments
(see Eq.3.4 and Eq.3.5). It has been noted that the algorithm converges better without the
need for warm-starting near optima (symmetry points for the system being treated in this
report as discussed later). For the ‘RBM-qasm’ and ‘RBM-cl’ simulations, the maximum
number of iterations within which well-converged results to be discussed below were obtained
is < 30,000 either with a warm-start or randomly initialized parameter set depending on the
case. The ‘RBM-IBMQ’ simulations were performed by breaking into two sessions/runs
with the maximum iteration < 700 for each session to reduce the job queue . Normally

most calculations converged well before 700 iterations were reached within the first run as
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warm-starting and MEM has been used as described above. For the few that did not, the
final parameter set of the first run is punched for initializing the second session to ensure one
continuous run. It must be emphasized that the entire code-base for training the network
is home-built in Python 3.0 using standard packages like Numpy [77]. As mentioned be-
fore, we have extensively used Qiskit though as an interface to communicate with the IBMQ

hardware and with qasm__simulator.

3.4 Results and Discussion

As a test of our method, we target state filtration of energy eigenstates of two well-
established transition-metal dichalcogenides (TMDCs) - monolayer Molybdenum di-Sulfide
(MoS3) and monolayer Tungsten di-Sulfide (WSs). Monolayer TMDCs have so far eluded
attention in quantum simulations even though it is imperative to study their electronic
structures to understand novel properties[82], [83] like high carrier mobility, high photolumi-
nescence due to the direct band-gap, lack of inversion symmetry leading to large spin-orbit
coupling and intra-valley transport etc. Indeed such features have made them attractive can-
didates for applications in Field-Effect Transistors[84], supercapacitors[85], spintronics[86],
opto-electronics[87], [88], valleytronics[89]. We first show how the entire conduction band
(CB) in such materials can be simulated using an appropriate choice of operator O as the
ground state projector as discussed before and then later show how to ‘sieve’ eigenstates

based on angular momentum symmetry. In all cases, we implement our algorithm on three

flavors of RBM calculations - RBM-cl, RBM-qasm, RBM-IBMQ as discussed.

3.4.1 Filter for target excited states - Simulation of low energy bands in MoS,
and WS, and effect of Spin-Orbit Coupling

The geometrical structure of monolayer TMDCs like MoSs or WS, indicates the presence
of a trigonal prismatic real space unit cell [83] with Dsj, point group symmetry as shown in
Fig. 3.3. The transition metal is at the centre and the sulfur atoms are at the six corners
of the triangular prism (see Fig. 3.3(b)). Consequently, the best orbital decomposition to

evaluate the band structure of this periodic material should involve not only the s, p,d-
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Figure 3.3. (a) The top view of the TMDC monolayer as studied in this report. The
orange atoms are a chalcogen whereas the blue atoms are the metal centre. (b) The real-
space trigonal prismatic unit cell highlighting Ds;, symmetry. This shows that in the TMDC
monolayer unlike in graphene, the constituent atoms have a non-coplanar arrangement. (c)
The unit cell in reciprocal space showing the important symmetry points (', K, M, K'). We
shall investigate the energy and other properties within the sector marked in green following
the usual I' — K — M —T path as in [90]. The co-ordinates of the symmetry points as (kz, ky)
are : ' = (0,0), K = (2% 0), M = (X, —-2—) where ay is the metal-chalcogen bond length.

~ \Bag’ a0’ /3ag
For systems studied in this report the metal centre is Mo, W and the chalcogen is S

orbitals of the central metal atom but also of the surrounding sulfur atoms. Indeed several
reports exist which treats the electronic structure of such materials using a tight-binding
description obtainable from a 5 band, 7-band or an 11-band model using varying degree of
inclusion of the orbital set of the metal and the chalcogen[91]-[94]. However, recently a 3-
band parameterization has been demonstrated to yield remarkable accuracy in energy over
the entire Brillouin zone[90]. A tight binding Hamiltonian in this description is obtained
by fitting the energy curves against DFT calculations (with GGA and LDA functionals)
employing the d,2, d,, and d,2_,2 orbitals of the metal centre[90] only. This choice is based
on the fact that for trigonal prismatic coordination, the d-orbital set of the metal splits

into three groups-A} containing d.» orbital only, E' containing dg,, d,2_,» and E” containing

dy.,d,. orbitals. However, reflection symmetry of Ds;, restricts inter-coupling between the
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orbitals of E” set with the remaining two groups. Indeed E” contributes exclusively to higher
energy bands and has no role to play in the low-energy physics of the valence and conduction
band which is considered in this work. The absence of chalcogen p-orbitals is definitely an
approximation albeit a good one as seen from Ref [90]. We shall return to this point shortly.

We use a tight-binding model comprising of third-nearest neighbor (TNN) metal-metal
hopping[90] of the aforesaid three band Hamiltonian for all our calculations henceforth. The
parameters of the model are obtained from the more accurate GGA calculation set [90].
Appendix B enlists details of the Hamiltonian and parameters for completeness and brevity.
Our working Hamiltonian, for both the systems are thus a 3 x 3 Hermitian matrix. For
qubitization we convert it into a 4 x 4 Hermitian matrix by padding an additional 1 x 1
block with a diagonal entry chosen to be > spectral range of Hsxs as that would keep
the low-lying eigenvalue structure of the resultant matrix undisturbed for the training to
successfully proceed. Thus for both the systems, our neural network comprises of a visible
node with 2 neurons to encode the state, two hidden neurons and additional 2 neurons for
the phase node too. For the Gibbs sampling circuit in Fig. 3.2, we thus need 2 qubits to
represent the entire visible layer and 2 qubits for the hidden layer. In addition we need 4
ancilla qubits to serve as targets for (C' — C' — R,) rotation thereby requiring 8 qubits in
total. For the circuit in Fig. 3.2, we use 4 single qubit Rotation gates (R,), 4 Controlled-
Controlled Rotation gates (C'— C — R,), and also 24 Bit-flip (X) gates. The optimization
in each case starts from a randomly initialized parameter set. In case if the accuracy is
poor, we re-start the algorithm by feeding the initial parameter from the results of a nearby
converged k-point as a warm start. We see the results are in excellent agreement with the
exact diagonalization when a such a warm start is employed along with MEM as described
before. For IBM(Q implementation we have used ‘IBM-Sydney’ and ‘IBM-Toronto’ both of
which are 27 qubit machines. To reduce the operational time on the actual quantum device
for job queue and isolate the effect of gate-infidelity, IBMQ simulations for each k-point were
often warm-started with an initial parameter set obtained from the initial parameters of the
gasm simulation of a nearby but non-identical k-point.

The results from the algorithm using the cost function in Eq. 3.2 is displayed in Fig.
3.4 for MoS, and Fig. 3.5 for WS,. In Fig. 3.4(a) we have overlayed the energies obtained
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Figure 3.4. (a) Valence (VB) and conduction band (CB) of MoS; calculated using all
flavors of RBM and overlayed against exact diagonalization. The valence band is simulated
using A = 0 in Eq. 3.2 and the conduction band using (O = |vg){vg|, w = 0, A = 5) in
Eq. 3.2 where |vg) is the valence band state at each k-point. For IBMQ implementations
we used ‘IBM-Sydney’ and ‘IBM-Toronto. All parameters are randomly initialized (see
Fig. 3.2) or warm-started with the initial guess of a converged nearby k-point. (b) The
corresponding energy errors from (a) in eV. (¢) The corresponding state infidelities (1-F'id)
where Fid = [(UrMm|PExact)|? (d) The orbital decomposition of the states at K-point where
|0) = d.2, [1) = dyy, |2) = dy2_,2. The states from RBM calculations matches well with
those from exact diagonalization in phase and amplitude. The width for each bar is set
differently for visual clarity.

from our algorithm as a function of the wave-vector index sampled from the Brillouin zone
following the usual I' — K — M — I" path (see Fig. 3.3(c)). The result for the valence band
(VB) is denoted in blue and is obtained by setting A = 0 in Eq. 3.2 which corresponds to the
usual variational optimization to obtain the ground state at each k-point. The results for

the conduction band (CB) are shown in orange in Fig. 3.4(a). They are thereafter computed
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as a separate set of calculations using O = |vg)(vy| and w = 0 in the cost function in Eq.
3.2 where the corresponding ground state in the valence band (VB) is denoted as |vg). The
penalty parameter is A = 5. The cost-function now samples a state orthogonal to ground
state (null space of the projector |vg)(vg|) for each of the k-points. The minimum energy
criterion imposed by the first term in the cost function in Eq. 3.2 guarantees obtaining the
next higher excited state which happens to be the state space in the conduction band.

We see for all flavors of our algorithm (RBM-cl, RBM-qasm, RBM-IBMQ) the simulated
energy values for both the valence and the conduction band are in good agreement with the
ones obtained from exact diagonalization. The corresponding errors in energy are displayed
in Fig. 3.4(b) and are usually < 107* eV for RBM-cl and RBM-gasm which are noiseless
pristine implementations but is around 1072 — 10~ eV for the valence band (VB) and the
conduction band for RBM-IBMQ) indicating the worsening of performance due to faulty gate
implementations in the Gibbs sampling circuit. Fig. 3.4(c) plots the state infidelities i.e.
1-Fid where Fid = |(Urpm|VExact)|*. We see that the infidelities are also quite small for each
band with the performance worsened only in the IBMQ variant of the RBM implementation.

Like Fig. 3.4(a), Fig. 3.5(a) displays the band structure of WS, wherein the energies for
both the valence and conduction band are overlayed against the energy values obtained from
exact diagonalization. All three flavors of RBM implementation yield reasonably accurate
results as in the case for Fig. 3.4(a). Fig. 3.5(b) and Fig. 3.5(c) display the energy error
and the state infidelities of the state obtained from the RBM calculations against exact
diagonalization. The error ranges in each case is similar to what has been discussed for
MoS,.

Fig. 3.4(d) and Fig. 3.5(d) displays the orbital decomposition of the states in the
conduction and valence band at the most important symmetry point i.e. the K- point. In our
calculations qubit |0) = d.2, |1) = dqy, |2) = d,2_,2 where {0, 1,2} are the integer equivalents
of the two-qubit bit strings encoding the neurons of the visible node. We see from our
calculations however that the exact state generated from the model lines up correctly against
the RBM states in both amplitude and phase. While the state of the conduction band at

K-point is exclusively populated by the d.2, that in the valence band is a superposition of d,

and d,2_,» with a phase shift of 3r/2. This is consistent with the orbital decomposition given
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Figure 3.5. (a) Valence (VB) and conduction band (CB) of WSy calculated using all
flavors of RBM and overlayed against exact diagonalization. The valence band is simulated
using A = 0 in Eq. 3.2 and the conduction band using (O = |vg){vg|, w = 0, A = 5) in
Eq. 3.2 where |vg) is the valence band state at each k-point. For IBMQ implementations
we used ‘IBM-Sydney’ and ‘IBM-Toronto. All parameters are randomly initialized (see
Fig. 3.2) or warm-started with the initial guess of a converged nearby k-point. (b) The
corresponding energy errors from (a) in €V. (¢) The corresponding state infidelities (1-F'id)
where Fid = |(UrpM|PExact)|? (d) The orbital decomposition of the states at K-point where
|0) = d.2, [1) = dyy, |2) = dy2_,2. The states from RBM calculations matches well with
those from exact diagonalization in phase and amplitude. The width for each bar is set
differently for visual clarity.

in Fig. 2 of Ref[90] and is partly the reason given by the authors to use this three orbitals
for generating the tight-binding Hamiltonian as the model yields correct state description

near the band-gap. However as is clear from Fig. 2 of Ref[90], the orbital composition of
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the states at the I' and M-point has contribution from the p-orbitals of S and s-orbitals of
both the metal and the S atoms. This makes the three-band model an approximation for the
exact character of the states even though it can replicate the energy very well throughout
the Brillouin zone.

We further concentrate in this report on describing the low-energy physics near the K
or K’ valley for which, as mentioned before, the state-description of the three-band model
suffices. We construct the Hamiltonian [95]-[98] near the K-valley in the basis of the states
of the conduction band i.e. |d.2) (see Fig. 3.4(d) and Fig. 3.5(d)) and that of the valence
band i.e. \%(|dw2_y2> +i|dyy)) (see Fig. 3.4(d) and Fig. 3.5(d)). The states at the K’ valley
are related to those at the K valley due to time-reversal symmetry[97], [99] and hence is

ignored from further discussion. The Hamiltonian is:

+ Yky O + vkydy

a s B P
+ 5 (K + k) +72) + S (ks + ky)(I = )

+ HTW(kz + lky)Q(fx + l(fy) + /QTWU%: — lky)Z((fx — 1<fy) (38)

A effective description such as Eq. 3.8 is often referred in literature as the two-band & - p
model constructed using Lowdin-Partitioning[90], [96]. The first two terms in Eq. 3.8 is the
massive term required to create the band-gap(A) in the material at the K-point. These terms
are absent in graphene. In most reports this term is written as %Jz with a symmetrically
located origin but we choose to use the Fc¢ and Ev values obtained from our calculations
in Fig. 3.4 and Fig. 3.5. The additional summands in each of the 1st two terms (A, Ac)
refer to band-splitting at thre always2 in numbere K-point due to spin-orbit coupling (SOC).
In the three-band basis, SOC is entirely due to the L, operator (more on this in the next
section) contribution of which in the chosen basis of can be effectively modeled as the first
two terms [95], [98], [L00]. Unlike the Bloch state in the conduction band, the valence band is

exclusively dominated by metal orbitals |d,2_,2) and |d,,) with non-zero angular momentum

leading to strong splitting [90]. The spin-orbit splitting in the conduction band is weak[90],
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[95], [99] and below the resolvable limit of NISQ devices and hence has been ignored herein
i.e. \. =0. The parameter s € {1,—1} is the spin index and labels the SOC split valence
bands. The 3rd-6th term is the linear and quadratic extrapolation away from the K point
and yields a spherically isotropic band surface. The 7th-8th terms (parameterized by k)
break the isotropy and lead to the well-known effect of trigonal warping (TW). The warped
band surfaces in these materials are a consequence of the presence of a perpendicular C5 axis
due to the Dsj;, symmetry of the associated real-space unit cells (see Fig. 3.3(b)). Further
terms in [96] which removes anisotropy between valence and conduction band are ignored
due to their small unresolvable contributions.

Since the Hamiltonian in Eq. 3.8 is 2 x 2, we require a single visible neuron to encode the
eigenstates, a single hidden neuron consistent with & = 1 and 1 additional ancillary qubit.
The number of single-qubit R, gates is 2 and the number of C' — C' — R, gates is 1 and 6
R, gates. Calculations are performed using A = 0 in Eq. 3.2 for the two SOC split valence
bands with s = 1 and (O = |1p) (], A = 5,w = 0) for the conduction band. For NISQ
devices we use ‘IBM-Sydney’ and ‘IBM-Toronto’ interchangeably as before. All calculations
are performed for (k,, k,) pairs centered at the K-point and with a cutoff |k| of 0.1K point to
probe the low-energy regime. Since the (k,, k,) pairs are near a symmetry point (K-point)
warm starting was rarely observed to be required in RBM-cl and RBM-qasm but has been
occasionally used in RBM-IBMQ) for hastening convergence and reducing job queue. Each
point on RBM-IBMQ are performed within a single run with Measurement Error Mitigation
(MEM) as before for smooth self-convergence and consistency with other results. Parameters
for warping are obtained from [96].

In Fig. 3.6(a), (b) and (c) we plot the exact 2D band surfaces obtained from Eq. 3.8 for
the two SOC split valence bands (s== 1) and the conduction band. The crosses in each plot
refer to the (k,, k,) pairs wherein all flavors of RBM calculations have been performed. The
results of such RBM calculations for each such pair are displayed as energy errors (eV) in
3.6 (d)-(f). The x-axis in each such plot is a flattened point index mapping (k,, k,) pairs to
integers by starting from pairs closest to the K-valley at the origin and proceeding spirally

outwards. In other words, for a given |k| the flattened point index groups all (k,, k,) pairs
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Figure 3.6. (a) The exact energy contours in valence band (VB) for s=1 within the
three-band approximation for the Hamiltonian in Eq. 3.8 as a function of (kg, ky) near
the K-point in MoSs (b) Same as in a) but for s=-1 (¢) Same as in a) for the conduction
band (CB). The crosses in (a), (b) and (c) denotes the (k;, k,) pair wherein calculations for
all three flavors of RBM have been executed. (d) Energy errors in eV from three flavors of
RBM calculations for points denoted as cross in a) for the valence band (s=1) case computed
using A = 0 in Eq. 3.2 in MoS,. The x-axis is a flattened point index with (kz, k,) pairs
marked as crosses in (a) mapped to integers such that the origin is at the K-point. From the
K-point, the flattened point index scale moves spirally outwards grouping all (k,, k,) pairs

satisfying |k| = |/kZ + kZ as consecutive integers and then proceeding to the next [k| (e)

Same as in d) but with points denoted in b) as crosses for other valence band with s=-1 (f)
Same as in d) but for points denoted in ¢) as crosses for the conduction band computed with
(A=5,w=0,0 = ) () in Eq. 3.2. (g) The amplitude for the occupancy of d,> orbital
on the metal for states computed at (k;, k) pairs near the K-point from all three flavors of
RBM as well as the exact states in valence band (s=1) for MoS,. The amplitude of states

with the same |k| = ,/kZ + k2 appear bunched together as ’steps’ due to flattened point-

index scale used. Near the K-point the amplitude is the same for all such pairs within a
given step due to isotropy of the energy surface. However away from the K-point deviations
appear due to trigonal warping owing to the Ds;, symmetry of the unit cells in TMDCs.
The states from all flavors of RBM can resolve the influence of warping accurately with the
performance worsened for the noisy variant. (h) Same as in g) for valence band (s=-1) (i)
Same as in g) for conduction band.
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satisfying |k| = \/m as consecutive integers and then proceeds to the next |k|. We
see that the energy error in each case is low for the RBM-cl and RBM-qasm variant (<
10~ eV) for all three bands and < 1072 eV for the IBMQ variant. Thus given the energy
scale and extent of the splitting in the valence bands (s = +1) in Fig. 3.6(a)-(b) and the
scale of the energy errors in Fig. 3.6(d)-(e), it suffices to say that the performance of our
algorithm is good enough to resolve band splitting due to features like spin-orbit coupling.
To study the effect of warping parameters in Eq. 3.8 in the state, we plot in Fig. 3.6(g)-(i)
the amplitude of the corresponding states in the basis of |d.z2) for the two SOC split valence
bands (s = £1) and the conduction band. The x-axis in each case is the flattened pair index
as in Fig. 3.6(d)-(f). At the K-point (origin), the conduction band is exclusively populated
by |d.2) as discussed before but the reverse is true for the valence bands. In each of the plots
Fig. 3.6 (g)-(i) all (k,, k) pairs which satisty |k| = \/m are bunched together as ‘steps’
due to the flattened point index scale chosen. We see that near the K-point wherein the
effect of warping is not prominent, all such points within a given ‘step’ (same |k|) share the
same amplitude. However away from the K-point deviation starts to become predominant.
The amplitudes computed from the states of all three variants of RBM calculations line
up well against the exact curve with the IBMQ variant showing some deviations albeit
small considering the y-scale in these plots. Our algorithm thus can successfully resolve
finer features like trigonal warping too in these Bloch states. A similar panel for WS, is
presented in Appendix B. Accurate computation of such Bloch states with these finer features
preserved is necessary as momentum matrix elements between these states become important
in simulating important properties of materials like optical conductivity[101], [102], electrical

and thermal conductivity[103] etc.

3.4.2 Filter for arbitrary states using symmetry operators

In this section, we shall use the same set of TMDCs discussed above to explore how
one can sieve arbitrary states based on symmetry constraints. To demonstrate the point we
use orbital angular momentum symmetry. The L, operator in the three-band approximation

commutes with the Hamiltonian [90] in absence of spin-orbit coupling as has been considered
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in this work. The operators L,, L, are essentially null matrices in the three-band basis of
{d.2,d,,,d,2_,2} as mentioned in [90]. Hence L? enjoys exclusive contribution from L, and
is a symmetry operator in the system. For computation, we use the Hamiltonian of the
system at the K-point because the three-band approximation as discussed before is extremely
accurate therein.

The complete set of eigenvalues and eigenstates of L, and hence of L? operator is given
in Appendix B. From the knowledge of the spectrum of L? operator we see that it has two
distinct eigenvalues which are {0,4} in atomic units. One of the eigenvectors of the doubly-
degenerate eigenspace with eigenvalue 4 is the state in the valence band and the other is
a higher energy excited state above the conduction band (not shown in Fig. 3.4 or Fig.
3.5). Both these states are exclusively made from the contribution of {d,,,d,2_,2} as seen
from the state decomposition in Appendix B. The sector with eigenvalue 0 has single-fold
degeneracy and is made from the excited state in the conduction band. As discussed before
in Fig. 3.4(d) and Fig. 3.5(d) (also in Appendix B) this state is exclusively made from the
contribution of the d.» which explains the absence of z-component angular momentum. We
would thus expect that if we choose O = L% and w = {0,4} in Eq. 3.2 for training the
network, we should yield the excited state in the conduction band for w = 0 and should yield
the ground state in the valence band for w = 4 as that is of lower energy (in compliance with
the first term in Eq. 3.2) than the other degenerate eigenstate.

The qubit and gate resource requirements of this simulation are exactly the same as
discussed in section 3.4.1 with 2 visible node neurons and 2 hidden node neurons for each
of the two systems MoS; and WS,. The Gibbs sampling circuit in Fig. 3.2 would need a
total of 8 qubits as before (2 for visible node + 2 for hidden node + 4 ancillary qubits). The
gate requirements for the circuit to reproduce the amplitude are thus 4 single qubit Rotation
gates (R,), 4 Controlled-Controlled Rotation gates (C'— C' — R,) and also 24 Bit-flip (X)
gates. We start the optimization with randomly initialized parameters.

In Fig. 3.7 we display the results of our simulation. Like before, the results from all
three flavors of RBM (marked as 2 = RBM-cl, 3 = RBM-qasm and 4 = RBM-IBMQ) are
compared against the exact expected state (marked as 1 = Exact). In Fig. 3.7(a), the

results of energy in eV from the three RBM simulations and the exact one are displayed for
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the eigenvalue sector w = 0 a.u. This happens to be the conduction band (CB) energy in Fig.
3.4(a). We find an extremely good agreement for all flavors of RBM with the exact value.
The corresponding energy error is displayed in Fig. 3.7(c) and is in the range of 107> —10~*
eV for RBM-cl and RBM-qgasm but is within 107 — 1072 eV for the RBM-IBMQ variant.
Fig. 3.7(b) displays the constraint violation error i.e. how much the state encoded in the
neural network after training has an (L?) equal to the target value of w (in this case w = 0
a.u.). We see that the violations are quite small for the noiseless implementations. Even for

implementation on actual NISQ devices of IBM-Q), it is close to 1073 a.u.
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Figure 3.7. (a) The energy comparison between exact (1), RBM-cl (2), RBM-qasm
(3), RBM-IBMQ (4) for computation with O = L? and eigenvalue w = 0.0 a.u. in Eq.
3.2. The exact energy is 1.5950 eV and is the conduction band energy at K-point in MoS,
shown in Fig. 3.4. (b) The constraint violation error [(L?) — w| of the state obtained from
different flavors of RBM and the desired value w. (c) The energy error in eV from (a) of the
states obtained from RBM. (d) The state infidelities (1-Fid where Fid = [(Vrpm|¥Exact )]*)
obtained from RBM and the exact one (e-h) corresponds to an equivalent set of plots as in
(a-d) just described but with the other eigenspace of L? with eigenvalue w = 4 a.u. The
exact energy here is the valence band energy at K-point for MoSs shown in Fig. 3.4 and is
-0.0629 eV.

Fig. 3.7(c) displays the energy error and Fig. 3.7(d) displays the state infidelity error
(1-Fid where Fid = |(Urppm|PExact)|?). We see that for all flavors of RBM implementation
the infidelities are quite small with the performance worsened for implementation on the
actual IBM-Q device. Fig. 3.7(e-h) corresponds to similar plots as discussed above but this
time in the other eigenvalue sector with w = 4 a.u. We again see that the energy values

(in eV) in Fig. 3.7(e) matches with the exact for all flavors of RBM-implementation. This
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Figure 3.8. (a) The energy comparison between exact (1), RBM-cl (2), RBM-qasm (3),
RBM-IBMQ (4) for computation with O = L2 and eigenvalue w = 0.0 a.u. in Eq. 3.2. The
exact energy is 1.749 eV and is the conduction band energy at K-point in WS, shown in Fig.
3.5. (b) The constraint violation error |(L?) — w| of the state obtained from different flavors
of RBM and the desired value w. (c) The energy error in eV from (a) of the states obtained
from RBM. (d) The state infidelities (1-Fid where Fid = |(¥rpm|PExact)|?) obtained from
RBM and the exact one (e-h) corresponds to an equivalent set of plots as in (a-d) just
described but with the other eigenspace of L? with eigenvalue w = 4 a.u.The exact energy
here is the valence band energy at K-point for WSy shown in Fig. 3.5 and is -0.0572 eV.

state happens to be the ground state in the valence band (VB) shown in Fig. 3.4(a). The
corresponding energy errors shown in Fig. 3.7(g) are like in the previous case (w = 0) low
for RBM-cl and RBM-qgasm but in the range of 1073 — 1072 eV for RBM-IBMQ. Similar
analysis as in the case of w = 0 a.u. can also be made for the constraint violation error in
Fig. 3.7(f) and the state infidelity in Fig. 3.7(h). Both of these have low errors with the
respective ranges as displayed.

Fig. 3.8 shows a similar plot for the other system studied WS,. Just as before we display
the results for w = 0 a.u. in Fig. 3.8(a-d) and for w = 4 a.u. in Fig. 3.8(e-h). Fig. 3.8(a)
shows the energy match between the RBM implementations and the exact value for w = 0
a.u. and Fig. 3.8(e) shows the same for w = 4 a.u. The former is equal to the state in
the conduction band at K-point (see Fig. 3.5(a)) and the latter is the corresponding state
in the valence band (see Fig. 3.5(a)). We see good agreement for all RBM variants and
the exact expected value. The corresponding energy errors are low (see Fig. 3.8(c) and

Fig. 3.8(g)) with the range for IBMQ implementation being 1072 — 1072 ¢V and even lesser
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for the pristine implementations. The respective constraint violation errors are displayed in
Fig. 3.8(b) and Fig. 3.8(f) and are small too as seen from the scale. A similar statement
can also be made for the state infidelity displayed in Fig. 3.8(d) and Fig. 3.8(h). We
have seen that in both the systems MoS; and WS,, the state infidelity and energy errors
are higher in the w = 4 a.u. eigensector than in w = 0 a.u. eigensector in the IBMQ
implementation especially. In fact, the relative energy errors for the said sector are close
to 5% for RBM-IBMQ. However, the corresponding errors (both relative and absolute) are
low for the noiseless implementation (RBM-cl and RBM-qasm) indicating that the higher %
error is attributable to the imperfect implementation of gates in the Gibbs sampling circuit
in an IBM-Q machine and hence can be mitigated with future quantum computing devices

with better gate fidelities and error-correction schemes.

3.5 Conclusion

In this study, we have demonstrated an algorithm which can filter arbitrary energy eigen-
states in 2D materials like TMDCs using a quantum circuit with quadratic resources. We
provided an original proof of feasibility for our cost function employed for the constrained
optimization. We also proved a generic lower bound for the successful sampling of our quan-
tum circuit from which previously known bounds can be extracted. Our circuit trains a
three-layered neural network that encodes the desired state using an RBM ansatz for the
probability density. As an illustration, we were able to filter energy eigenstates in the conduc-
tion band of important TMDCs like MoS, and WS,, and faithfully reproduce the band-gap.
We were also able to filter arbitrary states based on a user-defined orbital angular momentum
symmetry constraint. We trained the network on various flavors of computation using not
only a classical computer, qasm backend quantum simulator in Qiskit but also a real IBMQ
machine (IBM Sydney and IBM Toronto) with the objective to see the performance of the
algorithm on actual NISQ devices. In all flavors of computation, our algorithm demonstrated
very high accuracy when compared to the exact values obtained from direct diagonalization.

Venturing beyond the ground state to obtain arbitrary states based on user-defined re-

strictions is the first of its kind in all flavors of QML. Furthermore, the systems of our choice

82



happen to be TMDCs, an important class of 2D-periodic systems which have never been
studied using any quantum algorithm. Periodic systems in general have received scanty at-
tention as far as quantum algorithms are concerned. Only two reports exist[47], [55] both
of which have simulated just the valence band in graphene and hexagonal Boron Nitride
(h-BN).

It must also be emphasized that a host of classical algorithms have been developed in
traditional quantum chemistry that are extremely accurate and polynomially efficient. Over
the past few decades, Density functional theory (DFT) has emerged into a leading candidate
for accurate computation of wide-variety of electronic structure problems in molecules and
materials[104], [105]. Variants of it are being developed for cases wherein multi-reference
correlation would be important too[106]. Reduced density-matrix based methods are also
polynomially scaling [107] and have shown excellent accuracy in strongly correlated sys-
tems[108], [109]. Tensor-network based methods like Density-Matrix Renormalization Group
(DMRG) [110]-[112] have been developed which even though capable of exploiting rank-
sparsity in strongly correlated one-dimensional systems yet loses the polynomial advantage
in multi-dimensions. Like our algorithm which attempts to construct the many-body state,
a plethora of similar wave-function based ab-initio methods exist in traditional quantum
chemistry too starting from the uncorrelated Hartree-Fock method to post-Hartree methods
which can recover dynamic correlation like perturbative approaches (like MP2[113]-[115]),
Truncated Configuration-Interaction or CI (like CISD) [114], [116], Couple-Cluster (CC)
methods [117] (like CCSD, CCSD(T), CCSDT or EOM-CCSD for excited states), recently
developed SHCI methods[118], [119] to ones which are good for capturing static-correlation
like Multi-Configurational Self-Consistent Field ( MCSCF[120]). A direct comparison of a
quantum algorithm like ours with these classical algorithms can be attempted to be made
in terms of accuracy and resource cost. In terms of resource requirements, the compari-
son is made difficult by the fact that certain parameters like circuit-width, circuit-depth,
etc which affect the performance of quantum algorithms like ours, have no classical ana-
logues. If we consider an N electron system with r = r, 4+ r,, spin orbitals/fermionic
modes such that r, = Nge. is the occupied orbital set in Hartree-Fock reference and r,,

are virtual orbitals excluded from Hartree-Fock reference, then under the assumption that
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the orbital space rank loosely equates to qubits or number of visible neurons n (see section
3.3.1 and [69]), we have shown in section 3.3.3 that the spin-orbital cost of our algorithm
would be ~ O(r?) = O(r? + r2, + 2r,,r,). The numerical parameter count of our algorithm
is also quadratic i.e. O(an?) = O(r?) = O(r2 4+ r2, + 2ry,r,). This is unlike methods like
CCSD (Coupled-Cluster Singles Doubles) which has a computational cost of &~ O(r?r? )

0" uo

(for CCSDT it is ~ O(r3r5 ) and for CCSD(T) it is &~ O(r3rd))) [117], [121]. Also CCSD

O uo

evaluates &~ O(r?r?)) cluster amplitudes as parameters defining the excitations. For chem-
ically important phenomenon like dissociation events which are no longer single-referenced
are known to be difficult to treat with CCSD [122], even though pair cluster doubles can
ameliorate the situation to some extent [123]. That being said, it must also be noted that
traditional variant of CCSD unlike ours is non-variational. As far as accuracy is concerned,
all results in this report are benchmarked against exponentially scaling exact diagonalization
as that affords the exact value in a given basis. Not only the physics of Bloch states in the
material TMDC but also a molecular example like LiH has been treated using our algorithm
(see Appendix B). For both the ground and excited states of LiH we see good accuracy and
improvement of error by enhancing the hidden node density which makes the ansatz more
expressive. Studies on larger molecular systems for which the results of exact diagonalization
may not be available may be undertaken in future. That will provide a platform for com-
parison in accuracy with a subset of the aforesaid classical algorithms. Desirable chemical
features like size-consistency and size-extensivity may be probed too.

One must also note that several quantum algorithms already exist which aim at obtaining
ground and excited states of fermionic systems[124]. Non-variational quantum algorithms
like Quantum Phase estimation(QPE)[40], [125], [126] have exponential speed up[127] yet
require high circuit depth and long coherent operations which are beyond the limits of
near-term hardwares [23]. Hybrid Variational Quantum Algorithms (VQA) have also been
developed which can ameliorate some of the above problems[46]. The most notable one in
the list is Unitary Coupled-Cluster Variational Quantum Eigensolver (UCC-VQE) [43]. In
its most traditional variant, the unitary ansatz which UCC-VQE uses for state prepara-
tion consists of single and double-excitations[128]-[130](hence often called the name Unitary

Coupled Cluster Singles Doubles or UCCSD) from the reference state. However, the circuit
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depth in preparing such an ansatz is still large and the circuit is parameterized by many
variables which necessitates a high-dimensional classical optimization routine [131] to up-
date the parameters. To be concrete, for r, and r,, with the same meaning as described in
previous paragraph, the UCCSD-VQE uses [124] O(r,) qubits, O(r?r2)) cluster amplitudes
as parameters and O(frl) gates where f = O(r,) or O(log(r,)) depending on the qubit-
mapping. Besides the UCC-VQE method can suffer from errors incurred due to operator
ordering or Trotterization [132]. Also, the ansatz requires a high-degree of qubit connectivity
for non-local operations which may not always be available in all hardware [133]. Hardware-
efficient ansatz [44], [134] has been developed to help solve the above issues which use an
alternating framework of single-qubit gates and fixed entangling operations which can be
chosen with the specific capabilities of the device in hand. However, unlike UCC-VQE,
such an ansatz is not physically inspired and often suffers from trainability issues during
parameter optimization [46], [L35]. Besides the number of parameters grow as a function of
entangling blocks and can even surpass the size of the Hilbert space [124], [134]. A third
variant that has low circuit dept h and parameter cost is the ADAPT-VQE approach [136].
Unlike in the previous two cases, this variant constructs the circuit from a pre-selected pool
of operators and changes the circuit architecture adaptively by adding operators from the
pool which affects the energy gradient the most. The chosen pool decides the parameter
count and gate-counts in the circuit. In this method, the number of measurement shots can
be high for computing the gradients [131] and also it is generally not clear how to pre-select
the operator pool and what guarantees that the pool is complete i.e. the ansatz it produces is
expressive enough. Many different variants for each method have been constructed for which
the reader is referred to many excellent reviews like [46], [124], [133]. For excited states
[46], deflation assisted VQE as described before [58] exist but for its implementation used
the UCCSD ansatz which inherits some of the above problems of high parameter count and
gates. A recent promising method known as Weighted Subspace- Search VQE uses an input
array of several orthogonal states to construct a weighted Lagrangian as the cost function
[137]. In this case, the input states are mapped to the excited states of the system using a
parameterized ansatz circuit. Depending on the nature of the ansatz circuit, the algorithm

can have different gate-count or parameter count and hence it is hard to mention a general
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estimate.

Our algorithm is also a hybrid variational algorithm like the ones in the aforesaid list but
requiring quadratic resources always (see Section 3.3.3). However there are some key dif-
ferences as well which need to be acknowledged. Unlike the above list of algorithms which
prepare a unitary ansatz on a quantum computer to mimic the state, our algorithm proposes
to construct a probability distribution that mimics the amplitude field of the target state
on a quantum computer. As a result our algorithm is a distribution sampling protocol on
a quantum computer using a non-unitary ansatz (RBM) which is manifested in the usage
of ancilla and its subsequent measurement collapse. The measurement statistics of such a
collapse are discussed in Appendix B. Since the distribution encoding the amplitude field is
based on RBM, unlike the ADAPT-VQE method, our protocol is largely problem agnostic.
This is due to the fact that RBM can act as a universal approximant to any probability
density [19] and hence can be used for a variety of problems provided it is made sufficiently
expressive with an adequate hidden node density. Also unlike other algorithms wherein the
nature of the excitations or operator pool used decides the cost-function gradient, in our case
the distribution function being RBM always permits training the network with analytical
gradients. Besides we have already demonstrated in section 3.3.3 using Ref [76] that an
analogous classical construction of RBM distribution has an exponential overhead whereas
using a quantum algorithm like ours one can construct it using quadratic resources thereby
illustrating the distinct quantum-classical advantage in our algorithm directly.

Further extension of this algorithm can be made to compute operators using Hellmann-
Feynmann method [138], to characterize the influence of noise on the algorithm and to see it
being extended to study other interesting phenomena on 2D materials like Rashba splitting
in polar TMDCs[139] or even effect of strain[140]. One must also note that in this work we
construct the full d = 2"-dimensional eigenstate from the amplitude encoding using the RBM
ansatz (Eq. 3.4) and the phase encoding using the Eq. 3.5. This is because the primary
quantum advantage of our algorithm lies in the fact we use quadratic resources to learn the
full RBM distribution which classically would require exponential resources as necessitated
in [76]. Besides access to the full state allows us to compute matrix elements of arbitrary

operator between eigenstates important for spectral information i.e. learning in excitonic
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features[101] or thermal and electronic conductivity [103] which as said before are important
future extensions of this work. Also once trained for a given system, the neural-network in our
algorithm can be used to learn eigenstates of a closely related system accurately with faster
convergence and lesser number of iterations indicating partial transferability of these models
(see Appendix B). Benefits and scope of such ‘transferable training’ for other chemically
motivated systems will be investigated in future. It must be noted that the symmetry
partitioning of the metal orbitals in TMDCs guaranteed in [90] have reduced the effective size
of the orbital space and qubit requirements in this study. However understanding spectral
information in excitonic physics would require more involved models with a larger orbital
space. A way forward may be focusing on low-energy excitons with a certain symmetry (like
overall spin-angular momentum) characteristics only. For molecular systems such symmetry
inspired cost-reductions are already beginning to be noticed [70], [72] as discussed earlier.
However such an initiative for materials is largely an uncharted territory. Further reduction
in qubit resource requirements of our algorithm may also help, even though the non-unitary
nature of the ansatz as discussed before makes it harder. From the hardware point of
view, robust large scale error mitigation strategies are beginning to be made available now
[141], [142] and devices with over 1000 qubits with low qubit decoherence errors and gate
infidelities are also being promised in recent future [143]. Such resources would will certainly
be beneficial to extensions of studies like these.

From the algorithmic point of view, besides being quadratic scaling in qubit and gate
requirements and parameter count, our algorithm does not have any dependence on oracular
objects like qRAM [35] which is responsible for creating a superposition of all possible basis
states and is known to commonly sought in most quantum machine learning modules. As
futuristic quantum devices are being developed with proper error mitigation schemes, we
expect to have more such cross-pollination between machine learning algorithms and quan-
tum computing with the promise to study electronic structure and dynamics in new complex

materials.
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4. FINITE-SIZE SCALING ON A DIGITAL QUANTUM
SIMULATOR

The contents of this chapter are adapted from the article ‘Khalid, B., Sureshbabu, S. H.,
Banerjee, A., & Kais, S. (2022). Finite-size scaling on a digital quantum simulator using
quantum restricted Boltzmann machine. Frontiers in Physics, 464"

4.1 Introduction

A phase transition occurs whenever the thermodynamic state variables of a system be-
come non-analytic e.g. as a liquid changes into a gas, the density of the system changes
discontinuously. If the phase transition occurs at a finite temperature 7' # 0, the transition
is called a classical phase transition (CPT) as it is dominated by thermal fluctuations. On the
other hand, if the transition occurs by tuning some parameter in the system’s Hamiltonian
as T — 0, it is called a quantum phase transition (QPT) since it is dominated by quantum
fluctuations. A CPT appears only when the system is infinite i.e. in the thermodynamic
limit[1]. On the other hand, a QPT doesn’t necessarily require the thermodynamic limit.
Recently there has been a lot of interest in QPTs occurring in finite size quantum optical
systems|2]-[7].

Quantum Rabi Model (QRM) describes the interaction of a two-level system with a
bosonic field mode (see Eq. (4.1) for the Hamiltonian.) This model has gained a lot of signif-
icance in the study of ultrastrong light-matter coupling regimes e.g. in circuit QED where the
so-called counterrotating terms can not be ignored|[8]. Quantum Rabi Model has been shown
to exhibit a QPT[2]. Namely, when the energy separation of the two levels in the system
) becomes infinitely large compared to the frequency of the bosonic mode wy, the ground
state of the Hamiltonian undergoes a phase transition from a normal phase to a superradiant
phase as the light-matter coupling exceeds the critical value. Moreover, the ground state of
the Jaynes-Cummings model (JCM) which can be obtained from the QRM by performing
the rotating-wave approximation has also been shown to exhibit the normal-superradiant
phase transition[3]. Later on, a more general anisotropic QRM in which the rotating and

counter-rotating terms can have different coupling strengths was also considered[4]. The
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QRM and JCM are limiting cases of this model. It was shown that the ground state for
this more general case also undergoes the normal-superradiant phase transition. The phase
transition in QRM has also been demonstrated experimentally using a !"'Yb™ ion in a Paul
trap[7]. This experimental demonstration of a phase transition in a single two-level system
has incited a lot of interest since this opens up an avenue for studying critical phenomena
in controlled, small quantum systems.

In CPTs and some QPTs (which require N — 00), a finite-size scaling (F'SS) analysis can
be done to extract the critical point and the critical exponents of the transition|[1], [9]. While
this procedure is inapplicable to the QPTs discussed above since these phase transitions occur
at a finite system size, the phase transitions in these paradigmatic light-matter interaction
models occur only in the limit Q/wy — oo and FSS analysis can be done in € /wy[2]-[4]
instead. In this chapter, however, we propose a different approach to studying such phase
transitions. We apply the FSS in Hilbert space method[10]-[15] to the QPT in Quantum
Rabi Model. In this approach, the truncation of the system is done not in the physical space
but in the Hilbert space. The set of basis states spanning the infinite dimensional Hilbert
space is truncated to a finite set and the scaling ansatz is employed in terms of the size of
this set. This approach has previously been developed and applied to a single particle in
Yukawa potential[11], [13] and the problem of finding electronic structure critical parameters
for atomic and molecular systems[10], [12], [14]-[16].

In recent years, digital and analog quantum simulators have emerged as a promising
platform for the simulation of quantum phenomena. Quantum simulators have already been
used to study phase transitions using the method of partition function zeros[17] and the
Kibble-Zurek quench mechanism[18], [19]. In this chapter, a protocol to implement the finite-
size scaling method using the Quantum Restricted Boltzmann Machine (QRBM) algorithm
to find the critical point of the Quantum Rabi model on a digital quantum simulator has

been presented.
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4.2 Theory

4.2.1 Quantum Rabi Model

The QRM describes a two-level system interacting with a bosonic field mode. The Hamil-
tonian is[2],

Q
Hpayi = 50 woa'a — Aoy (a + af) (4.1)

where we’ve chosen h = 1. Here, 0, and o, are the Pauli Z and X matrices respectively, € is
the energy separation between the two levels in the system, wy is the frequency of the bosonic
mode and A is the system-atom coupling strength. The parity operator II = ein(aa+1)(t)
commutes with Hpggpi. S0, Hpaepi has a Zs symmetry.

This model has a critical point at g = 2X\/v/weQ = g. = 1 in the limit Q/wy — oo[2].
/wy — oo is analogous to the thermodynamic limit for this case, and in experiments where
2/wp has to be finite, we’ll observe finite-size effects like in any other phase transition[2]. For

g < 1, the system is in the normal phase and the ground state is ‘¢9lp(g)> S[rap(9)]10) [4)

where S[z] = exp [£(a — a?)] and 7,,,(g) = —+ In(1 — ¢g*). The rescaled ground state energy
and photon number are eg(g) = @ (Hpasi) = —wo/2 and ng(g) = <@ <aTa> = 0 respectively.
For g > 1, the system is in a superradiant phase and the ground state is two-fold degenerate,

0.(6)) = Dl aylSlrp(9)]0) [1) here ryp(g) = —LIn(1 — g~1) and Dla] = exp [a(a! — a)).
|¢i> is the negative eigenvalue eigenstate of 202 + 2’\20;29 o, where oy = 4Q¥WO (9* —1). The
rescaled ground state energy and photon number are eq(g) = 2 (Hpai) = —wo(g® + g7 2)/4

and ng(g) = & <aTa> = (g% — g~?)/4 respectively.

As shown in Fig. 4.1(a) and (b), d*eg/dg?* is discontinuous at g = g. = 1, indicating a
continuous phase transition and ng = 3 <aTa> is an order parameter for this phase tran-
sition. In the normal phase, ng is zero whereas in the superradiant phase, Z, symmetry is
spontaneously broken and ng becomes non-zero.

We can also write effective low-energy Hamiltonians in both the normal and the super-

radiant phases. For g < 1, Hgap, can be reduced to the following effective Hamiltonian[2],

2
Wog

(a+a')? — (4.2)

H,, = woala —
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Figure 4.1. Phase Transition in Quantum Rabi Model. (a) The rescaled ground
state energy eq/wo = (Hpapi) /2 and (d?eq/dg?)/wy as functions of g. The discontinuity
in (d?eq/dg?)/wo at ¢ = g. = 1 indicates a continuous phase transition. (b) The order
parameter ng = 4 <aTa> as a function of g. ng becomes non-zero when the Zs symmetry
is spontaneously broken at g > g. = 1.

The system’s degrees of freedom have been removed by projecting to |]) (1|, since this is a

low energy description. Similarly, for g > 1 the effective Hamiltonian can be written as|[2],

Q
Hy =wala = o+ al) = (6 +972) (4.3)

where this time around the Hamiltonian has been projected along [{*) (}*|. In Sec. 4.3,

we'll use H,,, and Hy, to find the critical point of the model.

4.2.2 Finite-Size Scaling

The FSS method is widely used to determine the critical points and the critical exponents
in phase transitions[l]. To demonstrate the method, consider that we have an infinite 2d
system that undergoes a classical phase transition at a critical temperature T = T,[9].

Suppose () is a quantity that becomes singular at 1" = T, with some power law behavior

Qoo(T) ~ [T = Te| . (4.4)
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We can also think of this system as an infinite collection of infinite stripes, where the stripes
are infinitely extended along one direction and stacked along the perpendicular direction.
Now suppose there are only an N number of stripes. If N is finite, () should be regular
at T = T, since finite systems cannot have non-analyticities at T £ 0. The singularity at
T = T, should appear only when N — oo. The finite size scaling hypothesis assumes the

existence of a scaling function F such that

QN(T) = Quo(T) Fo(N/&(T)), (4.5)

where )y is the observable ) for a system with /N stripes and (), corresponds to the system
in the thermodynamic limit. £ is the correlation length for the infinite system. Eq. (4.5) is
valid when N is large. The correlation length also diverges as a power law near the critical
point,

o T) ~ [T = Te| " (4.6)

Substituting Eq. (4.4) and (4.6) in Eq. (4.5),
QOn(T) ~ |T — T.| “Fo(N|T — T.]"). (4.7)

Since Qn(7T') should be regular at T' = T, the scaling function should cancel the divergence
due to |T — T.|™. Therefore, the scaling function should be of the form Fy(z) ~ 2%/V as
x — 0. We should then have,

Qn(T) ~ N7 (4.8)

If we define a function Ag(T; N, N') such that

Ag(T;N,N') = log(%gg%%%;’ @), (4.9)

then the value of this function at T = T,, Ag(T.; N,N') ~ w/v is independent of N and
N’.  Therefore, for three different values N, N’ and N”, the curves Ag(T; N, N’) and
Ag(T; N, N") will intersect at the critical point 7" = T,. This is how we can locate the

critical point using the finite size scaling hypothesis.
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We can also find the critical exponents w and v. Noting from Eq. (4.4) that

aQOO(T) N —(w+1)
e - T, (4.10)

Therefore, we should have Agg or(Te; N, N') ~ (w+1)/v. Define a new function I',,(T'; N, N')

such that
Ao(T; N, N’
FW(T, N, Nl) — Q( I7 Y ) .
AaQ/gT(T; N,N ) — AQ(T; N,N)

(4.11)

The value of this function at the critical point I'y,(7.; N, N') ~ w is independent of N and

N’ and gives us the critical exponent w. Then v can be determined using

w
v~ Ao(To NN (4.12)

As we've already stated in the Introduction, this method cannot be used for the kinds

of phase transitions we are interested in which occur at a finite system size. However, for
such cases we can consider an extension of the approach discussed above[10]-[16]. In this
extended approach, instead of truncating the system in the physical space, the system is
truncated in the Hilbert space[16]. The FSS ansatz looks exactly the same except that N
now represents the size of the set of basis states which spans the truncated Hilbert space[16].
Moreover, the temperature T" will be replaced by the parameter g which is being tuned across
the critical point. This approach has been shown by Kais and co-workers to work in the case
of a particle in Yukawa potential[11], [13] and the calculation of electronic structure critical

parameters for atomic and molecular systems[10], [12], [14]-[16].

4.2.3 Quantum Restricted Boltzmann Machine

Solving quantum many-body problem accurately has been a taxing numerical problem
since the size of the wavefunction scales exponentially. The idea of taking advantage of the
aspects of Machine Learning (ML) related to dimensionality reduction and feature extrac-
tion to capture the most relevant information came from the work by Carleo and Troyer

[20], which introduced the idea of representing the many-body wavefunction in terms of an
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Artificial Neural Network (ANN) to solve for the ground states and time evolution for spin
models, with a Restricted Boltzmann Machine (RBM) as the chosen architecture for this
ANN. More recently, the critical behavior of the quantum Hall plateau transition based on
wavefunctions have been studied in a 2D disordered electron system with the usage of a Con-
volutional Neural Network (CNN) [21]. However, we focus on using an RBM architecture in
this work. An RBM consists of a visible layer and a hidden layer with each neuron in the
visible layer connected to all neurons in the hidden layer but the neurons within a layer are

not connected to each other. The quantum state is 1 expanded in the basis |z):

[¥) = _v(z)|z) (4.13)

The Neural Network Quantum State (NQS) describes the wavefunction ¢ (z) to be written
as 1(z;0), where 6 represents the parameters of the RBM. ¢(x;#) is now written in terms

of the probability distribution that is obtained from the RBM as follows:

p(;0) oc 3 e 2 TR bty et hy (4.14)
{h}

where, o7 is the Pauli z operator at i' site, 07 and h; take values {+1,—1}, 6 = {a;, bj, w;;}
are the trainable bias and weight parameters of the RBM. Using stochastic optimization,
the energy F(f) is minimized.

This work was extended to obtain the ground states of the Bose-Hubbard model [22] and
for the application of quantum state tomography [23].

With the rapid developments in the domains of ML and Quantum Computing (QC), the
appetite for integrating ideas in both of these areas has been growing considerably. The last
decade has seen a surge in the application of classical ML for quantum matter, wherein these
methods have been adopted to benchmark, estimate and study the properties of quantum
matter [24]-[27], with recently showing provable classification efficiency in classifying quan-
tum states of matter [28]. RBM based ansétzes have been shown to capture entanglement
transitions [29] and using an RBM with local sparse connectivity achieves higher accuracy

compared to its dense counterpart when applied to disordered quantum Ising chains [30].
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The protocols and algorithms related to ML implementable on a quantum system so called
Quantum machine Learning [31] is expected to have the potential of changing the course of
fundamental scientific research [32] along with industrial pursuit.

In lieu of today’s Noisy Intermediate Scale Quantum (NISQ) devices, the ideas which
utilize both classical and quantum resources, such that the part of the problem which has
an exponential scaling is implemented on the quantum platform while the rest are dealt
with classically, are being carefully investigated for various applications. Such algorithms
are known as classical-quantum hybrid algorithms. In the work by Xia and Kais [33], a
modified RBM with three layers was introduced, the third layer to account for the sign of
the wavefunction, to solve for the ground state energies of molecules. Now, the parametrized

wavefunction v (z; 6) is written as a function of P(z) along with a sign function s(z):

iy o0 GOF Y by Yy wothy
P(X) = Z a-o’z’-‘,-z bh+z ’LU“a'Zlh~ (415>
2w 2gny et § O 2y Wt

s(x) = tanh l(c + Z diai)] (4.16)

The wavefunction ansatz in terms of the RBM can be expressed as[33]:

[¥) =D/ P(z)s(x)|z) (4.17)

A quantum circuit comprising of a single-qubit (R,) and multi-qubit y-rotation gates
(C1 — C2 — R,) are employed, to sample the Gibbs distribution. The utilization of R,
gates cater to the bias parameter of visible and hidden layers part of the distribution, while
C1—C2— R, gates tend to the weights part of the distribution. In the work by Sureshbabu
et al. [34], the implementation of such a circuit on IBM-Q devices were shown, wherein a
new ancillary qubit is introduced to store the value corresponding to every C'1 — C2 — R,
gate (Fig. 4.3). The term n denotes the number of visible qubits and m denotes the number
of hidden units. In this formalism, the number of ancillary qubits required are n x m.
Starting all the qubits from a |0), the R, and C'1 — C2 — R, rotations are performed, and a

measurement is performed on all the qubits. If all the ancillary qubits are in [1), then the
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Figure 4.2. Restricted Boltzmann Machine architecture. The first layer is the
visible layer with bias parameters denoted by a;. The second layer is the hidden layer
with bias parameters denoted by b;. The third layer is the sign layer with bias parameters
denoted by c¢. The weights associated with the connections between the visible neurons
and the hidden neurons are designated by wj;. The weights associated with the connections
between the visible neurons and the neuron of the sign layer are designated by d;.

sampling is deemed successful and the states corresponding to the first m +n qubits provide
the distribution P(x). The joint probability distribution defined over the parameters of the
circuit § = {a,b,w} and a set of y = {o*, h} is given by:

ezi aigiz+2j bj hj*Zij wijof hy

Z{y} ezi aia'izl—i-zj bjhj-‘rzij wijcriz,hj

P(y,0) = (4.18)

The probability of successful sampling can be improved by rewriting the distribution P(y,0)
)[33], [35]:

|wij |
2

as Q(y,0) and setting k = max(1,

e%@i aiof+) 2 bihi+)  wijothy)

S oF (0, a0 + 37 bihy+ 3, wiga hy)

Qy,0) = (4.19)
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Figure 4.3. The quantum circuit to sample the Gibbs distribution. n is the
number of qubits belonging to the visible layer and m is the number of qubits belonging to
the hidden layer. There are m x n ancillary qubits.

Firstly, the QRBM is implemented classically, i.e, the quantum circuit is simulated on a
classical computer. This execution caters to the ideal results that can be obtained through
the QRBM algorithm. Then, the quantum circuit is implemented on the Digital Quantum
Simulator, the gasm simulation backend. This simulator is part of the high-performance
simulators from IBM-Q. The circuit is realized using IBM’s Quantum Information Software
Toolkit titled Qiskit [36]. Though no noise model was utilized, as a result of finite sam-
pling, statistical fluctuations in the values of probabilities in observing the circuit in the
measurement basis, are present in the obtained results.

Having obtained the distribution Q(y, 6), the probabilities are raised to the power of k,
to get P(y,0). Following this, the sign function is computed classically, thereby calculating
|1)). Then, the expectation value for the Hamiltonian H [(¥| H |¥)] is computed to get the
energy, which is minimized using gradient descent to obtain the ground state eigenenergy of

H.

108



The resource requirements demanded by this algorithm are quadratic. The number of
qubits required are (m + n) to encode the visible and hidden nodes, and (m x n) to account
for the ancillary qubits. Hence, the number of qubits scales as O(mn). The number of R,
gates required are (m + n) and the number of C'1 — C2 — R, gates required are (m x n). In
addition, each C'1—C2— R, gate requires 6n X-gates to account for all the states spanned by
the control qubits. Therefore, the number of gates required also scales as O(mn). Obtaining
the ground states or minimum eigenvalues of a given matrix using exact diagonalization has
a complexity of ~ j*, with j being the dimension of the column space for the given matrix

37).

4.3 Results

4.3.1 Exact Diagonalization

In this section, we demonstrate the calculation of the critical point of the Quantum Rabi
model using the Finite-Size Scaling method. As discussed before, the phase transition in
QRM occurs only in the limit ©Q/wy — oco. This limit is not straightforward to implement in
Hprapi given in Eq. (4.1). Instead, we have considered the effective low-energy Hamiltonians
H,, and Hy, given in Eq. (4.2) and (4.3) respectively. In H,, and Hy,, €2 is involved only in
a constant term which can be removed from the Hamiltonians and the limit € /wy — oo can
then be easily imposed.

In H,, and H,,, the degrees of freedom of the two-level system have been traced out
and the only degrees of freedom we have are those of the bosonic mode. Let’s first consider
the normal phase Hamiltonian H,,. The Hilbert space for this Hamiltonian is spanned by
the familiar harmonic oscillator number states {|0),]1),]2),...}. We can truncate the full
Hilbert space to an N-dimensional Hilbert space spanned by {|0),|1),...,|N — 1)} to apply
the finite-size scaling analysis. In this restricted Hilbert space, the matrix form of Hﬁg ) can
be found by using a|m) = /m|m —1) and a' |m) = v/m +1|m +1). Once we have the
matrix form, we can then use the exact diagonalization method to find the ground state of

N) wi N
Hflp) with energy Eép).
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Figure 4.4. Finite-Size Scaling for Quantum Rabi model. We used N =
8,10,...,32. (a) Graphs of Ap, (g;8,10), Amn,,(9;10,12),..., Ag, (g;30,32) as a function
of g. (b) Intersection points gSf,Z) where Ay, (gﬁljz\,]),N 4N —-2)=Apy, (gr(lp),N —2,N),

as a function of 1/N. As N — oo, gi)) — 0.999996. So, g{"" = 0.999996. (c) Graphs of

Ag,,(9:8,10), An,,(9;10,12),..., Ay, (g;30,32) as a function of g. (d) Intersection points

ggp) where Ap, (gsp),N —4,N —-2) = Ap,, (ggg),N — 2,N), as a function of 1/N. As

N — 00, g2 — 0.999987. So, g{*") = 0.999987.

Consider the scaling law for the ground state energy in the vicinity of the critical point
9 = Ye,
E(g) ~ g — g™ (4.20)

Here E is the ground state energy. We slightly modify the formula in Eq. (4.9) to take into
account the difference in the signs of the exponents in Eq. (4.4) and (4.20). The new formula

with QQ = F is,
log(E5))(9)/E ) (9))
log(N’/N) ’

Am,, (g N, N') = (4.21)

We plot the curves Ay, (g9; N, N 4 2) for N = 8,10,...,30 in Fig. 4.4(a). We then plot the
intersection points g,(g) of the curves Ay, (g; N—4, N—2) and Ay, (g9; N—2, N) as a function
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of N as shown in Fig. 4.4(b). To find the limit of g,(f;’ ) as N — oo, we used the Bulirsch-
Stoer algorithm (see Appendix C.1). The limit was calculated to be gﬁg) — 0.999996. So
g{") = 0.999996.

In a similar way, we then consider H,,. The curves Ay, (g; N, N + 2) are plotted in
Fig. 4.4(c) for N = 8,10,...,30 and the intersection points g{3) are plotted in Fig. 4.4(d)
as a function of N. In this case, the extrapolation to N — oo gives the critical value

gésf’) = 0.999987. Both the calculated values of gﬁ”p) and gﬁSp) are very close to the exact

value g. = 1.

4.3.2 Quantum Restricted Boltzmann Machine

Now we illustrate the implementation of the FSS method using the QRBM algorithm.
The results are shown in Fig. 4.5. Fig. 4.5(a) and Fig. 4.5(c) show the results for H,, and
Hy, using the classical implementation of the algorithm respectively. Whereas, Fig. 4.5(b)
and Fig. 4.5(d) correspond to the results for H,,, and Hg, when the algorithm is implemented
using the gasm simulator from IBM-Q respectively. The QRBM algorithm is run for N =
8,10, 12, 14, 16.
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Figure 4.5. QRBM Implementation of FSS for QRM. The light blue line
represents results obtained from exact diagonalization and dashed black line repre-
sents QRBM results. (a) Classical implementation of QRBM corresponding to normal
phase, graphs of Ap, (g;8,10), Agm,,(9;10,12), ..., An,, (g9;14,16) as a function of g.
(b) QRBM implemented on gasm simulator corresponding to normal phase, graphs of
Ag,,(9:8,10), Ag, (9;10,12), ..., Ap, (9;14,16) as a function of g. The gﬁ”p) in both
cases is calculated to be 1.008. (c) Classical implementation of QRBM corresponding to
superradiant phase, graphs of Ay, (g;8,10), Ag,,(g9;10,12), ..., Ap,,(g;14,16) as a func-
tion of g. (b) QRBM implemented on gasm simulator corresponding to superradiant phase,
graphs of Ay, (9:8,10), Ag,,(9;10,12), ..., Ag,, (g;14,16) as a function of g. The g&P) in
both the cases is calculated to be 0.996. The inset plots display the mean percentage error
between the exact diagonalization results and QRBM results.

For the case of N=8, the number of qubits associated with the visible nodes equal 3,
the number of qubits associated with the hidden nodes equal 3, and 9 ancillary qubits were
used. The quantum circuit consists of 6 R, gates associated with the bias parameters, 9
C1— C2 — R, gates associated with the weights. Since, each C'1 — C2 — R,, gate requires 6
X-gates, a total of 54 X-gates were used. For the case of N=10,..,16, the number of qubits
associated with the visible nodes equal 4, the number of qubits associated with the hidden

nodes equal 4, and 16 ancillary qubits were used. The quantum circuit consists of 8 R, gates
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associated with the bias parameters, 16 C'1 — C2 — R, gates associated with the weights.
Since, each C'1 — C2 — R, gate requires 6 X-gates, a total of 96 X-gates were used.

Starting from random initialization, all parameters are updated via gradient descent.
A learning rate of 0.01 was chosen and the algorithm is run for around 30,000 iterations.
In order to assist with the convergence to the minimum eigenenergies, warm starting is
employed. The method of warm starting is essentially initializing the parameters of the
current point with the parameters of a previously converged point of calculation, which
helps in avoiding the convergence to a local minimum.

The black curves plotted in the insets in Fig. 4.5 represent the deviation of the QRBM
results (black dashed curves) from the exact diagonalization results (blue solid curves). They
were calculated using the average of the quantity ‘A(ED) (g) — A@EBM)(g) /A(ED) (g)’ x 100
over all the four curves. An enlarged version of the error plots can be found in the Appendix
C section. For each case, the overall error close to ¢ = 1.000 is not more than ~ 5% which
implies convergence to the right result. Moreover, for the case of Hy,, we notice that the
error is very small for the classical implementation i.e. ~< 1% throughout the range of the
graph.

The critical point using H,, was found to be g™ = 1.008 for both the classical and
gasm implementations. Similarly, the critical point for the case of H,, was found to be
g'*P) = 0.996 for both the classical and gasm implementations. Here we notice that although,
the convergence for the data obtained from both the classical and gasm implementations
turns out to be the same for both H,, and Hg,, such a perfect match appears to be somewhat
coincidental. In Appendix C.1, we have explained the Bulirsch-Stoer algorithm which sets
the criteria used to deduce these convergence results. The convergence plots have been added

to the Appendiz C' section.

4.4 Discussion and Outlook

In this chapter, Finite-Size Scaling in the Hilbert Space approach has been used to cal-
culate the critical point of the Quantum Rabi Model. The low-energy effective Hamiltonians

for both the normal and superradiant phases respectively have been utilized to show that
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the critical point is g. ~ 1. The original FSS approach in which the truncation is done in the
physical space has been widely used to calculate critical points and critical exponents since
its inception. However, that approach was not applicable to Quantum Phase Transitions
which occur at a finite system size. With the rise in interest in QPTs occurring in these
finite-size systems, our approach provides a natural extension of the original FSS method to
study such phase transitions. To our knowledge, this is the first time this approach has been
used to study a QPT in a light-matter interaction system.

A recipe for the implementation of this method on a universal quantum computer using
the Quantum Restricted Boltzmann Machine algorithm has been provided. It was shown that
results obtained from the classical gate simulation match those obtained from the IBM-Q’s
gasm simulator. Such an implementation scales quadratically while the exact diagonalization
scales cubically in the best case and exponentially in the worst case. Looking forward, we are
interested in applying this approach to other QPTs such as the QPT in anisotropic QRM.
We would also like to use our method to calculate the critical exponents in addition to the
critical points in these phase transitions. It would also be interesting to see if this approach
can be used to predict any new phase transition for some other non-integrable model.

Another very promising research direction is to implement the FSS method for phase
transitions in classically intractable many-body models such as exotic electronic and mag-
netic systems. These include general quantum materials, for example where Coulomb po-
tential leads to a gapped spectrum in energy, including indirect band-gap semiconductors
in the thermodynamic limit. Conventionally speaking, it might be necessary to resort to
the original finite-size scaling in the physical space approach for these systems since they
exhibit criticality only in the limit N — oo. However, the ground state of an appropriately
truncated Hamiltonian could be deduced using the QRBM algorithm as shown in the paper
towards efficient implementation on a digital quantum simulator. A simile can also be drawn
between a many-body bulk gap separating a continuum of excited states from the ground
state manifold to the gapped Rabi model discussed in this paper. Such an approach can be
useful in emergent topological systems, such as in Weyl semimetals, 1-D Kitaev spin chains,
quantum spin liquids, and others, on which there is a tremendous explosion of interest [38]—

[43]. Topological phase transitions are devoid of any conventional order parameter and a
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quantum solution deriving from the approach outlined in this paper can help us bypass re-
source and scaling limitations of DMRG and exact diagonalization approaches to calculate

the critical point and the critical exponents.
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5. PARAMETER SETTING IN QUANTUM APPROXIMATE
OPTIMIZATION OF WEIGHTED PROBLEMS

The contents of this chapter are adapted from the article ‘Sureshbabu, Shree Hari, et al.
"Parameter Setting in Quantum Approximate Optimization of Weighted Problems." arXiv
preprint arXiv:2305.15201 (2023)".

5.1 Introduction

Quantum computers are widely believed to be able to provide computational speedups for
various problems of relevance to science and industry [1], [2]. Combinatorial optimization is
a domain that is very likely to benefit from quantum computing due to the ubiquity of hard
optimization problems. Quantum Approximate Optimization Algorithm (QAOA) [3]-[5] is a
leading candidate quantum heuristic algorithm for optimization. QAOA solves optimization
problems by preparing a parameterized quantum state using a circuit consisting of layers of
alternating operators, wherein each operator has a free parameter associated with it. The
two operators are commonly referred to as the phase operator and mixer operator, respec-
tively. QAOA has been shown to achieve better scaling than state-of-the-art classical solvers
for finding exact solutions of k-SAT [6] and to achieve approximation ratios competitive
with those of the best known classical algorithms for the unweighted MaxCut problem [7],
[8]. When the mixer is different from the transverse field used in [3], [4], the algorithm is
sometimes referred to as the Quantum Alternating Operator Ansatz [5]. Throughout the
paper, we will use QAOA to refer to both without making a distinction.

One of the central challenges of applying QAOA to practically-relevant problems is the
need to set the QAOA parameters. The parameter setting is particularly challenging for
problems with objectives containing non-integer coefficients (weights) on the binary variables.
The non-integer weights lead to the optimization landscape becoming non-periodic and in
general hard to optimize [9]-[11]. While parameter setting schemes leveraging analytically-
optimal QAOA parameters exist, they are only available in a limited number of cases. For
example, in the infinite-size limit, optimal QAOA parameters are known for unweighted

MaxCut on large-girth regular [7], Erdés-Rényi [12] and other [12] random graph ensembles,
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as well as for the Sherrington-Kirkpatrick (SK) model [13]. While a similar parameter setting
scheme has been proposed and numerically validated for weighted MaxCut [9], no analytical
results are known for weighted MaxCut or other problems with non-integer eigenvalues.

In this work, we develop parameter setting heuristics for QAOA applied to a broad class
of weighted problems. Our starting point is QAOA with the transverse-field mixer applied
to the weighted MaxCut problem on large-girth regular graphs. We begin with p = 1 and
derive globally-optimal parameters for QAOA applied to graphs with edge weights drawn
i.i.d. from the exponential distribution for any graph size and from an arbitrary distribution
in the infinite-size limit. Our analysis rigorously proves the folklore notion that for problems
with non-periodic QAOA energy landscapes, the first local optimum near zero contains
globally-optimal parameters in the average case [9]-[11]. We then analyze the case of p > 1
and connect QAOA on weighted MaxCut problems to QAOA on unweighted MaxCut by

proving the following Theorem:

Theorem 3 (Informal). Consider QAOA with depth p and a reqular graph G with girth
> 2p+ 1 and i.i.d. random edge weights drawn from w. Then the QAOA objective for
weighted MaxCut on G at parameters (,8, \/Ew"[—wz}) is, up to a global scaling factor, equal
to the QAOA objective for the corresponding MaxCut problem on the unweighted version of
the same graph at parameters (3,7) on average in the infinite-size limit. Here the average
is taken over the random choice of edge weights, and By, [w?] is the second moment of the

distribution from which the edge weights are drawn.

This result proves that the parameters that are optimal for unweighted MaxCut can be
rescaled to be optimal for weighted MaxCut. As a consequence, it establishes a rule for
setting parameters in QAOA for weighted MaxCut using the parameters for the unweighted
case obtained previously in Ref. [7]. As MaxCut is deeply connected to the SK model [14], we
briefly discuss a “weighted” modification of the SK model obtained by drawing couplings in
the SK model from N (1, 0?) instead of N'(0,1). Here u may depend on the problem size N.
We call this modification “biased SK” and show that it behaves trivially in the infinite-size

limit, unless p = u(N) decays to zero with increasing N.
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We evaluate the parameter setting rule implied by Theorem 3 numerically outside of its
theoretical assumptions by applying QAOA with p € {1,2,3} to MaxCut on a dataset of
34,701 weighted regular and non-regular graphs. We observe that our scheme outperforms
the previously proposed approach of Ref. [9]. On average, across all graphs, values of p
and edge-weight distributions, QAOA with parameters obtained using our scheme achieves
solutions that are only 1.1 percentage points (p.p.) away from optimal, improving upon the
3.5 p.p. obtained using the technique presented in the prior work [9]. Moreover, the disparity
from the solutions obtained using optimized parameters is reduced by a factor of three (from
3.6 p.p. to 1.0 p.p.) when the edge weights are drawn from the exponential distribution, and
by a factor of ~ 6 with the Cauchy distribution (from 20.7 to 3.3 p.p.).

5.2 Background

We begin by briefly reviewing the Quantum Approximate Optimization Algorithm, the

parameter setting schemes for it, and the weighted MaxCut problem.

5.2.1 Quantum Approximate Optimization Algorithm

Consider the problem of optimizing some objective function C(x) defined on the n-
dimensional Boolean cube that is encoded on n qubits by a diagonal Hamiltonian C' =
diag(C(x)). Quantum Approximate Optimization Algorithm (QAOA)[3], [4] is a hybrid
quantum-classical algorithm that approximately solves optimization problems by preparing a
parameterized circuit such that upon measuring it, an approximate solution to the optimiza-
tion problem is obtained. The QAOA circuit consists of layers of alternating unitaries, e=7¢
and e 8 where C is the Hamiltonian corresponding to the optimization problem and B is
the mixer Hamiltonian. Common choices of the mixer Hamiltonian B include the transverse
field (B = YJ;X;) for unconstrained problems and the Xy mixer (B = 137, (X;Xy, + YY)

for problems with an equality constraint on the Hamming weight.

The QAOA state with p layers is given by
v, B) = e WrBomiwC .e_iﬁlBe_mC|s) (5.1)
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where |s) is the initial state and =, 8 are free parameters chosen by a classical routine. We
discuss the strategies for setting the parameters v, 8 in Sec. 5.2.2 below.
The figure of merit that we use to evaluate the QAOA performance is the expected

solution quality given by the “QAOA energy”:

(C(v,B)) = (v.BICl,B) = > C(2)Pr(), (5.2)

z€{0,1}n

where Pr(z) is the probability of observing z when measuring all qubits of |, 3).

5.2.2 Parameter setting strategies for QAOA

Multiple techniques have been proposed for obtaining high-quality parameters for QAOA.
While the parameters can be obtained by direct optimization of the objective (5.2) using
a preferred optimization method [15]-[21], this procedure is typically computationally ex-
pensive [22]-[25]. The cost of finding parameters can be significantly reduced by leveraging
the apparent problem-instance independence of the optimal QAOA parameters [26], [27].
More straightforwardly, optimized parameters from one instance can be used directly as
high-quality parameters for another instance from the same problem class [9], [18], [28]-
[30]. A machine learning model can be trained that would leverage the concentration to
accurately predict the parameters [31]-[36]. Optimal parameters can be derived exactly in
certain analytically tractable cases, such as triangle-free regular graphs at p = 1 [37].

In certain cases, i.e. in the infinite-size limit of a given problem, a closed-form iteration
can be derived for the QAOA objective, Equation (5.2), at constant p. Then parameters can
be optimized in the infinite-size limit and used for finite-size instances. This has been demon-
strated for the Sherrington-Kirkpatrick model [38] and for MaxCut on random graphs [7],
[12]. The goal of this work is to extend these results to weighted problems.

5.2.3 MaxCut problem

For an undirected graph G = (V, E) with weights w,, = w{,,.} assigned to edges {u,v} €
E the goal of MaxCut is to partition the set of nodes V' into two disjoint subsets, such that

123



the total sum of weights of the edges spanning both partitions is maximized. We refer to this
problem as weighted MaxCut in the general case and as unweighted MaxCut when w,, =1
for all {u,v} € E.

For the weighted MaxCut problem the objective function is given by

CE) =L Y wnll— 2z, (5.3)
{uv}eFE

where z, € {—1,1} are the variables to be optimized and w,, are sampled from the desired

probability distribution. The MaxCut objective is encoded on qubits by the Hamiltonian

C = 1 > w1 — 242,), (5.4)

{uv}elE
where 7, and z, are Pauli-Z operators applied to the uth and vth qubits, respectively.
For unweighted graphs, the cut fraction is defined as the ratio between the number of
edges in a cut and the total number of edges in the graph. For a random unweighted

(D + 1)-regular graph, the optimal cut fraction is, with high probability, given by

LoD o= (5.5)
— O s .
2 VD VD

where I, ~ 0.7632 is the Parisi value [14].

5.3 Parameter setting scheme for QAOA on weighted problems

Our parameter setting scheme is motivated by the observation, formalized in Sec. 5.4,
that in many cases the QAOA energy landscape for weighted MaxCut can be rescaled to
match that of unweighted MaxCut for arbitrary p. In the case of weighted MaxCut, this
gives an explicit parameter setting rule. In the case of a general objective, we use the same
observation to propose a rescaling rule that makes the QAOA energy landscape easier to

optimize. We validate our scheme numerically for both cases in Section 5.6.
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5.3.1 Weighted MaxCut

The proposed procedure is as follows. First, rescale the edge weights in the graph follow-
ing
wuv

— T 5
\/E Z{u,v}eE Wiy

Second, use the parameter setting rule for the corresponding unweighted graph.

(5.6)

w’LLU

As an example of parameter setting rule for unweighted graphs to be used in the second
step, one can use the parameters B 4™ optimized for large-girth regular graphs in the
infinite-size limit [7, Tables 4 and 5] and follow the rescaling procedure therein, which we
include here for completeness: 8 = B, v = 4™ /\/D. Here D is the average degree of the
graph. Alternatively, the procedure from Ref. [39] can be used. For small D and p, higher
quality results may be obtained by taking inspiration from the explicit formula of Ref. [37]

inf

and setting v = y™ arctan \/%.
As an optional third step, the quality of the parameters can be improved further by
running a local optimizer with a small initial step from the parameters obtained in the

second step.

5.3.2 General objective

For a general objective function and QAOA with an arbitrary mixer (e.g., constraint-
preserving), analytical results are not available. At the same time, we can use the intuition
from MaxCut to rescale the QAOA objective to make the geometry of the landscape more
amenable to optimization. Specifically, if the objective f is given by a degree-k polynomial

over spins z € {—1,1}™
f(z) = Z wl(ﬁ)ukzul A T ngl)zu, (5.7)

our first step is to divide the objective by

‘ {’U,l,...,fU,k}

1 1
J A S (Wl W)+ [ (w2, (5.8)
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where Fj is the set of i-way hyperedges, i.e. the number of terms of order i.

In the second step, parameter optimization is performed as usual.

This scaling is inspired by the observation that our results on weighted MaxCut generalize
to problems with higher-order (higher than quadratic) terms; see Remark 3. In Section 5.6
we demonstrate the power of this simple procedure using the example of mean-variance

portfolio optimization with a budget constraint enforced by the Xy-mixer.

5.4 Analytical results for QAOA on weighted MaxCut

We now present the analytical results for QAOA applied to weighted MaxCut on large-
girth regular graphs with i.i.d. edge weights. We begin by analyzing p = 1 in Section 5.4.1.
QAOA energy for p = 1 is given by a simple trigonometric formula derived in [40, Theorem
7]. We use this formula to derive globally-optimal QAOA parameters. The parameters we
derive are optimal in expectation, with the expectation taken over the distribution of the
edge weights.

We first consider weights sampled from the exponential distribution and obtain optimal
parameters for any graph size (Theorem 5.4.1). We analyze the exponential distribution sep-
arately as it allows us to derive globally-optimal parameters for finite-sized graphs. Then we
consider the infinite-size limit, which enables us to relax the assumption on the distribution
and obtain optimal parameters for graphs with weights sampled from an arbitrary distribu-
tion (Theorem 5.4.2). We then consider p > 1 in Section 5.4.2. We extend the techniques
of [7] to relate the QAOA objective landscape for weighted MaxCut to that for unweighted
MaxCut (Theorem 5.4.3) and the SK model (Corollary 5.4.4.1).
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5.4.1 Globally-optimal parameters
for QAOA with p=1

According to [40, Theorem 7|, the expected QAOA performance for MaxCut on triangle-

free graphs can be expressed in closed form as:

Zu,v E Wyy sin 46 .
(. py) = Zhenree o SUD) o inun)
{u,v}eFE
( H cos(wWyry) + H COS(th’)/)) , (5.9)
kenbhd(u)/{v} tenbhd(v)/{u}

where nbhd(u) is the neighborhood function that gives the set of vertices adjacent to w.
The above is always maximized at § = §. Thus, with a slight abuse of notation, we define
(C(M)) =(C(7, §))-

We are considering the expected QAOA energy over the edge weights, i.e. Ey[(C(7))].
In the sections that follow Ey|[ -] denotes the expectation over the graph weights, w,,, that
are all drawn independently from the distribution w. Thus, for (D + 1)-regular graphs with

i.i.d. edge weights, this expectation simplifies as follows

Ew[(C(y))]

_ > {uw}eE Evw W]
2

+ 1 { Z}: Ev [t sin(wyny)] (g [cos(wawy)])”
N(D +1)
—
Ewlw] 1

5 T 5w [wsin(wy)] (B [cos(wy)])”] (5.10)

where we drop the subscript on w since the edge weights are i.i.d. and use the fact that

N(D +1)

Bl = ==

(5.11)

We now consider edge weights distributed identically and independently according to

the exponential distribution with parameter A > 0, which has as its probability density
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function f(x) = e ** if ¥ > 0 or f(x) = 0 otherwise. The mean and standard deviation are

—g=1
p=0=5.

Theorem 5.4.1 (p = 1, exponential distribution, finite size). Let K.\ [(C(7))] denote
the expected QAOA objective with p = 1 over instances of the weighted MaxCut problem
on a given triangle-free (D + 1)-reqular graph with edge weights, w, drawn i.i.d. from an

exponential distribution with parameter X. Then E..,[(C(7))] has a global maximum at

_ 1
= VEw[w?]\/D+3"

Proof. To obtain the optimal parameters, we start with Equation (5.10) and use the following

identities
. 2\
Ew[w Sln(w’}/)] = m, (512)
)\2
Ew[cos(wy)] = N2 (5.13)
which give
N(D+1)
Eexpon [(C(7)] = 9
11 290 A2\
20 T 2(A2 4422 (N2 442
N(D 2D+2
2 20 (A2 2)D+2
Taking the derivative with respect to 7, we obtain
d A — (2D +3)y?
By [{C(7))] = ¢ (5.15)

d’}/ ()\2+72)D+3 ’

where c is a positive and y-independent constant. Setting the derivative to zero gives

R +1
\/ZD +3 \/Eexp(/\) [w2]\/D + %

v (5.16)
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From Equation (5.14), we can see that

Eexp()\)KC(_OO»] = Eexp(A)[<C<oo>>] = ]V(D4/\+1)’

so the global maximum is

1
v (5.17)

VB wyD+3

]

Note that unlike the following Theorems, this proof does not rely on any assumptions on
D.

We now consider a graph with edge weights drawn from an arbitrary distribution with
mean value p and standard deviation o. To study the infinite-size limit, we define a quantity

that tends to a constant as D — oo. Specifically, we consider the following quantity

Ew[(C(0))]
E. {Z{u,v}EE wuv}

: (5.18)

which reduces to the cut fraction if the graph is unweighted, i.e. wy, = 1; V{u,v} € E.
Using Equation (5.11) followed by Equation (5.10), we can write

+ ?Ew [wsin(wy)] (Ew [cos(wy)])” (5.19)

(5.20)

where we introduce 91 (D, y) to match II, in Equation (5.5). We will now show that ¢ (D, )
tends to a D-independent quantity as D — oo when v = ©(D~'/?), and use the resulting

limit to derive the optimal value v* in the limit of infinite-sized graphs.
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The assumption of v = ©(D~Y/2) is inspired by the numerical observation that the
optimal v for unweighted MaxCut is ©(D~'/?) (see, e.g. [12, Figure 1b]). Furthermore, we
prove that ¥1(D,~)

has a local maximum at a value v = ©(D~'/2) for sufficiently large D. In the limit of
D — oo, we prove that this local maximum is also the global maximum. This motivates the

definition of the following limiting quantity
91(7) = lim 9,(D,7/VD). (5.21)

Theorem 5.4.2 (p = 1, infinite size). Consider weighted MaxCut on a given triangle-free
(D + 1)-regular graph with edge weights, w, drawn i.i.d. from a distribution w with finite
second moment. Then for sufficiently large D, the function ©¥1(D,~) associated with QAOA

for p = 1 has a local mazimum at a 7y that is ©(D~Y2). Moreover, the limiting quantity

Y1(7y) attains its global maximum at v* = -

Proof. The assumption of finite second moment along with Jensen’s inequality implies that
Ew[|lw|] is also finite. Thus, since the derivatives of the functions inside the expectations
taken in Equation (5.19) are dominated in v, i.e. |w?cos(wy)| < w? and |w sin(wy)| < |w],
the dominated convergence theorem and the mean-value theorem [41, Section 7.2.2] ensure
that the operations of differentiation w.r.t. v and expectation over w can be interchanged.

This gives

nyﬁl(D,V) = \/?(EW[COS(w’V)])Dl

. (Ew[w2 cos(wy)]|Ew[ cos(wy)] — D(Ew[w sin(wy)])2>. (5.22)

Substituting v = %, for o independent of D and using the Taylor series expansions of

the trigonometric functions, we get

d

2 9,(D.
- 1(D,7) D
N \fe—“fw“; [Ew[w?] — (Ey[w?))?a’] + O(D7Y2), (5.23)
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where the implicit exchange of infinite series and expectation over w is justified by the
finiteness of the second moment and Fubini’s theorem [42, Theorem 8.8]. Here we use the

observation that

cos(z/vVD)P~

(- w> !

— T 1O (5.24)

for z that is bounded by a constant independent of D. *
For sufficiently large D, both

= ——E.[w’] +0(DY?) >0 (5.25)

and

d
— (D
d’}/ 1( 7’7)

<0 (5.26)
y=a*/VD

for some sufficiently large constant o* independent of D. Thus, by Darboux’s theorem
[43, Theorem 5.12], v has a local maxima in the interval (0, a*/v/D) for each triangle-free
(D + 1)-regular graph. We now consider the limiting value of ¥; in the regime of small .

With v = % for some D-independent +/, we get

191 <D7 7//\/5)

= \gf]Ew[w Sin(w’y’/\/ﬁ)](EW[Cos(wvl/\/ﬁ)DD
= Ew[w2] ~ ]EW[HZ]W’2

24

+0(D™),

#+Note that the second equality follows from (1 — 2D)D L=(1- —) (1-0(D7 1Y) = [ZkD:O 2,/2) (1—

O(D71))? and works in the limit due to absolute convergence.
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where we use Equation (5.24), and the implicit exchange of infinite series and expectation

is justified by Fubini’s theorem. Now taking the limit in D, we obtain

01(7) == Jim dy(D, 7'/V'D)

_ Ew[w?] | _Ewwin?

- . 5.27
o 2 (5.27)
Now, consider the derivative,
2,72
d E [wQ]e_EW[w =
— D (Y) =™ 1 — Ey[w?y?). 2
) (- Eufu?}y) (525)

It can be easily seen that the function ;(7’) is always decreasing to the right of the local

1
Ew[w?]’
fact a global optima. O

maximum at y* = and the function is negative to the left of zero. Thus this is in

Remark 1. To see the correspondence between Theorem 5.4.2 and Theorem 5.4.1, i.e. that
the latter is a special case of the former, rescale v — ’y/\/ﬁ and note that the constant in

the denominator in Theorem 5.4.1 has no effect on the limiting value as D — oo.

5.4.2 Correspondence between QAOA on weighted and unweighted graphs with
p=>1

To derive a parameter scaling rule for arbitrary p, we extend the techniques developed in
Ref. [7] for MaxCut on large-girth, regular unweighted graphs to large-girth, regular graphs
with i.i.d. edge weights. Without a subscript, |7, 3) will refer to the p-layer QAOA state
for a random weighted instance of MaxCut on a given (D + 1)-regular graph with weights,
w, drawn from a distribution w.

Note that

> w1 = (v, Blzuzo|y, B)). (5.29)

{uv}elE

DN | —

(C(v,8)) =

We start by proving the following result about the above quantity that is valid for any p.
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Lemma 1. If a (D + 1) regular graph has girth > 2p + 1 and i.i.d. edge weights, w, drawn
from w, then the QAOA objective for weighted MaxCut on this graph satisfies

Bul(C(y, 8))] = 2
~MP g fute, Bl zaly, B (5:30

for any edge {L, R}.

Proof. The locality of the p-layer QAOA combined with the regularity and girth > 2p + 1
assumptions implies that the quantity wpr(vy, B|Z1Zr|Y,8) can only depend on vertices
that lie in a D-ary tree of diameter 2p 4+ 1. This is the QAOA “light cone” for the term
(v, Blzrzrl|v, B). The tree subgraph, without weights, for p = 2 and D + 1 = 4 is shown in
Figure 5.1. Thus, it follows from [7, Equations A.2-A.5] that

wLR<7aIB|ZLZR|77IB Z wLRZLO]ZE%

{zu}

~lexp(—i S wl zuzv) 1 gzv], (5.31)

{U,U}GELR veEVLR

where (V. g, ELg) denotes the vertex and edge sets corresponding to the tree subgraph seen
from the edge {L, R}. Note that Ref. [7] has an extra factor of % in the exponential since
the cost function in Equation (5.29) is therein defined with that extra factor. In addition, T’
is a (2p+ 1)-component vector with entries I, = v,, T'_, = —v,, Ty =0and 1 <r < p. Also
for node u, the vector z, = (21, ... 2l 2000 2=l = 2=y ¢ £1,1}22F1. The notation
{z,} is short for the collection {z,|u € Vigr, 2z, € {—1,1}*"}. Lastly (2,2,) denotes an

element-wise product, and

g(zu) = |:<21[Lp]|einX’ZLO]><ZLO]|efiﬁpx|zz[ifp]>:|

1 N r —i —7] T | A1 T
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Figure 5.1. Unweighted tree subgraph seen by QAOA from the edge {L, R} with p = 2
on a four-regular graph. The operation p produces the parent of a node, and the operation
¢ produces the set of a node’s immediate children.

The authors of [7] noted that Equation (5.31) can be computed recursively by traversing,
from leaves to roots, the left and right branches simultaneously. This effectively “factors” the
right-hand side of Equation (5.31). For simplicity we will only do this for p = 2, however,
the generalization is straightforward. Define Hl(jo) = 1. We start by summing over the

configuration of an arbitrary leaf in either branch of Figure 5.1:

Zg(zu) exp (_iwup(u)r : (Zuzp(u))) ) (5.33)

where p(u) is the parent of u in the tree subgraph. Since the left and right branches are

D-ary trees, the expression for any node v in the second level of either branch is

ZQ(ZU)HS)(ZU) exp (_iva(v)r ' (zvzp(v))) : (5.34)

Zy
where

HY(z) = [ Y HY(2)9(z.) exp (—iw, T - (2.20))

uec(v) Zu

= I X Hp g(zu) cos (wwT - (zu2,)) - (5.35)

uec(v) Zu
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The second equality follows from the even parity of ¢ - Hg), implied by [7, Claims A.14 and
A.15] and ¢(v) denotes the set of D immediate children of v.

This can again be done for the next level, i.e. the roots L or R, producing the quantity
Hg). Lastly, we combine the results from the two branches by summing over the configura-

tions of the left and right roots:

wLR<7>/3|Zqu‘77/B> - Z wLRZEﬂZEg]

ZLyZR

: [g(zL)g(zR)Hg)(zL)Hg)(ZR) exp (—iwpgl - (212R)) ]

=—i Y AWg(z0)g(2R)

ZL,ZR
. [HJ(DQ)(ZL)HJ(DQ)('ZR)U)LR sin (wr gl - (ZLZR))]y (5.36)

where the last equality follows again from the even parity of ¢ - Hg). The general iteration
for the random quantity wrr(vy, B|zLZr|vy, B) follows by induction.

Note that in the previous recursion, each edge was only counted once. Since all of the
edges are i.i.d., the expectation operation commutes with all products that appear in the

right-hand side of Equation (5.36). More specifically, we have the following for general p:

Ewlwir(y, Blzrzely, B)) = —1 Y. 21 25'g(2L)9(2R)

ZLy2R

VAP (2) HY (25)Ey Jwsin (wT - (z128))]], (5.37)
where subscripts have been dropped from the weights due to the i.i.d. assumption, and

75 (2,) = Ew[HS) (2,)]

= H()Z 757 (2,)9(2.)Ew] cos (wT - (2,2,)) (5.38)

Zu

for 1 <r <p.
Since all randomness has been removed by the expectation operation, it is evident that

this quantity only depends on the graph structure and not the sampled weights, since they
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are i.i.d. The non-random quantities in the iteration for wpr(¥y, B|zLZr|Y,B) only de-
pend on the local graph structure that QAOA sees from a given edge. As argued earlier
this graph structure is always two D-ary trees joined at their roots. Thus, the quantity
Ew|w(v, B|zrzr|7Y, B)] is independent of the chosen edge {L, R}, which is analogous to the
unweighted case.

The result of the lemma follows from Equation (5.29) and the linearity of expectation. [

By the previous lemma, we can, analogously to the p = 1 case, define J,(D,~, ) as

follows:
E(C(v.8)) _ Eul(C(r.8))
B Do ] MBI
= 5~ g Enlwy. Blzzly. )
_ ; 4 ﬁp(%’ B (5.39)
and

1917(7718) = Dlg%oﬁp(Da’y/\/EwB)
.. VD ¥ v
= lim ——E, lw< I} 75’ >], (5.40)

77
Dooo  2u VD’
where the subscripts on w and zZ have been dropped since they can be arbitrary by the

previous lemma.

The quantity considered in [7, Equation A.19] for the unweighted case is the following

vp(Y, B) = AE%O_\/QEu<]E’ﬂ|ZZ|\7E’ﬂ>u’ (5.41)

where the subscript “u” indicates that the parameterized state is prepared by a p-layer QAOA
for the corresponding unweighted problem on the same graph. Our main result below shows

that « can be scaled to make these two quantities equal up to a global scaling factor.
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Theorem 5.4.3 (p > 1, infinite size). If the girth > 2p+1, and the edge-weight distribution,

w, has finite second moment, then for all parameters ~v, B the following holds

(v, B) = z9p( 7 ,B). 5.42
)= o | e (5.42)

Proof. We implicitly assume that v — % and thus I' — % in Equation (5.37). By the
product rule for limits, we can evaluate the limits of the terms ﬁg’)(zL), ﬁg')(zR), and the
one involving the sin separately, since we will show they individually exist.

Note that for any sum inside of the product of Equation (5.38):

Zu

Zg(zu)Hg_l)(zu)Ew [cos <w\/% - (zuzv)ﬂ

- (1 - S g Y T (20

Zu

+ O(D‘2)>, (5.43)

where the implicit exchange of the expectation operator and infinite series expansion of trig
functions is justified by Fubini’s theorem and the assumption of the weight distribution
having finite second moment, like in Section 5.4.1. In addition, we have used the following

generalization of [7, Equation (A.23)], where for any r:

> g(z)HE (=) = 1. (5.44)
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After taking expectations, it follows that 3=, g(z.,)H}) (r= 1)(zu) = 1. By thei.i.d. assumption,
Equation (5.43) is the same for every u € ¢(v), and thus

HY(2,)

- (1- B e ) )

Zu

+0(D™)
= e (—E[;"Z} S o(e) 1 )T <zuzv>>2)
+ O(Dil), (545)

where we use Equation (5.24).

Along with continuity, the previous result implies

H?)(z,) = lim ﬁg’>(zv)

D—oo
:exp<

The limit can then be propagated down to the lowest level of the recursion. Similarly for

H®- 1) (z,)(T - (zuzv))2> ) (5.46)

the term involving:

D—oo

lim v DEy [wsm( V%'(ZLZR)N

= Ew[wQ]I‘ : (ZLZR) (547)

Putting this altogether, for arbitrary {L, R} € E, we have

Up(v, B) = i‘E Zz AW g(z1)g(2R)

ZLsZR

: [I:I(p)(zL)ﬁ(p)(zR) E, [w?]T - (szR)] (5.48)
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and comparing with the unweighted case [7, Equation A.26] reveals that the equality in
Equation (5.42) holds. O

Remark 2. Note that in the i.i.d. case the square of the demominator of Equation (5.6)
is an unbiased estimator of Ew[w?]. The i.i.d. case is the inspiration for the more general

scaling rule.

Remark 3. By [7, Section 6], which extends the iteration presented earlier for unweighted
reqular graphs to unweighted reqular k-uniform hypergraphs, Theorem 5.4.3 can be trivially

extended to weighted reqular k-uniform hypergraphs.

This result implies a relationship in the infinite-size limit between QAOA’s objective

value for weighted MaxCut and the SK model. Let

Ju'U
= 3 Ty, (5.49)
1<u<v<N N
where J,, ~ N(0,1), and
Vo(v, B) = JEEOEJ[JW,5|CSK/N|’Y,5>J]7 (5.50)

where the subscript J of the state signifies that the state was prepared by a p-layer QAOA
with the SK objective as the phase operator.

Theorem 5.4.4 (Restated from [7]). For all p and all parameters (7, B) the following holds

Vo7, B8) = (7, B). (5.51)

Trivially, this in combination with Theorem 5.4.3 leads to the following corollary.

Corollary 5.4.4.1. If the edge-weight distribution has finite second moment, then for all p
and all parameters (v, B) the following holds

Volv,B) = MW]% ( EV[wZ] ) B) : (5.52)



Thus the performance of QAOA on SK, MaxCut on large-girth, regular graphs and

weighted MaxCut on large-girth, regular graphs are equivalent in the infinite limit.

Remark 4. By [/4, Theorem 3] and Remark 3, one can trivially extend Corollary 5.4.4.1
to connect QAOA’s performance on weighted MaxCut on reqular k-uniform hypergraphs to

its performance on pure k-spin models, generalizing SK.

5.5 Observations about biased SK model

As presented in Corollary 5.4.4.1, there is a deep connection between arbitrarily-weighted
MaxCut and the SK model. The SK model is given in Equation (5.49) and has couplings
Juw ~ N(0,1). A natural generalization to consider is a model which has couplings J,, ~
N (u,0%) with arbitrary p and o. More generally, we can allow for the bias to be a function
of the number of spins, i.e. pu(N). When p(N) # 0, we call this the biased SK model, and
when p(N) = 0, we call it the standard SK model. Unfortunately, this natural generalization
does not lead to interesting behavior. Specifically, we show that unless p(N) — 0, the biased
SK problem is trivial in the thermodynamic limit.

The performance of QAOA for arbitrary p on standard SK, specifically an iteration for the
quantity V},, was originally established in [13] using different techniques than those of Section
5.4.2. However, it is not clear how these techniques can be generalized to non-symmetric
distributions. In this section, we use a different set of elementary techniques to determine
the limiting optimal value of different versions of the biased SK model. Our goal is to find

an analog to the Parisi value for the biased model. The following is based on [45].

For z € {—1,1}", let

Gz)=— Y Mz, (5.53)

1<i<j<N

where JigN) ~ N(u(N),0?). The optimization problem is max, G(z). Note that unlike the
standard SK, which is symmetric around zero, here we must keep track of the signs of the

couplings.
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When p(N) = 0, we know that E;[max, G(z)] = O(N%?2). In the standard SK model,

the weights are scaled by N~1/2

to ensure that expected maximum instead grows linearly
with N. This is the reasoning for the scaling of the standard SK objective presented in

Equation (5.49). For even N, let

ML i p(N) >0,
h(N) = —(g), if W(N) <0,
0, if u(N) =0,

which equals %&[ﬁw when p(N) # 0. More specifically, when p(N) > 0, the problem
max, E;[G(z)] reduces to MaxCut on a complete graph with all edge weights equal to u(N),
and thus the optimal cut value is M(N)NTQ, i.e. set half of the z; = 1. When u(N) < 0,
the optimal value is obtained when all z; = 1, and results in an objective function value of
w(N) (];[ ) Note that when N is odd, the factor in the denominator is the same for all cases,
and thus we can restrict to even N, wlog.

We have the following by the convexity of max:
U(N)h(N) = mzaXEJ[G(z)] < ]Ej[mgx G(z)] (5.54)
and

E,[maxG(z)] = ; log exp E;[ovmax G(z)]

1
< —log E[exp(a max G(2))]

< ; log Y E[exp(G(2))]

1
< —log 2" exp (
«

(
> + u(N)R(N). (5.55)
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Minimizing over o > 0, gives

2 Nlog(4)

- 2()

«

(5.56)

and thus

p(N)h(N) < Ej[max G(z)]

<o, 10g(4)N<];[> + pu(N)h(N). (5.57)

Note, the right-hand side of the last inequality now involves only o instead of o2, and thus
is invariant under any scaling before or after the expectation in E ;[ max, G(z)].

When jx = 0 and h(N) = 0, we recover the scaling mentioned for SK, i.e. O(N?/?).
Thus,

. E;j[max, G(z)]
PR e

= olI", (5.58)

which is a multiple of the Parisi value IT*.

While the standard SK model typically has ¢ = 1, we note that, when pu(N) = 0, the
limiting behavior for SK with a distribution with any ¢ # 1 can be obtained by simple
rescaling. Specifically for N'(0,0?), the quantity V, in Equation (5.50) scales as V,(v,8) =
Voi(v,B) = Vpo(Z,8). Therefore for the remainder of this Section we focus on the case
where u(N) # 0.

If u(N) — pas N — oo for some nonzero constant y, the term involving p(N) dominates,

and the expected maximum is ©(N?). Thus, the limiting quantity is

. Ej[max.G(z)] o
s g ~ 2(1 + sign(p)’ (5.59)
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where we define sign(z) to be 1 when > 0 and 0 when = < 0. The solution to the above
problem is trivial in the infinite limit: set all z; = 1, when p < 0, and set half of the z to 1
when ¢ > 0.

However, to compensate for the maximum growing ©(v/N) faster when u(N) is not
always zero, we could consider defining the biased SK model to have u(N) = O(N~/2).
Then letting 1 = limy_,o0 t(N)VN we get

. E, [max, G(2)] u
l = oll* .
N N3/2 ol + 2(1 + sign(p))

(5.60)

In this regime, the “biased SK” model appears non-trivial and is distinct from the standard

SK model.

5.6 Numerical results

Numerical investigation of the proposed parameter setting rule has been performed on
a dataset of weighted graphs from Ref. [9], available through QAOAKit [46]. The dataset
consists of a total of 34,701 weighted graphs with up to 20 nodes and contains both regular
and non-regular graphs. The graphs have edge weights drawn i.i.d. from four different
distributions, namely Uniform over [0, 1] (“Uniform+"), Uniform over [ — 1,1] (“Uniform
+”), Exponential (with A = 0.2), and Cauchy.

For the numerical study, we investigate two proposed parameter setting rules, which are

variants of Equation (5.6):

(i) x= 7 (5.61)

(ii) 7 arctan <D1—1> , (5.62)
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Figure 5.2. a) The approximation ratios obtained with directly optimized parameters,
parameter setting method of Ref. [9], and parameter setting methods presented in this work.
b) The gap between the approximation ratios with optimized parameters and with parameter
setting methods of Ref. [9], (i) and (ii). The proposed parameter setting methods perform
better when compared to the prior work, as indicated by the reduced gap from the objective
obtained with the optimized parameters.

where the parameters B™ ~™ are the optimized parameters for large-girth, regular
graphs in the infinite-size limit from [47, Table 4], and D is the average degree. Our baseline

is the parameter scheme of Ref. [9], given by:

,.Ymedian 1

tan(———),
arc an(m)

vk = (5.63)

ﬁ Z{U,U}EE |wuv|

where y™edian s a median taken over optimized parameters for all 261,080 nonisomorphic
connected 9-node graphs. The key difference between our scaling and that of Ref. [9] is the
choice of the denominator. Since 4™eda" is close in value to 4™, the nominator is similar in

both schemes.
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We refer to the parameter setting procedure described in Equation 5.61 as method (i) and
that in Equation 5.62 as method (ii). The first method is inspired directly by the analytical
results described in Section 5.4.

We observe that in the case of small p, better results are obtained when the formula
for p = 1 from [37] is considered, which motivates the second rule. We note that while
we have derived the exact formula for graphs with weights sampled from the exponential
distribution, we do not use it in the numerical experiments. Our goal for numerics is to
simulate the practical setting, wherein one does not know the distribution from which the
weights are sampled.

We analyze the performance of the proposed parameter setting rules across multiple
weight distributions, values of p and values of N. Herein, we denote the median approxi-
mation ratio with directly optimized parameters by r,,, with the parameter setting scheme
from Ref. [9] by 7o) and with the two proposed methods as rp and raan respectively. We
refer to the difference between the approximation ratio of a given parameter setting scheme
and 7,y as the optimality gap. The results are presented in Figure 5.2.

Our techniques lead to lower optimality gaps as compared to Ref. [9] in all cases except
p = 1 with weights sampled uniformly from [0, 1]. We note that the gap between the methods
(i) and (ii) reduces as p increases. For example, for N = 8 the optimality gap drops from
0.0111 on average for p = 1, to 0.0062 for p = 2, and eventually to 0.0005 for p = 3.

The median difference in approximation ratios for all considered p and weight distribu-
tions is 1.8 p.p. for method (i) and 1.45 p.p. for method (ii). Specifically, for the cases of
exponential and Cauchy distributions, the median differences in approximation ratios from
our method (i) are 1.3 p.p. and 3.8 p.p. respectively, and those from method (ii) remain a
mere 1.0 p.p. and 3.3 p.p. respectively. For comparison, the previous proposal [9] obtains
median differences of 3.6 p.p. and 20.7 p.p. for the weights drawn from exponential and
Cauchy distributions respectively. As can be seen in Figure 5.3, for the case when the edge
weights are drawn from a Cauchy distribution, the improvement over Ref. [9] is the largest,

with an 8% reduction in optimality gap at p = 3.
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Table 5.1. The optimality gaps achieved by the proposed parameter setting
rules and the rule in [9]. Proposed method leads to lower optimality gaps in
all cases except p =1 for the Uniform~+ distribution.

Weight Distribution | p | 7ops — 7(9] | Topt = D | Topt — Tarctan
1 0.5 1.3 0.6
Uniform+ 2 1.2 1.0 0.6
3 1.6 1.3 1.4
1 1.4 0.7 0.2
Uniform=+ 2 2.6 1.1 0.6
3 3.5 1.3 1.1
1 2.3 1.3 0.5
Exponential 2 4.1 1.2 0.8
3 4.5 1.4 1.7
1 17.5 4.8 3.3
Cauchy 2 20.8 4.1 3.9
3 24.0 3.2 3.0
0.9 -
g
S 081
£
=
£ 0.7 1 Optimized
g Ref[9]
="
= 0.6 - —@— Proposal (\/ﬁ)
—#— Proposal (arctan( D171)>
0.5 - T T T
1 2 3
p

Figure 5.3. Approximation ratio for the graphs with edge weights drawn from a Cauchy
distribution for N = 14. The proximity to the optimized parameter scenario, especially for
large p, indicates the power of the suggested parameter setting strategies and shows a clear
improvement over the earlier work. Our methods reduce the optimality gap by a factor of 8
for p = 3 as compared to Ref. [9].
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Table 5.2. The median quality of solution for median variance across different
distributions and for multiple p achieved through our introduced methods when
compared with the previous study[9] for n = 14 . As variance, s?, grows, the
optimality gaps achieved by our presented techniques are almost an order of
magnitude better in comparison to the method in Ref. [9].

52 P | Topt =79 | Topt —TD | Topt — Tarctan

1| 0.00166 | 0.00828 0.0068

0.5697
[Uniform-+] 2| 0.01053 | 0.00827 0.00604
31 0.01172 | 0.01112 0.01077
11 0.00572 | 0.00265 0.00357

0.9557
[Exponential] 2| 0.04149 | 0.00611 0.00455
3| 0.05012 0.0081 0.00843
1| 0.00183 | 0.00160 0.00045

1.1364
[Uniform=] 21 0.02124 0.00258 0.00142
31 0.02928 | 0.00306 0.00282
11 0.17524 | 0.04775 0.03344

2.4811
[Cauchy] 2| 0.20788 | 0.04098 0.03867
31 0.23958 | 0.03238 0.02967

The optimality gaps obtained by considering our presented parameters setting rules are
of comparable values for each p. However, the performance of the method of Ref. [9]
deteriorates as p increases.

From the values shown in Table. 5.2, it can be observed that when the variance is small,
the performance obtained using the method in the prior work [9] is comparable to that of
our methods. However, as variance increases the solution qualities achieved by the methods

introduced in this work beat those of the previous work [9].

5.7 Discussion

In this chapter, we propose heuristic parameter setting rules for QAOA, inspired by a

formal connection between weighted and unweighted MaxCut on regular graphs. For p =1,
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we derive explicit expressions for the parameter v that maximizes the cost function in the
weighted case. Our analysis of MaxCut at p = 1 rigorously proves that the globally-optimal
v are small, providing additional justification for this commonly used assumption [6], 7],
[10], [12]. For p > 1, we show explicitly how the energy landscape and, consequently,
the optimal parameters scale between the weighted and unweighted cases. As we prove the
concentration of the QAOA objective, our results apply with high probability to any random
weighted MaxCut instance.

Additionally, we consider the biased SK problem and rigorously show that it has a trivial
solution in the infinite-size limit, unless the mean of the weight distribution falls sufficiently
fast with the number of vertices. This investigation was inspired by the connection between
SK and MaxCut on regular graphs, and the observation that the closed-form iterations that
we use for QAOA do not apply to complete graphs. However, it appears that, unlike standard
SK, the analysis of QAOA performance is unlikely to lead to significant insights when the
weights are biased.

Our observation that QAOA parameters v have to decrease with problem size is an
instantiation of a broader principle, namely that parameterized quantum circuits are not
scale-independent. Similar results have been observed for quantum kernel methods [48], [49]
and quantum neural network initialization [50]. A unification of these observations into a
general theory of parameterized quantum circuits is a tempting prospect, though it would

require the development of novel mathematical techniques.
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6. TEXNET: A DEEP NEURAL NETWORK FOR THE
DECOMPOSITION OF HYPERSPECTRAL THERMAL
IMAGES

The contents of this chapter are adapted from the article ‘F. Bao, X. Wang, S. H. Suresh-
babu, et al., “Heat-assisted detection and ranging,” Nature, Forthcoming, 2023. DOI:
10.1038/s41586-023-06174-6".

6.1 Introduction

Thermography, the detection and analysis of thermal radiation has emerged as an im-
portant domain of research especially due to its feature of witnessing the surrounding en-
vironment without any visible illumination. This has propelled applications in security,
environmental monitoring, medical imaging to name a few. The state-of-the-art machine
perception utilizing active sensors like sonar, radar and LiDAR to enhance camera vision is
not a viable methodology as the number of intelligent agents scales up. Quasi-passive ap-
proaches like cameras are an alternative but they rely on ambient illumination. Furthermore,
cameras cannot compete with human perception even though important strides [1] have been
made recently based on deep learning [2], [3]. It causes phenomena like phantom braking
[4] in automated vehicles due to the visual ambiguity and lack of physical context in per-
ception. Exploiting omnipresent heat signals could be a new frontier for scalable perception
and thermal imaging [5]—-[8] has well-known advantages, e.g., to see through the darkness or
solar glare as well as bad weather [9]. Physical attributes of the scene, namely, temperature
(T, physical status), emissivity (e, material fingerprint) and texture (X, surface geometry)
are mixed in photon streams, as constantly emit and scatter thermal radiation leading to
texture-less images popularly known as the ‘ghosting effect’. Ghosting limits thermal imag-
ing only to night vision enhancement without any specificity even when combined with Al
algorithms.

A method titled HADAR[10] overcomes the ghosting effect by decomposing the heat
signal into temperature, emissivity, and texture (TeX decomposition). The goal of this

chapter is to introduce a technique that performs the aforementioned decomposition. A
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Figure 6.1. a) Fully passive HADAR makes use of heat signals, as opposed to ac-
tive sonar, radar, LiDAR, and quasi-passive cameras. Atmospherical transmittance window
(white area) and temperature of the scene determine the working wavelength of HADAR. b)
HADAR takes thermal photon streams as input, records hyperspectral-imaging heat cubes,
breaks the TeX degeneracy through TeX-Net, and generates TeX vision for improved de-
tection and ranging. c¢) TeX vision demonstrated on our HADAR database indicates that
HADAR perceives textures through the darkness with a comprehensive understanding of
the scene.

physics-driven semantic segmentation is performed to achieve improved performance against

Al-enhanced thermal sensing.

6.2 TeX decomposition and TeX vision

We address the ghosting effect with an approach we call TeX decomposition, which vividly
recovers the texture from cluttered heat signal and also accurately disentangles temperature
and emissivity at the Cramér-Rao bound. Representing these decluttered TeX attributes in
HSV color space (Hue = e, Saturation = T, Brightness = X)) leads to a paradigm shift of

TeX vision with physical context for machine perception (Fig. 6.1b). TeX vision empowers
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AT algorithms to reach information-theoretic bounds, which has thus far been elusive for
traditional RGB or thermal vision. Fig. 6.1c shows TeX vision for on- and off-road scenes
at night overcoming the ghosting effect. Our demonstrations of HADAR include detection
and ranging based on TeX vision, for both real-world level HADAR database and outdoor
experiments.

For intuitive clarity, we first explain the origin of the ghosting effect using an example
of thermal radiation (visible) from a light bulb. Fig. 6.2 shows Monte Carlo path tracing
simulations of rays emanating from a bulb, with the reflection of environmental emission
taken into account. Geometric textures on the bulb surface can be seen only when the bulb
is off. We emphasize that this texture revealed by reflection is completely lost in direct
emission when the bulb is switched on, a familiar scenario from daily experience. Since
every object in a complex scene emits and scatters thermal radiation, they are thermal light
sources with no texture like a shining bulb. The total heat signal leaving an object « has

two additive contributions,

Sazz = eoa/Bu<Ta) + [1 - eoa/]Xou/v (61)

where the first term is direct thermal emission (textureless), and the second term carrying
texture is the environmental emission entering the detector after scattering from the object.
Here v in the subscript denotes wavenumber (spectrum) dependence. The key difference with
a shining bulb is that blackbody radiation B, is fundamentally governed by Planck’s law and
cannot be switched off. Textureless thermal imaging is thus widely regarded as impossible to
use for quantitative insight about a scene. The environmental thermal illumination on object
a from all other objects (3 is given by Xo, = -2, VapSsy, with Vg being the thermal lighting
factor. Ghosting effect is exacerbated for high emissivity materials in nature such as skin
and plants (e & 1) as the total collected signal consists of dominant direct emission and weak
scattered signal. We note that S,, is invariant under joint transformations of temperature
T, emissivity e and texture X, which we address as TeX degeneracy. In addition to the
ghosting effect, this TeX degeneracy renders the separation of temperature-emissivity as a

major roadblock [11] to quantitative thermal sensing.
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Figure 6.2. Monte Carlo path tracing simulation of a light bulb to explain the ‘ghosting
effect’. Geometric texture on a light bulb can only be seen when the bulb is off whereas
this texture is completely missing when it is glowing. The blackbody radiation can never
be turned off leading to loss of texture for thermal images. This ghosting effect presents the
long-standing roadblock for heat-assisted machine perception.

We recover the texture by breaking TeX degeneracy and discretizing spectral emissivity
€qv into e,(m,) in a material library, M = {e,(m)|m =1,2,--- , M}, that contains all pos-
sible spectral emissivity in the scene. This opportunity of dimensional reduction is available
naturally in smart applications where materials usually have industrial standards [12]. Our
approach of TeX-Net uses Eq. (6.1) to design physics-based loss and uses a 3D convolutional
neural network to learn spatio-spectral features, in recovering texture X, temperature 7" and

emissivity e.

6.3 Inverse Mapping in Applications

Recall that the heat signal leaving object « is S, = €a Bu(Tn) + [1 — €] Xay, with
Xav = 2 pra VapSpy. Starting with Ty, eq,, and V4 for all compact and finite objects, Monte
Carlo path tracing can solve S,, asymptotically with the [-th order scattering-cutoff solution
S! . The residual error dy; = |S', — Sau| — 0 when [ increases. Let k denote the maximum
number of significant environmental objects considered in the scene, whose spectral emissivity
must be one out of M curves in the material library M = {e,(m)|m = 1,2,--- /| M}. The
parameter set {klM} determines the complexity of the inverse problem and also controls
the accuracy of the solution of T, e,(m,) and X,, for given observed S,,. Note that Sg, in
texture Xo, = 3252, VapSp, is partially observed as S,,. We downsample S,,, into k spectra
to approximately describe k most significant environmental objects. For example, each
heat cube in the HADAR-Street dataset has dimension of H x W x C = 1080 x 1920 x 54,
H being height, W being width, and C being channel (number of wavenumbers). In our
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demonstration, we considered £ = 2 environmental objects. To do so, we spatially split
images H x W into 2 x 1 quadrants, each quadrant having dimension of 540 x 1920 x 54.
Then we spatially average each quadrant into a spectrum of length 54, i.e., for each of 54
channels, we average the 540 x 1920 sub-image and get its mean value. These 2 spectra,
denoted as S, and s, are equivalent objects of the environment, and now the texture is
given by

Xov = Va1S1y + VaaSay + daw 2, (6.2)

where the residue 04, is the summation of all sub-leading contributions,

5041/,k = Z Vaﬁsﬁua (63)
B#1,2,- k

and we have d,,, — 0 as k increases. Spectral radiance of external objects beyond the view
can also be provided in addition to the down-sampled spectra in Eq. (6.2). For example, the
sky is usually a significant environmental object in open areas but may not be captured in
the image.

The part of the scattered signal that people are familiar with in daily experience is
originated only from sky illumination, and hence texture distillation is necessary to recast
X. The distillation process is to turn off radiation of other environmental objects than the
sky in Eq. (6.2) and then evaluate the HADAR constitutive equation in a forward manner
without direct emission. Due to the cutoff on the number of environmental objects, dq, 1 also
contains textures, and hence the final texture is a fusion of the distilled X and the residue
O k-

By substituting down-sampled S,,, into Sz, we have taken into account infinite scattering
(I = 00). The number of environmental objects k is restricted by the number of channels C,
k—1+2 < C, in order to have a determined solution (number of variables is no more than
the number of equations). With the texture model Eq. (6.2) ignoring the residue, HADAR
identifiability and material estimation theory in the last section can be readily generalized
to any number of objects and infinite scattering bounces. The unknown parameter set to be

estimated becomes {g, To, Va1, Vag, -+, Var }-
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Figure 6.3. Architecture of TeX-Net for inverse TeX decomposition. TeX-Net can
either be trained with ground truth 7', m, and V in supervised learning, or alternatively,
with material library M, Planck’s law B, (7T, ), and the mathematical structure of X,,
in unsupervised learning. In supervised learning, the loss function is a combination of
individual losses with regularization hyper-parameters. In unsupervised learning, the loss
function defined on the re-constructed heat cube is based on physics models of the heat
signal. In practice, a hybrid loss function with T, e, V contributions (50%) in addition to
the physics-based loss (50%) is used. The sigmoid function before the temperature is to set
lower and upper bounds of temperature. Res-1/2/3/4 are Res-Net with downsampling. The
plus symbol is addition operation followed by upsampling.

6.4 TeXNet

The architecture of the proposed TeXNet is described in Fig. 6.3.

TeX-Net is physics-inspired for three aspects. Firstly, TeX decomposition of heat cubes
relies on both spatial patterns and spectral thermal signatures. This inspires the adoption
of spectral and pyramid (spatial) attention layers [13] in the UNet model. Secondly, due
to TeX degeneracy, the mathematical structure, X,, = > 5 Vo355, has to be specified to
ensure the uniqueness of inverse mapping, and hence it is essential to learn thermal lighting
factors V instead of texture X. That is, TeX-Net cannot be trained end-to-end. X, is
constructed with V' and S, indirectly, where Sg, is the down-sampled S, to approximate
k most significant environmental objects. Thirdly, the material library M and its dimension

are key to the network.
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6.4.1 Training data and training strategy

Our TeX-Net was trained on the HADAR database (https://github.com/FanglinBao/
HADAR). The HADAR database includes dissimilar scenes like Crowded Street, Highway,
Suburb, Countryside, Indoor, Forest, Desert, etc., covering most common road conditions
that HADAR may find applications in. The 11*" dataset is a real-world off-road scene with
heat cube dimension Height x Width x Channel = 260 x 1500 x 49, while the first 10 scenes
are synthetic with heat cube dimension Height x Width x Channel = 1080 x 1920 x 54.
The channels in the real-world scene correspond to the 5" ~ 53 channels of the synthetic
scenes. The HADAR database mimics self-driving situations, with the HADAR sensor(s)
either mounted at the positions of headlights, or on the top of the automated vehicles, or
on robot helpers. Each scene has 5 frames for each camera, and there are 30 different kinds
of materials in total in the HADAR database. For the Street, Suburb, Rocky Terrain, and
the Real-World Off-Road scenes, TeX, RGB and IR images are provided for the purpose of
ranging. The Street scene has a long animation version (100 frames, 12 channels). For the
real-world experimental scene, HADAR sensor is a pushbroom hyperspectral imager that
can produce 256 spectral bands. The heat cubes have been interpolated into 49 channels
to match the channels in synthetic scenes. Only 49 channels of all the scenes are used to
train TeX-Net. Full technical details about the HADAR database, such as, ray depth, field of
view, material properties, and so on, are available in the readme file along with the database.

We split the HADAR database (11 scenes) into training set (80% data) + validation set
(20% data) to train the TeX-Net with 5-fold cross validation. Due to limited experimental
data, we manually split the database, instead of randomly splitting, to ensure the same
diversity of the validation set and training set. Explicitly, in each fold, one frame per view
of each scene was selected for validation. We used a hybrid loss with half supervised loss
and half physics loss, and we trained TeX-Net for 40K epochs. Since the real-world scene
(260*1500) has a different image size with the synthetic scenes (1080*%1920), we used random
crop (256*256) in training. The network was trained using the number of workers of 8 and
a batch size of 20. The learning rate started at 0.001 and dropped by a factor of 10 at 30000
and 37000 epochs. ADAM optimizer was used with the default momentum parameters. The
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used ResNet50 model was pre-trained on the ImageNet dataset. For synthetic scenes, ground
truth temperature and material are synthesized along with the heat cubes. Thermal lighting

factors are solved out with least-squares fitting as the ground truth.

6.4.2 Saliency maps

Saliency map shows the relevant region that is used to predict the desired quantity
(material classification). The Saliency map for material classification e(m) in TeX-Net is

evaluated by Grad-CAM [14] and given in Fig. 6.4.

6.4.3 Performance and training loss

The supervised training loss and performance of TeX-Net on Street-Long-Animation are
shown in Fig. 6.5.

In unsupervised learning with physics-based loss, TeX-Net searches the best matching
TeX for a given signal S. As in practice, standard materials still bear small amount of
variations in property, the material library is an approximation of the scene into several
material classes. Therefore, the number of materials in the library affects the overall accuracy
of TeX decomposition. For the HADAR-Street dataset which consists of 20 materials, we
show the role of material library, by approximating the scene into much fewer material
classes and analyzing the overall physics-based loss. For example, in using 3 materials in
the library, we only keep the most distinct emissivities of glass and brass, and approximate
all other materials as blackbody. This approximation will surely lead to biased temperature
and texture, but as the number of materials increases, the loss will decrease. The analysis
is given in Fig. 6.6. With increasing materials, TeX-Net is trained from the beginning, and
training convergence is not significantly slower.

The TeX-Net performance on the HADAR database is shown in Fig. 6.7. Training loss
curves and the TeX-Net codes are available along with the HADAR database.
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Figure 6.4. Saliency map of TeX-Net in supervised learning. The active region in
Saliency maps is localized and highly correlated with the corresponding material region
(last column), indicating that TeX-Net has properly learnt spatial and spectral features for
material classification. 3 samples out of 20 materials are shown. a, Saliency map for class
2, window glass. b, Saliency map for class 5, aluminum. c, Saliency map for class 7, tire.

Pred: material index prediction of TeX-Net.
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Figure 6.5. a, Loss curves in supervised learning showing the convergence of TeX-Net
training. b, Ground truth TeX vision. ¢, Output of TeX-Net. d, Ground truth material map.
e, Material map from TeX-Net. The comparisons of TeX-Net output with the ground truth
show that TeX-Net is indeed able to do TeX decomposition. Small prediction errors in tem-
perature lead to texture error in brightness, and hence there are some noisy spots observed
in c. This can be improved by imposing sophisticated smooth constraint on temperature
and harder training in the future. This training was done on the Street Long-Animation
dataset in the HADAR database.
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Figure 6.6. Physics-based loss decreases as the number of materials in the library in-
creases. a, materials are added into the library with a greedy approach, and pixels are
classified into those material classes based on visual similarity. Temperature and thermal
lighting factors are solved out accordingly. b, Pixels are classified into material classes with
a neural network (TeX-Net). TeX-Net finds more accurate TeX decomposition, and again,
we can see that with more materials in the library, the physics-based loss is lower. The error
in (b) after 5 materials is noise.
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Figure 6.7. TeX vision comparison between the ground truth and TeX-Net output.
TeX-Net was trained with hybrid loss, an equal-weight combination of supervised loss, and
physics-based loss. The HADAR database was split into a training set (80% data) and a
validation set(20% data) for 5-fold cross-validation. The TeX-Net was trained with 40K
epochs.
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6.5 Conclusion

We propose HADAR for fully-passive and physically-aware machine perception. We
develop a deep neural network that can take advantage of the spectral and spatial resolution
of hyperspectral thermal images to decompose into the corresponding physical attributes
of the scene, which successfully tackles the ghosting effect observed in thermal imaging.
Though practical challenges exist, such as library collection, on-fly calibration, real-time
data acquisition, and functionality-cost optimization, we believe HADAR will lead to a new
chapter in the Fourth Industrial Revolution with applications in autonomous navigation,

healthcare, agriculture, wildlife monitoring, geosciences, and defense industry.
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7. CONCLUSION

The promise of Al and quantum technology has ushered the development of several hardware
and software methodologies, that have pushed the boundaries of science. Furthering the
development of computational techniques relevant to the physical sciences has been the
driving force of this thesis.

To summarize, we have presented purely classical and quantum-classical hybrid tech-
niques to tackle complex problems that require state-of-the-art classical and quantum hard-
ware.

We show through the utilization of a unique ansatz that resembles a classical ML model,
how any eigenstate of choice can be extracted on quantum hardware. The emphasis was
laid on two-dimensional materials and their corresponding band diagrams were extracted to
display how the proposed technique can have a profound impact on the study of electronics.

Then, the previously presented method was extended to capture quantum phase transi-
tions, a fundamentally many-body phenomenon. A simulation was performed to calculate
the critical point of the Quantum Rabi Model on quantum hardware, thereby extending the
domain of quantum simulation to a light-matter interacting system.

The above approaches involved performing a variational calculation, wherein the param-
eters, required to construct a unitary that can be placed on a quantum circuit to perform the
relevant computation, were optimized on classical computers. This optimization might be-
come intensive for certain problems. Therefore, we proposed a parameter-setting strategy for
a quantum heuristic algorithm known as QAOA, applied to a general class of combinatorial
optimization problems.

Finally, we looked at a classical deep learning-based approach to extract the relevant
components of a thermal image. The importance of solving this inverse problem became
apparent in the case of autonomous navigation during the night.

In essence, we have tried to present new methods in the near term to solve some of
the pressing problems in physics and chemistry with the state-of-the-art available hardware.
In the case of the classical neural network, a more extensive dataset with thermal images

can help improve the quality of solutions and in turn, the way we approach autonomous
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navigation. For quantum techniques presented in this thesis, a reliable physical quantum
computer can help propose new algorithms and improve upon the existing ones to discover

more impactful quantum applications.

169



A QUANTUM MACHINE LEARNING FOR VALENCE BAND CALCULA-
TIONS [APPENDIX]

A.1 General Tight-Binding Hamiltonian for a system of two sublattices

We begin our discussion with a general tight-binding (TB) Hamiltonian for a system
of consisting of unit cells of two conjoint sublattices (say A and B) with one atom per
sublattice. For simplification, we shall consider the case where each atom contributes only
one orbital even though this restriction can be relaxed in a straight-forward extension. Our

TB Hamiltonian in the basis of the contributing orbitals is:

_ A
H = Z mnaa maanU’+ Z mnaa’bmabnﬂ'
m,n,o, o’ m,n,o, o’
+ Z tmnaa mo’an +hC) (Al)
m,n,o, o’
where et €8  are the interaction matrix elements within each of the respective sub-

lattices (either A or B) and t,,,,,. (assumed to be real) denotes the hopping interaction

between the two-sublattices. af  creates an electron in the mth atom (also mth orbital)

with spin ¢ in sublattice A. Similar definition holds also for bl  except it caters to the B

o

sublattice. The following properties of these operators will be very useful later

{ahor o} = Omnoo (A2)

N L (A3)
{ahgalor} = {bh5, U]} = 0 (A4)
{Bhigs hipr} = (bl tner} = 0 (A5)
ng|0) = 0 (A6)

bng|0) = 0 (A7)
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Using Eq.A5 is equivalent to assuming that the overlap metric between the sublattices A

and B is identity. Now since Eq.A1 is banded, to afford dimensionality reduction and ease

]

of diagonalization let us define Fourier transform of the operators a! _, and b! , as follows:

ik-RmA T
c,m \/_ Z e (A8)
= \/_ S ek Rmagl (A9)
di = ﬁ > el Rmspt (A10)
1 .
di = —= ekRmrpl (A11)
ag \/N — mao

where Ry, and R,a are real-space lattice vectors of the two sublattices and k is the
wavevector that belongs to the 1st Brillouin zone of the corresponding reciprocal lattice.
Using Eq.A8, A9, A10, A1l and properties listed in Eq.A2, A3, A4, A5, A6, A7, it is now

possible to construct matrix elements of the following forms:

e (0]cyHel,|0)

(0o Hel,|0) =

ik-(Rqa—Rpa) t Ty A
Z Ze 4 P <ap0/amal a’VLUQaqU)Em,n,Ul,Jz

1

N m,n,01,02 p.q
1 ik (R, R,

N Z Ze ( ah™ pA)5 50025 60 'o1 mnm o2

m,n,01,02 p.q

1 K
S A1)
e (0ldx,Hd],0)
1 aermn
<O‘dko/HdLa‘O> = Nzek(RqB RpB)Eﬁq,U,a/ (A13)

p,q
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« (0ckoHdL,[0)

Cko’ = e. AaB T Qpo' Q. no m,n,o1,0
O Hdl];cro i (R B-R A) yq jnalb ijpj't s1,01,02

1
N m,n,01,02 p.q
1 ik-(Rqp—R
N2 2 TN b bmpborytmnon o0
m,n,01,02 p.q
1 -
_ N Z elk-(RqB*RpA)tp,qp’U, (A14)

p.q

With these matrix elements, we can cast the Hamiltonian in the basis of operators defined
in Eq.A8, A9, A10, A11. To proceed further we need to now specialize to the exact geometry

of the lattice which shall be discussed in the next section.

A.2 Honeycomb lattices: Graphene and h-BN

Using the matrix elements derived in Eq.A12, A13, A14 we can now deduce the Hamil-
tonian used in this work for graphene and h-BN upto third nearest neighbor interaction.
Both graphene and h-BN possesses the similar lattice structure, a representative prototype
of which is given in Fig.Al. The real-space lattice unit vectors are a;, ag are also displayed.
The primitive vectors of the real lattice of are given by a; = a (@, %) , ay=a (?, —%)
where a = |a;| = |ag| = 2.47 A is the lattice constant for h-BN and a = 2.55 A for monolayer

graphene.

Nearest-neighbor interaction

For nearest-neighbor interaction only in hexagonal honeycomb lattices, it is easy to ap-
preciate from the geometry in Fig.Al(a) that atoms in A sublattice share a vertex with those

at sublattice B only and vice versa. So the following substitutions need to be made

o & = € 0pg0000

!
p,q,0,0

Substituting in Eq.A12 we get

A
€
(Ol Hel,0) = 32 24, (A15)
P
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Figure A1l. (a) Structure of the honeycomb lattice. The green circle shows the nearest
neighbors (three in this case), the blue circle shows the second-nearest neighbors (six in this
case), and the orange circle shows the third-nearest neighbors (three in this case). (b) The
unit vectors ay, as of the real space lattice are indicated.

B

/
p’q’o—?o—

€ = ef OpqOoor

Substituting in Eq.A13 we get

B

®g, (A16)

(0] Hd},[0) = 3~ 2

p

° tp,q,cr,a’ =t if RqB = RpA + dl; RpA + dz, RpA + d3
Substituting in Eq.A14 we get

(0lckeHAL,[0) = Gypre™ (790t (1  el(d2dr) 4 oik(ds=du)y

— 5aaleik-(—d1)t1(1 + eik~a1 + eik-az)

This form of the matrix elements has actually been deduced before in [1], [2]. From geometry

the nearest neighbor length vectors are dy = (0, %)a, as =dy —dy,az =ds —dj.
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Second-nearest neighbor interaction

From Fig.Al(a) it is clear that every next nearest neighbor of atom A is also only atom
A and vice-versa of atoms of B sublattice as well. Inclusion of second nearest neighbor
interaction thus only modifies the matrix elements (0|cxe-Hel,[0) and (0|de-Hd]|0) only.

Let us look at each of them

A

!
p,q,0,0

= t2 if RqA = RpA + al,RqA = RpA + ag, RqA = RpA + (3_1 — 8.2).

_ A
. € = €, 0pg000"

Substituting in Eq.A12 we get

A
€ . . . .
<0|Ckg’HC1T<U|O> — Z(ﬁ)é‘mgl + t2 (e—1k~a1 + e—lk.az + e1k.a1 + elk-az
p
+ eik~(a1—ag) + e—ik~(a1—a2))6aval (Al?)
. eﬁw’g, = efépqémf

= t~2 if RqB = RpB + al,RqB = RpB + g, RqB = RpB + (a1 — 32).

Substituting in Eq.A13 we get

B
€ ~ . . . .
<O|dk0'/Hle<o"O> = Z(ﬁ)éaﬂ/ _|_t2(e—1k~a1 + e—1k~az +e1k.al + elk~a2
p
4+ elllamas) 4 gmik(aizaz)ys (A18)

o (0]croHAL,[0) = 8,pel (a0t (1 4 elkat 4 ellcaz)

The matrix elements of the type (0|cxo-Hdl |0} do not change at all and is equal to the value

obtained in the nearest-neighbor case.

Third-nearest neighbor interaction

It is evident from Fig.A1(a) that third-nearest neighbor interaction only interconnects of
the atoms in A and B sublattices only and hence matrix elements of the kind (0|cy,Hd}_|0)
will be exclusively changed while elements of the kind (0|dy,Hd! |0} and (0|cgq Hef |0) will

involve participation upto second nearest neighbor only.

174



L] tp’qﬂ’gl = Zfl if RqB = RpA -+ dl, RpA —+ dz, RpA -+ d3 and
=t3 if Rgp = Rpa £ (a1 —a2),Rpa + a2+ a3
Substituting these in Eq.Al14 we get

Olews Hdl [0) = #y(1 + ok 4 gikan) 4 ¢, (oik(ai—aa)
ko

+ elk(mman) | gile@itas)) (A19)

The two other matrix elements i.e. (0|cgHel |0), (0|dpyHd]_|0) remain the same as the
second-nearest neighbor case.
Now we are in a position to construct all the matrix elements of h-BN and monolayer

graphene using interactions up to the third nearest neighbor.

h-BN
A
€
Zléa,a’ = 1
> N
B
€
Zléo’,o’ = tn
o N

H = ¢ (1+e* 4 eik"”)
H2 = (eikal _I_eik'ag +eik-(a1—a2)+eik-(a2—a1)+e—ik'a1 +e—ik~a2)

H2 — tg eik-a1 +eik~a2+eik-(a1—a2)+eik-(a2—a1)+e—ik~a1 +e—ik-a2)

(
Hy = 3 (eik'(alfaz) + elk(az—ar) | eik-(a1+a2))

ty + Ha 0 0  H +H;
0 ty+Hy, Hy+Hy 0

Hi +H, 0 0 tn + Hy
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Table 1. Tight binding parameters for h-BN

tb (GV)

t, (eV)

tl (GV)

t2 (eV)

t3 (G‘V)

2.46

-2.55

2.16

0.04

0.08

Monolayer graphene

A
€
Z l(sa o = to
> N
Hl = tl (1 + eik-a1 + eik.a2)
HQ _ t2 (eik-a1 + eik-ag + eik-(a17a2) + eik-(agfal) + efik-a1 + efik-ag)
Hg — t3 (eik~(al—a2) + eik-(az—al) + eik-(a1+a2))

te + Hy 0 0  Hy+H,
0 tc+H, Hi+H; 0
H = :
0 Hi + H] tc+H, 0
H +H, 0 0 te + Hy

In the case of graphene, we also model electronic interaction between opposite spins
through a Hubbard Hamiltonian with the repulsion parameter being denoted by U. Since
the average number of electrons with spin-up is taken as 1 and the average number of
electrons with spin-down is taken as 0. Therefore, U enters the Hamiltonian only on the

down-spin diagonal terms.
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te + Hy 0 0 H, + H;
0 te+Hy+U H +H; 0
H= (A20)
0 Hi +H, tc+Hy4+U 0
Hi + Hj 0 0 tc +Ho

Table 2. Hubbard model parameters for graphene
te (eV) t1 (eV) ty (eV) ts (eV) U (eV)

1.994 2.86 -0.236 0.252 9.3

A.3 Scaling

After the single qubit rotations (R,) and before the Controlled-Controlled Rotations
(C'— C — R), the probability distribution corresponding to a specific 0%, h can be written as:

ok (o a0t +30 biky)
S ek Qoo k)
oZ,

(A21)

Once the C'— C' — R is applied for the first time, the probability distribution with the

corresponding ancilla qubit being in |1) is:

1
ok Qg aiof 40 bihy) o (wijoihy)

X
S or (0, @iof +3 biky) oF lwil
o*,

(A22)

After all the C'— C' — R are applied, then the probability distribution with all the ancilla

qubits being in 1) is:
e%(Zi aiUiZ+Zj bih;) e%(’LUijO'izhj)

X
Z 2 he%(21 aiUiZ+Zj bjhj) ];3[ e%|wu‘
(< b %
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ot (0o aiof+3 2 bihy) o (i wuohy)

= X
S ok (20 @iof +3 0, biky) oF 2wl

e%(Zi aiof+ 2 bihi+ 0, wijofhy)
= A23
Z he%(Zi aiUiZ+ZJ’ bjhj)e% Zi,j‘wi” ( )
0%,

By summing all possible states, the probability of getting all ancilla qubits to be in |1)

is given by:
D% h e%(zi aiof +3 5 bihi+ ), wisofhy)
| A24
Yot h ok Qo aioT+ 305 bili) o 5 D lwii] (A24)
Since, eWioh > e=abswii the term ewioihi in Eq.(A24) can be replaced with o—lwi|
This results in the successful probability P to be:
P Zm,h e%(zi aiaiz+2j b«ih«iJrZi,j wijofhy) > e%(Zij\wijD 1 (A25>
= S e%(Zi aiof+ bjhj)e% Dolwsl T e%(zi”’uﬁjb B e%(zuzmiﬂ)
oZ,

|wj |
2

By choosing max(}>; , 1), the lower bound of the probability for successful sampling

becomes a constant equal to e™*.

A.4 TImplementation Details

1. If n is the number of visible units and m is the number of hidden units, then,

(a) The number of qubits required are:
2 qubits for visible units (n)
» 2 qubits for hidden units (m)
4 ancilla qubits (n+m)
(b) The number of gates used are:
« 4 single qubit rotations (n+m)
« 4 Controlled-Controlled rotations (nxm)

« 24 X(bit-flip) gates (6xnxm)

2. The parameter are updated through gradient descent with a learning rate equal to

0.01.

178



3. The number of measurements

~ 30000, for classical and qasm simulations without warm start
= number of iterations = { ~ 500, for classical and qasm simulations with warm start

~ 500, for IBM-Q implementation

B QUANTUM MACHINE LEARNING FOR EIGENSTATE FILTRATION
[APPENDIX]

B.1 Proof of Theorem 2.1

The proof of feasibility of general penalty functions is known in optimization theory.
Since both our objective function and penalty term are quadratic forms herein we construct
an original, formal and a simple proof for Theorem 2.1.

Let us recollect the cost function F(\, H, O, [¢))) defined in text:

FOLH, O, [v) = @[H[) + A(@|(0 — w)?[y) (B1)

B.2 Definitions

We re-iterate the following definitions as considered in the main text

1. H € C%? and H = H'. This is the Hamiltonian operator in the problem and we
denote the spectrum of H by & = (00,01, .....05]T where 0y < 0y < ....0,, . We shall

assume that the entries of A in the chosen basis is finite.

2. 0 € C™4 and O = O is an user-defined operator for the problem. w is an eigenvalue

2

of operator O. We denote the spectrum of operator (O —w)?as 7= 1,1, N2 )t

where 79 < nmp < 19.... < 1,,. Further 1, >0 V i as (O — w)? = 0 (positive-semidefinite

by construction)
3. Null(A) = {|z)] Alz) =0, V |z) € C?} where A is any arbitrary operator € C**¢.

4. A € R, is a penalty parameter
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5. |1) € C? is the state-vector of the system sought from the minimization scheme by

training the neural network.
6. {\i}2, is a sequence in the penalty parameter such that A} < Ay < Az.... A0 — 00
7. P ={|¢;)}°, such that V |[¢;) € P the following is true.
|w1> = alrg minF(Aivﬂu(AL |1/1>> (Bz)
(4
In other words P is the set of minimizers for Eq. Bl for each penalty parameter
Ae {2,
8. [*) = limj_, |?1) be the limit point of a convergent sequence in P
9. All vectors € C? discussed below will be considered normalized unless otherwise stated

Using the definitions above we construct the following lemmas.

Lemma 1. For any |¢) € C%, (¢|A|yp) < JTr(AtA) where A is any arbitrary hermitian

operator € C¥*4,

Proof. Let us denote the variance of operator A as Var(fl) evaluated in an arbitrary state

) € C%. Var(A) by definition is always non-negative. From this we can claim

Var(A) = (0|A%) — ((¥|A))? >0 - (by definition)
(W] A2)p) > (| Al))?
(WATAlY) > ((Y]AJw))* - (A= AT (B3)

Now let us consider a complete set of eigenvectors of ATA denoted as {|s;)}L, with corre-
sponding eigenvalues {s;}¢; which are non-negative as AtA = 0. One can resolve the state

) in the basis {|s;)}L, as follows
i=1

) = (silv)]s:) (B4)

i=1
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Using Eq. B4 to express (1| AT A|h) we have

(V| AT AJp)
d
= si|(si]y)|?
i=1
d
<Y s o5 >0and 0< [(sfy)]* <1
i=1

= Tr(AtA)
We can thus make the following claim

Tr(AfA)

> (|ATAlY) - Eq.B5

> ((Y|AJg)* - Eq.B3
— (Y|Aj) < \/Tr(AlA)

(B5)

(B6)

]

Lemma 2. |¢*) € P and is a limit-point of the convergent sequence in P if (¢*|(O —

w)?[y*) =0

Proof. Let us consider a state |¢)') € S, where the set S is defined as
S = {l2)] Olz) = wlz) ¥ |z) € C'}
The following is then true

WIHW) = (W HW) + M0 —w)? )y ) es
- F()\ka ﬂa 67 W/>)

< TT(FITH) " (Lemma 1 using A= ﬂ)
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Now since the H operator is assumed to have elements which are all finite (see definitions
in B.2) (1), and since /Tr(HTH) is a polynomial on the matrix elements of H, one can
say F()\k,ICI, 0, |¥')) in Eq. B9 is always upper-bounded by a finite number (see Eq. B9
and Eq. B10). One should note that /Tr(HtH) being a trace property is invariant to
the choice of basis for expressing the matrix elements of H and also independent of any
state [¢') used for computing (/| H|¢/). Also F(A, H, O, |¢) = F(h, H, O, [t)) as [¢y) =
arg min,, F(Ay, a0, |1))). This is true for any Ay as |1y is the specific minimizer of the cost
function in Eq. B1 for that A\, and hence will produce a cost-function in Eq. Bl lower in

value than with any state |¢)'). With this information we see

A

lunPKAbII()|¢k Tr(HTH)
N (| H ) + lim AWl (O — w)?)ohe) </ Tr(HTH) (B11)
Jim A{wul (O —w)Plu) < VTr(AVH) = i (il Al) — (B12)
Hm (el(0 =)o) = (@10 = w?[¥*) =0 (A = o0) (B13)

where in arriving at Eq. B13 from Eq. B12 we have used the fact that /T r(I:I TH) is
finite (as per definitions B.2 (1) and the fact that /Tr(H1H) is a polynomial on the matrix
elements of H) and (1| Hy) being a quadratic form is also upper-bounded using same
Lemma 1 and hence is finite. Thus the RHS of Eq. B12 is a finite-upper bound on the
LHS. Only way then the LHS of Eq. B12 can thus stay finite in the limit A — oo is when
(10 (O — w)?[4y,) is pinned to zero. Since |[1p*) = limy_,o0 [¢0)) is the convergent limit point,

the result immediately follows. O]
Lemma 3. (¢*|(0 — w)?|¢*) = 0 if and only if |*) € Null(O — w)?)
Proof. If-part

If [*) € Null((O — w)?)

O —w?*y =0 () € Null(O —w)?))
(W (O = w)*p*) =0
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Only If-part
Let us define a set of eigenvectors of (O — w)? as {|n;)};. Since the set is complete one can

expand

[9*) = Z<771|@/J*>|771>

1

= > (i) |mi) + > (v Imi) (B14)

i) €Null((O—w)?) ni) €N ull((O—w)?)

One can use Eq. B14 in (¢*|(O — w)?|*) to arrive at

(W10 —w)|v*) = ) Of(milv™)|* + ) il (i) [

|mi) €N ull((O~w)?) [mi) €N ull((O—w)?)
=0 (by condition)
= (lY) =0V ) ¢ Null((0=w)?) (>0, sce B.2(2))

— [¢*) € Null((O —w)?) - Using Eq.B14 (B15)

O
Lemma 4. Null(O — w)) = Null(O — w)?)

Proof. This is actually trivial to show. For proof one can see [3] ]

B.3 Theorem 2.1 in main text

Then using the Lemmas above the following is true.

Theorem B.1. Let {\}2, be a sequence in the penalty parameter such that Ay < Ay <
AgeeeAoo —> 00 Also let P = {|iy) }2, such that ¥ |¢x) € P the following is true.

|1h) = argmin F(\, H, O, [4)) (B16)
P

In other words P is the set of minimizers for Eq. Bl for each penalty parameter A € { A},
If |v*) € P is a limit-point of the convergent sequence {1}, in P i.e [*) = lim; o [¢);)
then [v*) € S (defined in lemma 2)

183



Proof. 1f |¢*) is a limit-point of the convergent sequence {t;}*° in P then

W (0 —w)?Y*) =0 - see Lemma 2
— [¢*) € Null((O —w)?) - see Lemma 3

— |[¢*) € Null((O —w)) ‘. see Lemma 4

= [¢7) €S (B17)
0

B.4 Deduction of a generic lower bound for successful sampling and character-
ization of k-parameter

After all the single qubit R, rotations (parameterized by the bias vectors of the network
(@,b)) and Controlled-Controlled Rotations (C—C'—R,) targeting the ancillas (parameterized
by the interconnecting weights W between visible and hidden neurons), the state-vector

|ty ha) of the full set of (m +n +m x n) qubits is

Wona) = S VOG 1@, 8)|GR)w @ (V(1 = (W, 3, 1)[0), + \n(W,5,7)T).)  (BIS)
(&,h)

where the following definitions is used.

1. |Yypa) is the combined state of the visible node qubits (abbreviated by subscript v),
hidden node qubits (abbreviated by subscript h) and ancilla register (abbreviated by

subscript a)
2. (7, ) denotes a sum over the 2+ bit strings where each {o;} or {h;} € {1, -1}

3. |Gh)un is the 27" dimensional state space of n visible node qubits and m hidden node
qubits. Note the state |0), corresponds to o; = —1 as mentioned in the main text.

Similar statement holds for h; = —1 and |0), too.
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4. The distribution O(3, h.d, b) is

- — e%(Zi ai0i+2j bjhj)
0(07 h) a? ) — Zﬂﬁe%(zl aioi%}zj thJ) (Blg)
5. The distribution n(W, &, k) is
. . o (205 winaihy)
n(W.a,h) = (B20)

1
e% Zi,j |w1J‘

6. |0), and |1), are the states of the m x n ancilla qubits (abbreviated as superscript a)

Thus from Eq. B18 we see that when all the qubits are measured, the probability of
selecting a bit string (&, 1) and collapsing the ancilla qubits in state |1}, (only such states

are important to this work as they are post-selected after measurement).

H((@ RN 1) = 0@, h,a bW, h)
oF (w0t 3 bihy) O, wigih)
S 5 e%(zi aiO’H‘Zj bjh;) X e% Zi,j Jwij]

(B21)

Now successful sampling would be an event wherein all ancilla would collapse to |1),. The
probability of such events (denoted as Pyyccess = P(Ta)) irrespective of (&, ﬁ) string selected

can be obtained by marginalizing H((7, ) N ) over all bit-strings as follows:
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Psuccess = P(Ta) = ZH<<5:7 ﬁ) N T)

o
a,h

Sl

e (O s aioit) S, bihy) e%(zu wijoihy)
= X
Z Za L e%(Zi “WH'ZJ' bih;) e% Zi,j |wij|

F.h

(B22)

1
(> . wijoihg)
(e* 2y Mo iak

oF 2i lwil
1
ez(zm wij (Uih.i>0(a,ﬁ,a,5))
1
eE Zi,j ‘wl.]l

v

~ (Jensen's inequality) (B23)

- - -

O1(7,@)a: Y hjOs(h,b) 7 (Eq.B19 O(G, h,d,b) = 04(7,d)O4(h,b)

=> TI10:(om:am)o: Y ki [[O2(hy,b,) (. no intralayer connections as RBM)
G m B
Z OI(O'i,CLi)O'i Z thg(hj,bj)
oie{l,—1} hje{1,—-1}
cti/k _ amai/k  gbi/k _ obi/k
eai/k _‘_efai/k ebj/k +e—bj/k

= tanh (a;/k) tanh (b;/k) (B24)

-

where we have used (...)o7 45 to denote an average over the distribution O(, h,a,b)

defined in Eq. B19. Using Eq. B24 in Eq. B23 we thus get

Psuccess = P(Ta)

> ,
B e% Zi“j |1Uij|
e%(zid wij tanh (a;/k) tanh (bj/k)
PSUCCGSS Z 1 ... Eq.B24 (B25)
oF 2 lwil

The above lower bound in Eq. B25 is a generic lower bound independent of any occurrence

of random variables (&, E) and only dependant on the parameters of the network (a, bW, k).
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In the plot below, we simulate the performance of the lower bound deduced in Eq. B25
against the actual probability using ‘RBM-qasm’ . In the plot, we designate the R.H.S of
Eq. B25 as Py, signifying lower bound and the actual probability of the event (L.H.S of Eq.

B25) as Psyecess as used before.

0.9886-: x P,
5 0988 X P(1)=Piuccess
& 0.9884] *
0.9883
0 50 100 150 200
Epoch

Figure B1. The lower bound for probability of successfully collapsing the ancilla register
in state |1,) as deduced in Eq. B25 (R.H.S of Eq. B25) is plotted in red and the actual
probability of such an event (Eq. B22 or L.H.S of Eq. B25) is plotted in green as a function
of training iteration. We see that the green curve is always slightly above the red one in
accordance with Eq. B25 deduced above. The simulation is from the ‘RBM-qasm’ variant
for conduction band (CB) of MoS; at (k,, k,) = K symmetry point which is where the direct
band-gap is lowest. The simulation is performed by warm starting with initial parameter set
from a converged run at a nearby k-point to ensure faster and accurate convergence. With
the said warm start the desired accuracy of < 10™* eV in energy error was reached within
200 iterations. The high value of the probability of the successful event (and the associated
lower bound) as seen from the y-scale is problem-specific as it entirely depends on (d, l_;, W, k)
(see Eq. B22 and Eq. B25) . For these systems, even with a moderate k parameter i.e.
k < 1.5 for all iterations, the remaining set (d, 5, W) are such that a high value of Psyccess
as seen on the y-scale is attained. The parameter set (d, g, V_V) depends on the updates from
the cost-function and hence on the Hamiltonian of the system being treated. For this choice
of k parameter, the specific values of the y-scale in the plot is thus characteristic of the
systems being studied in this report and may be different for other systems. However the
lower bound deduced in Eq. B25 is mathematically generic and should be valid for any
arbitrary system and a given k parameter, even though the specific value it acquires during
training may vary

From this lower bound, all pre-existing known bounds can be recovered as we shall see

next.

Limiting cases

o tanh (a;/k) — £1,tanh (b;/k) — +1
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In this case we get from Eq. B25

Psuccess = P(Lz)

e%(zi,,j wij tanh (a;/k) tanh (bj/k)
>
- oF 2wl
e_%‘(zid wij tanh (a;/k) tanh (bj/k)|
> ; e > el Yz e R o> 0)
ok > lwiil
e_%(zid |wij tanh (ai/k) tanh (bj/k)|
> - " Triangle Inequality
ek Zi,j Jwsj|
eﬁ(Ziﬁj |wij|| tanh (ai/k)|| tanh (b;/k)]
>
o e% > lwiil
> ————  .|tanh(ai/k)| = |tanh (b;/k)| =1
ok > lwil
1
> B2
T ROy e (B26)

Thus choosing £ = max(>;; ‘u;i”? 1), the lower bound attained in Eq. B26 for the
probability for successful sampling becomes a constant value of e™. This bound was
deduced in [4] in a completely different manner. Here we derived a master bound from

which this is recovered.

tanh (al/k;) — (ai/k:), tanh (bj/k?) — (bj/k’)

Using similar kind of reasoning as in the previous case one can show

—

Psuccess - P(]-a)

—%(2; ; lwijll tanh (ai/k)|| tanh (b /k)|

> (§]
- oF 2l
o 1 (04wl (as/M)I by /B)
>
o e% Zi,j |wij|
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Here one cannot do much to proceed unless some assumptions are made .We assume

that |a;| < ap V iand |b| < by V j. Then we get

1

—_

Psuccess - P( a)
=5 (02 lwiill(as/R) [ (b3/R)]
e% Zi,j Jwij |
o R (3 |
e% > wil
1

agb
oEH s wil)

e

v

Vv

(B27)

One can then numerically choose k to make the bound in this limit in Eq. B27 a

constant value greater than a user-defined real number.

B.5 Hamiltonian for MoS, and WS,

For the Hamiltonian matrix used in this report for MoS, and WSy, we use the 3-band
third-nearest neighbor tight-binding description as adopted in Ref.[5]. The Hamiltonian
matrix elements are provided below for brevity and completeness.

A

The Hamiltonian matrix (H) being a 3 x 3 description is written as

Hll H12 H13

H=1Hy Hy Hy (B28)

H31 HSZ H33

Since the Hamiltonian is hermitian (f[ = H M), the only unique elements are the upper
triangular block. Each such element is described below. For each of the elements we use
the symbol 1.0i = v/—1 to denote the imaginary components. Also ag is the lattice constant
which is 3.190 A for MoS, and 3.191 A for WS, [5]
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\/gky Qo

k k
Hyy = €1 + 2to(2 cos( $2a0) cos( 5 ) + cos(kzag)) + 2ro(2 (:os(3 ;a()) cos(

VIR0, 4 cos(v/3k,a0)

+ 2u(2 cos(k,ag) cos(V3kyan) + cos(2k,aq))

3/{:xa0
2

\/gkyao

2

\/gkyao
5 )

)+ 2(ry + 7o) sin(

) sin(

ke, k
) | cos( Va0

K
Hyy = —2v/3ty sin( 2%) sin(

Ky
— 2v/3uy sin(k,a0) sin(v/3k,ao) + 1.0i * 2t sin(%)@ cos(

\/gkyao
2

3km(lo

5 )) + 2uy sin(kgag) (2 cos(kyag) + cos(\/gkyao))

+ 2(ry — 7o) (sin( ) cos(

\/gkyao
2

Deos(H20)) — o1+ o2 con(L) — o By

k k
;r2a0 ) sin( \/§2ya0 )

Hy3 = 2ty(cos(kyag) — cos(

+ 2uy(cos(2k,a0) — cos(kyag) cos(vV3ky,a0)) + 1.0 x 2v/3t; cos(

2 . \/gk' \/gky Qo
2

3k,
+ %(rl — 79) sin( 2ya0)(cos( 4o

) + 2 cos( )) + 2v/3u; cos(kyao) sin(v/3k,a0)

\/gky Qo

k., 3k 3k,
Hay = €3 + (t11 + 3taz) cos( ao) cos(\/_ y40 o0 5

2 2 2
+2(r11 + V/3r12) cos(V3kyag) + (urn + 3ugs) cos(kua) cos(V3kyao) + 2ui1 cos(2k.ap)

)) + 2t11 cos(kyag) + 4rqy cos(

)

) cos(

k. k
H23 _ \/5(2522 _ tll) Sjn(kxao) Sin(\/gkyao) + 41y Sin(3 a(]) Siﬂ( \/§2ya0)
Ky ka k
+v/3(ugs — un1) sin(kzao) sin(v/3kyaq) + 1.0 * 4ty sin( 2@0)(COS( 2@0) B COS(\/§2ya0>>

+ dugg sin(kya) (cos(keao) — cos(v3kyap))

ks 3k 3k, 3k
Hss = €5 + (3t11 + ta2) cos( an) cos(\/_anO) + 2t95 cos(kzag) + 2111(2 cos( ao) Cos(\/—;ﬂo)
2 3k, 3k
+ cos(V/3kyag)) + ﬁrm(él cos( 2610) cos( \/_ano) — cos(V/3kya0))
+ (Bu1y + ug2) cos(kyap) cos(\/gk:yao) + 2ugy cos(2k,a) (B29)
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The energy parameter set[5] for both the systems MoS; and WS, is tabulated below
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Parameter List for three-band model from GGA calculations

Parameter(eV) MoS, WS,
€1 0.683 0.717
€9 1.707 1.916
to -0.146 -0.152
t -0.114 -0.097
to 0.506 0.590
t11 0.085 0.047
t1o 0.162 0.178
a2 0.073 0.016
0 0.060 0.069
1 -0.236 -0.261
) 0.067 0.107
11 0.016 -0.003
719 0.087 0.109
Ug -0.038 -0.054
Uy 0.046 0.045
Usg 0.001 0.002
U11 0.266 0.325
U712 -0.176 -0.206
U2 -0.150 093




B.6 Importance of Measurement Error Mitigation

In this section we simulate the performance of the algorithm using the ‘RBM-IBMQ’
variant with and without the use of Measurement Error Mitigation(MEM) [6]. In Fig. B2(a)
we plot the final energy error after the training process for four 4 arbitrarily chosen (k,, k)
points on the conduction band (CB) of MoS,. These points are not coincident with the
symmetry points of the system as symmetry points converges better regardless. We also
plot in Fig. B2(b)-(e) the change in the energy error during the training iterations/epoch
for each of the four points marked as (1),(2),(3),(4). These points are marked on the x-axis
in Fig. B2(a). From each of the plots in Fig. B2(b)-(e) we see that the the red curve (with
MEM) converges smoothly whereas the green dots (without MEM) displays noisy oscillations
leading to poor self-convergence. To account for this statistical uncertainty, the last 30 points
from each of the curves Fig. B2(b)-(e) is time averaged and the results constitutes the points
in Fig. B2(a). The error bars on each points for the results without MEM are the sample
standard deviation of these 30 points and the points themselves are sample mean. For the
results with MEM since the convergence is smooth the corresponding error bars over the
last 30 iterations are an order of magnitude lesser than the sample mean and hence not
displayed. All of the simulations are performed in IBM-Sydney in a single run and followed
till 150 iterations. Each of the 4 points are warm-started with parameter set from nearby
k-points in the ‘RBM-qasm’ variant to hasten convergence . Also in each case, the operator
O = |vo) (v is the corresponding ground state from ‘RBM-qasm’ variant. This together
with the fact that the same initial parameter set is used for both the runs with and without
MEM eliminates errors due to faulty initialization and erroneous construction of the operator
O (due to ground state infidelity) and focuses only on the errors introduced in the algorithm
in the presence and absence of MEM . We see that for some of the points in the main
manuscript the energy errors in the CB for MoS, in the ‘RBM-IBMQ’ variant were higher
due to infidelity in the corresponding ground state which adversely affects the operator 0.
Thus the usage of MEM, appropriate warm starting and the fact that the probability of
successfully sampling of the quantum circuit for these systems is naturally very favorable

(see section B.T) explains the superior quality of the results on the actual IBM hardware for
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all systems studied in this report. Among other factors, quality of results on the hardware
can also be affected by sparsity of the H matrix for a given architecture of the network
with (n,m) even though that point has not been investigated much in this report. Also
it is generally assumed that hybrid variational algorithms like ours are resilient to certain

noises[7] which may be playing a role as well.
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Figure B2. The energy error (eV) for 4 arbitrarily chosen (k,k,) points within the
Brillouin zone in the I' — K — M — T" path of the conduction band (CB) of MoS; after
training the network using the ‘RBM-IBMQ’ variant with and without Measurement Error
Mitigation (MEM). Each of the 4 points is marked on the x-axis as (1),(2),(3),(4). We also
plot the energy error as a function of the training epoch/iteration with and without MEM
in (b) for point index (1) in (c¢) for point index (2) (d) for point index (3) (e) for point index
(4). We see from (a) that the results with MEM are of higher accuracy for all 4 points
than without MEM. However by far the greatest impact which MEM has on the results is
on improving self-convergence. This is best seen from (b)-(d). The error bars in (a) on the
points without MEM are to highlight the statistical uncertainty due to time averaging from
this poor self-convergence. Each such bar designates the sample standard deviation of the
last 30 points (marked in (b)-(d) with a vertical dashed line) in the training process whereas
the orange circles in (a) are the corresponding sample mean. Each calculation with and
without MEM is done using a single run on IBM-Sydney and followed till 150 iterations. All
simulations are performed by warm starting with initial parameter set from a converged run
at a nearby k-point in ‘RBM-qasm’ variant. This is done so that same initial parameter set
is used for simulations with and without MEM which eliminates biases due to random initial
parameterization and affords a strictly fair comparison. The 4 points chosen are not the
symmetry points as we have seen that symmetry points usually converges better regardless

B.7 Measurement statistics

For all the systems studied in the manuscript, while training the network using the

quantum circuit we use 10° measurement shots for the ‘RBM-qgasm’ variant. For the
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‘RBM-IBMQ’ variant (IBM-Sydney and IBM-Toronto) we use 8192 measurement shots
which happens to be the maximum allowed value. We show in this section why the said
number of measurement counts are adequate for all the systems we study in this report.
We simulate the statistics of the measurement using ‘RBM-qasm’ in Fig. B3 wherein
the probability of successfully collapsing the ancilla register in |1;> is plotted both in the
ideal case from Eq. B22 (see Fig. B3(a)) and from the frequency distribution of the actual
quantum measurement (see Fig. B3(b)). The total number of measurement count used is
105, We see that for these systems, the favorable event is nearly exclusive indicating that
in only less than 2% of the measurements the ancilla register collapsed into the unwanted
state |0,). The latter events are discarded when constructing the RBM distribution from
the measurement statistics (see Eq. B18). As a result nearly 9.8 x 10° samples are available
to faithfully construct the target distribution. Each such sample constitutes a (&, ﬁ) pair.
The frequency distribution of such samples is the simulated RBM distribution (Peqs) as
obtained from the quantum circuit. The fact that this distribution agrees with the actual

one (Pgpy) is quantified using the KL divergence between the two which is defined as

. Preas
KL div= <_log(PRBM )>PRBM (B?)O)

KL divergence can only be zero if the two distributions P,,..s and Prgy exactly agree.
This is seen to be the case in Fig. B3(c) for all iterations during the training process. This
indicates that with the 10° total measurement shots , the quantum circuit faithfully produces
the RBM distribution for the systems studied in the report.

We see from Fig. B3 (d)-(f) that the distribution can be constructed with appreciable
accuracy with 10* measurement shots too. This situation simulates the measurements on
‘RBM-IBMQ’ (without the noise) wherein only 8192 shots are maximally allowed. This is
a consequence of the fact that the probability of successful sampling (see Fig. B3(a) and (d)
is high and hence practically all measurements yields the favorable outcome. Even though
from Fig. B3(e) and Fig. B3(f) one can see that the deviations from the expected value has
increased than in B3(b) or B3(c) due to lesser number of shots yet such deviations are still

too small to be of practicable consequences. For example, the final error in energy at the end
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Figure B3. The ideal probability of successfully collapsing the ancilla register in state
|T,) as computed from Eq. B22 (b) The difference between a) and the fraction of the
total number of times the ancilla register collapsed in state |1,) as obtained from the direct
measurement statistics in the quantum circuit. This quantity is procured by counting the
number of times such an event happened while measuring all the qubits and dividing the
count with the total number of measurement shots used (10 in this case). We see this
value deviates only marginally from the ideal value in a) indicating that the desired event
is extremely favorable. (¢) The KL divergence of the distribution constructed from post-
selecting all bit-strings (&, l_i) for the visible and hidden-node qubits after the ancilla register
collapsed in state |I,) and the exact RBM distribution. We see that the KL divergence is
extremely close to zero indicating that the circuit can correctly learn the RBM distribution
with the designated number of shots. This is because in most of them the favorable outcome
of ancilla register collapsing to |1,) happens naturally (see (a) and (b)) for the systems being
studied in this report even with moderate k-parameter (k < 1.5) (see text for discussion).
(d)-(e)-(f) are similar plots as (a)-(b)-(c) but with 10* total measurement shots. All the
results are simulated in the ‘RBM-qasm’ variant for conduction band (CB) of MoS, at
(k. ky) = K symmetry point which is where the direct band-gap is lowest. The simulation
is performed by warm starting with initial parameter set from a converged run at a nearby
k-point.

of the training in both 10° and 10* shots is < 10~* eV. Thus we conclude for reasonably large
number of measurements (10° or 10*) one can construct the distribution faithfully for the
systems studied in this report with moderate k parameter. Fig B3(d)-(f) simulates only the
ideal case for the hardware data. Of course for the ‘RBM-IBMQ’ variant, the distribution
during the training is further corrupted due to gate infidelities and qubit-decoherence error
which is manifested in the higher errors in the final result for ‘RBM-IBMQ’ variant as

compared to the ‘RBM-qasm’ variant in all the systems studied in the main manuscript.
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It must be emphasized that the probability of sampling and collapsing the ancilla register
in the desired state |1,) is entirely a function of the parameter set (a, b, W, k) encountered
during the training process (see Eq. B22, Eq. B25). For these systems, the k-parameter
during the course of the training is always found to be moderate £ < 1.5. Even with such a
low k, the remaining set (@, l;, W) is such that a high value of Pj,..css i naturally obtained.
The parameter set (d, g, W) is updated using the cost function which makes the values it
acquires dependant on the Hamiltonian H and symmetry operator O of the specific system
being treated. Thus the specific values of the successful sampling probability Pj,ccess in Fig.
B3(a) and Fig. B3(d) is somewhat characteristic of the system. This makes formulating
a general expression for the total number of measurements required in our algorithm to
successfully construct the target distribution (with a chosen error) difficult as even for a
given architecture of the network (visible layer n and hidden layer m) and a certain k
parameter, the parameter set (a, l;, W) may change for different systems which may in turn
alter the probability of successful sampling thereby necessitating different number of total
required measurements. But in systems wherein the the parameter set (@, 5, W) do not lead
to favorable value of Py,.cess With low &k , k-parameter in our model will have to be tuned
by the user adaptively to a higher value to make the lower bound for the probability of
successful sampling (see Eq. B25) greater than a chosen preset thereby guaranteeing that
at each iteration a good subset of these measurements are always fruitful with which the

distribution can be constructed.

B.8 Variation of the results with changing hidden node density

In this section we simulate the effect of changing the hidden node density a = ™ on

the results for the systems treated in this report. We take MoS, as a prototypical example
and train the network using the ‘RBM-qasm’ and ‘RBM-cl’ variant for the (k,,k,) = K
point for both the valence band (VB) and conduction band (CB). The number of visible
node neurons n as discussed for this system is 2. We vary the number of hidden neurons
m = [2,3,4]7 which corresponds to a changing density « = [1,1.5,2]7 respectively. Varying

the hidden node density changes the circuit depth/gate-requirements and the number of

197



parameters used for training the network. We see for these systems, the results do not

change much as all energy errors are below 1072 eV and hence way below the threshold of

chemical accuracy. However for correlated systems one may need to make the RBM ansatz

more expressive by enhancing the hidden node density[8]. We shall explore this point again

for a molecular example in section B.12
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Figure B4. (a) The energy of the valence band (VB) at (k, k,) = K point for MoSs for
the exact case and the two flavors of RBM namely ‘RBM-qasm’ and ‘RBM-cl’ are plotted
by changing the number of neurons m in the hidden node. (b) The corresponding energy
errors from the calculations in a) (¢) The corresponding state infidelities from the calculations
in a) (d) Similar result as in a) but for the conduction band (CB) at (k,,k,) = K point for
MoSs. (e) The corresponding energy errors from the calculations in d) (f) The corresponding
state infidelities from the calculations in d)

198



B.9 Spin-Orbit Coupling (SOC) data for WS,
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Figure B5. (a) The exact energy contours in valence band (s=1) within the three-band
approximation for the Hamiltonian (see Eq. 8 in main manuscript) as a function of (k,, k)
near the K-point in WSy (b) Same as in a) but for s=-1 (c¢) Same as in a) for the conduction
band. The crosses in (a), (b) and (c) denotes the (k;, k,) pair wherein calculations for
all three flavors of RBM have been executed. (d) Energy errors in €V from three flavors of
RBM calculations for points denoted as cross in a) for the valence band (s=1) case computed
using A = 0 in Eq. Bl in WS,. The x-axis is a flattened point index with (k;, k,) pairs
marked as crosses in (a) mapped to integers such that the origin is at the K-point. From the
K-point, the flattened point index scale moves spirally outwards grouping all (kg, k,) pairs

satisfying |k| = |/k2 + k2 as consecutive integers and then proceeding to the next [k| (e)

Same as in d) but with points denoted in b) as crosses for other valence band with s=-1.(f)
Same as in d) but for points denoted in ¢) as crosses for the conduction band computed with
(A =5,w=0,0 = |v)(1p|) in Eq. Bl (g) The amplitude for the occupancy of d.2 orbital
on the metal for states computed at (k;, k) pairs near the K-point from all three flavors
of RBM as well as the exact states in valence band (s=1) for WSy. The amplitude of states

with the same |k| = /k2 + k2 appear bunched together as ’steps’ due to flattened point-

index scale used. Near the K-point the amplitude is the same for all such pairs within a
given step due to isotropy of the energy surface. However away from the K-point deviations
appear due to trigonal warping owing to the Ds; symmetry of the unit cells in TMDCs.
The states from all flavors of RBM can resolve the influence of warping accurately with the
performance worsened for the noisy variant.(h) Same as in g) for valence band (s=-1) (i)
Same as in g) for conduction band. For all these calculations the warping parameters are
kept the same as that for MoSy even through the band energies are obtained within the
three-band approximation calculated using RBM for WS in the main manuscript

199



B.10 Eigenvectors of L. and L? operator for MoS, and WS,

The L. operator at K — point in the three-band basis of (d,z2, dyy, d,2_,2) orbitals of the

metal centre is given as [5]

(B31)

&,
N

I
=}
=)}
[\
—

where i = /—1. The eigenvectors and eigenvalues of the L, and L? matrix is given as

Eigenvectors and Eigenvalues of L, /L? operator
Eigenvalue (L.) | Eigenvalue (L?) | Eigenvector Band Index
-2 4 %[0, —1, —i]” CB+1
0 0 [1,0,0]T CB
2 4 70,1, —i]" VB

Note that the basis is d,2 = [1,0,0], dyy = [0,1,0]7, dy2_,2 = [0,0,1]7 and the notation
VB= valence band (ground state), CB = conduction band (1st excited state) and CB + 1
= Higher energy band (2nd excited state above conduction band). As mentioned in [5], in
the chosen basis, the matrix elements of L, operator and L, operator are all zeros and hence
L? operator enjoys exclusive contribution from L, operator given above. As a result, the
eigenvectors of L? operator are the same as given in the table above but the eigenvalue pair
(-2, 2) of L, maps to the same eigenspace of L? with eigenvalue =4. In other words L? has

a doubly-degenrate eigenspace of eigenvalue =4 made from eigenvectors VB and CB+1 (see
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Table above) whereas a non-degenerate eigenspace of eigenvalue =0 with the eigenvector CB

(see Table above).
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B.11 Transferability of the Learning to Other systems

In this section we simulate the possibility of using our algorithm which has trained the
network for one system and see if it is possible to transfer’ the learning to get converged
results in a different but closely related system. For unsupervised classical deep learning
algorithms once the parameters of the neural network is tuned so that the probability distri-
bution of the visible node mimics the unknown distribution of the training data closely, any
new sample drawn from the visible node will be representative of a sample generated from the
target distribution. No further training is necessary indicating that such models are highly
transferable. However for quantum data as has been treated in this report, the meaning of
transferability needs to be clarified. In our algorithm, the objective is to train the network
to mimic the amplitude and phase distribution of an eigenstate of a given Hamiltonian H.
Even if we use a fully trained network from some system yet some further amount of training
would be necessary for a similar system as the Hamiltonian matrix H and the symmetry
operator O are changing and hence the eigenstates of the new H are also slightly different
than in the previous system. In that sense, the learning of our algorithm for quantum data
is only partially transferable. That being said, a fully trained for a similar system does help
and can enhance the rate of convergence and reduce the number of iterations for further re-
training. We simulate this possibility using ‘RBM-qasm’ and ‘RBM-cl’ variant for WSe,
using the trained network for MoSsy. Due to the symmetry partitioning of the metal orbitals
as guaranteed in [5], to treat WSey too one would need n = 2 qubits. We use m = 2 as for
other systems as well. The gate requirements is exactly the same as for MoS,; and WS,. We
see that in both the variants starting with a trained network for MoS, converged results can

be obtained using just 1000-2000 iterations. All the results are displayed in Fig. B6.
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Figure B6. (a) The energy of the valence band (VB) at (ks,k,) = K point for WSey
in the three-band model [5] for the exact case and the two flavors of RBM namely ‘RBM-
qasm’ and ‘RBM-cl’. The calculations are done by starting from a network trained with
the converged results for the VB of MoSs at the K point. (b) The corresponding energy
errors from the calculations in a) (c¢) The corresponding state infidelities from the calculations
in a) (d) Similar result as in a) but for the conduction band (CB) at (ks, k,) = K point
for WSes. The calculations are done by starting from a network trained with the converged
results for the CB of MoS, at the K point (e) The corresponding energy errors from the
calculations in d) (f) The corresponding state infidelities from the calculations in d). (g)-(1)
are results for WSey similar to (a)-(f) but at a different symmetry point i.e. (kg,ky) = M
point. The calculations in this case are done by starting from a network trained with the
converged results for the VB/CB of MoS; at the M point

B.12 LiH- A molecular example
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In this section we benchmark the performance of our algorithm using a molecular example
LiH in STO-6G basis set. The said basis generates 6 molecular orbitals (MOs) for LiH out
of which the lower lying two MOs (HOMO and HOMO-1) are completely filled each with
2 electrons corresponding to the two spin orbitals. We freeze the core (HOMO-1) and use
the HOMO and the LUMO in the active space[9]. The LUMO+1, LUMO+2, LUMO+3
are a part of the virtual orbital set and are always unoccupied. The Hamiltonian matrix so
constructed is a 16 x 16 matrix . We therefore need n = 4 neurons in the visible node and
4 qubits in the quantum circuit for these visible neurons. For the hidden neurons we have
used m = 4 as well as m = 6 to show how the results change by varying hidden node density.
The total number of qubits in the quantum circuit for the case m = 4 is then 4+4+16 = 24
where 16 ancillary qubits (mn) are used for mediating the interacting terms in the RBM
distribution. For m = 6 we consequently need 34 qubits. The total number of gates for the
case of m = 4 is thus 8 single qubit R, gates and 16 C'—C — R, gates. For the case of m = 6
the corresponding numbers are 10 single qubit R, gates and 24 C' — C' — R,, gates.

We simulate the ground and excited state potential energy surface as a function of stretch-
ing the Li and H bond length. The results are displayed in Fig. B7 and in Fig. B8 along with
the corresponding errors from the exact diagonalization results. We use the ‘RBM-qasm’
and ‘RBM-cl’ variant for all benchmarking. While most runs on the ‘RBM-cl’ variant are
randomly initialized near the equilibrium bond length warm starting has been used exten-
sively, especially near the dissociation limit where multi-reference correlation is important.
For ‘RBM-qasm’ variant the runs are sometimes warm started with the initial parameter
set of a nearby bond length in the ‘RBM-cl’ case. We see that in all cases away from the
dissociation limit, errors are fairly low in the range of 107° — 1073 eV whereas it is < 0.0022
a.u. near the terminal bond lengths ;i studied in the plots ( 0.7 A <rgy <28A )

In [9] (see Fig. 4(b) and Fig. 4(d), the ground state potential energy surface for LiH is
discussed with and without the effect of warm-starting (which the reference called ‘Transfer
Learning’). Fig. 4(d) with warm-starting shows all points to have energy errors much lesser
than in Fig. 4(b)) which is also found to be the case for the calculations in this report.
The key differences between the results in Fig. B7 and in [9] needs to be emphasized at

this point. [9] simulated the results at the ‘RBM-cl’ variant only as the circuit was not
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directly implementable on a quantum simulator (like Qiskit’s gasm__simulator as used in
this report) or a NISQ device. Also [9] used STO-3G as the basis set and number of hidden
nodes m = 8 unlike here. Besides the phase node included one neuron in [9]. We see that
for the ground state all errors in energy were < 0.001 a.u. in [9] which is likely due to the
higher number of hidden nodes m = 8 used which makes the network more expressive. We
also changed the hidden node density and simulated the ground and the excited state for
LiH in Fig. B8 with m = 6 hidden neurons apart from m = 4. One must note that only
‘RBM-cl’ variant is used in this case akin to [9]. This is because to simulate the system
at all bond lengths using (n = 4, m = 6) neurons one would need 34 qubits in the quantum
circuit which is beyond the current standards of gasm_ simulator in Qiskit Aer backend.
We see the errors in the ground state calculation are usually lower in this case akin to [9]
but for excited states the trend is less clear. Possibly to lower the energy errors further for
excited states one needs higher hidden node density than what is considered here. Although
not used for Fig. B7 or Fig. B, optimizers like ADAM, RMSProp etc which are known to

recover a neural network from locally trapped minima may also help.
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Figure B7. The dissociation curve for the ground state of LiH in ‘RBM-cl’ and ‘RBM-
gasm’ variant overlayed against the exact value. (b) The error in energies from a) from the
exact value. ¢)The dissociation curve for the excited state of LiH in ‘RBM-cl’ and ‘RBM-
gasm’ variant overlayed against the exact value. (d) The error in energies from c) from the
exact value. In all of the results in this panel we use n = 4 and m =4
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Figure B8. The dissociation curve for the ground state of LiH in ‘RBM-cl’ variant
overlayed against the exact value for two different m. (b) The error in energies from a)
from the exact value for both m. c)The dissociation curve for the excited state of LiH in
‘RBM-cl’ variant overlayed against the exact value for two different m. (d) The error in
energies from c) from the exact value for both m. In all of the results in this panel we use
n =4 and m = 4 and compare it with n =4 and m =6

C FINITE-SIZE SCALING ON A DIGITAL QUANTUM SIMULATOR [AP-
PENDIX]

C.1 Bulirsch-Stoer Algorithm

For hy = 1/N where N = 0,1,2, ..., the Bulirsch-Stoer algorithm can be used to find
the limit of a function T'(hx) as N — oo[10], [11]. For demonstration, consider that we only

have T'(hy) for N = 0,1,2,3, then the following rows are computed successively,
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n=1 7" I 7
n =2 73" 73"
n =3 T. 3(0)

using the following rules

T =0 (C1)
T = T(hy) (C2)
w -1
h TN+ _ p(N)
>1 1 ( 1 1) hN+m Tr(nj\iJlrl) B Tn(j\i;rl) ( )
where w is a free parameter determined by minimizing ) = ‘T (1) — 7O The final answer
is T: 350).
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